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Abstract The chemokine CCL28 is highly expressed in mucosal tissues, but its role during infec-
tion is not well understood. Here, we show that CCL28 promotes neutrophil accumulation in the gut 
of mice infected with Salmonella and in the lung of mice infected with Acinetobacter. Neutrophils 
isolated from the infected mucosa expressed the CCL28 receptors CCR3 and, to a lesser extent, 
CCR10, on their surface. The functional consequences of CCL28 deficiency varied between the 
two infections: Ccl28−/− mice were highly susceptible to Salmonella gut infection but highly resis-
tant to otherwise lethal Acinetobacter lung infection. In vitro, unstimulated neutrophils harbored 
pre-formed intracellular CCR3 that was rapidly mobilized to the cell surface following phagocytosis 
or inflammatory stimuli. Moreover, CCL28 stimulation enhanced neutrophil antimicrobial activity, 
production of reactive oxygen species, and formation of extracellular traps, all processes largely 
dependent on CCR3. Consistent with the different outcomes in the two infection models, neutrophil 
stimulation with CCL28 boosted the killing of Salmonella but not Acinetobacter. CCL28 thus plays 
a critical role in the immune response to mucosal pathogens by increasing neutrophil accumulation 
and activation, which can enhance pathogen clearance but also exacerbate disease depending on 
the mucosal site and the infectious agent.
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Editor's evaluation
This important study provides compelling evidence that CCL28 plays a crucial role in regulating 
neutrophil function and host defense during mucosal infections, with CCL28 deficiency leading to 
greater susceptibility to Salmonella gut infections and enhanced resistance to Acinetobacter lung 
infections. The data convincingly shows that CCL28, through CCR3, regulates neutrophil functions 
such as reactive oxygen species production and extracellular trap formation, influencing pathogen 
clearance and highlighting its context-dependent impact on immunity.

Introduction
Chemokines comprise a family of small chemoattractant proteins that play important roles in diverse 
host processes including chemotaxis, immune cell development, and leukocyte activation (Zlotnik and 
Yoshie, 2000; Zlotnik et al., 2011; Charo and Ransohoff, 2006). The chemokine superfamily includes 
48 human ligands and 19 receptors, classified into subfamilies (CC, CXC, C, and CX3C) depending on 
the location of the cysteines in their sequence (Nomiyama et al., 2013; Hughes and Nibbs, 2018). 
Four chemokines predominate in mucosal tissues: CCL25, CCL28, CXCL14, and CXCL17 (Hernández-
Ruiz and Zlotnik, 2017).

CCL28, also known as Mucosae-associated Epithelial Chemokine, belongs to the CC (or β-chemo-
kine) subclass, and is constitutively produced in mucosal tissues including the digestive system, respi-
ratory tract, and female reproductive system (Mohan et  al., 2017). Although best studied for its 
homeostatic functions, CCL28 can also be induced under inflammatory conditions and is thus consid-
ered a dual function chemokine (Mohan et al., 2017).

CCL28 signals via two receptors: CCR3 and CCR10 (Pan et al., 2000). During homeostasis in mice, 
CCL28 provides a chemotactic gradient for CCR10+ B and T cells and guides the migration of CCR10+ 
IgA plasmablasts to the mammary gland and other tissues (Mohan et al., 2017; Burkhardt et al., 
2019; Matsuo et al., 2018). In a disease context, CCL28 has been best studied in allergic airway 
inflammation. High CCL28 levels are present in airway biopsies from asthma patients (O’Gorman 
et al., 2005), and CCR3+ and CCR10+ cells are recruited to the airways in a CCL28-dependent fashion 
in murine asthma models (John et al., 2005; English et al., 2006).

In the human gut, CCL28 is upregulated during inflammation of the gastric mucosa in Helicobacter 
pylori-infected patients (Hansson et al., 2008) and in the colon of patients with ulcerative colitis, a 
prominent form of inflammatory bowel disease (Lee et al., 2021; Ogawa et al., 2004). In the mouse 
gut, CCL28 production is increased in the dextran sulfate sodium model of colitis (Matsuo et al., 
2018). Epithelial cells are an important source of CCL28 (Lee et al., 2021; Ogawa et al., 2004), and 
its expression can be induced by stimulation of cultured airway or intestinal epithelial cells with the 
proinflammatory cytokines interleukin (IL)-1ɑ, IL-1β, or tumor necrosis factor (TNF)-ɑ, or following 
Salmonella infection of cultured HCA-7 colon carcinoma cells (Ogawa et al., 2004).

Collectively, a variety of studies have postulated that CCL28 is an important chemokine in inflam-
matory diseases, ranging from asthma to ulcerative colitis, and during the immune response to infec-
tion. Yet, CCL28 function remains understudied, largely because Ccl28−/− mice have only recently 
been described (Burkhardt et al., 2019; Matsuo et al., 2018). Here, we investigate the function and 
underlying mechanism of CCL28 during the mucosal response to infection.

By comparing infection in Ccl28−/− mice and their wild-type littermates, we discovered a key role 
for CCL28 in promoting neutrophil accumulation to the gut during infection with Salmonella enterica 
serovar Typhimurium (STm) and to the lung during infection with multidrug-resistant Acinetobacter 
baumannii (Ab). Neutrophils isolated from the infected mucosal sites harbored CCL28 receptors, 
particularly CCR3, on their surface. In vitro, CCR3 was stored intracellularly, and was rapidly detect-
able on the neutrophil surface upon stimulation with proinflammatory molecules or in response to 
phagocytosis. Neutrophil stimulation of CCL28 resulted in enhanced neutrophil antimicrobial activity 
against STm, increased production of reactive oxygen species (ROS), and enhanced formation of 
neutrophil extracellular traps (NETs), all processes that help control infection but also cause extensive 
tissue damage. We conclude that CCL28 plays a previously unappreciated role in the innate immune 
response to mucosal pathogens by regulating neutrophil accumulation and activation.

https://doi.org/10.7554/eLife.78206
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Results
CCL28-mediated responses limit Salmonella gut colonization and 
systemic dissemination
We investigated CCL28 activity during gastrointestinal infection with STm by using the well-established 
streptomycin-treated C57BL/6 mouse model of colitis (Barthel et al., 2003; Walker et al., 2023). 
At day 4 post-infection (4 dpi) with STm, we observed a ~fourfold increase of CCL28 by enzyme-
linked immunosorbent assay (ELISA) analysis of feces from wild-type mice relative to uninfected 
controls (Figure  1A). In a prior preliminary study, we found that Ccl28−/− mice infected with STm 
exhibited increased lethality compared to their wild-type littermates beginning at day 1 post-infection 
(Burkhardt et al., 2019). To further elucidate the impact of CCL28 on STm infection dynamics and host 
responses earlier in the course of infection (2–3 dpi), we examined STm colony-forming units (CFU) in 
the gastrointestinal contents and extraintestinal tissues. Although there was no significant difference 
in gastrointestinal CFU between wild-type and Ccl28−/− mice (Figure 1B and Figure 1—figure supple-
ment 1A), higher CFU were observed in extraintestinal tissues by 2 dpi (Figure 1—figure supplement 
1B). By 3 dpi, significantly higher CFU were recovered from the Peyer’s patches, the mesenteric lymph 
nodes, and systemic sites (bone marrow and spleen) of Ccl28−/− mice (Figure 1C), indicating that the 
CCL28 is essential for limiting extraintestinal STm dissemination. In contrast, when bypassing the gut 
and infecting mice intraperitoneally with STm, we also observed a ~fourfold increase in serum CCL28 
(Figure 1—figure supplement 2A), but equal numbers of STm CFU were recovered from the spleen, 
liver, and blood of both wild-type and Ccl28−/− mice at 4 dpi (Figure 1—figure supplement 2B). 
These results suggest that CCL28 helps control STm infection at its origin in the gut mucosa, reducing 
dissemination to other sites.

CCL28 promotes neutrophil accumulation to the gut during Salmonella 
infection
CCL28 has direct antimicrobial activity against some bacteria (e.g., Streptococcus mutans and Pseu-
domonas aeruginosa) and fungi (e.g., Candida albicans) (Hieshima et al., 2003), but concentrations 
up to 1 μM did not substantially inhibit wild-type STm. However, CCL28 produced multilog-fold CFU 
reductions in Escherichia coli K12 or a STm ΔphoQ mutant known to be more susceptible to antimi-
crobial peptide killing (Groisman, 2001; Figure 1—figure supplement 2C). Therefore, the direct anti-
microbial activity of CCL28 does not explain the lower STm colonization in wild-type mice compared 
to Ccl28−/− mice.

During homeostasis, CCL28 exhibits chemotactic activity in the gut mucosa toward CD4+ and CD8+ 
T cells and IgA-producing B cells (Mohan et al., 2017; Burkhardt et al., 2019; Matsuo et al., 2018). 
However, immune cell profiling in the intestines (using the flow cytometry gating strategy presented 
in Figure 1—figure supplement 3) revealed similar B cell and CD4+ and CD8+ T cell numbers in both 
wild-type and Ccl28−/− mice during homeostasis and STm infection (Figure 1—figure supplement 
4A–C). Neutrophils are crucial in the host response to STm (reviewed in Perez-Lopez et al., 2016), 
and neutropenia increases infection severity in both mice and humans (Bhatti et al., 1998; Yaman 
et  al., 2018; Vassiloyanakopoulos et  al., 1998; Fierer, 2001). Strikingly, we observed increased 
neutrophil abundance in the intestinal tissues of wild-type mice during colitis, but  ~50% fewer 
neutrophils (CD11b+ Ly6G+ cells) were isolated from the gut of Ccl28−/− mice 2 and 3 days after STm 
infection (Figure 1D, E). Concurrent neutrophil counts in the blood and bone marrow were similar 
between infected Ccl28−/− mice and wild-type mice (Figure 1—figure supplement 5A), indicating a 
defect in the accumulation of neutrophils at the mucosal site of infection and excluding a defect in 
granulopoiesis.

We detected slightly lower levels of the NET-associated peptides myeloperoxidase (MPO), neutro-
phil elastase, and S100A9 (a subunit of calprotectin, a metal-sequestering protein associated with 
neutrophils) in the cecal content supernatant of STm-infected Ccl28−/− mice compared to wild-type 
mice (Figure 1—figure supplement 6), though these differences were not statistically significant. Addi-
tionally, we quantified gut eosinophils, which commonly express the CCL28 receptor CCR3 (Mohan 
et al., 2017). Although the majority of eosinophils (CD11b+ SiglecF+ Side-scatterHigh) detected in the 
gut and blood expressed CCR3 (Figure 1—figure supplement 5B), we found no alteration in their 
numbers in the gut, blood, or bone marrow in homeostasis or during STm infection (Figure 1—figure 

https://doi.org/10.7554/eLife.78206
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Figure 1. CCL28 confers protection during Salmonella colitis and promotes neutrophil accumulation in the gut. (A) For the colitis model, wild-type (WT) 
mice were gavaged with streptomycin 24 hr prior to oral infection with approximately 1 × 109 CFU S. enterica serovar Typhimurium (STm). At 4 days 
post-infection (dpi), CCL28 in feces was quantified by ELISA. Data shown comprise two independent experiments (uninfected, n = 10; STm, n = 10). Bars 
represent the mean ± standard deviation (SD). (B) STm CFU in the fecal content collected 1–3 dpi, and in the cecal content 3 dpi from WT (filled circles) 

Figure 1 continued on next page
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supplement 5C). The abundance of other innate immune cell populations (CD11b+ CD11c+ conven-
tional dendritic cell-like cells and CD11b+ F4/80+ macrophage-like cells) responding to STm in the gut 
also showed no major differences (Figure 1—figure supplement 5D, E). Therefore, CCL28 specifi-
cally promotes neutrophil accumulation in the gut during STm infection, which occurs after neutrophil 
production in the bone marrow and their egress into the blood circulation.

