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Abstract 
 
We use process-based modeling techniques to characterize the temporal features of 
natural biologically controlled surface CO2 fluxes and the relationships between the 
assimilation and respiration fluxes. Based on these analyses, we develop a signal-
enhancing technique that combines a novel time-window splitting scheme, a simple 
median filtering, and an appropriate scaling method to detect potential signals of leakage 
of CO2 from geologic carbon sequestration sites from within datasets of net near-surface 
CO2 flux measurements. The technique can be directly applied to measured data and does 
not require subjective gap filling or data-smoothing preprocessing. Preliminary 
application of the new method to flux measurements from a CO2 shallow-release 
experiment appears promising for detecting a leakage signal relative to background 
variability. The leakage index of 2 was found to span the range of biological variability 
for various ecosystems as determined by observing CO2 flux data at various control sites 
for a number of years.  
 
Keywords: Geologic carbon sequestration; monitoring, eddy covariance; CO2 flux; 
Leakage detection; Signal filtering;
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1. Introduction 
Geologic carbon sequestration (GCS) is being widely investigated as one part of a 
portfolio of approaches needed to reduce greenhouse gas emissions from fossil-fuel 
energy production (e.g., Pacala and Socolow, 2004). Among the areas of active research 
is monitoring to ensure the overall effectiveness and safety of GCS (Benson, 2006). 
Monitoring begins with the injection process, but extends to include monitoring carbon 
dioxide (CO2) migration within the reservoir, and may include monitoring of unexpected 
leakage of CO2 up wells and conductive faults, and possibly into the near-surface 
environment. The challenge and expense of subsurface geophysical monitoring motivate 
development of near-surface monitoring approaches to assure the public and regulators 
that CO2 is not seeping out of the ground (e.g., Oldenburg et al., 2003). The challenge in 
near-surface detection of CO2 leakage from GCS sites is to discern a leakage signal from 
within natural background CO2 variability, especially when the signal is of very small 
magnitude and/or spatial extent (e.g., Lewicki et al., 2005).  Figure 1 shows an example 
of a raw net CO2 flux time series measured using the eddy covariance (EC) method over 
a time frame during which two controlled shallow releases of CO2 were carried out in the 
shallow subsurface.  Surface CO2 flux signals from these releases are difficult to detect 
due to the high variability of background ecosystem fluxes.   

 
Figure 1. Time series of raw net CO2 fluxes measured by the EC method during summer of 2007. 
Gray areas indicate the periods over which CO2 was released from a shallow subsurface 
horizontal well (experiment details are given in Lewicki et al. (2007; 2009). 
 
The objective of this study is to develop a signal-enhancing technique to detect a CO2 
leakage signal from net near-surface CO2 flux measurements, such as those made using 
the eddy covariance (EC) approach. Based on an analysis of the diurnal variations in the 
biological flux, we developed a new technique for detecting leakage events from the time 
series of measured net CO2 flux data. The new approach consists of a novel time-window 
splitting scheme, a simple median filtering, and an appropriate scaling method.  
 
 
2. Methods 
 
 2.1 Release experiments and observation data 
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Shallow CO2 release experiments were conducted by the ZERT (Zero Emissions 
Research and Technology) project team at Montana State University (MSU), Montana 
Agricultural Experiment Research Center, Bozeman, MT (45o39'N, 111o04'W). The MSU 
study site was an approximately 0.12 km2, nearly flat field, with vegetation composed 
primarily of prairie grasses, alfalfa, and Canadian thistle (Lewicki et al., 2007; 2009). In 
July and August 2007, two controlled releases of CO2 were carried out at different rates 
from a shallow (~2 m deep) horizontal well of length 70 m, with six packed-off injection 
zones to simulate CO2 leakage from the subsurface. Release 1 lasted for 10 days at 0.1 t 
CO2 d

