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Abstract

Testing students as they study a set of facts is known to enhance
their learning (Roediger & Karpicke, 2006). Testing also pro-
vides tutoring software with potentially valuable information
regarding the extent to which a student has mastered study ma-
terial. This information, consisting of recall accuracies and re-
sponse latencies, can in principle be used by tutoring software
to provide students with individualized instruction by allocat-
ing a student’s time to the facts whose further study it predicts
would provide greatest benefit. In this paper, we propose and
evaluate several algorithms that tackle the benefit-prediction
aspect of this goal. Each algorithm is tasked with calculat-
ing the likelihood a student will recall facts in the future given
recall accuracy and response latencies observed in the past.
The disparate algorithms we tried, which range from logis-
tic regression to a Bayesian extension of the ACT-R declara-
tive memory module, proved to all be roughly equivalent in
their predictive power. Our modeling work demonstrates that,
although response latency is predictive of future test perfor-
mance, it yields no predictive power beyond that which is held
in response accuracy.
Keywords: intelligent tutoring, ACT-R, Bayesian inference,
fact learning

Introduction
An effective way to teach facts is to test students while they
are studying (Roediger & Karpicke, 2006). For example, if
a student is learning the meanings of foreign words, an ap-
propriately designed tutoring system would display a foreign
word, ask the student to guess the English translation, and
then provide the correct answer. In this work, we consider
the case where students undergo several rounds of this type
of study. By convention, we refer to the group of rounds as a
study session. At the end of a study session, students have had
several encounters with each item being studied. In addition
to promoting robust learning, testing students during study
provides valuable information that can in principle be used to
infer a student’s current and future state of memory for the
material. Through the use of a student’s performance during
study to predict recall at a subsequent test, informed deci-
sions can be made about the degree to which individual facts
would benefit from further study. In this paper, we explore

algorithms to predict a student’s future recall performance
on specific facts using both the accuracy of the student’s re-
sponses during study, and their response latencies—the time
it took to produce the responses. In principle, other informa-
tion is available as well, such as the nature of errors made and
the student’s willingness to guess a response. However, we
restrict ourselves to accuracy and latency data because such
data are independent of the domain and the study question
format. Thus, we expect that algorithms that base their pre-
dictions on accuracy and latency data will be applicable to
many domains.

Predicting future recall accuracy from observations dur-
ing study can be posed as a machine learning problem.
Given a group of students for whom we have made obser-
vations, we divide the students into “training” and “test”
groups. The training group is used to build predictive mod-
els whose performance is later evaluated using the test group.
We developed several predictive models and describe them
later in this paper. Of particular interest is a method we
call Bayesian ACT-R (BACT-R). It is based on the declar-
ative memory module of the ACT-R cognitive architecture
(Anderson, Byrne, Douglass, Lebiere, & Qin, 2004). The
module has equations that interrelate response latency dur-
ing study, accuracy during study, the time periods separating
study sessions from one another and from the test, and the
probability of a correct answer at test. However, these equa-
tions have a large number of free parameters which makes
it challenging to use the model in a truly predictive manner.
BACT-R is a method for using Bayesian techniques to infer a
distribution over the free parameters, which makes it possible
to use the ACT-R equations to predict future recall.

This paper is organized as follows: first, we describe the
experiment from which we obtained accuracy and latency
data for a group of students studying paired associates. Next,
we describe BACT-R and three other models we built to pre-
dict student recall in the experiment. Finally, we evaluate and
discuss the performance of the algorithms.

