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Group Size and Cooperation among Strangers∗

John Du�y† and Huan Xie‡
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Abstract

We study how group size a�ects cooperation in an in�nitely repeated n-player Prisoner's

Dilemma (PD) game. In each repetition of the game, groups of size n ≤ M are randomly and

anonymously matched from a �xed population of size M to play the n-player PD stage game.

We provide conditions for which the contagious strategy (Kandori, 1992) sustains a social norm

of cooperation among allM players. Our main �nding is that if agents are su�ciently patient, a

social norm of society-wide cooperation becomes easier to sustain under the contagious strategy

as n→M . In an experiment where the population size M is �xed and the group size n varies,

we �nd strong evidence that cooperation rates in the treatment with a large group size are

signi�cantly higher than in the treatment with a small group size.
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1 Introduction

What choice of group size maximizes (or minimizes) the possibility of achieving a social norm of

cooperation in a �nite population of self-interested strangers? This question would seem to be of

considerable relevance to a wide variety of di�erent settings involving the matching of strategic but

essentially anonymous players, for example, the number of students assigned to each class, passenger

seating con�gurations on airplanes or the number of jurors in a legal proceeding. In this paper we

o�er an answer to this question. Speci�cally, we consider a population of players of �xed size M .

In every period, t = 1,2,...∞, players in this population are randomly matched to form groups of

size n and play an n-person Prisoner's Dilemma game with the members of their group. The total

number of groups, M/n, is assumed to be an integer (i.e., M is a multiple of n).

The n = 2 person version of this environment has been previously studied by Kandori (1992),

who shows that a social norm of cooperation among anonymous, randomly matched players is

sustainable under certain conditions on the game. Kandori further shows that a social norm of

cooperation among strangers in the n = 2 case becomes more di�cult to sustain as M gets large

and the possibility vanishes in the limit as M →∞. By contrast, in this paper we �x M and ask:

for what value(s) of n ≥ 2 is a social norm of cooperation among strangers easiest to achieve? In

other words, is there an optimal group size for maximizing the likelihood of cooperative outcomes?

Our answer is that under certain conditions�speci�cally if agents are su�ciently patient� a

social norm of cooperation among strangers, which is sustained by universal play of a �contagious�

trigger strategy, becomes steadily easier to achieve as n gets larger, and becomes easiest to achieve

when n = M . That is, we �nd that cooperation can be easiest to sustain when the group size is

as large as possible. This seemingly counterintuitive �nding readily follows from the logic of the

contagious trigger strategy that is used to support cooperation among randomly matched, non-

communicative and anonymous �strangers.� Intuitively, if agents are su�ciently patient, then the

costs of igniting a contagion toward mutual defection are greatest when the matching group size, n,

equals the population size, M . On the other hand, once a defection has started in the community,

the bene�ts to slowing down the contagious process are also minimized in this same case where

n = M . Therefore, the players' incentives to follow the contagious strategy are easiest to satisfy

when the group size is as large as possible. However, we also �nd that if agents are insu�ciently

patient, then the relationship between the group size, n, and the ease with which a social norm of

universal cooperation among strangers is sustained can be non-monotonic as n→M .

Our �ndings serve to generalize Kandori's (1992) extension of the folk theorem for repeated

games with random, anonymous matchings to the multiple-player (n > 2) Prisoner's Dilemma

game. The n-player version of the Prisoner's Dilemma game is widely used to model a variety of

social dilemmas including, e.g., the tragedy of the commons (Hardin (1968)). In addition, we show

that our monotonicity result holds more broadly in two di�erent settings. In the �rst setting, players

in each group of size n are randomly paired to play the traditional 2-person Prisoner's Dilemma

game but are able to observe information on the outcome of play by other pairs of players in their

n-player matching group. In the second setting, the payo� matrix of the n-player game is changed
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to re�ect the incentives provided in a binary public good game.

We also provide an empirical test of our main theoretical results by designing and implemented

an n-player Prisoners' Dilemma game experiment. In this experiment, we �x the population at size

M = 12 and we study the inde�nitely repeated game in which players from the population are

randomly and anonymously matched in each repetition to play an n = 2 or n = 6-player version

of the Prisoner's Dilemma stage game. We �nd strong evidence that cooperation rates are higher

in the n = 6 matching group treatment as compared with the n = 2 matching group treatment as

subjects learn, with experience, the more immediate consequences of triggering an infectious wave

of defection when the group size is larger. We show further how these di�erences in cooperation

rates between the two di�erent group sizes are fully consistent with our main theoretical �ndings.

This paper contributes to the theoretical and experimental literature on sustaining cooperation

among anonymous, randomly matched players. While this is an admittedly stark environment,

it is an important benchmark case in both the theoretical and experimental literature and one

that naturally characterizes many types of socio-economic interactions.1 In addition to the original

seminal paper by Kandori (1992), Ellison (1994) and Dal Bo (2007) provide further generalizations of

how a social norm of cooperation may be sustained among anonymous, randomly matched players in

2-player Prisoner's Dilemma games. Xie and Lee (2012) extend Kandori's result to 2-player �trust�

games under anonymous random matchings. Camera and Gio�re (2014) o�ers a tractable analysis

of the contagious equilibria by characterizing a key statistic of contagious punishment processes and

deriving closed-form expressions for continuation payo�s o� the equilibrium path. Experimentally,

Du�y and Ochs (2009) report on an experiment that examines play in an inde�nitely repeated,

two-player Prisoner's Dilemma game and �nd that a cooperative norm does not emerge in the

treatments with anonymous random matching but does emerge under �xed pairings as players

gain more experience. Camera and Casari (2009) examine cooperation under random matching by

focusing on the role of private or public monitoring of the anonymous (or non-anonymous) players'

choices. They �nd that such monitoring can lead to a signi�cant increase in the frequency of

cooperation relative to the case of no monitoring. Du�y et al. (2013) test the contagious equilibrium

in the lab using trust games and �nd that information on past play signi�cantly increases the level

of trust and reciprocity under random matchings. Camera et al. (2013) report wide heterogeneity in

strategies employed at the individual level in an experiment in which anonymous randomly matched

subjects play the Prisoner's Dilemma game in sequences of inde�nite duration. Compared with this

previous literature, our paper is the �rst to theoretically and experimentally extend the analysis of

the contagious equilibrium from a 2-player stage game to an n-player stage game. On the other

hand, our main theoretical and experimental �nding, that a cooperative social norm is easier to

sustain with a larger rather than a smaller group size, �nds some support in the previous literature

1There is also an experimental literature that studies cooperation in repeated Prisoner's Dilemma games of in-

de�nite duration among �xed pairs of players (partners) e.g., Dal Bó (2007), Aoyagi and Fréchette (2009), Dal Bó

and Fréchette (2011), Fudenberg et al. (2012). Engle-Warnick and Slonim (2006) examines a trust game of inde�nite

duration with �xed pairs.
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if one considers a large group size to be a partial substitute for public monitoring or �xed matching.2

There are also several experimental papers that study the consequences of group size for contri-

butions to a public good, e.g., Isaac and Walker (1988), Isaac et al. (1994) and Xu et al. (2013).

There are, however, important di�erences between our setup and that of Issac and Walker that

prevent a direct comparison: 1) the strategy space is continuous in Issac and Walker's public good

game and not binary as in the n-player game that we study; 2) Issac and Walker's players are in

�xed matches of size n for all repetitions of the public good game whereas in our setup players are

randomly matched into groups of size n in each repetition of the game, and �nally 3) Issac and

Walker study a �nitely repeated game whereas we study an in�nitely repeated game.3

The rest of the paper is organized as follows. Section 2 presents our model and section 3 presents

our main theoretical results on the consequences of group size for the sustainability of social norms

of cooperation among anonymous and randomly matched strangers. Section 4 shows how our results

for the n-player game extend to the more traditional 2-player game when information on play of

the game is available to all n players in the matching group used to form pairs of players. Section

5 shows how our framework maps into the classic public good game of Isaac and Walker (1988).

Section 6 reports on the �ndings of an experiment testing our main theoretical results. Finally,

section 7 concludes with a brief summary and some suggestions for future research.