-1 whereas Release 2 was for 7 days at 0.3 t CO2 d
-1. An EC station was deployed in 

the field from 8 June 2006 to 4 September 2006, and from 28 May 2007 to 4 September 
2007, to measure the average half-hour net CO2 flux across the atmosphere-canopy 
interface. Additional information about the site, the release experiments, modeling, and 
flux measurements is available in (Lewicki et al., 2007; 2009; Oldenburg et al., 2009) and 
will not be repeated here. Note that the raw measured fluxes were fed to the filter 
developed in this study without any pre-filtering or gap filling. This is because the 
objective of this study is to detect the leakage signals, which are basically “abnormal 
events” or outliers, whereas the most  existing gap filling or filtering techniques are 
usually based on some type of assumption of “normality” (e.g., reflecting average 
behaviors of the ecosystem) and tend to remove the outliers.  The filtering methods based 
on friction velocity and wind direction as conducted by Lewicki et al. (2009) were not 
used in this study either, because (1) the time-windows and scaling approaches used in 
the filer developed in this study tend to cancel the effects of the underestimation of flux 
caused by low turbulent conditions during nighttime and (2) the leakage location relative 
to EC station is usually unknown priori.   
 
To test the proposed CO2 leakage detection technique, we also used several data sets of 
natural CO2 flux from other sites as control sites (Table 1). Gap percentage is the fraction 
(in percent) of data missing from the complete time series and occurs randomly within 
the “Duration” (period of the time series).  

 
Table 1. Data sets of the observed CO2 flux (EC flux) 

Data set Location EcoType Duration Gap 
(%) 

Measurement 
Interval (hr) 

Source 

MSU2007 45.650N/111.067
W 

Grassland 5/28/2007-
9/4/2007 

14.89 0.5 Lewicki et al. 
2007 

MSU2006 45.650N/111.067
W 

Grassland 6/8/2006-
9/4/2006 

17.03 0.5 Lewicki et al. 
2007 

Fermi-
Agri 

41.859N/88.223W Corn/soybe
an rotation 

7/11/2005-
9/30/2007 

15.42 0.5 public.ornl.gov/
ameriflux/ 

Santarem 
(km67) 

2.857S/54.959W Tropical 
forest 

1/3/2002-
1/25/2006 

25.50 1.0 Saleska et al 
2003 

Sgp2002 36.605N/97.489W Crop (dry 
year) 

1/1/2002-
6/6/2002 

11.88 0.5 Fischer et al. 
2007 

Sgp2003 36.605N/97.489W Crop (wet 
year) 

1/1/2003-
/12/31/2003 

11.99 0.5 Fischer et al. 
2007 

 
 
 2.2 Theory 
 

 4



In this section, we will begin with an analysis of biological-flux temporal patterns to find 
an effective time-domain filtering method by which to discern leakage signals from the 
time series of measured net CO2 flux data. 
 
The biological CO2 flux, b(t), is the net effect of two processes: (1) the uptake caused by 
plant photosynthesis and (2) the emission caused by the respiration of plant and soil, 
which can be mathematically described as 

 
          tptrtrtb sp      (1) 

where, rp, rs, and p are plant respiration, soil respiration, and plant photosynthesis, 
respectively. Conceptually, both the respiration and the photosynthesis can be seen as the 
response of the given ecosystem to the input of meteorological driving forces. Therefore, 
their temporal variations, although very complex, are basically controlled by two kinds of 
variables: (1) external driving forces (e.g., solar radiation, precipitation, air temperature, 
irrigation, and fertilization) and (2) properties of the ecosystem (e.g., biomass, soil 
temperature and wetness, plant leaf index). Among these controlling variables, solar 
radiation is the most fundamental one, especially for temporal variation patterns in the 
biological CO2 flux. As a result, the most important temporal variation patterns are the 
diurnal (due to Earth’s rotation) and seasonal (due to Earth’s orbiting) variations. The 
quantitative relationships between CO2 flux and the controlling variables are very 
complicated, and often nonlinear and interrelated. As a result, accurately predicting the 
net CO2 flux of a particular ecosystem is not an easy task, and often requires intensive 
site characterization and model calibration. However, for our purpose of finding an 
effective CO2 surface leakage detection method, understanding the general patterns of the 
CO2 flux under natural conditions (i.e., no leakage) using numerical models of the 
ecosystem is still feasible. Figure 2 shows the simulated photosynthesis, respiration, and 
net CO2 flux from a grassland over a one-year period using CLMT2 (Pan et al., 2008; 
Pruess et al., 1999) with observed meteorological driving-force data as input. Both 
respiration and photosynthesis fluxes seasonally increase in the summer and during the 
day (see the smaller inserted figure). The net CO2 flux shows strong diurnal oscillation 
besides the seasonal variations, while photosynthesis flux becomes zero during the night.  

