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The Type 2 Diabetes Knowledge Portal: an open access genetic 
resource dedicated to type 2 diabetes and related traits

A full list of authors and affiliations appears at the end of the article.

Summary

Associations between human genetic variation and clinical phenotypes have become a foundation 

of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore 

lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource 

of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. 

Here, we seek to make the T2DKP more accessible to prospective users and more useful to 

existing users. First, we evaluate the T2DKP’s comprehensiveness by comparing its datasets to 

those of other repositories. Second, we describe how researchers unfamiliar with human genetic 

data can begin using and correctly interpreting them via the T2DKP. Third, we describe how 

existing users can extend their current workflows to use the full suite of tools offered by the 

T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing 

access to complex disease genetic results.
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Introduction

Genome wide association studies (GWAS)1 have elucidated complex trait genetic 

architectures2, improved disease risk prediction3, established causal relationships among 

traits4, and identified potential therapeutic targets5. Many such insights, however, are not 

apparent from published results and require downstream analyses of the full set of GWAS 

associations6. These analyses often incorporate auxiliary data to help interpret the molecular 

and cellular effects of variants within noncoding regions of the genome, which constitute the 

vast majority of statistically significant associations7.

Downstream analyses of GWAS results predominantly draw from four types of resource. 

First, full sets of GWAS summary statistics – that is, p-values, allele frequencies, and effect 

sizes and their standard errors for every variant in a GWAS – are increasingly available 

for download from consortium websites or other public resources (e.g., the NHGRI-EBI 

GWAS Catalog8, GRASP9, the GWAS Atlas10, the Global Biobank Engine11, genebass12, 

PheGenI13, and the IEU OpenGWAS project14). Second, genomic annotations – which help 

interpret variant effects on molecular or cellular processes – include genomic features (e.g., 
the ENSEMBL15 and UCSC genome browsers16); epigenomic annotations (e.g., from the 

ENCODE17 and Roadmap Epigenomics18 Projects); transcriptomic annotations (e.g., the 

GEO19, GTEx20 portal, or SCAN database21); proteomic, protein-protein interaction, and 

pathway datasets (e.g., UniProt22, STRING23, and MSigDB24); and perturbational datasets 

(e.g., the IMPC25 and MGI26 databases). Third, many bioinformatic methods integrate 
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summary statistics and genomic annotations to draw insights from GWAS associations6: 

some methods have dedicated web portals (e.g., LD Hub27, MR-Base28, PredictDB29) and 

some have been integrated within more general “post-GWAS” analysis platforms (e.g., 
FUMA30, Open Targets31). Fourth, expert knowledge about genetic associations or their 

biology is often extractable from the literature through manual curation (e.g., OMIM32, 

ClinGen33, HGMD34), automated text mining (e.g., PubTator35, SemMedDB36), or a 

combination of the two (e.g., GWASkb37).

Beginning in 2015, we developed the Type 2 Diabetes Knowledge Portal (T2DKP) 

to address two gaps in the capabilities of these resources from the perspective of 

type 2 diabetes (T2D) researchers. First, many disease-specific datasets – for example, 

GWAS of disease-specific endophenotypes38 or genomic annotations in highly specific 

cell populations39 – are too narrow in scope to be identified and included by disease-

agnostic resources. Second, many analyses can only be conducted after data from disparate 

resources are combined – for example, decisions to experimentally characterize variants at 

a GWAS locus are influenced not only by GWAS association strength but also by genomic 

annotations of variant regulatory effects and bioinformatic predictions of downstream 

“effector” genes40. The T2DKP addresses these gaps by aggregating and integrating data 

and methods of many types, while focusing on only one disease area (T2D and related 

traits).

The T2DKP was the main output of the Accelerating Medicines Partnership® in Type 2 

Diabetes (AMP®-T2D), a five-year public-private partnership launched in 2014 to generate, 

analyze, and “democratize” access to genetic and genomic data for T2D-relevant traits. The 

~100 scientists within AMP-T2D – many of whom have led advances in genetic mapping 

and functional study of T2D over the past two decades41–43 – have collectively defined the 

scope and data of the T2DKP and guided its evolution throughout its existence. Initially, 

the T2DKP provided a simple website to access association statistics from T2D GWAS 

and whole exome sequencing (WES) studies, and it gradually expanded to include genomic 

annotations, bioinformatic method results, and data from additional traits. In 2020, the 

T2DKP saw a major revision to its user interface that created both an opportunity and a 

challenge with regards to its accessibility. On the one hand, the new interface provides 

simple visualizations that enable even non-geneticists to incorporate human genetic data into 

their research – which, if prominent publications are any guide44, they infrequently do today. 

On the other hand, the T2DKP’s new interface offers an increasingly complex suite of tools 

that even genetic experts may not know how to fully exploit.

Here we seek to increase the accessibility of the T2DKP to both non-geneticists and genetic 

experts. We first document the comprehensiveness of the T2DKP by comparing its datasets 

and genetic associations to those in other major GWAS resources. We then describe the 

recent expansion of T2DKP data and tools and evaluate – based on an analysis of usage 

statistics and citations – its current usage patterns. We use these patterns to define two 

classes of potential T2DKP users and suggest new ways for each to make fuller use of the 

T2DKP.
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Results

Overview of the T2DKP

The T2DKP contains genetic association summary statistics, genomic annotations, 

bioinformatic method results, and expert knowledge for T2D and related traits – which 

include T2D complications (e.g., cardiovascular, hepatic, ocular, and renal traits), glycemic 

and anthropometric traits, and metabolites (including lipids). Dataset scope is defined by 

the AMP-T2D consortium, which represents scientists from academia, the pharmaceutical 

industry, the government, and non-profit organizations45. We maintain these datasets 

through a three-step process (STAR Methods). First, we combine manual and automated 

approaches to identify datasets of interest, collaborate with the communities that generated 

each dataset, and aggregate them within the T2DKP “software platform”. Second, we 

subject these datasets to quality control (QC) and automated downstream bioinformatic 

analyses. In the final step, we communicate results of these analyses through the T2DKP’s 

web-interface and programmatic APIs (Figure 1). At all steps, we ensure that we respect 

data use restrictions and make only analytical results – and never sensitive individual-level 

data – publicly available.

The T2DKP web interface includes a set of “core pages” for browsing these results in 

the vicinity of a gene, variant, or region of interest, and it also offers a suite of more 

complex tools for expert users (Figure 2). The T2DKP has steadily expanded in its data and 

functionality over its lifetime, with an accelerating rate of updates since a major redesign in 

2020 (Figure 3). This growing complexity and scope of the T2DKP motivates the current 

article, which is targeted at researchers who may not be fully aware of the T2DKP’s 

capabilities – or who may not know how to use it at all.

Analysis of datasets in the T2DKP

Genetic datasets.—As of October 2022, the T2DKP contained 382 GWAS full summary 

statistic datasets (Table S1), each consisting of association results (across every SNP in the 

GWAS) for one or more traits. To evaluate the comprehensiveness of these datasets for T2D 

and related glycemic traits (fasting glucose (FG), fasting insulin (FI), and HbA1c; Table 

S2), we compared datasets for these four traits to those within the GWAS Catalog8, GWAS 

Atlas10, and OpenGWAS project14, three other widely used GWAS association resources 

(STAR Methods). The T2DKP included 107 datasets across these traits, compared to 155 

in the GWAS Catalog, 18 in the GWAS Atlas, and 35 in the OpenGWAS project (Figure 

4a). Considering only full summary statistic datasets for these traits (Figure 4b), the T2DKP 

contained most (107 of 138) of the datasets across the resources, including 71 unavailable 

elsewhere (Figure 4cd). The 31 summary statistic datasets not included in the T2DKP 

were either small, old, or largely overlapping with other studies in the T2DKP (Figure 4ef; 

Table S2). T2DKP datasets skew heavily toward European samples, due to the ethnic and 

sociodemographic biases of GWAS46, although ethnic diversity has increased somewhat 

over time (Figure 4g).