2332



Data
Our data are from an unpublished experiment by Pashler,
Mozer, and Wixted (unpublished) in which 56 undergradu-
ates tried to learn the disciplines of 60 relatively obscure No-
bel prize winners. In an initial pass through the material, sub-
jects were shown the names of the prize-winners paired with
their disciplines. Each winner-discipline pair was displayed
for five seconds. For each prize winner’s name, subjects were
given either three or six study opportunities during which they
could guess the discipline. For each guess, they received au-
ditory feedback that signaled whether or not the guess was
correct. If it was incorrect, the correct answer was displayed
on the screen. For these study trials, subjects responded by
pressing one of four keys on a keyboard (the experiment in-
volved only three disciplines, and a fourth key indicated “no
guess”). During study, both the accuracies and latencies of
the subjects’ responses were recorded. Two weeks following
study, subjects were evaluated in a cumulative test over all the
material. The cumulative test was given in the same format
as the study trials.

Approaches to Predicting Recall Performance
In our machine learning approach to predicting student recall
at test, we split subjects into training and test groups. For both
the training and test groups, we gave our algorithms access to
response accuracies and latencies obtained during the study
session. Additionally, we gave the algorithm access to the
response accuracies at the cumulative test session for only the
training group. In this section, we describe four increasingly
complex algorithms designed to learn from the training group
in order to make predictions about the test group.

We use the information from the training subjects to build
a model that we apply to the test subjects to predict the proba-
bility that they will answer correctly when tested. The model
is then evaluated on the test subjects: for each subject s in
the test group and item i being learned, we use the model to
predict the probability that s correctly recalled i, and compare
this prediction to the observed accuracy. In the future, we will
refer to s and i as a “subject-item pair.”

Because all subjects learned the same set of items, it is pos-
sible to use the performance of the training group on a par-
ticular item to inform the predicted performance of the test
group on this item. We chose to avoid methods that do this
because they are restricted to situations where data are avail-
able for a large number of subjects learning the same set of
items. In principle, the methods we explore here might work
even if individuals learned different items chosen from the
same domain.

Percentage Classifier
This was the simplest method we examined: given a subject-
item pair, the predicted probability of a correct answer at test
is the simply the fraction of correct answers given during
study. Unlike the other methods we describe in this section,
the percentage classifier does not use data from the training

Figure 1: The grid used by the histogram classifier for
subject-item pairs that had six study trials. Shading indicates
the fraction of those subject-item pairs in the cell that had a
correct answer at test. In this figure, the number of bins has
been fixed. In practice, it is chosen by cross-validation and is
unique to each test subject.

subjects — the only information came from the subject’s own
responses during study.

Histogram Classifier
For this method, we specified each subject-item pair by two
numbers: the fraction of correct answers during study and the
mean latency of the correct answers. We then formed two
grids, one for the subject-item pairs that had three trials and
another for the pairs that had six. The grids were formed in
the following way: one axis had n numbers, such that each
interval between two successive numbers contained an equal
number of the mean latencies for the training set. n is a pa-
rameter of the model and was chosen by cross-validation. The
other axis contained either four (for the three-session grid) or
seven (for the six-session grid) numbers, such that each inter-
val between two successive numbers contained exactly one
of the possible fractions of correct answers. Each training ex-
ample could then be placed in exactly one of the grid cells.
For each cell, we found the number of training examples that
fell within the cell and how many of these corresponded to
a correct answer at evaluation. This enabled us to find, for
each cell, a fraction correct. Given a test subject-item pair,
we then found which cell it would fall into based on study
performance and predicted that its probability of being cor-
rect at evaluation would be that cell’s fraction correct. Figure
1 shows the grid for the six-trial case. Note that to display the
figure, we had to fix the number of bins. In reality, since this
number was chosen by cross-validation, it would be different
for each test subject. In the grid shown in the figure, if a sub-
ject had a mean RT of 0.5 seconds for their correct answers
and answered all study questions correctly, they would fall in
the upper left hand cell, and have a predicted probability of
future accuracy of about 0.6.
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Logistic Regression
Logistic regression is a powerful prediction technique used in
statistics and machine learning. In its simplest form, logis-
tic regression takes the values of some number of predictor
variables xi (which may be either binary or continuous) cor-
responding to an input and then outputs a prediction of the
probability that the input belongs to one of two classes. This
probability of membership in one of the classes is given by:

f (x1, . . . ,xn) =

[
1+ exp(−β0−

n

∑
i=1

βixi)