Gut proinflammatory gene expression and tissue pathology are 
reduced in Ccl28−/− mice infected with STm
Neutrophils can mediate inflammation by producing proinflammatory molecules or engaging in cross-
talk with other cells (Sabroe et al., 2005). We evaluated the expression of genes encoding proinflam-
matory cytokines in the cecum of Ccl28−/− mice and wild-type littermates 3 dpi with STm. Ifng and 
IL1b gene transcripts were significantly higher in the cecum of infected wild-type mice compared to 
Ccl28−/− mice, while other factors involved in neutrophil recruitment (Cxcl1, Csf3, and Il17a) or the 
proinflammatory cytokine Tnfa showed no significant differences (Figure 1F). No differences were 
observed between uninfected wild-type mice and Ccl28−/− mice (data not shown). Histopathology at 
3 dpi revealed marked cecal inflammation, including significant neutrophil recruitment in wild-type 
mice, which was greatly reduced in Ccl28−/− mice (Figure 1G–I). Thus, CCL28 modulates neutrophil 
accumulation and drives inflammatory tissue pathology and colitis during STm infection.

Ccl28−/− mice are protected from lethal infection in an Acinetobacter 
pneumonia model
CCL28 is expressed in several mucosal tissues beyond the gut, including the lung (Mohan et  al., 
2017). To investigate whether CCL28 promotes neutrophil accumulation and host protection in the 
lung, we employed a murine Ab pneumonia model (Dillon et al., 2019; Lin et al., 2015). Ab is an 
emerging, frequently multidrug-resistant Gram-negative pathogen causing potentially lethal nosoco-
mial pneumonia (Ayoub Moubareck and Hammoudi Halat, 2020). Following intratracheal Ab infec-
tion, we observed a striking phenotype: 75% of wild-type mice died within 48 hr, whereas 88% of 
Ccl28−/− knockout mice survived through 10 dpi (Figure 2A). The enhanced resistance of Ccl28−/− mice 

and Ccl28−/− (white circles) littermate mice. (C) CFU recovered from the Peyer’s patches, mesenteric lymph nodes, spleen, bone marrow, and blood at 3 
dpi. Data shown comprise eight independent experiments (WT, n = 24; Ccl28−/−, n = 18). Some of the spleen data points were published as a preliminary 
characterization in Burkhardt et al., 2019 and are combined with the new dataset. Bars represent the geometric mean, dotted lines represent the 
limit of detection. (D) Representative pseudocolor dot plots of neutrophils (CD11b+ Ly6G+ cells; gated on live, CD45+ cells) obtained from the gut 
tissues of uninfected (Naive) and STm-infected WT or Ccl28−/− mice 2 or 3 dpi, as determined by flow cytometry. (E) Frequency of neutrophils in the live 
CD45+ cells obtained from the gut mucosa of WT (filled circles) or Ccl28−/− mice (white circles). Naive mouse data shown comprise four independent 
experiments (WT, n = 14; Ccl28−/−, n = 9); 2 dpi data comprise four independent experiments (WT, n = 14; Ccl28−/−, n = 14); 3 dpi data comprise eight 
independent experiments (WT, n = 24; Ccl28−/−, n = 18). Bars represent the geometric mean. (F) Relative expression levels (qPCR) of Cxcl1 (CXCL1), 
Tnfa (TNFα), Ifng (IFNγ), Csf3 (G-CSF), Il1b (IL-1β), and Il17a (IL-17A) in the cecal tissue of STm-infected WT (filled circles, n = 13) or Ccl28−/− mice (white 
circles, n = 8), 3 dpi, relative to uninfected control mice. Bars represent the geometric mean. Data shown comprise four independent experiments. 
(G–I) Histopathological analysis of the cecum collected from STm-infected WT or Ccl28−/− mice, 3 dpi (WT, n = 11; Ccl28−/−, n = 7). Scale bars indicate 
100 µm. (G) Sum of the total histopathology score (bars represent the mean; symbols represent individual mice), (H) histopathology scores showing the 
individual analyzed parameters of each mouse (stacked bar height represents the overall score), and (I) hematoxylin and eosin (H&E)-stained sections 
from one representative animal for each group (×200 magnification). For (B) and (C), CFU data were log-normalized before statistical analysis by Welch’s 
t test. Mann–Whitney U was used for all other datasets where statistical analysis was performed. A significant difference relative to WT controls is 
indicated by *p ≤ 0.05, **p ≤ 0.01; ns, not significant.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Salmonella gut colonization and extraintestinal levels 2 days post-infection.

Figure supplement 2. CCL28 does not confer protection in a Salmonella bacteremia model, and lacks direct antimicrobial activity against Salmonella.

Figure supplement 3. Flow cytometry gating strategy for the identification and classification of major immune cell populations in the tissues of STm-
infected mice.

Figure supplement 4. Wild-type (WT) and Ccl28−/− mice exhibit similar numbers of B and T cells in the gut, blood, and bone marrow.

Figure supplement 5. Profiling granulocyte and APC-like cell abundance in wild-type (WT) and Ccl28−/− mouse tissues during STm infection.

Figure supplement 6. Neutrophil-associated antimicrobial protein levels during intestinal STm infection of wild-type (WT) and Ccl28−/− mice.

Figure 1 continued
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Figure 2 continued on next page
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was not associated with significant reductions in Ab CFU recovered at 1 dpi from bronchoalveolar 
lavage (BAL) fluid, lung, or blood (Figure 2B–D). These results suggest that, unlike STm gut infection, 
CCL28 exacerbates lethality during Ab lung infection.

In vitro, high concentrations (1 μM) of CCL28 exhibited direct antimicrobial activity against 5 × 
105 CFU of Ab, but not when higher CFU (5 × 108/ml) were used as inoculum in the assay (Figure 1—
figure supplement 2C). Given that high Ab CFU were recovered in the lung of wild-type mice 
(Figure 2B, C), CCL28 does not appear to limit growth of this pathogen in vivo even though it exhibits 
modest antimicrobial activity in vitro. We thus investigated if alterations in neutrophil accumulation 
in the lung between wild-type and Ccl28−/− mice could explain the higher lethality of Ccl28−/− mice 
challenged with Ab lung infection.

CCL28 promotes neutrophil accumulation to the lung during 
Acinetobacter infection
Prior studies demonstrated neutrophil recruitment to the lungs of Ab-infected mice beginning at 4 hr 
post-infection and peaking at 1 dpi (van Faassen et al., 2007; Tsuchiya et al., 2012). CCL28 contrib-
uted to neutrophil recruitment during STm gut infection, so we analyzed neutrophil recruitment to the 
lung mucosa 1 day after Ab infection in wild-type and Ccl28−/− mice. Neutrophils (CD11b+ Ly6G+) were 
the majority of immune cells in the BAL fluid and lungs of both wild-type and Ccl28−/− mice (Figure 2E, 
F). However, greater cellular infiltrates were recovered in the BAL fluid of wild-type mice compared 
to Ccl28−/− littermates (Figure 2G). Neutrophils made up the majority of BAL cells in all Ab-infected 
mice, but were less abundant in Ccl28−/− mice (Figure  2H), while neutrophil percentages in lung 
tissues, and neutrophil numbers in the blood or bone marrow, did not differ significantly between the 
wild-type and mutant mice (Figure 2F). Although neutrophil abundance greatly increased in the lungs 
during Ab infection (Figure 2—figure supplement 1A), no other cell types profiled varied between 
wild-type and Ccl28−/− mice before or 1 day post-Ab infection (Figure 2—figure supplement 1B–D 
and Figure 2—figure supplement 2A–C), besides a slight deficiency in lung eosinophil levels in unin-
fected Ccl28−/− mice (Figure 2—figure supplement 1B). Although substantial lung inflammation was 
observed in both wild-type and Ccl28−/− mice post-infection (Figure 2I, K), immunofluorescence anal-
ysis revealed fewer neutrophils (Ly6G+ cells) in the lungs of Ccl28−/− mice (Figure 2I, J). Levels of 
elastase, MPO, and S100A9 in the BAL fluid supernatant were higher in Ab-infected mice compared 
to uninfected controls, with a trend toward lower levels in Ccl28−/− mice (Figure 2—figure supple-
ment 3). Gene expression of IFNγ and IL-1β was significantly lower in Ab-infected lungs of Ccl28−/− 
mice compared to wild-type mice (Figure 2L), while Cxcl1 gene expression was reduced and the 
other proinflammatory genes tested (Il17a, Csf3, Tnfa) did not differ (Figure 2L). Therefore, CCL28 

from individual mice. (B–D) Ab CFU were quantified from the BAL (bronchoalveolar lavage) fluid, (C) lung tissue, and (D) blood in WT (gray symbols) 
and Ccl28−/− mice (magenta symbols). Bars represent the geometric mean. (E) Representative pseudocolor dot plots of neutrophils (CD11b+ Ly6G+ cells; 
gated on live, CD45+ cells) and (F) frequency of neutrophils obtained from the BAL, lung, blood, and bone marrow of Ab-infected WT or Ccl28−/− mice, 
as determined by flow cytometry. Lines represent the geometric mean. (G) The number of live host cells per mL of BAL, determined using an automated 
cell counter with Trypan Blue counterstain to assess viability, from uninfected WT (Uninf., n = 5), and Ab-infected WT (n = 9); and Ccl28−/− mice (n = 8). 
Bars represent the geometric mean. (H) Relative abundance of different leukocyte populations as a proportion of the live CD45+ cell population was 
assessed in the BAL. Each bar represents data from one mouse. (I) Representative immunofluorescence image of lungs from WT and Ccl28−/− mice, 
uninfected or infected with Ab, stained for the neutrophil marker Ly6G (magenta). 4′,6-diamidino-2-phenylindole (DAPI, blue) was used to label nuclei. 
Scale bars indicate 20 µm. (J) Quantification of Ly6G+ cells per high-power field (HPF) from immunofluorescence images of lungs from WT mice (n = 
4) and Ccl28−/− mice (n = 4). Bars represent the mean ± standard deviation (SD). (K) Histopathological analysis of lungs from WT and Ccl28−/− mice 
infected with Ab at 1 dpi. Each bar represents an individual mouse. (L) Relative expression levels (qPCR) of Cxcl1 (CXCL1), Tnfa (TNFα), Ifng (IFNγ), 
Csf3 (G-CSF), Il1b (IL-1β), and Il17a (IL-17A) in the lung of WT (n = 11) or Ccl28−/− mice (n = 12) infected with Ab (1 dpi). Bars represent the geometric 
mean. Data shown comprise three independent experiments. For (A), survival curves were statistically compared using a log-rank (Mantel–Cox) test. For 
(B–D), CFU data were log-normalized before analysis by Welch’s t test. For (F), (G), and (L), Mann–Whitney U was used to compare groups with unknown 
distribution. A significant difference between groups is indicated by *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. ns, not significant.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Immunophenotyping of CD11b+ immune cells recovered from wild-type (WT) and Ccl28−/− mice during A. baumannii infection.

Figure supplement 2. Immunophenotyping of lymphocytes recovered from wild-type (WT) and Ccl28−/− mice during A. baumannii infection.

Figure supplement 3. Neutrophil-associated antimicrobial protein levels during lung Ab infection of wild-type (WT) and Ccl28−/− mice.

Figure 2 continued

https://doi.org/10.7554/eLife.78206
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contributes to lung inflammation and neutrophil accumulation during Ab pneumonia, similar to its role 
in STm gut infection.