To obtain associations between each variant and each trait in the T2DKP, we employ 

a “bottom-line” approach (STAR Methods) that meta-analyzes the datasets in which a 
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variant is observed and statistically adjusts for the (usually unknown) degree of sample 

overlap among them47. To evaluate the comprehensiveness of both T2DKP bottom-line 

associations (p<5×10−8 in the meta-analysis) and “dataset-level” associations (p<5×10−8 in 

one or more datasets), we compared the loci with T2D, FG, FI, or HbA1C associations in 

the T2DKP to those in the GWAS Catalog and the OpenGWAS project (STAR Methods). 

As of October 2022, the T2DKP contained 1900 such loci, 1209 (64%) of which were 

significant at both the dataset-level and in the bottom-line analysis (Figure 5a). Most of 

the loci unique to the bottom-line analysis had moderate (but not genome-wide significant) 

evidence of association in multiple datasets (Figure 5b) – such loci are thus only revealed 

after meta-analysis of T2DKP datasets. Conversely, loci significant only at the dataset-level 

included those observed only in older or smaller datasets (likely association artifacts) and 

those unique to an ancestry or analytical approach (true associations, but not significant in 

the transethnic bottom-line meta-analysis).

Many of these loci (771, 41%) also had associations in the GWAS Catalog, and a smaller 

number (407, 21%) had associations in the OpenGWAS project. The 1084 loci unique 

to the T2DKP included 805 loci attributable to T2DKP-exclusive datasets (dataset-level 

associations in Figure 5d). Conversely, of the 446 loci not in the T2DKP, the majority (364, 

81.6%) were due to studies without publicly available association summary statistics (Figure 

5e). The other 96 loci were mostly due to old, small, or non-standard studies inconsistent 

with the larger studies meta-analyzed in the T2DKP (51 out of 96 lead SNPs had p>0.01 

in the T2DKP bottom line analysis; e.g., Figure 5f). This analysis demonstrates the T2DKP 

as a comprehensive resource of associations extractable from publicly available summary 

statistics for T2D and related traits, and the GWAS Catalog as a complementary resource of 

all published associations (including those from older and smaller studies).

Genomic annotations.—The genetic datasets in the T2DKP are augmented by (as of 

October 2022) 5,418 genomic annotations, including 304 (5.6%) unique to it (Table S3). 

The vast majority (5073; 93.6%) of these annotations describe the location of cis-regulatory 

elements (Figure S1a), which include accessible chromatin sites from ATAC-seq or DNase-

seq (814, 15.0%), transcription factor binding sites from ChIP-seq (720, 13.3%), and 

computationally predicted candidate regulatory elements (2504, 46.2%) or chromatin states 

(1035, 19.1%) from ChIP-seq and DNase-seq. The remaining 345 datasets contain predicted 

linkages between cis-regulatory elements and target genes using data from single-cell co-

accessibility (scATAC-seq or snATAC-seq39), 3D physical interactions (Hi-C or promoter 

capture Hi-C), or activity-by-contact (ABC)48. These datasets are stored in the Common 

Metabolic Diseases Genome Atlas (CMDGA)49, a sister resource connected to the T2DKP 

through a series of REST APIs.

Each genomic annotation is described with a high-level tissue of origin and a finer-grained 

biosample (Table S3). As many genomic annotations in the T2DKP are drawn from 

the ENCODE project17, the distribution of datasets across tissues is roughly similar to 

ENCODE. However, because the T2DKP includes additional genomic annotations from 

T2D-relevant tissues, there are some tissues for which annotations are over-represented 

relative to ENCODE. For example, as of October 2022, 173 (3.2%) datasets were from 

whole pancreas or pancreatic islets, compared to 1.5% of datasets in ENCODE for Homo 
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sapiens cell lines or tissues (fisher p=9.1×10−13). (Figure S1b). Other over-represented 

tissues included muscle (6.4% in the T2DKP vs. 1.3% in ENCODE; fisher p=6.1×10−66), 

adipose (1.6% vs. 0.009%; fisher p=2.6×10−4), and kidney (7.4% vs. 3.1%; fisher 

p=3.8×10−32).

T2DKP usage patterns

To understand T2DKP usage patterns and how we might improve them, we analyzed 

page accesses (using Google Analytics from October 2021 through March 2022) and the 

129 T2DKP citations. Both measures suggest that existing users focus on simple result 

summaries: 49.3% of page accesses (31,558 out of a total 64,005 accesses) were for the 

core “region”, “variant”, “gene”, and “phenotype” summary pages (Figure 2), 48.8% of page 

accesses (31,230) were for informational pages, and only 3.9% of page accesses (1,217) 

were for more complex tools. Similarly, 81 (86.2%) of the 94 citations used the T2DKP core 

pages for simple queries.

These usage patterns are consistent with two major categories of current and prospective 

T2DKP users. First, non-geneticists who primarily work with experimental models likely 

browse the T2DKP core pages (if they use the site at all44) but do not fully understand 

how to interpret the data within them. Second, researchers who regularly analyze genetic 

associations likely understand the data on the T2DKP core pages but are mostly unaware 

of (or do not understand) the more complex tools on the T2DKP – possibly due to the 

pace with which these tools have been added in recent years (Figure 3). To increase the 

accessibility of the T2DKP for both non-geneticists and genetic experts, below we describe 

the T2DKP features most useful to each category of user, along with “best-practices” for 

their use.

T2DKP usage and best-practices for non-geneticist users

Genetic support workflow.—For non-geneticists, the T2DKP is likely most useful to 

evaluate “genetic support”5 for a gene suspected, based on experimental work, to be relevant 

to disease (Figure 6). Searching a gene name on the T2DKP home page brings the user 

to the region page, showing genetic associations within 50kb of the gene boundaries. The 

region page contains a “PheWAS”50 plot of traits with genome-wide significant associations 

(filterable to those observed for a chosen ancestry) and (for one or more selected traits) a 

LocusZoom51,52 plot or table of associations across the region. Genes with human genetic 

support usually have at least one associated variant in the region.

A more complete summary of a gene’s genetic support is available on the “gene page”, 

accessible by clicking a gene symbol at the top of the region page. PheWAS plots and 

tables show gene-level associations for both common variants (calculated by MAGMA53 

and viewable across ancestries or specific to a chosen ancestry; STAR Methods) and rare 

variants (optionally viewable for a specific transcript of the gene; STAR Methods) within 

the T2DKP. Both classes of association are summarized on the gene page by the Human 

Genetic Evidence (HuGE) Calculator, which implements previously outlined44 probabilistic 

calculations of genetic support for a gene.
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If a gene of interest does have genetic support, the “variant page” displays additional 

provenance underlying each variant association nearby the gene. The variant page contains 

a PheWAS plot, forest plot, and a table of the bottom-line associations for a variant across 

traits in the T2DKP. In the table, users can see the dataset-level associations that contributed 

to the bottom-line analysis for the variant – this feature is useful to evaluate the consistency 

of the association across studies. All tables and visualizations on the variant page can be 

filtered to associations specific to a chosen ancestry.

As an example of this “genetic support” workflow, a recent study proposed a novel mode of 

insulin action based on an interaction between the SIN3A and FOXO1 proteins54, leading to 

the hypothesis that selective modulation of FOXO1 could treat hyperglycemia in humans55. 

A researcher wondering whether there is evidence for involvement of SIN3A in T2D would 

enter the gene name on the T2DKP home page to browse the SIN3A region page, which 

indeed shows a T2D GWAS association near the gene (p=9.21×10−16). Browsing further, 

the SIN3A gene page shows that its common variant association for T2D is genome-wide 

significant (MAGMA p=6.78×10−13) and the HuGE Calculator shows a “Very Strong” level 

of evidence for association of SIN3A with T2D. Similarly, while the region page shows 

no T2D GWAS association nearby FOXO1, the gene page shows a nominally significant 

(burden test p=0.038) rare variant gene-level association for it, leading to a “Moderate” 

level of evidence according to the HuGE Calculator. Although neither of these associations 

unequivocally implicates SIN3A or FOXO1 in T2D, they do add support to the experimental 

data of the original study54.