2 The Model

Consider a �nite population of M players. Time is discrete, the horizon is in�nite and all players

have a common period discount factor, δ ∈ [0, 1]. In each period, the M players are randomly and

anonymously matched into m groups of size n ≤M , with all matchings being equally likely, that is,

we assume thatM is a multiple of n with multiplierm. The randomly matched group members then

simultaneously and without communication play an n-player Prisoner's Dilemma game where each

player chooses a strategy from the set {C,D}, with C representing cooperation and D representing

defection. Let i denote the number of members of the group choosing to cooperate (i.e., the number

2We note that when the group size, n, is set equal to the largest possible value, the population size M , then our

model converges to one of perfect public monitoring and �xed matching. Thus for group sizes less than M , one can

view larger group sizes as being closer approximations to perfect public monitoring and �xed matchings.
3Isaac and Walker (1988) and Isaac et al. (1994) examine how groups of size 4, 10, 40 and 100 play a repeated

public good game. One of their main �ndings is that, holding the marginal per capita return (MPCR) to the public

good constant, an increase in the number of players, n, leads to no change or an increase (depending on the MPCR)

in the mean percentage of each player's �xed and common endowment that is contributed toward the public good,

and this e�ect is strongest with group sizes of 40 and 100 in comparison with group sizes of 4 and 10. Xu et al. (2013)

examine the e�ectiveness of an individual-punishment mechanism in larger groups of 40 participants compared with

groups of smaller groups of size four. They �nd that the individual punishment mechanism is e�ective when the

MPCR is constant but not e�ective when the marginal group return (MGR) is held constant (in which case MPCR

is decreasing). Therefore, in this public goods literature, the contribution rate to the public goods is increasing with

the group size only when the MPCR is constant and the group return is increasing with the group size. In this sense,

our monotonicity result is stronger since we normalize the payo� so that it is comparable to the case with �xed group

return and decreasing MPCR with the group size.
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of �cooperators�) other than the representative player himself so that 0 ≤ i ≤ n − 1. Let Ci and

Di denote the payo�s to cooperation and defection, respectively, when there are i cooperators. An

n-player Prisoner's Dilemma game is de�ned by the following three assumptions regarding these

payo�s:

A1: Di > Ci for 0 ≤ i ≤ n− 1.

A2: Ci+1 > Ci and Di+1 > Di for 0 ≤ i < n− 1.

A3: Cn−1 > D0.

Assumption A1 says that defection is always a dominant strategy. Assumption A2 says that

payo�s are increasing with the number of cooperators. Finally, assumption A3 says that if all partic-

ipants adopt the dominant strategy, the outcome is sub-optimal relative to the mutual cooperation

outcome. These conditions are standard in the literature on n-person Prisoner's Dilemma games

(See, e.g., Okda (1991, Assumption 2.1)). We further suppose that the payo� matrix is symmetric

for each player in the group and is as given in Table 1.

number of cooperators in the group 0 1 2 . . . n− 1

C C0 C1 C2 . . . Cn−1

D D0 D1 D2 . . . Dn−1

Table 1: The Payo� Matrix of the n-Player Prisoner's Dilemma Game

We next de�ne the �contagious strategy� following Kandori (1992) and show that a social norm

of cooperation can be sustained as a sequential equilibrium if all players adopt this strategy. De�ne

a player as a �c-type� if in all previous repetitions of the game this player and all of the other n− 1

group members with whom he has interacted in all prior periods have never chosen D, i.e., the

outcome of the stage game played in every prior period has been cooperation, C, by every group

member the player has encountered. Otherwise, the player is a �d-type� player. (Note that the

presence of c-type players in any period does not preclude the presence of d-type players in the

same period among the population (or �community�) of players of size M ≥ n). The �contagious

strategy� can now be de�ned as follows: A player chooses C if he is c-type and chooses D if he is

d-type.

We next provide a set of su�cient conditions that sustains the contagious strategy as a sequential

equilibrium when the group size is n. We �rst introduce some notation. Let Xt be the number

of d-type players at time t. De�ne An = (anij) to be an M × M transition probability matrix

where anij = Pr(Xt+1 = j|Xt = i and all players follow the contagious strategy) given group size

n. De�ne Bn = (bnij) as an M ×M transition probability matrix where bnij = Pr(Xt+1 = j|Xt = i

and one d-type player deviates to playing C while all other players follow the contagious strategy)

given group size n. Let Hn = Bn − An, which indicates how the di�usion of defection is delayed

by the unilateral deviation of one of the d-type players. De�ne Zn = (ρn0 ρn1 . . . ρnn−1), where

ρn0 , ρ
n
1 , . . . , ρ

n
n−1 are M × 1 vectors such that the ith element of ρnj is the conditional probability

that a d-type player meets j c-type players in the group when there are i d-type players in the
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community given that the group size is n (i.e., Zn = (znij) is an M × n matrix where znij = Pr(a

d-type player meets j − 1 c-type players in his group in period t|Xt = i) given a group size of n).

De�ne ei as a 1×M vector whose ith element is 1 and with zeros everywhere else. Finally, de�ne

column vectors vn = (D0, D1, . . . , Dn−1)
T and un = (C0, C1, . . . , Cn−1)

T , whose ith element is the

payo� for a player from choosing D and C respectively, given that there are i − 1 other players in

the group who choose C.

Next we show that a one-shot deviation from the contagious strategy is unpro�table after any

history. On the equilibrium path, a one-shot deviation is unpro�table if

Cn−1
1− δ

≥
∞∑
t=0

δte1A
t
nZnvn. (1)

The left hand side of (1) is the payo� from cooperating forever and the right-hand side of (1) is

the payo� that the player earns if the player initiates a defection and defects forever afterward.

O� the equilibrium path, following Kandori (1992), we identify a su�cient condition for a one-shot

deviation to be unpro�table under any consistent beliefs. Suppose there are k d-type players, where

k = n, n+ 1, . . . ,M .4 Then a one-shot deviation o� the equilibrium path is unpro�table if

∞∑
t=0

δtekA
t
nZnvn ≥ ekZnun + δ

∞∑
t=0

δtekBnA
t
nZnvn. (2)

The left hand side of (2) is the payo� that a d-type player earns from playing D forever when there

are k d-type players including the player himself, while the right hand side of (2) is what a d-type

player receives when he deviates from the contagious strategy, playing C today and then reverting

back to playing D forever after. Inequalities (1) and (2) can be manipulated into equilibrium

conditions 1 and 2 in the following lemma.

Lemma 1 The contagious strategy constitutes a sequential equilibrium if the following two condi-

tions are satis�ed:

Equilibrium Condition 1: Cn−1 ≥ (1− δ)e1(I − δAn)−1Znvn,

Equilibrium Condition 2: ekZn(vn − un) ≥ δekHn(I − δAn)−1Znvn.

The intuition behind equilibrium conditions 1 and 2 is similar to that for the n = 2 case studied

by Kandori (1992). When a player is on the equilibrium path, he has no incentive to deviate

from cooperation when δ is su�ciently large. When a player is o� the equilibrium path, he has no

incentive to deviate from continued play of the contagious strategy if the extra payo� from defection

in the current period, vn−un, is large enough. Using Lemma 1 we can prove the following theorem.

Theorem 1 Under uniformly random matching, the contagious strategy described above constitutes

a sequential equilibrium strategy for any �nite population size, M , if δ, Cn−1−Do, and vn− un are

su�ciently large.

Proof: See Appendix A.

4Since the player under consideration is a d-type, there must be at least n d-type players in the community.
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3 Main Results

In this section we ask the following question: Fixing the population size M , which group size n

maximizes the possibility of achieving a social norm of cooperation among strangers?5 Although

we can characterize the equilibrium conditions for the contagious strategy, we cannot derive closed-

form solutions since the formulas for the elements of the transition matrix A and B become too

complicated to derive for group sizes n > 2.6 Therefore, in this section we switch to the use of

numerical methods.7

Furthermore, for greater tractability we focus on a simple symmetric speci�cation for the payo�

parameters that satisfy assumptions A1-A3. Speci�cally, we normalize C0 = 0 and set Di −Ci = α

for 0 ≤ i ≤ n − 1 and Ci+1 − Ci = Di+1 − Di = β for 0 ≤ i < n − 1. Under these assumptions,

the payo� matrix (Table 1) now takes on the speci�c form shown in Table 2. We will consider the

robustness of our �ndings to a slightly di�erent parameterization of the n-player PD game payo�

matrix later in section 5.

number of cooperators in the group 0 1 2 . . . n− 1

C 0 β 2β . . . (n− 1)β

D α α+ β α+ 2β . . . α+ (n− 1)β

Table 2: The Simpler Payo� Matrix for the n-Player Prisoner's Dilemma Game

Finally, we note that under our parameterization it may be easier to achieve full cooperation

with a larger group size since the payo� from cooperation, (n− 1)β, grows with the group size, n.

To properly correct for this dependency, we also normalize the payo� matrix in such a way that the

payo� from full cooperation is �xed and constant. Speci�cally, we always set (n− 1)β = 1 for any

n (i.e., we set β = 1/(n − 1)). Note that under this normalization, to satisfy assumption A3, we

must have α < Cn−1 = 1 for all n ≥ 2.

In order to examine the question raised above, we �rst �x M = 12 and examine changes in the

two equilibrium conditions as the group size takes on the values n = 2, 3, 4, 6, 12. We �nd that a

common pattern emerges in this setting as n→M . We begin by presenting numerical results for a

�xed value of δ = 0.9. We will later consider cases where the value of δ is varied.