Gut and BAL neutrophils express receptors CCR3 and CCR10 during 
infection
CCL28 attracts leukocytes expressing at least one of its receptors, CCR3 or CCR10. CCR10 is found 
on T cells, B cells, and IgA-secreting plasma cells, whereas eosinophils express CCR3 (Mohan et al., 
2017). Although early studies concluded that CCR3 was absent in neutrophils (Höchstetter et al., 
2000), later research detected this receptor on neutrophils isolated from patients with chronic inflam-
mation (Hartl et  al., 2008). Based on these findings and our observations of CCL28-dependent 
neutrophil accumulation in the gut during STm colitis and in the lung during Ab infection (Figures 1 
and 2), we performed flow cytometry on single-cell suspensions from infected mouse tissues to eval-
uate surface expression of CCR3 and CCR10. In STm-infected mice, we analyzed the gut, blood, 
and bone marrow (Figure 3A, B). Both receptors were present on a small subset of bone marrow 
neutrophils (~4% CCR3, ~0.2% CCR10) and blood neutrophils (~5% CCR3, ~1% CCR10) during 
infection. However, neutrophils expressing these receptors, particularly CCR3, were enriched in the 
inflamed gut, with ~20% expressing CCR3 and ~2% expressing CCR10 (Figure 3A, B). Simultaneously 
staining for both CCR3 and CCR10 showed that ~1% of gut neutrophils from infected wild-type mice 
expressed both receptors (Figure 3—figure supplement 1A), and infected Ccl28−/− mice expressed 
similar levels of these receptors as wild-type mice (Figure 3—figure supplement 1B).

Neutrophils isolated from the BAL of Ab-infected wild-type mice also expressed CCR3 and CCR10 
surface expression, with  ~15% of neutrophils expressing CCR3 (Figure  3C) and  ~2% expressing 
CCR10 (Figure  3D). Simultaneously staining for both CCR3 and CCR10 revealed that  ~0.5% of 
BAL neutrophils from infected wild-type mice expressed both receptors (Figure 3—figure supple-
ment 1C), and infected Ccl28−/− mice expressed similar levels of these receptors as wild-type mice 
(Figure 3—figure supplement 1D). Surprisingly, a similar percentage of neutrophils isolated from the 
blood and the bone marrow of Ab-infected mice expressed these receptors compared to BAL neutro-
phils (Figure 3C, D). These findings suggest that CCR3 and CCR10 expression is higher in neutrophils 
associated with mucosal tissues, potentially facilitating their accumulation in these tissues or being 
induced upon recruitment to the mucosal sites.

Proinflammatory stimuli and phagocytosis induce expression of CCR3 
and CCR10 on neutrophils
We investigated mechanisms underpinning the upregulation of CCR3 and CCR10 in neutrophils. 
A prior study indicated that a cocktail of proinflammatory cytokines (GM-CSF, IFNγ, TNFɑ) boosts 
CCR3 expression in human peripheral blood neutrophils from healthy donors (Hartl et al., 2008), 
and expression of these cytokines is highly induced during STm colitis (Figure 1F) and Ab pneumonia 
(Figure 2L). We stimulated bone marrow neutrophils from wild-type mice (which express low levels of 
CCR3 and CCR10) with these cytokines, and independently with other pro-inflammatory compounds 
including lipopolysaccharide (LPS), the protein kinase C activator phorbol 12-myristate 13-acetate 
(PMA), or the N-formylated, bacterial-derived chemotactic peptide fMLP. PMA produced the highest 
expression of CCR3 (~30% CCR3+ neutrophils, 10-fold induction compared to baseline), while the 
GM-CSF + IFNγ + TNFɑ cytokine combination or fMLP induced moderate CCR3 expression (~15% 
CCR3+, a fivefold increase) and LPS yielding the lowest but still significant induction (~10% CCR3+, a 
threefold increase) (Figure 3E). Trends in CCR10 expression were similar to CCR3, though no stimuli 
induced more than ~0.5% CCR10+ neutrophils (~1.2- to 2.5-fold higher than baseline) (Figure 3F).

Phagocytosis of microbes and necrotic debris are critical neutrophil functions at tissue foci of 
infection and inflammation (Uribe-Querol and Rosales, 2020) and are associated with changes in 
neutrophil gene expression (Kobayashi et al., 2002). We tested whether phagocytosis induced CCR3 
and CCR10 expression by incubating bone marrow neutrophils with latex beads, with or without the 
cytokine cocktail. Phagocytosis of latex beads alone resulted in a small but significant induction of 
neutrophil CCR3 expression (~8% of neutrophils); however, latex beads augmented with the cyto-
kine cocktail markedly induced CCR3 expression (~25% of neutrophils vs. ~15% with cocktail alone; 
Figure 3G). This synergistic effect of phagocytosis was not notable for CCR10 (Figure 3H).

https://doi.org/10.7554/eLife.78206
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Figure 3. Surface expression of the CCL28 receptors CCR3 and CCR10 on neutrophils from infected tissue, and upon stimulation with proinflammatory 
stimuli and phagocytosis. Surface expression of (A, C) CCR3 or (B, D) CCR10 on murine neutrophils obtained from (A, B) the gut, blood, and bone 
marrow (BM) 3 dpi with STm, or (C, D) the bronchoalveolar lavage (BAL), blood, and bone marrow 1 dpi with Ab, analyzed by flow cytometry. Left 
panels show representative histograms of (A, C) CCR3 or (B, D) CCR10 expression on the surface of neutrophils (gated on live, CD45+ CD11b+ Ly6G+ 

Figure 3 continued on next page
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To further probe the role of phagocytosis in CCR3 expression, we incubated bone marrow neutro-
phils with live STm for 1 hr. STm rapidly induced CCR3 expression on the neutrophil surface (~25% 
of cells; Figure 3I), whereas CCR10 was only minimally induced (Figure 3J). Cytochalasin D, a potent 
inhibitor of the actin polymerization required for phagocytic uptake, largely blocked CCR3 receptor 
induction (Figure  3I); however, CCR10 induction was not blocked (Figure  3J), suggesting that a 
mechanism other than phagocytic uptake likely drives the minor increase in CCR10 expression by 
neutrophils. Incubation of bone marrow neutrophils with CCL28 (both alone and in the context of 
STm co-incubation) had negligible effects on CCR3 and CCR10 levels (data not shown). Thus, proin-
flammatory stimuli and phagocytosis enhance CCR3 and, to a lesser extent, CCR10 expression on the 
neutrophil surface.

CCR3 is stored intracellularly in neutrophils
Neutrophil intracellular compartments and granules harbor enzymes, cytokines, and receptors neces-
sary for rapid responses to pathogens. For example, activation of human neutrophils induces rapid 
translocation of complement receptor type 1 (CR1) from an intracellular compartment to the cell 
surface, increasing its surface expression up to 10-fold (Berger et al., 1991). Given the rapid (within 
1 hr) increase of neutrophil CCR3 surface expression upon STm infection, we hypothesized that CCR3, 
akin to CR1, may be stored intracellularly in neutrophils, consistent with reports of intracellular CCR3 
in eosinophils (Spencer et al., 2006).

Uninfected bone marrow neutrophils maintained relatively low surface levels of CCR3 (Figure 4A), 
but when permeabilized for intracellular staining, almost all (~99%) were CCR3+, indicating intra-
cellular storage (Figure 4B). Upon STm infection in vitro, bone marrow neutrophils increased CCR3 
surface expression as quickly as 5 min post-infection, reaching a maximum of ~30% CCR3+ neutrophils 
at 2 hpi (Figure 4A). These results suggest mobilization of pre-formed receptor from an intracellular 
compartment (Figure 4B). Intracellular stores of CCR10 were also detected in some bone marrow 
neutrophils under homeostatic conditions, with a small but significant increase during STm infection 
(Figure 4—figure supplement 1B). However, CCR10 was expressed on the surface of only ~0.3% 
uninfected bone marrow neutrophils, increasing to ~0.6% during STm infection (Figure 4—figure 
supplement 1A). In vitro, Ab infection induced less CCR3 surface expression on neutrophils relative to 
STm (~7–10%) and took longer to observe the increased CCR3+ staining (Figure 4C), whereas CCR10 
did not significantly increase (Figure 4—figure supplement 1C). Most bone marrow neutrophils also 
expressed intracellular CCR3 (Figure 4D) and CCR10 (Figure 4—figure supplement 1D) during Ab 
infection. Similar findings were observed in neutrophils isolated from bone marrow, blood, and gut 
tissue of mice orally infected with STm, and from bone marrow, blood, and BAL fluid of mice infected 
with Ab, with both intracellular and surface CCR3 observed (Figure 4E, F). CCR3 surface expression 

cells) from (A, B) the gut (blue), blood (red), and bone marrow (BM; black) or (C, D) BAL (blue), blood (red), and bone marrow (BM; black). Right panels 
show the percentage of (A, C) CCR3+ or (B, D) CCR10+ neutrophils obtained from (A, B) gut, blood, and BM or (C, D) BAL, blood, and BM. Data 
are from six independent experiments. (E–H) Uninfected bone marrow neutrophils were unstimulated or treated with the indicated stimuli for 4 hr. 
Surface expression of (E, G) CCR3 and (F, H) CCR10 on neutrophils was determined by flow cytometry. Left panels show representative histograms 
of (E, G) CCR3 or (F, H) CCR10 surface expression after stimulation with: (E, F) cytokines IFNγ + TNFɑ + GM-CSF (blue); fMLP (magenta); phorbol 
12-myristate 13-acetate (PMA) (purple); lipopolysaccharide (LPS) (red); (G, H) cytokines IFNγ + TNFɑ + Granulocyte-macrophage colony stimulating 
factor (GM-CSF, blue); beads alone (magenta); cytokines plus beads (red). Right panels show the percentage of (E, G) CCR3+ or (F, H) CCR10+ 
neutrophils following stimulation with the indicated stimuli. US = unstimulated. Data shown are pooled from two independent experiments. (I, J) Bone 
marrow cells enriched for neutrophils were infected with opsonized STm at a multiplicity of infection (MOI) = 10 for 1 hr with (violet) or without (red) 
pretreatment with cytochalasin D for 30 min before infection. Surface expression of (I) CCR3 or (J) CCR10 was determined by flow cytometry. Data are 
from two independent experiments. Left panels show representative histograms of surface receptor staining on neutrophils, and right panels show the 
percentages. (A–J, right panels) Bars represent the mean ± standard deviation (SD). (A–D) Data were analyzed by one-way analysis of variance (ANOVA) 
for paired samples (non-parametric Friedman test), assuming non-normal distribution and non-equal SD given the differences in the variance among 
the groups, followed by Dunn’s multiple comparisons test. (E–J) Data were analyzed by one-way ANOVA for paired samples, applying the Greenhouse–
Geisser correction given the differences in variance among the groups; Bonferroni’s multiple comparison test was performed to compare between 
relevant stimulation conditions. Significant changes are indicated by *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001; ns, not significant.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Expression of CCR3 and CCR10 in neutrophils isolated from the gut and lung mucosa in infected wild-type (WT) and Ccl28−/− 
mice.

Figure 3 continued
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Figure 4. Neutrophil CCR3 is stored in intracellular compartments and rapidly mobilizes to the cell surface during infection. Neutrophils enriched from 
wild-type mouse bone marrow were infected at multiplicity of infection (MOI) = 10 for 5 min to 4 hr with (A, B) opsonized Salmonella enterica serovar 
Typhimurium (STm) or (C, D) Acinetobacter baumannii (Ab). (A, C) Surface CCR3 or (B, D) intracellular CCR3 staining was detected by flow cytometry. 
Connected symbols represent data from neutrophils collected from the same mouse under different stimulation conditions. Neutrophils were obtained 

Figure 4 continued on next page
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levels were higher on neutrophils isolated from the gut relative to other sites (Figure 4E), though levels 
in the BAL fluid were similar to Ab-infected blood and bone marrow neutrophils (Figure 4F). Neutro-
phils expressing surface CCR10 were low in all tissues, though slightly higher in the STm-infected gut 
than in blood and bone marrow, with intracellular stores of CCR10 also observed (Figure 4—figure 
supplement 1E, F). We conclude that CCR3 is stored intracellularly in neutrophils and rapidly mobi-
lized to the cell surface upon infection, phagocytosis, and/or cytokine stimulation.