Caveats when using the genetic support workflow.—Several best-practices are 

important for this “genetic support” workflow. First, while a significant association near a 

gene supports its involvement in disease, the absence of significant associations does not 

preclude the gene’s involvement in disease – a gene will only produce disease associations 

if a genetic variant affecting its function is sufficiently frequent in the population. When 

no associations exist nearby a gene, users can employ the T2DKP PheWAS plots to 

examine not only the primary trait of interest but also related traits; evaluating associations 

nearby interacting partners of the gene or for genes within shared pathways can also 

increase sensitivity in some cases56. Second, and conversely, users should not engage in 

“data dredging”57 and consider a gene to have support because a single variant nearby 

it shows association in a single dataset; instead, association evidence for a gene should 

be considered across all variants, corrected for the number of portal queries (e.g., via 

Bonferroni correction), and integrated across all datasets – the bottom-line association 

analysis is our preferred statistical method for evaluating association strength across all 

T2DKP datasets, but it is an approximation and can also hide population-specific effects or 

gene-by-environment interactions. The T2DKP HuGE calculator is our preferred tool on the 

portal to estimate genetic support accounting for these and other caveats, albeit with some 

simplifying assumptions.

Effector gene lists.—If users would like a list of genes with the strongest genetic 

support for T2D or related traits, then they should use the “Predicted Effector Genes” 

tool (STAR Methods). This tool contains four lists of genes predicted (based on different 
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methodologies) to mediate GWAS associations in the T2DKP, categorizes genes based on 

the strength of these predictions, and allows users to see the evidence underlying each 

prediction. It is useful for analyses of genes identified from unbiased “forward genetic” 

approaches, such as the construction of potential protein interaction networks for diabetes-

related endophenotypes58.

To illustrate another application of the effector gene list, we investigated the extent to 

which genes identified from T2D GWAS also harbor rare coding variant associations, of 

relevance to the debate59 regarding the ability of GWAS to identify genes central to disease 

pathogenesis as opposed to genes on the periphery of dense regulatory networks60. We 

downloaded the list of 132 T2D effector genes produced by a curation-based methodology 

(under the “Curated T2D Effector Gene Predictions” page on the T2DKP “Tools” menu), 

in which genes are assigned to one of five evidence categories from “Causal” (containing 

a causal coding variant) to “Weak” (prioritized based on a single line of regulatory or 

perturbational evidence; STAR Methods). Using a Wilcox test and data from the AMP-T2D-

GENES WES study43 (STAR Methods), we found these genes to be significantly enriched 

for rare coding variant associations (p=0.015; Figure S2), with this enrichment due mostly 

to genes in the “Causal” set (p=0.0023 for “Causal” genes, p=0.21 for all other genes). 

Conversely, the 132 genes with the highest T2D MAGMA scores were not enriched for 

rare coding variant associations (p=0.27). This example illustrates the intended use of the 

effector gene list as a more effective starting point (compared to genes simply nearby GWAS 

associations) for downstream investigation of candidate disease genes.

T2DKP usage and best-practices for genetic expert users

Our usage and citation statistics indicate that most users – even genetic experts – do not 

routinely use the more advanced T2DKP tools. Many of these tools are complex, and we 

have therefore developed complete guides for them (Table S4) accessible under the T2DKP 

“Help” menu. Here, we motivate and provide examples of three advanced analyses that can 

be conducted with these tools.

Analysis 1: associations across multiple traits.—A variant’s or gene’s pattern of 

associations across a range of traits can be useful in basic (e.g., identifying cases of 

pleiotropy61), clinical (e.g., clustering patients into disease subgroups62), and translational 

(e.g., predicting if modulating a candidate drug target will have adverse side effects63) 

research. To visualize a variant’s association pattern across traits in the T2DKP, the variant 

page contains both a PheWAS plot, highlighting association significance and directionality, 

and a forest plot, highlighting relative effect sizes. Conversely, the “Signal Sifter” identifies 

association signals following a user-specified association pattern (i.e., positive or negative 

effects) across a user-specified collection of traits (STAR Methods). For example, we filtered 

p<5×10−8 fasting insulin associations adjusted for BMI (FIadjBMI) to those matching 

an “insulin resistance signature” of p<0.005 associations with triglyceride levels (TG; 

same direction of effect as FIadjBMI) and high-density lipoprotein levels (HDL; opposite 

direction of effect). The resulting 46 associations (Table S5) included 29 previously 

identified by a 2016 analysis64, as well as 17 now significant for the insulin resistance 

signature in larger GWAS conducted since 2016.
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Similar to the Signal Sifter is the “Gene Finder”, which identifies genes with a MAGMA p-

value below a user-specified threshold for each of a user-specified set of traits. For example, 

the Gene Finder identified 11 genes with p<2.5×10−6 for FIadjBMI, TG, HDL, T2D and 

Waist-hip ratio adjusted for BMI (Figure 7a). These genes were significantly enriched for 

expression specific to adipose tissue, a major site of insulin action (subcutaneous adipose 

tissue-specific expression Wilcox p=7.8×10−4, effect=20.02 “t-stat”65 units; visceral adipose 

tissue-specific expression Wilcox p=1.2×10−3, effect=16.1 t-stat units; Figure S2ef; STAR 

Methods). By comparison, the 11 genes with the lowest T2D MAGMA p-values were not as 

strongly enriched for adipose-specific expression (subcutaneous Wilcox p=0.045, effect=4.9 

t-stat units; visceral adipose Wilcox p=0.32, effect=−0.12 t-stat units; Figure S2gh). These 

results demonstrate how – through filters on gene-level association p-values alone – the 

Gene Finder can be used as a starting point to prioritize genes that act through a pathway or 

mechanism of interest.

Caveats for interpreting associations across multiple traits.—As the T2DKP does 

not yet support formal co-localization analysis66, a variant associated with multiple traits on 

the PheWAS plot is not necessarily causal for each trait, and signals identified by the Signal 

Sifter or Gene Finder may have different causal variants across traits. Genes identified by the 

Gene Finder are also not necessarily the effector genes for the nearby association signals.

Analysis 2: prioritizing variants at a GWAS locus.—A second advanced use case 

of the T2DKP is to explore the variants, cell types, regulatory elements, and causal genes 

underlying GWAS associations1,67. The “Variant Sifter” enables users to filter variants 

within a region based on available credible set(s) and genomic annotations; users can 

manually select annotations and tissues of interest or use GREGOR enrichments to choose 

globally disease-relevant annotations (more sophisticated predictions of locus-specific 

tissues of action68 are a potential future addition). As one example, a Variant Sifter query 

of the T2D associations within 50kb of CDC123 shows 282 variants achieving p<5×10−8, 

which can be filtered to only one variant (rs11257655) in the most recent credible set69. 

Next, adding genomic annotations for enhancers and transcription factor binding sites, and 

filtering these to tissues in which each annotation has a GREGOR enrichment of p<0.05 

and fold-enrichment>2, shows that rs11257655 is contained in a pancreatic enhancer and 

a pancreatic islet transcription factor binding site in pancreatic islets (Figure 7b). Indeed, 

rs11257655 has been shown to affect binding of the FOXA1 and FOXA2 transcription 

factors – which are essential for pancreas and liver development – to an active pancreatic 

enhancer region70.