3.1 Equilibrium Condition 1

We �rst examine the e�ect of increases in the group size, n, on equilibrium condition 1. Although

we are mainly interested in the case where payo�s are normalized to eliminate the dependency on

n, for the moment we keep payo�s for equilibrium condition 1 in their original unnormalized form

(i.e., Cn−1 = (n−1)β), so that we can derive some intuition as to how the discounted summation of

5In Appendix B, we also ask how the answer to this question changes if instead of �xing M , we vary both M and

n but in such a way that the number of groups, m, is held constant.
6Kandori (1989) provides transition matrix formulas for the n = 2 case only.
7The Mathematica program used for the numerical results is available upon request.
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the probability of earning each payo� outcome changes with the group size. Equilibrium condition

1 (as stated in Lemma 1) for various values of n is given as follows:

n = 2: β ≥ 0.70492α+ 0.29508(α+ β)⇒ α ≤ 0.705β;

n = 3: 2β ≥ 0.75032α+ 0.07575(α+ β) + 0.17393(α+ 2β)⇒ α ≤ 1.58β;

n = 4: 3β ≥ 0.78347α+ 0.03034(α+ β) + 0.05466(α+ 2β) + 0.13153(α+ 3β)⇒ α ≤ 2.47β;

n = 6: 5β ≥ 0.81002α + 0.00586(α + β) + 0.02928(α + 2β) + 0.03904(α + 3β) + 0.01464(α +

4β) + 0.10117(α+ 5β)⇒ α ≤ 4.25β;

n = 12: 11β ≥ 0.9α+ 0.1(α+ 11β)⇒ α ≤ 9.9β.

Several patterns regarding the discounted summation of probabilities for each payo� should be

noticed. First, the summation of the probabilities assigned to each payo� on the right hand side of

these inequalities is always 1, which is proved in Lemma 2 in the appendix. Second, the probability

of earning D0 = α, the �rst term on the right hand side (i.e., the discounted summation of the

probability of meeting no cooperators in the group once defection has started) is increasing with the

group size n. Third, the probability of earning Dn−1 = α+(n−1)β, the last term on the right hand

side (i.e., the discounted summation of the probability of meeting n − 1 cooperators in the group

if the player chooses defection in the current period) is decreasing with the group size n. Finally,

the discounted summation of the probability of earning D1, D2, . . . , Dn−2 converges to 0 as n gets

larger. These patterns are intuitive if we consider the extreme case where the group size is equal

to the population size, i.e., n = M = 12. In that case, if a player chooses to defect his defection

spreads to the entire population so that in the next period, he will never meet any cooperators in

his group. Thus, only in the current period will the defecting player meet n − 1 cooperators and

gain Dn−1.

Now we impose the parametric normalization discussed above that eliminates the dependency

of the equilibrium condition on n. In this case, equilibrium condition 1 for various values of n (and

β = (n− 1)−1) is simpli�ed as follows:8

n = 2: α ≤ 0.705β = 0.705, for β = 1;

n = 3: α ≤ 1.58β = 0.788, for β = 1/2;

n = 4: α ≤ 2.47β = 0.823, for β = 1/3;

n = 6: α ≤ 4.25β = 0.85, for β = 1/5;

n = 12: α ≤ 9.9β = 0.9, for β = 1/11.

We observe that equilibrium condition 1 becomes monotonically less restrictive as the group size

n becomes larger. Intuitively, with a larger group size, an initial defection spreads to more �innocent�

(c-type) players. Furthermore, via the random re-matching each period, defection spreads to the

entire population of M players much faster since there are fewer groups given the �xed population

size, M , and a larger group size, n. These two e�ects together imply that the contagious process is

faster with a larger group size n and thus the payo� from starting a defection is reduced, making

the condition on the equilibrium path easier to satisfy. Note that a slightly di�erent normalization,

for instance, D0 = 0, Di = iβ, Ci = Di − α, Cn−1 = 1, gives similar results.

8Notice that the regulative condition α < 1 is always satis�ed for n ≥ 2.
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More generally, given a group of size n, we can write equilibrium condition 1 as:

(n− 1)β ≥ pn0α+ pn1 (α+ β) + . . .+ pnn−1(α+ (n− 1)β).

where pnj ≡ (1− δ)e1(I− δAn)−1ρnj denotes the discounted summation of the probability of meeting

j cooperators (c-types) in a group of size n once a player has initiated a defection. From this

condition we can derive a more su�cient condition:

(n− 1)β ≥
n−1∑
j=0

pnj α+
n−1∑
j=1

pnj (n− 1)β. (3)

Since we have already shown that
∑n−1
j=0 p

n
j = 1 in Lemma 2, inequality (3) above can be simpli�ed

to:

α ≤ pn0 (n− 1)β.

Finally, imposing the normalization that β = (n− 1)−1, we have

α ≤ pn0 . (4)

Proposition 1 If pn0 is increasing in n, then Condition (4) (Equilibrium condition 1) is monoton-

ically less restrictive as the group size n increases.

3.2 Equilibrium Condition 2

We next examine the e�ects of increases in the group size, n, on equilibrium condition 2. Given our

payo� speci�cation thatDi−Ci = α for i = 0, 1, . . . , n−1, the left hand side of equilibrium condition

2, the extra payo� from defection, is equal to α. The right hand side of equilibrium condition 2,

the payo� for a d-type player from slowing down the contagious process, achieves its highest value

when the number of d-type players are at a minimum, i.e., when k = n. Thus it is su�cient to

compare equilibrium condition 2 at k = n for di�erent group sizes, n = 2, 3, 4, 6, 12. Similar to

equilibrium condition 1, we �rst present equilibrium condition 2 with the original payo� parameters

and then we impose our normalization later. Equilibrium condition 2 (as stated in Lemma 1) for

various values of n is given as follows:

k = n = 2: α ≥ −0.29077α+ 0.29077(α+ β)⇒ α ≥ 0.291β;

k = n = 3: α ≥ −0.19856α+ 0.09489(α+ β) + 0.10367(α+ 2β)⇒ α ≥ 0.302β;

k = n = 4: α ≥ −0.18757α+0.12632(α+β)+0.05126(α+2β)+0.00998(α+3β)⇒ α ≥ 0.259β;

k = n = 6: α ≥ −0.01154α+ 0.00190(α+β) + 0.00506(α+ 2β) + 0.00379(α+ 3β) + 0.00076(α+

4β) + 0.00003(α+ 5β)⇒ α ≥ 0.023β;

k = n = 12: α ≥ 0.

The right hand side of equilibrium condition 2, the net payo� for a d-type player from slowing

down the contagious process when he reverts to cooperation rather than continuing defection, is

decomposed into the change in receiving eachDi in the future. Several patterns are again noticeable.

First, the summation of the change in the probabilities associated with each payo� Di is always

0, which is proved in Lemma 2 in the appendix. Second, the change in the probability of earning
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D0 = α (i.e., the change in the discounted summation of the probability of meeting no cooperators

in the group) is negative (0 in the 12-person PD), and the change in the probabilities of earning

Di = α+iβ (i.e., the change in the discounted summation of the probability of meeting i cooperators

in the group) are positive (0 in the 12-person PD). This shows that the d-type player's deviation

from the contagious strategy in the current period decreases this d-type player's probability of

meeting no c-type players in the group in future periods, and increases the probabilities of meeting

any positive number of c-type players in the group in the future. Furthermore, the decrease in the

probability of meeting no c-type players is the summation of the increase in the probabilities of

meeting any positive number of c-type players. Finally, the extent of the change in the probabilities

is decreasing as the group size, n, becomes larger. It is su�cient to see this point from the decrease

in the probability of meeting no c-type players, that is, the absolute value of the �rst probability on

the right hand side of earning D0 = α is decreasing as n gets larger. In the case of k = n = M = 12,

when the player under consideration is a d-type player, all the other players in the population are

also d-type players. Therefore, there is no e�ect working to slow down the contagious process if this

d-type player chooses to deviate from the contagious strategy by choosing cooperation.

Now again we impose the normalization condition that β = (n − 1)−1. Doing so yields the

following versions of equilibrium condition 2 for the various group sizes n:

n = 2: α ≥ 0.291β = 0.291 for β = 1

n = 3: α ≥ 0.302β = 0.151 for β = 1/2

n = 4: α ≥ 0.259β = 0.086 for β = 1/3

n = 6: α ≥ 0.023β = 0.005 for β = 1/5

n = 12: α ≥ 0

From the above results, equilibrium condition 2 becomes less restrictive with a larger group

size, n. Intuitively, it is also due to the faster contagious process associated with a larger group

size. When the speed of contagion is faster, the e�ect for a single d-type player to slow down the

contagious process becomes smaller. So the d-type player has less of an incentive to deviate from

the contagious strategy o� the equilibrium path by reverting back to playing cooperation again.

More generally, given a group of size n, we can write equilibrium condition 2 as:

α ≥ qn0α+ qn1 (α+ β) + . . .+ qnn−1(α+ (n− 1)β).

where qnj ≡ δenHn(I−δAn)−1ρnj denotes the change in the discounted summation of the probability

of meeting j c-type players in the group when the d-type player reverts back to playing cooperation

instead of defection given that the group size is n and there are k = n d-type players in the

population. If qnj > 0 for j = 1, . . . , n− 1, then we can derive a more su�cient condition:

α ≥
n−1∑
j=0

qnj α+
n−1∑
j=1

qnj (n− 1)β. (5)

Given that
∑n−1
j=0 q

n
j = 0 as shown in Lemma 2, inequality (5) can be simpli�ed to:

α ≥ −qn0 (n− 1)β.

10



Imposing the normalization (n− 1)β = 1, we have

α ≥ −qn0 . (6)

Proposition 2 If qn0 < 0, qnj > 0 for j = 1, . . . , n− 1, and |qn0 | is decreasing in n, then Condition

(6) (Equilibrium condition 2) is monotonically less restrictive as the group size n increases.