]−1

The weights βi are to be learned. β0 is an offset term.
In this application, the predictor variables xi are the laten-

cies and accuracies obtained during study. More specifically,
to predict the probability of a correct response at test for a
subject-item pair with three study trials, we use six predic-
tor variables. Three of these are binary and indicate whether
each of the three answers given during study were correct or
incorrect. The other three variables are the response latencies
for the study answers and are therefore continuous. The pre-
dictor variables are constructed analogously for the six trial
cases. The two classes are “correct answer at test” and “in-
correct answer at test.”

BACT-R
ACT-R is an influential cognitive architecture whose declar-
ative memory module is often used to model recall follow a
series of study sessions (e.g., Pavlik and Anderson (2008)).
ACT-R assumes a separate trace is laid down each time an
item is studied. Each trace decays according to a power law,
t−D, where t is the age of the memory and D is the decay
rate. Following N study episodes, the activation for an item
combines the trace strength of individual study episodes. It is
governed by the equation:

A(t,D,B,c) = log
( N

∑
j=1

t−D
j

)
+B+ ε, ε∼ f (x;c)

where A is activation, B is a base activation level, ε is a noise
term drawn from a logistic distribution with mean zero. That
is, ε has the density function f (x;c) = 1

4c sech2 x
2c , where c is a

free parameter. Recall probability is related to activation by:

P(correct recall |A;τ,c) =
[

1+ exp
(

τ−A
c

)]−1

where τ is a free parameter. According to the model, latency
(RT) is related to activation by:

RT(A,F, f ) = Fe− f A

where F and f are free parameters. In total, there are six
free parameters whose values we must estimate from the data:
D,B,c,τ,F, f . Of these, we assume that c,τ,F, f are to be
chosen for each subject-item pair, while the trace decay D
and base-level activation term B are fixed for each subject.

For each subject-item pair we have a set of study-trial ac-
curacies and latencies, and we can compute the likelihood
of these data for any parameter vector. To do this, we plug
the parameters into the equations to generate predictions for
study trials and then compare these predictions to actual re-
sults of the study trials. More explicitly, we do likelihood-
weighted sampling. For a given test subject, we take nS sam-
ples from prior distributions of the six parameters. For each
item, we compute the likelihood L of each set of parameters
that have been generated. The final prediction of the proba-
bility of a correct answer at test is then:

P̂ =
nS

∑
i=1

P([D,B,c,τ,F, f ]i)
L([D,B,c,τ,F, f ]i)

nS

∑
j=1

L([D,B,c,τ,F, f ] j)

where P̂ is the prediction. The likelihood of a set of param-
eters with respect to a given subject-item pair is given by the
product of its likelihood on each study trial:

L(D,B,c,τ,F, f ) =
ntrials

∏
i=1

li
accli

RT ,

where i runs over study trials, and lacc and lRT denote the
contribution to the likelihood of the accuracy and response
latency. The lacc

li
acc =

{
P(correct recall|Â;τ,c) if response i is accurate
1−P(correct recall|Â;τ,c) otherwise

Here, Â = A(t,D,B,c).

li
RT =

{
1
4c sech2 ε̂

2c if response i is accurate
1 otherwise

where ε̂ = log
(

RTi

RT(Â,F, f )

)
and RTi is the observed latency on

the ith study trial. The intuition is that for a given set of
parameters, we calculate how much noise would be neces-
sary for these parameters to produce the observed latency and
then take the likelihood to be the probability of observing this
noise level. We used 250 samples for likelihood-weighted
sampling. We found that increasing this number did not no-
ticeably improve performance. One implementation detail
should be noted: since the interval between study and test
is so much larger than the interval between study sessions,
we followed Pavlik and Anderson (2008) and compressed the
interval between study and test into what they call “psycho-
logical time” via a small multiplicative factor.