 
 

Figure 2. Simulated natural CO2 fluxes of a grassland 
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Because the diurnal oscillation is so strong, the first-order approach for describing the 
temporal features of the net CO2 flux is to calculate the daily mean flux and standard 
deviation (STD) of the net flux. Figure 3 shows the mean and STD in the net flux data of 
the same simulation shown in Figure 2. Both the mean and the STD show strong seasonal 
variations (Figure 3). The daily mean flux reaches the smallest value in summer because 
of strong photosynthesis, whereas the daily STD reaches the maximum at the same time. 
Furthermore, many peaks of both the mean and STD occur during the growing season, 
possibly because of a transient weather or climate changes (e.g., a cold front, a storm, a 
drought) or some other events. In a managed ecosystem, the situation would be more 
complicated, because of management activity such as tillage, irrigation, fertilizer 
application, harvest, etc.  

 
 

 
Figure 3. Daily mean and STD of the flux data in Figure 2 
 

The challenge in distinguishing a CO2 leakage signal from the natural signals of the 
biological fluxes is that the surface leakage from GCS sites could also be subject to 
temporal variations, because of the dynamics of subsurface processes, which could be 
difficult to discern from the peaks of the mean biological flux (as shown in Figure 3). 
However, no matter how leakage occurs—as prolonged smooth flux or individual 
eruption events—the factors controlling the subsurface processes are fundamentally 
different from those factors controlling the biological CO2 fluxes. Specifically, the 
biological flux is sensitive to factors that affect plant growth and microbial activity (e.g., 
sunlight, irrigation, fertilization, and harvest), whereas the leakage flux is a result of 
subsurface flow processes and is therefore insensitive to those variables. In particular, the 
leakage flux is insensitive to solar radiation, so that temporal variations in solar radiation 
(e.g., the strong diurnal and seasonal cycling due to visual movement of sun) will not 
influence leakage as they do the biological flux. As a result, the leakage flux, unlike the 
biological flux, is not in general subject to such strong diurnal and seasonal oscillations. 
Furthermore, an important feature of the biological flux is that a decrease in the mean 
flux is almost always accompanied by an increase in the STD (Figure 3). This is mainly 
because the amplitude of the diurnal oscillation is dominated by photosynthesis, the CO2 
uptake process. Although both respiration and photosynthesis contribute to the strong 
diurnal oscillation of CO2 flux, their detailed diurnal-variation structures are quite 
different. Figure 4 shows the simulated photosynthesis flux and respiration flux, the net 
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flux, and the corresponding measured solar radiation (input) for every 30 minutes during 
several typical summer days.  
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Figure 4. Simulated photosynthesis, respiration, and net CO2 flux, as well as the observed solar 

radiation (axis-Y2) during typical summer days using CLMT2. 
 
