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The Multi-View ¥OG Program
and its Application to Quality Control of FSD Data -

Shirley Buckman, Joan Franz, John Cotthelfsman, Dennis Hall,
Vivian Morgan and Frank Windorski .

I. Introduction

One of the most difficult problems encountered in the reduction

~ of Bubble Chamber data is that of quality control. In particular,
the problem of detecting FILTER errors is especially difficult. This :
' is due in part to the fact that FILTER errors; by definition, do not

depart from the true orbit by more than a road width (at Berkeley,
Slé 1) and are usually smaller than half a road width. Hence, this

kind of error is by nature more subtle than analogous errors made

" by a Frankenstein operator or a faulty digitizer.

For this reason,‘if we are to have any hopenof detecting these

.errors, it is necessary to have an accurate model of the true orbit

on the film. If the number of erronecus points is sufficiently small

in relation to the total number of points measured, then a maximum

likelihood fit to such a model will show erroneous points as signifi-

cantly displaced from their expected values.
The term "significantly displaced” means that the displacement

1s much larger than would be expected on the basis of an a priori

' error estlmate. Hence, a second requirement for the detection of

FILTER errors is that there exist predictable confidence intervals

- for all error sources.

More precisely, the fbllowing information is required:

A. An accurate relatlonshly which gives the ¥SD film -
coordinates g of a point X on the orbit as a function
of the initial conditions for the particle and, say,

. the arc length s of X as measured along the orbit from
~ the initial position of the particle. .

B.  Predictable confidence intervals for all acceptable
error sQurces.

i hd P

-



“derived. . o o
X(s) = Xi(u) = X1 + Aqu + Vy S(u) + Wy C(u)

D

- Multi-view FOG, an extension of the current 2-view FOG program,

will provide a maximum likelihood estimate of the momentum and position

vectors of a track near a vertex. It will also provide a reliable

discriminafion function which will separaté gooﬁ méasurements from bad -

measurements on a statistical basis end will under certain conditions

attempt to remove bad points from a track.
II. Mathematical Model

Consider a particle in a bubble chamber with initial position

momentum scaler and A, the unit tangent'vector at,thé vertex.

forces which significantly affect the position of the particle are the

following:

The magnetic field force, (gB) x (vA), where B is the
instantaneous magnetic field vector, v is the in-
stantaneous velocity scaler, A is the instantaneous
tangent vector, and q is the charge on the particle.

Jonization energy loss, E*A » where p is the 1nstan— S

taneous momentum scaler.

Elastic collisions with other particles.
random nature of this force, it will be
source of error.

From the forces 1 and 2 on the particle it is possible to derive a
functional relationship between the instantaneous position vector X
and the variables s, Py and Xy. (s = arc length from X to Xy).

- In Appendix A, an approximation X(s) to the true orbit X(s) is

where
’ ih ss s(i+1)h
u=s - ih '
Xg =% (), . X, =
7\1 = -Xi-l(h.)":"' 7\0 =
v, = (B x N/ |
wy = (B xv)/lBiI

and S(u), C(u) are scaler functlons of u.

Xy
7\V

Because of the
treated as one

vector X, and initial momentum vector Py = pyAy, where py is the
. The

;

(1)

(2) -

(3)

(%)
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Clearly, (&) is not particularly difficult to evaluate. The only
differences between (L) and a circular helix are the functions S(u)

and E(u). For circular helices, these functions are simple sines and

- cosines. For the approximation (4) they involve natural logarithms

"as well. Preliminary indications are that the evaluation of ()

togéthei with all of its partial derevatives will require about one
millisecond per point.on the IBM T7O94-IT.

It is also shown in Appendix A that for every ¢ there exists an

‘h such that

|X(s) - X(s)| s ¢ whenever ih = s é (1 + l)h. - | (5)

In fact it is shown that (5) will be satisfied whenever.

hsl|cLg IB,] - S :' (6)

0 py .

