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ABSTRACT OF THE DISSERTATION

Supporting Diagnosis of Pathologists with Human-AI Collaboration

by

Hongyan Gu

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2025

Professor Xiang Chen, Chair

The recent trend of digital pathology transition has enabled the advancement of Artificial

Intelligence (AI) for complex pathology tasks. While some AI demonstrated performance

comparable to human pathologists in lab studies, translating them into clinical practice re-

mains challenging due to issues related to limitations of AI’s integration into clinical decision-

making, its explainability and controllability, and the reliability of AI-assisted outcomes.

To address these challenges, this thesis adopts a multi-faceted approach, combining field

investigations, artifact development, and empirical validation, to study effective human-AI

collaborative paradigms in digital pathology. First, it presents findings from a field study

of pathologists’ daily workflows, their attitudes towards AI with varying levels of automa-

tion, and recommendations for designing effective AI-assisted diagnostic systems. Second,

this thesis discusses the development and validation of NaviPath, a next-generation, high-

throughput AI recommendation system informed by pathologists’ domain expertise, and

xPath, a comprehensive and explainable AI-assisted pathology interface that seamlessly in-

tegrates with pathologists’ diagnostic tasks involving multiple criteria and multimodal data.

Finally, this thesis explores strategies to foster appropriate reliance on AI by harnessing

ii



pathologists’ collective expertise to achieve reliable, and robust AI-assisted outcomes.

Overall, this thesis aspires to enable efficient, accurate, and safe human-AI collaborative

pathology decisions – supporting pathologists in reaching timely, cost-effective, and precise

diagnoses, which can ultimately benefit patient management.
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3.1 Comparison between pathologists’ manual navigation in practice vs.NaviPath’s

designs. Observations on pathologists’ manual navigation: (a) Pathologists usu-

ally overview a pathology scan with low magnifications, followed by switching to

higher magnifications to examine regions of interest in detail; (b) Pathologists

might refer to macroscopic patterns to locate ROIs in the low magnification;

(c) Pathologists employ a systematical searching strategy in high magnifications.

NaviPath’s designs: (d) NaviPath harnesses AI to generate hierarchical “Lo-

cal”, “High-Power Field”, and “Cell” recommendations, covering multiple mag-

nification levels; (e) NaviPath utilizes AI to calculate three criteria that pathol-

ogists usually consider to generate recommendations; (f) Once in high magnifi-

cations, NaviPath places navigation cues on the edge of the interface, enabling

pathologists to jump to remote AI recommendations without manual panning. . 39

3.2 (a) An example region-of-interest image used in the user study, with arrows point-

ing at the ground truth mitoses; (b) The anti-body test used by the three doctors

to annotate the ground truth mitoses. Mitoses were shown in brown (as pointed

by the arrows) in the anti-body test. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 NaviPath generates hierarchical AI recommendations across multiple magnifica-

tion levels: (a) Local recommendations (red boxes) lie in the lowest magnification,

and can be seen directly on the pathology scan without zooming; (b) there are

multiple High-Power Field (HPF) recommendations (red boxes) inside one Local

recommendation (gray box); (c) once in an HPF recommendation (the gray box),

users can select and see (d) a Cell recommendation with the highest magnification. 49
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3.4 Generating Local and HPF recommendations with multiple criteria: (a) a pathol-

ogy scan is first (b) split into non-overlapping tiles. Then, NaviPath uses (c)

three AI models to analyze each tile to obtain (d) scores of cellular count, prolif-

eration probability, and mitosis count. NaviPath will (e) aggregate scores from

multiple tiles to generate Local recommendations, or (f) directly use these scores

for HPF recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 (a) NaviPath supports users to customize AI recommendations with a group of

slide-bars: users can emphasize or rule out each of the three criteria (i.e., cellular

count, proliferation probability, mitosis count) forNaviPath’s recommendations;

(b) NaviPath places navigation cues (pointed by arrows) that enable users to

hop to remote recommendations. The figure on the right provides an overview

of off-screen recommendations; (c) An example of NaviPath’s verbal dialog ex-

planation for Local/HPF recommendations; (d) An example of the explanation

card for NaviPath’s Cell recommendations. . . . . . . . . . . . . . . . . . . . . 50

3.6 Overview of NaviPath’s interface. (a) A Local recommendation (red box) with

an explanation dialog. The number on the top-left corner represents the index of

the recommendation (same for HPF and Cell recommendations); (b) An example

of an HPF recommendation; (c) An example of a Cell recommendation; (d) An

explanation card for a Cell recommendation, including the AI probability, con-

fidence level, and a saliency map; (e) Users can switch on and see each level of

recommendations on-demand; (f) Users can customize the recommendations with

a group of slide-bars; (g) A navigation cue that allows users to jump to a remote

recommendation. The number indicates the index of the remote recommendation. 52

xv



3.7 Boxplot visualizations of the (a) precision and (b) recall (sensitivity) from mitosis

reportings under the conditions of C1, C2, and C3. The colored lines and the

figures above indicate the median values of each condition. The dots are the

outliers. (c) The results of pair-wise significance comparison among C1, C2,

and C3 using a post-hoc Dunn’s test with Bonferroni correction (α=0.05). The

values marked with ∗ indicates that the Null hypothesis can be rejected because

the p < α/2. (d) Participants’ zoom interaction frequencies under C1 and C2.

(e) Participants’ pan interaction frequencies under C1 and C2; (c) Frequencies of

participants’ selecting Local, HPF, and Cell recommendations under C2. Note

that one participant might select the same recommendation multiple times in

each trial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Participants’ ratings on whether each component inNaviPath is useful to pathol-

ogists’ examination (left) / requires extra effort compared to the manual baseline

system (system 1) (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 2D projections of participants’ traces with manual and NaviPath navigation on

a pathology scan (zoom ignored). (a) Trace projections of P5, P11, and P12 with

manual navigation. Note that all three participants did not examine the tissue

on the bottom-right corner of the scan (pointed by the arrow). (b) The heatmap

visualization of mitosis density of the scan. (c) Trace projections of P9, P10, and

P13 with the NaviPath navigation. The boxes highlight the approximate areas

of Local recommendations generated by NaviPath. . . . . . . . . . . . . . . . . 72
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3.10 Three patterns of how our participants move to another HPF recommendation

after examining one: (a) “Diving”: first returned to the Local recommendation,

overviewed the remaining HPF recommendations from the low magnification,

and then dived down by selecting an HPF recommendation. The bottom figure

shows 2D projections of participants’ navigation traces during the work sessions;

(b) “Adjacent Panning”: directly pan to an adjacent HPF recommendation by

clicking on the edge of NaviPath’s interface; (c) “Cue-Based Hopping”: directly

hop to a remote HPF recommendation with the navigation cue. . . . . . . . . . 73

4.1 Workflow of xPath (up): pathologists first see the AI-suggested diagnosis, then

examine its results and evidence accordingly in an explainable manner, and ex-

amine the evidence to update the suggested diagnosis. this workflow follows a

similar manual examination process of pathologists (down), which can improve

AI’s integration into pathologists’ routine diagnoses. . . . . . . . . . . . . . . . . 82

4.2 xPath’s interface design, illustrating the (a) suggested pathology diagnosis (i.e.,

WHO Grade 3) with two key design ingredients of (b) joint-analyses of multi-

ple criteria, where xPath offers comprehensive AI analysis of multiple critical

pathology criteria for a diagnosis; explanation by hierarchically traceable evi-

dence, explaining high-level suggested diagnosis to low-level AI-reporting on each

pathological feature, including (c) an arrow that points to the deterministic crite-

rion for the suggested diagnosis, (d) a quantified score for the criterion, (e) a list

of evidence that contributes the quantified score, and (f) each piece of evidence
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CHAPTER 1

Introduction

1.1 Background and Motivation

Driven by hospitals’ urging demands for transitioning to digital workflows during the COVID-

19 pandemic, digital pathology has been broadly applied in research and industry over the

past five years [97, 150, 225]. This surge in data availability has stimulated the advancement

of self-supervised training methods for pathology foundation models. By 2025, a popular

approach in pathology Artificial Intelligence (AI) is through unsupervised pre-training on

mass datasets (e.g., Virchow, with 1.5 million slides [207]) followed by fine-tuning on down-

stream tasks. This methodology has enabled deep learning models to accomplish complex

pathology tasks with performance non-inferior to human pathologists, including classifying

tumor subtypes, grades, predicting immunohistochemistry (IHC), molecular mutation, and

prognosis [3, 54, 214, 207, 218].

Despite these advances, the clinical translation of digital pathology AI faces several criti-

cal hurdles [89, 44, 169, 220]. First, the misalignment between data scientists’ AI design and

pathologists’ workflow dynamics raises concerns about the actual clinical utility of AI: can

these AI systems truly augment pathologists’ workflow, or do they inadvertently introduce

new cognitive burdens? Second, existing deep learning approaches are often criticized for

their lack of interpretability and transparency, making their behavior unpredictable and fos-

tering skepticism among pathologists. Finally, despite the high-stakes nature of pathology

decision-making, quality control of AI-assisted results relies majorly on human pathologists
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as the gatekeepers: how can we establish rigorous mechanisms for quality assurance that

mitigate the risks of AI-induced errors while preserving pathologists’ efficiency?

These sociotechnical challenges at the intersection of AI and clinical practice present a

unique opportunity to fundamentally rethink the design of AI ecosystems for supporting

pathologists’ diagnoses. Rather than applying AI as a stand-alone tool, there is a crucial

need to explore human-AI collaborative paradigms that seamlessly integrate into patholo-

gists’ diagnostic workflows while preserving their expertise and decision-making autonomy.

This thesis fills this gap by systematically analyzing pathologists’ examination behaviors,

understanding their expectations and preferences for AI integration, developing explainable,

integrable, and customizable AI assistance that incorporates pathologists’ domain knowledge,

and harnessing the collective intelligence of AI-assisted pathologists to mitigate AI-induced

errors. In doing so, this thesis aims to establish a new paradigm in digital pathology – one that

fosters efficient, accurate, and safe human-AI collaboration, enabling timely, cost-effective,

and precise histopathological diagnoses that ultimately enhance clinical decision-making and

improve patient management.

1.1.1 Thesis Statement

AI-enabled digital pathology interfaces can improve pathologists’ speed and decision outcome

while mitigating AI-induced errors through three key innovations: (i) a next-generation,

high-throughput region-of-interest AI recommendation system for a challenging navigation

task, informed by pathologists’ domain expertise, (ii) a comprehensive and explainable AI

digital pathology interface that aligns with pathologists’ diagnostic workflows for a complex

diagnosis task, and (iii) a majority voting strategy that ensembles collective, AI-assisted

pathologists’ decisions. These innovations are validated through comprehensive user study

sessions with pathologists and trainees, demonstrating improvements in examination effi-

ciency, inter-observer agreement, decision accuracy, appropriateness, and robustness, com-

pared to traditional manual and AI alone.
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1.2 Related Work

This section provides a brief review of recent literature in four directions related to this thesis:

(i) digital pathology technologies supporting pathologists’ visual examination, (ii) develop-

ment and application of pathology AI, (iii) human-AI collaborative systems for pathology

applications, and (iv) enabling appropriate AI reliance for high-stakes pathology applica-

tions.

1.2.1 Supporting Pathologists’ Examination with Digital Pathology

Since the U.S. Food and Drug Administration (FDA) granted the first 510(k) clearance

for a digital pathology scanning system in 2017 [73], a wide variety of digital pathology

solutions have emerged and achieved commercial implementation [97, 150, 225]. Starting

from the late 2010s, numerous medical centers have successfully transitioned to full-digital

workflows, bringing benefits including the convenience of remote sign-out, consultation, and

education, reduced time in case assembly and delivery, higher efficiency in slide reading,

and lower injury rates related to slide handling [38, 71, 98, 170, 176]. As of 2025, digital

pathology technology encompasses the majority of formalin-fixed paraffin-embedded (FFPE)

slides, with exceptions in frozen sections, cytology, and non-FFPE hematopathology. A

typical digital pathology system consists of three core components: (i) the digital pathology

scanner [160], (ii) the pathology Image Management System (IMS), and (iii) displays [1]. As

the essential visualization component between pathologists and digital slides, the display and

interface design play a pivotal role in pathologists’ efficiency during histological examination,

which directly impacts their digital experience and diagnostic outcome.

Nowadays (2025), commercial off-the-shelf displays can have up to 8K resolution (7680

× 4320, or ∼ 3.3× 107 pixels), which still remains significantly lower than pathology scans

(up to 1012 pixels). Therefore, intensive navigation is usually required for pathologists to

search for small-sized histopathological patterns (e.g., mitoses, Helicobacter pylori) during
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examination [174]. As this limitation is majorly due to the resolution differences, one intuitive

solution is to introduce displays with larger physical sizes and resolutions to pathologists

[165, 164, 197, 215]. Literature has validated this approach, demonstrating that pathologists

had less pan and zoom interactions with higher-resolution displays [142]. However, improving

hardware requires purchasing costly, bulky, and specialized devices. As such, I believe that an

optimization of interface design presents a more practical approach to to support pathologists

in working efficiently with high-resolution digital scans.

In the human-computer interaction domain, extensive studies have investigated design

strategies to support users in navigating high-resolution images with limited size screens

or displays [25, 94, 177, 171, 224]. Cockburn et al.categorized these strategies into four

fundamental approaches: focus + context (F+C), overview + detail (O+D), zooming, and

cue-based [57]. In digital pathology, numerous open-source [20, 59, 155, 181] and commercial

[110] interfaces adapt a design that combines zooming and O+D, featuring a zoomable canvas

showing pathology scan details and an overview window displaying the thumbnail. Users

navigate high-resolution images with “pan and zoom” [78] interactions. However, criticisms

suggest that such design demands a high mental effort and might be time-consuming [115,

174]. To address this limitation, Randell et al. improved the design by enlarging the overview

to detail scale difference, enabling pathologists to pan more efficiently by moving the cursor

in the ‘overview’ window [174]. Beyond O+D approaches, Jessup et al. proposed an F+C

interface for pathology image exploration [115]: a focal lens that magnifies the screen center

and supports users’ close-up examinations and explorations of multi-channeled pathology

scans.

1.2.2 AI Technologies for Pathology Applications

With the recent application of digital pathology, massive amounts of pathology image data

has been accumulated. Large-scale, open-source unlabeled datasets, such as E-brains [172]
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and the NIH Cancer Genome Atlas (TCGA)1, along with substantial volumes of digital

slides generated by early-adopting centers (PB-level/center/year [97]), have laid the foun-

dation for pathology AI, or computational pathology research. Furthermore, a considerable

number of annotated datasets have emerged, covering a broad range of pathology special-

ties, from conducting high-level diagnostic tasks, such as identifying breast cancer metastasis

[132], detecting perineural invasion [55], grading prostate cancer [41], to recognizing low-level

histological patterns, such as mitoses [12, 13, 14, 204, 173, 194], cell phenotype [5, 86], and

necrosis [6].

The increasing availability of digital pathology data has triggered a surge in data-driven

techniques in the past decade, which revolutionizes broad aspects of digital pathology re-

search [185]. The reliability and diagnostic accuracy of these approaches have been system-

atically evaluated in recent reviews [144]. These techniques have demonstrated promising

results across a wide range of pathology applications, including screening negative specimens

[66, 35], carcinoma detection [8, 27, 23], quantification of histological features [56, 206], im-

munohistochemistry (IHC) analysis [82], tumor grading [69, 10, 167, 213], predicting molec-

ular changes [153], and prognosis prediction [223, 214].

Notably, an emerging and popular approach for computational pathology is to train

foundation models in an unsupervised manner using millions of digital pathology images,

followed by fine-tuning these models for downstream tasks, as demonstrated by UNI [54],

CHIEF [214], Gigapath [218] and Virchow [207]. Meanwhile, with the advancement of Large

Language Models (LLMs), researchers have begun exploring vision-language models trained

on publicly available data sources, such as social media posts [107] and scientific literature

[138], establishing a novel direction for training “pathology AI companion” with reasonable

cost. Despite this promising trend, the reliance on private training data in computational

pathology poses challenges for institutions behind digitization progress to develop their own

AI solutions. However, recent breakthroughs in efficient training methodologies, as demon-

1https://www.cancer.gov/ccg/research/genome-sequencing/tcga
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strated by DeepSeek [93], may offer new perspectives for cost-effective pathology foundation

model development in the future.

Furthermore, due to legislative and ethical concerns, as of 2025, AI algorithms cannot

replace pathologists’ examinations, neither they may work as a “stand-alone” application in

clinical practice [53, 203]. Instead, they are regarded as “software as a medical device” to

assist doctors2, with one designed for prostate cancer pathology receiving the first FDA de

novo approval in 2021 [74].

1.2.3 Human-AI Collaboration for Medical Decision-Making

The concept of human-AI collaboration envisions human-machine symbiosis [130], where

humans and machines work together to achieve mutual goals [209]. Recent advances in deep

learning have established foundational research in human-AI collaboration, suggesting the

principles [105], guidelines [4], design recommendations [89], and information needs [44] for

effective collaborative paradigms.

Building upon these foundations, researchers have explored human-AI collaboration for

medical decision-making. For example, Beede et al. discovered socio-environmental factors

that can influence AI performance, nurses’ workflows, and patient experiences while de-

ploying a deep learning model to detect diabetic retinopathy [26]. Wang et al. concluded

the challenges of applying a clinical diagnostic support system in rural clinics [210]. Lee

et al. proposed a human-AI collaboration system for therapists’ practices of rehabilitation

assessments, and reported that the system can increase the consistency of decision-making

[127]. More recently, Fogliato et al. have studied the influence of human-AI workflows on vet-

erinary radiologist readings of X-ray images, and revealed that doctors’ findings were more

aligned if AI suggestions were shown from the beginning [76]. Schaekermann et al. discovered

that implementing ambiguity-aware AI was more effective in guiding medical experts’ at-

2https://www.fda.gov/media/145022/download
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tention to contentious portions while reviewing sheep EEG data, compared to conventional

AI [178]. Calisto et al. extended the designs of multi-modality radiology image viewing

tools [45, 46]. They built clinician-AI workflows for breast cancer image classification, sug-

gesting that the human + AI approach could bring improvements in false-positives and

false-negatives in diagnosis, user satisfaction, and time consumption [47, 48].

In the pathology domain, human-AI collaborative approaches have shown improvements

in error reduction [211, 74, 108], between-subject agreements [19, 40, 200], time consumption

[133, 113, 201, 16], mental workload and confidence [90, 92]. Lindvall et al. adapted the

notion of Rapid Serial Visual Presentation [186] and developed a rapid, AI-assisted visual

search system, allowing pathologists to see and adjust the AI-generated ROIs by sensitivity

[113]. Cai et al. built a pathology CBIR system with an imperfect AI model – pathologists

could adjust the retrieved ROIs according to pathologist-defined concepts (e.g., stroma) to

cope with AI imperfections [43]. More recently, Huang et al. proposed a human-in-the-

loop framework that enables pathologists to train a machine learning model interactively

by providing annotations, which achieved significantly higher identification performance in

detecting plasma cells, colorectal carcinoma, and lymph node metastasis [108].

A crucial aspect of human-AI collaboration in pathology is achieving complementary

team performance, where the collaboration outperforms both individual pathologists and AI

systems [22].: In 2016, Wang et al. theoretically demonstrated this possibility by showing

reduced error rates in breast cancer classification by combining AI and pathologist decisions

[211]. However, there is a lack of empirical evidence to support it in pathology. Moreover,

several studies in the general domains have failed to observe the task accuracy improvement in

human-AI collaboration compared to AI alone [22, 125, 114]. This issue may be due to users’

misuse of AI, a factor that can negatively impact the outcome of human-AI collaboration

[120, 49, 202].
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1.2.4 Enabling Appropriate AI Reliance

According to [159, 202, 180], two goals should be achieved to enable appropriate AI reliance:

(i) mitigating over-reliance, where humans can identify and reject AI’s incorrect recommen-

dations, and (ii) reducing under-reliance, where humans can overcome their aversion of AI

and accept its correct recommendations.

For enabling appropriate AI reliance, this is a tendency in research to study mechanisms

and counter-measures for over-reliance. For instance, the cognitive forcing function, which

prompts users to think analytically before decision-making, has shown promise [39]. Sim-

ilarly, altering the interaction speed, where enlonging the AI response time, can instigate

users’ reflective thinking. Therefore, over-reliance incidents could be reduced [158, 166, 126].

Other approaches aim to enhance users’ onboarding process, such as improving AI literacy

[124, 135, 128], where users are informed of AI details [44, 113, 114]. However, translating

these approaches to the medical domain may encounter two challenges. Firstly, introducing

cognitive forcing functions or altering interaction speed could develop ‘algorithm aversion,’

especially when medical tasks are time-sensitive [68, 76]. Secondly, the efficacy of enhancing

AI literacy also appeared marginal, possibly because of the difficulties in educating users

within a limited timeframe [124, 128].

Besides these, another popular approach is eXplainable AI (XAI), where over-reliance

might be reduced by enabling users to understand AI’s reasoning [42, 124, 227, 22]. Nonethe-

less, numerous studies have failed to observe this anticipated effectiveness [179]: The poten-

tial benefits of XAI may be offset by the cognitive efforts of interpreting them [202]. Given

the already high cognitive demands of medical professionals, this might result in XAI being

less referred to, countering its potential benefits. This issue of appropriateness usage of XAI

in medicine was raised by [104]. Further research suggested causability, an ability of an

explanation that can enable casual understanding of medical experts, should also considered

and measured to achieve better efficiency, effectiveness, and user satisfaction [103, 161].
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1.3 Challenges and Research Questions

Despite the promising progress in pathology AI research, their translation to clinical im-

plementation, particularly in developing AI systems that gain pathologists’ acceptance and

provide practical utility, presents significant challenges. These challenges are primarily due

to the intrinsic characteristics of modern (i.e., post 2010s) AI, whose limitations manifest in

three critical aspects: (i) poor controllability with the unpredictable outcome; (ii) the inher-

ent opacity of their inferencing processes (commonly referred to as the “black-box” problem),

and (iii) uncertain generalizability across various scanners and stains [169]. Moreover, as

previously discussed, ethical considerations pose barriers to AI deployment as stand-alone

tools in clinical settings.

Researchers have long realized the limitation of using AI as a “Greek Oracle”, and pointed

out “physician-user and the consultant program should interact symbiotically” [147]. Al-

though various works have concluded the suggestions and guidelines [4, 105] on how humans

and AI should work collaboratively in the Human Computer Interaction (HCI) community,

previous work suggests that it is “uniquely difficult” [220] to translate AI-augmented systems

to clinical applications. The HCI problem of pathology using AI is its poor workflow integra-

tion due to the large knowledge gap between the two domains: pathology is highly specialized

domain in medicine, requiring specific expert domain knowledge and strategies [149, 174] to

assist doctors’ decisions. As state-of-the-art AI focuses on pushing the performance with

data-driven, ‘end-to-end’ models, pathologists’ need for an AI’s workflow integration is more

or less ignored, which disincentives them from accepting and using AI in practice [222]. Even

if pathologists develop trust in AI, another critical challenge arises: how to foster a safe and

reliable environment that enables pathologists to develop appropriate AI reliance – that is,

accepting correct AI recommendations while rejecting incorrect ones. Existing approaches to

regularizing AI reliance – such as XAI and “cognitive forcing functions” – inevitably disrupt

pathologists’ natural examination behavior, which limits their utility in real-world clinical
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settings.

To address these challenges, this thesis explores human-AI collaboration paradigms for

support pathologists’ diagnoses – from both qualitative and quantitative perspectives – aim-

ing to bridge the knowledge gap between AI and clinical pathology practice. Specifically,

this thesis seeks to answer the following research questions:

RQ1 How should human-AI collaboration systems be designed for pathology, and how can

these insights inform future system development?

RQ2 How does human-AI collaboration affect pathologists’ examination and diagnostic pro-

cesses?

RQ3 How can human-AI collaboration be optimized to maximize pathologists’ correctness

while ensuring appropriate AI reliance?

1.4 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 presents qualitative findings from a field study investigating pathologists’

attitudes toward AI automation in the context of fine-tuning a non-perfect model

for lymph node metastasis detection. This chapter introduces Impetus, a proof-of-

concept prototype that enables pathologists to interactively refine AI by providing

coarse annotations through mixed-initiative designs. Based on pathologists’ feedback,

this chapter synthesizes six recommendations for designing human-AI collaborative

systems to align with pathologists’ real-world needs.

• Chapter 3 designs and evaluates a human-AI collaborative workflow informed by

pathologists’ navigation domain knowledge. It presents NaviPath, a high-throughput
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AI-assisted navigation system that provides explainable and customizable region-of-

interest AI recommendations. A user study with 15 pathologists and residents was

conducted to test the efficacy of NaviPath in challenging navigation tasks, and

NaviPath’s performance was compared to both manual examination and AI alone.

• Chapter 4 identifies three key AI challenges in complex pathology decision-making

processes: comprehensiveness, explainability, and integrability. To overcome these,

this chapter manifests a top-down human-AI collaboration paradigm by developing

xPath, a meningioma grading tool that supports the examination of multiple criteria

and multimodal Hematoxylin and Eosin – IHC slides. A user experience study with

12 pathologists and residents evaluates xPath’s usability and its impact on diagnostic

outcomes.

• Chapter 5 investigates a strategy for fostering appropriate AI reliance in high-stakes

pathology decision-making. It examines how pathologists interact with AI and XAI

assistance in mitosis detection and evaluates the impact of a majority voting mechanism

that ensembles multiple AI-assisted pathologists’ decisions. A nationwide user study

with 32 pathologists and trainees provides empirical results to reveal whether and why

majority voting improves conventional AI-assisted decisions.

• Chapter 6 concludes this thesis by discussing key findings and potential directions

for further advancing human-AI collaboration in digital pathology.
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CHAPTER 2

Understanding Human-AI Collaborative Workflows in

Pathology

This chapter is based in part on the following publication:

Hongyan Gu, Jingbin Huang, Lauren Hung, and Xiang ‘Anthony’ Chen. “Lessons learned

from designing an AI-enabled diagnosis tool for pathologists.” Proceedings of the ACM on

Human-computer Interaction 5, no. CSCW1 (2021): 1-25.

2.1 Introduction

In this chapter, we propose a series of physician-AI collaboration techniques, based on which

we prototype Impetus — a tool where an AI aids a pathologist in histological slide tumor

detection using multiple degrees of initiative. Trained on a limited-sized dataset, our AI

model cannot fully automate the examination process; instead, Impetus harnesses AI to

(i) guide pathologists’ attention to regions of major outliers, thus helping them prioritize the

manual examination process; (ii) use agile labeling to train and adapt itself on-the-fly by

learning from pathologists; and (iii) take initiatives appropriately for the level of performance

confidence, from full automation, to pre-filling diagnosis, and to defaulting back to manual

examination. We used the Impetus prototype as a medium to engage pathologists and

observe how they perform diagnosis with AI involved in the process and elicit pathologists’

qualitative reactions and feedback on the aforementioned collaborative techniques. From

work sessions with eight pathologists from a local medical center, we summarize lessons
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learned as follows.

Lesson #1 To explain AI’s guidance, suggestions and recommendations, the system

should go beyond a one-size-fits-all concept and provide instance-specific details that allow

a medical user to see evidence that leads to a recommendation.

Lesson #2 Medical diagnosis is seldom a one-shot task, thus AI’s recommendations

need to continuously direct a medical user to filter and prioritize a large task space, taking

into account new information extracted from a user’s up-to-date input.

Lesson #3 Medical tasks are often time-critical, thus the benefits of AI’s guidance,

suggestions and recommendations need to be weighed by the amount of extra efforts incurred

and the actionability of the provided information.

Lesson #4 To guide the examination process with prioritization, AI should help a

medical user narrow in small regions of a large task space, as well as helping them filter out

information within specific regions.

Lesson #5 It is possible for medical users to provide labels during their workflow with

acceptable extra effort. However, the system should provide explicit feedback on how the

model improves as a result, as a way to motivate and guide medical users’ future inputs.

Lesson #6 Tasks treated equally by an AI might carry different weights to a medical

user. Thus for medically high-staked tasks, AI should provide information to validate its

confidence level.

Importantly, these lessons reveal what was unexpected as pathologists collaborated with

AI using Impetus’ techniques, which we further discuss as design recommendations for the

future development of human-centered AI for medical imaging.
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2.1.1 Contributions

Our contributions are as follows.

• The first suite of interaction techniques in medical diagnosis that instantiate mixed-

initiative principles [105] for physicians to interact with AI with adaptive degree of ini-

tiatives based on AI’s capabilities and limitations;

• A proof-of-concept system that embodies these techniques as an integrated diagnostic

tool for pathologists to detect tumors from histological slides;

• A summary of observations and lessons learned from a study with eight pathologists

that provides empirical evidence of employing mixed-initiative interaction in the medical

imaging domain, thus informing future work on the design and development of human-

centered AI systems.

2.2 Medical Background

In our study, we used a dataset containing Hematoxylin and Eosin (H&E) stained sentinel

lymph node (SLN) sections of breast cancer patients [132]. The diagnosis of such specimens

contains four main categories [7]:

• Isolated tumor cells (ITC) if the node contains a single tumor cell or cell deposits

that are no larger than 0.2 mm or contain fewer than 200 cells;

• Micro if containing metastasis greater than 0.2 mm or more than 200 cells;

• Macro if containing metastasis greater than 2 mm;

• Negative if containing no tumor cells.
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2.3 Scenario Walkthrough of Impetus

The user of Impetus, a pathologist, starts diagnosing a patent’s case by importing multiple

Whole Slide Images (WSI) of the patient into Impetus.

First, the pathologist’s attention is drawn to the two boxes generated by the AI, which

encompass regions of patches that visually appear to be ‘outliers’ from the majority of cells

(Figure 2.1(a)), which suggests that these patches are likely to be tumor-positive. With these

automatic recommendations, Impetus alleviates the pathologist’s burden of navigating a

large, high-resolution image and having to go through a large number of areas that might or

might not be as tumor-characteristic as the recommended regions.

Next, the pathologist performs diagnosis by marking each recommended region as either

‘tumor’ or ‘normal’, and continues to marquee-select and label a few more regions on the

WSI (Figure 2.1(b)). As the pathologist makes such selections, their input is also collected

by the back end AI and used as labels to adapt the model better to align itself with the

pathologist’s domain knowledge.

Based on these diagnostic inputs and revisions from the pathologist, Impetus immedi-

ately adapts the underlying AI model accordingly. In contrast to conventional data labeling

tasks, Impetus’s agile labeling is designed to be lightweight and can learn from patholo-

gists’ input of coarsely marked regions without having to trace a precise contour of a tumor

region. In this way, Impetus allows pathologists to agilely train an AI model as a natural

and integral part of their existing workflow without incurring extra effort.

As the pathologist annotates more WSIs (which also trains the AI), they notice that

some new slides are already marked as ‘diagnosed’ — AI takes the initiative to diagnose

slides that it feels highly confident about. Thus the pathologist skips ahead to see other

unlabeled slides, some of which, have pre-filled diagnosis dialogues (Figure 2.1(c)). In such

cases, the pathologist examines the WSI to verify the AI’s hypothesis. In the rest of the

WSIs, the AI almost becomes invisible (due to a lack of confidence), and the pathologist
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Figure 2.1: Key interactive features of Impetus: (a) as a pathologist loads a whole slide

image, AI highlights areas of interest identified by outlier detection, shown as two yellow

recommended boxes. (b) Agile labeling: a pathologist can drag and click to provide a label

that can be employed to train the AI’s model. (c) Diagnosis dialogue, pre-filled with AI’s

diagnosis, allows the pathologist to either confirm or disregard and proceed with manual

diagnosis.
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proceeds to to finish the diagnostic tasks manually.

The above scenario demonstrates how an ‘imperfect’ AI can still benefit a pathologist

without necessarily automating the user’s existing workflow: recommendation boxes sugges-

tively prioritize pathologists’ manual searching process (Figure 2.1(a)), agile labeling adapts

AI while minimizing the extra effort from the pathologists (Figure 2.1(b)), and as AI at-

tempts to improve itself, it handles cases with different degrees of initiatives — from full

automation to pre-filling plausible results to remaining complete ‘invisible’—based on its

confidence (Figure 2.1(c)).

2.4 Design and Implementation

Below we first describe the design process then detail the specific interaction techniques and

their implementation in Impetus.

2.4.1 Overview of the Design Process: Empirical and Theoretical Grounding

The design of Impetus is grounded in both empirical evidence and principles drawn from

literature.

On the empirical side, we co-designed Impetus with our pathologist collaborator. Specif-

ically, we learned that one major challenge for pathologists is efficiently and effectively nav-

igating large, high-resolution WSIs. This suggests that AI, besides making diagnosis, can

usefully serve to guide pathologists to navigate complex and high-resolution image space.

We detail this design in Chapter 2.4.2.

On the theoretical side, Impetus goes beyond the singular objective of automation

by offering a spectrum of AI-enabled assistance. As pointed out by Blois’ seminal paper

[33], a physician’s differential diagnosis process is similar to a funnel, starting with a broad

exploration of plausible conditions and gradually rule out less likely possibilities as more
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Figure 2.2: A physician’s differential diagnosis process is similar to a funnel, starting with

a broad exploration of plausible conditions and gradually rule out less likely possibilities as

more evidence (e.g., test results) is gathered until finally a single most probable conclusion

can be drawn. Beyond mixed-initiatively automating certain diagnosis (near Point B), Im-

petus also supports exploration near Point A by enabling pathologists’ initial exploration

with recommended regions. Image modified based on Blois [33].

evidence (e.g., test results) is gathered until finally a single most probable conclusion can

be drawn. According to Blois, AI has been canonically developed to optimize Point B,

where a computer program can deterministically confirm whether a patient has a certain

disease given all the evidence. As Blois foresaw, a recent development of AI starts to exhibit

capabilities towards Point A, e.g., Stanford’s CheXpert produces likelihoods of 10+ thoracic

diseases based on a chest X-ray image [112]. Similarly, Impetus also aims at “reaching

Point A” by enabling pathologists’ initial exploration with recommended regions.

Overall, Impetus provides the first suite of interaction techniques in the medical imaging

domain that instantiates mixed-initiative principles [105] for physicians to interact with AI

with an adaptive degree of initiatives based on AI’s capabilities and limitations. Specifically,
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Table 2.1: Spectrum of human and AI initiatives at different AI confidence levels.