CCL28 enhances neutrophil antimicrobial activity, ROS production, and 
NET formation via CCR3 stimulation
Chemokines are essential for neutrophil migration to infection sites and may regulate additional 
neutrophil bactericidal effector functions, including the production of ROS and formation of NETs 
(Capucetti et  al., 2020). We tested if CCL28 has chemotactic and/or immunostimulatory activity 
toward bone marrow neutrophils in vitro after boosting their CCR3 surface expression with the cyto-
kine cocktail (GM-CSF + IFNγ + TNFɑ) as shown in Figure 3. We incubated the neutrophils with CCL28, 
the well-known neutrophil chemoattractant CXCL1, or with CCL11/eotaxin, a chemokine that binds 
CCR3 and is induced in the asthmatic lung to promote eosinophil recruitment (Conroy and Williams, 
2001; Garcia-Zepeda et al., 1996; Kitaura et al., 1996). We found that CCL28 promoted neutrophil 
chemotaxis, though not as potently as CXCL1, while CCL11 had no significant effect (Figure 5A).

To test whether CCL28 stimulation enhanced neutrophil effector function, we incubated STm with 
bone marrow neutrophils for 2.5 hr with or without CCL28 (50 nM) or CCL11 (50 nM), then quanti-
fied bacterial killing. Stimulation with CCL28 significantly increased neutrophil bactericidal activity 
against STm, with ~40% of the bacterial inoculum cleared, compared to ~10% clearance by unstimu-
lated neutrophils (Figure 5B). Neutrophils stimulated with CCL11 displayed an intermediate pheno-
type (~25% bacterial killing). Neither chemokine exhibited direct antimicrobial activity against STm 
(Figure 1—figure supplement 2D). In contrast, ex vivo neutrophil killing of Ab was not significantly 
enhanced by CCL28 or CCL11 treatment (Figure 5C). Thus, although CCL28 modulates neutrophil 
accumulation in the lung during Ab infection (Figure 2D–J), it fails to reduce pathogen burden in the 
lung (Figure 2B) likely because CCL28 stimulation does not enhance neutrophil bactericidal activity 
against Ab.

Our data indicate that CCR3 is the primary CCL28 receptor expressed in neutrophils during STm 
infection (Figure 3I and 4). We tested whether the CCL28-mediated increase in neutrophil bacteri-
cidal activity could be reversed using SB328437, a CCR3 antagonist (White et al., 2000). SB328437 
reversed the effects of both CCL28 and CCL11 on neutrophils, confirming receptor specificity 
(Figure 5D). An important mechanism of bacterial killing is the production of ROS (Fang, 2011), which 
is triggered by infection and enhanced by proinflammatory stimuli including cytokines and chemok-
ines (Nguyen et al., 2017). We measured ROS production by incubating neutrophils with the cell-
permeable probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), which forms the fluorescent 
byproduct 2′,7′-dichorofluorescein (DCF) when oxidized by ROS, and found that CCL28 stimulation 
enhanced neutrophil ROS production during STm infection (Figure 5E). The increased ROS produc-
tion triggered by CCL28 was reversed when neutrophils were incubated with an anti-CCR3 blocking 
antibody (Figure 5F), but not with an anti-CCR10 blocking antibody (Figure 5G).

In addition to their direct antimicrobial activity, ROS trigger other neutrophil responses, including 
NET formation (Nguyen et al., 2017). NETs can be induced by various stimuli, including microbial 
products, inflammatory cytokines and chemokines, immune complexes, and activated platelets (Boeltz 
et al., 2019). To determine whether CCL28 enhances NET formation, we incubated human neutro-
phils with activated platelets with or without CCL28, then incubated the cells with the DNA-staining 

from (E) the gut, blood, and bone marrow 3 dpi with STm or (F) bronchoalveolar lavage (BAL), blood, and bone marrow 1 dpi with Ab. Surface (clear 
histograms) or intracellular (filled histograms) CCR3 expression was analyzed by flow cytometry. (A–F) Left panels show representative histograms, 
and right panels show the percentage of neutrophils expressing CCR3 on their surface (clear bars) or intracellularly (filled bars). Bars represent the 
mean. Data were analyzed by paired t test (A–D) or one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test (E, F) on log-
transformed data. Significant changes are indicated by *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001; ns, not significant.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Expression kinetics of neutrophil CCR10.

Figure 4 continued

https://doi.org/10.7554/eLife.78206
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Figure 5. CCL28 enhances neutrophil antimicrobial activity. (A) Murine bone marrow neutrophils were stimulated with IFNγ + TNFɑ + GM-CSF for 4 hr 
before adding 1 × 106 cells to the upper compartment of a transwell chamber for chemotaxis assays. Each of the chemokines (CCL28, CCL11, or CXCL1), 
or no chemokine (NC), was placed in separate lower compartments. The transwell plate was incubated for 2 hr at 37°C. Cells that migrated to the lower 
compartment were enumerated by flow cytometry. Neutrophil chemotaxis index was calculated by taking the number of cells that migrated in response 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.78206


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation | Microbiology and Infectious Disease

Walker, Perez-Lopez et al. eLife 2024;0:e78206. DOI: https://doi.org/10.7554/eLife.78206 � 14 of 31

dyes DAPI and HELIX, and evaluated NET formation by fluorescence microscopy (Figure 5H). Incu-
bation with activated platelets and CCL28 increased the percentage of NETs compared to neutro-
phils not stimulated with CCL28 (Figure 5H, I). Complementary experiment, analyzing DNA–MPO 
complexes confirmed an increased percentage of DNA–MPO complexes in response to platelet and 
CCL28 stimulation (Figure 5—figure supplement 1). The effect of CCL28 on platelet-activated NET 
formation was primarily mediated by CCR3, as the CCR3 antagonist SB328437 significantly reduced 
the percentage of observable NET+ neutrophils (Figure 5H1) and DNA–MPO complexes (Figure 5—
figure supplement 1). In contrast, the CCR10 antagonist BI-6901 did not significantly reduce NET 
formation, and combined antagonism of CCR3 and CCR10 had an effect similar to CCR3 antagonism 
alone (Figure 5H1, Figure 5—figure supplement 1). Together, these results demonstrate that CCL28 
enhances neutrophil ROS production and NET formation primarily in a CCR3-dependent manner.

Discussion
The mucosal immune response serves to maintain tissue homeostasis and to protect the host against 
invading pathogens. Here, we discovered that the chemokine CCL28 significantly contributes to 
neutrophil accumulation and activation in the mucosa during gastrointestinal infection with Salmonella 
and lung infection with Acinetobacter.

Consistent with our initial observation that Ccl28−/− mice exhibit higher mortality during STm infec-
tion (Burkhardt et al., 2019), we found higher intestinal colonization and extraintestinal dissemina-
tion of STm in Ccl28−/− mice compared to their wild-type littermates (Figure 1). This beneficial role for 
CCL28 was negligible when the pathogen was inoculated intraperitoneally to bypass the gut mucosa 
(Figure 1—figure supplement 2). Although CCL28 exerts direct antimicrobial activity against some 
bacteria and fungi (Hieshima et al., 2003), it does not directly inhibit STm wild-type in vitro (Figure 1—
figure supplement 2). Although CCL28 receptors CCR3 and CCR10 are expressed on eosinophils and 
on B and T cells (Pan et al., 2000; Höchstetter et al., 2000; Wang et al., 2000), the protective role 
of CCL28 during Salmonella infection does not seem to involve these cell types, as they did not vary 
in abundance between wild-type and Ccl28−/− mice during infection (Figure 1—figure supplements 
4 and 5). However, it is still possible that CCL28 modulates B and T cell responses in chronic model 
of Salmonella infection, which could be explored in future studies using attenuated Salmonella strains 

to a chemokine and dividing it by the number of cells that migrated in the absence of a chemokine. Data are from four independent experiments. (B, 
C) Infection of bone marrow neutrophils. (B) Opsonized STm (1 × 107 CFU) or (C) opsonized Ab (1 × 107 CFU) were cultured alone, or added to bone 
marrow neutrophils (1 × 106 cells) stimulated with CCL28, CCL11, or no chemokine, for 2.5 hr (STm) or 4.5 hr (Ab) at 37°C. Neutrophils were lysed with 
1% Triton-X and surviving bacteria were enumerated by plating serial dilutions. Percentage of bacterial survival was calculated for each condition by 
taking the CFU from bacteria incubated with neutrophils and dividing it by the CFU from bacteria incubated without neutrophils, multiplied by 100. 
Data shown for each infection comprise three independent experiments. Bars represent the mean ± standard deviation (SD). (D) The effect of the CCR3 
antagonist SB328437 on neutrophil-mediated STm killing was evaluated by performing the experiment as described in panel (B), with or without the 
antagonist. Data shown comprise three independent experiments. (E–G) Reactive oxygen species (ROS) production (2′,7′-dichlorodihydrofluorescein 
diacetate [H2DCFDA] conversion to fluorescent DCF) detected by flow cytometry in bone marrow neutrophils infected with STm as described in panel 
(B). In (F, G), cells were stimulated with CCL28 in the presence of an anti-CCR3 antibody, an anti-CCR10 antibody, or isotype controls. Left panels show 
representative histograms, and right panels show the percentage of ROS+ neutrophils in the indicated treatment groups. (H, I) Neutrophil extracellular 
trap (NET) formation detected by fluorescence microscopy using Helix dye in human neutrophils activated with platelets. Cells were unstimulated 
(no chemokine, NC), stimulated with CCL28 alone, or with CCL28 and the CCR3 agonist SB328737 and/or the CCR10 agonist BI-6901, as indicated. 
(H) Representative images of fluorescence microscopy with DAPI (blue) and Helix (green). (I) Quantification of NETs represented as percentage of cells 
forming NETs based on observed morphology. Connected circles represent NET abundance in cell populations from the same donor following different 
indicated treatments. (A–E) Bars represent the mean ± SD. (A–C) Data were analyzed by non-parametric analysis of variance (ANOVA) (Kruskal–Wallis’s 
test), assuming non-equal SD given the differences in the variance among the groups, followed by Dunn’s multiple comparisons test. (D, I) Data were 
analyzed by ratio paired t test. (E–G) Log-transformed data were analyzed by one-way ANOVA for paired samples. Greenhouse–Geisser correction was 
applied in F and G given the differences in variance among the groups. Tukey’s multiple comparison test was performed to compare all conditions to 
each other. (I) Ratio paired t tests were used to compare NET levels in samples from the same donor. Significant changes are indicated by *p ≤ 0.05, **p 
≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001; ns, not significant.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Neutrophil extracellular trap (NET) formation (Helix+ MPO+ neutrophils) detected by flow cytometry in human neutrophils 
activated with platelets.

Figure 5 continued

https://doi.org/10.7554/eLife.78206
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(Hapfelmeier et al., 2005), or mice genetically more resistant to Salmonella because they express a 
functional Nramp1 (Monack et al., 2004).

Neutrophils are a hallmark of inflammatory diarrhea and are rapidly recruited to the gut following 
infection in the Salmonella colitis model. We found that neutrophil numbers were significantly reduced 
in the mucosa of infected Ccl28−/− relative to wild-type mice (Figure 1), identifying CCL28 as a key 
factor for neutrophil accumulation during infection. Neutrophils migrate from the bone marrow to 
the blood and to infected sites following a chemokine gradient (Capucetti et al., 2020), expressing 
various chemokine receptors including CXCR1, CXCR2, CXCR4, and CCR2, and under certain circum-
stances, CCR1 and CCR6 (Kobayashi, 2008). CXCR2 is a promiscuous receptor that binds to the 
chemokines CXCL1, 2, 3, 5, 6, 7, and 8 (Ahuja and Murphy, 1996), whereas CXCR1 only binds CXCL6 
and CXCL8 (Capucetti et al., 2020). Activation of CXCR2 mobilizes neutrophils from the bone marrow 
to the bloodstream and participates in NET release (Marcos et al., 2010). Engagement of CXCR1 
and CXCR2 also triggers signaling pathways boosting production of cytokines and chemokines that 
amplify neutrophil responses (Sabroe et al., 2005). Following extravasation to the site of infection, 
neutrophils downregulate CXCR2 and upregulate CCR1, 2, and 5, which cumulatively boosts neutro-
phil ROS production and phagocytic activity (Capucetti et al., 2020). Our results indicate that CCL28 
contributes to neutrophil accumulation and activation (Figure 1), with its receptors CCR3 and CCR10 
upregulated in the mucosa during infection, where up to ~50% of neutrophils express surface CCR3 
(Figure 3). The reciprocal regulation of CXCR2 and CCR3/CCR10 in neutrophils and each receptor’s 
contribution to neutrophil migration and retention during infectious colitis requires further study.