After filtering variants based on credible sets and annotations, the Variant Sifter shows 

genes linked to any of the remaining variants. For example, the credible sets and genomic 

annotations nearby KCNQ1 indicate that rs231361 has a posterior probability of T2D 

association >0.99 and overlaps accessible chromatin annotations in pancreatic islets (as 

well as other pancreatic cell types). Viewing genes linked to rs231361 in the pancreas shows 

connections (via chromatin co-accessibility) to INS and IGF2 – 500kb away – but not 

KCNQ1. Experiments have in fact showed INS levels to be affected by genome-editing of 

rs231361 in stem-cell derived pancreatic beta cells39.
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Caveats when prioritizing variants at a GWAS locus.—When prioritizing variants 

with the Variant Sifter, the strongest evidence of causality is a high posterior probability 

within a credible set (above 80% or even 95%), and presence within a genomic annotation 

in a disease-relevant tissue provides further71 – although not conclusive72 – evidence. 

Inferences about cell types and genes that mediate an association should be made with 

care, as genomic annotations are often correlated across tissues, and variants are often linked 

to multiple genes. Finally, while global enrichments are a useful starting point for selecting 

genomic annotations, relevant annotations will vary by locus and (ideally) should be chosen 

based on the pattern of trait associations observed at the locus62. Any hypotheses generated 

from the Variant Sifter should be replicated experimentally.

Analysis 3: interactive coding variant analyses.—A third advanced tool on the 

T2DKP, the Genetic Association Interactive Tool (GAIT), supports rare coding variant 

analyses of WES data from the AMP-T2D-GENES43 (24 traits) and TOPMed73 (T2D, FG, 

and FI) studies. Users can select a gene (or transcript), choose among seven pre-defined 

variant groupings based on functional annotation (“masks”)43, optionally de-select variants 

from the mask (according to their displayed protein position and bioinformatic annotations), 

and conduct an on-the-fly aggregate association analysis using one or more methods (a 

burden test74, SKAT75, or SKAT-O76 analysis; STAR Methods). One use of GAIT is to 

conduct association analyses of custom collections of coding variants (perhaps those assayed 

as “functional”77,78). Another is to refine association signals to determine the variants 

most important to the association. For example, a GAIT burden test of MC4R variants in 

AMP-T2D-GENES and the 5/5 mask43 produces p=3.2×10−11 (odds ratio=1.20) for T2D 

and p=9.4×10−3 (beta = 0.042 kg/m2) for BMI, consistent with published results43. As 

previously reported43, much of this signal is due to the p.I269N MC4R variant in the 5/5 

mask. With p.I269N excluded, GAIT reports p=0.018 (odds ratio=1.12) for T2D and p=0.90 

(beta=−0.003 kg/m2) for BMI (Figure 7c). These results suggest that nearly all of the BMI 

signal for the 5/5 mask – and most but not all of the T2D signal – is due to p.I269N, 

illustrating how users can dissect the contribution of rare variants to aggregate association 

signals using GAIT.

Caveats when conducting interactive coding variant analyses.—GAIT is useful 

primarily for exploratory association analyses where instantaneous results are important. 

However, it employs a straightforward analysis procedure (STAR Methods) that may not be 

optimal for all genes or traits. Users should also be careful to correct GAIT p-values for 

the number of analyses they perform. Like those for all T2DKP tools, the results of GAIT 

should ideally be further investigated or replicated before using them in a publication.

Support for additional analyses.—All T2DKP tools are listed in Table S4. Over time 

we plan to add additional tools such as analysis of user-specified or predefined pathways79, 

automated credible set and co-localization calculations80, analysis of association 

heterogeneity across phenotypic subgroups or ancestries (including via random-effects 

meta-analyses), exploration of richer phenotypes including those measured longitudinally, 

investigation of genetic or environmental interaction terms81, and calculations of SNP 

posterior effect sizes for use in polygenic risk scores or instrumental variable analysis3. 
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For now, users who wish to use T2DKP datasets in such analyses can download many 

of the original datasets directly from the T2DKP. Processed data can also be accessed 

programmatically via REST services82. In the future we plan to provide additional 

programmatic access mechanisms, including direct import of T2DKP data into Python or 

R data structures.

Additional resources

For a more detailed description of T2DKP workflows and visualizations, we have provided 

several sources of documentation. Links to a step-by-step guide and a tutorial video for the 

“genetic support” workflow are prominent on the home page and on the pages included 

within the workflow. These provide a starting point for first-time portal users. Each of the 

more advanced T2DKP tools has a graphic at the top that illustrates the conceptual steps in 

the tool, with links shown between each conceptual step and a corresponding user interface 

component on the page. The graphic contains links to an expanded documentation page and 

video tutorial for the tool and its underlying data. All portal documentation is organized 

under its “Help” page, which has sections for Data, Methods, Pages/Tools, and Workflows. 

Documentation can also be navigated through a full-text search option in the upper right 

corner of each page.

Discussion

A human genetic association supports a gene’s role in disease and increases its viability 

as a therapeutic target5. The T2DKP aims to make such supporting evidence readily 

available and interpretable in a T2D-specific resource, thereby promoting the understanding 

and treatment of T2D and its complications. The T2DKP focuses on recent, large, and 

community-nominated datasets for T2D-related traits and in T2D-relevant tissues, which 

our analysis suggests form a more comprehensive resource for T2D genetics compared 

to resources that represent genomic data without regard to a specific disease area. In this 

article, we have focused on increasing the T2DKP’s usability in two respects. First, to 

increase the reach of the T2DKP to non-geneticists who do not yet incorporate human 

genetics into their research44, we have detailed a simple “genetic support” workflow. 

Second, to inspire expert geneticists to expand their use of the portal to include more 

complex tools, we have detailed three scientific questions and how they map to tools in the 

T2DKP. Our hope is that this information will increase both the breadth and the depth of the 

T2DKP user-base.

Beyond its role as a resource for T2D researchers, the T2DKP provides one potential model 

for sharing information derived from sensitive datasets in a manner that is broadly accessible 

but still useful to disease experts. Compared to “data commons”83 such as the NHLBI 

BioData Catalyst84 or the NHGRI AnVIL85, which provide analytical tools to analyze 

large or sensitive datasets within a cloud-based workspace, the model of the T2DKP is 

to delineate individual-level genetic datasets, which in general cannot be made publicly 

accessible, from summary representations of them, which support the needs of the vast 

majority of users. This paradigm – in which a public web-interface displays summary 

statistics automatically calculated from community-maintained private individual-level data 
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– could be an effective path to make other types of information in these “data commons” 

more readily available to users who do not need or desire direct data access.

The T2DKP also suggests a means to encourage researchers to share data and results 

in settings where they have traditionally been hesitant. It serves as a dedicated portal 

with community-designed content and branding, providing researchers with an incentive to 

share data and contribute expertise to manual parts of the data curation process. The data 

underlying the portal, however, are served through a general and scalable software platform, 

and improvements in automation of the data discovery process accrue to any other portals 

built upon the same platform. The potential of “community portals” like the T2DKP has 

been recognized by other disease communities that have used its platform to build portals 

for cardiovascular and cerebrovascular disease, type 1 diabetes, and sleep disorders, all 

of which are now collected with the T2DKP under the broader banner of the Common 

Metabolic Diseases Knowledge Portal (CMDKP) – the current focus of the AMP-T2D (now 

AMP®-CMD) partnership following its initial funding period. The growth of these resources 

illustrates a potentially cost-effective strategy to democratize access to expert-generated 

genomic data and accelerate the discovery, validation, and interpretation of genetic and 

genomic results.

Limitations of the study

In the Results section, we have discussed caveats and limitations of key T2DKP workflows 

and tools. More generally, while the T2DKP aims to be an “authoritative” resource of 

genetic and genomic data for T2D and related traits, incompleteness and bias in its 

datasets and functionality are inevitable. We have recently added more automated capture 

of datasets (STAR Methods), but manual review of datasets has been dominant historically 

and will remain necessary to some extent in the future. The datasets in the T2DKP are 

in particular biased toward individuals of European ancestry, as are most GWAS86, and a 

major focus in the future will be to address this with studies of more diverse ancestries. 