. where L is the total length of measured track and

SE-" AN A WY Ex"é
ST QBH LB

Thus, given an €, we can compute an h such that condition (5)

(7).

is satisfied. By choosing € sufficiently small the correct model of
the space orbit is obtained. . : '
The two dimensional analogue of (4) without condition (5) is ‘
derived by Solmitzt for the program TVGP. | '
Table I gives h and N = % és a function of py and L for some
typical cases using € = 304 in space, the mass of a n, and the
magnetic field of the 72" Hydrogen Chamber. _

The chief advantage of this model is that it is self regulétory;;
That is, even with large changes of field and long stopping tracks,
constant accuracy will be maintained. Hence, this source of error is
eliminated. ' '

As a consequence of this therrogram running time is improved,
since most tracks will only require between 1l and 3 splice points.

Now consider the relations@ip between a point X in space and its

image & on film. The approach taken in multi-view FOG is to assume

an approximate model, and from this determine confidence intervals
from fiducial measurements. Appendix B gives a derivation for a -

simple optical model of the form:
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TABLE OF INTERVAL SIZES FOR ORBIT MODEL

L- | .

o 10 em . 30 cm _ 90 cm
3.0 BeV/c 'S 23.5 N = 1 h = 18.0 N=2 h s 1k.4 N=17
0.5 BeV/c £ 15.6 N=1 h £12.82 i N= 3 h = 10.0 N =
0.1 BeV/c s 2.16 N=5 h £ 1.5 N = 20 not possible

hv= maximum interval size

N = number of intervals

L = total length of measured track

P = initial momentum

€ = 30 microns in space

IBVI = 17.5 kilogauss g
mass = .135 BeV N
\ e M3
h = : g
L &lBv|
10 v

Il (laﬂ)’ 2w (_Ii__)?
R E R v I
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Fp, (X,8) = 0 - (8)
This model is adequate for all chambers currently being processed at
Berkeley. However, it is anticipated that some future chambers may be’
quite different in structure. Therefore, the program hgs been designed
80 that this module can be replaced easily.
Equations (4) and (8) give, as a function of arc length s in space,

a relationship between the initial conditions of a particle and the

“coordinates & of its image on the film. To complete requirement A

it is necessary to obtain the relationship between film coordinates'g
ahd FSD coordinates &' .

It is assumed that '

1

(5)- (a6 -G ®
That is, film coordinates differ from ¥SD coordinates by a _
translation,‘a rotation, a shear and an independent magnification
in both &' and n'. The coefficients a, b, ¢, d, e and T are
determined independently for each photograph by a least squares fit to
the measured fiducials. From (4), (8), and (9) we have all of the
information required for A. .

| III. Error Analysis

The next problem is that of determining confidence intervals. The

errors caused by the magnetic field and range-momentum models are in-
significant for all chambers currently being processed at Berkeley.
HéWever, the procedure could easlly be extended to include them should
they be significant in some new chamber. Chamber turbulance is a slight
problem, but wé shall ignore 1t for‘the present. ) '
The fbllowing list enumerates all error sources presently being
considered. ' - '

a. Mulbtiple scattering.

b. Incorrect optical model.

¢. Film resolution and FSD accuracy.

d. Incorrect fiducial measurement.

e. Undetected FILTER errors or bit transmission  (10)

error.
f. Wrong mass hypothesis.
Data containing .errors from sources (a) through (c) are

acceptable. Data contnining errors from sources (d) through (f)
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are unacceptable; 2w, It is therefore necessary to have a relisble-
method for detecting their presence. _

The first problem is that of multiple scattering. Rossi®
gives the fbllowing approximation to the average error (d) due to

neglecting (3){

qun22h (_S_ )3/2

P % (1)

where .,

Xo = radiation length in cm.
B-= ¥/g
E energy = Yp° + (mass
The projection of d onto the xy plane will be % d on the average and

)2

hence on the film the average deviation dfyy 1s given by

A = 20 /6(p,2) = .15 (%O‘)R’/g/pa-e(p,z)  (12)
. The second error source is the optical model. This problem is
quite chamber dependent, and it is hard to give a general procedure
for determining the error. The procedure to be employed for all
chambers currently being processed is the following:

To determine the coefficients .of the optical model, all of the
fiducials in a plcture will be measured several times and a least
squares fit to the optical coefficients will be performed. This
procedure ylelds residuals for each fiducial. If these residuals are
randonly distributed about zero at each fidueial, and if they have a
magnitude comparable to the rms error of the measuring device, the
" optical model is "exact" and this source of error can be eliminated.
If, on the other hand, the'residuals are not randomly distributed "
about zero, there 1s. an error in the optical model. This source of
error must be accounted for éither by improving the model, or by
giving up and admitting that the error on a point on the film is
actually greater than the maxinum accuracy of the measuring maéhine.
.If the latter approach is taken, a good estimate for this error source
. is obtained by computing the average deviation ery for each fiducial

i. Since the residuals were obtained as least squares fits,

mo - S _ _ T o
~ 0 where =! ‘ :
:'E;l efi @fi (ﬁgfi < ”fi) (13)
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‘Hence

0pt1cs

E.@fl = (Eégfi i'é?fi)“-‘ | (1)

©  The third error source is the resolution of the film and the rms
scatter of the FSD itself. For the present time this is assumed to be

'constant although in the future it may be desirable to add a re-

finement which would allow for the variation due to the angle the
track makes with the scan line. Now, each master point is the

average of one or more individusl digitizing. Hence we have:

> 2 2 T S \
o og o
o2 = FSD _{ SFSD FSD (15)
£ Mg T\ M M, . :

where Mg = number of points averaged in the master point. This

relation is quite important in performing least squares fits, since

‘the more accurate points are given a smaller error, and hence a higher

This completes the task of assigning confidence intervals to.all
acceptable error sources. We now turn to the problem of dealing with
the remaining errors. '

The fourth error source is that of incorrect fiducial measuremenfs.
The coefficients of 9 are detefmined by performing a least squares fit.
Since an a priori estimate of the error in fiducial measurements is
known (for the Berkeley FSD, oprp = (1.54, 1. 5u.)T ) it is possible to
compute a ¥2 value for the fit.

Following Mbod3:we can test.whether or not the measurement is
consistent with the known standard deviatibn. Most bad fiducial
measurements can be detected in this manner. Furthermore, since an
a priori density function for the amount of shear and stretch for any
particular film base,‘is also knowm, bounds may be placed on these
parameters as well. This procedure will virtually guarantee every
flducial measurement. ‘

It is worth noting that this test is much more powerful if the
effects of an erroneous optical model are removed. Thus, if gfi is
the cordinate of the fiducial predicted by the optical model, then
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the least squares fit should be performed on the variable gfi + Efi.
" All of the acceptable error sources can be included at the
discresion of the experimentor.in the weighting matrix for the

maximum likelihood fit. Thus there will be terms for multiple

. 8cattering, the number of individual digitizings used in the

master point, and the optical model.

The multiple scattering term is of particular significance in
heavy liquids and in long chambers. The optics term and the number
of digitizings term are useful in the detection of FILTER errors.

IV. Constraints

Conditions A and B have now been satisfied. .Hence a maximum
likelihood determination of the initial conditions can be performed.
(See Appendix C). This procedure will give‘a x2 value for the fit,
which can be used to discriminate between bad measurements and good
measurements. This process will introduce two types of errors.

I. Rejection of good measurements

JI. Acceptance of bad measurements

Iet Pr equal the probability of type I error and Prr equal the

probability of type II error. Pr can be determined by integrating
the x2 distribution. Again following Mbod3, the discrimination
function consists of rejecting all events with Pr 2 A and accepting
all events with Pr £ A, where A is an arbitrary constant assigned by
the experimentor. . : coo

The trouble with this test is that it is not possible to
minimize both error types simultaneously. Furthermore, the more
Pr is decreased the greater Prr becomes. Making P extremely small
is therefore undesirable from the standpoint of accuracy. On the
other hand, the smaller P, becomes, the larger Py becomes. Hence
the number of unnecessary remeasurements increases. Making Prr
extremely small is therefore undesirable from the standpoint of
economics. '

Consider a track which has Py Z A for all mass hypotheses.
Four possibilities exist.

a. The event is actually good.
b. There was an undetected fiducial error.

c. There vas an undetected track
medsurenent error.

d. The correct mass hypotheses s not
attempteg. . ses wa

(16)

2
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Our experience indicates that such occurrances are most probably due
to 16c errors. For this reason the program will attempt to decide .
whether this condition is likely. If it is, the program will have
the option of deleting the bad points and repeating the fit, provided
this can be done without serious loss of accuracy and information.
In.this way, the frequency of type I errors can‘be substantially
reduced. - .