AI Confidence AI-Initiated Action Physician-Initiated Action

High Performing diagnosis automati-

cally in the background; mark-

ing WSIs as diagnosed

Doing nothing and accepts AI’s

results; can re-open a WSI to

overwrite AI’s result

↑ Pre-filling the diagnosis box

without directly labeling the

WSI

Performing diagnosis with help

from AI predictions; confirming

or correcting the pre-filled dia-

logue

Low Showing original WSI by de-

fault to prompt for manual di-

agnosis

Performing diagnosis with little

input from AI

we focus on the following principles in [105]:

• Scoping precision of service to match uncertainty. We first design a rule-based algorithm

to identify three levels of uncertainty in AI’s performance given a WSI, based on which we

then design the corresponding AI-initiated action appropriate for each level of uncertainty

(Table 2.1).

• Providing mechanisms for efficient agent-user collaboration to refine results. For each

AI-initiated action, we also design mechanisms to introduce physician-initiated actions

aimed at confirming, refining, or even overriding AI’s results (Table 2.1). Further, we

extend this principle by leveraging physician-initiated input for ‘machine teaching’ [184],

i.e., an agile labeling technique to dynamically adapt an AI by retraining it with examples

of how a physician interpret a patient’s histological data.

19



2.4.2 AI Guiding Pathologists’ Attention to Regions of Major Outliers

In our communication with our pathologist collaborator, we learned that one major limitation

of pathologists is the ability to efficiently and effectively navigate a large, high-resolution

WSI. To address this limitation, we design AI to guide pathologists’ attention to regions of

major outliers that appear visually different from the rest of the WSI and are more likely to

be tumors. Such guidance is manifested in two user interface elements:

(i) Attention map visualizes each patch’s degree of outlying overlaid on the current

WSI (Figure 2.3(a)); (ii) Recommendation boxes as a more explicit means to draw

pathologists’ attention to large clusters based on outlier detection results (Figure 2.3(a),

yellow box) — these boxes are always visible, whether on the original WSI, on the attention,

or on the prediction map (described below).

Implementation When the system is first loaded, a pre-trained InceptionResNetv2 model1

[111] on PatchCamelyon dataset2 extracts patch features (patch dimension=96×96×3, fea-

ture dimension=1536 × 1) in WSIs (Figure 2.4(a)). Given the imbalance nature of tumor

vs.normal tissues, in the first iteration, the system performs isolation forest (max samples=256)

[134] outlier detection based on extracted features (Figure 2.4(b)), and the detected outliers

are highlighted in the attention map. In the following iterations, the attention map is a com-

bination of outliers (from the initial detection) and high uncertainty patches (from specific

models in each iteration)3. In order to obtain the recommendation boxes, the system uses a

DBSCAN clustering algorithm (min sample=10, epsilon=3) [70] to cluster WSI patches with

attention value (Figure 2.4(c,k)). In order to reduce users’ distraction, the recommendation

boxes are selected as the two clusters that occupy the largest areas on the WSI in each

1We trained this model with image augmentation preprocessing, Adadelta optimizer with initial learning
rate 0.1, binary cross entropy loss, 100 iterations with early stopping on validation loss.

2https://patchcamelyon.grand-challenge.org/

3Uncertainty is calculated as Uncertainty = 1−|0.5−Probability|×2. The attention maps in the following
iterations are calculated as the soft-OR of outliers and uncertainty: Attention = Uncertainty⊙Outlier.
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iteration.

2.4.3 AI Using Agile Labeling to Train and Adapt Itself On-the-fly

In digital pathology, the main challenge for AI is that, unlike other imaging modalities

(e.g., X-ray, CT), histological data (e.g., ovarian carcinoma) tends to have a high variance

across slides of different patients (sometimes same patients as well) [122]. Thus a pre-trained

model often struggles to generalize to new data. To address this limitation, Impetus enables

pathologists to use agile labeling to train AI on the fly.

Agile labeling allows a pathologist to directly label on recommendation boxes (Figure

2.1(a)), or to draw a bounding box of tumor-negative patches (Figure 2.1(b)), or a box

containing a mix of negative and positive cells, which serve as labels to train an existing

model further to incorporate pathologists’ domain knowledge. Importantly, such labeling

technique is designed to be agilely achievable without incurring significant extra effort that

interrupts the main diagnosis workflow.

Implementation Agile labeling does not specifically require users to provide the exact

contour of tumor tissues in a WSI, as strongly-supervised learning does. Alternatively,

a user can marquee-select a positive box over an area which contains at least one tumor

patches, or a negative box on all negative regions. We implemented a weakly-supervised

MIL [230, 17] to learn over such agile labels. To train the model, the system first initializes a

positive set and negative set. For each box annotated by a user, Impetus first partitions

the WSI areas into 96 × 96 × 3 non-overlapping patches, and extracts the feature of each

patch by the pre-trained CNN model from Section 2.4.2 ((Figure 2.4(a))). Here, we denote

each the extracted feature set as Xi and the box-level annotation from user as Yi.
4 For

a negative box, all the patch features in the box can be included in negative set (Figure

2.4(f)). For positive boxes, the system uses T-SNE [140] to represent the high-dimension

4In the MIL setup, each box only has one box-level annotation Yi.
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Figure 2.3: The two maps used by Impetus to provide guidance and communicate AI re-

sults. (a) Attention map, where outlier patches and high uncertainty patches are highlighted

in red, while other patches are in blue. The yellow recommendation boxes are generated by

clustering attention values. (b) Prediction map, where red shows a high probability of tu-

mor, and white shows a low probability of tumor, as predicted by the AI. The green and red

boxes are areas of “normal” and “tumor”, as labeled by the pathologist. Recommendation

boxes generated by clustering attention values are also visible on this map.

22



WSI

WSI patches 
(dimension=96x96x3)

CNN

Feature 
extraction

Patch 
extraction

Feature 
set

Feature set 
(dimension=1536x1)

Isolation 
Forest

Outlier 
detection

Outlier 
 set

DBSCAN 
Clustering

Outlier 
clustering

Outlier 
 cluster

Attention Map
Recommendation 

boxes

Fi
rs

t I
te

ra
tio

n
Fo

llo
w

in
g 

 It
er

at
io

ns

Positive 
Box

Negative 
Box

User Annotation

CNN

Feature 
extraction

Patch 
extraction

T-SNE

Dimension 
reduction

CNN

Feature 
extraction

K-Means

Clustering

Cluster 1

Cluster 2

Compare

Positive Positive 
Set

Negative 
Set

Negative 
Set

Add to 
negative set

Add

Random 
Forest

Train & 
Predict

Isolation 
Forest

Outlier 
detection

Uncertainty 
calculation

DBSCAN 
Clustering

Attention Map 
Recommendation Box 

UpdatedRandom Forest Multiple Instance Learning (MIL-RF)

a b c

f

g h i

d

e j k

Figure 2.4: Overview of Impetus ’s AI backend. In the first iteration, Impetus first extracts

the WSI to non-overlapping patches, followed by (a) feature extraction with a pre-trained

CNN (InceptionResNetv2) model; (b) outlier detection by the isolation forest algorithm; (c)

outlier clustering with the DBSCAN algorithm. Then, (d) an attention map with outlier

clusters and recommendation boxes are generated. In the following iterations, the user

first (e) annotates the recommendation boxes with agile labeling. Next, Impetus processes

negative annotations by (f) adding negative box features to the negative set. For the positive

annotation, Impetus uses (g) T-SNE to reduce the dimension of positive box features and

applies (h) K-Means clustering to split them into two clusters. After that, Impetus (i)

assigns the two clusters with labels by comparing them to the negative set and only adds

features in the positive cluster to the positive set. Last, (j) a random forest classifier learns

from the positive and negative set and predicts at a whole-slide level. The attention map

and recommendation boxes are generated by (k) clustering from a combination of outliers

and uncertain predictions. Procedures between (e - k) are repeated until the doctors are

satisfied with the AI performance.
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features Xi with two-dimension embedding X i
5 (Figure 2.4(g)). Then, K-Means clustering is

used to split X i into two clusters: X
(1)

i , X
(2)

i (Figure 2.4(h)). After clustering, the algorithm

compares the two clusters with negative samples from negative set to pick the real positive

cluster. After the positive cluster is recognized, all the instances in the positive cluster are

included in the positive set (Figure 2.4(i)). Finally, a random forest classifier (MIL-RF,

100 trees, max depth=100) [37] is trained with the obtained positive set and negative set6

(Figure 2.4(j)), and the user can continuously provide more annotations until the trained

classifier reaches a satisfactory level of performance.

2.4.4 AI Taking Initiatives Appropriately for the Level of Performance Confi-

dence

Even with agile labeling, lightweight on-the-fly learning only has limited improvement com-

pared to training extensively offline. Thus it is crucial to convey the level of AI’s performance

to the pathologists. In Impetus, AI takes initiatives appropriately for its performance con-

fidence level, as manifested in the following two user interface elements: (i) Prediction

map visualizes current AI’s results overlaying the WSI, which serves to inform both the

labeling and the usage of the current AI’s model (Figure 2.3(b)). (ii) Initiatives based on

confidence—the more uncertain the AI ‘feels’ about a WSI, the less initiative it takes, as

shown in Table 2.1.

Implementation Impetus has a rule-based confidence-level classifier to sort slides into

three categories: high-confidence, mid-confidence, and low-confidence. First, predictions of

all the patches in the WSI are obtained. A patch has two characteristics: is positive and

is uncertain. A patch is positive if the MIL-RF classifier output ¿ 0.5, and is uncertain

5The embeddingXi is used for clustering for two reasons: (i) avoiding K-Means to process high-dimension
data, which could prevent clustering performance degradation; (ii) better visualizing the high-dimensional
embedding space.

6The random forest algorithm is used since its “resistance to overfit” [152]. The notion of random forest
has been applied to active learning [152], or multiple instance learning algorithms [129].
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if MIL-RF classifier output ∈ [0.25, 0.75]. We empirically summarize the confidence-level

decision rules7 as follows:

• If there are more than 200 positive patches AND the number of positive patches is greater

than twice the number of uncertain patches, then the slide is predicted as high-confidence;

• Else if there are no outlier clusters, then the slide is predicted as low-confidence;

• Else if the number of uncertain patches is greater than 300, then the slide is predicted

as low-confidence;

• Else if the number of positive patches is greater than 200, then the slide is predicted as

high-confidence;

• For all other cases, the slide is predicted as mid-confidence.

2.5 Work Sessions with Pathologists

To validate our design of Impetus, we observed how pathologists used this tool to perform

diagnosis on a clinical dataset [132]. Our goal is to study whether the AI in Impetus (i) can

be compatibly integrated into pathologists’ workflow and (ii) can provide added values to

pathologists’ diagnosis process.

2.5.1 Participants

We recruited eight medical professionals from the pathology department in UCLA Health.

The participants have experiences ranging from 1 to 43 years, including residents, fellows,

and attending pathologists.

7... which can be easily modified as a configuration of our tool.
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2.5.2 Test Data and apparatus

We used the Camelyon 17 [132] dataset and selected 16 WSIs8 that were collected in the

same medical center. Participants interacted with Impetus on a 15-inch laptop computer

using a wired mouse. Impetus ran on a Microsoft Windows 10 Operating System using an

Nvidia 960M GPU and 16GB RAM.

2.5.3 Design

Our discussion with pathologists collaborators and an initial screening survey indicated that

there was not a commonly-used digital pathology tool among the participants. To help

pathologists calibrate their experience with Impetus, we introduced another tool — ASAP9,

which represents a very basic manual tool for viewing and annotating digital pathology

slides. Each pathologist interacted with both Impetus and ASAP, which were referred

to as System A and System B, respectively, to avoid biasing the pathologists. The order

of tools was counterbalanced across the eight pathologists. Twelve of the 16 slides were

diagnosed using Impetus and the remaining four using ASAP: we chose to keep more

slides for Impetus as it was the target of our study, whereas ASAP was just to calibrate

pathologists’ tool experience.

2.5.4 Tasks and Procedure

After briefly introducing the background of computer-assisted diagnosis, we walked each

pathologist through a tool and let them practice on a separate toy dataset also gathered

from [132]. We then asked questions about how the participant understood different inter-

active components, whether the tool was easy to learn and use, and whether the tool was

8Our pilot studies indicated that 16 is the number of WSIs that would allow us to finish the session in
about an hour to most effectively use the pathologists’ time.

9https://computationalpathologygroup.github.io/ASAP/
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Figure 2.5: We conducted work sessions with eight pathologists from a local medical center

to observe how they used Impetus as part of their diagnosis process.

helpful to their diagnosis. Then, the primary task began, which was to diagnose the entire

group of WSIs using the provided tool in each condition. A trial started with a participant

clicking to open a WSI and finished when they selected a diagnosis and clicked the ‘Con-

firm’ button. After each condition, we further conducted a brief semi-structured interview

for each participant to summarize their experience, feedback, and suggestions for the tool.

Participants took a short break between the two conditions.

2.5.5 Analysis

We employed an iterative open-coding method to analyze the qualitative data collected from

the semi-structured interviews with pathologists. Two experimenters coded each partici-

pant’s data within one day after the study. One experimenter performed the first pass of

coding and updated a shared codebook, which was then reviewed by the other experimenter

to resolve disagreements. The two experimenters alternated the roles of the first coder and

reviewer. After all the participants’ data were coded and consolidated, a third experimenter

reviewed all the codes and transcripts and resolved disagreements through discussion with

the previous two experimenters. Finally, we arrived at six high-level themes, which we
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summarize below as lessons learned.

2.6 Findings, Lessons Learned and Design Recommendations

Based on the observations and data from the work sessions with pathologists, we present our

findings below, which are summarized into six lessons.

2.6.1 AI Guiding Pathologists’ Attention to Regions of Major Outliers

2.6.1.1 Recommendation boxes

(Figure 2.1a) were the most frequently used and discussed features during the study. We

observed that in almost all the trials, pathologists started by zooming into the recommen-

dation boxes and tried to provide annotations of the outlined region. Pathologists found it

helpful to have such concrete start points in their examination.

... [recommendation boxes] narrow down the area of interest ... it helps (P7)

It was less effort because I was focusing only on the attention areas and not

focusing on the other areas of the node so it was different from my usual way of

looking at a slide. (P2)

However, pathologists did not always find the recommended regions matched their intu-

ition, and they could not understand why certain regions were recommended.

... [the recommendation box] seems a little bit random. It’s not necessarily areas

that I would [look at] ... (P5)

The things it’s focusing on does not correlate with at least what my brain thinks

I am looking for. (P6)

28



A lack of transparency is not a new problem in recommender system research (e.g., [226]).

When introducing Impetus, we did explain that recommendation boxes were based on a

detection of visual outliers, and all pathologists acknowledged that they understood such a

concept. Although such outliers were computed based on histological features (the Patch-

Camelyon dataset), they did not always agree with what pathologists intuited as ‘interesting’

regions worth examination. When such a mismatch occurred—i.e., an unexpected case of

recommendation, pathologists could no longer reason about the recommendation boxes sim-

ply by referring to the abstract concept of ‘visual outliers’. At times, pathologists started to

develop their own hypothesis of how AI was processing the WSI: “... it’s interesting that

it’s picking area with fat as area of interest.” (P2)

Lesson #1 To explain AI’s guidance, suggestions and recommendations, the system

should go beyond a one-size-fits-all concept and provide instance-specific details that allow

a medical user to see evidence that leads to a recommendation.

Recommendation #1: an overview + instance-based explanation of AI’s sug-

gestions. Currently, Impetus only provides an explanation of the suggested regions at the

overview level: a textual description of the outlier detection method as part of the tutorial

and visualization (i.e., attention map) that shows the degree of ‘outlying’ across the WSI. As

an addition, we can further incorporate instance-based explanation, i.e., with information

specific to a particular patient and a particular region on the patient’s slide. The idea is

to allow pathologists to question why a specific region is recommended by clicking on the

corresponding part of the slide, which prompts the system to show a comparison between

the recommended region and a number of samples from non-recommended parts of the slide

for the physician to contrast features in these regions extracted by AI. One important con-

sideration is that such an additional explanation should be made available on-demand rather

than shown by default, which could defeat the recommendation boxes’ purpose to accelerate

the pathologists’ examination process.

29



We also found that pathologists wondered what they should do about the area outside

of the recommendation boxes:

So I just look at the ones in the [recommendation] square? (P7)

Am I supposed to assume the rest of it is normal? I don’t have to go searching

for the rest of the slides for [tumor]? (P2)

Pathologists understood the implication in the recommendation boxes, i.e., to prioritize

certain regions of a WSI and to serve as a ‘shortcut’ in lieu of scanning the entire WSI.

However, it was unclear what was the implication outside of the recommendation boxes.

This is especially true when pathologists could not find signs of tumor in the recommended

regions: the system did not continue to guide them on how to proceed with the rest of the

WSI.

Lesson #2 Medical diagnosis is seldom a one-shot task, thus AI’s recommendations

need to continuously direct a medical user to filter and prioritize a large task space, taking

into account new information extracted from a user’s up-to-date input.

Recommendation #2: make AI-generated suggestions always available (and

constantly evolving) throughout the process of a (manual) examination. For

example, in Impetus, a straightforward design idea is to show recommendation boxes one

after another. We believe this is especially helpful when the pathologist might be drawn to

a local, zoomed-in region and neglect looking at the rest of the WSI. The always available

recommendation boxes can serve as global anchors that inform pathologists of what might

need to be examined elsewhere beyond the current view. This is an example of a multi-shot

diagnosis behavior where each shot is an attempt to find tumor cells in a selected region.
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2.6.1.2 Attention map

(Figure 2.3a) visualizes outliers detected by the AI — the same information based on which

the recommendation boxes were drawn. It was designed to complement recommendation

boxes with a backdrop of detailed guidance. We expected pathologists to use the attention

map similarly as the recommendation boxes, i.e., to direct their attention to look for more

outlying regions for examination. However, pathologists did not find attention map useful:

The attention map shows the same thing as the recommended box. The box is

enough to direct my attention. (P2)

I don’t really see the point of the attention map ... These two maps are redundant.

(P4)

The main difference was that recommendation boxes cost less effort to process, while

the attention map needed to be navigated (i.e., panned and zoomed and interpreted (i.e.,

mentally ‘decoding’ the color scheme). Further, recommendation boxes provided actionable

information (i.e., to look into this box first), while the attention map is action-neutral. Given

that pathologists’ overall goal is to eliminate the amount of area to study, they tended to

prefer less extra effort and information with clearer actionability.

Lesson #3 Medical tasks are often time-critical, thus the benefits of AI’s guidance,

suggestions and recommendations need to be weighed by the amount of extra efforts incurred

and the actionability of the provided information.

Recommendation #3: weigh the amount of extra efforts by co-designing a

system with target medical users, as different physicians have different notions of

time urgency. Emergency room doctors often deal with urgent cases by making decisions in

a matter of seconds, and internists often perform examinations in 15-20 minutes per patient;

oncologists or implant specialists might decide on a case via multiple meetings that span
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days. There is a sense of timeliness in all these scenarios, but the amount of time that can

be budgeted differs from case to case. To address such differences, we further recommend

modeling each interactive task in a medical AI system (i.e., how long it might take for the

user to perform each task) and providing a mechanism that allows physicians to ‘filter out’

interactive components that might take too much time (e.g., the attention map in Impetus).

Importantly, different levels of urgency should be modifiable (perhaps as a one-time setup)

by physicians in different specialties.

2.6.2 AI Using Agile Labeling to Train and Adapt Itself On-the-Fly

Prediction map (Figure 2.3b) visualizes current AI’s diagnosis of the WSI and was designed

to help the pathologists assess the model’s performance and decide where they could provide

more labels.

However, pathologists used the prediction map differently than we expected. Pathologists

would often zoom into recommendation boxes on the WSI, study the region for a few seconds,

then switch to the prediction map for a few seconds, and switch back to WSI. They tended

to use the prediction map as a tool to help them see if there is something ‘interesting’ in

the current zoomed-in region. Sometimes pathologists used the prediction map for double-

checking their developing diagnosis:

That was all negative, and I didn’t get a strong heatmap signal, so it was confir-

matory and somewhat helpful. (P6)

Interestingly, how pathologists used the prediction map seemed to complement the rec-

ommendation boxes: while recommendation boxes told pathologists which region is worth

looking at (i.e., might contain tumors), prediction map confirmed pathologists’ assumption

when they thought a region was of little ‘interest’ (i.e., no signs of tumor).
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Lesson #4 To guide the examination process with prioritization, AI should help a

medical user narrow in small regions of a large task space, as well as helping them filter out

information within specific regions.

Recommendation #4: use visualization to filter out information, i.e., leverage

AI’s results to reduce information load for the physicians. An example would be a

spotlight effect that darkens parts of a WSI where AI detects little or no tumor cells. Based

on our observation that pathologists used AI’s results to confirm their examination of the

original H&E WSI, such an overt visualization can help them filter out subsets of the WSI

patches. Meanwhile, pathologists can also reveal a darkened region if they want to examine

further AI’s findings (e.g., when they disagree with AI, believing a darkened spot has signs

of tumor).

The unexpected usage of the prediction map affected agile labeling, as we discuss below.

Agile labeling (Figure 2.1b) allows a pathologist to label on a recommendation box

directly, or to marquee-select a region to coarsely annotate as normal or tumor. In the

introduction phase, all pathologists reported having no problem understanding the idea of

continuously labeling WSIs to improve the AI:

This is actually adding more work for me, but I would be willing to add labels

knowing I would be improving the model (P4)

However, during the tasks, we noticed that almost all the labels were drawn only based

on the recommendation boxes. Only one pathologist actively searched for other regions to

draw and provide more labels. It seemed that recommendation boxes served as a prompt,

and pathologists were unmotivated to label other regions if unprompted.

We believe one fundamental reason is a lack of feedback to inform pathologists how

important their labels were to the model retraining. Without such feedback, it might have
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been unclear to pathologists whether they needed to provide labels at all, or how much

labeling would be enough.

Do I need to add labels? (P6)

Should I have provided more labels? (P5)

We assume that once pathologists see how a prediction map contained inaccurate results,

they would be motivated to provide more labels to improve the prediction. However, our

observations show that pathologists were more likely to make a diagnosis directly by manual

examination, instead of correcting AI’s predictions as we expected. Falling back to manual

examination seems a more cost-effective alternative to AI automation than than improving

the AI iteratively.

Lesson #5 It is possible for medical users to provide labels during their workflow with

acceptable extra effort. However, the system should provide explicit feedback on how the

model improves as a result, as a way to motivate and guide medical users’ future inputs.

Recommendation #5: when adapting the model on-the-fly, show a visualiza-

tion that indicates the model’s performance changes as the physician labels more

data. There could be various designs of such information, from showing low-level technical

details (e.g., the model’s specificity vs. sensitivity), high-level visualization (e.g., charts that

plot accuracy over WSIs read) and even actionable items (e.g., ‘nudging’ the user to label

certain classes of data to balance the training set). There are two main factors to consider

when evaluating a given design: (i) as we observed in our study, whether the design could

inform the physician of the model’s performance improvement or degradation as they label

more data, which can be measured quantitatively as the amount of performance gain divided

by the amount of labeling work done; (ii) as we noted in Lesson #2, whether consuming

the extra information incurs too much effort and slows down the agile labeling process, and

whether there is actionability given the extra information about model performance changes.
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2.6.3 AI Taking Initiatives Appropriately for the Level of Performance Confi-

dence

As shown in Table 2.1, AI’s level of initiative is mediated based on its level of confidence

about the model’s performance. For low-confidence cases, AI took no initiative, and all

pathologists were mostly unaware of AI’s presence, while they simply focused on performing

the usual manual diagnosis. For high-confidence cases, as expected, pathologists quickly

confirmed AI’s proactive diagnosis of macro — the easiest type of tumor to detect by both

pathologists and AI. However, when it comes to cases diagnosed as negative by the AI,

pathologists tended to perform a manual diagnosis anyway:

On the ones that it said it’s confident but didn’t really tell you it’s negative, I still

felt like I had to look at those to confirm. I wasn’t going to trust the system [to

confirm] that it’s negative (P2)

In pathology, in order to rule out tumors, pathologists have to thoroughly examine the

entire WSI, whereas it only takes one positive case to diagnose the lymph node as positive.

Thus there was a discrepancy of trust between macro vs. negative, despite that AI treats

both equally as different labels of a slide image and categorizes both as high confidence.

Lesson #6 Tasks treated equally by an AI might carry different weights to a medical

user. Thus for medically high-staked tasks, AI should provide information to validate its

confidence level.

Recommendation #6: provide additional justification for a negative diagnosis

of a high-staked disease. For example, when Impetus concludes a case as negative, the

system can still display the top five regions wherein AI finds the most likely signs of tumor

(albeit below a threshold of positivity). In this way, even if the result turned out to be a false

negative, the physicians would be guided to examine regions where the actual tumor cells are
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likely to appear. Beyond such intrinsic details, it is also possible to retrieve extrinsic infor-

mation, e.g., prevalence of the disease given the patient’s population, or similar histological

images for comparison. As suggested in [217], such extrinsic justification can complement

the explanation of a model’s intrinsic process, thus allowing physicians to understand AI’s

decision more comprehensively.

For the mid-confidence case, AI was designed to pre-fill the diagnosis dialog (but without

any confirmative action) as a way to hint its prediction without signaling any conclusive

decision. This design did not seem to have noticeable effects on the pathologists, which

echos Lesson #3 that information needs to present actionability in order to affect a medical

user’s workflow.

2.7 Chapter Summary

In this chapter, we first propose a series of collaborative techniques to engage human pathol-

ogists with AI given AI’s capabilities and limitations, based on which we prototype Impe-

tus — a tool where an AI takes various degrees of initiatives to provide various forms

of assistance to a pathologist in detecting tumors from histological slides. We summarize

observations and lessons learned from a study with eight pathologists and discuss recom-

mendations for future work on human-centered medical AI systems.
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CHAPTER 3

Navigating Challenging Pathology Examinations with

Human-AI Collaboration

This chapter is based in part on the following publication:

Hongyan Gu, Chunxu Yang, Mohammad Haeri, Jing Wang, Shirley Tang, Wenzhong Yan,

Shujin He, Christopher Kazu Williams, Shino Magaki, and Xiang ‘Anthony’ Chen. “Aug-

menting pathologists with NaviPath: design and evaluation of a human-AI collaborative

navigation system.” In Proceedings of the 2023 CHI Conference on Human Factors in Com-

puting Systems, pp. 1-19. 2023.

3.1 Introduction

One crucial step of cancer diagnoses is the pathologists’ examinations of tumors through

an optical microscope. With the recent development of digital pathology [73, 157], tumor

specimens can be scanned into high-resolution digital scans, allowing medical professionals

to access, analyze, and share these scans with digital interfaces [143, 95, 175]. However,

literature has suggested that it might take longer for pathologists to examine digital scans

compared to when using microscopes [198, 99]. The main culprit is the difficulty in navigation

— pathology scans usually have extremely high resolutions ((∼ 106)2 pixels) compared to

commercial off-the-shelf computer displays (∼ 8.3 × 106 pixels for 4K UHD resolution).

Therefore, pathologists are required to frequently manipulate (i.e., zooming, panning) the

viewport to gather necessary information for diagnoses [174].
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Research has long realized the difficulty in navigating high-resolution images and pro-

posed various interface designs to assist users with general navigation tasks (e.g., map explo-

ration) [25, 224, 94, 177, 57]. However, we believe necessary adaptations should be consid-

ered to enable seamless integration into pathologists’ workflows, because of three problems

in human navigation of pathology scans: (i) pathologists’ navigation is usually substantially

complicated because some pathology patterns (e.g., mitosis in low-grade meningiomas [137])

have a low prevalence rate (<100/scan) and have extremely small dimensions compared to

pathology scans (ratio up to 1:2000) [12]; (ii) pathologists require specific domain knowledge

and navigation strategies [174, 149] to facilitate their examinations, which current naviga-

tion systems for general use rarely consider; (iii) although AI can be used to accelerate

navigation, the lack of consideration towards integrating AI into pathologists’ workflows

might discourage them from using human-AI systems in practice, as suggested in previous

studies [222]. Fortunately, recent HCI-AI-Health works have demonstrated prototypes and

designs to close the gap between medical professionals and AI, which has facilitated human-

AI communication and was viable to improve doctors’ works in various medical application

domains, such as general medicine [221, 127, 178], radiology [48, 47] and pathology [43, 113].

Motivated by the success of these advancements, this chapter continues to build integrable

systems by taking doctors’ domain knowledge into account, with a focus on supporting the

navigation process in pathology.

To this end, we conducted a formative study with six medical professionals in pathol-

ogy from two medical centers to enrich our understanding of their navigation processes.

Specifically, we observed how they navigated pathology scans to search for mitoses1, a

critical pathology pattern that relates to cancer malignancy and patient prognosis [61].

We summarized three observations that cross-validate the findings in previous research

[183, 84, 174, 149]:

1The mitosis is selected because (i) the size of mitoses is small (∼ 10µm) compared to the size of pathology
scans; (ii) the prevalence of mitoses is low (< 0.2/(1, 600)2 pixels in specific carcinomas) [12].
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Figure 3.1: Comparison between pathologists’ manual navigation in practice vs.NaviPath’s

designs. Observations on pathologists’ manual navigation: (a) Pathologists usually overview

a pathology scan with low magnifications, followed by switching to higher magnifications to

examine regions of interest in detail; (b) Pathologists might refer to macroscopic patterns

to locate ROIs in the low magnification; (c) Pathologists employ a systematical search-

ing strategy in high magnifications. NaviPath’s designs: (d) NaviPath harnesses AI

to generate hierarchical “Local”, “High-Power Field”, and “Cell” recommendations, cov-

ering multiple magnification levels; (e) NaviPath utilizes AI to calculate three criteria that

pathologists usually consider to generate recommendations; (f) Once in high magnifications,

NaviPath places navigation cues on the edge of the interface, enabling pathologists to jump

to remote AI recommendations without manual panning.
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1. Overview first, then detail: Pathologists followed this pattern of interacting with

visual data as found in earlier works [183, 84]: they started with an overview of the

scan using low magnification, then selected a few regions of interest (ROIs) and

studied each ROI in detail using higher magnifications (see Figure 3.1(a));

2. Using macroscopic patterns to locate ROIs in the low magnifications: Pathol-

ogists referred to macroscopic patterns visible in low magnifications that were associ-

ated with occurrences of mitoses (see Figure 3.1(b)) to locate ROIs in low magnifica-

tions;

3. Low throughput in high magnifications: Pathologists adopted a cautious and

comprehensive navigation strategy (see Figure 3.1(c)) [149] to avoid missing crucial

pathology patterns, causing low throughput under high magnifications.

After accumulating the empirical evidence to verify existing knowledge in pathologists’

navigation, we designed NaviPath — a human-AI collaborative navigation system that

bridges the gap between AI and pathologists by integrating doctors’ domain knowledge. Cur-

rently, we focus on pathologists’ practices of examining mitosis as a showcase for NaviPath.

Mirroring the three observations mentioned above, we propose three design components of

NaviPath:

1. Hierarchical AI Recommendations: As shown in Figure 3.1(d), NaviPath em-

ploys AI to generate hierarchical recommendations across multiple magnification levels

to support pathologists’ “overview first, then detail” workflows. Specifically, the “Lo-

cal” recommendation helps pathologists to quickly focus on a rough interest area in low

magnification; the “High-Power Field” recommendation allows pathologists to narrow

down and examine in detail using a median magnification level; and the “Cell” recom-

mendation assists pathologists in adjudicating whether a suspected cell is mitotic in

the highest magnification.
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2. Customizable Recommendations by Multiple Criteria: NaviPath generates

hierarchical AI recommendations with three criteria that pathologists usually consider

to localize ROIs in practice (i.e., cellular count, proliferation probability, and mitosis

count). Furthermore, NaviPath permits pathologists to customize AI recommenda-

tions according to their examination preferences by a group of slide-bars (Figure 3.1(e),

top figure).

3. Cue-Based Navigation for High Magnifications: To cope with pathologists’ low

throughput under high magnifications, NaviPath adapts the notion of existing cue-

based navigation designs [224] and places short-cut navigation cues on the edge of

the viewport (Figure 3.1(f)). This design enables users to jump to remote AI rec-

ommendations without manual panning, which can improve pathologists’ navigation

efficiency.

We recruited 15 medical professionals in pathology from five medical centers across two

countries to validate NaviPath. We discovered that, compared to traditional manual navi-

gation:

1. Participants’ navigation efficiencies were significantly improved (p=0.002, r=0.579,

from Wilcoxon rank-sum test) with NaviPath: they saw more than twice the number

of the target pathology pattern (i.e., mitosis) in unit time on average;

2. Both participants’ precision and recall on identifying the target pathology pattern were

significantly improved (precision: p <0.001, recall: p <0.001, from post-hoc Dunn’s

test) with NaviPath. Meanwhile, compared to the AI, participants’ average recall

and precision were improved by 20.21% and 21.51% by NaviPath, respectively;

3. Participants reported significantly less mental effort (p <0.001, r=0.658, fromWilcoxon

rank-sum test, same following), had higher confidence (p=0.004, r=0.530), and were
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more likely to use NaviPath in the future (p=0.001, r=0.594), based on a post-study

questionnaire.

3.1.1 Contributions

We propose and validate the implementation of an AI-assisted tool in pathology, NaviPath,

to enhance the navigation for pathologists by incorporating domain knowledge and consid-

ering workflow integration in practice. NaviPath could reduce pathologists’ burdens by

automating navigation with an AI-assisted algorithm while its collaborative workflow aug-

ments pathologists’ work. Throughout a user evaluation study with medical professionals,

we demonstrated that our human + AI system could improve doctors’ navigation efficiencies

and lead to a higher examination quality. Instead of imposing an end-to-end, black-box AI

into their workflows, this chapter closes the gap between medical professionals and AI by

embedding doctors’ domain knowledge and enabling them to delegate tasks to AI according

to their preferences. Although majorly focused on mitosis in pathology, we further provide

design insights for HCI researchers on how AI and medical professionals can work collab-

oratively to support medical decision-making in light of our observations in the evaluation

study.

3.2 Task Design and Medical Background

3.2.1 Task Selection and Generalizability of the Task

This chapter selects the task of mitosis (a type of histology pattern) detection in brain

tumors of meningiomas (Figure 3.2(a)). The significance of mitosis stems from its critical

role in tumor assessment and patient management for meningiomas [61, 137, 85]. Despite

their importance, pathologists’ evaluation of mitoses often faces substantial difficulties. The

intricacies lie in mitotic figures’ small size, low prevalence, and heterogeneous distribution
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a b

Figure 3.2: (a) An example region-of-interest image used in the user study, with arrows

pointing at the ground truth mitoses; (b) The anti-body test used by the three doctors to

annotate the ground truth mitoses. Mitoses were shown in brown (as pointed by the arrows)

in the anti-body test.