Additionally, the T2DKP presents summary association statistics to users, which necessarily 

discard information available in the original genetic and genomic datasets; in some cases, 

the summary association statistics have been combined with those of other datasets and 

therefore may not match those in the original manuscript describing a dataset.

STAR Methods

Resource Availability

Lead contact—Further information and requests for resources should be 

directed to and will be fulfilled by the lead contact, Dr. Jason Flannick 

(jason.flannick@childrens.harvard.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability

• All data reported in this paper are included in the main text, figures, and 

supplementary files.
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• All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table.

• All values used to generate the graphs of the paper can be found in the file Data 

S1 – Source Data. Any additional information required to reanalyze the data 

reported in this paper is available from the lead contact upon request.

Method details

GWAS summary statistics—As of October 2022, the T2DKP contained 382 GWAS 

summary statistic datasets (Table S1), each of which consists of association results (across 

every SNP in the GWAS) for one or more traits. We identified these GWAS datasets – and 

regularly identify additional ones to include in the T2DKP – via three mechanisms. First, 

we monitor the new literature via weekly PubMed searches and by monitoring Twitter to 

find relevant new preprints and papers. We review these papers to determine whether the 

summary statistics are publicly available; if they are not, we contact authors to ask whether 

they would like to contribute their results to the T2DKP. Second, we work with scientists 

within AMP-T2D and the T2D genetics community to obtain datasets they generate or 

identify. Often, authors provide a final version of their summary statistics as they prepare 

their manuscripts, so that the results can be released on the T2DKP immediately upon 

publication. Third, we work with scientists (funded as part of AMP-T2D) from the European 

Bioinformatics Institute, home of the GWAS Catalog, to identify new association datasets 

for T2D-relevant traits for which full summary statistics are available in the GWAS Catalog; 

we review each of these datasets for eligibility and prioritize those of most interest to the 

community targeted by the T2DKP. This more automated and systematic data discovery 

approach complements the other two manual curation approaches that we employ. In these 

analyses, the standardized ontology terms to which GWAS Catalog traits are mapped are 

employed to interrogate the Catalog REST-API for traits of relevance to the T2DKP. 

Datasets for which the specific author-reported trait curated by the GWAS Catalog align 

to T2DKP traits of interest are then assessed for the availability of full summary statistics 

and compatibility of the file contents with T2DKP ingest requirements. Finally, datasets are 

harmonized via the standard pipeline87 used at the GWAS Catalog before transfer to the 

T2DKP for loading.

We focus on phenotypes related to T2D, which include T2D complications (e.g., 
cardiovascular, hepatic, ocular, and renal traits), glycemic and anthropometric traits, and 

metabolites (including lipids). We prioritize datasets with disease-relevant phenotypes not 

yet included in the T2DKP, with sample sizes larger than any study yet in the T2DKP, 

or with subjects of non-European ancestry. While most investigators are enthusiastic about 

contributing their data to the T2DKP, some have concerns about data sharing or lack 

resources to do so. To address potential data sharing concerns, we have developed a set of 

policies (informed by our engagement with these communities over time) for responsible 

data stewardship88. To address potential resource limitations, AMP-T2D has in some 

cases38,89 provided funding for investigators to contribute their data.

If a summary statistic dataset is publicly available, we download it and record its original 

URL for provenance. If the dataset is not publicly available, we obtain it directly from the 
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investigators who produced it and record the citation describing it for provenance. We ensure 

that each summary statistic dataset has for each variant at minimum a chromosome, position, 

genome build, effect allele, and p-value; we also obtain effect sizes, standard errors, and 

effect allele frequencies for each variant when available. When a GWAS has calculated 

credible sets42, we accept the posterior probabilities of association for each variant. We 

document the dataset with the genotyping technology used, sample size, and study ancestry. 

In alignment with the GWAS Catalog, we record study ancestry as one of nine terms: 

African American or Afro-Caribbean, African unspecified, East Asian, European, Greater 

Middle Eastern, Hispanic or Latin American, South Asian, Sub-Saharan African, or Mixed 

Ancestry90. We assign ancestry descriptions as they are stated in published papers or in 

communications with data generators. Due to a lack of reference genetic data for some of 

these ancestries, in downstream analyses we consider only six ancestries: African American 

(which includes Sub-Saharan African and African unspecified), East Asian, European 

(which includes Greater Middle Eastern), Hispanic or Latin American, South Asian, and 

Mixed Ancestry.

We conduct a four-step QC process for each summary statistic dataset (Figure S3), which 

are originally provided to the T2DKP in tab delimited format. In the first step, we 

assign the summary statistic input file standardized column headings and filter out any 

rows with incompatible chromosomes, reference alleles, or alternate alleles. Additionally, 

as needed we set optional columns (e.g., odds ratio) to null and infer non-optional 

columns (e.g., effect size is inferred from odds ratio if it is missing but odds ratio 

exists). We do not follow any special procedure for different classes of variants; indel 

variants and SNPs are treated identically. Datasets are also lifted over to GRCh37, if they 

are specified relative to a different genome build, and assigned identifiers in the format 

chromosome:position:reference_allele:other_allele.

In the second step, we align all effect sizes to the alternate allele (relative to the GRCh37 

reference genome). We first analyze strand-unambiguous variants, detecting whether the 

effect allele (and consequently sign of effect and odds ratio) must be flipped for the non-

effect allele to align to the GRCh37 reference genome – we strand-complement reference 

alleles and alternate alleles if necessary. We then analyze strand-ambiguous variants. We 

first determine if each variant should be complemented, which we do if (a) >10% of 

unambiguous variants are complemented, (b) the variant has minor allele frequency (MAF) 

between 30–70%, and (c) the frequency of the effect allele is further from its frequency 

in the 1000G project (AF1000g) than it is from 1-AF1000g. After complementing (or not 

complementing) the variant, we then flip its effect, odds ratio, and effect allele as needed to 

align the non-effect allele to the GRCh37 reference genome.

The third QC step filters out variants with summary statistics incompatible with the analyses 

that will be performed on them in subsequent steps of our analysis pipeline. For example, 

it excludes variants with negative MAF, standard error set to infinity, or odds ratio less than 

zero.

The fourth and final QC step is effect size scaling for quantitative phenotypes. The scaling 

process performs linear regression with intercept pinned to zero on se2 ~ MAF * (1 − MAF) 
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* N, where se is the variant’s reported standard error and N is its reported sample size. 

The regression only uses variants with MAF > 0.05 and within the 25%−75% percentiles 

of standard error. If fewer than 1000 such variants exist, typical for datasets without MAF 

reported, we instead use a proxy MAF=0.25 for every variant. We divide all variant effects 

and standard errors by the regression slope if (a) MAF is available and the slope is greater 

than 2 or less than 0.5 or (b) MAF is unavailable and the slope is greater than 5 or less than 

0.2. Otherwise, no scaling is performed.

Whole exome sequencing (WES) summary statistics—As of October 2021, the 

T2DKP contained associations from two WES datasets: AMP-T2D-GENES43, containing 

45,231 individuals and analyzed for T2D and 24 related quantitative traits, and TOPMed73, 

containing associations for T2D, FG, and FI on 23,211 to 44,083 individuals (the TOPMed 

WES data consist of whole genome sequencing data subset to the exome). For each dataset, 

the T2DKP includes single-variant association statistics, which we processed following the 

same procedure that we use for GWAS summary statistics. For the AMP-T2D-GENES 

dataset, the T2DKP also includes pre-computed gene-level association statistics for seven 

variant “masks”43 (annotation categories).

Individual-level genetic data—In addition to datasets with pre-computed GWAS 

summary statistics, the T2DKP contained (as of October 2022) 38 datasets with individual-

level genotypes and phenotypes (Table S1). Most of these datasets include SNP array data 

from samples measured for T2D-related complications or samples studied longitudinally. 