In order to determine a good test for the existence of an

undetected measurement error we must first describe its characteristics.

. This is a very difficult task, requiring the acquisition of considerable

additiohal experience with the residual distributions. This point has

been emphasized by Paul Houghu and others. For this reason, the

. program will display the residuals for each track as a function of

view, if requested. It will also display on request the weighted

' residuals so that probability tests can be made.

There is one final error source which cannot be detected by
considering the point distribution. That is the problem of finding
a vertéx point. If the point of arc length zero, is incorrect then
the initial conditions determined will not represent the true state
of the particle at the vertex. ‘ |

The actual computation of a vertex point will be done in CIOUDY -
as follows: TFor each track J at a ‘ '
vertex we have an orbit function X9(s). |
The point X in space which is closest ‘
to all of the functions will be taken

‘as the true vertex point. The point

Xj on each orbit which is closest to .

, X will be taken as the vertex point ‘
for that track. See figure. .

Let Ay be the tangent vector of the orbit at the point Xj.

| Then the distence 84 from & point X'to this line is given by:
. J ,

o, = T @-xh )

‘The point X’satisfies the condition

5;652 = minimum - (18)
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PROGRAM 140
MULTI-VIEW FOG

GENERAL FIOW CHART

>

. 5
g |
READ ONE EVENT COMPUTE THE ORBIT X(Si) AND .
THE PARTTAL DERIVATIVES OF
. X(sy) W.R.T. ALL
COMPUTE VERTEX POINTS ON
' FIIM IN EACH VIEW UNKNOWNS
: ]
FROM THE MEASURED FIDUCIALS EVAIUATE F(&; , X(sy) AWD
DETERMINE THE COEFFICIENTS . COMPUTE THE PARTIAL
OF THE TRANSFORMATION . , DERIVATIVES OF F W.R.T.
FROM FSD TO FIIM ALL UNKNOWNS
COORDINATES l .
| | COMPUTE IMPROVED ESTIMATES
: FOR ALL UNKNOWNS USING
CHECK THE VALIDITY OF EACH /I |
: : THE STANDARD LAGRANGTAN
VIEW OF THIS TRACK ]
CONSTRAINTS FPROCEDURE
TRANSFORM MEASURED TRACK
POINTS TO FIIM COORDINATES | m
: ¢ % ' ONVERGE
] g g
COMFUTE A FIRST GUESS FOR ) IF x2 IS TOO LARGE, EECAUSE
HE INITIAL CONDITIONS BY * | | | op s FILTER ERROR, ATTEMPT
CALLING . THE TWO-VIEW FOG SUB :
PROGRAM TO DELETE BAD POINTS AND
; REPEAT FIT T
COMPUTE A FIRST GUESS FOR,
THE ARC LENGTH Sy OF EACH |
POINT IN EACH VIEW - COMPUTE ERROR MATRIX AND
OUTPUT TRACK o
THE FIRST GUESS FOR £ IS .
THE MEASURED VAIUE £M;
< N’
PICK A MASS
-~
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o ' If it is assumed that X was actually determined from condition (18)
and that the only source of error on X is due to “errors on Xj, an

B error matrix for X is determined. (See Appendix D). . .
Do . o - ) -1 . : ]
5 _ ‘ , E, = 02[2 N xj ] - (19)