Although an initial study concluded CCR3 was absent on neutrophils (Höchstetter et al., 2000), 
subsequent studies reported CCR3 expression on human neutrophils isolated from patients with 
chronic lung disease (Hartl et  al., 2008) and on neutrophils isolated from the BAL fluid of mice 
infected with influenza (Rudd et  al., 2019). Our study demonstrates that a substantial number of 
neutrophils isolated from infected mucosal sites express CCR3, and fewer express CCR10 on their 
surface, while resting neutrophils do not express these receptors on their surface (Figure  3). The 
rapid surface expression of CCR3 on neutrophils upon infection suggests that the receptor is stored 
intracellularly, similar to eosinophils (Spencer et al., 2006). Indeed, neutrophils isolated from bone 
marrow, blood, and infected mucosal tissue were all positive for CCR3 intracellular staining (Figure 4). 
In vitro, we could recapitulate the increase in surface receptor expression by incubating bone marrow 
neutrophils with proinflammatory stimuli (LPS, or the cytokines GM-CSF + IFNγ + TNFɑ) or following 
phagocytosis of bacterial pathogens (Figure 3). CCL28 stimulation of bone marrow neutrophils in 
vitro increased their antimicrobial activity and ROS production during Salmonella infection, which was 
reverted by blocking CCR3 but not CCR10 (Figure 5). Platelet-activated neutrophils stimulated with 
CCL28 also showed enhanced NET formation, largely in a CCR3-dependent manner (Figure 5). Thus, 
CCL28 is a potent activator of neutrophils, primarily via CCR3. Further studies with receptor knockout 
mice are needed to determine the contribution of each CCL28 receptor to the in vivo phenotypes.

A reduction of neutrophil accumulation was also observed in the BAL and lung of Ccl28−/− mice 
during Acinetobacter infection (Figure 2), with neutrophils recruited to the lung harboring surface 
CCR3 and CCR10 (Figures 3 and 4). However, the functional consequence of CCL28 deficiency was 
strikingly different in this model, as Ccl28−/− mice were protected during Ab pneumonia. Most Ccl28−/− 
mice survived until the experiment’s endpoint at 10 dpi, whereas nearly all wild-type littermates 
succumbed by 2 dpi (Figure 2). The lung, possessing a thin, single-cell alveolar layer to promote gas 
exchange, is less resilient than the intestine to neutrophil inflammation before losing barrier integrity 
and critical functions. Thus, although insufficient neutrophil recruitment can lead to life-threatening 
infection, extreme accumulation of neutrophils can result in excessive inflammatory lung injury (Craig 
et al., 2009). The high survival of Ccl28−/− mice infected with Ab indicates that CCL28 may be detri-
mental for the host in the context of some pulmonary infections. While functioning neutrophils have 
been described to play a role in controlling Acinetobacter infection (van Faassen et al., 2007; García-
Patiño et al., 2017; Grguric-Smith et al., 2015), excessive neutrophil recruitment can exacerbate lung 
injury (Yamada et al., 2013; Zeng et al., 2020; Zeng et al., 2019). For instance, depletion of alve-
olar macrophages in one Acinetobacter pneumonia study increased neutrophil infiltration, promoted 
tissue damage, and increased systemic dissemination of the pathogen (Lee et al., 2020). In contrast 
to Salmonella, CCL28 stimulation did not enhance neutrophil antimicrobial activity against Acineto-
bacter, which may partly explain the lack of a protective response (Figure 5). Further investigation is 

https://doi.org/10.7554/eLife.78206
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required to understand why Acinetobacter may be resistant to CCL28-dependent neutrophil antimi-
crobial responses.

Even though CCL28 exhibited direct antimicrobial activity against Acinetobacter, higher concen-
trations of CCL28 (1 μm) are needed for protection and were not sufficient against higher pathogen 
burdens (Figure 1—figure supplement 2). These findings align with prior studies indicating that the 
host response to infection can be context-dependent, with some immune components mediating 
different outcomes in the gut and in the lung. For example, Cxcr2−/− mice exhibit a defect in neutrophil 
recruitment that is detrimental during Salmonella infection (Marchelletta et al., 2015) but protective 
during lung infection with Mycobacterium tuberculosis due to reduced neutrophil recruitment and 
reduced pulmonary inflammation (Nouailles et al., 2014). Similarly, CCL28-dependent modulation of 
neutrophil accumulation and activation during infection can be protective or detrimental depending 
on the pathogen and the site of infection.

Overall, this study demonstrates that CCL28 plays an important role in the mucosal response to 
pathogens by promoting neutrophil accumulation at the site of infection. Neutrophils isolated from 
infected mucosa express the CCL28 receptors CCR3 and CCR10, and CCL28 enhances neutrophil 
activation, ROS production, and NET formation, primarily through CCR3. These findings have implica-
tions for other infectious and non-infectious diseases where neutrophil recruitment plays a major role, 
and may lead to the identification of CCL28-targeted therapies to modulate neutrophil function and 
mitigate collateral damage.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain 
background 
(Salmonella enterica)

S. enterica serovar  
Typhimurium strain IR715 Lab stock; PMID:7868611

Nalidixic acid-resistant derivative of 
strain ATCC 14028s

Strain, strain 
background 
(Salmonella enterica) S. Typhimurium IR715 ΔphoQ

Lab stock; from Michael 
McClelland PMID:19578432

PhoQ coding sequence disrupted by a 
kanamycin cassette

Strain, strain 
background 
(Escherichia coli) E. coli K12 strain MG1655 Lab Stock ATCC Cat#700926

Strain, strain 
background 
(Acinetobacter 
baumannii) A. baumannii strain AB5075

Walter Reed Medical Center; 
PMID:24865555

Genetic reagent (Mus 
musculus) C57BL/6 Ccl28::Neor Deltagen; PMID:30855201

Obtained from Albert Zlotnik (UC 
Irvine); Allelic exchange into Ccl28

Genetic reagent (Mus 
musculus)

C57BL/6 Ccl28−/−  
(C57BL/6JCya-Ccl28em1/Cya) Cyagen Biosciences

Product Number: S-KO-17095;  
RRID:MGI:1861731

Generated by CRISPR/Cas9-mediated 
deletion of exons 1–3

Biological sample 
(Homo sapiens) Primary human blood neutrophils Human volunteers, UNAM Freshly isolated from human volunteers

Biological sample (Mus 
musculus) Primary bone marrow cells

C57BL/6 Ccl28+/+ mice, UC 
San Diego

Freshly isolated from wild-type mice of 
the Ccl28 colony

Antibody

Anti-mouse CD16/CD32  
(Rat monoclonal; unconjugated  
Fc Block) BioLegend

Clone: 93; Cat#101302;  
RRID:AB_312801 FC (1:50)

Antibody
Anti-mouse CD45  
(Rat monoclonal; Pacific Blue) BioLegend

Clone: 30-F11; Cat#103126;  
RRID:AB_493535

Sony SA3800 FC (1:800);  
FACSCantoII FC (1:400)

Antibody
Anti-mouse/human CD11b  
(Rat monoclonal; Spark Blue 550) BioLegend

Clone: M1/70; Cat#101290;  
RRID:AB_2922452 FC (1:400)

Antibody
Anti-mouse Ly6G  
(Rat monoclonal; Brilliant Violet 421) BioLegend

Clone: 1A8; Cat#127628;  
RRID:AB_2562567 FC (1:1600)

Antibody
Anti-mouse CD170 (SiglecF)  
(Rat monoclonal; PE/Dazzle 594) BioLegend

Clone: S17007L; Cat#155530;  
RRID:AB_2890716 FC (1:400)

https://doi.org/10.7554/eLife.78206
https://pubmed.ncbi.nlm.nih.gov/7868611/
https://pubmed.ncbi.nlm.nih.gov/19578432/
https://pubmed.ncbi.nlm.nih.gov/24865555/
https://pubmed.ncbi.nlm.nih.gov/30855201/
https://identifiers.org/RRID/RRID:MGI:1861731
https://identifiers.org/RRID/RRID:AB_312801
https://identifiers.org/RRID/RRID:AB_493535
https://identifiers.org/RRID/RRID:AB_2922452
https://identifiers.org/RRID/RRID:AB_2562567
https://identifiers.org/RRID/RRID:AB_2890716
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody
Anti-mouse CCR3  
(Rat monoclonal; PE) R&D Biosystems

Clone: 83103; Cat#FAB729P;  
RRID:AB_2074151 FC (1:100)

Antibody
Anti-mouse CCR10  
(Rat monoclonal; APC) R&D Biosystems

Clone: 248918; Cat#FAB2815;  
RRID:AB_1151964 FC (1:100)

Antibody

Anti-mouse CD11c  
(Armenian Hamster monoclonal; 
Brilliant Violet 421) BioLegend

Clone: N418; Cat#117343;  
RRID:AB_2563099 FC (1:400)

Antibody
Anti-mouse Ly6G  
(Rat monoclonal; FITC) BioLegend

Clone: 1A8; Cat#127606;  
RRID:AB_1236494 FC (1:400)

Antibody
Anti-mouse CD170 (SiglecF)  
(Rat monoclonal; FITC) BioLegend

Clone: S17007L; Cat#155503;  
RRID:AB_2750232 FC (1:400)

Antibody
Anti-mouse F4/80  
(Rat monoclonal; PE/Dazzle 594) BioLegend

Clone: BM8; Cat#123146;  
RRID:AB_2564133 FC (1:400)

Antibody
Anti-mouse CD8a  
(Rat monoclonal; Brilliant Violet 421) BioLegend

Clone: 53-6.7; Cat#100737;  
RRID:AB_10897101 FC (1:1600)

Antibody
Anti-mouse CD3  
(Rat monoclonal; FITC) BioLegend

Clone: 17A2; Cat#100204;  
RRID:AB_312661 FC (1:400)

Antibody
Anti-mouse CD4  
(Rat monoclonal; PerCP/Cyanine5.5) BioLegend

Clone: RM4-5; Cat#100539;  
RRID:AB_893332 FC (1:800)

Antibody
Anti-mouse CD8a  
(Rat monoclonal; PE) BioLegend

Clone: 53-6.7; Cat#100708;  
RRID:AB_312747 FC (1:1600)

Antibody
Anti-mouse CD19  
(Rat monoclonal; Alexa Fluor 700) BioLegend

Clone: 6D5; Cat#115528;  
RRID:AB_493735 FC (1:400)

Antibody
Anti-mouse/human CD11b  
(Rat monoclonal; APC) BioLegend

Clone: M1/70; Cat#101212;  
RRID:AB_312795 FC (1:800)

Antibody
Anti-mouse/human CD11b  
(Rat monoclonal; Brilliant Violet 510) BioLegend

Clone: M1/70; Cat#101245;  
RRID:AB_2561390 FC (1:400)

Antibody
Anti-mouse F4/80  
(Rat monoclonal; FITC) BioLegend

Clone: BM8; Cat#123108;  
RRID:AB_893502 FC (1:200)

Antibody
Anti-mouse Ly6G  
(Rat monoclonal; PerCP) BioLegend

Clone: 1A8; Cat#127654;  
RRID:AB_2616999 FC (1:400)

Antibody
Anti-mouse CD170 (SiglecF)  
(Rat monoclonal; APC) BioLegend

Clone: S17007L; Cat#155508;  
RRID:AB_2750237 FC (1:400)

Antibody

Anti-mouse CD11c  
(Armenian Hamster monoclonal; PE/
Cyanine7) BioLegend

Clone: N418; Cat#117317;  
RRID:AB_493569 FC (1:400)

Antibody
Anti-mouse CD19  
(Rat monoclonal; PE/Cyanine7) BioLegend

Clone: 6D5; Cat#115520;  
RRID:AB_313655 FC (1:400)