Most were collected by researchers in the AMP-T2D consortium and were prioritized to fill 

gaps in publicly available datasets.

To obtain individual-level datasets for the T2DKP, we collaborate directly with the 

contributing investigators. After signing a data transfer agreement (DTA), the contributor 

securely transfers their dataset to one of two sites depending on data use restrictions: the 

Broad Institute (for datasets allowed to be stored in the United States) or the European 

Bioinformatics Institute (for datasets required to remain in Europe). Each site stores datasets 

behind a firewall that prevents public access. We record all phenotypes in a template 

developed by AMP-T2D to support flexibility in capturing T2D-related traits. Regulations 

and policies regarding data transfer and appropriate use of the T2DKP are described on an 

extensive “Policies” page under the T2DKP “Information” menu (https://t2d.hugeamp.org/

policies.html).

We then analyze each individual-level dataset using an association analysis pipeline that 

we developed and used as part of several large-scale T2D association studies41,43 (Figures 

S4 and S5). We apply the same pipeline regardless of whether datasets are stored at the 

Broad Institute or the European Bioinformatics Institute. The pipeline conducts cleaning and 

normalization of phenotype values, harmonization of genotypes to a modern imputation 

reference panel91, sample and variant QC, genetic ancestry and sex determination, 

measurement and correction for population structure via genetic principal components or 

genetic relationship matrices, single-variant joint and meta-analysis, and (for WES data) 

gene-level analysis of various variant masks. In addition to widely used QC techniques (e.g., 
for sample call rate or variant departures from Hardy-Weinberg equilibrium), our pipeline 
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includes a novel sample QC protocol43 which, for each sample, calculates a series of ~10 

metrics indicative of sequencing or genotyping quality (e.g., number of called variants, 

heterozygosity), adjusts these metrics for ancestry, identifies outlier individuals according to 

either a single metric or principal components of all metrics, and excludes these individuals 

from analysis.

We upload the association statistics produced by this pipeline to the T2DKP, following the 

same procedure as used for pre-computed GWAS summary statistics (Figure S3). We do not 

upload any individual-level genotypes and phenotypes to the T2DKP.

Genomic annotations—As of October 2022, the T2DKP included 5,418 genomic 

annotation datasets derived from molecular assays such as RNA-seq, ChIP-seq, ATAC-seq, 

DNase-seq, and Hi-C of human cell lines, stem cell-derived models, and primary tissue 

(Table S3). These annotations inform on the location of cis-regulatory elements, target genes 

of these elements, the expression levels of genes, and genetic variant effects on elements and 

genes (Figure S6). As we do for GWAS datasets, we identify genomic annotation datasets 

to include in the T2DKP based on the feedback of AMP-T2D scientists and T2DKP users. 

We focus on genomic annotations derived from tissues most relevant to T2D92, notably 

pancreatic islets, all types of adipose tissue, liver, and skeletal muscle. For comparison, we 

also include annotations derived from other tissues if they are collected and processed via 

the same methods.

We obtain genomic annotation datasets either by download from public repositories (e.g., 
GEO, EGA, SRA), download from resources such as ENCODE, or by direct collaboration 

with a contributing investigator. We assign to each dataset a unique accession number and 

permanent URL and then document the dataset with metadata describing donor information, 

cell type or tissue, molecular assay, experimental conditions, protocols, software tools, 

external references, and publications. We obtain raw experimental assay data (e.g., ATAC-

seq, ChIP-seq, Hi-C reads) when available. We standardize cell types and tissue names to the 

Uber-anatomy ontology for tissues93, Cell Ontology94 for cells, and Cell Line Ontology95 

or Experimental Factor Ontology96 for cell lines. We assign tissues and cells to one of 29 

high-level categories describing broad tissue and anatomical system groupings (Table S3). 

When summary-level annotations derived from these assays (e.g., chromatin state, accessible 

chromatin sites, target gene predictions) have not been pre-computed, we compute them 

from the raw data. When summary-level annotations have been pre-computed, we obtain 

them as well. Prior to including pre-computed annotations in the T2DKP, we perform 

several QC checks. First, we check the file formats to ensure that they contain the requisite 

number of fields and the correct type of value per field. Second, we check the contents of 

pre-computed annotations to ensure that they meet minimum standards such as number of 

records, distribution of records across the genome, and degree of overlap with blacklisted 

regions of the genome. While the methods, software tools, and filters used to create pre-

computed annotations may in some cases differ from those used to create T2DKP computed 

annotations, detailed data processing and analysis steps used to create the pre-computed 

annotations are included as metadata with the annotation record.
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We store all genomic annotation datasets in the Common Metabolic Diseases Genome 

Atlas49 (CMDGA), a sister resource to the T2DKP. The CMDGA makes summary-level 

annotations of each dataset (represented as a set of genomic regions with relevant metadata; 

e.g., BED files97) accessible by the T2DKP software platform through a series of REST 

APIs. Data that could be subject to data use restrictions (e.g., raw reads) are maintained at 

the CMDGA and not made available for public access.

Quantification and statistical analysis

Statistical and bioinformatic methods—We process GWAS associations and genomic 

annotations through a series of five statistical and bioinformatic methods (Figure S7). Each 

method integrates one or more datasets to make predictions regarding variant associations 

or their functional effects (e.g., on disease-susceptibility genes, disease-relevant tissues, or 

regulatory annotations). We select methods to implement based on the following factors 

(in rough order of priority): ease of implementation, expected impact (based on citations 

and use of the method), requests by the AMP-T2D and the T2D genetics communities, and 

requests by users. We apply the methods within an automated analysis pipeline that tracks 

provenance of the calculations and regularly updates results as new data become available. 

Wherever possible, we consult and collaborate with the original developers of the methods 

when encoding them in our analysis pipeline.

The first step in the pipeline is a “bottom-line” association meta-analysis. The goal of this 

analysis is to calculate an integrated measure of association between each variant in the 

T2DKP and each trait, accounting for all datasets in which the variant is observed. As 

many of the larger datasets may have a (usually unknown) degree of sample overlap, the 

bottom-line analysis statistically infers and adjusts for the degree of overlap47 by estimating 

the covariance between effect sizes across studies and then inflating the variance of the test 

statistic (under the null) to correct for any observed non-zero covariance. This calculation 

has limitations but offers a compromise between presenting multiple association values for 

each variant (which are challenging to interpret) and conducting a proper combined analysis 

of the original genetic data across each study (which is impractical). Because the statistical 

methodology of the bottom-line method is limited to common (MAF > 5%) variants and a 

single ancestry, we implement it by first partitioning datasets by ancestry and then separating 

common and rare variants within each dataset. We next, for each ancestry, (a) conduct 

an overlap-aware fixed-effect meta-analysis of all common variants across all datasets for 

the ancestry; (b) assign each rare variant the association statistic from the largest dataset 

for the ancestry; and (c) combine the common and rare variant associations to produce 

ancestry-specific bottom-line results. We finally conduct a final fixed-effect meta-analysis 

(without overlap-detection) of the ancestry-specific results to obtain transethnic association 

statistics. The assumption of fixed variant effects across ancestries is a simplification and 

may reduce power to detect ancestry-specific associations; a random-effects meta-analysis is 

a potential future approach to add to the portal. We retain both the ancestry-level association 

statistics, and the transethnic association statistics, for downstream analyses.

The second step in the pipeline is to annotate all variants using the Variant Effect Predictor98 

(VEP). We run VEP with its standard command line options and the LofTee and dbNSFP 
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plugins, “picking” the annotation in the transcript determined by previously described 

criteria43.