In particular, for the case of two tracks, the error is

-

minimized when the tracks are orthogonal; and becomes infinite when 'N
_the tracks are parallel. This result is of particular significance
for neutral: comnecting tracks where an estimate of vertex points
accuracy is needed in order to determine the errors on the direction
of the line of flight. '
i Summary
‘ The multi-view FOG program will produce maximum . likelihood
- estimates for the momentum and position vectors at é vertex. These
estimates will be as accurate as the reéolutioﬁ of the particular
"~ chamber being used. The program will also provide a discrimination
function which will relisbly separate good measurements from bad
measurements. It will also attempt to detect and repair measurement
errors so that the overall output of the FSD - HAZE system will be
substantially improved. .
Finally, multi-view FOG will be availeble for usé with the
Franckenstein system and the DAFR system as well, since all of the

features are directly applicable. [

'
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Appendix A

Y , ' Derivation of an approximation X(s) to the -
true orbit X(s) of a particle in a bubble

chamber.

Only magnetic field force, and momentum 10ss due.to ionization
. ~will be considered.

From Newton's first law:

alph) _ %R A+ p = q(B x vA) + == t A

where X = Xv, P=D, A= )v at t = 0.

Thus

‘A dads _ _an . _

Pag " Pasat " Pas " q<B’“’7‘>
Hence

a_ . (BxA)

ds . e jo)

. Define matrices M and Q as follows:

‘0 ~3B B

z y :
M=|:2B - 0o =3B };q=2%¥
Vo4 ) X - P C
e B B 0
Yy x
Then
-~ @‘= . B
das o c
Hence

A= A(s) = EXP (f Qdt Jin
L NG _~\v

(1)

(@)

(3) *

() -

G5

; (6)A N
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) But
ax
A=
- Hence |
X = x(s)=X+f-[ (det)}dv SR (D
The integration of A is impossible to carry out except for very
special forms of Q. Most .geometry progra.ms take the approach of assum— -
:Lng some simple integrable form Q for Q a.nd ca.lling the. result the
e orb;t. One such form is that suggested by So:l.m:.tz, De.y a.nd Johnson.l
@ I-ks | Lo (8
when t = arc length cm,
EEREN
end k ~ ( X > .
v
Then (6) becomes
7\(5) = m{-——— In (L -k s)} A,
s ) = A +<Q" sin K v(s) +<QV> (1—cos Kw(s)) - (9)
- 'where X = | Vl 3 \Jf(s) = -J~'- ln\(lw_—'k'"ﬁ) SR o



—1h
And integrating (7)

X(s) = X, A+ (-i—"—) §Es)‘+ (—2—‘4)2 c(s)

S(s) =f sin K ¥(t)dt
- Jp v

| S k(l-—ks) 5
[k s + (1—1: s)(l—cos ny(s)) - = sinK\{/(s)‘-)

E(s) =Ls(1 — cos qu:(t))dt";,-. : o N o ’  - (10)"

k(l-—ks) ‘
=[_.Kvs+——————-———-(l-cosK\Jf(s))+(l-—ks) sink\lr() + A4,

A= Kv 1 +<*I-{—->
o v’

v
One could derive (10) by noting that , : ‘

Ns) = (1- kVS) VA, ,
Thus . , S o | o o
| ~/ Q .-—l ' _.}.{Q_V_Q.I , _ . o 4 -
i 1 v . . ‘ o | ‘
X(s) =X\;§I_I——l€—] {((l-—kvs) >7\r—7‘ o |

it

xv.+ [QV - kvl}-l [ (1 - kvs)'X(s) - 7\1

The disadvantage to this equa.tion is that as k - O X(s) becomes
indetenninate . i

t
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The multi~view FOG progrem uses spliced functions ‘o'f_ the form A8
overv interva.ls short enough to guarantee that the maximum error over the
- entire track is lese than a specified constant e. '
One can derive :a good estimate for the error introduced invone
ép;ice interval as follows:
B Let C) represent the angle between the tangeht vector and the'

progection of the X axis onto the oscula.t:.ng pla.ne. Then

B\ . | ) o |
a@_1_qlsl afz)| | 2, - S
as ,:p P Po (l+&S+bS ) (1-1)
%] m -
vhere & = 1= -—Q- I
fo po

'b‘____' ( IBol ) ( >)

For the So:lmitz approxima{:ion-» we *Ha.ve

ae . - q! o! l \ zz' o . '
EE:/:POU-"K sj Py (l"‘kos-l-ko | ...)‘; . ,'(12)
- If we choose ky = &, then 3

_5l_ bz I S
dl@ds &l - os? 5 D &)

. ' N‘ ‘ " '

| | P

whereCab-kz % > 0 (.9.