Antibody
Anti-mouse CCR3  
(Rat monoclonal; unconjugated) R&D Systems

Clone: 83103; Cat#MAB1551;  
RRID:AB_2074150

In vitro signaling blockade  
(5 µg/100 µl)

Antibody
Anti-mouse CCR10  
(Rat monoclonal; unconjugated) R&D Systems

Clone: 248918; Cat#MAB2815;  
RRID:AB_2074258

In vitro signaling blockade  
(5 µg/100 µl)

Antibody
Rat IgG2A Isotype Control Antibody  
(Rat monoclonal; unconjugated) R&D Systems

Clone: 54447; Cat#MAB006;  
RRID:AB_357349

In vitro signaling blockade  
(5 µg/100 µl)

Antibody
Anti-mouse Ly6G  
(Rat monoclonal; unconjugated) BioLegend

Clone: 1A8; Cat#127601;  
RRID:AB_1089179 Lung neutrophil IF (1:100)

Antibody

Goat Anti-rat IgG (H+L)  
Cross-Adsorbed Secondary Antibody  
(Goat polyclonal; Alexa Fluor 555) Invitrogen

Cat#A-21434;  
RRID:AB_2535855 Lung neutrophil IF: (1:400)

Antibody

Human TruStain FcX  
(Human monoclonal mix; 
unconjugated Fc Receptor blocking 
solution) BioLegend

Cat#422302;  
RRID:AB_2818986 FC (1:100)

 Continued on next page

 Continued

https://doi.org/10.7554/eLife.78206
https://identifiers.org/RRID/RRID:AB_2074151
https://identifiers.org/RRID/RRID:AB_1151964
https://identifiers.org/RRID/RRID:AB_2563099
https://identifiers.org/RRID/RRID:AB_1236494
https://identifiers.org/RRID/RRID:AB_2750232
https://identifiers.org/RRID/RRID:AB_2564133
https://identifiers.org/RRID/RRID:AB_10897101
https://identifiers.org/RRID/RRID:AB_312661
https://identifiers.org/RRID/RRID:AB_893332
https://identifiers.org/RRID/RRID:AB_312747
https://identifiers.org/RRID/RRID:AB_493735
https://identifiers.org/RRID/RRID:AB_312795
https://identifiers.org/RRID/RRID:AB_2561390
https://identifiers.org/RRID/RRID:AB_893502
https://identifiers.org/RRID/RRID:AB_2616999
https://identifiers.org/RRID/RRID:AB_2750237
https://identifiers.org/RRID/RRID:AB_493569
https://identifiers.org/RRID/RRID:AB_313655
https://identifiers.org/RRID/RRID:AB_2074150
https://identifiers.org/RRID/RRID:AB_2074258
https://identifiers.org/RRID/RRID:AB_357349
https://identifiers.org/RRID/RRID:AB_1089179
https://identifiers.org/RRID/RRID:AB_2535855
https://identifiers.org/RRID/RRID:AB_2818986


 Research article﻿﻿﻿﻿﻿﻿ Immunology and Inflammation | Microbiology and Infectious Disease

Walker, Perez-Lopez et al. eLife 2024;0:e78206. DOI: https://doi.org/10.7554/eLife.78206 � 18 of 31

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody

Anti-human CD45  
(Mouse monoclonal; PerCP/
Cyanine5.5) BioLegend

Clone: HI30; Cat#304028;  
RRID:AB_893338 FC (1:300)

Antibody
Anti-mouse/human CD11b  
(Rat monoclonal; Pacific Blue) BioLegend

Clone: M1/70; Cat#101224;  
RRID:AB_755986 FC (1:200)

Antibody
Anti-human CD62L  
(Mouse monoclonal; FITC) BioLegend

Clone: DREG-56; Cat#304838;  
RRID:AB_2564162 FC (1:300)

Antibody
Anti-human CCR3  
(Rat monoclonal; PE) R&D Systems

Clone: 61828; Cat#FAB155P;  
RRID:AB_2074157 FC (1:100)

Antibody
Anti-human CCR10  
(Rat monoclonal; APC) R&D Systems

Clone: 314305; Cat#FAB3478A;  
RRID:AB_573043 FC (1:100)

Antibody

Anti-human myeloperoxidase  
(Mouse monoclonal; Biotin-
conjugated) Novus Biologicals

Clone MPO421-8B2; Cat#NBP2-
41406B FC (1:50)

Sequence-based 
reagent Mouse Actb qPCR primers IDT

Forward: GGCT​GTAT​TC 
CCCT​CCAT​CG;  
Reverse: CCAG​TTGG​TA 
ACAA​TGCC​ATGT​

Sequence-based 
reagent Mouse Cxcl1 qPCR primers IDT

Forward: TGCA​CCCA​AA 
CCGA​AGTC​AT;  
Reverse: TTGT​CAGA​AG 
CCAG​CGTT​CAC

Sequence-based 
reagent Mouse Tnf qPCR primers IDT

Forward: CATC​TTCT​CAA 
AATT​CGAG​TGAC​AA;  
Reverse: TGGG​AGTA​GA 
CAAG​GTAC​AACC​C

Sequence-based 
reagent Mouse Ifng qPCR primers IDT

Forward: TCAA​GTGG​CA 
TAGA​TGTG​GAAG​AA;  
Reverse: TGGC​TCTG​CA 
GGAT​TTTC​ATG

Sequence-based 
reagent Mouse Csf3 qPCR primers IDT

Forward: TGCT​TAAG​TCC 
CTGG​AGCA​A;  
Reverse: AGCT​TGTA​GG 
TGGC​ACAC​AA

Sequence-based 
reagent Mouse Il1b qPCR primers IDT

Forward: CTCT​CCAG​CCA 
AGCT​TCCT​TGTG​C;  
Reverse: GCTC​TCAT​CAG 
GACA​GCCC​AGGT​

Sequence-based 
reagent Mouse Il17a qPCR primers IDT

Forward: GCTC​CAGA​A 
GGCC​CTCA​GA;  
Reverse: AGCT​TTCC​CT 
CCGC​ATTG​A

Peptide, recombinant 
protein Recombinant Mouse CCL28 (MEC) BioLegend Cat#584706

In vitro killing: various concentrations 
(indicated in text)

Peptide, recombinant 
protein Recombinant Mouse CCL28 Protein R&D Systems Cat#533-VI

Chemotaxis: 50 nM; neutrophil 
stimulation: 50 nM

Peptide, recombinant 
protein

Recombinant Mouse CCL11/Eotaxin 
Protein R&D Systems Cat#420-ME

Chemotaxis: 50 nM; neutrophil 
stimulation: 25 nM

Peptide, recombinant 
protein Recombinant Murine KC (CXCL1) Peprotech Cat#250–11 Chemotaxis: 50 nM

Peptide, recombinant 
protein Recombinant human CCL28 BioLegend Cat#584602 Neutrophil stimulation: 50 nM

Peptide, recombinant 
protein Recombinant Mouse TNF-α BioLegend Cat#575202 Neutrophil stimulation: 100 ng/ml

Peptide, recombinant 
protein Recombinant Mouse IFN-γ BioLegend Cat#575304 Neutrophil stimulation: 500 U/ml

 Continued
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Peptide, recombinant 
protein Recombinant Mouse GM-CSF BioLegend Cat#576302 Neutrophil stimulation: 10 ng/ml

Peptide, recombinant 
protein LPS-B5 Ultrapure Invivogen Cat#tlrl-pb5lps

Mouse neutrophil stimulation: 100 ng/
ml

Commercial assay 
or kit

EasySep Mouse Neutrophil 
Enrichment Kit STEMCELL Technologies Cat#19762

Commercial assay 
or kit

EasySep Direct Human Neutrophil 
Isolation Kit STEMCELL Technologies Cat#19666

Commercial assay 
or kit Mouse CCL28 ELISA Max Deluxe BioLegend Cat# 441304

Commercial assay 
or kit

Mouse Myeloperoxidase DuoSet 
ELISA Kit R&D Systems Cat#DY3667

Commercial assay 
or kit

Mouse Neutrophil Elastase/ELA2 
DuoSet ELISA Kit R&D Systems Cat#DY4517

Commercial assay 
or kit Mouse S100a9 DuoSet ELISA Kit R&D Systems Cat#DY2065

Commercial assay 
or kit

PowerUp SYBR Green Master Mix for 
qPCR

Applied Biosystems (Thermo 
Fisher) Cat#A25742

Commercial assay 
or kit SuperScript VILO cDNA Synthesis Kit Thermo Fisher Cat#11766500

Commercial assay 
or kit

eBioscience Fixable Viability Dye 
eFluor 780 Thermo Fisher Cat#65-0865-14 FC (1:1000)

Chemical compound, 
drug fMLP (N-Formyl-Met-Leu-Phe) Sigma-Aldrich Cat#F3506 Neutrophil stimulation: 1 µM

Chemical compound, 
drug PMA (Phorbol 12-myristate 13-acetate) Sigma-Aldrich Cat#79346 Neutrophil stimulation: 100 nM

Chemical compound, 
drug Cytochalasin D Sigma-Aldrich Cat#C8273 Incubated cells at 10 µM

Chemical compound, 
drug

SB328437 [N-(1-
naphthalenylcarbonyl)-4-nitro-L-
phenylalanine methyl ester] Tocris Bioscience Cat#3650 CCR3 antagonist (10 µM)

Chemical compound, 
drug

BI-6901 (N-[(1R)-3-(2-Cyano-1H-
pyrrol-1-yl)-1-[(4-methyl-1-piperidinyl)
carbonyl]propyl]-1H-indole-4-
sulfonamide)

Gift from Boehringer-
Ingelheim Pharma GmbH & 
Co KG CCR10 antagonist (20 µM)

Chemical compound, 
drug Xylazine VetOne Cat#RX-0065

Used for temporary anesthesia: 10 mg/
kg, i.p.

Chemical compound, 
drug Ketamine Zoetis Cat#000680

Used for temporary anesthesia: 100 mg/
kg, i.p

Chemical compound, 
drug Nalidixic acid sodium salt Fisher Scientific Cat#AAJ6355014 50 µg/ml for selection

Chemical compound, 
drug Streptomycin sulfate Fisher Scientific Cat#5711 For oral gavage (20 mg/mouse)

Software, algorithm GraphPad Prism 10.0 GraphPad Software RRID:SCR_002798

Software, algorithm FlowJo 10.8.1 BD Biosciences RRID:SCR_008520

Software, algorithm QuantStudio 5 Reat-Time PCR System Thermo Fisher Scientific RRID:SCR_020240

Software, algorithm QuPath Analysis Software QuPath (PMID:29203879) RRID:SCR_018257

Other DMSO Millipore Sigma Cat#EM-MX1458-6

Used at 0.1% for vehicle for cytochalasin 
D during in vitro infection assays 
described in the Materials and methods
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Other
2′,7′-Dichlorodihydrofluorescein 
diacetate Invitrogen Cat#D399

Used at 25 µM for incubation of 
neutrophils for detection of ROS 
production by neutrophils, as described 
in the Materials and methods

Other TRI Reagent Sigma-Aldrich Cat#T9424

Used for RNA isolation from tissues, 
described in Materials and methods 
section ‘RNA extraction and qPCR’

Other SlowFade Gold Antifade Mountant Invitrogen Cat#36936

Used for staining and mounting 
immunoflourescent lung sections, 
described in Materials and methods 
section ‘Immunofluorescence’

Other APC/Cy7 Streptavidin BioLegend Cat#405208
For tagging biotin-conjugated anti-
human myeloperoxidase; FC (1:1000)

Other OneComp eBeads Thermo Fisher Cat#01-1111-42

Added to cells at 5 × 105 beads per 1 × 
106 cells, as described in the Materials 
and methods section ‘In vitro neutrophil 
stimulation’

Other Collagenase, Type VIII Sigma-Aldrich Cat#C2139
For tissue digestion, as described in the 
Materials and methods: 1 mg/ml

Other Liberase Sigma-Aldrich Cat#5401020001
For tissue digestion, as described in the 
Materials and methods: 20 µg/ml