Third, we run LD-clumping on the bottom-line associations to produce, for each trait, a 

set of “clumps”, each consisting of a lead variant and a set of variants in LD with the 

lead variant. We perform LD-clumping by first running the PLINK99 clump command with 

its default parameters. We conduct this analysis separately for each ancestry-level set of 

associations, estimating LD using an appropriate subset of samples from the 1000G Project; 

we use African 1000G samples for the African American ancestry, East Asian 1000G 

samples for the East Asian ancestry, European 1000G samples for the European ancestry, 

Middle/South American 1000G samples for the Hispanic or Latin American ancestry, and 

South Asian 1000G samples for the South Asian ancestry. We also conduct a transethnic 

LD-clumping analysis by clumping the transethnic bottom-line associations five times, once 

per 1000G ancestry, and then merging clumps across ancestries that have at least one variant 

in common.

Fourth, for each trait, we calculate the enrichment of each genomic annotation for bottom-

line associations. For each trait and each annotation, we apply the GREGOR method100 to 

compare the observed proportion of genome-wide significant associations within annotated 

regions to the expected proportion based on the total size of annotated regions. GREGOR 

produces a fold-enrichment of each annotation for significant associations, as well as a 

p-value of statistical significance. We compute these enrichments within each ancestry, 

using LD estimates from the 1000G project in the same manner as we do for the ancestry-

specific clumping analysis. If there does not exist a Mixed Ancestry dataset for the trait 

that is larger than the combination of the ancestry-level datasets, we then meta-analyze 

the ancestry-specific enrichments to obtain a transethnic enrichment. If there does exist a 

larger Mixed Ancestry dataset, then we conduct a GREGOR analysis of the largest Mixed 

Ancestry dataset to produce a transethnic enrichment; since most GWAS (even those of 

Mixed Ancestry) are skewed heavily toward European populations, we use LD estimates 

from the 1000G European samples for this analysis.

Fifth, we calculate gene-level association statistics using MAGMA53. We run MAGMA on 

the bottom-line association results for each trait with its default parameters and a window 

size of 50kb. We calculate MAGMA associations within each ancestry, as well as at the 

transethnic level; the choice of samples for LD estimates is analogous to the choice for 

GREGOR, as is the combination of ancestry-level and Mixed Ancestry datasets to produce 

transethnic results.

We load the results of these analyses into cloud-based storage buckets (currently housed on 

Amazon S3) and index them with custom software that we term “BioIndex”101. BioIndex 

uses a MySQL database to map genomic coordinates to storage bucket locations, enabling 

random access to data for any variant or genomic region directly from cloud storage. 

Alongside these data we also store references to the original GWAS association statistics 

(which are also stored in the cloud) or to the original genomic annotations in CMDGA.
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The results of these analyses are integrated into many tools within the T2DKP, and their 

most significant results for each phenotype are available on the “phenotype page” (Figure 2). 

All tables and visualizations on the phenotype page can display results calculated across all 

datasets in the portal or results calculated only for a chosen ancestry.

Pre-computed statistical and bioinformatic method results—In addition to the 

statistical bioinformatic methods that we automatically apply to every dataset, the T2DKP 

also includes pre-computed statistical and bioinformatic method results. These include: 

(a) credible sets (for 40 traits42,102); (b) association by contact (ABC) predictions, which 

integrate ATAC-seq, H3K27ac, and Hi-C data to predict linkages between regions and gene 

promoters103; and (c) predictions of GWAS effector genes (for 11 traits) from a machine 

learning algorithm104. For each pre-computed method result, we record provenance as either 

a publication or online resource describing the method and data used by it.

Curated knowledge—The T2DKP includes a curated list of putative T2D GWAS effector 

genes. The goal of this list is to represent the current consensus predictions of the AMP-T2D 

consortium regarding the genes that mediate T2D GWAS associations, together with the 

confidence behind each prediction. The effector gene predictions have limitations, as they 

are based on a series of heuristics rather than a formal statistical methodology. Genes 

in a region harboring a genome-wide significant T2D association are assigned to one of 

five tiers (Causal, Strong, Moderate, Possible, Weak) based on three types of evidence: 

genetic (whether a coding variant in the gene is causal for the association), regulatory 

(whether genomic annotations support a link between the causal variant and the gene), 

and perturbational (whether animal or cellular studies of the gene have linked it to T2D 

or related traits). Each piece of evidence is determined based on a literature review by 

AMP-T2D scientists, and we record the publication describing it as provenance supporting 

the effector gene prediction. We note that the effector gene list is unpublished and thus has 

not undergone peer review, and it is subject to the biases of the scientists who created it; 

however, it represents (to our knowledge) the best available distillation of curated knowledge 

regarding T2D effector genes. Over time, as this and other lists are improved, we will update 

the T2DKP with them and offer users the ability to compare different lists.

In addition to putative T2D effector genes, this gene list also includes putative effector 

genes for T2D-related diseases and traits. These include genes implicated in monogenic 

conditions with presentations similar to T2D (e.g., Maturity Onset Diabetes of the Young, 

Lipodystrophies, or Neonatal Diabetes Mellitus) and putative effector genes for glycemic 

traits (e.g., fasting glucose or HbA1c).

Tool implementation—To implement the Signal Sifter, we first find all SNPs associated 

at p<5×10–8 with a lead phenotype and then expand each “index” SNP into a clump using 

the results of LD clumping. We next filter the clumps to those that contain at least one SNP 

associated (at a user-specified p-value threshold below 0.05) with each of a set of secondary 

phenotypes. Next, we set the index SNP for each secondary phenotype to the SNP with the 

strongest association for that phenotype; the index SNPs may thus differ across phenotypes. 

Finally, we align the direction of effect for each secondary phenotype index SNP to the 

direction of effect to the lead phenotype index SNP: we switch the secondary phenotype 
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direction of effect for the secondary phenotype index SNP as needed to match secondary 

phenotype direction of effect for the lead phenotype index SNP.

To implement the Gene Finder, we identify all genes with that have MAGMA p-value below 

a user-specified threshold for each of the selected traits. We sort the resulting list of genes 

according to the p-value produced by a meta-analysis of their trait-level p-values (according 

to Fisher’s method).

To implement the Variant Sifter, we identify all variants that are (a) within a user-selected 

credible set that also (b) overlap any of the user-selected annotations (users can alter this 

default behavior to retain only variants that overlap all user-selected annotations) and finally 

(c) are linked to any of the selected genes. We show annotation enrichments as calculated by 

GREGOR.

To implement the GAIT module for individual-level WES data in the T2DKP (currently 

the AMP-T2D-GENES and TOPMed WES datasets), we use LDserver105 to calculate 

score statistics and covariance matrices106 from the individual genotypes and phenotypes. 

LDserver responds to a REST query (specifying a list of variants) from the T2DKP and 

either computes these statistics on-demand (for the AMP-T2D-GENES dataset) or accesses 

pre-computed files of genome-wide statistics (for the TOPMed dataset). It then converts 

these statistics to an aggregate association statistic106. Individual-level data stored within 

LDserver are not directly accessible by the T2DKP.

Analyses conducted for this manuscript—To compare GWAS summary statistic 

datasets across the T2DKP, GWAS Catalog, OpenGWAS, and GWAS Atlas, we identified 

the datasets in each resource for T2D, fasting glucose (FG), fasting insulin (FI), or HbA1c. 

For the T2DKP, we defined these as all datasets listed on the T2DKP “Genetic association 

datasets” page that included associations for at least one of the four phenotypes. For the 

GWAS Catalog, OpenGWAS, and GWAS Atlas, we defined these as the datasets listed 

in the results for searches performed for each of the four phenotypes. We conducted all 

searches for this analysis on October 16, 2022; the datasets included in our analysis are 

shown in Table S2. We defined datasets as having “full” summary statistics accessible if 

either (a) summary statistic files for every variant in the study were available for public 

download or (b) associations for every variant in the study were represented in the resource 

through genome-wide query interfaces or genome-wide visualizations (e.g., Manhattan plots 

on the GWAS Atlas). We defined “partial” datasets as those for which some associations are 

available, as in the tables of top associations provided by the GWAS Catalog, but for which 

full summary statistics are not accessible through that resource.