‘ l ' Py

Cleaxly

afx - %] ~ tan (8 = 8) ds ~ (6 - B) as

i
!




Hence

._ _ q\B ]C h . ) _ .
\x—xl~_§%_%u S )
: Equation Arik.gives & good eétimate of thévdepgrtu;e of the trué orbit
bffom the Solmitz approximatién in the 6sculating plane. ' The dther com~
‘ponent of error is normal to this rlane. | -
, An xyz coordinate system is chosen sO that.the‘xy plane coincides
with.the oéculating plane at s = 0. |
Let‘ |
® be the dip angle in this systeﬁ

® be the azimuth angle in this system.

From the differential equation A-5 we have:

dsz r| xds y ds - ; .
Now |
B, = |B| sin @, cos &
By R - lBl sin QB sin @B 1
ax
45 ~ cos e
Q_X:_ . ‘ L oo
oS sin @ ' | o
Therefore
a2, q]B] - .
—_—= — 8in @, cos @, sin © + sin Q. sin Q_ cos ©
dsz P B~ B B 'B
3"z _ q’B] . cn (O — o
> = 5 sin @ sin (e @B)



1

. If the track has length L. in space and we want h =

. _1,7‘_

The total error E fér a segment of length h is given by

' _ _ 'q\Bo\c . qpao\. Ch nl*]'
E’f"v.\X'—X\"‘ lzfz\f 5 [l+ Po_sm %, 5 ’3“'4 | :
<1 22| cnt
< 5 '

for most tracks.

‘The error introduced in N such segments iS"
.1Nq| BO[ ont
NE = ——————— < €
Po

or N =

e

Lag|slend
Then <

‘ Po.
. s
Hence h < ;quIB& C

Po

e
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i
- Appendix B
Derivation of a Simple Optical Model for the
Projection of Space to Film
' The following assumptlons are made:
l. All material interfaces are perpendicular to the lens axis.
2. There are w + 1 such interfaces.
3. The Z axis is chosen parallel to the optic axis.
L, The lens properties’ can be approximated by a pinhole on the back
of a refractive material of constant thickness. '
e ‘
/ == *.é”:-’- ‘
::i:::f:::::=? X
X; -~ _B:._\__ / : '
£ ).‘. A el ‘ S :;
R 2\ N [ =
=0 : : , ;
jo f . Nc Np ) N‘ N,_ . N/\\ '
In the diagram, the optical path of a ray joining X and $ is shown. -
The following points are 1dent1f1ed : : ‘
x3 is the point at which the light ray passes through interface 1.
i Ri is the radial distance of x5 from the optic axis.
Coe Ni is the index of refraction of material i.
f 1s the focal length of the lens. ' ‘ .
- .: : p is the radial distance from g to the optic axis.

. QL is the angle the ray mekes w1th the normal at interface i.
Clearly

taneé:(zlj ;L).

5 1 = tand, (Z2 - Zl)

.
.

2y
!

2l
1
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R~R =tend (2 - zn)

f o 2 e : ) amo. é& tano, | o
R= 2 tend, (2,0 - 2,) = tand, 2 “""i'tanec (2441 = 24)

whexe -
o+l Z .
But
| tand_ = p/f
Hence' N -
_ P -~ tanbi '
=% 2. %emo. (Bye1 " Zy)

From Snell's Law ..

Nc sinec = NO sinf., = .+« . .« = Nn sinen

"Hence

ﬁ. RE | Ng/ﬂi ‘
tane
‘tan@ [1+(1 (-—Q )tan e—;} = [1+(1 (-—2) ) % V'-

Define

T e

i Ny ,
: tanby 13&' g 3.2 (2)
- gi(e) Tenb, ~ Ny [;- - T B
- 1. DNote that all terms for a given refractive material can 5e grouped.