To define priors for the six parameters, we use the fact that
the framework above allows us to find, for each subject, max-
imum likelihood estimates for the parameter values. We do
this for a group of training subjects and compile the results
in a histogram. We then fit the results for each parameter to
a probability distribution which is then that parameter’s prior.
In practice, the optimization routine we used to do the like-
lihood maximization did not converge for all subjects. The
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Figure 2: A set priors used in BACT-R. To set these priors,
we find the maximum likelihood parameter values for each
of the subjects in the training group, compile these estimates
into histograms, and then fit the data for each parameter to a
continuous probability distribution.

subjects for which it failed to converge were left out of the
calculation of the prior. A set of priors, together with the his-
tograms used to define them, are shown in Figure 2. This fig-
ure shows that the histograms were generally sharply peaked.

Results
To evaluate the different methods we tried, we used leave-
one-out cross-validation. Each subject in turn was held out as
a test subject and a prediction for that subject was made by
models trained on all the other subjects. This prediction takes
the form of a probability between zero and one. Because the
data with which we have to compare these predictions are
binary — a subject’s response is either correct or incorrect
— we thresholded the probability so that the predictions also
become binary. After thresholding, the models’ predictions
are either true positive, false positive, true negative, or false
negative. Adjusting the threshold changes the number of pre-
dictions that fall into each of these categories. In Figures 3-8
(to be described shortly), we summarize the threshold manip-
ulation with an ROC curve, which plots the false positive rate
versus the true positive rate for various thresholds. If the ROC
curve falls exactly on the dashed diagonal line in the figures,
then the method achieves results equivalent to chance predic-
tion. In general, the more bowed the ROC curve, the better
the performance of the model.

Comparison of methods
The results obtained by the various methods we tried are
shown in Figure 3. As this figure shows, all the methods
performed almost equally well. In particular, BACT-R did
not outperform other methods we tried. It is interesting to
note that this implies that the order of correct and incorrect
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Figure 3: ROC curves for the methods we tried. A compari-
son shows that all methods perform similarly.

responses, which is information to which BACT-R had ac-
cess and the percentage classifier did not, seems not to have
enabled BACT-R to outperform the percentage classifier. Of
course, this does not necessarily mean that there is no useful
information contained in the order data.

Relative Importance of Latency and Accuracy
Information

We next examined how much information, if any, is contained
in the latency data. Our findings are mixed. On the one hand,
logistic regression and BACT-R performed just as well with
the latency information removed as with it included (see Fig-
ures 4 and 5, respectively). On the other hand, when provided
only with latency information, logistic regression yielded re-
sults significantly better than chance (Figure 4).

We also examined the weights given by logistic regression
to latency and accuracy features. The inputs to logistic re-
gression are normalized so that it is meaningful to compare
the magnitudes of these weights. The mean magnitudes of the
weights for accuracy and latency data are 0.3884 and 0.0751,
respectively. The mean weight for the latencies is consider-
ably smaller than the mean weight for the accuracies; it is not
negligible. Thus, there is information in the latencies, but it
is to a large extent redundant with the information from the
accuracies.

The fact that latency information does not improve the per-
formance of our methods may shed some light on our meth-
ods performing equivalently: no method took advantage of
the latency information; all the information present in the ac-
curacy information reduced to the percentage correct during
study. Therefore, all methods did almost exactly as well as
the percentage classifier.
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Figure 4: ROC curves for logistic regression, when the model
was trained with all available data (“log reg”), only accuracy
data (“log reg acc”), and only latency data (“log reg RT”).
Removing the latency information does not degrade logistic
regression’s performance. However, using only the latency
information gives results that are significantly better than ran-
dom. We conclude that the latencies contain information, but
that this information is redundant with the accuracy informa-
tion, and does not help with classification.

Number of Study Trials
Figure 6 shows the performance of BACT-R when restricted
to only the three- or the six-trial study conditions.