[12, 29]. These complexities contribute to low reported sensitivities, consistencies among

pathologists, and examination efficiencies for mitosis evaluation [58, 146, 205, 92], which

could negatively impact medical outcomes.

According to the 2021 World Health Organization central nervous system tumor clas-

sification guidelines, mitosis serves as a critical diagnostic criterion for grading numerous

brain tumors, such as IDH-mutant astrocytoma, oligodendroglioma, and ependymoma [137].

Going beyond mitoses, pathologists may also be required to detect small-scale, sparsely dis-

tributed patterns in large scans, such as finding small tumor deposits within lymph nodes

in breast cancer or malignant melanoma [168]. In a more general context, similar visual

search tasks also exist in high-stakes domains where AI assistance could be valuable. For

instance, security personnel must swiftly identify potential threats like explosives in X-ray
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Table 3.1: Demographic information of the participants in the formative study.

ID Occupation Years of Experience Medical Center

FP1 Resident 4 MC3

FP2 Resident 4 MC3

FP3 Attending 10 MC1

FP4 Resident 4 MC1

FP5 Resident 4 MC3

FP6 Resident 3 MC3

scans [216], and emergency responders rely on timely assessments of disaster impacts from

satellite imagery [151].

3.3 Formative Study and System Requirements

We conducted a formative study with six medical professionals in pathology (referred to as

FP1 – FP6) from two medical centers to study how pathologists examine digital scans for

mitosis evaluation (see Table 3.1 demographic information of participants). The participants

were recruited using flyers sent in mailing lists and word-of-mouth. For each participant, we

first introduced the mission of the project. Then, we presented a pathology scan selected

from [12], and asked participants to assess the activity of mitosis (a pathological pattern).

We followed up with a semi-structured interview and inquired how they navigated the scan

to find mitoses. Finally, we presented a series of candidate mock-ups of NaviPath and

collected participant feedback. The length of the semi-structured interview was about 30

minutes, and the average duration of each study was about 60 minutes.
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3.3.1 Observations

We analyzed the transcribed interview recording using the following approach: first, two

researchers summarized the observations individually; then, a third researcher reviewed the

observations and addressed the disagreements. We concluded three observations of how

pathologists navigate pathology scans (without AI) in their practice, which cross-validated

findings from previous work on humans’ navigation patterns in high-dimensional visual data.

• O1: Overview first, then detail. To search for mitoses, pathologists would first

stay in low magnifications to get an overview of the scan, then select a few ROIs

and study each ROI in greater detail using higher magnifications. Such a routine

was also described in previous works in the general domain of information searching

[183, 84] and pathology [174]. Pathologists adapted the searching strategy because

of the size difference between mitoses and pathology scans — mitosis is a small-sized

pathology feature and can hardly be observed without high magnifications (i.e., ∼

×400 magnification). However, scanning the entire slide systematically in ×400 [149]

can be substantially time-consuming because the field of view under ×400 is small

compared to the pathology scan: a field of view under ×400 has a size of 0.16mm2,

while a typical ×400 pathology scan usually has a size of ∼ 100mm2. In our study,

all six participants searched for mitoses more efficiently: first, they rapidly covered the

scan in low magnifications (< ×50) as an overview. After that, they selected a few

ROIs to proceed: for each ROI, they switched to medium-magnification (∼ ×200) to

maximize their fields-of-view while preserving cellular details. If a suspected cell was

found, they would dive into high-magnification (×400) and make an adjudication.

• O2: Using macroscopic patterns to locate ROIs in the low magnification.

To locate the mitosis, pathologists used not only the microscopic features (only visible

in ×400) but also referred to macroscopic patterns (visible even in < ×50) that were

associated with the occurrences of mitoses. Specifically, pathologists located ROIs in
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low-magnification by evaluating the cell density — “if it (an ROI) is more cellular, it

is more likely to have mitoses”(FP3).

• O3: Low throughput in higher magnifications. While pathologists relied on

the cell density to select ROIs from low magnifications, they were likely to ‘get lost’

once they had switched to higher magnifications. This is because there was a lack

of visual landmarks under high magnifications in tumor scans (i.e., the ‘desert fog’

problem [118]). From the study, we observed that some participants preferred to use

a cautious and comprehensive navigation strategy [149] (see Figure 3.1(c)) to avoid

missing critical findings that might overturn the diagnosis. However, because not all

areas under the high magnifications include mitoses, the navigation strategy might be

less efficient and more prone to causing fatigue.

3.3.2 System Requirements

Based on our observations, we propose the following three system requirements for human-AI

navigation systems for pathologists:

• R1: Covering multiple magnification levels. In accordance with pathologists’

“overview first, then detail” navigation processes, the system should provide AI sup-

port across multiple magnification levels. For example, recommendations in low magni-

fications can draw pathologists’ attention by pointing out rough areas of interest, while

those in higher magnifications should offer more precise guidance in locating ROIs.

• R2: Incorporating pathologists’ domain knowledge. To bridge the gap between

pathologists and AI, instead of employing end-to-end, black-box AI, the system should

adapt AI closely to pathologists’ domain knowledge and involve criteria that patholo-

gists use in practice to generate AI recommendations. Moreover, because pathologists

might have diverse preferences and AI can be imperfect [187, 11], the system should
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allow users to customize AI recommendations by emphasizing or ruling-out specific

criteria.

• R3: Accelerating navigation in high magnifications. To address the low-

throughput issue, the system should offer interface designs that enable users to navigate

efficiently among the AI recommendations in high magnifications, without getting lost.

3.4 Design of NaviPath

In this section, we first introduce four design components used in NaviPath. We then de-

scribe how NaviPath augments pathologists’ navigation by describing an example workflow.

3.4.1 Design Components

Corresponding to the three system requirements, we propose three key designs in NaviPath:

Hierarchical AI Recommendations, Customizable Recommendations by Multiple

Criteria, and Cue-Based Navigation for High Magnifications. Furthermore, we em-

ploy the design of Explaining Each Recommendation to help pathologists comprehend

AI findings.

3.4.1.1 Hierarchical AI Recommendations

Following pathologists’ navigation processes for mitosis searching, NaviPath offers AI rec-

ommendations of three sizes2 to provide assistance across multiple magnification levels (sys-

tem requirement R1):

1. The “Local” recommendation (size=10,080×10,080 pixels3) simulates pathologists’

2Specific sizes were justified by consulting with a board-certified pathologist (experience = 10 years)

3The size of one pixel is 0.25µm.
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overviewing processes in low magnification. As shown in Figure 3.3(a), the recom-

mendations are red boxes visible in the pathology scan without zooming. Local recom-

mendations can provide rough directional guidance for pathologists; users can prioritize

their examination on AI-selected regions without evaluating the scan manually.

2. There are multiple “High-Power Field” (HPF) recommendations (size=1,680×1,680

pixels) within a Local recommendation (Figure 3.3(b), red boxes). The HPF recom-

mendation gives more precise ROIs at a higher magnification level, allowing users to

examine them in detail. It has the same field of view as ×400 in optical microscopes

that pathologists use in practice, freeing them from spending extra effort on adapting

to the digital interface.

3. The “Cell” recommendation (size=240×240, Figure 3.3(d)) points out the most precise

location of each suspected mitosis reported by AI. It augments pathologists’ mitosis

evaluations by transforming a visual search task (i.e., finding where mitoses are) into

the adjudication (i.e., whether a Cell recommendation includes mitosis).

For all three levels, users can select a recommendation by double-clicking on it, and

NaviPath will automatically zoom and center the viewport to the selected recommendation.

Therefore, with hierarchical AI recommendations, users can proceed through magnification

levels by selecting recommendations on the next level (e.g., Figure 3.3(a)→(b), (b)→(c),

(c)→(d)). Users may ignore the recommendation if an undesired one appears.

3.4.1.2 Customizable Recommendations by Multiple Criteria

NaviPath embeds pathologists’ domain knowledge and employs three deep learning models

(Figure 3.4(c)) to calculate three criteria for obtaining Local and HPF recommendations

(system requirement R2):

1. Cellular Count: Similar to how pathologists leverage the cell density to locate ROIs
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Magnification LevelLow High

Pathology Scan with  
Local Recommendations

A Local Recommendation with 
HPF Recommendations inside A Cell RecommendationAn HPF Recommendation with 

a Cell Recommendation inside

a b c d

Figure 3.3: NaviPath generates hierarchical AI recommendations across multiple magnifi-

cation levels: (a) Local recommendations (red boxes) lie in the lowest magnification, and can

be seen directly on the pathology scan without zooming; (b) there are multiple High-Power

Field (HPF) recommendations (red boxes) inside one Local recommendation (gray box); (c)

once in an HPF recommendation (the gray box), users can select and see (d) a Cell recom-

mendation with the highest magnification.

in the low magnification, NaviPath employs a state-of-the-art nuclei segmentation

model (i.e., HoVer-Net) to count cell numbers and capture cellular areas from the

pathology scan.

2. Proliferation Probability: Mimicking pathologists’ judgements of whether an area

needs further attention in ×400 from ×200 views, NaviPath uses an EfficientNet-b3

model [193] to predict the proliferation probability — a criterion that relates to whether

an ROI is likely to include mitosis, based on AI’s impressions from ×200 magnification.

3. Mitosis Count: Corresponding to pathologists’ mitoses searching in×400,NaviPath uti-

lizes a classification model (i.e., EfficientNet-b3) to detect mitotic figures from the

highest magnification.

As for Cell recommendations, NaviPath directly pulls the positive results from the

mitosis AI and visualizes them on the interface.
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Cell Density AI 
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HPF #1: 
• Cell Count: 1,234 
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• Mitosis Count: 3

HPF #N: 
• Cell Count: 978 
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Figure 3.4: Generating Local and HPF recommendations with multiple criteria: (a) a pathol-

ogy scan is first (b) split into non-overlapping tiles. Then, NaviPath uses (c) three AI

models to analyze each tile to obtain (d) scores of cellular count, proliferation probability,

and mitosis count. NaviPath will (e) aggregate scores from multiple tiles to generate Local

recommendations, or (f) directly use these scores for HPF recommendations.

g

Pathology Scan Split into Non-Overlapping Tiles

Cell Density AI 
(HoVer-Net)

Proliferation Probability AI 
(EfficientNet-B3)

Mitosis AI 
(EfficientNet-B3)

Process with multiple AI models

HPF #1: 
• Cell Count: 1,234 
• Proliferation  Prob.: 0.56 
• Mitosis Count: 3

HPF #N: 
• Cell Count: 978 
• Proliferation  Prob.: 0.27 
• Mitosis Count: 1

…
AI Results

Local 
Recommendation

HPF 
Recommendation

a b c d
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Verbal Dialog  
(for Local/HPF recommendations)

Evidence Card 
(for Cell recommendations)

h i

j

a

Verbal Dialog  
(for Local/HPF recommendations)

Evidence Card 
(for Cell recommendations)

b c

d
Current Viewport

Figure 3.5: (a) NaviPath supports users to customize AI recommendations with a group

of slide-bars: users can emphasize or rule out each of the three criteria (i.e., cellu-

lar count, proliferation probability, mitosis count) for NaviPath’s recommendations; (b)

NaviPath places navigation cues (pointed by arrows) that enable users to hop to remote

recommendations. The figure on the right provides an overview of off-screen recommenda-

tions; (c) An example of NaviPath’s verbal dialog explanation for Local/HPF recommen-

dations; (d) An example of the explanation card for NaviPath’s Cell recommendations.
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Since pathologists might use the three criteria differently in practice, NaviPath supports

users to customize AI recommendations by emphasizing or ruling out specific criteria with

a group of slide-bars, as shown in Figure 3.5(a). For example, giving the “Proliferation

Probability” and “Mitosis Count” higher weight by moving the slide-bar to the right will force

NaviPath’s recommendations to lean on these criteria. NaviPath will then re-calculate

and update recommendations based on the user’s input. What’s more, users can also adjust

the sensitivity of recommendations. For example, if users wish to see more recommendations,

they could tune up the “Mitosis Sensitivity” slide-bar (see Figure 3.6(f), the fourth slide-bar).

NaviPath ranks all recommendations according to the current customization setting.

Based on the ranking result, it assigns each AI recommendation an index (e.g., Figure

3.6(a), the number on the top-left corner of the recommendation). The smaller the index,

the greater the importance and need to be examined with high priority. The index number

gives users “actionable” advice [89] and can help them focus on critical areas in limited

time. Please refer to the Section 3.5.1 for the implementation details of AI models and the

recommendation ranking algorithm.

3.4.1.3 Improving Navigation in High Magnifications

Following system requirement R3, NaviPath uses two designs to optimize pathologists’

navigation in high magnifications:

First, NaviPath enables pathologists to pan discretely in high magnifications. Specifi-

cally, after examining each HPF recommendation, users can double-click on the screen’s edge

to pan discretely to an adjacent one. Compared to the conventional manual panning with

mouse-dragging, this design can accelerate users’ interaction speeds: according to Fitt’s Law

[75], screen edges have infinite width, so it follows that.

Moreover, to increase pathologists’ efficiency in seeing remote recommendations, our

proposed system adapts the notion of citylight [224] by placing navigation cues on the edge of
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Figure 3.6: Overview of NaviPath’s interface. (a) A Local recommendation (red box)

with an explanation dialog. The number on the top-left corner represents the index of the

recommendation (same for HPF and Cell recommendations); (b) An example of an HPF

recommendation; (c) An example of a Cell recommendation; (d) An explanation card for

a Cell recommendation, including the AI probability, confidence level, and a saliency map;

(e) Users can switch on and see each level of recommendations on-demand; (f) Users can

customize the recommendations with a group of slide-bars; (g) A navigation cue that allows

users to jump to a remote recommendation. The number indicates the index of the remote

recommendation.
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the interface (Figure 3.5(b), pointed by arrows). The location of the navigation cue indicates

the relative direction between the remote HPF recommendation and the current viewport,

while the number represents the ranked index of each recommendation. With navigation

cues, users can become aware of the spatial distribution and importance of off-screen targets.

They can also click on navigation cues to hop to remote HPF recommendations without

manual panning.

3.4.1.4 Explaining Each Recommendation

Since one criticism of deep learning models in pathology is that there is a lack of interpretabil-

ity [189], explainable AI (XAI) techniques have been utilized to make AI “transparent,

understandable and reliable” to pathologist users [162]. In NaviPath, we followed the sug-

gestions from [89] and attached an explanation for each AI recommendation. Specifically,

for Local and HPF recommendations, NaviPath presents users with a verbal dialog, which

includes qualitative descriptions of AI results on the cellular count, proliferation probability,

and mitosis count (Figure 3.5(c)). The dialog helps users decide whether they should select

and study recommended areas. Moreover, NaviPath explains each Cell recommendation

with an explanation card (Figure 3.5(d)). The explanation card demonstrates the classifica-

tion probability, the confidence level, and a saliency map for a positive mitosis classification

result, which provides information from AI’s perspective to assist pathologists’ mitosis adju-

dications. Detailed procedures of explanation generation are described in the Section 3.5.1.

3.4.2 Navigating with NaviPath

A typical page of NaviPath is shown in Figure 3.6. A user’s workflow in NaviPath starts

by switching on (Figure 3.6e) and seeing Local recommendations (Figure 3.6a). The number

on the top-left corner of each recommendation box is the ranking index, and users may

view recommendations by ascending index order. In each Local recommendation, users
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can continue to drill down and see HPF recommendations (Figure 3.6b). In each HPF

recommendation, users can continue to see Cell recommendations (Figure 3.6c) that show

the precise locations of detected mitoses. For each Cell recommendation, users can view an

explanation card on-demand (Figure 3.6d). After examining each HPF recommendation,

users may click on the numbered navigation cue (Figure 3.6g) to hop to a remote HPF

recommendation. During users’ examination, they may customize the recommendations by

interacting with a group of slide-bars (Figure 3.6f). Users’ workflow ends when they are

confident of signing out the case.

3.5 Implementation of NaviPath’s Data Processing Pipeline

3.5.1 Use Multiple AI Models to Calculate Multiple Criteria

We first split each scan into non-overlapping tiles. Each tile has a size of one High-Power

Field (400×, size=1680×1680 pixel4). For each tile, we first applied a Hover-Net model [86]

to obtain the cellular count. Second, to estimate the proliferation probability, we trained an

EfficientNet-b3 classification model [193] with a dataset with 100× snapshots of HPFs (i.e.,

1680× 1680 → 420× 420 pixel) as X (input), and corresponding binary labels (i.e., 0: does

not have mitosis in HPF, 1: has mitosis in HPF) as y (output). Third, we trained another

binary classifier to detect mitosis under 400× with an EfficientNet-b3 model similar to the

procedure as described in [88], where its size of input was 240 × 240. We then applied the

mitosis model with a sliding window technique (step size=60 pixel), and further used the non-

max suppression as post-processing method to eliminate overlapping boxes. After the scores

of each tile were calculated, NaviPath can directly use them for HPF recommendations.

As for Local recommendations, NaviPath averages the HPF scores within the Local area

for recommendations.

4The dimension of one pixel is 0.2500µm unless specified.

54



3.5.2 Generate Explanations for Each Recommendation

For the verbal dialog for Local and HPF recommendations, we formulated a rule to generate

the descriptions of three criteria reported by AI. From the formative study, we learned that

users might encounter difficulties in interpreting the values of cellular count and proliferation

probability. Therefore, we converted these two scores into five-scale descriptors according to

their value percentiles (i.e., “{very/·/moderately/slightly/not} likely”). We also included the

mitosis count in the verbal dialog to inform users of the mitotic activity in recommended ar-

eas. As for the explanation card for each mitosis detection, NaviPath selected and extracted

the last feature map (25th layer) of the mitosis model and generates the class activation map

(saliency map) with the GradCAM++ [52]. Furthermore, NaviPath calculated the uncer-

tainty score with Equation 3.1, where the Bayesian uncertainty is the standard deviation of

50 Dropout-enabled predictions with the recommended cell image as input [79], and the noise

uncertainty stands for the standard deviation of model predictions on 50 noise-augmented

cell images as input [15]. Similar to the verbal dialog, the uncertainty scores were also

converted to five-scale descriptors according to their value percentiles.

Uncertainty =

√
Bayesian Uncertainty2 +Noise Uncertainty2 (3.1)

3.5.3 Generate and Rank Recommendations

The ranking for a Local recommendation was obtained by Equation 3.2. Specifically, for the

rth, sth HPF that is inside the local recommendation, Cr,s stands for the AI-reported cellular

count, P prof.
r,s is the proliferation probability, and

∑
1[Pmitosis

r,s ≥ 0.66] indicates the number of

mitosis detected with the highest sensitivity. Note that the cellular count scores and the mi-

tosis count were normalized to [0, 1] by dividing with the max scores in the subset (i.e., 5009,

4). Subsequently, users can control the three weights (i.e., Wcellular count,Wprof.,Wmitosis) with

the first three slide-bars in NaviPath. In each Local recommendation, NaviPath ranks the
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scores of all candidate HPFs (SHPF
i,j ) within the Local Recommendation territory by Equa-

tion 3.3, where θSensitivity can be adjusted by the user input. In each HPF recommendation,

NaviPath ranks Cell recommendation scores according to Equation 3.4, where Umitosis is the

uncertainty score of each detection (calculated by Equation 3.1). Specific weights, thresholds

and factors were justified by the statistics of a validation set and can be updated on-demand.

Slocal
i,j =

1

36

i+6∑
r=i

j+6∑
s=j

{
Wcellular count ×

Cr,s

5009
+Wprof. × P prof.

r,s +Wmitosis ×
∑

1[Pmitosis
r,s ≥ 0.66]

4

}
(3.2)

SHPF
i,j = Wcellular count ×

Ci,j

5009
+Wprof. × P prof.

i,j +Wmitosis ×
∑

1[Pmitosis
i,j ≥ θSensitivity]

4
(3.3)

Scell = 1[Pmitosis
i,j ≥ θSensitivity]× [Pmitosis − 3× Umitosis] (3.4)

3.6 Technical Evaluation

We conducted a technical validation study and reported the performance of the three AI

models in NaviPath. Specifically, we applied classification models for mitosis and prolifera-

tion probability on the eight test scans selected from [12]. We cross-referenced the AI results

and ground-truth labels to calculate F1 scores. The ground-truth labels for mitosis detec-

tion and proliferation probability calculation were acquired/generated from the annotations

provided in [12]. For the cellular count calculation, we applied the model to 50 randomly-

picked areas (size=512× 512 pixels under ×400 magnification) from pathology scans. Then

we compared the AI result with the cellular count reported by a graduate student, who had

been briefly instructed by a pathologist (experience = 10 years).

The results showed that the mitosis detection model achieved an F1 score of 0.673 (pre-

cision: 0.703, recall: 0.650) when using a probability threshold of 0.85. The F1 score for
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the proliferation probability model was 0.472 (precision: 0.544, recall: 0.416, probability

threshold: 0.77). The average error rate of the cell counting model was 14.95%.

Although we tried to train the model for mitosis detection following a recent work [88],

the performance of the mitosis AI was still not perfect: tuning down the threshold and

setting the recall as 0.85 caused the precision score to drop to 0.216. That is, the number

of false-positive instances would have been 3.62× the true-positive ones. The proliferation

probability model performance was also not satisfactory, likely due to the misalignment in

label distribution between train/validation and test sets: while 15.0% of train/validation

data were positive, only 4.7% of test data were positive.

3.7 Work Sessions with Pathologists

We conducted work sessions with medical professionals in pathology to validate NaviPath,

studying three research questions:

• RQ1: Can NaviPath (as a human + AI approach) increase pathologists’ precision

and recall in identifying the pathological features (in this case, mitosis)?

• RQ2: Can NaviPath save pathologists time and effort?

• RQ3: Compared to manual navigation, what is the benefit of using NaviPath?

We designed three testing conditions to support the system validation on the three RQs:

• C1 (Human Only): Participants navigate a pathology scan viewer without any AI

assistance;

• C2 (Human + AI): Participants navigate the pathology scan with NaviPath;

• C3 (AI Only): AI-automatic reporting without humans;
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3.7.1 Participants

We recruited 15 medical professionals in pathology from five medical centers across two

countries, including 13 residents, one fellow (P7), and one attending (P15). The participants

were recruited through flyers sent in mailing lists and word-of-mouth. The demographic

information of the participants is shown in Table 3.2. All participants had received at least

two years of pathology residency training to be qualified for the study (average experience

µ=3.47 years, Std=0.88 years). 14/15 participants had experience in seeing pathology scans

before the study (daily: 3, weekly: 6, bi-weekly: 3, monthly: 1, within one year:1). The

primary purpose for using pathology scans was for learning, and the most mentioned digital

pathology interface was Aperio Imagescope [110].

3.7.2 Data and Apparatus

We collected eight pathology scans of canine mammary carcinoma from a public dataset

[12]. The average size of these scans was 7.15 giga-pixels. We acquired the ground-truth

mitosis annotations from the same dataset [12]. Overall, the average mitotic rate (i.e.,

MR, mitotic count per unit area5) was 1.022/mm2 (0.164/HPF). We selected two scans for

tutorial purposes, leaving the other six for testing (Scan 1-6 in Table 3.2). To generate AI

detections, the scans were pre-processed with a local server with a 24-core CPU, 64 GB

memory, and an Nvidia RTX-3090 graphics card. After that, we loaded the pre-processed

results into NaviPath (C2). For a comparison, we developed a baseline pathology scan

viewer with a basic O+D design, where pathologists were required to navigate manually to

evaluate mitosis activity (C1). During the study, we referred to the manual baseline system

as ‘system 1’ and NaviPath as ‘system 2’ to avoid bias.

5https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mitotic-rate
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Table 3.2: Demographic information and arrangements of the participants in the work ses-

sions. The number ‘1’ indicates that the scan was examined with system 1 (baseline manual

system), while ‘2’ was with system 2 (NaviPath). MC1-3 are located in one country, and

MC4-5 are in another.

ID
Years of

Experience

Frequency of Seeing

Pathology Scans

Medical

Center
Scan 1 Scan 2 Scan 3 Scan 4 Scan 5 Scan 6

P1 4 Weekly MC1 2 1

P2 3 Never MC2 1 2

P3 4 Bi-Weekly MC3 2 1

P4 4 Weekly MC3 1 2

P5 3 Daily MC4 2 1

P6 2 Weekly MC1 1 2

P7 5 Daily MC3 1 2

P8 4 Bi-Weekly MC3 2 1

P9 4 Daily MC3 1 2

P10 3 Weekly MC4 1 2

P11 2 Bi-Weekly MC4 2 1

P12 3 Weekly MC4 2 1

P13 3 Monthly MC4 1 2

P14 3 Within One Year MC4 2 1

P15 5 Weekly MC5 2 1
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3.7.3 Task and procedure

All sessions were conducted online over Zoom. Participants were first shown a tutorial video

(∼10 minutes) of the manual baseline system and NaviPath. After they had watched the

video, they were given links to both systems, which were accessed through the web browser.

Next, each participant was instructed to perform a pathology task of assessing the mitotic

activity of one pathology scan using system 1/system 2, and another with system 2/system

1. During the formative study, we discovered that pathologists might memorize the hot-spot

areas of a pathology scan that they had examined before by recognizing tumor contours,

even after several months. Therefore, instead of letting a participant see the same scan after

a wash-out period, we instructed participants to read different scans in the work sessions

(see Table 3.2). The order of seeing the scans in each session was counterbalanced across

participants. During each session, participants were required to evaluate the mitotic activity

following the College of American Pathologists (CAP) cancer protocol6, which is similar to

how pathologists examine the scan in practice. Finally, participants entered a post-study

structured interview that included a set of Likert questions and short answers. The average

duration of each study was about 65 minutes.

3.7.4 Measurements

We collected three sources of responses from users during the work session: first, we recorded

participants’ interactions with both systems. Second, after they had finished examining

each scan, we saved participants’ reportings of mitoses. Third, from the final interview, we

collected participants’ responses to the questionnaire. Following previous HCI research on

pathology navigation [174] and pathology AI [43], we investigated the research questions

with the following measurements:

ForRQ1, we obtained the participants’ mitosis reportings with the baselineC1, NaviPath

6https://documents.cap.org/protocols/cp-cns-18protocol-4000.pdf.
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(C2), and AI (C3). We then cross-referenced them with ground-truth mitosis labels and

calculated precision and recall scores. Because each participant may visit different ROIs in

each trial, we individually calculated the AI’s precision and recall scores (C3) within the

areas visited by each participant in C2. Therefore, we can study whether the improvements

in C2 are brought by NaviPath’s AI or its human-AI workflow.

For RQ2, we first calculated participants’ average time cost on each scan. We also

evaluated each participant’s navigation efficiencies by counting the number of ground truth

mitosis within the areas visited by participants in each trial and divided it by the time length.

After that, we averaged the results across the participants for C1 and C2 individually. Here,

we did not count the mitosis reported by participants as in RQ1 to rule out the difference

in participants’ capabilities in locating mitoses. Finally, to evaluate the cognitive workload

of using both systems, we asked the participants to answer two seven-scaled Likert NASA

TLX questions (i.e., mental demand and frustration dimensions, Table 3.3 Q1, Q2)) [100].

For RQ3, we first analyzed the interaction logs and summarized participants’ interaction

frequencies with both systems (i.e., zoom, pan, selecting recommendations). What’s more,

we inquired about participants’ ratings on system’s capabilities for mitosis searching (Table

3.3 Q3), their confidence in the mitosis reportings (Table 3.3 Q4), attitudes toward using the

system in the future (Table 3.3 Q5), and overall preference of system 1 vs.system 2 (Table

3.3 Q6).

Last but not least, to figure out whether each NaviPath component is useful for pathol-

ogists, we asked the participants to rate each component (Figure 3.8) with a seven-scaled

Likert question: (i) “Is this feature useful to your examination?” (1= Not useful at all →

7=Very useful); (ii) “Compared to System 1, does this feature require extra effort?”(1=No

effort at all → 7=A lot of effort).
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3.8 Result and Findings

In this section, we first answer our initial research questions based on the information col-

lected from work sessions. We then summarize the qualitative findings on pathologists’

navigation traces.

3.8.1 Results for Research Questions

3.8.1.1 RQ1: Can NaviPath increase pathologists’ precision and recall in iden-

tifying the pathological features?

We calculated the precision and recall (sensitivity) of participants’ mitosis reportings with

manual navigation (C1),NaviPath (C2), and AI-automated reportings (C3) (Figure 3.7(a)-

(b)). The median precision under C1, C2, and C3 were 0.33, 0.82, and 0.69, respectively

(average µ=0.40, 0.78, 0.64, standard deviation Std=0.22, 0.17, 0.31). And the median re-

call under the three conditions was 0.14, 0.60, and 0.56, respectively (µ=0.18, 0.61, 0.51,

Std=0.19, 0.24, 0.28). An initial Kruskal-Wallis H-test indicates that precision and recall un-

der the three conditions were significantly different (precision: p=0.002, effect size η2H=0.407,

recall: p <0.001, η2H=0.5117). A post-hoc Dunn’s test with Bonferroni correction (α=0.05)

showed that recall was improved significantly when comparing C3 vs.C1 and C2 vs.C1

(Figure 3.7(c)). As for precision, C2 was significantly higher than C1, while there was

no sufficient proof to observe C3 was higher than C1. We further analyzed the difference

between C2 and C3. On average, pathologists achieved 20.21% higher recall and 21.51%

higher precision with NaviPath than AI. However, there was no sufficient proof to observe

that the precision and recall were significantly higher in C2 compared to C3.

It is noteworthy that participants’ recall in identifying mitoses using the manual naviga-

tion is low. Upon further analysis of navigation traces, we found that the average mitotic

7The effect size of Kruskal-Wallis H-test η2H was calculated according to [196].
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Condition 
Pairs

Precision
Recall 

(Sensitivity)

C2 vs C1

C2 vs C3

C3 vs C1

c

p < 0.001*

p = 0.262

p = 0.040

p < 0.001*

p = 0.460

p < 0.001*

d e f

Figure 3.7: Boxplot visualizations of the (a) precision and (b) recall (sensitivity) from mitosis

reportings under the conditions of C1, C2, and C3. The colored lines and the figures above

indicate the median values of each condition. The dots are the outliers. (c) The results of

pair-wise significance comparison among C1, C2, and C3 using a post-hoc Dunn’s test with

Bonferroni correction (α=0.05). The values marked with ∗ indicates that the Null hypothesis

can be rejected because the p < α/2. (d) Participants’ zoom interaction frequencies under

C1 and C2. (e) Participants’ pan interaction frequencies under C1 and C2; (c) Frequencies

of participants’ selecting Local, HPF, and Cell recommendations under C2. Note that one

participant might select the same recommendation multiple times in each trial.
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rate in the areas participants visited with the manual navigation was 0.167/HPF (which is

comparable to the average mitotic rate). As a comparison, the average mitotic rate with

NaviPath was 1.196/HPF, which is 6.17× higher. We believe such a significant increase

(p <0.001, r=0.851, Wilcoxon rank-sum test) in the prevalence rate of the target (i.e., mi-

tosis) is the main factor why NaviPath could increase participants’ recall: as described

in [216], the low target prevalence would cause shifts of decision criteria that lead humans

to miss targets in the visual search. NaviPath harnesses AI to recommend highly-mitotic

areas for users, which brings up the prevalence rate of the visual search targets, thus helping

participants achieve higher recalls (even compared with AI).

High variances in precision and recall were observed when comparing C2 and C3. We

believe this was caused by two factors: (i) variation in user interaction: in C2, participants

chose a different recommendation customize settings and select a different amount of rec-

ommended ROIs in each trial (Figure 3.7(f)-HPF). Variations in users interactions may also

result in high variance in C3 because the precision/recall in C3 was calculated within the ar-

eas that participants visited in C2; (ii) Variation in user’s experience: different participants

might adapt different thresholds to call a cell as positive.

To conclude, NaviPath achieved significantly higher precision and recall in identifying

mitoses compared to manual navigation. Moreover, NaviPath, as a human + AI approach,

might bring improvements compared to the AI-only condition: NaviPath achieved higher

precision and recall on average. However, we did not observe that such an improvement was

statistically significant.

3.8.1.2 RQ2: Can NaviPath save pathologists’ time and effort?

On average, participants spent 10min27s in each trial with the baseline system, and 13min8s

with NaviPath. A Wilcoxon rank-sum test indicated no sufficient proof to conclude that
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Table 3.3: Summary of participants’ questionnaire responses for the baseline and

NaviPath with seven-scaled Likert questions. p indicates the p-value of Wilcoxon test,

and r stands for the effect size. The numbers on the right indicate the averaged scores with

their standard deviations. For Q1 – Q5, 1=Not at all . . . 4=Neutral, . . . 7=Very. For Q6,

1=Very strongly prefer system 1 over system 2, 2=Strongly prefer system 1 over system 2,

3=Slightly prefer system 1 over system 2, . . . 4=Neutral, . . . , 7=Very strongly prefer system

2 over system 1.

ID Question Baseline NaviPath p r

Q1 How hard did you have to work mentally to accomplish the tasks? 5.13(1.30) 2.93(1.10) < 0.001 0.658

Q2 How would you describe your frustrations during the tasks? 4.07(1.91) 2.40(1.06) 0.024 0.412

Q3 How capable is the system at helping count mitosis? 2.79(1.63) 6.43(0.65) < 0.001 0.704

Q4 How confident do you feel about your accuracy? 4.21(1.42) 5.93(0.73) 0.004 0.530

Q5 Would you like to use the system in the future? 4.13(1.92) 6.47(0.64) 0.001 0.594

Q6 Overall Preference 6.33(0.82) N/A

participants’ examinations were significantly longer (p=0.09, effect size r=0.3068, Wilcoxon

rank-sum test, same following). We further calculated each participant’s navigation effi-

ciency. The results showed that participants saw significantly more mitoses in unit time

with NaviPath

compared to manual navigation (manual: µ=0.012 mitoses/second,

NaviPath: µ=0.028 mitoses/second, p=0.002, r=0.579). Specifically, NaviPath’s Local

recommendations served as a shortcut that guided participants directly to highly-mitotic

areas without manual searching: “The local recommendations have more mitosis inside, and

I can focus on this area. I can start counting from there and I do not need to find one

myself.”(P1) “It (NaviPath) tells you which ones are the highest areas. And then you just

go from there and decide. With system 1, you still have to review the whole slide.”(P3)

8The effect size of the Wilcoxon Test r is calculated as r = Z√
N
, where Z is z-score from the Wilcoxon

Test, and N is the number of observations (30 in this study).
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In the post-study questionnaire, participants reported significantly less mental effort with

NaviPath (manual: µ =5.13, NaviPath: µ =2.93, p <0.001, r=0.658) compared to the

manual navigation (Table 3.3 Q1). Furthermore, participants expressed less frustration

using NaviPath (manual: µ =4.07, NaviPath: µ =2.40, p=0.024, r=0.412, Table 3.3 Q2).