Thus it 1s only necessary to have one term for each dlstinct refractive

material.

2. TFoyg all chambers currently being processed, gi (p) pan e truncated'afterlf

. l‘i" .
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Define
; 7 - 7
G (0,2) = 2. si(p)<—1*3—f——-‘-)
‘ S i=1 o '
Then
R = pG(p,2)
_ Now
X - X =Rcosw
¥ -, - Rsinw
- Hence _-' o -
X=X = pcoswG(p,Z)
Y5 Y, = p51an(p, )
‘But since the optical path lies in a plane containlng X and § and the optic
axis we can write o o “ : :
£ =p cos w
n=psinw ‘
Hence " A
X - X1, —-§G (p ) z)

Y - Y =6 (p, Z) S
For each view L we define a 2 component vector function FL (X, ) as
follows: ' ' -

FlL(x,e) R £G(p,2)
(X:g) Y"YL + 'ﬂG(D;Z) .
0 we have the desired relationship between

Fr, (%, €)

o
§

By setting FL(x,g)
space coordinates X and 1ilm coordinates. g
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. - , _ | ' Appendix €

Application of Lagrangian Constraints

Let
- R _ g = (g n g T] o.vo’o) :
S « M Mi Mi Mz M2 _
b om 3T
g—(gl Tll §2 le """)
From the error analysis, an a priori estimate for thé variance on each
point is known.
' Let
- ' .
2 2
Gll 012 O O C'CQ0.0CDOI .
2. 2 ,
621 022 O O .aoo-o'o-oo
2 2
E= O . O g ‘ weeseveoe
| %3 %3 |
2 2 '
O O . 043 0’)4’)4‘ 0...“.‘....
be the variance—covariance matrix of gM.
One wishes to find a value for £ such that B
T -1 - B
(6 —gy)” E~ (& = ¢),) = ninimun o @)
subject to the constraint
Bleg X(s) =00 gpee 0 (2)



%

' Define

Iet 7 represent the Lagranglan multipliers of F and let A be any non-. -~

)T

s = (s 8, |
& (PV av BV XV YV V)

R, s, 8) = (R (e, e)) Bylsy, Ke)) Tyley, Ke)) ceeens )

~ Then F can be expanded in a Taylor’s series

o7 3,0 (), o (3,

singular matrix of rank equal to the dimension of 7.

Define

‘ ‘ﬁ(g, s a) = M(g,;:.;, a)=H; -F(glg)d AL +<§§)O As +‘<%)OA3 K

Conditions (1) and (2) will be satisfied provided

= (o g - )T BT (08 g - b + 2[5 f(%z_l)o “ (%)o A

()] e ol

It 1s not possible to determine all of the variables X , Y , Z_ simul-
taneously. One of them must be specified. We choose Yo sféci¥y the
component of (Xv Y Zv) corresponding to the largest component of A_.
We use the valud of this component determined by 2-view FOG. This
will cause the resulting point of zero airrc lengthito be quite close

to the true vertex point in most cases. The final value of the ver- -
tex point 1s determined in CLOUDY. : :
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‘4. A necesoary and sufficient éonditipn for (3) is  _
-1 A SH\T _ _ 6
(a) -2E (go_+A§‘gM)-+?(BE) o?_o:.
(b) %%s (BH)O y =0
" M _[3E
(C)g%a(a—) y =0 SR . _
From (ka) | o 4
| am)
% = gy - 5, - 2(E) 7 | |
| Substituting this result in (4a) gives . , ‘ | S .
gy /T DLy . L (mY LY,
o . ('a_g) oE(B—g)o Yy = [_Ho_+(3's')o' As+ (ga)o Aaj+(¥)o(sM._- Eo)]
o - .We choose A such that : N ., , L : o o
S () 3Fy . /FYT T |
) ( )O \3-\ A(E)OE(B‘E)O A=1

" . Hence

| 7 = Ho.; (§§> . bs +(%§) . ba + 5—) (ng; §°?v:‘

- Substituting this result in (4b) and (hc) gives

(3,
CIACTA

(%) (35) Sl %) . &, +() o(.egv'-"g;:), -

° | L
B8, @@ @, e F e

from which the following equations can be deduced:

Define

| B=(%): (I _ %%)o[(an) (%g) ]-1(%):) ' '. O

Com

(5)

- (6)



Then -

ha =

'Ihus startlng from a first guess -E‘o 5 s

2he

L e ]

o -1
AS__% BH] KBH Ho+%% (g )) aH aH AEJ

o’ ao :t.mprovements Ag s £S, M can be .

computed as follows

8

(p)

(a)
(e)
(f)

(s)l-

rary (o ) -
Compute Fo’ -a—g-)o, (5-5-) o, <5-a_,) . | o : ) (9)
Compute A so that

gf) E@g) AT - I (see (lO‘).:"bollow.v).
o L I

Compute H = AF

o
()4,
(%), - 4&)
o NN N
| (%)o.:lA(gg)o |

Compute Aa from (7)
Compute As from (8)
Compute\ y from (6) h

Compute At from (5)

There are an infinite number of niati'ices_A which satisfy'(b). Since .

BF) )

. has the follow:t_ng block diagonal form,

e e o T
N , all» ‘ale Q‘ 0O «us
: (aF)'E(aF)T _ (P2 %2 0 O
_ B-gho St ‘ o . 0 a33a3)'+"
| e ey
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 f This'simply means that special block diagonal matrix routines must be used
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A particularly simple solutiop is-.

1 0 o 0 ...
A
a, l . 0 0
e G e L
| 11§ T a2l 21 1k . |
A= O {ag ‘ad3u/auu)/ B By
0 0 0 1 ...
' “l
o e . o K . P * ot .._._)‘l
- ) .
AP Y
if all 2 g if a)_m_ 3a33

22
Clearly some of the matrlces in the above procedure are qulte large.
For example, for a track wmth 20 points in each view %E ) would

contain 120 x 120 or 14,400 elements. Fortunately, nearly all of the

elements are zero. In fact, for this example, only 240 of the elements are

‘non zero. . , i

In general, all of the large matrices are in block diagonal form where.

the individual blocks are made up of (1 x 1), (L x 2), or (2 x 2) matrices.

" in carrying out the iterative procedure.
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"~ Appendix D
v C- o .
" - Derivation of a Simple Error Expression for Vertex Points
s "‘  For each track j at a vertex there is an orbit.functionfiﬂ(s). The
f po@nﬁ X in space which is the closest to all of these functions is taken.
'to be the vertex point.
Specifically, thg points sj’are found such that o
S lx-x 2 ' L
X - X(sj)‘ = minimum o - (1)
 Let ' J
C X, = XV(s,
J (J)
s (2)
)\-"—'7\(5,) .
(See Append.lx A for definitions of X and A.)
' i The distance 53 of a point X from the llne passing through XJ w1th direction -
cosines KJ is given by R . . ‘
5, = A (X - X.) - - | (3)»
J J d . : oo .
: : - o
The regulrement of
o Z 8% - ninimm
3 J
-implies ' T : o L ""' ) .
x =2 [7\ ATJ}I 2oa T x, )
Jd B B R :
_ Hence ) . . v N . i
= A A N, A Co
X, %: s N T NN 2
~ Assume o
! i = I and = 0
2y K
' © Then
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As an example, conéider the simple case of two tracks in the xy

plene.

et ' N

. veim g \T
(cos @l,.51n.@l)

(cos ©

o7 sin_@z) |

2 0
S =(o‘ é)

; Then from (6)

Therefore

EX% éifj A, Aﬂ B

2 cos® @, + cos® @ -(cos ®, sin
E = 1 2 1
CTX T L2 ; - .
 s;n (@2 - @l) -(gog ®,:sin @) + cos Qa sin @2)
Clearly ,"' .
EX —>f as ‘@2 - @ll -0
and ' '

By = 2 I as.!®2 ; ®l§ —>ﬂ75

Thus, in this case, E

X

behaves as would be expected.

1

-sin2‘®

®, + cos @

1

2
+.sin2 ®

sin ©

2

2)
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission"” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