3.3 Numerical Findings for Di�erent Values of δ

Propositions 1-2 require restrictions on pn0 and |qn0 | so that a set of more su�cient equilibrium

conditions for the contagious strategy to sustain a social norm of cooperation among strangers

becomes monotonically less restrictive as the group size n increases. We next ask whether these

conditions hold, i.e., whether pn0 is increasing in n and whether |qn0 | is decreasing in n.

Notice �rst that pn0 = (1− δ)e1(I − δAn)−1ρn0 and qn0 = δenHn(I − δAn)−1ρn0 are both functions

of δ and n. (Implicitly they are also functions of M since the transition probability matrix An

and Bn also depend on M). Therefore, we compute pn0 and qn0 for di�erent group sizes, n, and for

di�erent discount factors, δ, all under a �xed M = 12. The results of these numerical calculations

are shown in Table 3. The cells shown in boldface are those that guarantee the existence of the

contagious equilibrium.

pn0 for given n and δ

δ 0.01 0.1 0.3 0.5 0.7 0.9 0.99

n = 2 0.000925 0.011028 0.051716 0.141773 0.331384 0.704922 0.966359

n = 3 0.000214 0.005598 0.050227 0.165386 0.385776 0.750317 0.972762

n = 4 0.000127 0.007565 0.070361 0.209925 0.442245 0.783465 0.976880

n = 6 0.000121 0.010175 0.090318 0.250271 0.490137 0.810020 0.980100

n = 12 0.010000 0.100000 0.300000 0.500000 0.700000 0.900000 0.990000

|qn0 | for given n and δ

δ 0.01 0.1 0.3 0.5 0.7 0.9 0.99

n = 2 0.000839 0.009584 0.039064 0.088720 0.168391 0.290770 0.363919

n = 3 0.001377 0.014565 0.049087 0.091050 0.140768 0.198557 0.227281

n = 4 0.002014 0.020207 0.061095 0.102617 0.144773 0.187568 0.207034

n = 6 0.000128 0.001282 0.003846 0.006409 0.008973 0.011537 0.012690

n = 12 0 0 0 0 0 0 0

Table 3: Numerical Results on pn0 and |qn0 | for Di�erent n and δ (M = 12)

Our numerical exercises on pn0 (top half of Table 3) illustrate some interesting results. Recall

that pn0 is the discounted summation of the probability of meeting zero c-type players in the group

in all future periods once the player initiates a defection in the current period. Given any group

size n, Table 3 reveals that pn0 increases with δ. (pn0 = 0 for δ = 0 and pn0 = 1 for δ = 1.) Intuitively,

this pattern is due to the feature of the contagious equilibrium � defection will spread to the entire
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population once defection is initiated, and it takes some time for a defection to spread. Therefore,

when the player cares more about the future, the discounted summation of the probability of meeting

zero c-type player becomes larger.

Next we ask: given a �xed δ, how does pn0 change with increases in the group size n? The

results reported in Table 3 suggest that the answer depends on δ. When δ is small, pn0 follows

a non-monotonic pattern; it decreases with n �rst and then increases with n, reaching pn0 = δ

when n = M . However, when δ is large enough (in our numerical example when δ ≥ 0.5), pn0 is

monotonically increasing as the group size n increases.

We next consider the numerical results for qn0 = δenHn(I − δAn)−1ρn0 , which is the decrease

in the discounted summation of the probability of meeting zero c-type players in the group when

the d-type player reverts back to playing cooperation instead of defection given that the group size

is n and there are k = n d-type players. Again we see (in the bottom half of Table 3) that qn0 is

increasing in δ given a certain group size. When δ is large enough (δ greater than 0.9 in Table 3),

|qn0 | is monotonically decreasing as the group size n increases. Therefore, the equilibrium condition

o� the equilibrium path becomes less restrictive as n increases.9

Given the numerical results in Table 3, we conjecture that there exists a threshold value for

the discount factor, δ̄ such that, for any δ > δ̄, pn0 is monotonically increasing in n and |qn0 | is
monotonically decreasing in n. To verify this hypothesis, we plot pn0 and qn0 as continuous functions

of δ in Figure 1. Indeed, we can see that when δ > .35 (approximately) pn0 is increasing in n. When

δ > 0.8 (approximately), |qn0 | is decreasing in n. (For n = 12, pn0 = δ and |qn0 | = 0 for any δ.)

In order to check whether this (partial) monotonicity result is only true for pn0 and |qn0 | or it also
applies to the original equilibrium conditions, we performed a similar exercise using the original

equilibrium conditions 1 and 2. Recall that equilibrium condition 1 is:

(n− 1)β ≥ pn0α+ pn1 (α+ β) + . . .+ pnn−1(α+ (n− 1)β),

and equilibrium condition 2 is:

α ≥ qn0α+ qn1 (α+ β) + . . .+ qnn−1(α+ (n− 1)β).

De�ne

pn ≡ 1−
∑n−1
j=1 jp

n
j

n− 1

and

qn ≡
∑n−1
j=1 jq

n
j

n− 1
.

Then with the normalization condition β = (n− 1)−1, equilibrium condition 1 becomes

α ≤ pn

and equilibrium condition 2 becomes

α ≥ qn.

12



Figure 1: pn0 and |qn0 | as functions of δ (M = 12)

Table 4 provides numerical results on pn and qn for di�erent values of δ and n. In all cases, the

contagious equilibrium always exists, i.e., the numerical value in each cell for pn is always larger than

the value in the corresponding cell for qn. Thus by choosing α between qn and pn both equilibrium

conditions 1 and 2 always hold. We observe that the result that cooperation is monotonically easier

to sustain as n increases appears to hold more strongly under these original equilibrium conditions.

That is, we �nd that pn is monotonically increasing in n given any δ, and qn is monotonically

decreasing in n if δ is su�ciently large enough (greater than 0.5). Thus, the cuto� value for the

discount factor δ̄ is smaller when we use the original equilibrium conditions. This observation is

veri�ed in Figure 2.

Summarizing, our main �nding is that, for a �xed population M and for δ su�ciently high, the

conditions under which the contagious strategy sustains play of the cooperative strategy in an n-

player Prisoner's Dilemma game by all anonymously and randomly matched players in each period

is monotonically more easily satis�ed as the group size, n→M .

4 Group Size and Information Sharing

In this section we establish an equivalence result between the n-player PD game and the more

traditional 2-player PD game. In the �rst setting, a �nite population of sizeM is randomly assigned

9In all of the cases reported in Table 3, it is always the case that qn0 < 0 and qnj > 0 for j = 1, . . . , n− 1.
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pn for given n and δ

δ 0.01 0.1 0.3 0.5 0.7 0.9 0.99

n = 2 0.000925 0.011028 0.051716 0.141773 0.331384 0.704922 0.966359

n = 3 0.001859 0.022562 0.100818 0.239648 0.460745 0.788192 0.977226

n = 4 0.002785 0.033155 0.137519 0.298782 0.524404 0.821914 0.981270

n = 6 0.004600 0.050899 0.185380 0.363489 0.585281 0.850813 0.984588

n = 12 0.010000 0.100000 0.300000 0.500000 0.700000 0.900000 0.990000

qn for given n and δ

δ 0.01 0.1 0.3 0.5 0.7 0.9 0.99

n = 2 0.000839 0.009584 0.039064 0.088720 0.168391 0.290770 0.363919

n = 3 0.001195 0.012416 0.040398 0.072725 0.109571 0.151112 0.171385

n = 4 0.000926 0.009293 0.028096 0.047192 0.066581 0.086265 0.095219

n = 6 0.000059 0.000590 0.001771 0.002952 0.004132 0.005313 0.005844

n = 12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 4: Numerical Results on pn and qn for Di�erent n and δ (M = 12)

into groups of size n in each period and then each group plays an n-person PD game, just as described

in the previous sections. In the second setting, the �nite population of size M is randomly assigned

into groups of size n in a �rst-round matching, and then the n players in each group are further

randomly paired with each other in a second-round matching prior to playing the 2-person PD game

as shown in Table 5, where rows represent the representative player's choice and columns represent

the opponent player's choice.10 We will show that there exists an equivalence between these two

settings when information on the outcome of play is shared between the n players who are matched

in the �rst round of the second setting. Therefore, under this information sharing assumption, the

existence and monotonicity results shown in the previous sections should extend directly to the

second setting involving the 2-player PD game.

Opponent's Choice

D C

C 0 (n− 1)β

D α α+ (n− 1)β

Table 5: The Payo� Matrix for the 2-Player Prisoner's Dilemma Game

4.1 Payo� Equivalence

Suppose that in the second setting there are i cooperators in the group of size n other than the

(representative) player himself. Then the player's expected payo� from choosing C is

10For simplicity, we assume that n is an even number.
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Figure 2: pn and qn as functions of δ (M = 12)

EU(C|i) =
i

n− 1
· (n− 1)β +

n− 1− i
n− 1

· 0 = iβ.

The expected payo� for the player from choosing D is

EU(D|i) =
i

n− 1
[α+ (n− 1)β] +

n− 1− i
n− 1

· α = α+ iβ.