Other DNase I Sigma-Aldrich Cat#DN25
For tissue digestion, as described in the 
Materials and methods: 0.25 mg/ml

Other Helix NP Green BioLegend Cat#425303

For staining neutrophil DNA, as 
described in the Materials and 
methods. FC: 10 nM; immuno-
fluorescence: 5 µM

Other LB Broth, Miller Fisher Scientific Cat#DF0446-17-3

Used for routine culturing of S. 
Typhimurium, described in Materials 
and methods section ‘Salmonella 
infection models’

Other LB agar, Miller Fisher Scientific Cat#DF0445-17-4

Used for growth and enumeration of S. 
Typhimurium and Acinetobacter CFUs, 
as described throughout the Materials 
and methods section

Other Mueller-Hinton Broth Fisher Scientific Cat#DF0757-17-6

Used for routine culturing of A. 
baumannii, described in Materials 
and methods section ‘Acinetobacter 
infection model’

Other DPBS Gibco Cat#14190250

Used for washing or resuspension of 
various cells and bacteria, as described 
throughout the Materials and methods 
section

Other
cOmplete, Mini, EDTA-free Protease 
Inhibitor Cocktail Sigma-Aldrich Cat#4693159001

Used for fecal protease inhibition as 
described in the Materials and methods

Other
Fetal bovine serum (FBS), heat-
inactivated Gibco Cat#A3840001

Used for general cell preservation and 
assays as described in the Materials and 
methods

Other Antibiotic–antimycotic Gibco Cat#15-240-062

Used for general tissue cell preservation 
as described in the Materials and 
methods

Other RPMI 1640 Medium, with L-glutamine Gibco Cat#11875-119

Used for general tissue cell preservation 
and assays as described in the Materials 
and methods

Other
RPMI 1640 Medium, no glutamine, no 
phenol red Gibco Cat#32404014

Used for H2DCFDA ROS assays as 
described in the Materials and methods

 Continued
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Other IMDM Gibco Cat#12440061
Used for gut tissue cell isolation as 
described in the Materials and methods

Other Hank’s Balanced Salt Solution Fisher Scientific Cat#MT21021CV
Used for gut tissue cell isolation as 
described in the Materials and methods

Other HEPES Gibco Cat#15630080

Used for general tissue cell preservation 
and assays as described in the Materials 
and methods

Other EDTA Fisher Scientific Cat#S311-500

Used for collection of mouse blood, 
and for lung and gut tissue cells 
isolation as described in Materials and 
methods section ‘Cell extraction and 
analysis’

Other Bovine serum albumin (BSA) Fisher Scientific Cat#BP9703100

Added to various media for the 
purpose of blocking non-specific 
interactions, as described in the 
Materials and methods sections 
‘Cell extraction and analysis’ and 
‘Chemotaxis assay’

 Continued

Generation and breeding of Ccl28−/− mice
The first colony of Ccl28−/− mice was described in a prior manuscript (Burkhardt et al., 2019) and 
used for initial studies at UC Irvine. At UC San Diego, we generated a new colony of Ccl28−/− mice 
with Cyagen Biosciences (Santa Clara, California), using CRISPR/CAS9 technology. Exons 1 and 3 were 
selected as target sites, and two pairs of gRNA targeting vectors were constructed and confirmed by 
sequencing. The gRNA and Cas9 mRNA were generated by in vitro transcription, then co-injected 
into fertilized eggs for knockout mouse production. The resulting pups (F0 founders) were genotyped 
by PCR and confirmed by sequencing. F0 founders were bred to wild-type mice to test germline trans-
mission and for F1 animal generation. Tail genotyping of offspring was performed using the following 
primers:

F: 5′-​TCAT​​ATAC​​AGCA​​CCTC​​ACTC​​TTGC​​CC-3′, R: 5′-​GCCT​​CTCA​​AAGT​​CATG​​CCAG​​AGTC​-3′ and 
He/Wt-R: 5′-​AGGG​​TGTG​​AGGT​​GTCC​​TTGA​​TGC -3′. The expected product size for the wild-type allele 
is 466 bp and for the knockout allele is 700 bp.

All mouse experiments were conducted with cohoused wild-type and Ccl28−/− littermate mice, 
and were reviewed and approved by the Institutional Animal Care and Use Committees at UC Irvine 
(protocol #2009-2885) and UC San Diego (protocols #S17107 and #S00227M).

Salmonella infection models
For the Salmonella colitis model, 8- to 10-week-old male and female mice were orally gavaged with 
20 mg streptomycin 24 hr prior to oral gavage with 109 CFU of S. enterica serovar Typhimurium strain 
IR715 (a fully virulent, nalidixic acid-resistant derivative of ATCC 14028s) (Stojiljkovic et al., 1995), as 
previously described (Barthel et al., 2003; Walker et al., 2023; Raffatellu et al., 2009). Mice were 
euthanized at 2 or 3 days post-infection, then colon content, spleen, mesenteric lymph nodes, Peyer’s 
patches, blood, and bone marrow were collected, weighed, homogenized, serially diluted, and plated 
on Miller Lysogeny broth (LB) + Nal (nalidixic acid, 50 µg/ml) agar plates to enumerate Salmonella 
CFU. Mice displaying extremely poor colonization in 1 dpi (≤103 CFU/mg feces) or extremely high 
weight loss 1 dpi (≥8% loss from the day of infection) were excluded from downstream analyses due 
to likely technical errors during inoculation. For the Salmonella bacteremia model, mice were injected 
intraperitoneally with 103 CFU. Mice were euthanized at 4 days post-infection, then blood, spleen, and 
liver were collected to determine bacterial counts.

Acinetobacter infection model
For the murine pneumonia model, A. baumannii strain AB5075 was cultured in Cation-Adjusted 
Mueller-Hinton Broth (CA-MHB) overnight, then subcultured the next day to an OD600 of ~0.4 (1 × 108 
CFU/ml; mid-logarithmic phase). These cultures were centrifuged at 3202 × g for 10 min, the super-
natant was removed, and pellets were resuspended and washed in an equal volume of 1× Dulbecco’s 

https://doi.org/10.7554/eLife.78206
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PBS (DPBS) three times. The final pellet was resuspended in 1× DPBS to yield a suspension of 2.5  
×  109 CFU/ml. Using an operating otoscope (Welch Allyn), mice under 100 mg/kg ketamine (Koetis) + 
10  mg/kg xylazine (VetOne) anesthesia were inoculated intratracheally with 40  μl of the bacterial 
suspension (108 CFU/mouse). Post-infection mice were recovered on a sloped heating pad. For anal-
ysis of bacterial CFU, mice were sacrificed 1  day post-infection, the BAL, blood, and lungs were 
collected, and serial dilutions were plated on LB agar to enumerate bacteria (Dillon et al., 2019).

CCL28 ELISA
Fresh fecal and blood samples were collected at 4 days post-infection from wild-type mice for quan-
tification of CCL28. Fecal pellets were weighed, resuspended in 1  ml of sterile PBS containing a 
protease inhibitor cocktail (Roche), and incubated at room temperature shaking for 30 min. Whole-
blood samples were collected by cardiac puncture and allowed to clot at room temperature for 30 min. 
Samples were centrifuged at 9391 × g for 10 min, supernatant/serum was collected, then analyzed to 
quantify CCL28 using a sandwich ELISA kit (BioLegend).

Cell extraction and analysis
For the Salmonella colitis model, the terminal ileum, cecum, and colon were collected at indicated 
time points, either 2 or 3 days post-infection. All tissues were kept in Iscove’s Modified Dulbec-
co’s Medium (IMDM) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% antibiotic/
antimycotic (Gibco). Next, any Peyer’s patches were removed, and the intestinal fragments were 
cut open longitudinally and washed with Hank’s Balanced Salt Solution (HBSS) supplemented with 
15 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 1% antibiotic/antimycotic. 
Then, the tissue was shaken in 10 ml of an HBSS/15 mM HEPES/5 mM ethylenediaminetetraacetic 
acid (EDTA)/10% FBS solution at 37°C for 15 min. The supernatant was removed and kept on ice. 
The remaining tissue was cut into small pieces and digested in a 10  ml mixture of collagenase 
(Type VIII, 1 mg/ml), Liberase (20 µg/ml), and DNAse (0.25 mg/ml) in IMDM medium for 15 min, 
shaking at 37°C. Afterwards, the supernatant and tissue fractions were strained through a 70-µm 
cell strainer and pooled, and the extracted cells were used for flow cytometry staining. For the A. 
baumannii infection model, the lungs were collected, minced, and processed with collagenase and 
DNase as described above for the gut. BAL was collected by instilling 1 ml DPBS/10 mM EDTA via 
the trachea into the lungs, and recovering the majority (~700–900 µl) into a syringe after 20 s. The 
lavage fluid was centrifuged, and pellets were washed with 1× PBS. Samples where less than 500 µl 
of the fluid was recovered (indicating improper syringe placement during collection) were excluded 
from downstream analyses. The obtained cells were used for flow cytometry staining. Briefly, cells 
were blocked with a CD16/32 antibody (BioLegend), stained with the fixable viability dye eFluor780 
(Thermo Fisher), then extracellularly stained using the following conjugated monoclonal antibodies: 
anti-mouse CD45 (clone 30-F11), anti-mouse CD3 (clone 17A2), anti-mouse CD4 (clone RM4-5), 
anti-mouse CD8α (clone 53-6.7), anti-mouse CD19 (clone 1D3/CD19), anti-mouse Ly6G (clone 1A8), 
anti-mouse CD11b (clone M1/70), anti-mouse SiglecF (clone S17007L), anti-mouse F4/80 (clone 
BM8), anti-mouse CD11c (clone N418) from BioLegend; anti-mouse CCR3 (clone 83101), and anti-
mouse CCR10 (clone 248918) from R&D Systems. After staining, cells were washed with DPBS + 
0.5%  bovine serum albumin (BSA) and either immediately analyzed on a SA3800 flow cytom-
eter (Sony Biotechnology), or first fixed for 20  min with 4% paraformaldehyde (Fixation buffer; 
BioLegend) and analyzed later. When intracellular staining was performed, cells were permeabilized 
in Permeabilization buffer (BioLegend), re-blocked with the CD16/32 antibody, and the staining was 
performed in the same buffer following the manufacturer’s instructions. In different experiments, 
cells were analyzed using a SA3800 Spectral Cell analyzer, a BD FACSCanto II flow cytometer (BD 
Biosciences), and a LSRII flow cytometer (BD Biosciences), and the collected data were analyzed 
with FlowJo v10 software (TreeStar). For analysis of human neutrophils, whole-blood samples 
were collected in EDTA for cellular analyses. Whole-blood cell staining was performed using an Fc 
receptor blocking solution (Human TruStain FcX; BioLegend), the viability dye eFluor780 (Thermo 
Fisher), and the following conjugated monoclonal antibodies: PerCP/Cy5.5 anti-human CD45 anti-
body (clone HI30), Pacific Blue anti-mouse/human CD11b antibody (clone M1/70), FITC anti-human 
CD62L antibody (clone DREG-56), from BioLegend; PE anti-human CCR3 antibody (clone 61828), 

https://doi.org/10.7554/eLife.78206
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and APC anti-human CCR10 antibody (clone 314305) from R&D Systems. Samples were analyzed 
by flow cytometry using an LSR Fortessa flow cytometer (BD Biosciences), and data were analyzed 
using FlowJo v10 software.