Specifically, participants valued NaviPath’s Cell recommendations as the key to reducing

the workload — “It (NaviPath) takes away the burden of seeing and hunting for mitosis...

it can tell you where is most likely to have mitosis and you decide ‘yes’ or ‘no’.”(P3)

In sum, although participants spent longer time using NaviPath on average, their navi-

gation efficiency was improved significantly by NaviPath’s Local recommendations — they

could see more than twice the number of mitosis in unit time. Moreover, according to the

questionnaire response, participants reported significantly less effort when using NaviPath.

NaviPath’s Cell recommendations contribute the main improvement: they could highlight

specific cells from a large background, freeing pathologists from tedious manual visual search.

3.8.1.3 RQ3: Compared to manual navigation, what is the benefit of using

NaviPath?

We answer this question by first comparing the patterns of interactions (e.g., pan, zoom)

while participants use NaviPath (C2) vs.with the manual navigation (C1). In sum, zoom-

ing and panning made up most of participants’ interactions under C1, while “selecting AI

recommendations” took the majority of interactions under C2 (NaviPath). The median

frequencies of zoom interactions under C1 and C2 were 37 and 6 (Figure 3.7(d)). And

the median pan interaction frequencies under C1 and C2 were 95 and 1 (Figure 3.7(e)).

A Wilcoxon test showed that zoom and pan interactions were significantly reduced under

C2 (zoom:p <0.001, r=0.651; pan: p <0.001, r=0.784). Furthermore, with NaviPath,

participants selected a median of 6 Local, 27 HPF, and 8 Cell recommendations in each

trial.

According to the questionnaire responses, participants believed that NaviPath was more
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capable of assisting in detecting mitosis (manual: µ=2.79, NaviPath:µ=6.43, p <0.001,

r=0.704, Table 3.3 Q3). Pathologists’ confidence in mitosis reportings was improved signif-

icantly by NaviPath (manual: µ=4.21, NaviPath:µ=5.93, p=0.004, r=0.530, Table 3.3

Q4). Specifically, participants expressed that the AI recommendations would serve as a sec-

ond opinion while they made justifications — “I was kind of like 90% sure ... but then if

AI was 100% sure, I felt more confident in saying that it was real mitoses.”(P3). “It’s kind

of like having a second set of brains.”(P6). Finally, participants expressed that they were

more likely to use NaviPath in the future (manual: µ=4.13, NaviPath:µ=6.47, p=0.001,

r=0.594, Table 3.3 Q5). Overall, as shown in Table 3.3 Q6, participants indicated a prefer-

ence for system 2 (NaviPath) over system 1 (baseline pathology scan viewer): based on the

questionnaire, 8/15 of the participants rated a score 7 (very strongly prefer system 2 over

system 1), 4/15 rated a score 6 (strongly prefer system 2 over system 1), and 3/15 rated a

score 5 (slightly preferred system 2 over system 1).

In sum, users could navigate the pathology scans by selecting AI recommendations from

NaviPath. Meanwhile, their pan and zoom interactions were significantly reduced. Overall,

they believed NaviPath was more capable of finding mitosis, had higher confidence while

using NaviPath, and preferred to use it in the future.

3.8.2 Ratings on NaviPath’s Components

To further understand whether each NaviPath component was useful for pathologists, we

asked participants to rate each (see Figure 3.8). Here, we report the participants’ ratings

and discuss qualitative findings, organized by the categories of components:

3.8.2.1 Hierarchical AI Recommendations

Participants rated average useful ratings of 5.93/7, 6.53/7, and 6.53/7 for Local, HPF, and

Cell recommendations, respectively. Specifically, participants expressed that Local and HPF
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Category Items
Is this feature useful to your examination? 

(1: not useful at all → 7: very useful)
1 2 3 4 5 6 7 Mean Std

Hierarchical AI 
Recommendations

Local 2 1 1 3 8 5.93 1.49

HPF 1 5 9 6.53 0.64

Cell 1 4 10 6.53 0.83

Customizable 
Recommendation 

by Multiple Criteria

Cellular Count 2 2 3 3 5 5.47 1.46

Proliferation Probability 1 2 3 3 6 5.73 1.33

Mitosis Count 1 1 2 5 6 5.93 1.22

Mitosis Sensitivity 2 2 5 6 6.00 1.07

Cue-Based Navigation Navigation Cue 1 2 8 4 4.93 1.39

Explanation for Each 
Recommendation

Verbal Dialog 2 4 2 4 3 5.13 1.41

Explanation Card 2 2 7 4 5.87 0.99

Compared to system 1, does this feature require extra effort? 
(1: not effort at all → 7: a lot of effort)

1 2 3 4 5 6 7 Mean Std

8 5 1 1 1.67 0.90

5 8 1 1 1.87 0.83

5 8 1 1 2.00 0.13

7 5 1 2 1.87 1.06

7 5 1 2 1.87 1.06

7 5 3 1.93 1.16

7 5 2 1 2.00 1.49

6 6 2 1 1.87 0.92

5 5 4 1 2.40 1.40

3 5 2 4 1 3.00 1.73

Figure 3.8: Participants’ ratings on whether each component in NaviPath is useful to

pathologists’ examination (left) / requires extra effort compared to the manual baseline

system (system 1) (right).

recommendations helped them narrow down from a large region without manual navigation

— “The entire slide might have thousands of high-power fields, and the Local recommenda-

tions picked the highest 36 for me ... the HPF recommendations continued to pick about 20

high-power fields from the Local recommendation ... it helps me rule out regions and focus

on the important areas.”(P14)

Notably, Cell recommendations received the highest useful rating among NaviPath’s

components. Participants expressed that Cell recommendations transformed the task of

visual search into adjudication, which can save their mental effort. Specifically, they used

Cell recommendations as an additional layer to quickly locate and adjudicate suspected

cells: for most scenarios, participants directly reported the mitosis after glancing at the Cell

recommendations. If they were not confident, they continued to select a Cell recommendation

and examine it closely with a higher magnification. This explains why Cell recommendations

were rated most useful, although they were not selected frequently in practice (as reported

in Section 3.8.1.3).
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3.8.2.2 Recommendation Customization by Multiple Criteria

Amongst the three criteria that NaviPath used to generate recommendations, participants

gave the “mitosis count” the highest usefulness rating (µ=5.93/7), followed by the “prolifer-

ation probability” (µ=5.73/7) and “cellular count” (µ=5.47/7). Although most participants

expressed that all three criteria should be considered in general, some (P2, P4, P15) believed

it was not challenging for human pathologists to pick cellular areas, and it was not highly

motivated to employ AI as such.

We also found that participants did not frequently interact with the slide-bars to change

the recommendation customization settings for the three criteria. Instead, they picked a

custom set-up at the beginning of each trial and left them unchanged. Upon further analysis,

we found that NaviPath’s recommendations might not change after users moved the slide-

bars under certain circumstances, which disincentives users’ interactions — I don’t see it (the

recommendation) changing much when I set the ‘cellular count’ as ‘high’.”(P1) What’s more,

adjusting the customization settings during the examination might incur extra workload, and

P14 suggested NaviPath give pre-set values for the three criteria — “It would be great if

the system could give me default values for the three criteria ... changing the criteria is a

lot of work if I see hundreds of slides.”

Furthermore, participants had diverse opinions on how much a criterion should be consid-

ered in AI recommendations. One participant only gave “mitosis count” a high weight while

giving zero weight for the other two criteria: “I want AI to go straight to the mitoses, not

like just predict for me based on the cell count where there are more mitoses elsewhere.”(P4)

However, others thought NaviPath should also include other criteria for recommendations.

For example, P6 gave both “cellular count” and “mitosis count” a high weight — “I would

like to include the cellular counts ... this is how we see tumors every day.”(P6)

As for the sensitivity slide-bar, participants usually set it as “high” to see more recom-

mendations, although this may produce false positives: “I move it all the way to the right,
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it will detect more mitosis ... not all of them will be real mitosis, but it has more sensitivity.

So then I can decide if the real to me or not.”(P3) Pathologists’ preferences of recall (sensi-

tivity) over precision was also reported in Chapter 4. We believe such preferences are rooted

from the imbalance risks in pathology decision making: while a proliferation of false-positive

results (from low threshold) may cause longer time in examination, false-negative results

(due to using a high threshold) might make the diagnosis unreliable because of the failure

to acknowledge critical pathological features.

3.8.2.3 Cue-Based Navigation

Surprisingly, the navigation cue received the lowest usefulness ratings by participants, with

an average score of 4.93/7. Participants’ opinions were split into two groups when asked how

they used the navigation cue during work sessions. On one hand, some participants (P5, P10,

P14) used cue-based navigation during their examination, and treated the navigation cue as

a short-cut to access possible mitosis areas — “It allows me to quickly locate the area where

the next possible (mitosis) is located.”(P5). On the other hand, some participants expressed

that the cue-based navigation might be incompatible with a medical guideline: “I sometimes

did not know where these cues would guide me to ... because we need to see (mitoses in) 10

consecutive areas. And I didn’t know if I was jumping from one to the other at the end they

wouldn’t be really consecutive” (P1) Regarding how participants might navigate under the

high magnifications with NaviPath, we will discuss in more detail in Section 3.8.3.2.

3.8.2.4 Explanations for Recommendations

Participants gave average ratings of 5.13/7 in usefulness and 2.40/7 in effort for the verbal

explanation dialog. P5, P6, P7, P11, and P12 expressed that the verbal dialog assisted

them in prioritizing the examination of HPF recommendations — “Here (pointing at one

HPF recommendation), it (the verbal dialog) says ‘very cellular’ and ‘moderately likely’.
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And then here (pointing at another HPF recommendation), it says ‘very cellular’ and ‘very

likely’. So I might pick this box (the latter one) to see first ... it will be helpful to my

selection.”(P6) However, four participants (P10, P13, P14, P15) ignored the verbal dialog

during the examination and used the ranking indexes to select HPF recommendations instead

— “I think the verbal dialog and the recommendation rankings are redundant ... the rule says

the lower the (ranking) number, and more important the box is ... I feel that the ranking

numbers are more straightforward.”(P15)

As for the explanation card, participants gave a usefulness rating of 5.87/7. If participants

were not confident about whether a Cell recommendation was mitosis, they would refer to

the explanation card as a confirmation: “I just took it as confirmatory that my assessment

was correct.” (P8) It is noteworthy that the explanation card also received the highest

effort score (3.00/7) among NaviPath’s components because participants spent extra effort

comprehending the explanations.

3.8.3 Qualitative Findings on Participants’ Navigation Traces

We analyzed participants’ navigation traces on the pathology scans and report the qualitative

findings on pathologists’ navigation traces with the manual baseline system and NaviPath.

3.8.3.1 Navigating the scan manually vs.with NaviPath

One notorious issue of the pathology examination is the low between-subject consistency,

which is usually caused by the randomness in pathologists’ navigation. We also observed such

randomness during our user study. For example, Figure 3.9(a) visualizes the 2D projections

of three (P5, P11, P12) participants’ navigation traces with the manual navigation. It is

noteworthy that all three traces barely overlap, which might result in inconsistencies in the

medical decision makings. Also, all three participants did not examine a tissue session on

the bottom-right corner of the scan (pointed by the arrow). However, according to the
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Figure 3.9: 2D projections of participants’ traces with manual and NaviPath navigation on

a pathology scan (zoom ignored). (a) Trace projections of P5, P11, and P12 with manual

navigation. Note that all three participants did not examine the tissue on the bottom-right

corner of the scan (pointed by the arrow). (b) The heatmap visualization of mitosis density

of the scan. (c) Trace projections of P9, P10, and P13 with the NaviPath navigation. The

boxes highlight the approximate areas of Local recommendations generated by NaviPath.

ground-truth mitosis density heatmap (Figure 3.9(b)), the unexamined tissue session has

aggregations of mitoses (shown as hotspots, pointed by the arrow). Therefore, the decisions

made with the manual navigation might be biased because one important area was missed.

In contrast, participants’ traces are more consistent with NaviPath. Figure 3.9(c) illus-

trates three other participants’ navigation traces (P9, P10, P13) within the same scan with

NaviPath navigation. The boxes indicate the approximate areas of Local recommendations

generated by NaviPath. Thanks to AI recommendations, participants’ navigation traces

are more consistent within the three Local recommendations. Also, P10 and P13 examined

the tissue session that had been missed in the manual navigation.

Therefore, NaviPath can improve participants’ consistency and also increase the explo-

ration of their navigation.
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Figure 3.10: Three patterns of how our participants move to another HPF recommendation

after examining one: (a) “Diving”: first returned to the Local recommendation, overviewed

the remaining HPF recommendations from the low magnification, and then dived down by

selecting an HPF recommendation. The bottom figure shows 2D projections of participants’

navigation traces during the work sessions; (b) “Adjacent Panning”: directly pan to an

adjacent HPF recommendation by clicking on the edge of NaviPath’s interface; (c) “Cue-

Based Hopping”: directly hop to a remote HPF recommendation with the navigation cue.
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3.8.3.2 Moving from one HPF recommendation to another with NaviPath.

From the formative study, we learned that pathologists searched systematically in high mag-

nifications with manual navigation. Here, we study whether our participants’ navigation

patterns in high magnifications with NaviPath are different: specifically, we analyzed par-

ticipants’ navigation traces and summarized three navigation patterns of how our partici-

pants moved to another HPF recommendation after examining one:

• Diving: Participants first moved to the Local recommendation, then overviewed re-

maining HPF recommendations with low magnification, and selected an HPF recom-

mendation to examine in higher magnification (Figure 3.10(a)). During work sessions,

P8 and P15 mainly used the diving navigation, and would switch the magnifications by

selecting NaviPath’s hierarchical recommendations without getting lost. As shown in

Figure 3.10(a), the bottom figure, the diving navigation left a ‘spoke-like’ navigation

trace (the blue line) within each Local recommendation (red boxes).

• Adjacent Panning: Participants clicked on the edge of NaviPath’s interface to

move discretely to an adjacent HPF recommendation (Figure 3.10(b)). The adjacent

panning is the closest to current pathologists’ navigation practices (without AI), and

five participants (P2, P3, P4, P7, P11) employed the adjacent panning in the study.

The navigation trace is more regular with the adjacent panning (see Figure 3.10(b),

the bottom figure).

• Cue-Based Hopping: Participants clicked on the navigation cue to hop to a remote

HPF recommendation (Figure 3.10c). P5, P10, and P14 mainly used it during the

study. With cue-based hopping, participants were able to see the HPF recommen-

dations in ascending order based on ranking index to maximize navigation efficiency

— “My preference is to click on the navigation cue and jump to the next important

HPF. For example, after I have seen number 1 (HPF recommendation), I will see num-
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ber 2.”(P10) As shown in Figure 3.10(c), the navigation trace is more irregular with

cue-based hopping.

3.9 Discussion

3.9.1 Limitations

3.9.1.1 Limitations of the evaluation study

• User Sampling: The majority of participants are pathology residents with relatively

less experience, making the conclusions for RQ1 inevitably speculative due to a lack

of participation of more-experienced attending pathologists;

• Study Set-Up: The work sessions were relatively brief because of the scarce avail-

ability of participants, and no clinical experiments were conducted because of strict

regulations from US Food and Drug Administration (FDA);

• Materials: All pathology scans used in the study have the same tumor type because

of the rare availability of public datasets. Therefore, they lack variability to reflect the

real-world distribution of pathology data;

• Choice of Baseline: No comparison betweenNaviPath and other human-AI systems

was conducted because there is a lack of open-source systems for mitosis detection.

There was also no comparison conducted with the optical microscope, pathologists’

primary approach to see tumor specimens, due to the COVID-19 pandemic.

Therefore, future works should concentrate on conducting larger-scaled, longer-termed,

in-the-wild studies to evaluate the influence of implementing a human-AI collaborative nav-

igation system for pathologists.
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3.9.1.2 Limitations of NaviPath

• The two deep learning models for the proliferation probability and mitosis classification

were trained from images of one tumor, and their performance on other tumors is

unknown;

• The current cue-based navigation design used in NaviPath (i.e., citylight) cannot

provide the distance information of off-screen recommendations, and might be incom-

patible with specific medical guidelines;

• The current recommendation customization algorithm was not predictable under cer-

tain circumstances;

• NaviPath does not support users to add their own ROIs for examination. Thus,

users need to examine manually if an area was not recommended.

As such, future work should train AI models from various tumors to improve the model’s

generalizability. And future systems might consider other cue-based navigation designs (e.g.,

Wedge [94] or Halo [24]) that can offer both distance and directional information of off-screen

targets, which can support navigation according to medical guidelines. Another improvement

direction is modifying the overview map in the O+D design: by demonstrating where the

pathologist is looking and all recommended ROIs to enhance humans’ spatial awareness of

off-screen targets (e.g., [34]). Future works should also consider utilizing machine intelligence

to support the examination of user-defined ROIs: for example, a user can select an area of

interest manually, and the system can recommend all salient AI findings inside for the user to

examine [60]. Finally, we also suggest future works to improve the predictability of medical

AI, which we will discuss next.
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3.9.2 Implications for Human-AI Designs in Medical Decision-Making

3.9.2.1 Making AI-Enabled Systems Predictable

Previous work suggests that the disruptive behavior of AI might discourage medical profes-

sionals from using it in practice [222]. In our study, we discovered that participants did not

change the customization settings frequently because the outcomes were less predictable: for

example, tuning the “Cellular Count” slide-bar would simultaneously change recommenda-

tions’ locations and rankings. In some scenarios, tuning the slide-bar would not change the

recommendations at all.

It is challenging for doctors to be aware of whether the change is beneficial or the no

change is caused by malfunction. As such, we suggest future human-AI systems in medicine

to present intuitive clues that aid doctors in evaluating changes made by AI. For instance,

future systems can justify why changes are happening or not – text explanations generated

by NLP agents (similar to [210]) can be implemented to explain the AI status and help

pathologists comprehend the recommendation reasoning process. Another future direction

might include making the recommendation AI less disruptive: for example, recommendations

based on human-understandable medical concepts can make the algorithm more predictable

for medical users [43].

3.9.2.2 Balancing Simplicity and Informativeness

Doctors prefer simple, straightforward designs [89]. From the evaluation study, we found

that some participants preferred to use the ranking index number over the verbal explanation

dialog. However, simpler designs usually mean “lossy” information compression, and might

not be sufficiently informative for medical decision-making. Therefore, we suggest future

HCI research to study what information should be preserved vs.discarded through empirical

studies. For instance, in the next chapter, we will show pathology AI systems provides

levels of AI explanations for doctors: a simple, visual explanation was shown by default,

77



while more detailed explanations could be retrieved on demand. By balancing simplicity

and informativeness, doctors can rapidly inquire about the most salient information with

less confusion.

3.9.2.3 Decoupling Doctors and AI

Recent research has reported that utilizing AI may cause doctors’ diagnoses to align with

that of AI’s [76]. However, it is still unknown whether the alignment is beneficial or catas-

trophic because the performance of AI is subject to be influenced in clinical settings [26].

Moreover, previous research suggests that the domain gap in pathology image data will harm

AI performance [187, 11]. Therefore, doctors only examining within the AI-recommended

areas would put physician-AI collaboration into a dilemma: on one hand, they may miss crit-

ical findings if the model’s recall (sensitivity) is less than 1.00; on the other hand, seeing all

areas comprehensively can barely reduce human workload. To tackle this problem of speed

and accuracy, future improvements might consider re-designing the human-AI collaborative

workflow: doctors might first overview a medical image and generate an overall impression

of the case, then a human-AI collaborative system can be engaged to enable doctors to verify

or refine their initial hypotheses [39]. What’s more, providing additional sources of informa-

tion might be an improvement: for example, attaching immunohistochemistry tests along

with conventional pathology scans can let pathologists justify whether AI recommendations

are reliable. Another unresolved question in this chapter is, since various pathological pat-

terns might co-exist in a scan, are pathologists required to see other pathological patterns

after examining one with NaviPath? In short, it depends on whether the criterion (in this

work, mitosis) is deterministic for diagnoses according to the medical standard, and we will

discussion with more details in the next chapter.
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3.10 Conclusion

This chapter introduces NaviPath to enhance pathologists’ navigation efficiency in high-

resolution tumor images by integrating domain knowledge and taking account of a practi-

cal workflow based on an empirical study with medical professionals. NaviPath could

save pathologists from repetitive navigation in high-resolution tumor images through its AI-

enabled designs. In contrast to prior work, we center on pathologists and adapt AI tools

into their workflow to facilitate navigation processes. NaviPath mainly focuses on mito-

sis in pathology, which represents a class of highly challenging problems on domain-specific

navigation with high-resolution images. In the next chapter, we will discuss the design and

validation of AI-assisted system for more complex, multi-criteria diagnosis tasks.
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CHAPTER 4

Advancing Multi-Criteria Decision Support in

Pathology through Human-AI Collaboration

This chapter is based in part on the following publication:

Hongyan Gu, Yuan Liang, Yifan Xu, Christopher Kazu Williams, Shino Magaki, Negar

Khanlou, Harry Vinters, Yang Li, Mohammad Haeri, and Xiang ‘Anthony’ Chen “Improving

workflow integration with XPath: design and evaluation of a human-AI diagnosis system in

pathology.” ACM Transactions on Computer-Human Interaction 30, no. 2 (2023): 1-37.

4.1 Introduction

The past decade has experienced rapid development in digital pathology, which transforms

physical glass slides into high-resolution digital whole slide images (WSIs) [157]. This trans-

formation lays the foundation for assisting diagnoses with machine intelligence [6, 40, 96],

and might improve patient management ultimately [28]. To date, AI (Artificial Intel-

ligence) has been proposed for a broad spectrum of potential applications of pathology

[211, 106, 163, 191, 212], with some achieving performance on par with human beings in

labs [27, 228]. Furthermore, various AI models have been adopted into tools to support

pathologists’ tasks, targeting automating parts of pathologists’ workflow to reduce their ex-

amination burdens [44, 113, 66]. However, it is still challenging to convince pathologists to

transform from manual diagnosis to AI-based methods in practice. We believe this is caused

by the dichotomy between AI and medical communities — while the existing medical AI
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research focuses on improving performance, there is a lack of understanding of how doctors

could benefit from AI and effectively use it for diagnosis [222, 141, 195, 121].

This onerous issue — the need to integrate AI-based tools into the medical workflow —

has recently gained extensive attention in the HCI community. Empirical studies have inter-

viewed medical professionals about their attitude toward using AI in practice, and suggest

that medical systems should “state explicitly on how AI benefits users” [44] and “connect to

existing clinical processes” [113]; it also indicates “unique difficulties” in converting human-

AI interaction guidelines to tool support [222]. To this end, previous literature has explored

the designs and influence of human-AI collaborative workflows for medical professionals

[26, 76, 127, 210]. For pathology, numerous works have revealed the potential of human-AI

collaborative systems to support doctors’ exploration of one or more pathological patterns

[43, 113, 60]. Extending the success of previous works, this chapter focuses on pathologists’

more complicated diagnosis tasks, and studies how interfaces should be appropriately de-

signed between pathologists and AI to address the workflow integration challenge, given the

AI’s incompatibility with existing pathologists’ diagnosis workflow.

To reveal how AI-aided systems should be designed, we first conducted a formative study

with four experienced pathologists (average experience µ = 21.25 years) and summarized

the main findings into the following design challenges:

1. Comprehensiveness. Previous pathology decision support systems assist perspec-

tives of pathologists’ tasks, such as searching for one/more pathological patterns [113],

or assisting adjudications on areas of interest [101, 43]. However, it is still challenging

for the current systems to support diagnoses with multiple criteria from multiple patho-

logical tests. This requires AI-aided pathology systems to comprehensively incorporate

multiple criteria through a tight collaboration with pathologists;

2. Explainability. Previous eXplainable AI (XAI) research interprets AI predictions

using explainable elements, such as attention maps [228], concept attributions [43],

81



Pathologists
Initial examination

Hypothesis 
for diagnosis 

Manual 
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“I think this is a 
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Manual task
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Figure 4.1: Workflow of xPath (up): pathologists first see the AI-suggested diagnosis, then

examine its results and evidence accordingly in an explainable manner, and examine the

evidence to update the suggested diagnosis. this workflow follows a similar manual exami-

nation process of pathologists (down), which can improve AI’s integration into pathologists’

routine diagnoses.

and confidence scores [72]. However, it is still unclear how to effectively employ these

components in pathologists’ diagnosis, a time-sensitive but high-stakes process. In

practice, pathologists expect to trace an AI-generated diagnosis to abundant evidence

that explains such a decision;

3. Integrability. Because of the complexity and the uncertainty of AI’s output [220], it

is challenging to present AI’s comprehensive findings with explanations to match the

diagnosis workflow of pathologists without incurring extra cognitive burdens, given

the importance difference in each finding to the diagnosis according to the medical

guidelines [136].

Building upon the design challenges from the formative study, we propose xPath — a
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Figure 4.2: xPath’s interface design, illustrating the (a) suggested pathology diagnosis (i.e.,

WHO Grade 3) with two key design ingredients of (b) joint-analyses of multiple criteria,

where xPath offers comprehensive AI analysis of multiple critical pathology criteria for a

diagnosis; explanation by hierarchically traceable evidence, explaining high-level suggested

diagnosis to low-level AI-reporting on each pathological feature, including (c) an arrow that

points to the deterministic criterion for the suggested diagnosis, (d) a quantified score for

the criterion, (e) a list of evidence that contributes the quantified score, and (f) each piece

of evidence registered to the whole slide image to support pathologists’ examination with

contextual information.
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comprehensive and explainable human-AI collaborative diagnosis tool that can assist pathol-

ogists’ examinations integrated into their practice. Specifically, xPath can enhance pathol-

ogists’ workflow integration with AI-based diagnosis from three aspects: (i) it reports mul-

tiple AI-computed pathology criteria, which are critical for diagnosis according to medical

guidelines; (ii) it presents traceable evidence for each AI report, making it accountable and

explainable; (iii) it allows pathologists to perform diagnoses in a similar workflow to their

routine practice (as shown in Figure 4.1).

We realize xPath with two design ingredients: joint-analyses of multiple criteria and

explanation by hierarchically traceable evidence. First, the joint-analyses of multiple

criteria present AI’s findings based on multiple juxtaposed criteria from two pathology tests

(Figure 4.2b), which are combined to produce a suggested diagnosis (Figure 4.2a) based on

rules derived from the existing medical guideline [136]. Such a design addresses the compre-

hensiveness challenge, where pathologists are supported by AI-results of multiple criteria.

Second, the design of hierarchically traceable evidence establishes a chain of accountable

evidence for the diagnosis, explaining multiple levels of AI results, from high-level suggested

diagnosis, to mid-level AI’s reporting on each pathological pattern, and further to each piece

of evidence: a user can trace the suggested diagnosis (Figure 4.2a) with a quantified score

for the criterion (Figure 4.2d), to a list of evidence that contributes to the quantified score

(Figure 4.2e), and further to examine each evidence with contextual information by regis-

tering it to the whole slide image (Figure 4.2f). Such a design addresses the explainability

challenge by making the provenance of a criterion traceable and transparent. With the two

designs, pathologists are freed from examining the pathology data with manual exploration

of the high-resolution whole slide image, but building upon their diagnosis based on their

seeing, understanding, and verifying AI results. Such a workflow with AI is also similar (and

thus can be integrable) to pathologists’ in practice (see Figure 4.1).

As for the validation of xPath, we hosted work sessions with twelve medical professionals
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in pathology1 across three medical centers in the United States. We used data from a local

medical center and asked our participants to diagnose with the same examination protocol

as they had done in practice. We used working systems of xPath and an off-the-shelf whole

slide image viewer as the baseline. Our observations found that, with less than one hour’s

learning, participants could effectively utilize xPath to perform diagnosis. Specifically,

they could use xPath’s multi-criteria analysis by prioritizing one criterion and referring to

others on demand. Furthermore, xPath’s design of hierarchical explainable evidence enables

participants to navigate between high-level AI results and low-level pathological details. A

post-study questionnaire shows that, compared to the baseline system, participants reported

xPathmore integrable with their existing workflow (p=0.006, Wilcoxon rank-sum test, same

below): they were more likely to use xPath in the future (p=0.002), and gave more overall

preference on xPath (i.e., 9/12 participants “totally prefer” using xPath than the baseline

interface, and 3/12 “much more prefer” using xPath).

Benefiting from xPath’s better workflow integration, participants reported xPath re-

quired less effort (p=0.002), and was more effective in reducing the workload (p=0.002) in

performing diagnosis. Meanwhile, participants could make more accurate diagnosis decisions

with xPath, where they gave 17/20 cases correct diagnosis using xPath, compared to 7/12

correct with the baseline interface.

4.1.1 Contributions

Our main contribution is two-fold: (i) throughout interviews with experienced pathologists,

we identified their challenges in practice, and summarized that comprehensiveness, explain-

ability, and integrability are the three key components for incorporating AI models into

pathologists’ workflow; (ii) based on the empirical findings, we proposed a human-AI diag-

nosis tool — xPath — that facilitates pathologists’ routine examinations collaboratively,

1, which includes two attendings, two fellows, seven senior residents, and one junior resident.
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validated by a study that evaluates pathology professionals’ diagnoses compared with a base-

line system. Our study and findings shed light on how HCI researchers can design integrable

AI-assisted systems to bring advancements to doctors’ workflow.

4.2 Medical Background

In this work, we target the task of meningioma (a type of brain tumor) grading as a case

study to probe the design of human-AI collaborative tools for pathology diagnosis. The

meningioma grading is selected because of its complexity — it covers three aspects of diffi-

culties for pathologists: (i) multiple morphological and immunohistological features utilizing

at least two kinds of pathology tests (i.e., Hematoxylin and Eosin (H&E) slides and Ki-67

immunohistochemistry (IHC) tests) for the grading of the tumor, (ii) alternate high and low

magnification images to detect large structures (i.e., brain invasion, see Figure 4.3e) or small

events (i.e., mitosis, see Figure 4.3c), and, (iii) examine the entire tumor (occasionally as

many as 20 or more slides) for frequently rare features (i.e., spontaneous necrosis, see Figure

4.3i). As such, the practice of grading meningiomas is a favorable arena for studying how

human-AI collaborative systems should be designed to assist pathologists in carrying out

multiplex tasks.

According to the World Health Organization (WHO) guidelines (2016), meningiomas can

be graded as Grade 1, Grade 2, or Grade 3 [136]. The current grading of meningioma in

the new WHO guideline (2021) still recommends the same criteria for grading, although

the nomenclature is slightly different. Additionally, new molecular alterations are added to

determine the tumor grade [137].

The accurate grading of meningioma is vital for treatment planning: the Grade 1 tumors

can be treated with either surgery or external beam radiation, while Grade 2/3 ones often

need both treatments [208]; meanwhile, research shows that patients with Grade 3 menin-

giomas suffer a higher recurrence rate as well as lower survival rate in comparison to Grade
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2 patients [156].

Pathologists need to search and locate multiple pathological features across various mag-

nifications with optical microscopes or digital interfaces in order to determine the tumor

grade. Specifically, they first localize the regions of interest (ROIs) in low magnification

(x40), then switch to the patch level with a higher magnification (x100), and sometimes

zoom further with the highest magnification (x400) to examine cellular architecture. These

steps are usually repeated multiple times until pathologists have collected sufficient findings

to conclude a grading and sign out the case.

Figure 4.3 briefly visualizes examples of pathological features that pathologists need to

find. Pathologists’ work starts with the H&E slides (Figure 4.3a). Apart from the H&E,

Ki-67 IHC tests [2] are often used (Figure 4.3b) to provide an estimated proliferation index

(Figure 4.3d,k), which is highly correlated to meningioma grading. According to the WHO

guidelines (see Section 4.2.1) [137], grading meningiomas is based on the findings of multiple

microscopic or large-sized pathological features. As such, meningioma grading is challenging

and high-stakes — an overestimated study would incur unnecessary treatment on patients,

and an overlooked one would cause a delay of necessary treatment.

4.2.1 WHO Guidelines for Meningioma Grading (WHO CNS 5)

As specified by the WHO Central Nervous Tumor (CNS), 5th edition [137], meningioma

grading can be based on the following criteria:

• Grade 1 (benign) meningiomas include “histological variant other than clear cell,

chordoid, papillary, and rhabdoid ”[36] with some exceptions and a lack of criteria for

grade 2 and 3 meningiomas.

• Grade 2 (formerly called atypical) meningiomas are recognized by meeting at least

one of the four following criteria:
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Figure 4.3: Examples of criteria used for the meningioma grading. (a) The resected tissues

are first stained with H&E solution. (b) An additional Ki-67 IHC test is usually used to

locate mitoses. According to the WHO grading guidelines, pathologists look for (c) mitotic

cells (marked in the red box) in high-power fields with the help of (d) Ki-67 stains; (e)

brain invasion (invasive tumor cells in brain tissue); five pathological patterns, including

(f) hypercellularity (an abnormal excess of cells), (g) prominent nucleoli (enlarged nucleoli

pointed by the arrow), (h) sheeting (loss of ‘whirling’ architecture), (i) necrosis (irreversible

injury to cells marked in the red box), (j) small cells (tumor cell aggregation with high

nuclear/cytoplasmic ratio marked in the red box). For some criteria, e.g., mitosis (k,l) and

prominent nucleoli (m), pathologists are required to zoom further into the high magnification

level for examination.
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1. The presence of ≥ 2.5 mitoses/mm2 (equating to ≥ 4 mitoses per/10 high power

field (HPF) of 0.16 mm2. Moreover, since mitoses are challenging to recognize

in H&E, the Ki-67-positive nuclei (Figure 4.3k) in the corresponding areas of

Ki-67 (Figure 4.3d) are often compared for disambiguation;

2. At least three out of five following histopathological features are observed: hy-

percellularity — an abnormal excess of cells in the specimen (Figure 4.3f),

prominent nucleoli — enlarged nucleoli in a cell (usually as a cluster) (Figure

4.3g,m), sheeting — loss of ‘whirling’ architecture (Figure 4.3h), necrosis —

irreversible injury to cells (Figure 4.3i), and small cell — cluster of cells with

high nuclear/cytoplasmic ratio (Figure 4.3j);

3. Brain invasion — invasive tumor cells within the brain tissue is observed (Figure

4.3e);

4. The dominant appearance of clear cell or chordoid subtype.

• Grade 3 meningiomas are decided if at least one of the following criteria met [18, 137]:

1. Mitotic figures of ≥ 12.5 mitoses/mm 2 (equal to ≥ 20 mitoses/10 HPF of 0.16

mm2);

2. The appearance of frank anaplasia, papillary or rhabdoid subtype with some

exceptions;

3. Molecular alterations, such as a TERT promoter mutation; and/or homozygous

CDKN2A and/or CDKN2B deletion.