Compared with the payo�s for the n-person Prisoner's Dilemma as shown in Table 2, we �nd that

the player's (expected) payo�s in this 2-person PD game are exactly the same as for the n-player

PD game provided that the latter game has the same number of cooperators 0 ≤ i ≤ n − 1 in the

group of size n.

4.2 Strategy Equivalence

In the case of the 2-person Prisoner's Dilemma game, if players' strategies depend only on their

own personal histories, then the strategy space will be di�erent relative to the n-person PD game,

where it is possible to condition behavior on the outcome of interactions with n− 1 other players.

However, if we allow players in the 2-person game to observe other pairs' payo� outcomes in the

matching group of size n, and we allow all players' strategies to depend on the entire history of such

payo� information, then we can easily establish a strategy equivalence between the two di�erent

settings as well.
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Assume that in the second setting, in each period the players in each group of size n can not

only observe the outcome of their own pair, but can also observe the outcome of other pairs in their

n-player group. However, they are not able to observe the outcome of any pair outside of their

n-player group. Furthermore, let us revise the contagious strategy in the second setting as follows:

De�ne a player as a �c-type� if in all previous repetitions of the game this player and all of other

n− 1 group members in all previous periods have never chosen D, i.e., the outcome where all pairs

this player can observe in every previous period has been (C,C). Otherwise, the player is a �d-type�

player. The �contagious strategy� is de�ned in the same manner as before: A player chooses C if

he is c-type and chooses D if he is d-type.

By allowing the player to observe the outcome of other pairs in the same n-player group and

to allow the contagious strategy to depend on the outcome of all pairs the player can observe, it

is straightforward that the contagious process in the second setting is same as in the �rst setting.

Therefore, the results in the �rst setting will carry over to the second setting.

The equivalence results between the �rst and second settings have an interesting implication.

In the second setting we �rst randomly assign players into groups of size n, and then further pair

players in each group randomly. It is easy to see that this procedure still produces uniform random

matching for each pair. Thus the monotonicity result obtained previously implies that in the uniform

random matching game involving play of the 2-person PD game, it is easier to sustain a contagious

equilibrium if players are allowed to observe more information on other players' outcomes. Kandori

(1992) has a similar result for the case of full information, where he shows that cooperation is

much easier to sustain when all M players can observe outcomes experienced by all other players,

compared to the case where players can only observe their own private history. This is analogous

to the comparison of groups of size 2 with groups of size M in our setting. Our monotonicity result

thus establishes a connection between private information and full (population-wide) information,

by showing that cooperation can be monotonically easier to sustain when partial information on

the outcome of play of other community members is steadily increased (i.e., when the group size n

increases gradually from 2 to M).

5 An Application to a Public Goods Game

In this section we show that with a slightly di�erent normalization of the payo� matrix, the n-

person Prisoner's Dilemma game can be re-interpreted as a public goods game so that our previous

monotonicity result continues to hold in this public goods game version of the stage game.

As before, we assume a population ofM players, who are anonymously and randomly assigned to

groups of size n in each period to play an n-player public goods game. Here we study a binary choice

version of the classic public good game (Issac and Walker (1988)) where each player is endowed with

a single token and must decide whether or not to invest that token in his own privately held account

or in a public account. Each token invested in the public account yields a payo� of µ for each group

member. A token invested in the private account yields an additional payo� of γ, but only to the
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player associated with that private account. Table 6 represents the payo� matrix for the player from

choosing to invest in the public account (C) or in the private account (D) given the number of other

contributors to the public account in the group of size n. The standard public good game setup

has µ > 0 and γ > 0, so that non-contribution to the public good is always a dominant strategy in

the one-shot, n-player game, and �nally that γ + µ < nµ, which implies that the social optimum is

achieved when all n players contribute to the public good. Notice that these restrictions also satisfy

assumptions A1-A3, as de�ned in Section 2 for an n-player Prisoner's Dilemma game.

number of contributors in the group 0 1 2 . . . n− 1

C (invest in the public account) µ 2µ 3µ . . . nµ

D (invest in the private account) γ + µ γ + 2µ γ + 3µ . . . γ + nµ

Table 6: The Payo� Matrix for the n-Player Public Goods Game

When this public goods game serves as the stage game played by a population ofM players, who

are randomly divided up into groups of size n in every period, the su�cient conditions to sustain

the contagious equilibrium are very similar to those shown before. On the equilibrium path we must

have:

nµ ≥ pn0 (γ + µ) + pn1 (γ + 2µ) + . . .+ pnn−1(γ + nµ),

while o� the equilibrium path we require that:

γ ≥ qn0 (γ + µ) + qn1 (γ + 2µ) + . . .+ qnn−1(γ + nµ).

De�ne

p̃n ≡ n− 1

n
pn =

n− 1

n
−
∑n−1
j=1 jp

n
j

n

and

q̃n ≡ n− 1

n
qn =

∑n−1
j=1 jq

n
j

n
.

Then with the normalization that µ = 1/n, equilibrium condition 1 becomes

γ ≤ p̃n

and equilibrium condition 2 becomes

γ ≥ q̃n.

Based on the previous numerical results (Table 4), it is easy to show that the monotonicity pattern

still holds for the public goods game when δ is su�ciently large, with the threshold value for δ̄

slightly increased.

6 The Experiment

In this section we report on a simple, individual decision-making experiment that tests the mono-

tonicity results of Propositions 1-2. In our experimental design, we always consider a community of
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size M = 12 and we compare the cooperation rates between groups of size n = 2 and n = 6. With

the normalized payo� in Table 2 and β = 1
n−1 , the stage game payo� for the 2-person PD and the

6-person PD are shown in Tables 7 and 8, respectively.

Other Player's Choice D C

C 0 1

D α α+ 1

Table 7: The Payo� Matrix for the 2-Player Prisoner's Dilemma Game

Number of Others Playing C 0 1 2 3 4 5

C 0 0.2 0.4 0.6 0.8 1

D α α+ 0.2 α+ 0.4 α+ 0.6 α+ 0.8 α+ 1

Table 8: The Payo� Matrix for the 6-Player Prisoner's Dilemma Game

To implement an in�nite-horizon n-player PD game in the laboratory, we use the standard

random termination methodology (Roth and Murnighan 1978) in which subjects participate in

supergames that consist of an inde�nite number of rounds, where the probability of continuation

from one round to the next is a known constant equal to the discount factor, δ ∈ (0, 1). For our

experiment, we chose to set δ = 0.75. With this choice, the expected duration of a supergame is 4

rounds. To provide subjects with experience (and to propely induce the discount factor of .75) we

have subjects participate in multiple supergames in our experiment.

The numerical results in the previous sections show that, as the group size n increases, the

su�cient conditions both on the equilibrium path and o� the equilibrium path are less restrictive.

Table 9 summarizes the numerical results for the su�cient conditions to sustain the contagious

equilibrium for groups of size n = 2 and 6 when δ = 0.75 as in our experiment.

Group Size On-equm Path O�-equm Path

n = 2 α ≤ 0.403 α ≥ 0.194

n = 6 α ≤ 0.648 α ≥ 0.004

Table 9: Su�cient Conditions for Contagious Equilibrium (Numerical Results for δ = 0.75)

Given the numerical results of Table 9 we chose to set α = 0.5, which satis�es the su�cient

condition on the equilibrium path for a group size of n = 6 but not for a group size of n = 2. Notice

that our choice of α = .5 satis�es the su�cient condition o� the equilibrium path for both group

sizes, n = 6 and n = 2.

We chose δ = .75 and α = .5 for several reasons. First, we wanted a parameterization that

would allow for several rounds of repeated play and that could sustain the contagious strategy as

an equilibrium in a community of a �xed population size under a larger group size but not under

a smaller group size so as to test our main monotonicity result. Second, we chose to focus on the

on-equilibrium-path condition rather than the o�-the-equilibrium-path condition; if α was instead
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chosen in such a way that the on-the-equilibrium-path condition (but not the o�-equilibrium-path

condition) was always satis�ed for both group size treatments, e.g., a choice of α = 0.1, then we

might observe that subjects seldom chose to defect (with the consequence that they were seldom

actually o� the equilibrium path) under either group size, making it di�cult to detect any treatment

e�ect.

Given our choice of α and δ, we are able to test the following hypotheses using our experimental

data:

Hypothesis 1: The overall cooperation level is higher with a larger group size of n = 6 than

with a smaller group size of n = 2.

Hypothesis 2: The cooperation level when subjects are c-type (on-equilibrium-path) is higher

with a group size of n = 6 than with a group size of n = 2.

Hypothesis 3: The cooperation level when subjects are d-type (o�-equilibrium-path) is no

di�erent between a group size of n = 6 and a group size of n = 2.

An important feature of our experimental design is that each 12-player community consists of

just one human subject who interacts with 11 other �robot� players as opposed to allowing 12 human

subjects to interact with one another. We employ this design in order to avoid the coordination

problem of strategy selection among 12 human players and thereby remove strategic uncertainty.