To define associated loci for each trait, we first downloaded association p-values from each 

resource. We then ran a clumping analysis across all associations (using the PLINK 2 

software package with parameters –clump-p1 5e-8 –clump-p2 5e-8 –clump-r2 0 –clump-kb 

250) to merge genome-wide significant associations within 250kb of each other into clumps 

(i.e., associated loci). For all calculations comparing the loci included by each resource, 

we then defined a resource to include a locus if it contained at least one associated variant 

(p<5×10−8) within the clump.
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To evaluate rare coding variant association enrichments for T2D effector genes, we first 

downloaded the effector gene list from the T2DKP. Following a previously described 

procedure43, we then used a Wilcoxon Rank Sum Test to compare the gene-level association 

p-values from the AMP-T2D-GENES study for these genes to those of a set of genes 

matched based on various features (such as the number of variants and aggregate allele 

count within each gene); we removed genes from this analysis which are present on the 

effector gene list due to rare variant associations (PAM, SLC30A8, MC4R, and BCL11A). 

For comparison, we repeated this analysis for the same number of genes with the lowest 

MAGMA T2D p-values.

To evaluate the enrichment of the set of genes returned by the Gene Finder for adipose-

specific expression, we first obtained tissue-specific expression values for each gene across 

each tissue, based on a previous analysis of samples from the GTEx project65. Tissue-

specific expression is represented as a “t-stat” for each gene in each tissue. We used a 

Wilcox test (for each tissue) to compare the t-stat values for genes in the Gene Finder list to 

the other genes in the genome. For comparison, we also conducted this analysis for the same 

number of genes with the lowest MAGMA T2D p-values.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Data are collected, processed by the T2DKP platform, and provided through the 
T2DKP web-interface via a multi-step process.
Data sources for the T2DKP are of varied origin and of multiple Data types. Summary-

level genetic datasets are transferred to the Data Coordinating Center (DCC) at the Broad 

Institute, while genomic annotations are transferred to the Common Metabolic Diseases 

Genome Atlas (CMDGA). Individual-level genetic datasets are transferred to the DCC 

or European Bioinformatics Institute (EBI) depending on permissions, and the Analysis 
Engine processes them through a common analytical workflow to produce summary-level 

associations. The Data Aggregator then analyzes summary-level genetic datasets and 

genomic annotations with a series of bioinformatic methods, the results of which are stored 

in the BioIndex. The Knowledge portals access the data within the BioIndex and present 

them via a web-interface.
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Figure 2: Overview of the T2DKP web-interface.
Users of the T2DKP can browse its data by searching for a phenotype, gene, variant, or 

region. A phenotype search allows views of all associations and datasets for a trait. A 

region or gene search directs users to a summary of associations within the region (or 

nearby the gene). Users can select a gene in the region to navigate to the gene page, 

which shows a summary of gene-level associations for the gene. The variant page shows a 

summary of associations for a selected variant. The T2DKP also contains a header menu 

with information about the data in the resource as well as a suite of tools and visualizations.
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Figure 3: The T2DKP has added datasets and features over time.
On a regular basis, we update the T2DKP with new genetic association datasets (blue dots) 

for one or more traits (green dots), genomic annotation datasets (purple dots; represented as 

one-tenth of the actual number), and tools and visualizations (text on bottom of the plot). 

T2DKP citations (pink dots) have also increased over time. In 2020, the T2DKP received a 

major update (vertical dashed line) that significantly changed its user interface.
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Figure 4: The T2DKP emphasizes genetic datasets for T2D and related traits.
We compared genetic datasets for glycemic traits (T2D, fasting glucose, fasting insulin, and 

HbA1C) in the T2DKP (blue) to those in the GWAS Catalog (orange), the GWAS Atlas 

(white), and the OpenGWAS project (gray), in October 2022 (Table S2). We conducted an 

analysis of all datasets and an analysis of datasets newer than 2015 and with >10K samples. 

a. Considering all datasets in each resource, including those without full summary statistics 

available, the GWAS Catalog contains the most glycemic trait genetic datasets. b. When 

only datasets with full summary statistics are considered, the T2DKP contains the most 

glycemic trait genetic datasets. c. Both the T2DKP and the GWAS Catalog contain datasets 

unavailable through other resources. d. When only genetic datasets with full summary 
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statistics are considered, the T2DKP contains many more datasets unavailable through other 

resources. e. Most of the datasets unique to the GWAS Catalog are either from prior to 2015 

or contain fewer than 10K samples. f. The T2DKP contains nearly all datasets newer than 

2015 and with more than 10K samples. g. Datasets in the T2DKP are predominantly from 

analyses of European samples, but the ethnic diversity it captures has increased over time.
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Figure 5: The T2DKP both adds and omits glycemic trait associations relative to the GWAS 
Catalog.
We evaluated the glycemic trait genetic associations (for T2D, fasting insulin, fasting 

glucose, and HbA1C) in the T2DKP. We compared genetic associations produced by 

the T2DKP’s overlap-aware meta-analysis (Bottom line, STAR Methods) to genetic 

associations reported by individual genetic datasets (Dataset-level). a. The bottom-line 

and dataset- level associations largely overlap, but the bottom-line analysis both adds and 

removes associations. b. Associations added by the bottom-line analysis have suggestive 

associations across many datasets. An example association unique to the bottom-line 

analysis (rs1000237) has moderate p-values (y-axis) in numerous datasets (points), including 

nominally significant but not genome-wide significant associations in the datasets with 

the largest effective sample sizes (x-axis). The horizontal line indicates genome-wide 

significance. c. Comparing the glycemic trait associations in the T2DKP to those in the 

GWAS Catalog and the OpenGWAS project, each resource contains unique associations. 

d. Associations unique to the T2DKP are a mixture of associations due to datasets 

unique to it (Dataset-level associations) and its bottom-line analysis (Bottom line). e. Most 

associations unique to the GWAS Catalog are due to studies without summary statistics 

publicly available. f. An example association unique to the GWAS Catalog (rs10932672) is 

unsupported by larger, more recent datasets in the T2DKP (points on the right side of the 

plot).
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Figure 6: We recommend non-geneticists follow a “genetic support” workflow within the T2DKP.
To evaluate whether human genetic associations support the involvement of a gene of 

interest in human disease, users can first use the “region page” to see if the gene lies nearby 

associations (1), then use the “gene page” to view a distillation of these associations into a 

gene-level score (2) and also view complementary rare variant associations for the gene (3). 

The HuGE calculator, also on the gene page, summarizes these two gene-level associations 

into a single score for the gene (4). The T2DKP effector gene list contains a curated set of 
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genes suggested from genome-wide analyses to be involved in disease (5). Table S4 contains 

information on these and other modules of the T2DKP.
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Figure 7: The T2DKP enables exploratory and interactive analyses for the genetic expert user.
a. A Gene Finder search for genes associated with Fasting Insulin adjusted for BMI, 

Triglycerides, HDL cholesterol, T2D, and Waist-hip ratio adjusted for BMI returns 11 genes 

that have MAGMA p<2.5×10−6 for each trait. These genes were significantly enriched for 

adipose tissue-specific expression (Figure S2ef) b. A query of ‘CDC123’ on the Variant 

Sifter shows a regional plot of the T2D association. Tracks below the plot show the locations 

of variants in the credible set and genomic annotations for transcription factor binding 

sites within the pancreas. A table lists the variants within the credible set that overlap the 
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displayed genomic annotations. The actual Variant Sifter page contains more visualizations 

than those shown in the figure; because of space limitations we have spliced the LocusZoom 

plot, credible sets plot, annotations plot, and variant table together. c. An association analysis 

in GAIT between rare MC4R variants (in the 5/5 mask) and T2D shows the impact of 

p.I269N on the association signal – after removing the variant from the analysis, the T2D 

association p-value is increased by nine orders of magnitude and the BMI association is 

ablated. Table S4 contains information on these and other modules of the T2DKP.
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