Clearly, photosynthesis occurs only in the daytime, whereas respiration takes place all the 
time. Even though respiration is generally higher during daytime than during nighttime, 
photosynthesis often dominates over respiration during the growing season and is able to 
pull the net flux down into negative territory during most of the daytime. As a result, the 
larger the photosynthesis flux, the smaller the daily mean flux and the larger the daily 
STD (Figure 3). This holds for seasonal variations, too (Figure 3). However, no matter 
how the mean and the STD vary over time, the photosynthesis flux and the respiration 
flux during the growing season usually reach a balance (i.e., the net flux reaches zero) at 
some point within two time windows: (1) the early morning and (2) the late afternoon 
(Figure 4). Because both photosynthesis and respiration are physiological processes and 
functions of the ecosystem, they have similar responses to the most-controlling variables 
(e.g., temperature, soil moisture, soil nutrition, and biomass). In other words, a higher 
photosynthesis flux is often accompanied by a higher respiration flux. As a result, the net 
flux within those two time windows (the early morning and the late afternoon) would be 
much less variable than either the nighttime flux (dominated by respiration) or the 
noontime flux (dominated by photosynthesis). On the other hand, leakage could lift the 
daily mean flux, but would not alter the daily STD (at least not decreasing the STD when 
higher CO2 concentration might favor photosynthesis).  
 
In terms of the probability distribution for the net CO2 flux data within a given time 
window, a leakage event could shift its center, but would not alter its shape. To make the 
point clear, we define four time windows for each day (Figure 5). While the first three 
windows are straightforward, the fourth window, W3, consists of two subwindows (early 
morning and late afternoon), each one-quarter of a day in length. The time of solar noon 
is used to label a given day so that each day always starts with a nighttime period. As 
shown in Figure 5, the net flux typically reaches zero within the W3 window (twice each 
day) as a result of balance between respiration and photosynthesis. Our main hypothesis 
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is that a leakage event would lift the W3 flux, but not reduce the magnitude of the diurnal 
variations. This is the basis of the proposed new technique. 

 
Figure 5. Sketch of the four time windows used for data filtering and their relationships 
with the typical net flux  
 
 2.3 Implementation 
The time series of the measured net CO2 flux data often contain significant noise. 
Although a number of standard noise-filtering methods are available in the literature 
(Press et al., 1992), missing data is a common obstacle to filtering. Numerous data-filling 
methods have been used to fill the data gaps (Falge et al., 2001). However, all filling 
methods inevitably introduce some assumptions regarding the time series, either its 
temporal features (e.g., filled with the mean diurnal variations) or its dependence upon 
other environmental variables (e.g., look-up table method). Therefore, gap-filling is not 
possible for our purpose, for at least two reasons: First, our objective is to detect possible 
leakage events from the time series of the measurements, i.e., to detect the “outliers.” 
Therefore, any estimated data from the “average” behaviors are useless or even 
misleading. The second reason is that it is impossible to include unknown leakage events 
in a look-up table that often describes “normal” relationships between the biological flux 
and the external driving forces and/or the status of the ecosystem. To solve the problems 
of noise and missing data together, we use the median and the mean absolute deviation as 
a robust filtering method to extract the information (i.e., the center of the probability 
distribution) from the measured net CO2 flux data, which often have gaps.  
 
The median of a distribution, xmed, can be calculated from xj for j = 1, …, N depending on 
whether N is even or odd (Press et al., 1992): 
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The four median values of CO2 flux, m0, m1, m2, and m3, are calculated for the data within 
the four windows, W0, W1, W2, and W3, respectively (Figure 5), following Equation (2) 
where N is the number of available flux data values (x) (i.e., excluding the missing data 
points). If 60% or more of the data points within either W1 (daytime) or W2 (nighttime) 
are missing, the value of m3 is always set to be zero, so that no unreliable leakage 
indications will occur. 
 
To estimate the magnitude of the diurnal variation, we calculate the mean absolute 
deviation, D0, defined by 

 



N

j
j mx

N
D

1
00

1
        (3) 

 
Note that D0 is needed for each day to calculate the growth factor (discussed later), even 
though the data gap is too big to estimate m3 for that day. Therefore, two rules are used to 
estimate the value of D0, depending on the availability of data points. The first is set D0 to 
be the value of the previous day if either daytime or nighttime has some data present but 
more than 60% of the data are missing. The second, for the case in which no data exist at 
all for that day, is for D0 to be linearly interpolated between the last D0 before the gap and 
the first D0 after the gap. In both cases, m3 is also set to zero, because the available data 
are considered to be insufficient to have a reliable estimate for that day, as mentioned 
above.  
 