As with other folk-theorem type results, the contagious equilibrium is not the unique equilibrium

of the in�nitely repeated n-player PD game we implement in our experiment. There exist many

other non-cooperative equilibria including the one where all players choose to defect in every round

of the supergame. Empirically, when players face both the selection of their own strategy and

the uncertainty of strategy selection by other players, the outcome of play can be far from that

predicted by the contagious equilibrium.11 Furthermore, we would expect that this problem of

strategic uncertainty is naturally more severe as the group size n gets larger. For these reasons, we

chose to eliminate the strategic uncertainty dimension from our experimental design by having our

players interact with robot players programmed to play according to the contagious strategy so as

to provide a cleaner test of our monotonicity results.12

In our experiment, we explicitly told our subjects that in each round of a supergame (or �se-

quence� as it was referred to in the experiment) they would be randomly matched with n− 1 other

robot players (out of a total population of 11 robot players) and not with any other human subjects.

Further, since n < M , there would be robot-robot group interactions that the human subject is not

a part of. Subjects were further instructed that the robots in each community played according to

the rules of the contagious strategy. Speci�cally subjects were told:

�The robots are programmed to make their choices according to the following rules:

• - choose X in the �rst round of each new sequence;

11See for example, Du�y et al. (2013) and Du�y and Ochs (2009).
12We note that this type of experimental design involving robot players has not previously been implemented to

test the contagious equilibrium prediction.
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• - if, during the current sequence, any of a robot's group members, including you or

any other robot players have chosen Y in any prior round of that sequence, then

the robot will switch to choosing Y in all remaining rounds of the sequence;

• - otherwise, the robot will continue to choose X.�

Here X refers to the cooperative action C, while Y refers to the defect action D.13 Thus subjects

had complete knowledge of the strategies to be played by their opponents. We did not provide

subjects with any further information, such as the number of periods it might take for them to meet

a defecting player once they (the human subject) had initiated a defection, as this calculation was

one that we wanted subjects to make on their own.

One may be concerned that explicitly telling subjects the contagious strategy used by robots

will induce a kind of experimenter demand e�ect, by which the human subjects will also follow this

same contagious strategy. However, if that were the case, then our hypotheses that the group size

n matters will not �nd any support since subjects in both treatments n = 6 and n = 2 were told

that the robots would follow the contagious strategy. On the other hand, if we observe a higher

cooperation rate under a group size of n = 6 than under a group size of n = 2, then it implies that

subjects rationally choose to follow the contagious strategy more frequently when the equilibrium

conditions are satis�ed.

The experiment was conducted at the Experimental Social Science Laboratory (ESSL) of the

University of California, Irvine using undergraduate students with no prior experience with our ex-

perimental design. Instructions were read aloud and then subjects completed a brief comprehension

quiz. The instructions used in the n = 6 treatment are provided in Appendix C; instructions for the

n = 2 treatment are similar. We conducted session 1 using a group size of n = 2 with 12 subjects

and session 2 using group size of n = 6 with 10 subjects.14 Since each subject interacted with an

independent group of 11 other robots all playing according to the contagious strategy, each subject's

behavior amounts to a single, independent observation. Thus the number of subjects we have for

each session corresponds to the number of independent observations.

To allow subjects to gain some experience with play of the repeated game against the robot

players, we had the subjects participate in multiple supergames. As noted above, subjects were

informed that at the start of each and every new supergame (sequence) all of the 11 robot players in

their community of size 12 would start out as c-types playing the cooperative strategy (X) and that

robot players would only change to playing the defect strategy (Y) if they became d-types during

that supergame. We did not �x the number of supergames played in advance. Instead, during the

experiment, when the total number of rounds (over all supergames) exceeded 75, the supergame

in progress was determined to be the last supergame (we did not inform subjects of our stopping

rule); when that �nal supergame was completed, the session was declared to be over. Following the

13We used the neutral labels X and Y rather than (Cooperate and Defect) in our experimental implementation of

the n-player game.
14Using the mean and standard deviation of the cooperation rate by human subjects in each treatment given by

our data, the estimated statistical power for a t-test is 0.9. The required sample sizes is 11 for each treatment for

statistical power of 0.9 and 9 for each treatment for statistical power of 0.8.
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completion of the experiment, three sequences were randomly selected from all played and subjects

were paid their total earnings from those three sequences in addition to a $7 show-up fee.15 Both

sessions were completed within the two hour time-horizon for which we recruited subjects.

Table 10: Session Description

No. of Subjects No. of Supergames No. of Rounds Avg. Earnings

n=2 12 20 76 USD 15.33

n=6 10 18 75 USD 22.59

Figure 3 shows the average cooperation rate per round over time. The blue line (with diamonds)

is the average cooperation rate of the human subjects only, while the red line (with squares) is the

average cooperation rate by the 12-member community as a whole, consisting of 1 human subject

and 11 robots. The start of each new supergame is indicated by a vertical line.

The top panel of Figure 3 shows average cooperation rates for the n = 2 group size. We observe

a decline in cooperation over time by the human subjects in almost all supergames lasting more than

2 rounds, which indicates that more human subjects began to switch from cooperation to defection

from round 2 if they did not choose to defect from the beginning of the supergame. Consistently, the

cooperation rate at the community level shows a similar pattern but remains above the cooperation

rate by the human subjects alone, as it takes some time for the contagious strategy, as played by the

robot players to spread throughout the population of size 12. Across all supergames of the session

with n = 2, there is no obvious learning e�ect or convergence.

The bottom panel of Figure 3 shows average cooperation rates for the n = 6 group size and

exhibits a very di�erent pattern of cooperation rates over time. Indeed, the overall cooperation

rate is higher in Session 2 (n = 6) than in Session 1 (n = 2). Although there is also a decline of

cooperation in the sugergames at the beginning of the session, the cooperation rate becomes high at

around 90% following the fourth supergame of the session (approximately after the �rst one-third of

the session) and remains high for the remaining supergames of that session. This �nding indicates

that, given the payo� parameters we have chosen and the strategy followed by the robots, most

subjects learn over time that it is in their best interest to follow the contagious strategy when n

is large (n = 6), relative to the case where n is small (n = 2). The comparison of the cooperation

rates between group of size n = 2 and n = 6 indicates that the human subjects responded to the

incentives we provide. They choose to start defecting more frequently when the contagious e�ect

of a single defection was much slower under the n = 2 treatment and this tendency to defect was

not diminished by experience. By contrast, when the contagious e�ect of a defection was more

immediate, as in the n = 6 treatment, they learned to avoid triggering a wave of defection.

Table 11 reports the cooperation rates calculated based on the human subjects' choices and on

community-wide action choices (humans plus robot players) over all rounds of all supergames. We

further calculated the cooperation rates over the �rst and second halves of each session. For the

15We chose to pay for three randomly sequences, as opposed to just one, so as to minimize the possibility that a

�short� (e.g., 1-round) supergame was chosen for payment.
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Figure 3: Cooperation Rate by Human Subjects and Communities Over Time

human subjects' choices only, the cooperation rate in the n = 6 treatment is always signi�cantly

higher than under the n = 2 treatment (p < 0.01) according to a two-sided Mann-Whitney test. At

the community-level, the cooperation rates over the �rst half of the experiment are not signi�cantly

di�erent between the n = 2 and n = 6 treatments, but over the second half, cooperation rates

are signi�cantly higher under the n = 6 treatment than under the n = 2 treatment (p < 0.01).

Comparing the cooperation rate in the �rst and second half of the session, there is no signi�cant

di�erence in these cooperation rates when n = 2. However, cooperation rates in the second half

of the n = 6 treatment are signi�cantly greater than in the �rst half of that treatment, using a

two-sided Wilcoxon test for matched pairs (p = 0.08 for the cooperation rate by human subjects

and p = 0.02 for cooperation rate by communities).

Table 11: Mann-Whitney Tests on Cooperation Rate

Human Subjects Communities

Whole Session 1st half 2nd half Whole Session 1st half 2nd half

n=2 0.364 0.373 0.355 0.743 0.754 0.733

n=6 0.800 0.732 0.870 0.846 0.776 0.918

p-value 0.006 0.008 0.003 0.015 0.391 0.005

No. of Obs. 12 (n=2) vs. 10 (n=6)

Table 12 examines the extent to which the human subjects in each treatment have followed the

contagious strategy as de�ned in the model. Recall that a player is de�ned to be on the equilibrium

path in the �rst round of a supergame or when the player has never experienced a defection by
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his group members or himself in the past rounds of a supergame. Otherwise, a player is o� the

equilibrium path. In our data, the average frequency with which a player is on the equilibrium

path when the group size n = 2 is signi�cantly lower than that when the group size n = 6, using

a two-sided Mann-Whitney test (p < 0.01). We further calculate the cooperation rates when each

human subject is on the equilibrium path and o� the equilibrium path. When the human subjects

are on the equilibrium path, the cooperation rate when n = 2 is signi�cantly lower than when

n = 6 (two-sided Mann-Whitney test, p < 0.01). When the human subjects are o� the equilibrium

path, the cooperation (defection) rates under the two di�erent group sizes are not signi�cantly

di�erent. Finally, for each human subject, we also calculated the frequency with which that subject

played the contagious strategy, which is given by: (freq. on equilibrium path)×(cooperation rate on

equilibrium path) + (freq. o� equilibrium path)×(defection rate o� equilibrium path) We �nd that

the frequency of contagious strategy play is also signi�cantly higher when n = 6 than when n = 2

(two-sided Mann-Whitney test, p < 0.05). We conclude that this evidence supports our hypotheses

2 and 3.