4.3 Formative Study

We conducted a formative study to reveal the system requirements for human-AI pathol-

ogy diagnosis. Specifically, we recruited four experienced pathologists (average experience

µ = 21.25 years) from a local medical center through word-of-mouth. All participants had
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ID Occupation Years of Experience Familiarity of Meningiomas

FP1 Attending/Professor 44 Examine Weekly

FP2 Attending/Assistant Professor 22 Examine Weekly

FP3 Attending 10 Examine Weekly

FP4 Attending 9 Examine Weekly

Table 4.1: Demographic information of the participants in the formative study.

examined meningiomas weekly. The demographic information of the participants is shown

in Table 4.1. Two out of four participants (FP3, FP4) have used digital pathology systems,

and the primary software they used is Imagescope2. For familiarity with AI, one participant

knows machine learning, one has passing knowledge, and two have little.

As for the process of the formative study, we started by describing the project’s motivation

and presented participants with a real meningioma whole slide image. Next, we asked the

participants to examine the case and encouraged them to talk aloud about their examination

process. We followed up with a semi-structured interview and let the participants describe

the challenges in their practice and their expectations of an AI-enabled system to assist such

a process. The average duration of the semi-structured interviews was about 25 minutes,

and the average length of the study was about 60 minutes.

4.3.1 Moderator’s Questions for the Formative Study

Below is a list of questions asked by the moderator in the semi-structured interview for the

formative study. Note that the order of questions and aspects discussed might vary during

the study.

Part 1: Questions for asking participants’ behavior for meningioma grading:

• Based on the case we have just seen, could you describe how you examined the slide

2https://www.leicabiosystems.com/us/digital-pathology/manage/aperio-imagescope/
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to grade the case?

• How do you usually do to grade meningiomas?

• What problems do you think exist in meningioma grading workflow? Why do you

think it is a problem?

Part 2: Questions for participants’ expectations for AI-aided meningioma diagnosis system:

• Describe why you need an AI system for meningioma grading.

• Suppose there was an automated diagnosis to help you do this job, could you please give

me an overview of the key functions or processes? That is, what functions/capabilities

do you think is very important to the system, and why?

4.3.2 Existing Challenges for Pathologists

We first transcribed the audio recordings of all interviews. One experimenter coded the

transcripts and shared the recurring challenges mentioned by the participants. A second

experimenter coded individually and took a pass on the first experimenter’s findings. Then,

a third experimenter joined to discuss with the previous two experimenters and resolved the

disagreements. Resulting from the complicated the medical guideline, we discovered three

challenges in the current pathology practice of meningioma grading:

Time Consumption. The small-scaled characteristics in the patterns of interest and

the very high resolution of slides make the meningioma grading highly time-consuming for

pathologists. A resected section from a patient’s brain tissue would generate eight to twelve

H&E slides, and pathologists need to look through all those slides and integrate the informa-

tion found on each slide. Except for the few experienced pathologists, meningioma grading

can be time-consuming to go through because a single patient’s case often consists of 10+

slides — “If you don’t see obvious features of malignancy, like necrosis or mitosis, you have
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to search all of the slides in high power to look for mitosis, which will take a few hours” (FP4)

Automating portions of the slide examination process by AI can potentially reduce such time

consumption, alleviate pathologists’ workload, and increase the overall throughput.

Subjectivity. There are high intra- and inter-observer variations during the grading of

tumors. Pathologists summarize three factors contributing to such subjectivity: (i) a lack

of precise definitions — the WHO guidelines do not always provide a quantified description

for the five pathological features of high-grade meningioma. For example, for the ‘prominent

nucleoli’ criterion, the WHO guideline does not specify how large the nucleolus should be

considered as ‘prominent’, described by FP2 — “... small cells, large nucleoli ... nobody has

defined what that means...”; (ii) implementation of the examination process — for example,

the mitotic count for grade 2 meningioma is defined as 4 to 19 mitotic cells in 10 consecutive

high-power fields (HPFs)3. However, the guideline does not specify the sampling rules of

these 10 HPFs. As a result, different pathologists are likely to sample different areas on the

slide; (iii) natural variability in people, such as the level of experience, time constraint, and

fatigue [62] — “One person would like to say it is mitosis, while the other person would say

‘not really’, because it is not good enough.”(FP4) For AI, the definition and implementation

of guidelines can be codified into the model and visualized in the system that performs

consistently to overcome people’s variability.

Multi-Tasking. Going beyond the time consumption and subjectivity, participants also

mentioned that it was also challenging for less-experienced pathologists to “multitask”, i.e.,

cross-referencing amongst multiple criteria at the same time, rather than going through one

after another sequentially. The “multitasking” operation is challenging because it requires

pathologists to memorize which criterion they had found and where they were simultane-

ously. However, we believe such a limitation can be addressed by introducing digital systems

without AI, where computers can memorize pathologists’ previous annotations and interac-

tions.

3The size of field-of-view under x400 magnification of a optical microscope.
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4.3.3 System Requirements for xPath

Regarding pathologists’ expectations about the system, we summarized three requirements

to enhance workflow integration: comprehensiveness, explainability, and integrability. Note

that participants also expect the AI to be accurate and reproducible for meningioma grading

— “If the machines cannot provide accurate material, it is not a worthwhile system ... It

would be good if two different machines can give the similar quality of mitosis.” (FP1)

However, instead of including them in the system requirements, we believe such concerns

can be addressed by the introduction of high-performance AI, which we will demonstrate in

Section 4.5.

Comprehensiveness. According to the current medical guideline, the grading of menin-

giomas involves multiple sources of pathology tests (from H&E and Ki-67) and criteria (e.g.,

mitosis, necrosis, brain invasion). To incorporate xPath into the current practice, the sys-

tem should comprehensively, systematically, and exhaustively support all these pathology

tests and criteria to ensure that pathologists do not miss crucial findings.

Explainability. In lieu of a single grading result from a black-box AI model, the system

should provide visual evidence to justify the AI’s findings according to the medical defini-

tion of the criterion. This is because some criteria (only visible under high magnifications)

requires examining lower-level details in order to interpret an AI’s finding and further needs

to be traceable to the original location in the whole slide image for a review with more con-

textualized information. Overall, there should be explainability both globally (how results

from multiple criteria are combined to yield a grading) and locally (which includes (i) what

evidence leads to the computed result of each criterion, e.g., where mitoses are detected that

lead to the number of mitosis counts, and (ii) why a specific piece of evidence is captured

by AI, e.g., which part of the evidence convinces the AI that it contains mitoses).

Integrability The system should allow pathologists to diagnose with AI similar to their

daily routines of manual examination. Specifically, the system should first suggest a hy-
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pothesis for diagnosis and provide evidence to support it. Meanwhile, given that errors are

inevitable for most existing AI models, the system should allow pathologists to refine AI’s

findings by retrieving detailed contextualized evidence on demand. When showing the ev-

idence of grading, the system should not overwhelm pathologists with all evidence from a

whole slide; rather, it should direct pathologists to the representative regions of interest.

Finally, the system should enable pathologists to cross-check each criterion and override the

results manually when they detect an error.

4.4 Design of xPath

Guided by the aforementioned system requirements, we developed xPath with two key

designs for pathology AI systems: (i) joint-analyses of multiple criteria and (ii) explanation

by hierarchically traceable evidence. We first detail the two designs and then describe how

a pathologist uses xPath to perform a meningioma grading task.

4.4.1 Joint-Analyses of Multiple Criteria

Based on the formative study, we found that pathologists rely on the WHO meningioma

grading guideline for meningioma grading [136] involving multiple criteria. Thus xPath’s

design follows the WHO guideline and employs AI to compute eight critical criteria for

meningioma grading4. Details on the AI implementation are described in Section 4.5. These

criteria can be split into two categories: quantitative and qualitative. For the quantitative

criteria (i.e., mitotic count, Ki-67 proliferation index), we show their predicted quantitative

values directly. For the other criteria dealing with the presence or absence of a specific

pathological pattern, xPath provides recommendations of regions of interest (ROI) hotspots

4... which includes the mitotic count, Ki-67 proliferation index, hypercellularity, necrosis, small cell,
prominent nucleoli, sheeting, and brain invasion. Note that this chapter does not consider using AI to
identify the subtypes (e.g., clear cell, frank anaplasia) because we believe they are relatively easier to be
discovered and judged by pathologists.
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Figure 4.4: Joint-analyses of multiple criteria in xPath’s design: (a) the overall suggested

grading; (b) a structured overview of each WHO criterion with (c) an arrow highlighting

the main contributing criterion to the suggested grading; (d) users can override criteria

by right-clicking on each item and change the result to ‘found’, ‘not found’ or ‘uncertain’;

xPath provides color bars to indicate the status of each criterion: (e) red indicates a con-

firmed abnormal criterion (or presence), (f) green indicates a confirmed normal criterion

(or absence), (g) orange indicates the criterion is unconfirmed/confirmed uncertain, and (h)

gray indicates the criterion is not applicable in this case.
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according to the largest aggregations of AIs’ probabilities.

Figure 4.4 demonstrates the interface of multiple criteria, which shows the current sug-

gested grading for the tumor (i.e., the suggested ‘WHO grade 2’, Figure 4.4a) and a struc-

tured overview of each criterion (Figure 4.4b). xPath displays an arrow to indicate the

main contributing criterion (Figure 4.4c), the most deterministic AI findings for the sug-

gested diagnosis, according to the meningioma grading guidelines. For example, in Figure

4.4, xPath suggests the “mitotic count” is the main contributing criterion, because it has

detected 12 mitoses in 10 high-power fields (HPFs) (Figure 4.4c, highest region). Such AI

findings directly satisfy descriptions of WHO grade 2 meningiomas, making “mitotic count”

the main contributing criterion. Going beyond the main contributing criterion, all the crite-

ria are linked with the evidence or regions of interest related to the findings. Moreover, AI’s

recommendation on all the criteria can be overridden by the pathologist (Figure 4.4d). And

xPath uses color bars (Figure 4.4e,f,g,h) to indicate the status.

In summary, the joint-analyses of multiple criteria addresses the challenge of comprehen-

siveness by providing important information for pathologists according to the medical guide-

line. xPath also achieves global explainability by presenting how different AI-computed

criteria are combined to arrive at a diagnosis. Such a design can enhance AI’s workflow

integration because it exposes the pathologist to high-level AI findings when they onboard

the case. As such, they can establish an initial understanding and develop hypotheses, which

also facilitates them to double-check with their examination later.

4.4.2 Explanation by Hierarchically Traceable Evidence for Each Criterion

Another finding from the formative study is that, besides a global explanation of the overall

grading, pathologists also would like to see evidence that justifies AI’s grading, e.g., how AI

processes the image of a local patch (for local explainability). Hence, we designed xPath to

provide such explanations by hierarchically traceable evidence: xPath enables pathologist

users to examine and justify the evidence with a top-down human-AI collaboration workflow.
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Examine Suggested Grading (a)

Level: Top

Main Contributing Criterion (b)
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Figure 4.5: xPath presents a top-down human-AI collaboration workflow for pathologists

to interact with xPath (left) and pathologists’ corresponding footprints on the xPath’s

frontend user interface with examining the mitosis criterion as an example (right). A pathol-

ogist user starts from (a) the AI-suggested grading result and then examines (b) the main

contributing criterion. They can further examine (c) the evidence list, and register back

into the original whole slide image in higher magnifications (d,e). Furthermore, users can

(f) approve/decline/declare-uncertain on the evidence, or (g) override AI results directly by

right-clicking on each criterion. Users might repeat the same workflow (c-g) multiple times

to examine other criteria (one criterion for each time). Meanwhile, xPath’s suggested grad-

ing (a) will be updated as the user justifies AI’s findings. The user may continue to interact

with xPath until they have collected sufficient confidence for a diagnosis.
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Specifically, at the top level, pathologists can first see the suggested diagnosis recommended

by xPath (Figure 4.5a). Then, they can continue to dive down and examine a list of AI-

computed criteria (Figure 4.5b). Each criterion can be boiled down to a list of mid-level

samples (Figure 4.5c). For the most important criterion — mitosis, xPath demonstrates a

series of explanations in each sample, including AI’s output probability (Figure 4.6a), AI’s

confidence level (Figure 4.6b), and a saliency map (Figure 4.6c) that highlights the spatial

support for the mitosis class in the reference image, allowing pathologists to check AI’s

validity on each sample quickly. Further, at the low-level, xPath supports registering

each sample into the whole slide image (WSI) to enable pathologists to examine with higher

magnification and search nearby for more contextual information (Figure 4.5d,e).

With the provided mid- and low-level information, a pathologist can approve/ decline/

declare-uncertain a sample for a criterion with one click (Figure 4.5f), or directly override

AI’s results on each criterion (Figure 4.5g). Correspondingly, the overall suggested grading

(Figure 4.5a) is updated dynamically upon the user’s input. Such a diagnosis-contesting

workflow allows pathologists to challenge AI’s suggested diagnosis by seeing AI’s reasoning

line and evidence, which increases the “contestability” as described in previous HCI research

in healthcare [102].

Such a workflow mimics a scenario that we found in the formative study: pathologists

might assign low-level tasks (e.g., marking ROIs, finding specific criteria) to trainees in

practice. They can continue to perform a differential diagnosis (i.e., building hypotheses

and ruling out less-probable cases with findings) based on trainees’ reports. By replacing

trainees with AI, we emulated the relationship between the pathologists and trainees, thus

making AI integral to pathologists’ current practices.

Figure 4.7 demonstrates typical examples of evidence provided by xPath. Particularly,

for the mitosis-related criteria (i.e., mitotic count from H&E WSI and Ki-67 proliferation

index from Ki-67 IHCWSI), which are commonly used for meningioma grading, we introduce

two ‘shortcuts’ for pathologists to look into AI’s results:
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c

Figure 4.6: For the mitosis criterion, xPath demonstrates a series of explanations in each

mid-level sample, including the (a) AI’s probability, (b) AI’s confidence level, which is calcu-

lated by the probability thresholds, and (c) a saliency map (calculated by the Grad-CAM++

algorithm [52]) that highlights the spatial support for the mitosis class in the reference image

on the left.

• Highest Region Sampling. One WHO criterion is the mitotic count in 10 consec-

utive high-power fields (HPFs). Our formative study found that the inter-observer

consistency of “10 consecutive HPFs” is low due to the difference in the ROI sampling

rules adopted by pathologists. To address this problem, xPath provides the highest

region sampling tool. The highest region is defined as a 2×5 HPF area with the highest

number of mitotic counts (Figure 4.7c) or the highest Ki-67 proliferation index (Figure

4.7d). This tool speeds up a pathologist’s work by helping them locate 10 consecutive

HPFs as required by the WHO guidelines.

• Highest Focal Region Sampling. From our formative study, pathologists mentioned

that high-grade meningiomas share a common feature of increased mitotic activities

in a localized area. Hence, xPath provides the highest focal sampling tool to help

pathologists better localize highly concentrated mitosis/Ki-67 proliferation index areas.

In xPath, the highest focal region is calculated as the one HPF with the highest

number of mitotic counts (Figure 4.7a) or the highest Ki-67 proliferation index (Figure

4.7b). Using this tool, pathologists can locate foci of highly-mitotic areas that the

highest region sampling might miss.
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Figure 4.7: Selected pieces of sampled evidence: (a) a highest focal region sampling result

of mitotic count on H&E slide (red box, 1HPF), the small blue frames indicate the rough

positions of detected mitoses, and the smaller red boxes in the blue frames mark the positions

of mitoses (that are shown on the evidence list) found by xPath’s AI; (b) a highest focal

region sampling result on the Ki-67 IHC slide (red box, 1HPF); (c) a highest region sampling

result of mitotic count on H&E slide (red box, 10HPFs) with mitoses reported by xPath’s

AI (the blue frames and smaller red boxes); (d) a highest region sampling result on the Ki-67

IHC slide (red box, 10HPFs); (e) a hypercellularity ROI sample (blue box); (f) a necrosis

ROI sample (blue box); (g) a small cell ROI sample (the inner blue box, the outer yellow

box marks the dimension of 1HPF); (h) a prominent nucleoli ROI sample (blue box).
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Pathologists can go beyond the sampled areas and navigate the high-heat areas using

heatmaps generated for the whole slide. For example, the mitosis heatmap registers all

AI-detected positive mitotic cells as a mitotic density atlas, where high-heat areas indicate

a high density of mitotic cells. As such, the heatmap would serve as a ‘screening tool’ to

help pathologists filter out unrelated areas and rapidly narrow down to the ROIs that are

scattered in an entire WSI. xPath provides such ‘screening tools’ for all criteria.

After pathologists have finished examining one criterion, they can proceed to justify the

rest of the criteria with the same top-down workflow (one iteration for each criterion). During

such an iterative process, xPath will update AI’s findings on an individual criterion and, if

necessary, the overall suggested grading as well. Finally, pathologists can make a diagnosis

once they have collected sufficient confidence for the grading diagnosis.

In summary, in contrast to prior work that enables pathologists to define their own

criteria for finding similar examples [43], xPath aims at making examinations based on an

existing criterion traceable and transparent with evidence, which allows pathologists to see

and understand why AI derives such findings. Furthermore, pathologists can challenge (or

“contest” [102]) these AI findings with a top-down workflow to refine the suggested grading

diagnosis. Such collaboration between pathologists and AI is similar to that with pathology

trainees, where pathologists can perform a differential diagnosis based on trainees’ findings.

4.5 Implementation of xPath’s AI Backend

xPath implements an AI-aided pathology image processing backend to compute the eight

pathological criteria of the mitotic count, Ki-67 proliferation index, hypercellularity, necro-

sis, small cell, prominent nucleoli, sheeting, and brain invasion. In this section, we briefly

describe datasets, the AI processing pipeline, and AI training details. Finally, we report the

performance of each of the AI models from a technical evaluation.
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Figure 4.8: Data processing pipeline of xPath: (i) xPath takes H&E and Ki-67 whole

slide images (WSIs) as input. (ii) For each WSI, xPath uses a sliding window method

to acquire (a) H&E and (b) Ki-67 tiles; Furthermore, each H&E tile is processed with (c)

resizing, (d) sliding window (240 × 240 × 3), and (c) another sliding window (96 × 96 × 3)

to fit the inputs of the down-stream AI models. (iii) xPath’s AI backend takes over the

pre-processed tiles and employs multiple AI models to detect WHO meningioma grading

criteria from each tile. Given an H&E tile, xPath uses (f) a nuclei segmentation model

to count the number of nuclei (for hypercellularity judgment), (g) a necrosis classification

model to calculate necrosis probability, and (h) a sheeting classification model to calculate

sheeting probability. xPath further utilizes the nuclei counting results for (k) small cell

recommendation, and (l) brain invasion visualization. For a 240× 240× 3 tile, xPath uses

(i) a mitosis classification model to obtain the mitosis probability. For a 96 × 96 × 3 tile,

xPath uses (j) a prominent nucleoli classification model to predict prominent nuclei prob-

ability. For each Ki-67 tile, xPath (m) detects positive and negative nucleus to calculate

the Ki-67 scores; (iv) xPath further (n) calculates ROIs based on all AI-computed results

(marked in the green boxes), and shows them as evidence on the frontend user interface for

pathologist users to justify.
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4.5.1 Processing WSIs with AI

xPath aims to screen the entire whole slide image (WSI) using AI and then determine sug-

gested grades based on the AI findings. To achieve this, xPath includes six AI models and

two rules, one for each criterion, to general initial AI results. For each WSI, we first used a

sliding window technique to cut it into smaller tiles. For each tile, we further employed a se-

ries of AI models to calculate six criteria (i.e., nuclei count (Figure 4.8f), necrosis probability

(Figure 4.8g), sheeting probability (Figure 4.8h), mitosis (Figure 4.8i), prominent nucleoli

(Figure 4.8j), and Ki-67 proliferation index (Figure 4.8m)). Based on the AI-computed nu-

clei count, we further used two rules to support the reporting of the small cell and the brain

invasion patterns. xPath can recommend small cell tiles based on the nuclei count of each

tile (Figure 4.8k). Furthermore, the brain invasion was visualized by classifying the brain

vs. tumor regions according to the nuclei count (Figure 4.8l). This is because meningioma

tumor areas usually have a high nuclei density, while normal brain tissues are not. After the

AI models had processed each tile, xPath calculated the ROIs using a set of rules.

4.5.2 Dataset and Model Training

Since there were no pre-trained models nor public meningioma datasets for the pathology

patterns of mitosis, necrosis, prominent nucleoli, and sheeting, we built an in-house dataset

consisting of 30 WSIs (WSI total size = ∼ 54.9 GB) from a local medical center to train AI

models to classify these four patterns. The WSIs were scanned by an Aperio CS2 scanner

in x400 magnification (pixel size=0.25µm). The ground truth labels were collected in two

ways: (i) for the mitosis, the pathologist labeled with an online labeling system; (ii) for other

criteria, the pathologist marked ROIs using the Imagescope software. We then cropped the

labeled ROIs with a random-crop technique, and the tiles in different sets were generated

from a different group of ROIs. In sum, the final dataset has a size of ∼ 16.1 GB. It consists

of four training and testing sets, covering the four pathology patterns (as shown in Table
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Dataset
Dimension

(in pixels)

# of Samples

(Training)

# of Samples

(Testing)

Mitosis 256× 256× 3 33,562 (1,925 positive, 31,637 negative) 8,223 (336 positive, 7,887 negative)

Necrosis 512× 512× 3
4,383 (from 190 regions)

(651 positive, 3,732 negative)

3,587 (from 162 regions)

(770 positive, 2,817 negative)

Prominent Nucleoli 96× 96× 3 15,042 (2,447 positive, 12,595 negative) 3,753 (609 positive, 3,144 negative)

Sheeting 240× 240× 3
3,660 (from 55 regions)

(1605 positive, 2055 negative)

2,340 (from 45 regions)

(1,185 positive, 1,155 negative)

Table 4.2: The description of the dataset for each task. The dimensions of input tiles (in

pixels), the size of training/testing sets, and the distribution of positive/negative tiles are

provided.

4.2).

To train the models, for each dataset, we further randomly selected a subset of the

training set to be the validation set, and utilized it to determine the optimal thresholds. The

validation sampling rates for mitosis, necrosis, sheeting, and prominent nucleoli datasets are

25%, 30%, 30%, and 30%, respectively. Specific thresholds were decided by the maximum

F1 scores achieved by each model in the validation set.

• Mitotic Count (Classification). xPath uses an EfficientNet-b7 model [193] to

identify mitosis (Figure 4.8i). A 240 × 240 tile with a prediction probability > 0.78

is counted as positive. xPath further applies a non-maximum suppression technique

to post-process the overlapping positive tiles. The mitotic distribution of the slide is

calculated by merging the results from each 512× 512× 3 H&E patch.

• Ki-67 Proliferation Index (Semantic Segmentation). xPath uses a pre-trained

Cycle-GAN model [82] to detect both Ki-67 positive and negative nucleus (Figure

4.8m). Given a 512× 512× 3 Ki-67 patch as the observation region, the Ki-67 prolif-

eration index is calculated as positive-count
positive-count+negative-count

× 100%.

• Hypercelluarity (Semantic Segmentation). xPath uses a pre-trained deep neural
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network (i.e., HoVer-Net [86])to segment and count the number of nuclei in a 512 ×

512× 3 H&E patch (Figure 4.8f).

• Necrosis (Classification). xPath uses an EfficientNet-b5 model to judge whether

a 512 × 512 × 3 H&E patch contains the necrosis pattern (Figure 4.8g). A patch is

considered necrosis-positive if prediction probability > 0.74.

• Small Cell (Rule-Based Recommendation). xPath applies the rules for rec-

ognizing small cell patterns: selecting and recommending the top-10 512 × 512 × 3

H&E patches with the highest nuclei count within each slide (Figure 4.8k). For each

recommended patch, if it has >125 nucleus/patch, then xPath includes it in the rec-

ommendation.

• Prominent Nucleoli (Classification). Similar to mitosis classification, xPath uses

an EfficientNet-b0 model to classify prominent nucleoli (Figure 4.8j). To avoid false-

positive cases influencing the result, only tiles that have >0.9 prediction probabilities

are counted as positive5. xPath counts positive tiles in each 512× 512× 3 patch for

calculating the distribution of prominent nucleoli.

• Sheeting (Classification). xPath uses an EfficientNet-b1 model [193] to classify

whether the patch includes a sheeting pattern (Figure 4.8h). A sheeting patch is called

as positive if its prediction probability is >0.52.

• Brain Invasion (Classification). xPath outlines the brain invasion pattern by

classifying whether a given 512 × 512 × 3 H&E patch is tumor, brain, or background

(Figure 4.8l). If the tumor cells are invading the normal brain tissues, it can be seen

with a heatmap visualization of tumors vs.brain areas. Because meningioma is a high-

cellular tumor, xPath classifies tumor patches with the following rule: (i) patches

5We choose precision rather than recall in the prominent nucleoli classification because unlike mitosis,
this criterion is justified by the presence of cell clusters that have prominent nucleolus, and missing one or
a few detections would not significantly influence the overall result.
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Figure 4.9: Illustration of the data augmentation pipeline used for model training to classify

mitosis, necrosis, prominent nucleoli, and sheeting.

that have >55 nucleus in each H&E patch are counted as the tumor; (ii) patches that

have [10,55] nucleus are counted as the brain; (iii) otherwise, count as the background.

Four deep learning models for mitosis, necrosis, sheeting, and prominent nucleoli, share

the same online data augmentation strategy, which includes scaling, rotation, horizontal flip,

vertical flip, elastic transform, affine, color jitter, stain augmentation [194], Gaussian blur,

and Gaussian noise (see Figure 4.9).

We used the same set of hyperparameters to train the four models: initial learning

rate=0.05 with decaying factor=0.3 every 15 epochs, SGD optimizer with momentum=0.9,

weight decay=10−4, 130 epoch with early stopping, cross-entropy loss.

The training process was performed with the corresponding datasets on a CentOS 7

server, with Intel Xeon W-2133 CPU, 104 GB memory, and two Nvidia RTX-2070 graphics

cards.
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4.5.3 Rules for Generating ROIs

After the AI models had processed each tile, xPath calculated the ROIs using a following

set of rules (Figure 4.8n):

• A hypercellularity ROI is defined as a cluster that has >150 nucleus per tile;

• A necrosis ROI is defined as a cluster that has probability >0.7 from necrosis classifier;

• Small cell ROIs are defined jointly by (i) top 10 tiles that have the most nuclei count

over the slide, and (ii) >125 nucleus/tile;

• A prominent nucleoli ROI is defined as a cluster that has >4 prominent nucleolus per

tile;

Specific numbers mentioned above were decided jointly with our empirical experience

and discussion with our pathologist collaborators. The areas of hypercellularity, necrosis,

and prominent nucleoli ROIs are calculated by the DBSCAN clustering algorithm [70]. If no

matching ROI is found on one slide, xPath’s corresponding evidence list would be displayed

as “no evidence found”.

4.6 Constructing Mid-Level Evidence for the Mitosis Criterion

xPath includes three components in the mid-level samples for mitosis to add the explainabil-

ity, including AI’s probability, AI’s confidence level, and a saliency map that shows spatial

support for the mitosis class. We describe the implementation as follows:

• AI’s probability: xPath applies a softmax function to the model output for calcu-

lating the AI’s probability;

• AI’s confidence level: xPath assigns each piece of evidence into three confidence

levels (i.e., high-, mid-, and low-confidence). For implementation, xPath identifies
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the confidence levels by thresholding AI’s probability according to the precision scores

from validation set:

– If probability > 0.9, then classify as high-confidence (precision≥0.94);

– Else if probability ∈ [0.85, 0.9], then classify as mid-confidence (0.87≤ preci-

sion <0.94);

– Else, classify as low-confidence (0.76≤precision<0.87)

• Saliency map: xPath uses the Grad-CAM++ algorithm [52] to generate the saliency

map. Specifically, the 30th layer of the EfficientNet-b7 model is selected and extracted

for the calculation.

4.6.1 Technical Evaluation

We report the performance of AI models on testing sets. Specifically, we test the supervised

models for recognizing mitosis, necrosis, prominent nucleoli, and sheeting criteria, and report

the Precision-Recall curve, as shown in Figure 4.10. In summary, xPath achieved F1 scores

of 0.755, 0.904, 0.763, and 0.946 in identifying the pathological patterns of mitosis, necrosis,

prominent nucleolus, and sheeting. The scores indicate the effectiveness of our models.

Moreover, for the tasks of cell-counting in hypercellularity and Ki-67 proliferation index

criteria, we test their performance with 150 randomly-selected 512× 512× 3 tiles each and

report the average error rate. The results show that the average error rate of nuclei counting

(hypercellularity) and Ki-67 proliferation index is 12.08% and 29.36%, respectively.

Due to a lack of data at present, for brain invasion and small cell patterns, rather than

drawing a definitive conclusion, xPath uses a rule-based, unsupervised approach to recom-

mend areas for pathologists to examine. We planned to validate the performance on these

two criteria later in the work sessions with pathologists; however, it was hard for the par-

ticipants to differentiate the small cell formation vs.inflammation areas without proper IHC

tests. As such, xPath’s AI performance in detecting small cell patterns was not validated.

108



a b c d

Figure 4.10: Classification performance for (a) mitosis, (b) necrosis, (c) prominent nucleoli,

(d) sheeting. The solid blue lines in each sub-figure illustrate the Precision-Recall curves

of each model. The red crosses indicate the performance achieved by the models using the

thresholds that maximized the F1 scores on the validation sets. The gray lines in each figure

are the height lines of the F1 scores. The F1 score of each height line is shown on the right

axis.

For the brain invasion, most pathologists felt it was faster to examine it manually and did

not rely on AI’s recommendations.

4.7 Work Sessions with Pathologists

The technical evaluation reported in the previous session validated the effectiveness of

xPath’s AI backend in the in-house dataset. However, it remains unanswered whether

xPath is beneficial to pathologist users in practice. Notably, many previous cases showed

how easily AI models could break, although they showed high accuracy in training/test data

[190, 119]. To address these concerns, we conducted work sessions with 12 medical pro-

fessionals in pathology across three medical centers and studied their behavior of grading

meningiomas using a traditional interface — an open-source whole slide image viewer called

ASAP6 and xPath. In this study, we referred to the traditional interface as system 1 and

xPath as system 2 to avoid biasing of participants. The main research questions are:

6https://computationalpathologygroup.github.io/ASAP/. This tool was selected because it is
open-source and has gained popularity in the digital pathology research domain [132].
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RQ1: Can xPath enable pathologists to achieve accurate diagnoses?

One reason for utilizing AI in xPath is because it can highlight ROIs of multiple patho-

logical patterns, freeing pathologists from examining the entire slide. However, it is still

yet unclear whether introducing AI will have a positive or a negative effect on pathologists’

diagnoses: On one hand, multiple previous works show that the introduction of human-AI

collaboration improves pathologists’ performance [211, 40]; On the other hand, due to the

existing limitations in AI models’ accuracy, users face the risk to generate wrong diagnoses

if they over-rely on the non-perfect AI [21, 39]. Since there is no solid conclusion on this, we

hypothesize that —

• [H1] Pathologists’ grading decisions with xPath will be as accurate as those

with manual examinations.

RQ2: Do pathologists work more efficiently with xPath?

Another reason for using AI in xPath is that it can improve the pathologists’ throughput

by alleviating their workload. However, it remains unanswered how AI will assist pathologists

in xPath, given that previous work shows less-carefully-designed AI might incur extra bur-

dens (also shown in Chapter 2). As such, it is also necessary to find out whether pathologists

can work efficiently with xPath’s AI. We hypothesize that —

• [H2a] Pathologists will spend less time examining meningioma cases using

xPath.

• [H2b] Pathologists will perceive less effort using xPath.

RQ3: Overall, does xPath add value to pathologists’ existing workflow?

Going beyond the influence brought by AI, we introduce two design ingredients for pathol-

ogy AI systems — joint-analyses of multiple criteria and explanation by hierarchically trace-

able evidence in xPath. We also concluded three system requirements, i.e., comprehensive-
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ness, explainability, and integrability for xPath. In this study, we investigate whether such

designs will add value to pathologists’ existing workflow. Specifically, we hypothesize that:

• [H3a] xPath will improve comprehensiveness with the joint-analyses of mul-

tiple criteria.

• [H3b] xPath will improve explainability with explanation by hierarchically

traceable evidence.

• [H3c] xPath will improve integrability with the top-down human-AI collab-

oration workflow.

4.7.1 Participants

We recruited 12 medical professionals in pathology across three medical centers in the United

States through word-of-mouth and by sending flyers to the mailing lists. All participants

were required to complete at least one year of post-graduate pathology residency training

(≥ PGY-2). Our participants’ experience ranged from two to ten years (µ=4.38, σ=2.16),

including two attendings (A), two fellows (F), seven senior residents (SR, ≥ PGY-3), and

one junior resident (JR, PGY-2). The demographic information of the participants is shown

in Table 4.3. All participants had received training for examining meningiomas before the

work sessions. And all participants had experience in seeing digital pathology slides prior to

the study. They primarily used the Imagescope (a commercial software that provides image

viewing functions similar to the ASAP) to see whole slide images (WSIs). The primary

purpose of using the digital system was to train or review remote cases.
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ID Occupation
Years of

Experience

Frequency of

Seeing WSIs
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

P1 PGY-3 3 Weekly ASAP xPath

P2 PGY-4 4 Monthly ASAP xPath xPath xPath xPath

P3 Fellow 4 In Six Months xPath ASAP

P4 Fellow 5 Weekly xPath ASAP xPath

P5 PGY-4 4 Weekly xPath xPath ASAP

P6 PGY-3 3 Monthly xPath ASAP

P7 Attending 7 Weekly xPath ASAP xPath

P8 PGY-4 3.5 Weekly xPath ASAP

P9 PGY-2 2 Bi-weekly ASAP xPath

P10 PGY-3 3 Weekly xPath ASAP xPath

P11 PGY-4 4 Monthly ASAP xPath

P12 Attending 10 Weekly xPath xPath ASAP

Table 4.3: Demographic information and arrangements of the participants in the work ses-

sions. ‘Case 1’ – ‘Case 6’ are the case IDs. During the study, participants used ‘ASAP’

(system 1) and ‘xPath’ (system 2) to examine the cases. Note that FP12 had also partici-

pated in the formative study (referred to as FP3 in Table 4.1.)