To filter out possible isolated peaks in the given data series due to noise, we define a 
three-point median filter, Medi(x), as follows: 
    11 ,,  iiii xxxMedianxMed       (4) 
 
where the superscript indicates the position of a data in the series.  
 
The leakage index of the ith day, LIi , is defined as a scaled W3 flux as follows: 

   iii fLI ,0max         (5) 
 
where,  and  are the growth and ecosystem factors, respectively, to be described below. 
The W3 flux of the ith day, f i  i, is defined as follows: 
 

 
 










05.0

0

2

3

ii

ii
i

ifmMed

ifmMed
f




  (6) 

 
The growth factor of the ith day, i, is defined as follows: 
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Note in Equation (7) that the ith and the next nighttime medians envelop the ith daytime 
median. Therefore, the numerator actually measures how deep the net flux can be drawn 
down during daytime by photosynthesis. If i is less than or equal to zero, the 
photosynthesis is extremely weak and the flux at daytime is higher than that at nighttime 
(note that the denominator would never be negative), because the dominant respiration 
processes usually emit more CO2 responding to the higher temperature during daytime. If 
no or very weak photosynthesis were the case, a higher median within window W3 would 
not necessarily be related to any possible leakage flux, because of the lack of balance 
between photosynthesis and respiration. Therefore, we propose to use half of the 
nighttime median (0.5 m2) as an estimate of m3 (as if there were photosynthesis). Such 
situations could occur when all the plants are dead, because of either natural reasons or 
human activities. Furthermore, the denominator of Equation (7), the average diurnal 
variations of the previous two weeks, can be seen as an estimate of the potential 
respiration capacity on the current day. As a result, the growth factor is actually the 
seasonally adjusted strength of the photosynthesis. The larger the growth factor, the 
higher the probability that a larger W3 flux will indicate a leakage event. Therefore, we 
use it as a scaling factor to represent the adjustments caused by changes in plant growth 
status including seasonal or non-seasonal changes (e.g., harvest). In the case of no 
photosynthesis (i.e., negative ),  no longer reflects the strength of photosynthesis and 
the W3 flux is no longer the median flux within the window W3. Therefore, the factor 
loses its original meaning, and we limit its magnitude to less than 1. This ad hoc approach 
to deal with the situations of no photosynthesis, although possibly not be the best solution 
and subject to further investigation, will be workable for most cases because the temporal 
variability of CO2 flux at sites without vegetation or when not in the growing season is 
always small. Therefore, detection of a leakage event for those situations is relatively 
easy.   
 
As discussed above, the W3 flux actually reflects the relative strength of the respiration 
flux over the photosynthesis flux under natural conditions. Obviously, it varies for 
different ecosystems. For example, it would be very different for a mature tropical forest 
than it would be for a growing temperate cropland, because of very different temperature-
moisture patterns and growing stages. To make the leakage index comparable between 
different ecosystems, we introduce the ecosystem factor, , analogous to the soil 
respiration rate (Qi et al., 2002): 
 

 mTD

C

069.0expmax

         (8) 
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where C is a constant that can be seen as an indicator of the respiration strength of the 
reference ecosystem (we use 2010 10  QC , equivalent to a site with Dmax = 10 and Tm 

= 10 ), and Dmax is the maximum D0 (diurnal variation) of a given ecosystem over a 
period that includes a growing season. The coefficient (0.069) is obtained as ln(Q10)/10 
for Q10 = 2 (Fisher et al., 2007). Tm is the mean annual air temperature of the given 
ecosystem. Here, Dmax is used to measure the maximum diurnal variability of the given 
ecosystem (which will not be sensitive to any leakage events, but will reflect the overall 
biological capability of the ecosystem). The term representing mean annual air 
temperature (Tm) is used to represent an estimate of the strength of the natural (base) 
respiration of a given ecosystem. The procedure for processing the data is presented 
graphically in Figure 6.  
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W2