In vitro neutrophil stimulation
Neutrophils were obtained from the bone marrow of C57BL/6 wild-type mice using the EasySep 
Mouse Neutrophil Enrichment Kit (STEMCELL), following the manufacturer’s instructions. After enrich-
ment, 1 × 106 neutrophils were seeded per well in a round-bottom 96-well plate with Roswell Park 
Memorial Institute (RPMI) media supplemented with 10% FBS, 1% antibiotic/antimycotic mix, and 
1 mM HEPES (Invitrogen). For stimulation, cells were incubated with LPS-B5 (100 ng/ml, Invivogen), 
fMLP (1 µM, Sigma-Aldrich), PMA (100 nM, Sigma-Aldrich), and the following concentrations of recom-
binant mouse cytokines in combination: TNFɑ (100 ng/ml), IFNγ (500 U/ml), and GM-CSF (10 ng/ml), 
all from BioLegend. For indicated experiments, polystyrene beads (Thermo Fisher) were added to 
neutrophils at a 1:1 (vol:vol) ratio (MOI = 0.5). Cells were incubated with stimuli for 4 hr at 37°C and 
5% CO2. After incubation, cells were recovered by centrifugation, washed with PBS, and processed 
for flow cytometry as described above.

Chemotaxis assay
Enriched neutrophils from the bone marrow of wild-type mice were stimulated with a cocktail of 
mouse recombinant cytokines (TNFɑ, IFNγ, GM-CSF), as described above, to induce receptor expres-
sion. After stimulation, cells were washed twice with PBS, resuspended in RPMI media supplemented 
with 0.1% BSA (wt/vol) to a final concentration of 1 × 107 cells/ml, and 100 μl of the cell suspension 
were placed in the upper compartment of a Transwell chamber (3.0 μm pore size; Corning Costar). 
50 nM of recombinant mouse CCL28, CCL11 (R&D Systems), or CXCL1 (Peprotech) were placed into 
the lower compartment of a Transwell chamber. The Transwell plate was then incubated for 2 hr at 
37°C. The number of cells that migrated to the lower compartment was determined by flow cytom-
etry. The neutrophil chemotaxis index was calculated by dividing the number of cells that migrated 
in the presence of a chemokine by the number of cells that migrated in control chambers without 
chemokine stimulation.

Neutrophil in vitro infection and bacterial killing assays
Bone marrow neutrophils were obtained from mice as described above. S. Typhimurium and A. 
baumannii were grown as described in the respective mouse experiment sections. For in vitro STm 
and Ab infections, bacteria were then opsonized with 20% normal mouse serum for 30 min at 37°C. 
After neutrophils were enriched, 1 × 106 neutrophils were seeded in a round-bottom 96-well plate 
with RPMI media supplemented with FBS (10%), and bacteria (STm or Ab) were added at a multi-
plicity of infection (MOI) = 10. The plate was centrifuged to ensure interaction between cells and 
bacteria, and incubated at 37°C and 5% CO2. After 30 min of contact with the bacteria, the media 
was pipetted up and down to resuspend the cells. For analysis of CCR3 and CCR10 expression, 
cells were recovered at various time points (5 min, 30 min, 1 hr, 2 hr, 4 hr) by centrifugation, washed 
with PBS, and processed for flow cytometry as described above. For inhibition of phagocytosis, 
bone marrow neutrophils were pre-incubated with cytochalasin D (10 µM) in dimethyl sulfoxide 
(DMSO, 0.1%), or DMSO (vehicle), for 30 min prior to infection with opsonized S. Typhimurium for 
1 hr at an MOI = 10. For killing assays, recombinant mouse CCL28 (50 nM) (Wang et al., 2000) 
and CCL11 (25 nM) (Shamri et al., 2012) (R&D Systems) were added to neutrophils prior to infec-
tion. When indicated, the CCR3 receptor antagonist SB328437 (Tocris Bioscience) was added at a 
final concentration of 10 μM (White et al., 2000). For assessment of bacterial killing, neutrophils 
infected with STm were incubated for 2.5 hr and neutrophils infected with A. baumannii were incu-
bated for 4.5 hr at 37°C and 5% CO2. After incubation, wells were diluted in an equal volume of 
PBS supplemented with 2% Triton X-100 (1% final concentration) and incubated 5 min to lyse the 
neutrophils, then serial dilution was performed and plated on LB agar to enumerate bacteria. To 
calculate the percentage of bacterial survival, the number of bacteria recovered in the presence of 
neutrophils was divided by the number of bacteria recovered from wells that contained no neutro-
phils, then multiplied by 100.

https://doi.org/10.7554/eLife.78206
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ROS production
Neutrophils were obtained from the bone marrow of C57BL/6 wild-type mice using the EasySep 
Mouse Neutrophil Enrichment Kit (STEMCELL Technologies), following the manufacturer’s instruc-
tions. After enrichment, 2.5 × 106 cells/ml were resuspended in phenol red-free RPMI media (Gibco) 
supplemented with 10% FBS (Gibco), and 1  mM HEPES (Invitrogen). The cells were incubated in 
presence of 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA, 25 µM) (Invitrogen), protected from 
light, for 30 min at 37°C and 5% of CO2, as previously described (Cao et al., 2021). After incubation 
with H2DCFDA, neutrophils were infected with STm as described above, then incubated for 4 hr with 
mouse recombinant CCL28 (50 nM), anti-mouse CCR3 antibody (5 µg/1 × 106 cells, clone 83103), anti-
mouse CCR10 antibody (5 µg/1 × 106 cells, clone 248918), or anti-rat IgG2A (5 µg/1 × 106 cells, clone 
54447), all from R&D Systems. Neutrophils were analyzed by flow cytometry for DCF fluorescence (Ex: 
492–495 nm, Em: 517–527 nm) to determine intracellular ROS production using a BD FACSCanto II 
flow cytometer, and data were analyzed using the FlowJo v10 software.

NETs production
Whole-blood samples were collected from healthy donors recruited at a tertiary care center in 
Mexico City (Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán). Healthy donors 
signed an informed consent form before inclusion in the study, and the protocol was approved 
by the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán ethics and research 
committees (Ref. 3341) in compliance with the Helsinki declaration. Neutrophils were obtained 
from peripheral blood of healthy voluntary donors using the EasySep Direct Human Neutrophil 
Isolation Kit (STEMCELL Technologies), following the manufacturer’s instructions. In parallel, plate-
lets from human peripheral blood were isolated as described (Du et al., 2018). Briefly, whole blood 
was centrifuged at 200 × g for 10 min at 4°C, and plasma was recovered and then centrifuged 
again at 1550 × g for 10  min at 4°C. The cell pellet was resuspended in RPMI media supple-
mented with 10% FBS (4 × 107  cells/ml) and then incubated with LPS (5  mg/ml) for 30  min at 
37°C to induce platelet activation (Carestia et al., 2016). For fluorescence microscopy analysis, 
neutrophils were incubated with autologous activated platelets (1:10 ratio) (Liu et al., 2016) for 
3.5 hr in a 24-well plate with a poly-L-lysine-treated coverslip and stimulated with human recom-
binant CCL28 (50 nM) (BioLegend), the CCR3 antagonist SB328437 (10 mM, Tocris Bioscience), 
and/or the CCR10 antagonist BI-6901 (20 mM, Boehringer-Ingelheim). Cells were then incubated 
with the DNA-binding dye Helix-NP Green (10 nM, BioLegend) for 30 min, and then fixed with 
paraformaldehyde (2%). Coverslips were mounted in slides using a mounting medium with DAPI 
(Fisher Scientific), and images were taken with a fluorescence microscope (Zeiss). At least 3 fields 
per sample were analyzed to determine the percentage of cells forming NETs. For flow cytometry 
analysis, neutrophils were stimulated for 2.5 hr as described above, and then incubated with the 
dye Helix-NP and human anti-MPO-Biotin antibody (clone MPO421-8B2, Novus Biologicals), and 
APC/Cy7 streptavidin (BioLegend). Samples were analyzed using an LSR Fortessa flow cytometer 
(BD Biosciences) to determine the presence of DNA–MPO complexes (Masuda et al., 2017), and 
data were analyzed using FlowJo v10 software.

Growth of bacteria in media supplemented with recombinant 
chemokines
S. Typhimurium wild-type, S. Typhimurium phoQ mutant, and Escherichia coli K12 were grown in LB 
broth overnight at 37°C. A. baumannii was cultured in Cation-Adjusted Mueller-Hinton Broth (CA-
MHB) under the same conditions. The following day, cultures were diluted 1:100 in LB and grown 
at 37°C for 3 hr, subsequently diluted to ~0.5 × 106 or ~0.5 × 109 CFU/ml in 1 mM potassium phos-
phate buffer (pH 7.2), then incubated at 37°C in the presence or absence of recombinant murine 
CCL28 (BioLegend) at the indicated concentrations. After 2 hr, samples were plated onto LB agar to 
enumerate viable bacteria. In other assays, S. Typhimurium was grown as described above and ~1 
× 107 CFU/ml were incubated at 37°C for 2.5 hr in the presence or absence of recombinant murine 
CCL28 (50 nM) (Wang et al., 2000) or CCL11 (25 nM) (Shamri et al., 2012) in RPMI medium supple-
mented with 10% FBS. After incubation, samples were plated onto LB + Nal agar to enumerate viable 
bacteria.

https://doi.org/10.7554/eLife.78206
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RNA extraction and qPCR
Total RNA was extracted from mouse cecal or lung tissue using Tri-Reagent (Molecular Research 
Center). Reverse transcription of 1 μg of total RNA was performed using the SuperScript VILO cDNA 
Synthesis kit (Thermo Fisher Scientific). Quantitative real-time PCR for the expression of Actb (β-actin), 
Cxcl1, Tnfa, Ifng, Csf3, Il1b, and Il17a was performed using the PowerUp SYBR Green Master Mix 
(Applied Biosystems) on a QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific). Gene 
expression was normalized to Actb (β-actin). Fold changes in gene expression were relative to average 
expression in uninfected controls and calculated using the ΔΔCt method.

Histopathology
Cecal and lung tissue samples collected at necropsy were fixed in 10% buffered formalin for 24–48 hr, 
then transferred to 70% ethanol for storage. Tissues were embedded in paraffin according to standard 
procedures and sectioned at 5 μm. Pathology scores of cecal and lung samples were determined by 
blinded examinations of hematoxylin and eosin-stained sections. Each cecal section was evaluated 
using a semiquantitative score as described previously (Moschen et al., 2016). Lung inflammation was 
assessed by a multiparametric scoring based on previous work (Lammers et al., 2012).

Immunofluorescence
Deparaffinized lung sections were stained with a purified rat anti-mouse Ly6G antibody (clone 1A8, 
BioLegend) according to standard immunohistochemical procedures. Ly6G+ cells were visualized by 
a goat anti-rat secondary antibody (Invitrogen). Cell nuclei were stained with DAPI in SlowFade Gold 
Antifade Mountant (Invitrogen). Slides were scanned on a Zeiss Axio Scan.Z1 slide scanner and whole 
lung scans were evaluated with QuPath analysis software (Bankhead et al., 2017). Ly6G+ cells per 
mouse were quantified by averaging the neutrophil numbers of three consecutive high-power fields in 
regions with moderate to severe inflammation.

Statistical analysis
Statistical analysis was performed with GraphPad Prism 10. CFU data from in vivo infection exper-
iments, percentage of CCR3+ or CCR10+ neutrophils in vivo and in vitro, and data from neutrophil 
functional assays were transformed to Log10 and passed a normal distribution test before running 
statistical analyses. Data on cytokine secretion, qPCR data, and relative cell abundances within tissues 
were compared by Mann–Whitney U test. Survival curves were compared by the Log-rank (Mantel–
Cox) test. Data that were normally distributed were analyzed by one-way analysis of variance (ANOVA) 
for independent samples or paired samples, depending on the experimental setup. Dunnett’s multiple 
comparisons test was applied when we compared the different conditions to a single control group, 
while Tukey’s multiple comparison test was performed when we compared each condition with each 
other. Greenhouse–Geisser correction was applied when there were differences in the variance among 
the groups. Data from chemokine migration were analyzed by a non-parametric ANOVA (Kruskal–
Wallis’s test), assuming non-equal standard deviation given the differences in the variance among 
the groups and followed by Dunn’s multiple comparisons test. Paired t test was used when only two 
paired experimental groups were compared. A p value equal to or below 0.05 was considered statisti-
cally significant. * indicates an adjusted p-value ≤0.05, p-value ≤0.01, p-value ≤0.001, p-value ≤0.0001.
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