Table 12: Strategy Analysis of the Human Subjects

Frequency Frequency Cooperate Rate Defect Rate Frequency using

On Equm Path O� Equm Path On Equm Path O� Equm Path Contagious Strategy

n=2 50.99% 49.01% 56.50% 94.46% 79.49%

n=6 82.27% 17.73% 86.49% 74.48% 91.60%

p-value 0.008 0.008 0.008 0.118 0.014

No. of Obs. 12 vs. 10 12 vs. 10 12 vs.10 11 vs. 8 12 vs. 10

Summarizing our experimental results, we �nd that the behavior of the human subjects is

consistent with our theoretical predictions on the impact of group size for cooperative play. Given

the same payo� parameter α, cooperation rates increase when the group size increases. Under

a small group size, the cooperation rate declines over time and this pattern repeats itself across

supergames even as subjects gain repeated experience with the environment. By contrast, under

the large group size, subjects learn to stick with cooperation after experiencing the much quicker

consequences of triggering a contagious wave of defection in their community.

7 Conclusions

We have examined the e�ect of group size, n, on the equilibrium conditions needed to sustain

cooperation via the contagious strategy as a sequential equilibrium in repeated play of an n-player

Prisoner's Dilemma game, given a �nite population of players of size M ≥ n and random and

anonymous matching of players in each repetition of the game. We �nd that, if agents are su�ciently

patient, the equilibrium conditions, both on the equilibrium path and o� the equilibrium path,

become less restrictive, and thus more easily satis�ed as the group size n → M . This result arises

from the faster speed with which a contagious wave of defections can occur as the group size becomes
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larger. We show that our results continue to hold in settings where players have information about

the outcomes of play in their n-player matching group but are randomly paired to play the classic 2-

person prisoner's dilemma game or where the payo� matrix of the n-player game is altered slightly to

capture the incentive structure of the standard public goods game. Finally, we provide experimental

evidence in support of our theoretical prediction that cooperation rates are higher under a large

group size compared to a small group size.

Our �ndings serve to highlight the implications of Kandori's (1992) idea that a social norm of

cooperative behavior among anonymous strangers can be policed by community-wide enforcement.

Speci�cally, community�wide enforcement becomes easier to sustain as the speed with which infor-

mation travels becomes faster, which is here proxied by increases in the group size, n. Centralized

communication or monitoring mechanisms might also perform the same role played by larger group

sizes in easing the conditions under which a social norm of cooperation is sustained in a large

population of players.

In our experiment, we have removed strategic uncertainty by having human participants play

with robot players who always play according to the contagious strategy. By contrast, Camera et al.

(2012) �nd large heterogeneity in strategies adopted by participants in a 2-player Prisoner's Dilemma

game with random and anonymous matching. When there is heterogeneity in strategies or a belief

that strategies are heterogeneous, the incentives for agents to play according to the contagious

strategy may be greatly altered or even non-existent. Consequently, we may observe experimental

results that are far from the cooperative equilibrium even if the model parameterization satis�es the

equilibrium conditions for such a cooperative social equilibrium to exist. A good next step would

be to study reducing the fraction of robot players playing according to the contagious strategy

in the population and (perhaps gradually) replace them with human subjects who can choose to

play according to any strategy. The research question would be what (minimal) number of robot

contagious strategy players, r, is needed in a population of sizeM in order that the remainingM−r
human subject players to learn to coordinate on a cooperative social norm equilibrium. We leave

these questions to future research.
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Appendix A

We �rst show that the equilibrium conditions in Lemma 1 are equivalent to the equilibrium con-

ditions provided by Kandori (1992) when the group size n = 2 . Translating our notation to

that used by Kandori (1992), Cn−1 = 1, un = (−l, 1)T , vn = (0, 1 + g)T , Zn = (iM − ρ ρ)

(ρ = 1
M−1(M −1,M −2, . . . , 1, 0)T , in which the ith element of ρ is the conditional probability that

a d-type player meets a c-type when there are i d-types, and iM is a 1×M vector with all elements

equal to 1), An = A, Bn = B, Hn = H. Thus condition 1, equation 1 can be written as:

1 ≥ (1− δ)e1(I − δA)−1(iM − ρ ρ)

(
0

1 + g

)
= (1− δ)e1(I − δA)−1ρ(1 + g),

which is the same as equilibrium condition 1 in Kandori (1992). Condition 2, equation 2 can be

written as

ek(iM − ρ ρ)

(
l

g

)
≥ δekH(I − δA)−1(iM − ρ ρ)

(
0

1 + g

)
,

i.e.,

(
M − k
M − 1

)g + (
k − 1

M − 1
)l ≥ δekH(I − δA)−1ρ(1 + g),

which is the same as equilibrium condition 2 in Kandori (1992).

Lemma 2 De�ne pnj ≡ (1− δ)e1(I − δAn)−1ρnj and qnj ≡ δenHn(I − δAn)−1ρnj (j = 0, . . . , n− 1),

then
∑n−1
j=0 p

n
j = 1 and

∑n−1
j=0 q

n
j = 0.

Proof. By de�nition, pnj denotes the discounted summation of the probability of meeting j c-type

players in the group once a defection has started when the group size is n, and qnj denotes the change

in the discounted summation of the probability of meeting j c-type players in the group when the

d-type player reverts back to playing cooperation instead of defection given that the group size is n

and there are k = n d-type players. Notice that by de�nition the summation of the elements in each

row of matrix Zn, An, and Bn is always equal to 1. Denote ik as a 1 × k vector with all elements

equal to 1. Thus Znin = iM , AtniM = iM and Bt
niM = iM for any group size n and t = 0, 1, . . . ,∞.

Therefore we have∑n−1
j=0 p

n
j = (1− δ)e1(I − δAn)−1Znin = (1− δ)e1(I − δAn)−1iM = (1− δ)

∑∞
t=0 δ

te1A
t
niM = 1,∑n−1

j=0 q
n
j = enHn(I − δAn)−1Znin = enHn(I − δAn)−1iM =

∑∞
t=0 δ

ten(Bn −An)AtniM = 0.

Proof. [Theorem 1]

We �rst show that limδ→1(I−δAn)−1ρnj <∞ for j = 1, . . . , n−1. (Therefore, limδ→1 p
n
j = 0 for

j = 1, . . . , n− 1 and limδ→1 p
n
0 = 1.) The proof is similar as in Kandori's (1992) proof for Theorem

1. Since Xt = M is the absorbing state and the Mth element of ρnj is zero for j = 1, . . . , n− 1,

(I − δAn)−1ρnj =
∞∑
t=0

δtAtnρ
n
j =

∞∑
t=0

δtÃtnρ
n
j = (I − δÃn)−1ρnj , for j = 1, . . . , n− 1
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where Ãn is a matrix obtained by replacing the last column of An by zeros. Given this, we have

only to show the existence of (I − Ãn)−1. Since the number of d-types never declines, Ãn is upper-

triangular and so is (I − Ãn). The determinant of an upper-triangular matrix is the products of its

diagonal elements, which are all strictly positive for (I − Ãn). Therefore, limδ→1 p
n
j = limδ→1(1 −

δ)e1(I − δAn)−1ρnj → 0 and qnj = δenHn(I − δAn)−1ρnj is �nite for j = 1, . . . , n− 1.

Now the r.h.s. of equilibrium condition 1, (1 − δ)e1(I − δAn)−1Znvn = pnoDo +
∑n−1
j=1 p

n
jDj ≤

Do+
∑n−1
j=1 p

n
jDj , where the inequality comes from

∑n−1
j=0 p

n
j = 1 and pno ≤ 1. Therefore, equilibrium

condition 1 is satis�ed if Cn−1 − Do ≥
∑n−1
j=1 p

n
jDj , which is satis�ed when Cn−1 − Do and δ are

su�ciently large.

Similarly, the r.h.s. of equilibrium condition 2, δenHn(I− δAn)−1Znvn = qnoDo+
∑n−1
j=1 q

n
jDj , is

�nite because
∑n−1
j=0 q

n
j = 0 and so qno = −

∑n−1
j=1 q

n
j . Therefore, equilibrium condition 2 is satis�ed

when vn − un is su�ciently large.
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Appendix B: Fixing the Number of Groups, m =M/n

In this appendix we examine the case where M and n are varied in such a way that the number of

groups m = M/n is held constant. In particular, we compare the equilibrium conditions in three

cases where m = 3: 1) M = 12 and n = 4; 2) M = 9 and n = 3; and 3) M = 6 and n = 2. Our aim

here is to understand whether variations in the group size n continue to matter for satisfaction of the

equilibrium conditions needed for cooperation to be sustained as a social norm, when the number

of groups is held constant. The following numerical results are obtained holding �xed δ = 0.9.

Equilibrium Condition 1

First we consider equilibrium condition 1 for each of the three cases where M/n = 3:

M = 6 and n = 2: β ≥ 0.773647α+ 0.226353(α+ β);

M = 9 and n = 3: 2β ≥ 0.774597α+ 0.0696314(α+ β) + 0.155771(α+ 2β);

M = 12 and n = 4: 3β ≥ 0.783465α+ 0.030344(α+β) + 0.0546601(α+ 2β) + 0.131531(α+ 3β).