W1

W3

Data

m3

m1

D0

f




LIm2

6

7

5



Tm

8

 
 
 
Figure 6. Flow chart of the data processing through four time windows: W0 (entire day), W1 
(daytime), W2 (nighttime), and W3 (the first and the last quarter of the daytime), to the leakage 
index (LI). The numbers (6, 7, 8, and 9) indicate the corresponding equation numbers.  
 
As can be seen, we must determine the sunrise and sunset times for each day. Although 
the measured photosynthetically active radiation (PAR) data are available at many sites, 
the noise in those data will make it difficult to accurately determine the times of sunrise 
and sunset when PAR values should be close to zero. To avoid the trouble caused by 
noise on the measured PAR data, the times of sunrise and sunset for each day at a 
particular site (given the longitude and latitude) are calculated as the roots of the equation 
of zero solar zenith angle using the bisection method: 
 

0coscoscossinsincos  h     (9) 
 

 11



where h is the solar hour angle,  is the solar declination angle, and  is the latitude of the 
location. The calculations of the solar zenith angles are based on Meeus’ algorithms 
(1998). A half hour is added to the day length of each day (evenly distributed) to reflect 
the atmospheric refraction effects. The calculated sunrise and sunset times were shifted 
by a small constant based on visual comparison with the locally measured PAR curves.  

   
3. Results and Discussion 
 
The net CO2 flux from the area of the ZERT shallow-release facility (consisting of prairie 
grasses, alfalfa, and Canadian thistle) was measured every 30 minutes during the 
summers of 2006 and 2007, respectively, using the EC method (Lewicki et al., 2009). 
Approximately 17% and 15% of the data points were missing in the raw CO2 flux data 
sets of 2006 and 2007 (excluding the gap between Days 182–186), respectively (Figure 
7).  

 
 
Figure 7. Measured net CO2 fluxes during summer seasons of 2006 (a) and 2007 (b). Gray areas 
indicate the periods when CO2 was released from the subsurface shallow horizontal well. 
 
As shown in Figure 7, besides natural variations, some special events happened during 
the observation periods. Specifically, the field was mowed in both 2006 (at Day 193) and 
2007 (Day 173), and two shallow subsurface CO2 release experiments were carried out 
during Days 190–199 and 215–222 in 2007. The variations in flux are quite large, making 
it difficult to discern the leakage signals from the other signals in the plots. This is 
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especially the case for the first release, during which the mean flux decreased with time, 
mainly because of the increase in photosynthesis as a result of the regrowth of the mowed 
grasses.   
 
For comparison purposes, we plot the (EC-) measured net CO2 flux data from three 
different ecosystems (Figure 8). At the Femi-Agri site, the crop is soybean (2005 or 
2007) or corn (2006) growing in summer. Besides diurnal variations, the seasonal 
variation in the net flux is obvious. During summer, both nighttime respiration flux and 
daytime photosynthesis flux reach their peak values (Figure 8a). For winter crops at the 
SGP site, the peak photosynthesis occurs during April–May. The year 2002 is relative 
dry, whereas 2003 is wet in terms of precipitation (Fischer et al., 2007). Note that 2002 
only has about 150 days of EC data available because of the monitoring schedule. In 
contrast to the temperate farmlands, the mature tropical forest at Santarem shows unique 
behavior for the temporal patterns of net CO2 flux. First, its nighttime positive flux and 
daytime negative flux are very similar. Second, the seasonal and interannual variations 
are much less than those of the temperate farmlands. The latter are often subject to both 
human management (e.g., irrigation, fertilization, or even rotation with different crops) 
and the stronger seasonal changes of climate. This diversity of ecosystems and conditions 
provides a good control case for the proposed detection method.  