112



4.7.2 Test Data

We asked our pathologist collaborators in a local medical center to select 18 meningioma

slides and scan them to WSIs7 with an Aperio CS2 scanner to generate the test cases

(IRB#20-000431). In normal conditions, each patient’s case consisted of more than 10

WSIs, and an averaged-experienced resident pathologist typically needs to spend about one

hour to finish examining an averaged-difficult case (i.e., criteria found in the case do not

lie on the grading borderlines). As such, we generated nine ‘virtual patient cases’ with the

‘virtual cookie cut’ technique (see Figure 4.11) to fit the task of grading meningiomas in

hour-long working sessions.

Each virtual patient consisted of a mandatory H&E slide (in x400), and an optional Ki-67

slide (in x200). Each H&E slide had two nodes (each has a size of 30,000×30,000 pixels),

while each Ki-67 slide had two corresponding Ki-67 nodes (each has a size of 15,000×15,000

pixels) that were extracted from the same position as their H&E counterparts, if available.

The contours of nodes were removed as a “wash-out” measure because some participants had

seen the slides before the study. All nodes were selected by an expert pathologist and included

deterministic regions of interest (i.e., crucial areas that include necessary information) for

the diagnosis. Therefore, although participants were seeing virtual patients in the study,

they still had to use the full system to diagnose because pathological criteria in the test data

were not eliminated. In total, nine virtual cases have nine H&E slides and six Ki-67 slides.

The ground truth diagnoses was provided by an experienced pathologist, including two

WHO grade 1, five WHO grade 2, and two WHO grade 3. We selected three from the grade

2 cases for the tutorial purpose, leaving the test set with two cases for each grade.

7. . . which include eleven H&E WSIs (scanned in x400), and seven Ki-67 WSIs (scanned in x200).
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Whole Slide Image Database

H&E WSIs (x40)

Ki-67 WSIs (x20)

Virtual Case

H&E Virtual Case (x40)

Ki-67 Virtual Case (x20)

a

b

c

d

Figure 4.11: We used the ‘virtual cookie cut’ technique to generate the tests cases. Specif-

ically, we first collected (a) pairs of H&E (in x400) and Ki-67 (in x200) WSIs. Then, we

generated ‘virtual cuts’ by (b) selecting 30,000×30,000-pixel regions in H&E WSIs, and (c)

15,000×15,000-pixel regions from the same position as their H&E counterparts. (d) Each

virtual case consists of one mandatory H&E slide with two nodes and one optional Ki-67

slide with two corresponding ones.
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4.7.3 Task and Procedure

All sessions were conducted online because of the COVID-19 pandemic. We first introduced

the project’s mission and provided a detailed walkthrough of the traditional interface and

xPath with three pairs of H&E and Ki-67 slides as an example. Participants used Microsoft

Remote Desktop to interact with both systems that ran on a remote server. Next, we ran a

testing session for the participants to grade one virtual case with the traditional interface,

and one-four others using xPath with the time cost logged. The variation in the cases was

caused by the between-subject difference in the time consumption of using xPath. And such

a difference was caused by two factors: (i) participants’ learning abilities — some learned

faster to use xPath than others; (ii) participants’ abilities in examining the evidence. The

order was counterbalanced across participants.

For each case, the time was counted from when participants first clicked the WSI case

until they reached the grading diagnosis. After participants finished each case, we asked

them to report their grading diagnosis as well as their findings through a questionnaire

adapted from the College of American Pathologists (CAP) cancer protocol template8. In

this session, we did not compare xPath with traditional optical microscopes because of the

difficulty of instrumentation and observation given the remote situation. After participants

had examined all the cases, we conducted a semi-structured interview to elicit their responses

to xPath’s perceived effort and added value. The average duration of each work session was

∼70 minutes. Although conducted online, we set up the testing environment as close to

pathologists’ everyday clinical workflow: (i) we used H&E and Ki-67 data based on real

patients (as described in Section 4.7.2); (ii) we used real working systems of ASAP and

xPath; (iii) we asked our participants to diagnose following the same examination protocol

as they had done in practice.

8https://documents.cap.org/protocols/cp-cns-18protocol-4000.pdf
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4.7.4 Measurements

In this study, we collected participants’ grading decisions from the CAP questionnaire and

analyzed the time log. We also asked them to fill in a post-study questionnaire (see Table

4.4) with seven-point Likert questions following [43, 117, 100]. We tested our hypotheses via

the following measurements:

For H1, we compared the diagnoses reported by participants and the ground-truth diag-

noses. We measured the accuracy of both systems by calculating the error rates.

ForH2a, we calculated the average time participants spent on each case using xPath and

the traditional interface. For H2b, we asked them to give both systems ratings of the effort

needed for grading (Table 4.4, W1), and the effectiveness of the system in reducing the

workload (Table 4.4, W2) in the post-study questionnaire.

H3a-c was evaluated by the post-study questionnaire. For H3a, we asked participants

to rate the comprehensiveness of xPath and the traditional interface (Table 4.4, C1). For

H3b, we asked them to rate the explainability of xPath only since the traditional interface

did not provide AI detections (Table 4.4, E1). For H3c, we asked participants to rate the

integrability of both systems (Table 4.4, I1). Because “comprehensiveness”, “explainability”

and “integrability” are non-trivial terms, we included the following clarifications for the three

terms in the questionnaire:

• “Comprehensiveness”: “whether the system can provide detections for (1) multiple

criteria for diagnosis and (2) entire slide, instead of a local area;”

• “Explainability”: “(1) how results from multiple criteria are combined to yield a

grading; (2) what evidence leads to the value of each criterion; (3) why AI thinks a

piece of evidence is positive / negative;”

• “Integrability”: “whether the system is integrable to your workflow of examining

meningiomas.”
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Apart from the hypotheses, we also asked the participants to rate the helpfulness of

each component in xPath (“Rate the helpfulness of each component.” — 1=lowest and

7=highest). Next, we investigated whether the participants trusted xPath by asking them

the following two questions: (i) How capable is the system at helping grade meningiomas?

(Table 4.4, T1), (ii) How confident do you feel about the accuracy of your diagnoses using

the system? (Table 4.4, T2). Last but not least, to evaluate participants’ attitudes towards

xPath’s workflow integration, we asked whether the participants would like to use both

systems in the future (Table 4.4, F1), and also let the participants rate the overall preference

of system 1 vs. system 2 (Table 4.4, F2).

4.8 Results and Findings

In this section, we first discuss our initial research questions and hypotheses. Then, we

summarize the recurring themes that we have found in the working sessions.

4.8.1 RQ1: Can xPath enable pathologists to achieve accurate diagnoses?

We summarize the CAP questionnaire responses from our participants and collect 12 grading

decisions from the traditional interface and 20 from xPath. We then follow previous works

on digital pathology [199, 188] and compare the difference between participants’ responses

and the ground truth diagnoses. In summary, with the traditional interface, participants

gave correct grading decisions for 7/12 cases, lower-than-ground-truth gradings for 4/12

cases, and higher-than-ground-truth grading for 1/12 cases. In comparison, using xPath,

participants gave 17/20 cases correct gradings and lower-than-ground-truth gradings in 3/20

diagnoses. Upon further analysis, we found that all three errors that participants made with

xPath were caused by their over-reliance on AI. In these cases specifically, participants

spent the majority of their effort examining the evidence reported by xPath and missed the

false-negative features that xPath failed to detect —
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It’s just that I got caught up in looking at the boxes, and I would forget that I

should look at the entire case myself. (P4)

In sum, based on the data collected by the study, we report that participants could make

more accurate grading decisions with xPath compared to the traditional interface (H1).

4.8.2 RQ2: Do pathologists work more efficiently with xPath?

Contrary to our hypothesis (H2a), participants spent an average of 7min13s examining

each case using xPath, which is 1min17s higher than the traditional interface (ASAP). Our

study suggests that participants tended to (p=0.050, Wilcoxon rank-sum test, same below)

invest more time in xPath than the traditional interface. We believe this is partly because

xPath brings participants an extra workload to comprehend and justify the AI findings.

In the traditional interface, our participants share a similar workflow of examining the WSI

— they first scanned the entire WSI in low magnification, then prioritized studying one

criterion (such as the brain invasion or the mitotic count) to ascertain a probable diagnosis

as quickly as possible. They also checked Ki-67 slides to support their diagnosis. In this

process, they collected evidence that accounts for a higher grade and memorized them in

their minds. Once they acquired enough evidence, they would stop and make a grading

decision. When using xPath, participants did not abandon their standard workflow as in

the traditional interface. Rather, on top of their standard workflow, participants would

perform the differential diagnosis based on AI’s findings — they clicked through each piece

of evidence in xPath, justified it by registering into the WSI, and at times overrode AI

by clicking the approve/decline/declare-uncertain buttons. These extra steps of interactions

prolong participants’ workflow —

System 2 (xPath) actually makes it longer because some of the images have sort

of competing opinions — whether this is mitosis or not . . . So I’d better take a

closer look at what the machine suggests. (P3)
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Questions ASAP xPath

C1: Rate the comprehensiveness of the system. 2.83(1.27) 5.75(0.75)

E1: Rate the explainability of the system. N/A 5.58(0.90)

I1: Rate the integrability of the system. 4.17(1.70) 5.91(1.08)

W1: Rate the effort needed to grade meningiomas when using the system. 3.67(1.37) 0.91(0.90)

W2: Rate the effect of the system on your workload to reach a diagnosis. 2.17(1.40) 5.83(1.03)

T1: How capable is the system at helping grade meningiomas? N/A 5.83(0.94)

T2: How confident do you feel about the accuracy of your diagnoses using the system? N/A 6.00 (0.95)

F1: If approved by the FDA, I would like to use this system in the future. 3.75(1.76) 6.42(0.79)

F2: Overall preference 6.75(0.45)

Table 4.4: Participants’ response of average scores (and standard deviation) on the quanti-

tative measurements of a traditional interface (ASAP) and xPath with seven-point Likert

questions. For the rating questions (C1, E1, I1, W1, W2), 1=lowest and 7=highest. For

question T1, T2, F1, 1=very strongly disagree, 2=strongly disagree, 3=slightly disagree,

4=neutral, . . . , and 7=very strongly agree. For question F2, 1=totally prefer system 1 over

system 2, 2=much more prefer system 1 over system 2, 3=slightly prefer system 1 over sys-

tem 2, 4=neutral, . . . , and 7=totally prefer system 2 over system 1. Note that for question

W1, a higher score indicates that users perceive more effort while using the system. Question

E1, T1, T2 are not applicable to ASAP, since it does not provide AI assistance.

Regarding the perceived effort (H2b), participants reported significantly less effort (Table

4.4, W1, xPath: µ=0.91, ASAP: µ=3.67, p=0.002) and a stronger effect on reducing the

workload (Table 4.4, W2, xPath: µ=5.83, ASAP: µ=2.17, p=0.002) while using xPath.

Participants mentioned that automating the process of finding small-scaled histopathological

features, especially mitosis, would save their time and effort —

I spend a lot more time crawling around the slide in the high-power, looking for

mitosis (for system 1), which you don’t have to do as much in system 2 (xPath).

(P8)

119



4.8.3 RQ3: Overall, does xPath add value to pathologists’ existing workflow?

For the comprehensiveness dimension (H3a), xPath received a significantly higher rating

than the traditional interface (Table 4.4, C1, xPath: µ=5.75, ASAP: µ=2.83, p=0.001).

Furthermore, participants gave an average helpfulness score of 6.50/7 for the design of joint-

analyses of multiple criteria (see Figure 4.12e). They responded positively that such a design

provides sufficient information (i.e., criteria and evidence) to assist the diagnosis —

. . . it (xPath) kind of gives you a step-wise checklist to make sure that it’s the

correct diagnosis, and also provides you what is most likely a diagnosis. (P11)

For the explainability dimension (H3b), xPath obtained an average rating of 5.58/7

(Table 4.4, E1). In general, participants could understand the logical relationship between

the evidence and the suggested grading (global explainability). They also gave a high help-

fulness rating (6.00/7, Figure 4.12d) for the list of evidence provided by xPath. However,

participants gave lower ratings on the probability (3.83/7, Figure 4.12f) and the confidence

level (3.92/7, Figure 4.12g) elements in the mid-level samples because they were hard to

read in xPath —

“. . . these small words (pointing to the probability) . . . I didn’t notice that very

much . . . also it wasn’t very easy to see.” (P3)

The saliency map received a relatively higher rating (5.17/7, Figure 4.12h). However,

some (P1, P5) participants found it hard to interpret the saliency map, especially for the

cases where cues of attention were scattered across the entire evidence (see Figure 4.14a) —

For the heatmap (the saliency map) . . . it is also a little bit confusing . . . it takes

some time getting used to it and there are some false positives. (P1)

For the integrability dimension (H3c), participants gave overall higher scores for xPath (Ta-

ble 4.4, I1, xPath: µ=5.91, ASAP: µ=4.17, p=0.006). Specifically, participants were able
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Rate the helpfulness of each component: 
(1: lowest → 7: highest)

1 2 3 4 5 6 7 Mean (Std)

System 
Component

WSI Viewer (a) 0 0 0 2 0 5 5 6.08 (1.08)

Approve/Decline/
Uncertain (b) 1 0 0 1 0 3 7 6.00 (1.81)

Heatmap (c) 0 0 0 2 3 5 2 5.58 (1.00)

List of Sampled 
Evidence (d) 0 1 1 0 0 3 7 6.00 (1.71)

List of Multiple 
Criteria (e) 0 0 0 0 2 2 8 6.50 (0.80)

Explainable 
Evidence

Probability (f) 3 1 1 2 1 3 1 3.83 (2.20)

Confidence Level 
(g) 3 1 0 1 4 3 0 3.92 (2.07)

Saliency Map (h) 0 1 0 3 2 4 2 5.17 (1.47)

a
b e

c

d

h

f g

Figure 4.12: Participants’ helpfulness ratings of each component in xPath. Each letter-

labeled component in the right table corresponds to the marked part on the left.

to perform diagnoses based on the xPath’s AI findings, which is similar to their workflow

of collaborating with human trainees —

It’s kind of like a first-year resident marking everything. (P1)

I’m a cytology fellow, and cases are pre-screened for us. And essentially this is

doing similarly. (P4)

For the trust dimension, participants responded positively to xPath’s capability of help-

ing to grade meningiomas (T1: µ=5.83) and their accuracy of the diagnoses while using the

system (T2: µ=6.00). However, some (P3, P4, P5) pointed out that they would spend more

time examining the WSI entirely if more time had been granted —

I just went to the areas that the system suggested. If I had more time, I would

like to just go to all the areas, just to feel more comfortable that I’m not missing

anything. (P5)

Last, participants were more likely to use xPath than the traditional interface (Table

4.4, F1, xPath: µ=6.42, ASAP: µ=3.75, p=0.002). Overall, 9/12 of the participants “to-
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tally” preferred xPath over the traditional interface, while 3/12 “much more” preferred

xPath (Table 4.4, F2).

However, it is noteworthy that this study is based on participants’ examination of WSIs,

while pathologists use the optical microscope in their daily practice. During the study, 7/12

of our participants expressed that they preferred using an optical microscope with the glass

slide vs. a digital interface with the WSI — “. . . it’s much faster (in the microscope) than

moving on the computer . . . we would prefer to look at a real slide instead of using a scan

picture.” (P2). As such, further comparison between xPath and the optical microscope is

considered future work.

4.8.4 Recurring Themes

We analyzed the video recordings of the work sessions in a similar approach as described in

Section 4.3.2. Based on our observations of participants’ using xPath and the interview

with them, we discuss the following recurring themes that characterize how participants

interacted with xPath.

4.8.4.1 Pathologists examine xPath’s multiple criteria findings by prioritizing

one and referring to others on demand

We noted that participants tended to focus on a specific criterion. If that criterion alone did

not meet the bar of a diagnosis for a higher grade, participants would use xPath to browse

other criteria, looking for evidence of a differential diagnosis, until they identify sufficient

evidence to support their hypothesis.

I’m done. Because with the mitosis that high, you’re done. You don’t have to go

through that stuff (other criteria). (P12)

However, some participants would also like to see other criteria and examine the slide
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comprehensively —

With the mitosis rate that high, you don’t actually need it (Ki-67) for the diag-

nosis. But I will have a look at it. (P1)

I will just look at (other criteria) because I don’t want to grade by one single

criterion (mitosis). (P3)

Such a relationship between criteria is analogous to ‘focus + context’ [51] in information

visualization — different pathologists might focus on a few different criteria. Still, the

other criteria are also important to serve as context at their disposal to support an existing

diagnosis or find an alternative.

4.8.4.2 xPath’s top-down workflow with hierarchical explainable evidence en-

ables pathologists to navigate between high-level AI results and low-

level WSI details

One of the main reasons limiting the throughput of histopathological diagnosis is that criteria

like mitotic count have very small size compared to the dimensions of WSIs. As a result,

participants have to switch to high magnification to examine such small features in detail.

Given the high resolution of the WSI, it is possible to ‘get lost’ in the narrow scope of

HPF, resulting in a time-consuming process to go through the entire WSI. With xPath,

participants found its hierarchical design and the provision of mid-level evidence (e.g., AI’s

ROI samples) the most helpful for diagnosis as it connects high-level findings and low-level

details —

It (xPath) finds the best area to look at. . . .You can jump there, and if it is a

grade 3, then it is a grade 3. You don’t have to look at other areas. (P6)

Furthermore, participants appreciated that xPath provided heatmap visualizations to

assist them in navigating the WSI out of the ROI samples —
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The heatmap is very useful to assist pathologists to go through the entire slide

. . . which saves time and makes sure not missing anything. (P12)

4.8.4.3 xPath’s explainable design helps pathologists see what AI is doing

We found xPath’s evidence-based justification of AI findings assisted participants in relating

AI-computed results with evidence, which added explainability —

System 2 (xPath) does find some evidence and assigns it to a particular obser-

vation that is related to the grading, so that it helps with explainability. (P3)

In xPath, the AI might make two types of mistakes that may incur potential bias:

(i) false positive, where AI mistakenly identifies negative areas as positive for a given cri-

terion; (ii) false negative, where the AI misses positive areas corresponding to a criterion.

We observed a number of false-positive detections that confused some participants. We

also found out that the participants would rather deal with more false positives than false

negatives so that signs of more severe grades would not be missed —

It’s better that it picks them up and gives me the opportunity to decline it. (P10)

Furthermore, although some participants found the saliency map hard to interpret in

some cases, others used it to locate the cells that led to AI’s grading —

There were a couple of instances where it was a bit more difficult to figure out

what it (the saliency map) was trying to point out to me. But for the majority

of the time, I could tell which area they (the saliency maps) were trying to show

me. (P9)

Further, with the aid of the saliency map, participants could understand AI’s limitations

and what might have misled the AI —
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You can see what this system counted as mitosis . . . the heatmap (the saliency

map) helps to understand why AI chose this or that area. For example, I think

AI chose neutrophils as mitotic figures in some areas. (P6)

4.8.4.4 Pathologists justify xPath by incrementing human findings onto justi-

fied AI results

Given the explainable evidence provided by xPath, it was straightforward for participants

to recognize and modify AI results when there was a disagreement. Specifically, participants

could justify AI by clicking on the approve/decline/declare-uncertain buttons or modifying

AI results directly on the criteria panel. If the justified AI results were sufficient to conclude

a grading decision (e.g., seven mitoses in 10 HPFs, enough to make the case as grade 2

(¿4), but still far from grade 3 (¡¡20)), they would stop examining and report the grading.

However, if the justified AI results appeared to be marginal (e.g., 19 mitoses in 10 HPFs,

which is only one mitosis away from upgrading the case to a grade 3), participants would

continue to search based on the AI findings and add their new insights to grade —

I count a total number of five . . . adding the previous 19 makes it 24 . . . this is

grade 3. (P2)

What’s more, for the cases where xPath did not actively report positive detections,

participants would examine the WSI manually as in a traditional interface — that is, partic-

ipants would use their experience to evaluate the case further and make a grading decision.

4.9 Discussion

In this section, we start by discussing this work’s limitations and potential future improve-

ments. We then summarize the design recommendations for future physician-AI collabo-

rative systems. Finally, we focus on future directions for improving AI’s integration into
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pathologists’ workflow.

4.9.1 Limitations and Future Improvements

We conclude the following limitations of our current work:

• xPath was evaluated on a small number of participants examining limited materials

using a remote setup. As such, the observations and conclusions are inevitably biased

and speculative;

• The AI’s testing performance in this chapter was reported from an in-house dataset

that was collected from one institute, while the evaluation of AI’s alignment with the

benchmarks from a large set of images from multiple medical centers was not conducted;

• xPath currently does not support users to adjust the cut-off prediction threshold,

hence resulting in an amount of false-positive evidence;

• Cases of the saliency map (see Figure 4.14) confuse some participants because they

can not highlight cells appropriately;

Next, we will discuss the limitations and future improvements in detail.

4.9.1.1 Increasing the scope of xPath’s evaluation study

The scope of xPath’s evaluation study was limited to the following four aspects:

Study Material. Due to the Institutional Review Board (IRB) regulations, only a

limited number of images from one medical center were selected and used in xPath. This

leaves the performance of xPath’s AI questionable while being applied to images from

other institutes. This is because other institutes might use a different staining process or a

different type of scanner, causing a difference in the image domain/distribution (see Figure

4.13). Furthermore, the limited test cases generated for xPath’s work sessions might not
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Figure 4.13: Mitoses from meningiomas (in x400), scanned by (a) the medical center in this

study and (b) a different medical center. The difference in appearance is caused by the

difference in processing procedures and scanners used.

reflect the distributions of meningiomas in clinical settings.

Participants: Recruitment and Sampling. Because of the rare availability of medi-

cal professionals in neuropathology, we only recruited twelve participants for the study, most

of whom were residents. This might cause the conclusions forRQ1 andRQ2 inevitably spec-

ulative because research has shown that pathologists’ diagnostic accuracy might be related

to their experience level [83]. Moreover, all participants came from one country, which might

cause the qualitative observations to be biased since no pathologists from other countries

were involved.

Study Set-Up. All studies were conducted online due to the COVID-19 pandemic.

And the duration of each study (about 60 minutes) was relatively short in order to prove

the long-term validity of xPath. Additionally, no clinical testing was conducted because of

strict legislation regulations from US Food and Drug Administration (FDA).

Apparatus. The comparison between the xPath and the optical microscope — pathol-

ogists’ first approach to seeing pathology slides, was not conducted. Although the FDA

has lifted its restrictions on digital whole slide images for clinical use since 2017 [73], we
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found it is still challenging to persuade pathologists to move from the optical microscope to

the digital interfaces (without AI): more than half of the participants expressed that they

preferred using an optical microscope with the glass slide vs. a traditional digital interface.

Remarkably, participants found it challenging to navigate a digital whole slide image, which

has also been described and discussed by Ruddle et al. [174]. However, our study found

that pathologists preferred to use xPath because it adds value to their workflow with AI.

Therefore, we suggest that future medical systems highlight their benefit to pathologists as

an incentive to overcome the limitations in traditional digital interfaces.

In sum, future works should consider using more images from multiple medical centers,

recruiting more participants with multiple experience levels, conducting long-term, in-person

studies, and comparing xPath with the optical microscope. With more data points collected,

we can validate xPath’s performance and generalizability more comprehensively.

4.9.1.2 Enabling adjusting the thresholds within the interface

Currently, xPath does not support directly changing the threshold for a positive result

with the interface. In our user study, one participant mentioned that different pathologist

might have different thresholds to call whether a piece of evidence is positive —

“I only call the characteristic mitoses . . . other pathologists might have different

thresholds. (P7)

Further, dealing with false positives and false negatives is another issue with the fixed-

threshold scheme. From our study, we found out that pathologists would prefer high-

sensitivity results that include some false positives rather than high-specificity results that

have false negatives —

I could have more faith if it could find all the candidates. And I could pretty

easily click through and accept/reject, and know that it wasn’t missing anything.
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(P8)

Therefore, the system, by default, should be designed to err on the side of caution, e.g.,

showing a wide range of ROIs despite some being inevitably false positives. Pathologists are

fast in examining ROIs (and ruling out false positives), whereas missing important features

would come with a much higher cost (e.g., delayed or missed treatment).

4.9.1.3 Improving the quality and granularity of explanations

In the study, we found a number of cases where the saliency maps failed to explain the

classification predictions and caused confusion to the users. As shown in Figure 4.14, the

failed saliency maps showed either scattered attention across the evidence (Figure 4.14a), or

concentrated attention at the wrong place (Figure 4.14b). Such errors can be explained as

the attention is reasoned from patch-wise annotations rather than localized ones because the

localized annotations of positive findings are extremely labor-costly to obtain. The quality

of the saliency maps can be potentially improved with the increment of training data for

higher model generalization and the advent of the methodologies of unsupervised attention

reasoning [9].

Besides, knowing the location of a potential positive finding can be insufficient for pathol-

ogists. Since the pathological imaging of tissues is merely an approximation of the real con-

dition, there can often exist uncertainty in diagnosis even for well-trained pathologists. As

such, explaining why an area contains positive findings, e.g., a highlighted cell is detected

to stage as mitosis since its boundary is jagged, can be critical for systems in the future.

Such causality enables a system to imitate how pathologists discuss with their peers, which

can improve the collaboration between a system and its users. Moreover, future work should

also employ more formal measurements (e.g., System Causability Scale [103]) to evaluate

the quality of explanations.
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Figure 4.14: Examples of failure explanation cases, where the saliency shows (a) scattered

attention across the image or (b) misleading hot spots. The green arrows point to the

location of a mitosis figure marked by a human pathologist.

4.9.2 Design Recommendations for Physician-AI Collaborative Systems

Although we focus on the grading of meningiomas in this work, we believe our two designs

in xPath — joint-analyses of multiple criteria and explanation by hierarchically traceable

evidence — can be generalizable to other medical applications that require doctors to see

and verify numerous criteria from various medical tests (such as grading astrocytoma, IDH

mutant (WHO Grade 2-4), solitary fibrous tumor (WHO Grade 1-3) [137]). Here, we provide

design recommendations for future physician-AI systems.

4.9.2.1 Showing the logical relationships amongst multiple types of evidence at

the top level

Carcinoma grading usually involves examining multiple criteria from various data sources

(e.g., H&E slides, IHC test, FISH (fluorescence in situ hybridization) test, patient’s health

record). As such, one-size-fits-all AI models are not sufficient. In practice, multiple AI

models are employed to locate different types of disease markers. To organize these AI-

computed results, medical AI systems (such as xPath) should seek to present the logical

relationship that connects these multiple criteria/features/sources of information and update
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final results dynamically given any pathologists’ input (e.g., acceptance or rejection of how

AI computes each criterion). Such a design is more likely to match the clinical practice of

pathologists and cost minimal extra learning when users onboard a system.

4.9.2.2 Making AI’s findings traceable with hierarchically organized evidence

There is a pressing need to deal with the transparency of a black-box model and the trace-

ability of the explanation evidence in high-stakes tasks (e.g., medical diagnosis). As such, AI

systems should provide local explainability where each piece of low-level evidence is trace-

able. In xPath, we employ the design of hierarchically traceable evidence for each criterion.

Such an organization forms an ‘evidence chain’ where each direct evidence is accountable for

the high-level system output. Similar intuitions can also be applied to medical applications

in a more general context, such as cancer staging [139] and cancer scoring [109], where the

evidence is accumulated to arrive at a diagnosis.

4.9.2.3 Employing a “focus+context” design toward presenting and/or inter-

acting with multiple criteria

Medical diagnosis involves accumulating evidence from multiple criteria — our study ob-

served that pathologists started by focusing on one criterion while continuing to examine

the others for a differential diagnosis. Thus, medical AI systems should make multiple crite-

ria available, and support the navigation of such criteria following a “focus+context” design

[51], which is commonly used in information visualization. The major design goal is to strike

the dichotomy between juxtaposing the focused criterion with sufficient contextual criteria

and overwhelming the pathologists with too much information. It is also possible for a sys-

tem to, based on a patient’s prior history and the pre-processing of their data, recommend

a pathologist to start focusing on specific criteria followed by examining some others as

context.
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4.9.3 On Integrating AI into Pathologists’ Workflow

4.9.3.1 How has AI improved pathologists’ diagnoses in xPath?

Similar to previous human-AI collaborative research in medicine [76, 127], we discovered

that using AI might improve pathologists’ diagnosis quality. In pathology, the AI can “effi-

ciently, systematically, exhaustively” analyze the entire whole slide image [188]. Therefore,

xPath can help pathologist capture small-sized details they might miss in the manual ex-

amination, which can improve their sensitivity. xPath further aggregates these details into

AI-recommended regions of interest (ROIs), and pathologists can check each ROI of each

criterion. Compared to the manual examinations where pathologists have to see multiple

criteria with one pass (i.e., “multitasking”, as described in Section 4.3), such a design as-

sists less-experienced pathologists in examining in a more organized, more comprehensive

manner.

Furthermore, xPath’s ROI recommendations freed participants from heavy navigation

and visual searching. Traditionally, pathologists navigate manually [149, 174] and search

visually to locate pathological patterns. With xPath, our participants could see and adju-

dicate ROI recommendations directly. However, it is noteworthy that forcing pathologists to

see ROI recommendations might break their workflow. First, because ROI recommendations

are not necessarily physically adjacent, pathologists need to “jump” from one ROI to another

to examine them. And it is unclear whether pathologists can accept such “ ROI jumpings”

without continuous navigation (i.e., panning and zooming). Second, the presentation of ROI

recommendations (e.g., in xPath, boxes) may also influence pathologists’ judgement — one

participant expressed their concern when the ROI highlighted an area but failed to do so

in a similar one — “If I called this positive (pointing at one recommendation box), should I

also call this one (pointing at another area but not marked by recommendation boxes)?”(P7).

Hence, we suggest that future HCI systems study pathologists’ acceptance of using ROIs to

examine and elaborate more on the over-reliance issues.

132



4.9.3.2 How to make human-AI systems in pathology more robust?

Although incorporating AI might benefit users, the performance of human-AI collaboration

workflow might be influenced in clinical settings [26, 210]. Therefore, it is crucial to design

workflows that can cope with chaotic “in the wild” situations. xPath applied two designs to

assist pathologists to debug and refine the AI findings: (i) hierarchical evidence that makes

the AI analysis traceable and transparent; (ii) pathologists can refine the AI findings by

approving/declining/declaring-uncertain AI analysis.

Based on the observations of how our participants interacted with xPath, we further

discuss the potential approaches to make human-AI systems more robust for future pathol-

ogy applications. The first approach is to add additional sources of information so that

pathologists can verify the AI recommendations. For example, xPath mimics how patholo-

gists examine meningiomas and adds an additional test — the Ki-67 test — for mitosis ROI

recommendations. In our user study, we found that pathologists could cross-check the Ki-67

hot-spot areas with mitosis ROI recommendations to validate the correctness.

For the systems without the luxury of additional tests, we suggest re-framing the human-

AI collaboration workflow by forcing doctors to give a brief overview first and then retrieve

AI recommendations on demand. Such a strategy is called the “cognitive forcing function”

and is viable for reducing the over-reliance issues in previous literature [39]. We argue

that such a workflow design is still integrable to pathologists’ practice because their manual

examination also starts with an overview of a slide [174].

Finally, enabling users to control the recommendation process might also be a solution.

For example, a slider can be used to control the sensitivities of AI-recommended ROIs.

As such, pathologists can first see the most pressing ROI, and then gradually see more on

demand. Such a design reduces the disruptive behavior of using AI systems in the wild and

pathologists are more likely to accept it in practice [43].
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4.9.3.3 How should AI systems build trust for pathologists?

Previous HCI research advises informing doctors of AI’s capabilities and limitations to gain

trust [44]. For example, Sendak et al. created a “model fact sheet” inspired by pharmaceutical

drug labels to inform doctors of AI details [182]. In our study, we also discovered that

participants preferred to know the AI capabilities — “I really wanna cross-check (AI’s)

accuracy with a human observer, and cases of a range of mitosis, from rare mitosis to frequent

mitosis.”(FP1) “Pathologists are data-driven ... if you can show it (AI) is accurate for

like 1,000 cases, they may buy it.”(P1) As such, we suggest future medical AI systems to

demonstrate AI’s capabilities by presenting with a set of examples with AI’s predictions and

ground truth. With the help of examples, pathologists can briefly evaluate AI performance

and know its capabilities and limitations.

Apart from AI’s information, previous studies indicate that explanations might improve

trust: some attempt to explain AI predictions with XAI components (e.g., the saliency map

[228]), while others build inherently interpretable models (e.g., concept bottleneck mod-

els [123]). During the study, we found that our participants preferred simple explanations

during the interaction with xPath. Although complex explanations (e.g., concept explana-

tions) might provide a more detailed background, pathologists might justify a vast number

of explanations during the time-pressing diagnosis process. If the explanations cannot cap-

ture pathologists’ attention initially, they might ignore them for the rest of the examination

process (also described by P3 in our user study). Therefore, we suggest future medical AI

systems allow pathologists to see levels of explanations on demand. For example, pathol-

ogists might see simple visual explanations by default but can opt to see more detailed

explanations if they wish.
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4.10 Conclusion

In this chapter, we identify three challenges of comprehensiveness, explainability, and inte-

grability that prevent AI from being adopted in a complex clinical setting for pathologists. To

close these gaps, we implement xPath with two key design ingredients: (i) joint-analyses

of multiple criteria and (ii) explanation by hierarchically traceable evidence. To validate

xPath, we conducted work sessions with twelve medical professionals in pathology across

three medical centers. Our findings suggest that xPath can leverage AI to reduce pathol-

ogists’ cognitive workload for meningioma grading. Meanwhile, pathologists benefited from

the design and made fewer mistakes with xPath, compared to the manual baseline interface.