Imposing the normalization condition β = (n − 1)−1, these conditions can be simpli�ed as

follows:

M = 6 and n = 2: α ≤ 0.773647 for β = 1;

M = 9 and n = 3: α ≤ 0.809415 for β = 1/2;

M = 12 and n = 4: α ≤ 0.821913 for β = 1/3.

We observe that when the number of groups m = M/n is �xed (at 3) the results are very similar

to those in the case where the population size M is �xed: equilibrium condition 1 is observed to

become less restrictive as the group size n becomes larger. Intuitively, again, this is driven by the

faster contagious process with a larger group size. The extent of the tendency for cooperation to

become more easily sustainable as n increases is smaller than in the case where M is �xed, since in

the latter case the contagious process becomes faster not only due to a larger group size but also

due to there being a smaller number of groups as n increases.

Equilibrium Condition 2

Finally, we consider equilibrium condition 2 for each of the three cases where M/n = 3:

M = 6 and k = n = 2: α ≥ −0.270439α+ 0.270439(α+ β);

M = 9 and k = n = 3: α ≥ −0.219582α+ 0.15486(α+ β) + 0.064722(α+ 2β);

M = 12 and k = n = 4: α ≥ −0.187568α+0.126324(α+β)+0.0512613(α+2β)+0.00998238(α+

3β).

If we further impose our payo� normalization, then we have:

M = 6 and k = n = 2: α ≥ 0.270439 for β = 1;

M = 9 and k = n = 3: α ≥ 0.142152 for β = 1/2;

M = 12 and k = n = 4: α ≥ 0.086265 for β = 1/3.

As with equilibrium condition 1, the results for equilibrium condition 2 under a �xed ratio for

M/n are similar to those found under a �xed M . Equilibrium condition 2 becomes less restrictive
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with increases in the group size, n.
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Appendix C: Instructions (Treatment n = 6)

[Instructions for the n = 2 treatment are similar]

Overview

This is an experiment in economic decision-making. The Department of Economics has provided

funds for this research. You are guaranteed $7 for showing up and completing this experiment.

During the course of this experiment, you will be called upon to make a series of decisions. The

decisions you make determine your additional earnings for the experiment, beyond the $7 show-up

payment. Your total earnings, including the show-up payment, will be paid to you in cash and in

private at the end of the session. We ask that you not talk with one another and that you silence

any mobile devices for the duration of this experiment.

Speci�cs

In today's experiment, you will play with 11 computerized robots denoted by R1, R2, . . . ,

R11. You and the 11 robots consist of a single community. In this room, we have ____ human

participants. So in total we have ___ communities. The play in each community will not in�uence

other communities in any way.

The experiment consists of a number of �sequences�. Each sequence consists of an inde�nite

number of rounds. At the start of each round of a sequence, you and every robot in your community

will be randomly and anonymously assigned to one of two groups of size 6. All possible divisions

of the 12 community members into two groups of size 6 are equally likely at the start of each new

round. Thus, the composition of your 6 group members is very likely to change from one round to

the next. For example, you may have robots R1, R3, R4, R6, R10 in your group in one round, and

have robots R2, R3, R6, R8, R9 in your group in another round. However, you will not know which

robot is in your group in a given round since the matching is anonymous. Note also that in addition

to the group you are in, there will be a second, 6-member group in your community consisting of

all robot players.

In each round, all members of both 6-member groups for that round must simultaneously choose

between two options: X or Y. Your earnings for the round will be decided by your own choice and

by how many of the other 5 robot members in your group choose X and Y in the round. The same

is true for the robot players in your group and the robot players in the other group. Speci�cally, the

determination of a player's earning (you or the robots) is explained in the payo� table that appears

on your decision screen which is shown in Table 1 on the next page.

In Table 1, the second and third rows show your earnings (in dollars) from choosing option X

or option Y respectively, given the number of the 5 robots in your group who choose option X or

option Y, as indicated by the �rst row.

Example:

Suppose that 3 of the 5 robot group members choose X while 2 choose Y: �3X,2Y�. If you choose

X, your earnings for the round is $0.60 (row two, column four). If you choose Y, your earnings for

the round is $1.10 (row three, column four).
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Figure 4: Payo� Table

Note that you and your robot group members all face the same payo� table as shown in Table

1. This payo� table not only shows �Your earnings� but it also shows how �Others' earnings� are

a�ected by your choice and the choices of others. To see this, suppose again that 3 of the others

choose X and 2 of the others choose Y: �3X,2Y�. In this case, if you choose X, then the earnings

for the round for the 3 other group members who (like you) choose X is $0.60, and the earnings

for the round for the 2 other group members who choose Y is $1.30. If, in this same scenario (3

others choose X and 2 others choose Y: �3X,2Y�), you instead choose Y, then the earnings for the

round for the 3 other group members who choose X is $0.40, and the earnings for the round for the

2 other group members who (like you) choose Y is $1.10.

Robot Rules

The robots are programmed to make their choices according to the following rules:

- choose X in the �rst round of each new sequence;

- if, during the current sequence, any of a robot's group members, including you or any other

robot players have chosen Y in any prior round of that sequence, then the robot will switch to

choosing Y in all remaining rounds of the sequence.

- otherwise, the robot will continue to choose X.

Notice that the choice of each robot may be di�erent in each round if their experience in previous

rounds of the sequence is di�erent. As a human participant, you are always free to choose X or Y.

Notice further that no robot will start choosing Y unless the human subject in their community has

previously chosen Y in a round of the current sequence.
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When you make your choice in each round, you will be reminded of the results in all previous

rounds of the current sequence. You will be shown your own choice, the number of your robot group

members who chose X, the number of your robot group members who chose Y, your earnings for the

round and your cumulative earnings for the current sequence of rounds. To complete your choice in

each round, simply click on the radio button next to option X or Y (as shown at the bottom of Table

1) and then click the red Submit button. You can change your mind anytime prior to clicking the

Submit button. After you have clicked the red Submit button, the computer program will record

your choice and the choices made by your robot group members and determine your earnings for the

round. Then the results of the round will appear on your computer screens. You will be reminded

of your own choice and will be informed about how many of your robot group members have chosen

X or Y, as well as the payo�s that you have earned for the round. Please record the results of

the round on your RECORD SHEET under the appropriate headings. Immediately after you have

received this information on choices and payo�s for the round, a random number from 1 to 100 will

be drawn by the computer to determine whether the sequence continues or not. If a number from

1 to 75 is chosen, the sequence will continue with another round. If a number from 76 to 100 is

chosen, the sequence ends. Therefore, after each round there is 75% chance that the sequence will

continue with another round and a 25% chance that the sequence will end. Suppose that a number

less than or equal to 75 has appeared. Then you will play the same game as in the previous round,

but you and your robot community members will be randomly and anonymously assigned to two

new groups of size 6. The robots always play according to the robot rules stated above, even in

the all-robot group. You only see the outcome of your own group's decisions each round. After you

have made your decision for the new round and learned the outcome, record the results and your

earnings for the round on your record sheet under the appropriate headings. Then another random

number will be drawn to decide whether the sequence continues for another round. If a number

greater than 75 appears, then the sequence ends. Depending on the time available, a new sequence

may be played. The new sequence will again consist of an inde�nite number of rounds of play of the

same game as described above. Recall that, according to the robot rules, all robots play X in the

�rst round of each new sequence, and will continue doing so until they experience play of Y by one

or more players in their group, at which point they will switch over to playing Y for the duration

of that sequence.

Earnings

Following completion of the last sequence, the experimenter will randomly draw three sequences

to determine your earnings from today's experiment. Your earnings from each of the three chose

sequences will be the accumulated earnings from all the rounds played in those three sequences.

Since you don't know which three sequences will be chosen for payment you will want to do your

best in every round of every sequence. At the end of the session you will be shown your total

earnings on your computer screen. This total amount will include your $7 show-up payment. Please

write down the total amount you are owed on your receipt.Then you will be paid your earnings in

cash and in private.
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Final Comments

First, do not discuss your decisions or your results with anyone at any time during the experi-

ment.

Second, each of you will play with 11 robots in today's session. Your play will not a�ect the

earnings of any other human subject participant.

Third, your identity and the identity of your robot group members are never revealed.

Fourth, at the end of every round of a sequence, there is 75% chance that the sequence will

continue with another round and a 25% chance that the sequence will end.

Fifth, remember that at the start of each round of a sequence you and your 11 robot community

members are randomly and anonymously assigned to one of two groups of size 6, so the composition

of your robot group members is very likely to change from one round to the next.

Sixth, the robots always play according to the rules stated in the instructions. Speci�cally, they

always start out a sequence playing X and only switch to playing Y if a member of their group has

chosen to play Y in any prior round of the sequence; otherwise they continue to play X.

Finally, we will randomly draw three sequences at the end of today's session to determine your

earnings. Your total earnings will be the sum of your accumulated earnings from the three chosen

sequences.

Questions?

Now is the time for questions. Does anyone have any questions?
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