 
Figure 8. Measured net CO2 flux data at different sites over multiple years: (a) the Femi-Agri site 
is a managed farmland with Soybean/corn rotation; (b) and (c) SGP (2002-dry year and 2003-wet 
year, respectively) is also a managed farmland but with winter crop only; (d) Santarem is a 
mature tropical forest. 
 
 
In Figure 9 we present the leakage index curves calculated by the method outlined in 
Figure 6 for the MSU site for 2006 and 2007 observations, respectively. During most of 
the growing seasons, the leakage index is very close to zero, because the median CO2 
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flux within the W3 window is close to or below zero. However, two peaks corresponding 
to the two shallow release events in 2007 very clearly stand out above the other small 
peaks. Among those small peaks, two are known to be caused by the mowing events 
(Day 173 in 2007 and Day 193 in 2006). The negative peak during 2006 reflects the 
period during which daytime flux is larger than nighttime flux, because of the extremely 
low photosynthesis activity after mowing. Some other peaks also exist, possibly 
corresponding to short-term meteorological variations or unknown farm-management 
activities. However, those non-leakage peaks are usually small or isolated (i.e., a single 
day peak). Their magnitudes are usually less than two. If we smooth the leakage index 
with a three-point moving average (i.e., a 3-day moving average), all non-leakage peaks 
are within the range of 2 of the leakage index, whereas the leakage peaks rise to 8. 
Therefore, LI>2 can be used as a criterion to indicate that a leakage event has occurred.  

 
Figure 9. The Leakage Index for 2006 (blue, no shallow release) and 2007 (red, with two 
shallow-release events marked by gray areas). The lines are the three-point moving average 
curves. 
 
To test the proposed filtering approach on the data observed over multiple seasons under 
various ecological and geographical conditions, but without known leakage, we plot the 
calculated leakage index and its three-point moving averages on Figure 10. At temperate 
sites, the leakage index is higher in summer no matter whether there is significant crop 
growth (e.g., Femi-Agri, Figure 10a) or not (e.g., SGP site, Figure 10b and c). This may 
be because the respiration of the ecosystem is favored at higher summer temperature, so 
as to elevate the median CO2 flux within the W3 window (early morning and late 
afternoon). Although the crop yield at the SGP site was significantly affected by the 
amount of the precipitation in the growing season (Fischer et al., 2007), the leakage index 
seems not to be sensitive to such interannual variations (Figure 10b and 9c; the crop 
growth ended by about the end of May). The peak after Day 150 most likely results from 
the effects of the harvesting of the crop, very similar to the situation from mowing that 
we see at the MSU site (Figure 9). Because there are no data during most of the summer 
in 2002 at the SGP site, we cannot clearly see the effect of such yearly precipitation 
variation on the leakage index behavior in the summer season. However, the results at the 
Femi-Agri site show that the leakage index is quite stable between neighboring years, 
even though the corn year (see the middle of Figures 9a and 7a) has larger diurnal 
variations and usually accumulate more biomass than the soybean year. This is key to a 
leakage index effectively detecting any possible leakage without false alarm, due to a 
change in the ecosystem owing to natural or management events. At the mature tropical 
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forest site, respiration and photosynthesis are more balanced than in the farmland. As a 
result, the W3 flux is almost always positive year round, and so is the leakage index 
(Figure 10d). As shown in Figure 10d, the interannual variation in leakage index at 
Santarem is at least no less than the seasonal variation. In all cases, the leakage index is 
within the range of 2, except for a few isolated points (Figure 10).  

 
 
Figure 10. The leakage index (dots) and its three-point moving average (line) at four (non-leaking) 
sites: (a) Femi-Agri (7/11/2005-9/30/2007); (b) SGP2002 (1/1/2002-6/6/2002); (c) SGP2003 
(1/1/2003-12/31/2003); and (d) Santrarem (1/3/2002-1/26/2006). 
 