By observing pathologists’ use of xPath and collecting their quantitative and qualitative

feedback, we indicate how pathologists may collaborate with AI and summarize design rec-

ommendations. We believe that xPath is useful for other HCI research by providing

first-hand information on how pathologists collaborate and manage multiple AI outcomes,

which opens up a new space for pathologist-AI interaction possibilities.
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CHAPTER 5

Fostering Appropriate AI Reliance in Pathology

Decision-Making

This chapter is based in part on the following publication:

Hongyan Gu, Chunxu Yang, Shino Magaki, Neda Zarrin-Khameh, Nelli S. Lakis, Inma

Cobos, Negar Khanlou, Xinhai R Zhang, Jasmeet Assi, Joshua T Byers, Ameer Hamza,

Karam Han, Anders Meyer, Hilda Mirbaha, Carrie A Mohila, Todd M Stevens, Sara L

Stone, Wenzhong Yan, Mohammad Haeri, and Xiang ‘Anthony’ Chen “Majority voting of

doctors improves appropriateness of AI reliance in pathology.” International Journal of

Human-Computer Studies (2024): 103315.

5.1 Introduction

Although J.C.R. Licklider introduced the concept of ‘man-computer symbiosis’ in 1960 [130],

it was not until the last decade that this vision became a more promising reality [116]. By

2023, Artificial Intelligence (AI) has been increasingly discussed to augment humans in

critical tasks [31, 192, 87]. Especially in the medical domain of pathology, AI has been

showcased to increase doctors’ accuracy and speed [133, 131, 201, 16], consistency [19, 200],

and confidence [90]. However, because pathology AI was often trained from a limited dataset

its performance varied while being applied to data from new patients and hospitals [187, 11,

89]. As such, it is critical for pathologists to develop appropriate reliance while collaborating

with AI, i.e., to appropriately accept correct AI recommendations and reject the wrong ones.
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Although there is a lack of data in pathology, research in the general domain has explored

methodologies to develop appropriate reliance, focusing on reducing humans’ over-reliance on

AI (i.e., enhancing humans’ ability to reject wrong AI recommendations). Strategies, includ-

ing the cognitive forcing function [39] and altering the interaction speed [158, 166, 126], have

shown promising results. Additionally, effective onboarding [159] and improving AI literacy

[135] were recommended and can be achieved by informing users of AI details [44, 113, 114].

However, incorporating these methods into routine medical practice presents challenges:

Cognitive forcing functions could drive medical practitioners to develop algorithm aversion,

leading them to reject AI recommendations even when they were correct [68, 76]. Moreover,

previous studies have reported that the improvements in task accuracy with enhanced AI

literacy were marginal [124, 128].

Another popular approach aims to employ explainable AI (XAI) to reduce over-reliance

[42, 124, 227, 22]. However, the efficacy of XAI is countered in part by the cognitive effort for

understanding these explanations [202]. Adding XAI-related content might increase doctors’

cognitive burden, possibly causing them to overlook XAI. Therefore, there remains a pressing

need for alternative strategies to foster appropriate AI reliance in medical applications.

By reviewing pathologists’ decision-making workflows, we found that the critical decisions

were usually determined through a combined judgment among multiple doctors [32]. The

underlying intuition was that a group of pathologists might produce safer and more rational

judgments while working together [32]. In the context of AI, recent studies have employed

majority voting among pathologists’ AI-assisted decisions to collect annotations for datasets

[30, 12]. However, there is a lack of empirical evidence supporting that such a majority

voting approach would enable appropriate reliance.

This research aims to provide the validation of the majority voting on enabling the ap-

propriate AI reliance in pathology decision-making, with a focus on a visual search task of

detecting “mitosis,” a critical histology pattern for tumor grading [58, 146]. 32 medical pro-

fessionals in pathology from ten institutions participated in a multi-stage user study, where
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they detected mitoses manually, first, and with AI assistance after a wash-out period. Here,

the majority voting decisions were synthesized according to the AI-assisted decisions from an

odd number of randomly-selected pathologist participants. Two metrics were employed to

measure the appropriateness of AI reliance: “relative AI reliance” and “relative self-reliance”

[180]. The result showed that the majority voting decisions from as few as three pathologists

showed significantly higher relative AI reliance (∼ 9% increase) and relative self-reliance

(∼ 31% increase), compared to one pathologist collaborating with AI, respectively. The pre-

cision and recall of majority voting decisions also increased: Those from three AI-assisted

pathologists could achieve a mean precision of 0.902 and a recall of 0.843. As a comparison,

the mean precision and recall for one-pathologist-AI collaboration were 0.824 and 0.817,

respectively. Furthermore, the majority voting decisions could also have a higher chance of

achieving super-AI performance in the recall.

5.1.1 Contributions

This research showcases that majority voting can enable appropriate AI reliance for pathol-

ogy decision-making. Throughout a multi-institutional study amongst 32 pathology profes-

sionals, this research presents the effectiveness of majority voting in a high-stakes medical

task, which can ultimately benefit patient management. This signifies a transformation

from the traditional one-human-AI collaboration to harnessing group decision-makings of

AI-assisted medical professionals. While our primary focus has been on pathology, we en-

vision that the insights of this study can have broader implications for leveraging collective

human-AI decision-making in other high-stakes visual search tasks, such as detecting explo-

sives from X-ray scans or disaster assessment from satellite imagery for emergency response

efforts.
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5.1.2 Sample Selection and Mitosis Ground Truth Acquisition

Meningioma specimens were collected from a local hospital after receiving ethics approval.

These specimens were digitized into 19 digital slides with an Aperio CS2 Scanner (Manufac-

ture: Leica, Germany). A specialist pathologist examined these slides and selected 51 regions

of interest (ROIs) based on predefined criteria (Section 5.1.2.1). Each ROI has a dimension

of 1, 600×1, 600 pixels (400×400µm), with one example shown in Figure 3.2(a). This image

dimension matches the field-of-view under the 40× objective lens in light microscopy, which

can reduce the mental effort for pathologists to adapt to the digital interface.

As for collecting the mitosis ground truth, two residents independently annotated all 51

images initially. Next, a third specialist pathologist reviewed these initial annotations and

provided a final decision. To ensure the accuracy of the ground truth, the three doctors

referred to the results of an additional antibody test (the Phosphohistone-H3 immunohisto-

chemistry test, a mitosis indicator usually used in medical research [67, 77], Figure 3.2(b))

in the ground truth annotation process.

Within the 51 selected ROI images, three were selected for the tutorial, leaving the rest

48 for testing purposes. The 48 test images have 88 mitoses in total. The count of mitoses

per image varies between zero and six, which can cover the majority of mitosis prevalence

in a single ROI in meningiomas.

5.1.2.1 Criteria for Selecting Test ROI Images for the User Study

Each ROI image has the size of 1, 600×1, 600 pixels (equivalent to 400×400µm), which has

the same size of one High-Power Field under the 40× objective lens with the light microscopy.

The 51 test ROI test images were selected from the test WSIs during the AI development,

according to the following five criteria.

1. HPFs with no or minimal out-of-focus area.
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2. HPFs with at least 50% tumor content.

3. Mitotic figures at different stages (i.e., prophase, metaphase, and anaphase-telophase)

should be present.

4. Very few atypical mitotic figures in the collection are allowed.

5. The number of mitotic figures ranges from none to 6 to represent mitotic counts that

may be seen in tumor grades 1 – 3. HPFs with significant staining issues and tissue

folding/wrinkling artifacts were removed from the collection.

5.1.3 Experience Level of Pathologists

In the United States, pathology professionals can be classified into four levels based on their

training progress and experience [81]:

1. A medical student is currently receiving medical education.

2. A resident has earned their Medical Doctor or an equivalent degree and is in post-

graduate residency training.

3. A general pathologist has completed their residency training and holds general board

certification in pathology.

4. A specialist pathologist has received/ is undergoing further training in a sub-

specialty area (in this study, neuropathology) after becoming certified as a general

pathologist.

Regarding familiarity with the mitosis detection task, specialist pathologists are expected

to have the highest level because of their sub-specialty training. General pathologists should

have a moderate familiarity, having acquired their general board certification. As for resi-

dents and medical students, their familiarity depends on their exposure during rotations and
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Figure 5.1: Organization of the user study.

any subsequent training they have received. In this study, 32 medical professionals from ten

institutions participated, covering all four aforementioned categories.

5.2 User Study

An online user study was conducted under the Institutional Review Board approval of the

University of California, Los Angeles (IRB#21-000139). The user study has two major

stages (Figure 5.1): (i) Stage 1 (February 2023 – April 2023): participants performed the

mitosis detection task in 48 test images manually; (ii) Stage 2 (July 2023 – August 2023):

participants detected mitoses in the same 48 images with AI-assistance. This sequential

arrangement follows previous work [180], and was designed to investigate potential shifts

in pathologists’ decisions influenced by AI. The majority voting decisions were synthesized

offline after the stage 2 responses had been collected. The main research questions are:

• RQ1: How did pathologists use AI and XAI while performing the “mitosis detection”

task?

• RQ2: How does the majority voting mechanism influence the appropriateness of AI

reliance compared to one pathologist collaborating with AI?

• RQ3: Is the majority voting mechanism more likely to achieve complementary team
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performance compared to one pathologist collaborating with AI?

5.2.1 Participants

Participants were recruited through sending emails to the mailing list and snowball recruit-

ment. As a result, 32 participants submitted their responses in both stages of the user study,

including 12 specialist pathologists (i.e., neuropathologists or neuropathology fellow), 6 gen-

eral pathologists, 10 pathology residents, and 4 medical students1. 18/32 participants were

from Institution #1(I1), 5/32 from I2, 2/32 from I3, and the remaining 7/32 were each

from a different institution. Their demographic information was summarized in Table 5.1.

Note 1 Did not activate AI for over 45/48 images at Stage 2 study. Considered as non-AI

users and excluded from the all analyses.

Note 2 Years of experience (YoE) not applicable for the medical student. To ensure their

familiarity with the mitosis detection task, all medical student participants underwent

a 45-minute training session overseen by a specialist pathologist before participating.

The demographic information of participants is shown in Table 5.1.

5.2.2 Study Procedure

Stages 1 and 2 of the user study were conducted in an unmoderated manner. At each stage,

each participant joined online with their computers at the recommended display settings.

The study of each stage consisted of the following parts (Figure 5.1):

1. Demographic information: Participants filled in a demographic information ques-

tionnaire.

1The four medical student participants underwent a 45-minute training session overseen by a specialist
pathologist before participating, to ensure their familiarity with the mitosis detection task.
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Table 5.1: Demographic Information of the Participants

Index Experience Level Institution YoE Note

1 Specialist Pathologist I1 5–10

2 Specialist Pathologist I2 5–10

3 Specialist Pathologist I3 >10

4 Specialist Pathologist I4 5–10

5 Specialist Pathologist I1 5–10

6 Specialist Pathologist I2 >10 See Note 1

7 Specialist Pathologist I5 >10

8 Specialist Pathologist I6 >10

9 Specialist Pathologist I2 5–10

10 Pathology Resident I1 2–5

11 Specialist Pathologist I7 5–10

12 Pathology Resident I2 2–5

13 Pathology Resident I1 2–5

14 Pathology Resident I1 2–5 See Note 1

15 Specialist Pathologist I8 5–10

16 General Pathologist I2 5–10

17 General Pathologist I9 5–10

18 General Pathologist I1 5–10

19 General Pathologist I1 5–10

20 General Pathologist I1 >10 See Note 1

21 Pathology Resident I1 2–5

22 Pathology Resident I3 2–5

23 General Pathologist I1 5–10

24 Medical Student I1 N/A See Note 2

25 Medical Student I1 N/A See Note 2

26 Pathology Resident I1 2–5

27 Specialist Pathologist I10 >10

28 Pathology Resident I1 2–5

29 Pathology Resident I1 2–5

30 Pathology Resident I1 2–5

31 Medical Student I1 N/A See Note 2

32 Medical Student I1 N/A See Note 2
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2. Tutorial: Participants saw a tutorial video describing how to participate, followed

by an interactive tutorial of three example images. No AI details were revealed to

participants.

3. Test: Participants examined the 48 images without (stage 1) or with (stage 2) AI

assistance. Their task was to detect and report mitoses from these images with their

threshold of daily practice.

Two methods were introduced to reduce the learning effect of participants in the stage

2:

• Random image transforms: Including random flipping (vertical and/or horizontal)

and random rotation (randomly chosen from {0◦, 90◦, 180◦, and 270◦}). For instance,

the image shown in Figure 5.2(b) was rotated 270◦ anti-clockwise from that in Figure

5.2(a).

• Wash-out period and ground truth blinding: After completing stage 1, partic-

ipants received personalized online report documents highlighting disagreements be-

tween their mitosis reportings and the ground truth. After two weeks, they were

prevented from accessing these online documents. Next, after a wash-out period of

three months, they were invited to participate in the stage 2 study.

5.2.3 User Interfaces and Key Features

For each stage, we deployed an interface online to enable participants to examine the images

and report mitoses.

5.2.3.1 Stage 1: Manual Mitosis Detection

This interface only showed participants the images and logged their interactions (Figure

5.2(a)). If the user found a mitosis, they could left-click on where it resided to leave a
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Figure 5.2: Screenshots of the mitosis study websites: (a) The manual mitosis detection

website in the stage 1 study. The user could left-click on the image to leave a mark for each

mitosis detected ( 1○ – 3○). (b) The AI-assisted mitosis detection website in the stage 2 study.

The interface added 1○ the AI recommendation box; 2○ “Show AI” switch, where the user

could toggle on/off AI recommendations; 3○ “AI Sensitivity” slider, where the user could

adjust the sensitivity of AI based on their preference; 4○ a warning message to remind users

not relying on AI. (c) The website in stage 2 also provided an XAI evidence card for each AI

recommendation. Each XAI evidence card included 1○ a saliency map; 2○ confidence level,

including a probability score and a trust score; 3○ a bar plot for subclass probability; and

4○ similar examples. (d) After the user finishes examining all images, an evaluation page

will inform the performance metrics to the participant.
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mark (Figure 5.2(a) 1○ – 3○). The user could go to the next image after examining one.

However, they could not return to the previous image to ensure a precise measurement

for time consumption. After all images were examined, a status page (Figure 5.2(d)) was

displayed to inform the participant of the performance of their mitosis detection.

5.2.3.2 Stage 2: AI-Assisted Mitosis Detection

The AI model used in this stage was an EfficientNet-b3 Convolutional Neural Network

(CNN), trained from a meningioma mitosis dataset [193, 88]. The website displayed AI

mitosis detections through recommendation boxes (Figure 5.2(b)). Additionally, following

previous works, we included four components to mitigate the negative influence of improper

AI reliance:

• Warning messages: A “black-box” style2 warning message was presented in the

tutorial video, suggesting that the users should always rely on their judgments. The

message was also shown in a highlighted box on the website (Figure 5.2(b) 4○).

• XAI: Each AI recommendation was accompanied by an evidence card which attempts

to provide XAI assistance [161]. The user could right-click on the AI recommendation

box to see the XAI evidence card on-demand. Four popular XAI techniques were

included following previous work [72], including:

– Saliency map: Generated by GradCAM++ [52].

– Confidence level: Including a probability score and a trust score [227]. The

trust score was the geometric mean of noise [15] and random AI variances [79] of

the AI prediction.

– Subclass: A bar plot showcasing potential subclasses of the mitosis (i.e., pro-

phase, meta-phase, ana/telo-phase, atypical, and not mitosis) in this AI recom-

2... the highest safety-related warning assigned by the U.S. Food and Drug Administration [65].
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mendation.

– Similar examples: A set of ten similar instances was retrieved from an anno-

tated dataset that includes paired Hematoxylin and Eosin – immunohistochem-

istry staining [43].

Counterfactual explanations were not used because of the low quality of the retrieval

results achieved by the our AI model.

• Personalized AI adjustments: The user could toggle on/off AI recommendations by

interacting with the “Show AI” switch (Figure 5.2(b) 2○) (i.e., AI on-request, suggested

by [80]) and adjust the AI sensitivity (Figure 5.2(b) 3○) according to their preferences.

The website provided five AI sensitivity settings for users: “lowest,” ‘low,” “medium,”

“high,” and “highest.” A higher sensitivity would include more AI recommendations

with lower probabilities.

• Random image order: The 48 images were presented to participants in a random

order to prevent users from anchoring on AI based on their initial impressions (i.e.,

the ordering effect [154]).

We chose not to reveal AI information to participants because of the time-consuming

nature of the education process.

5.2.4 AI Training Detail and WSI-Level Evaluation Result

An EfficientNet-b3 Convolutional Neural Network (CNN) [193] was trained and evaluated

based on the 19 H&E Whole Slide Images (WSIs) and their mitosis annotations, with 10/19

slides for training/validation, and 9/19 for testing. The upper 75% areas of the training WSIs

were used for training, leaving the lower 25% for validation and hyperparameter tuning.

The model training process involves a multi-round activate learning strategy: for each

round, both training and evaluation sets consists of patches (size=240×240) extracted from
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the corresponding areas in the WSIs. In each round, the model was trained with Stochastic

Gradient Descent optimizer (momentum=0.9), Cosine Annealing learning rate scheduler

with warm restart (max learning rate=6× 10−4), with combined online uncertainty sample

mining (k=1) [219] and Consistent Rank Logits loss [50], batch size 128, data augmentation

as specified in [88], and 80 epochs. After each round of training, the model with best

validation F1 score was applied to the train WSIs. Correspondingly, false-positive and false-

negative patches were added to the training/validation set for the next round of training.

The training process repeated four times when the validation F1 score stopped increasing,

resulting 102,575 patches in the training set and 24,792 in the validation. The model with

the best validation F1 score in the last round of training, along with the corresponding

threshold, was chosen for evaluation.

For evaluation, the trained CNN was applied on the test WSIs with a window size of

240 × 240 pixels and a step size of 45 pixels. A window with a probability greater than

0.70 was regarded positive, and overlapping positive windows were removed by non-max

suppression with a threshold of 0.10. For each remaining positive window, a class-activation

map was calculated using GradCAM++ [52], and the centroid of each hotspot in the class-

activation map was extracted as a candidate mitosis location. The CNN was applied again

on these candidate locations for step-2 verification, and candidates with a step-2 verification

probability greater than 0.775 (selected based on the best detection F1 score) were considered

as positive mitosis detections.

Figure 5.3 shows the precision-recall curve of the CNN on the nine test WSIs. With

the threshold cut-off of 0.775, the model achieved a 1,091 TP, 437 FP, and 491 FN mitoses,

resulting a precision of 0.714, recall(sensitivity) of 0.690, and an F1 score of 0.702.

Table 5.2 shows the precision and recall values of the CNN on the 48 test images under

the five “AI Sensitivity Settings” in stage 2 user study. The “best validation” stands for

the best validation threshold used in the model development phase (0.775). And the “best

validation” condition was selected for the “complementary team performance” analysis in
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Figure 5.3: Precision-recall curve for the AI model on the nine test WSIs.

Table 5.2: Operating point selection for the “AI Sensitivity Setting” feature in the stage 2

user study.

Threshold Sensitivity Setting Precision Recall

0.00 Highest 0.708 0.909

0.10 High 0.786 0.875

0.30 Medium 0.855 0.875

0.50 Low 0.894 0.836

0.70 Lowest 0.961 0.841

0.775 Best Validation 0.961 0.841
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the main text of the paper.

5.2.5 Development of eXplainable AI Evidence Card

Figure 5.4 demonstrates an example of the eXplainable AI (XAI) evidence card used in the

stage 2 study. For each AI detection, an XAI evidence card with four types of explanations

was generated automatically. This section introduces the development and implementation

of these XAI methods.

5.2.5.1 Saliency Map

The saliency map was generated by the GradCAM++ [52], as shown in Figure 5.4(a).

5.2.5.2 Confidence level

For each AI-detected mitotic figure (I), we applied the mitosis detection model 100 times,

including 50 times with Dropout layers enabled (ΘDropout, stands for the random errors

incurred by the model), and 50 times with added Gaussian noise as input ((Î), stands for

the errors incurred by the noise). The probability score was calculated according to Equation

5.1. The trust score indicates the confidence of the probability score, and was calculated as

the geometric mean of the standard deviations of the 50 “Dropout” predictions and the 50

“noise” predictions, according to Equation 5.2.

Probability Score(I) =

√∑50
1 ΘDropout(I)

50
×

∑50
1 Θ(Î)

50
(5.1)

Trust Score(I) =

√
σ(ΘDropout(I)|501 )× σ(Θ(Î)|501 ) (5.2)

The evidence card showed two information from confidence level
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Figure 5.4: An example of the eXplainable AI evidence card, including the following com-

ponents: (a) a saliency map; (b) the confidence level, including the probability score and

trust score; (c) verbal descriptions of the evidence card, explaining the implications of 1○

the probability score and trust score, 2○ mitosis subclass of this detection, and 3○ summary

of the similarity qualities of the retrieval results; (d) stacked probability plot for the mitosis

subclass; (e) similar examples, with retrieved pairs of 4○ annotated H&E mitoses and their

5○ PHH3-IHC counterparts in our database.

151



• Figure 5.4(b): “Prob.= (Probability Score) ± (Trust Score)”.

• Figure 5.4 1○: Verbal descriptions of the confidence level:

“Is [Placeholder # 1] likely to be a mitosis, AI is

[Placeholder # 2] sure.”

Rules for the Placeholder #1 in the verbal description:

• very: if probability score > 0.95;

• [empty]: else if probability score > 0.75;

• moderately: else if probability score > 0.38;

• slightly: else if probability score > 0.21;

• not very: else.

Rules for the Placeholder #2 in the verbal description:

• not very: if trust score > 0.30;

• slightly: else if trust score > 0.25;

• moderately: else if trust score > 0.17;

• [empty]: else if trust score > 0.06;

• very: else.

5.2.5.3 Subclass (Mitosis Phase)

Based on the morphology, mitoses can have approximately classified into five subclasses:

“prophase”, “metaphase”, “anaphase”, “telophase”, and atypical. Here, we consider “anaphase”
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Table 5.3: AP and mAP of the CBIR model

Subclass AP@1 AP@5 AP@10 AP@50 AP@100 mAP@100

Prophase 0.77 0.71 0.72 0.71 0.71 0.73

Metaphase 0.73 0.74 0.74 0.75 0.75 0.75

Ana-Telophase 0.49 0.50 0.51 0.51 0.51 0.52

Atypical 0.29 0.32 0.30 0.29 0.25 0.30

Not Mitosis 0.47 0.46 0.47 0.45 0.44 0.48

and “telophase” as one subclass – “ana-telophase” because of the difficulty in distinguishing

them. All mitoses from the 19 H&E WSIs in Section 5.2.4 were labeled with correspond-

ing subclasses. All mitoses from the 10/19 training WSIs in Section 5.2.4 were involved in

fine-tuning process, with 80%/20% train/val split. We fine-tuned the EfficientNet-b3 model

trained in Section 5.2.5.3 by freezing the weights of Blocks #0 – # 25. For the rest learnable

parameters, the max learning rate (LR) was set at 1 × 10−4, Cosine Annealing LR sched-

uler with warm restart (T0=5 epochs, Tmult=2), SGD optimizer, loss from Section 5.2.4, 300

epochs. The best model with the smallest validation loss was selected as the final subclass

model.

Mitoses from the rest 9/19 test slides are used for test images. The precision-recall curve

for each subclass is shown in Figure 5.5.

The evidence card showed two information from the subclass AI model.

• Figure 5.4(d): A stacked-bar plot for the probability distribution of each subclass.

• Figure 5.4 2○: The name of the subclass with the highest probability.
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Figure 5.5: Precision-Recall curve of each subclass of “prophase”, “metaphase”, “ana-

telophase”, “atypical” mitoses.

5.2.5.4 Similar Examples

The “similar example” evidence was developed by training a Content-Based Image Retrieval

(CBIR) model. The CBIR used the weight of the EfficientNet-b3 model trained in Section

5.2.5.3. Similar examples were retrieved according to the smallest l2 distance between the

embeddings of queried sample and those of the annotated subclass database (Section 5.2.5.3),

train/val fold, H&E. As for the testing, for each subclass of “prophase”, “metaphase”, “ana-

telophase”, “atypical”, and “not mitosis”, we randomly selected 100 samples from the test

fold in Section 5.2.5.3 and calculated the average precision (AP) at 1, 5, 10, 50, and 100.

The mean average precision (mAP) at 100 was also reported. The evaluation results were

summarized in Table 5.3.

The evidence card showed two information from confidence level

• Figure 5.4(e): Ten most similar sets of H&E-PHH3 IHC similar examples from the

annotated subclass database (train/val fold).

• Figure 5.4 4○: Verbal descriptions of each similar example:
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“subclass, [Placeholder # 3] similar.”

• Figure 5.4 3○: Brief summary of the similarity qualities of the retrieval results:

“[Placeholder #4] samples are similar to this cell.”

Rules for the Placeholder #3:

• very: if l2 distance < 50;

• [empty]: else if l2 distance < 63;

• moderately: else if l2 distance < 71;

• slightly: else if l2 distance < 110;

• not very: else.

Placeholder #4 shows the number of retrieved samples that are rated with ‘‘slightly’’

at least. For instance, in Figure 5.4(e), all retrieved samples were rated with ‘‘slightly’’

at least. Therefore, the description said “All samples are similar to this cell.”

5.2.6 Synthesizing Majority Voting Decisions from Groups of AI-Assisted Par-

ticipants

Participants’ majority voting decisions were synthesized offline after collecting their responses

from the stage 2 study. It consisted of two steps:

Step 1 Random Sampling: Mitosis reportings from an odd number k participants from

stage 2 were aggregated as a group (Figure 5.6(a)). Members in a group were sampled

randomly from the participant pool without replacement.

Step 2 Majority Voting: Mitoses candidates reported by more than half of members (k/2)

in the group remained as the final majority voting decision (Figure 5.6(b)).
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AI Model

Pathologist #1

AI Model

Pathologist #2

… AI Model

Pathologist #k

Step 1: Random Sampling 

Pathologist’s Mitosis 
Reporting (Marker)

Step 2: Majority Voting 
Mitoses agreed by more 
than k/2 pathologists 
remained as the majority 
voting judgment.

a
b

AI Recommendation 
(Box)

Majority Voting Results

Figure 5.6: Steps for synthesizing the majority voting decisions from k AI-assisted patholo-

gists: (a) random sampling: mitosis reportings from an odd number of k randomly-sampled,

AI-assisted pathologists were collected, (b) majority voting: mitoses candidates reported by

> k/2 pathologists remained as the final decision.

Group sizes of odd numbers k = 3, 5, 7, . . . , 27 were explored. For each group size, the

random sampling–majority voting processes were run 100 times for further analysis.

5.2.7 Measures and Statistics

5.2.7.1 Utilization of AI and XAI (RQ1)

We employed two metrics to measure how participants used AI assistance in the stage 2

study:

• AI activation rate: Indicating the percentage of the 48 test images where the AI

was activated at least once (Equation 5.3).

• AI active time percentage: Since the participant might deactivate the “Show AI”

feature, this metric represents the percentage of time when the “Show AI” feature

stayed active during the entire stage 2 study (Equation 5.4).
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AI activation rate =

∑48
i=1 1[“Show AI” in imagei == “On”]

48
× 100% (5.3)

AI activation time percentage =

∑48
i=1 T [“Show AI” in imagei == “On”]∑48

i=1Time consumption on imagei
× 100% (5.4)

Participants’ utilization of XAI was measured by the following two metrics:

• XAI activation rate was calculated according to Equation 5.5. The number of “AI

recommendations in imagei” was counted based on the highest sensitivity set by a

participant while they examined the imagei. If the “Show AI” was not toggled on in

an image, then it was not counted.

• XAI activation time was measured by the time elapsed between a participant open-

ing and closing an XAI evidence card.

XAI activation rate =

∑48
i=1 |XAI opened in imagei|∑48

i=1 |AI rec. in imagei| × 1[“Show AI” == “On”]
× 100% (5.5)

5.2.7.2 Reliance on AI (RQ2)

We used the categorization proposed by [180] to define the incidents related to the reliance.

Four types of events were defined under the categorization: (i) correct self-reliance, (ii) in-

correct AI reliance (over-reliance), (iii) correct AI reliance, and (iv) incorrect self-reliance

(under-reliance). The criteria for judging these events were based on the true-positive (TP),

true-negative (TN), false-positive (FP), and false-negative (FN) detecitons3. We adopted

the framework in [180] for the mitosis detection task, which is summarized in Figure 5.7.

3A TP was defined as “there was a ground truth within 60 pixels (15µm) of a participant-reported
mitosis,” a TN was “no participant-reported mitoses were found surrounding a non-mitotic figure,” an FP
was “no ground truth was found within a 60-pixel radius of a participant-reported mitosis,” and an FN was
“no participant-reported mitoses were found within 60-pixel radius of a ground truth.”
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Correctness Scenarios

IndicationMitosis 
Ground Truth

Human 
Decision 
(Stage 1)

AI Recommendation 
(Stage 2)

Human-AI 
Decision 
(Stage 2)

Did human call it a mitosis?

Stage 1 Stage 2

Not Mitosis TN FP TN No No Correct Self-Reliance 
(CSR)Mitosis TP FN TP Yes Yes

Not Mitosis TN FP FP No Yes Incorrect AI Reliance 
(Over-reliance)Mitosis TP FN FN Yes No

Mitosis FN TP TP No Yes Correct AI Reliance 
(CAIR)Not Mitosis FP TN TN Yes No

Mitosis FN TP FN No No Incorrect Self-Reliance 
(Under-reliance)Not Mitosis FP TN FP Yes Yes

Figure 5.7: Combinatorics for reliance incidents in the condition of one pathologist collab-

orating with AI (i.e., one-human-AI) for the mitosis detection task. This chart is adopted

from the framework described in [180].

Schemmer et al.further introduced two normalized metrics, Relative AI Reliance (RAIR),

and Relative Self-Reliance (RSR), to represent the Appropriateness of Reliance (AoR). The

RAIR relates to the under-reliance events (Eq. 5.6). And the RSR relates to the over-reliance

events (Eq. 5.7). The Appropriateness of Reliance is encapsulated by the tuple of PAIR and

RSR (Eq. 5.8), which can be graphically represented on a 2D chart with the RAIR on the

x-axis and the RSR on the y-axis.

Relative AI reliance (RAIR) =
Correct AI Reliance

Correct AI Reliance + Under-reliance
(5.6)

Relative Self reliance (RSR) =
Correct Self Reliance

Correct Self Reliance + Over-reliance
(5.7)

Appropriateness of Reliance (AoR) = (RSR;RAIR) (5.8)

To measure AI reliance on majority voting decisions, we also implemented the majority

voting process for stage 1. To ensure a “with-in-subject” nature of the analysis, for each ma-

jority voting run for stage 2, a vis-à-vis majority voting from the same group of participants
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Table 5.4: Modified definitions to measure AI reliance for the majority voting decisions

synthesized from a group of k pathologists.

Items Majority Voting Decisions (Group

Size=k)

Human Decision (stage 1) Majority voting results based on the stage

1 decisions from k participants

AI Recommendation (stage 2) For each image, AI recommendations un-

der the highest sensitivity set by more

than k/2 of participants while they were

seeing the ROI

Human-AI Decision (stage 2) Majority voting results based on the stage

2 decisions from the same k participants

in stage 1 was conducted. The definitions of “human decisions,” “AI recommendations,” and

“human-AI decisions” were adjusted to fit the majority voting condition and are summarized

in Table 5.4.

Because participants might employ different AI sensitivity settings in stage 2, the random

sampling process to formulate groups was also adopted with regard to each participant’s AI

sensitivity setting: for the AI reliance analysis, the k pathologists were exclusively drawn

from the subset of pathologists who majorly set the same AI sensitivity, which ensured the

AI conditions among all group members were similar.

To study RQ2, we compared five conditions: one pathologist collaborating with AI (i.e.,

one-human-AI collaboration), and majority voting for the four group sizes (k=3,5,7,9). For

each criterion of RAIR and RSR, a Kruskal–Wallis test was first applied to show significance

among these five conditions. A post-hoc Dunn’s test with Bonferroni correction was then

used to test pair-wise significance. Appropriateness of Reliance scatter plots was also drawn
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to visualize the distribution of RAIR and RSR for these five conditions.

5.2.7.3 Correctness of Mitosis Detection (RQ3)

We used precision (Eq. 5.9) and recall (Eq. 5.10) to measure the correctness of the mitosis

detection.

Precision =
TP

TP + FP
(5.9)

Recall =
TP

TP + FN
(5.10)

Here, we compare the precision and recall of five conditions: one-human-AI collabora-

tion, and majority voting decisions from AI-assisted pathologists (group sizes k=3,5,7,9).

Similar to the comparisons in the AI reliance metrics, for each of precision and recall, a

Kruskal–Wallis and a follow-up post-hoc Dunn’s test with Bonferroni correction was em-

ployed to test the significance among the condition pairs.

Because our previous work showed AI achieved higher overall performance than all partic-

ipants in stage 1 [91], the “complementary team performance” in this chapter refers explicitly

to cases where the human+AI approach outperforms AI (RQ3, i.e., super-AI performance).

Here, the AI operating point was selected based on the best threshold in the model valida-

tion process. For precision and recall, we defined the “success rate of achieving super-AI

performance” using Equation 5.11. This equation was applied to both the one-human-AI

collaboration, and majority voting decision conditions with group sizes k ranging from 3 to

27.

Success Rate =
Number of participants/runs exceeding AI performance

Total number of participants/runs
× 100% (5.11)
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Figure 5.8: (a) Bar-plot of AI activation rates; (b) Bar-plot of AI active time percentage;

Example plots showing how “Show AI” status changed for (c) a participant with a high

(92.31%) AI active time percentage and (d) a participant with a low (14.48%) AI active

time percentage; (e) Stacked bar-plot of participants’ AI sensitivity settings; (f) XAI ac-

tivation rates; (g) Histogram of XAI activation time; (h) Box-whisker plot of total time

consumption of each participant spent on image examination in the stage 1 and stage 2

study. No significance (n.s.) was observed between the two stages.

5.3 Result

3/32 participants in stage 2 chose not to activate AI recommendations at all for over 45/48

test images. Therefore, they were classified as non-AI users and were excluded from subse-

quent analyses. For the remaining 29 participants, we report the utilization of AI and XAI

in Section 5.3.1. 25/29 of the participants majorly set the sensitivity as either “highest”

(N=15) or “medium” (N=10) during the stage 2 study, and they were included in the AI

reliance analysis (Section 5.3.2). The responses from all 29 AI-users were used for correctness

analyses in Section 5.3.3.
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5.3.1 Utilization of AI and XAI

The mean AI activation rate was M = 99.21% (SD = 0.481%, CI95 = [98.13%, 100.00%],

Figure 5.8(a))4. And the mean AI active time percentage was M = 71.39% (SD = 6.713%,

CI95 = [57.75%, 83.94%], Figure 5.8(b)). 21/29 participants had > 50% AI active time

percentages, with an example of how they interacted with the “Show AI” feature shown in

Figure 5.8(c), which suggests the user kept the AI activated for the majority of the time, with

occasional brief flickering between turning it off and on during the initial interactions. The

remaining 8/29 participants had < 25% AI active time percentages: Although the “Show AI”

feature was majority deactivated, these participants would still activate AI recommendations

briefly while examining each image (Figure 5.8(d)). Interestingly, this pattern matches the

cognitive forcing function [39] although these participants had not been instructed to do so.