A three-point moving average can remove all of these isolated peaks and present a clear 
picture of leakage events in terms of the leakage index (Figure 11). Typically, the leakage 
index peaks resulting from natural driving-force variations or land management activities 
at farmland sites (i.e., MSU, Femi-Agri, and SGP) usually occur from June to September 
(Days 150–270), whereas the peaks at tropical forest sites (Santarem) occur year around, 
probably because of much fewer seasonal variations in climate. The fact that all the 
nonleakage peaks are within the range of 2 implies that  is an effective scaling factor, 
one that makes possible the comparison of data from different geographic and ecological 
systems. The maximum diurnal variation and the mean annual temperature, both of which 
are insensitive to leakage events, are the best choices for characterizing varied 
ecosystems in terms of detecting abnormal CO2 flux due to leakage events.  
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Figure 11. Comparison of the leakage index (the three-point moving average) with Julian 
days (the first day of each year is Day 1) among all sites. The two peaks at MSU2007 
(red line) corresponding to two release events are very clear. 
 
Although comparison between different ecosystems is valuable for understanding the 
patterns of natural CO2 flux, the interannual comparison of the leakage index at the same 
site is probably more critical to the goal of discerning leakage signal from the background 
biological signals in the time series of the net CO2 flux. At the MSU site, two leakage 
peaks are much higher than the other peaks (e.g., those caused by mowing), in the 
summers of 2006 and 2007 (Figure 9), which make it very easy to tell when the leakage 
starts and ends. As shown in Figure 10a (Femi-Agri site), the crop type does not 
significantly affect the leakage index peaks (corn in 2006 summer and soybean in 2007 
summer), even though the photosynthesis of corn is much stronger than that of soybeans 
in terms of CO2 assimilation (Figure 9a). Furthermore, the growth of winter crop at the 
SGP site in both 2002 (a dry year) and 2003 (a wet year) seems not to contribute to any 
leakage index peaks until the crop was harvested in early summer. This could result from 
the relatively low temperature in winter and spring causing low respiration flux compared 
to the photosynthesis flux, so that the balance between photosynthesis and respiration 
leans toward photosynthesis within the W3 window. As a result, the corresponding W3 
flux and (in turn) the leakage index are often close to zero. These results confirm that the 
proposed filtering method is quite stable with respect to seasonal, ecological, and 
geographical variations.  
 
4. Conclusions 
A new method for detecting potential surface leakage signals of CO2 from GCS sites 
from naturally variable flux data in the near-surface environment has been developed. 
The new method utilizes the unique temporal features in the biological CO2 flux caused 
by the competition between photosynthesis and respiration processes. Specifically, the 
median flux within the W3 time window reflects the natural balance and is found to be an 
effective and stable indicator of any abnormal flux of the given ecosystem. The different 
effects on the magnitude of diurnal variations between a leakage event and the biological 
events (e.g., harvest) offer an excellent opportunity for identifying leakage events from 
other abnormal CO2 flux events. A scaling factor consisting of the maximum diurnal 
variation and the mean annual temperature of a given site, analogous to soil respiration 
rate, makes it possible to compare the results between different ecological and 
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geographical sites. Exceeding the leakage index range of  2 can be used as a criterion 
for determining whether or not a leakage event occurs.  
 
The new method consists of novel time-window splitting, a simple median filtering, and 
an appropriate scaling with the ecosystem and plant-growth factors. It can be directly 
applied to the measured data and does not need any subjective gap filling or data-
smoothing preprocessing.  
 
Application of the new method to the EC measured data from the ZERT shallow-release 
tests of 2006 (no CO2 release events) and 2007 (two CO2 release events) shows that the 
proposed method can effectively detect leakage signals, even when the daily mean flux 
was decreasing (e.g., during the first release experiment). The results from applications to 
the data from three very different control sites (from managed farmlands to natural 
tropical forest) show that the new method accommodates natural peaks without 
producing false positive leakage peaks. The leakage index is quite stable with respect to 
handling seasonal, interannual, and vegetation variations. 
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