For AI sensitivity settings, 15/29 participants set for the “highest” for over half of the

ROI images. The remaining participants preferred to set the AI sensitivity as “high” (1/29),

“medium” (10/29), “low” (1/29), or showed no clear preference (2/29), as shown in Figure

5.8(e).

Regarding XAI utilization, the mean XAI activation rate was M = 14.54% (SD =

4.537%, CI95 = [6.43%, 24.25%], Figure 5.8(f)). Specifically, 4/29 participants had XAI

activation rates higher than 50%, while 14/29 participants did not activate any XAI at

all. The mean XAI activation time was M = 4.31 seconds (SD = 0.719 seconds, CI95 =

[3.17 seconds, 5.95 seconds], Figure 5.8(g)).

On average, participants spent 25 minutes and 25 seconds examining all 48 test images in

stage 1, and 23 minutes and 9 seconds in stage 2 (Figure 5.8(h)). The total time consumption

did not show a significant difference between the two stages (Wilcoxon rank-sum test, p =

0.31).

4The mean (M), standard deviation (SD), and 95% confidence intervals (CI95) were calculated by the
bootstrapping method (100% re-sampling with replacement, 10,000 times)
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Note: **            , ***p < 0.01 p < 0.001

Figure 5.9: Box-whisker plots of (a) RAIR and (b) RSR for the five conditions of one-

human-AI collaboration, and majority voting decisions (k = 3, 5, 7, 9); (c) Scatter plots for

appropriateness of reliance for these five conditions.

5.3.2 Reliance on AI

As shown in Figure 5.9(a), the mean RAIR of one-human-AI collaboration was M = 0.779

(SD = 0.021, CI95 = [0.735, 0.820]). And that for majority voting decisions of group size k =

3 was M = 0.852 (SD = 0.007, CI95 = [0.839, 0.866]). The mean RAIR for majority voting

decisions of k = 5, 7, 9 were 0.866, 0.861, and 0.878. All four majority voting conditions

yielded higher RAIR (∼ 9% increase) than one-human-AI collaboration. A Kruskal–Wallis

test showed a significant difference among the RAIR values across five conditions (η2H =

0.043, p < 0.001). Post-hoc Dunn’s test with Bonferroni correction indicated significance

in comparison pairs of one-human-AI vs.majority voting decision from group sizes of k = 3

(p = 0.012), k = 5 (p < 0.001), k = 7 (p = 0.004), and k = 9 (p < 0.001).

The mean RSR of one-human-AI collaboration was M = 0.735 (SD = 0.037, CI95 =

[0.657, 0.803], see Figure 5.9(b)). As a comparison, the mean RSR of majority voting deci-

sions of k = 3 was M = 0.964 (SD = 0.003, CI95 = [0.959, 0.970]). The RSR of majority
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voting decisions for k = 5, 7, 9 were 0.968, 0.976, and 0.967. Similarly, all four majority

voting conditions led to higher RSR (∼ 31% increase). A Kruskal–Wallis test showed a

significant difference among the RSR values across five conditions (η2H = 0.178, p < 0.001).

Post-hoc Dunn-Bonferroni test showed significance in comparison pairs of one-human-AI

vs.majority voting decision from group sizes of k = 3 (p < 0.001), k = 5 (p < 0.001), k = 7

(p < 0.001), and k = 9 (p < 0.001).

Figure 5.9(c) presents the appropriateness of reliance (AoR) scatter plots for five condi-

tions. These plots demonstrate that majority voting decisions could improve higher RAIR

and RSR simultaneously, indicating a high level of AoR was achieved.

5.3.3 Correctness of Mitosis Detection

As shown in Figure 5.10(a), the mean precision of one-human-AI collaboration was M =

0.824 (SD = 0.023, CI95 = [0.776, 0.867]). For majority voting decisions of k = 3, the

mean precision was M = 0.902 (SD = 0.004, CI95 = [0.893, 0.910]). The majority voting

of k = 5, 7, 9 had mean precisions of 0.924, 0.934, and 0.934, respectively. The AI achieved

a higher precision of 0.961. All four majority voting conditions achieved higher precision

(∼ 8% increase) than the one-human-AI collaboration. A Kruskal–Wallis test showed that

the precision significantly differed across five conditions (η2H = 0.150, p < 0.001). Post-hoc

Dunn-Bonferroni test did not observe significance in the comparison pair of one-human-AI

vs.majority voting decision k = 3 (p = 0.715). Statistical significance was observed for

comparison pairs of one-human-AI vs.majority voting decision k = 5 (p < 0.001), k = 7

(p < 0.001), and k = 9 (p < 0.001).

The mean recall of one-human-AI collaboration was M = 0.817 (SD = 0.013, CI95 =

[0.790, 0.841], see Figure 5.10(b)). Majority voting decisions of k = 3 had a mean recall of

M = 0.843 (SD = 0.003, CI95 = [0.838, 0.851]). Majority voting decisions of k = 5, 7, 9 had

mean precisions of 0.850, 0.851, and 0.850. In comparison, AI achieved a precision of 0.841.

Kruskal–Wallis test did not show that the recall differed significantly across five conditions

164



AI (0.961) AI (0.841)
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Figure 5.10: Box-whisker plots of precision and recall for the five conditions of one-human-

AI collaboration, and majority voting decisions (k = 3, 5, 7, 9); (c) Precision-recall plots for

mitosis detection for these five conditions. The red line represents the precision-recall curve

of AI, and the ‘x’ marker indicates the AI’s performance at a threshold determined by the

best validation performance. The success rates of achieving super-AI

performance (i.e., percentage of human+AI cases where their performance is higher than

both humans and AI) for the criteria of (d) precision and (e) recall.

165



(η2H < 0.001, p = 0.774).

Figure 5.10(c) presents the precision-recall scatter plots for the five conditions. The plots

reveal that the majority voting decision exhibits lower variation in both precision and recall

compared to the one-human-AI collaboration, indicating a more robust performance. This

observation is further supported by the lower SD values for the majority voting decisions,

as reported above.

Regarding the success rates for achieving super-AI performance, for precision, none of

the majority voting conditions (i.e., k = 3 → 27) was higher than the success rate achieved

by one-human-AI collaboration (13.87% success rate, Figure 5.10(d)). On the other hand,

for recall, all majority voting conditions had higher success rates compared to one-human-AI

collaboration (51.72% success rate): As shown in Figure 5.10(e), the lowest success rate was

observed at k = 3 (53% success rate), and the highest was achieved at k = 27, reaching 76%.

5.4 Discussion

5.4.1 Summary of Result

5.4.1.1 Summary of RQ1

For most participants, AI was activated at least once in most images. However, this does

not imply that the AI was constantly active throughout the entire study. Notably, 8/29

participants deactivated AI for most of the study, and only activated it briefly occasionally.

That is, in certain instances, the ‘AI on-request’ feature posed cognitive forcing function

effects.

The utilization of XAI was relatively low; only four participants opened more than 50%

of the XAI evidence, while nearly half of the participants did not open any. Even when

XAI was opened, the time spent by participants on viewing XAI was relatively short (about

four seconds) – in the context of pathologist-AI collaboration, the effectiveness of XAI in
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mitigating over-reliance may be limited. This is likely because the time-pressing nature of

the pathology task outweighed the benefit of XAI explanations, causing pathologists to use

XAI less in practice. In light of this, we argue that alternative approaches, such as the

majority voting used in this study, need to be investigated to enable appropriate AI reliance

for future pathology applications.

5.4.1.2 Summary of RQ2

Pair-wise statistical tests revealed significant improvements in both RAIR and RSR metrics

for majority voting decisions (k = 3, 5, 7, 9), compared to one pathologist collaborating

with AI. Specifically, RAIR showed an approximate 9% increase, and RSR showed about

31% increase. The PAIR-RSR scatter plots indicated simultaneous improvements in both

metrics. Such results demonstrate a reduction in the proportion of over-reliance against

correct self-reliance events, and under-reliance against correct AI reliance events, indicating

a higher level of appropriateness of reliance was achieved (according to the definitions in

[180]).

5.4.1.3 Summary of RQ3

No significant difference in the precision was observed between the condition of one-human-AI

collaboration and the majority voting with k = 3. A statistical significance in the precision

was observed when increasing k to 5, 7, and 9. The majority voting conditions improved

precision by approximately 8%. For recall, no significant differences were observed. The

precision-recall scatter plots demonstrated that majority voting decisions exhibited lower

variation, suggesting that they were robust and less prone to be influenced by the sample

selection.

All majority voting conditions for k = 3 → 27 did not show a higher success rate in

achieving super-AI precision than one-human-AI collaboration. This is because AI had a
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Figure 5.11: Bar plots for the agreements among 29 participants for (a) 88 ground-truth

mitoses, and (b) 91 false-positive mitoses that at least two participants agreed on. The

diamond markers (♢) stand for the AI detections under the “Highest” AI sensitivity setting.

1○ An example of under-reliance that might not be addressed by the majority voting; 2○ An

example of under-reliance that might be addressed by the majority voting; 3○ An example

of over-reliance that might not be addressed by the majority voting; and 4○ An example of

over-reliance that might be addressed by the majority voting.

high precision of 0.961, and there was a lack of space for improvement. For recall, all majority

voting conditions (k = 3 → 27) showed higher success rates. Notably, the highest success

rate, 76%, was achieved at k = 27, indicating a 46.95% increase over the one-human-AI

collaboration condition (51.72% success rate).

5.4.2 The Mechanism and Cost of Majority Voting

To further explore why the majority voting mechanism was effective, we introduced a metric,

“agreement rate,” defined as the percentage of participants the reported a cell as a mitosis

(regardless of its actual status). We calculated the agreement rates of the 29 participants in

both stage 1 and stage 2 studies. These agreement rates covered all 88 ground truth mitoses

(Figure 5.11(a)) and 91 false-positive mitoses reported by at least two participants (Figure

5.11(b)). According to Section 5.2.6, cells with agreement rates higher than 50% should

be kept as the majority voting decisions. While Figure 5.11 is not directly applicable for
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interpreting results in smaller sub-groups (e.g., k = 3), it illustrates the general trends in

participants’ agreement rates when influenced by AI. The data revealed two key insights:

• Reducing Over-Reliance on AI False Positives: AI’s false-positive detections led

to higher agreement rates among participants (as shown in Figure 5.11(b) 3○), suggest-

ing participants’ tendency of over-reliance in at stage 2. The majority of these false-

positive detections did not achieve agreement rates higher than 50% (Figure 5.11(b) 4○).

In other words, from a group’s perspective, it was not usual for the majority of partic-

ipants to consistently over-rely when AI made false-positive mistakes. Therefore, the

over-reliance can be reduced by the majority voting mechanism.

• Reducing Under-Reliance on Human False Positives: At stage 2, participants

may make the same false-positive mistake as in stage 1, even when AI correctly sug-

gested negative (Figure 5.11(b) 1○). This suggests that the under-reliance incidents

happened when one participant collaborated with AI. Nevertheless, agreement rates

for these false positives rarely exceeded the 50% majority threshold (Figure 5.11(b) 2○),

indicating that majority voting could reduce under-reliance.

To understand the underlying cost of the majority voting mechanism, we analyzed time

consumption spent on employing multiple pathologists, and its association with the correct-

ness. Specifically, we conducted 100 majority voting runs for each group size (k) ranging

from 3 to 27. We applied Pearson’s correlation analysis to assess the relationship between

precision or recall achieved in each run and its corresponding time consumption. We found a

moderate positive correlation between precision and time consumption (Pearson’s r = 0.39,

p < 0.001, N = 1, 300, Figure 5.12(a)), and a weak positive correlation between recall and

time consumption (Pearson’s r = 0.14, p < 0.001, N = 1, 300, Figure 5.12(b)). Certain runs

with a relatively small time consumption could reach considerable precision and recall. Note

that this is a ‘bare minimum’ estimation: Delays caused by coordinating pathologists should

be taken into account in practical applications.
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a b
AI (0.961)

AI (0.841)

One-Human-AI (0.824) One-Human-AI (0.817)

Figure 5.12: Linear regression plots studying the relations between (a) precision-time con-

sumption, and (b) recall-time consumption while synthesizing majority voting decisions,

k = 3 → 27, n = 100 for each k.

5.4.3 On Developing Structured Decision-Making Processes with AI+k

Different from traditional one-human-AI collaboration (AI+1), this study sets the first step

towards multiple medical professionals collaborating with AI (AI+k) using a simple majority

voting technique. We argue that this majority voting approach has three advantages: (i) It is

flexible and has a simple structure, eliminating the need for face-to-face or online discussions;

(ii) It keeps participants anonymous, thus reducing potential social pressure; (iii) It is

inherently democratic, ensuring that each participant’s opinion has an equal weight. We

found that this majority voting approach could effectively improve the appropriateness of

reliance, and achieve higher-quality medical decisions. As for the limitations of majority

voting, one may argue that this approach does not incorporate the discussion process, and

decisions with conflicts (i.e., ∼ 50% agreement rates) cannot be addressed easily.

Future works might explore AI+k decision-making techniques that involve structured or

semi-structured face-to-face discussions [32]. Traditionally, these discussions were moderated

by the humans. Nonetheless, we envision that future AI can not only help each group member

to reach a decision (e.g., help pathologists detect mitoses in this study), but can moderate
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the discussions. For instance, a large language model (LLM) [148] might anonymously gather

and summarize comments from each group member and present a consolidated overview to

the group. Members could then have an opportunity to revise their decisions after hearing

from the LLM’s summary. Given the LLM’s omni-availability, no conflict of interest, and

and impartiality to authority or personal factors, such AI-facilitated discussions could offer

advantages in speed and bias correction, compared to traditional discussion coordination

with human moderators.

5.4.4 Towards Efficient and Reliable Medical Decisions with AI+k

Section 5.4.2 showed that the performance of majority voting decisions from AI+k showed

a positive relation to the time consumption. In other words, in general, the more medical

professionals involved, the higher the quality of the majority voting decision. Typically,

high-risk medical decisions involve 7–10 group members [145], while groups as large as 27

done in this study were quite rare. Therefore, considering the time taken to reach a result, we

argue that not all medical decisions necessitate the AI+{large k} approach: cases with high

confidence from both AI and humans could be adjudicated by smaller groups with as few

as three experts, while those with low AI confidence or prone to human errors could benefit

from incrementally larger group sizes, which can yield better and more robust outcomes.

Determining the optimal balance between decision-making and time expenditure has

been well-explored in previous crowd-sourcing works [63]. However, one should be aware

that the workflow of medical professionals is usually different from that of general users, and

their preferences in using AI and XAI may also vary (as shown in Section 5.3.1). Therefore,

future research should focus on exploring which AI+k methods can seamlessly integrate into

the workflow of medical professionals, effectively balancing efficiency and reliability in the

medical decisions of multiple doctors. Additionally, investigating the role of counterfactual

explanations [229, 64] to build trust and facilitate appropriate AI reliance could complement

approaches like majority voting, potentially improving interpretability and familiarity with
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the decision process when integrating AI into risk-sensitive medical workflows.

5.4.5 Limitations and Future Work

The following points are the limitations of this study and are regarded as future work.

• The majority voting synthesizing process did not involve any discussion or communi-

cation among participants, which could influence the outcomes.

• A 50% threshold was used to represent the majority. Other thresholds and their

impacts were not investigated.

• The potential learning effect, particularly among participants in training (i.e., residents

and medical students), between stage 1 and stage 2 of the study cannot be ignored.

• All participants were from one country, potentially limiting the generalizability of find-

ings.

5.5 Conclusion

This chapter introduces and validates the majority voting approach to enable doctors’ ap-

propriate reliance on medical AI. By recruiting 32 pathology professionals, we conducted a

multi-institutional, multi-stage user study focusing on detecting mitoses in tumor images.

Our analysis revealed that even with groups of three doctors, the majority-voting decisions

had a higher appropriateness of AI reliance, compared to one doctor collaborating with AI.

Subsequently, the majority voting decisions demonstrated increased precision and recall,

although no statistical significance in recall was observed. Additionally, majority voting de-

cisions were more likely to achieve super-AI performance in the recall. While effective on its

own, majority voting can also be used together with other techniques to enable appropriate

AI reliance. Involving multiple experts in decision-making can yield higher-quality, more
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robust outcomes that are less prone to AI errors, which holds promise in pathology and

broader high-stakes domains.
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CHAPTER 6

Summary

This thesis explores the landscape of human-AI collaborative ecosystems in pathology through

both qualitative and quantitative investigations. Through a multi-faceted approach – includ-

ing field studies, artifact development and validation, and empirical evaluations – it examines

how AI can effectively support pathologists in clinical decision-making. The overarching goal

is to develop a pathology assistant that enhances correctness, efficiency, and safety in high-

stakes diagnostic workflows.

This chapter first summarizes the answers to the three key research questions and findings,

followed by an outlook on the future of AI-assisted pathology environments.

6.1 RQ1: How should human-AI collaboration systems be de-

signed for pathology, and how can these insights inform future

system development?

Chapter 2 outlined six key recommendations for designing effective human-AI collaboration

systems in pathology, which can be further distilled into three overarching principles:

1. AI assistance should be spatially comprehensive across multiple magnifications, tem-

porally continuous, and provide guidance that is simple, intuitive, and actionable for

pathologists.

2. Human-AI collaborative workflows should align with pathologists’ existing ones to min-
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imize learning costs, optimizing challenging steps while preserving their decision au-

tonomy.

3. If introducing new workflow components is necessary, their benefits must outweigh the

additional effort and time required from pathologists.

Building on these principles, Chapter 3 identified three key observations from patholo-

gists’ navigation preferences: (i) overview first, then detail, (ii) using macroscopic patterns

to locate ROIs in the low magnification, and (iii) low throughput in higher magnifications.

Reflecting these findings, NaviPath was designed with three unique features: (i) Hierar-

chical AI Recommendations, (ii) Customizable Recommendations by Multiple Criteria, and

(iii) Cue-Based Navigation for High Magnifications.

Furthermore, Chapter 4 addressed the challenges of comprehensiveness, explainability,

and integrability in AI-assisted complex pathology diagnosis tasks by introducing two key

designs in xPath: (i) Joint-Analyses of Multiple Criteria, and (ii) Explanation by Hierar-

chically Traceable Evidence for Each Criterion.

Finally, Chapter 5, adopted the majority voting to enhance the reliability of human-AI

collaborative decision-making – an approach already commonly used by pathologists when

signing out challenging cases.

The efficacy of these designs was further validated through user studies with pathologists

and trainees, with key results summarized in the next section.

6.2 RQ2: How does human-AI collaboration affect pathologists’

examination and diagnostic processes?

The key performance indicators for evaluating human-AI workflows include the following

aspects:
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1. Efficiency is measured by the number of target pathology patterns examined per unit

time. In Chapter 3, NaviPath enabled participants to identify more than twice the

number of mitoses per unit time compared to the manual system. Although Chapter 4

did not measure efficiency, participants reported significantly higher comprehensiveness

in their examination processes, indirectly suggesting improved efficiency. It is impor-

tant to the difference between efficiency and time consumption; in all three studies in

Chapters 3, 4, and 5, no significant reduction in examination time was observed.

2. Correctness is measured with accuracy, precision, and recall (sensitivity). In Chapter

3, users achieved higher precision and recall in mitosis detection using NaviPath com-

pared to both manual examination or standalone AI. In Chapter 4, diagnoses made us-

ing xPath demonstrated had higher accuracy than those made with manual examina-

tion. In Chapter 5, majority voting of even three AI-assisted pathologists significantly

improved precision, though recall showed less significance compared to conventional

AI-assisted approaches.

3. Reliability of Decision Outcomes is measured through the appropriateness of AI

reliance, measured by the proportion of over-reliance and under-reliance incidents.

In Chapter 5, the majority voting of three AI-assisted pathologists significantly in-

creased Relative AI Reliance and Relative Self-Reliance, indicating a reduction in both

over-reliance and under-reliance events. Additionally, the variance in majority-voted

decisions was significantly reduced, indicating more reliable decision outcomes.

4. Perceived Acceptance is measured with user self-reported Likert-scale measures

through surveys, including workload, confidence, and system preference. In both Chap-

ters 3 and 4, a significant reduction in workload was observed, alongside a strong user

preference for AI-assisted workflows over manual examination. Additionally, users re-

ported high confidence in their decisions when using AI-assisted systems.
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6.3 RQ3: How can human-AI collaboration be optimized to max-

imize pathologists’ correctness while ensuring appropriate AI

reliance?

Chapter 5 reported that XAI was rarely referenced in AI-assisted decision-making, thus

having limited effect in regulating inappropriate AI reliance incidents. To overcome this

limitation, this chapter introduces a majority voting mechanism by ensembling decisions

from three or more odd numbers of AI-assisted pathologists. Through a nationwide, six-

month-long survey with 32 pathologists and trainees, the study demonstrates that majority

voting with three or more AI-assisted pathologists significantly reduces both under-reliance

and over-reliance incidents, resulting in more appropriate decision outcomes. An interesting

finding from this chapter is that, in inappropriate reliance incidents, participants’ agreement

rates rarely exceeded 50%. This finding makes majority voting an effective strategy to

mitigate inappropriate AI reliance by preventing a single-point failure from compromising

the overall decision outcome.

6.4 Concluding Remarks: A Future of Digital Pathology with

Omni-Available, 24/7 AI

With its high throughput and cost-effectiveness, AI will make large-cohort, multi-center ret-

rospective analyses more available, which will expand the possibilities for data-driven pathol-

ogy research. In the future, more studies will quantitatively evaluate the interrelationships

between histopathological features and prognosis, which will shed light on new computa-

tional pathology-informed medical standards. These advancements will provide quantita-

tive evidence for the making of medical guidelines and generate meaningful pathognomonic

insights. However, in clinical practice, AI will continue to function as a “software as a

medical device”, which will offer comprehensive assistance across various pathology tasks
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while enabling pathologists to retain ultimate decision-making autonomy over AI-generated

recommendations. Moving forward, a pathologist-centered approach will be preferred in de-

signing, developing, and studying interactive computational pathology for clinical workflows,

incorporating pathologists’ expertise and enhancing their diagnostic capabilities.

For instance, AI assistants could be developed for a dynamic, multimodal pathology

environment, where a pathologist-AI collaboration interface integrates H&E, IHC, FISH, and

NGS data according to medical guidelines. Such a system could suggest follow-up tests based

on initial findings, continuously refine risk assessments using fine-tuned foundation models,

and generate preliminary reports via LLMs for pathologists to review. Such systems could

serve not only as a clinical tool but also as a valuable resource for training and education.

Additionally, pathology decision-making may further benefit from group intelligence.

Future research could explore more efficient pathways for fostering high-quality diagnos-

tic decisions with minimal personnel, such as whether two collaborating pathologists could

achieve better diagnostic outcomes than working independently. Could one pathologist over-

see another’s work? Could structured discussions before and after decision-making facilitate

consensus development?

Finally, the future of digital pathology may see the application of virtual pathologists

available on call 7/24: Second-opinion consultations are a critical component of complex

case evaluations, yet accessing an available pathologist around the clock remains challeng-

ing. Could AI chatbots serve as an alternative for second-opinion consultations? Future

studies could explore how traditional inter-pathologist communication paradigms might be

reimagined by leveraging real-world pathologist conversations. A pathology vision-language

model could be fine-tuned to emulate human pathologists’ discourse, addressing issues re-

lated to consultation delays and the biases of the geographic distribution of specialists.
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Vincent Molinié, et al. Artificial intelligence assistance significantly improves gleason
grading of prostate biopsies by pathologists. Modern Pathology, 34(3):660–671, 2021.

[41] Wouter Bulten, Kimmo Kartasalo, Po-Hsuan Cameron Chen, Peter Ström, Hans
Pinckaers, Kunal Nagpal, Yuannan Cai, David F. Steiner, Hester van Boven, Robert
Vink, Christina Hulsbergen-van de Kaa, Jeroen van der Laak, Mahul B. Amin,
Andrew J. Evans, Theodorus van der Kwast, Robert Allan, Peter A. Humphrey,
Henrik Grönberg, Hemamali Samaratunga, Brett Delahunt, Toyonori Tsuzuki, Tomi
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[103] Andreas Holzinger, André Carrington, and Heimo Müller. Measuring the quality of
explanations: the system causability scale (scs). KI-Künstliche Intelligenz, pages 1–6,
2020.

[104] Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal, and Heimo Müller.
Causability and explainability of artificial intelligence in medicine. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 9(4):e1312, 2019.

[105] Eric Horvitz. Principles of mixed-initiative user interfaces. In Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, pages 159–166, 1999.

[106] Yongxiang Huang and Albert Chi-shing Chung. Improving high resolution histology
image classification with deep spatial fusion network. In Computational Pathology and
Ophthalmic Medical Image Analysis, pages 19–26. Springer, 2018.

[107] Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J Montine, and James Zou.
A visual–language foundation model for pathology image analysis using medical twit-
ter. Nature medicine, 29(9):2307–2316, 2023.

[108] Zhi Huang, Eric Yang, Jeanne Shen, Dita Gratzinger, Frederick Eyerer, Brooke
Liang, Jeffrey Nirschl, David Bingham, Alex M Dussaq, Christian Kunder, et al. A
pathologist–ai collaboration framework for enhancing diagnostic accuracies and effi-
ciencies. Nature Biomedical Engineering, pages 1–16, 2024.

[109] Peter A Humphrey. Gleason grading and prognostic factors in carcinoma of the
prostate. Modern pathology, 17(3):292–306, 2004.

[110] Aperio ImageScope. Aperio imagescope - pathology slide viewing software, Date Ac-
cessed: 2025-01-31.

[111] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[112] Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris
Chute, Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, et al.
Chexpert: A large chest radiograph dataset with uncertainty labels and expert com-
parison. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 590–597, 2019.

[113] Maia Jacobs, Jeffrey He, Melanie F. Pradier, Barbara Lam, Andrew C. Ahn,
Thomas H. McCoy, Roy H. Perlis, Finale Doshi-Velez, and Krzysztof Z. Gajos. Design-
ing ai for trust and collaboration in time-constrained medical decisions: A sociotechni-
cal lens. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.

190



[114] Maia Jacobs, Melanie F. Pradier, Thomas H. McCoy, Roy H. Perlis, Finale Doshi-Velez,
and Krzysztof Z. Gajos. How machine-learning recommendations influence clinician
treatment selections: the example of antidepressant selection. Translational Psychia-
try, 11(1):108, February 2021.

[115] Jared Jessup, Robert Krueger, Simon Warchol, John Hoffer, Jeremy Muhlich, Cecily C
Ritch, Giorgio Gaglia, Shannon Coy, Yu-An Chen, Jia-Ren Lin, et al. Scope2screen:
Focus+ context techniques for pathology tumor assessment in multivariate image data.
IEEE Transactions on Visualization and Computer Graphics, 28(1):259–269, 2021.

[116] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[117] Patrick W Jordan, Bruce Thomas, Ian Lyall McClelland, and Bernard Weerdmeester.
Usability evaluation in industry. CRC Press, 1996.

[118] Susanne Jul and George W. Furnas. Critical zones in desert fog: Aids to multiscale
navigation. In Proceedings of the 11th Annual ACM Symposium on User Interface Soft-
ware and Technology, UIST ’98, page 97–106, New York, NY, USA, 1998. Association
for Computing Machinery.

[119] Sasikiran Kandula and Jeffrey Shaman. Reappraising the utility of google flu trends.
PLoS computational biology, 15(8):e1007258, 2019.

[120] Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna Wallach,
and Jennifer Wortman Vaughan. Interpreting interpretability: Understanding data
scientists’ use of interpretability tools for machine learning. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–14, New
York, NY, USA, 2020. Association for Computing Machinery.

[121] Saif Khairat, David Marc, William Crosby, and Ali Al Sanousi. Reasons for physicians
not adopting clinical decision support systems: Critical analysis. JMIR Med Inform,
6(2):e24, Apr 2018.
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Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 5338–5348. PMLR,
13–18 Jul 2020.

191



[124] Vivian Lai, Han Liu, and Chenhao Tan. ”why is ’chicago’ deceptive?” towards building
model-driven tutorials for humans. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, CHI ’20, page 1–13, New York, NY, USA,
2020. Association for Computing Machinery.

[125] Vivian Lai and Chenhao Tan. On human predictions with explanations and predictions
of machine learning models: A case study on deception detection. In Proceedings of
the Conference on Fairness, Accountability, and Transparency, FAT* ’19, page 29–38,
New York, NY, USA, 2019. Association for Computing Machinery.

[126] Anastasia Lebedeva, Jaroslaw Kornowicz, Olesja Lammert, and Jörg Papenkordt. The
role of response time for algorithm aversion in fast and slow thinking tasks. In Artificial
Intelligence in HCI: 4th International Conference, AI-HCI 2023, Held as Part of the
25th HCI International Conference, HCII 2023, Copenhagen, Denmark, July 23–28,
2023, Proceedings, Part I, page 131–149, Berlin, Heidelberg, 2023. Springer-Verlag.

[127] Min Hun Lee, Daniel P. Siewiorek, Asim Smailagic, Alexandre Bernardino, and Sergi
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Supporting digital pathologists with imperfect ai. In 26th International Conference
on Intelligent User Interfaces, IUI ’21, page 504–513, New York, NY, USA, 2021.
Association for Computing Machinery.

[132] Geert Litjens, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka
Balkenhol, Peter Bult, Altuna Halilovic, Meyke Hermsen, Rob van de Loo, Rob Vogels,
et al. 1399 h&e-stained sentinel lymph node sections of breast cancer patients: the
camelyon dataset. GigaScience, 7(6):giy065, 2018.

[133] Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal,
Iringo Kovacs, Christina Hulsbergen-Van De Kaa, Peter Bult, Bram Van Ginneken,

192



and Jeroen Van Der Laak. Deep learning as a tool for increased accuracy and efficiency
of histopathological diagnosis. Scientific reports, 6(1):26286, 2016.

[134] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth
IEEE International Conference on Data Mining, pages 413–422. IEEE, 2008.

[135] Duri Long and Brian Magerko. What is ai literacy? competencies and design consid-
erations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems, CHI ’20, page 1–16, New York, NY, USA, 2020. Association for Computing
Machinery.

[136] David N Louis, Hiroko Ohgaki, Otmar DWiestler, Webster K Cavenee, Peter C Burger,
Anne Jouvet, Bernd W Scheithauer, and Paul Kleihues. The 2007 who classification
of tumours of the central nervous system. Acta neuropathologica, 114(2):97–109, 2007.

[137] David N Louis, Arie Perry, Pieter Wesseling, Daniel J Brat, Ian A Cree, Dominique
Figarella-Branger, Cynthia Hawkins, H K Ng, Stefan M Pfister, Guido Reifenberger,
Riccardo Soffietti, Andreas von Deimling, and David W Ellison. The 2021 WHO
Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology,
23(8):1231–1251, 06 2021.

[138] Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J Chen, Melissa Zhao,
Aaron K Chow, Kenji Ikemura, Ahrong Kim, Dimitra Pouli, Ankush Patel, et al.
A multimodal generative ai copilot for human pathology. Nature, 634(8033):466–473,
2024.

[139] William M Lydiatt, Snehal G Patel, Brian O’Sullivan, Margaret S Brandwein, John A
Ridge, Jocelyn C Migliacci, Ashley M Loomis, and Jatin P Shah. Head and neck can-
cers—major changes in the american joint committee on cancer eighth edition cancer
staging manual. CA: a cancer journal for clinicians, 67(2):122–137, 2017.

[140] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579–2605, 2008.

[141] Gregory Maniatopoulos, Rob Procter, Sue Llewellyn, Gill Harvey, and Alan Boyd.
Moving beyond local practice: reconfiguring the adoption of a breast cancer diagnostic
technology. Social Science & Medicine, 131:98–106, 2015.

[142] Cedric Marchessoux, A. Nave Dufour, K. Espig, S. Monaco, A. Palekar, and L. Pan-
tanowitz. Comparison display resolution on user impact for digital pathology. Diag-
nostic Pathology, 1(8), 2016.

[143] Anne L Martel, Dan Hosseinzadeh, Caglar Senaras, Yu Zhou, Azadeh Yazdanpanah,
Rushin Shojaii, Emily S Patterson, Anant Madabhushi, and Metin N Gurcan. An im-
age analysis resource for cancer research: Piip—pathology image informatics platform
for visualization, analysis, and management. Cancer research, 77(21):e83–e86, 2017.

193



[144] Clare McGenity, Emily L Clarke, Charlotte Jennings, Gillian Matthews, Caroline
Cartlidge, Deborah D Stocken, and Darren Treanor. Artificial intelligence in digi-
tal pathology: a systematic review and meta-analysis of diagnostic test accuracy. npj
Digital Medicine, 7(1):114, 2024.

[145] Sara S McMillan, Michelle King, and Mary P Tully. How to use the nominal group
and delphi techniques. International journal of clinical pharmacy, 38:655–662, 2016.

[146] John S Meyer, Consuelo Alvarez, Clara Milikowski, Neal Olson, Irma Russo, Jose
Russo, Andrew Glass, Barbara A Zehnbauer, Karen Lister, and Reza Parwaresch.
Breast carcinoma malignancy grading by Bloom–Richardson system vs proliferation
index: reproducibility of grade and advantages of proliferation index. Modern Pathol-
ogy, 18(8):1067–1078, August 2005.

[147] R. A. Miller and F. E. Masarie. The demise of the ’Greek Oracle’ model for medical
diagnostic systems, 1990.

[148] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen,
Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. Recent advances in natural
language processing via large pre-trained language models: A survey. ACM Comput.
Surv., 56(2), sep 2023.

[149] Jesper Molin, Morten Fjeld, Claudia Mello-Thoms, and Claes Lundström. Slide navi-
gation patterns among pathologists with long experience of digital review. Histopathol-
ogy, 67(2):185–192, 2015.

[150] Diana Montezuma, Ana Monteiro, João Fraga, Liliana Ribeiro, Sofia Gonçalves, André
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