As expected, BACT-R performed better with six trials than
with three, but the difference is not drastic. This is significant
because it rules out the possibility that the BACT-R’s perfor-
mance was being dragged down by the three-session cases.

Another experiment we did involved applying logistic re-
gression to only the first study session. In general, we have
data from either three or six study trials for each subject-item
pair. For this experiment, we used only the first of these.
Apart from this, logistic regression was applied in the same
way as before. The motivation for this experiment was the
hypothesis that even if the accuracy information dominated
the latency information when we used all the trials available,
perhaps it would contribute more if we used only one trial.
In fact, this was what we observed, as is shown in Figure 7,
which indicates that, in the one-trial case, adding the latency
information to the accuracy information gives a substantial
improvement in performance. In addition, we see that it is
possible to get reasonably good predictive performance even
when we use information from only one trial.

Effect of Priors on BACT-R
In order to examine how much information was contained in
the priors we used for BACT-R, we tried replacing the priors
chosen by maximum likelihood with uniform priors having
mean zero and length four, values that were chosen heuristi-
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Figure 5: ROC curves for BACT-R when the method uses
all available data, only the accuracy data, and only latency
data. As with logistic regression (Figure 4), removing laten-
cies does not noticeably hurt the performance of BACT-R.
Using only latencies with BACT-R gives worse performance
than it does with logistic regression.

cally based on Figure 2. As Figure 8 shows, the results were
noticeably worse than the results obtained with the maximum
likelihood priors. This is a validation of the Bayesian ap-
proach, since it shows that the performance of the model was
due, at least in part, to the knowledge contained in the prior
distributions used for the parameters.

Variants
In addition to the methods described above, we tried several
variants. For example, we tried replacing raw latencies with
z-scores and including latencies from incorrect trials. We also
tried assigning greater weight to information from later trials,
since these were closer to the test time. No variant we tried
significantly altered the performance of the models.

Discussion
Testing students as they study facts is known to be better
than just having them reread the facts (Roediger & Karpicke,
2006). Testing has a side benefit: it produces feedback from
the student which potentially could inform an intelligent tu-
toring system about how well the student has learned the
facts. In this work, we described an experiment in which
feedback was collected from students learning to identify the
disciplines of 60 Nobel Prize winners. This feedback took
the form of response accuracy and latency during a study ses-
sion in which each fact was reviewed multiple times. Using
data from the study session, we are able to predict memory
for individual facts after a two-week retention interval.

We found that latency data alone was predictive. To the
best of our knowledge, this finding has not been reported
before in modeling literature. However, we also found that
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Figure 6: A comparison of the performance of BACT-R on
the three-trial and six-trial subject-item pairs. Since six study
trials give more feedback than three study trials, we expected
BACT-R to perform better for these cases. As the figure
shows, this is what we observed. Also as expected, we see
that the three-study trial cases gave worse performance. How-
ever, BACT-R’s performance on the three-study trial cases
was not sufficiently degraded to conclude that these trials are
responsible for BACT-R’s inability to outperform the other
methods we studied.

adding latency data to accuracy data did not improve the per-
formance of our models, suggesting that the latency informa-
tion was redundant with the accuracy information.

We found that all the predictive models had similar per-
formance, including a model based on ACT-R’s declarative
memory module, which is one of the best developed and
evaluated high-level theories of human memory. Although
BACT-R did not outperform other models, we believe that
the addition of Bayesian uncertainty integration to the ACT-
R framework is a promising idea that should be explored in
other contexts. We also believe that the use of latency infor-
mation for prediction of future recall warrants further study,
especially when the feedback data are sparse (e.g., Figure 7,
which shows the benefit of latencies when we have feedback
from only one trial). Further, it would be interesting to see
if the latency information from an experiment specially de-
signed to elicit fast latencies would be more informative than
the latencies from this experiment.

In one sense, our conclusions are not astonishing: accuracy
of recall during study predicts accuracy of recall at a subse-
quent test. However, it is important that we have made this
intuitively obvious relationship quantitative and that we have
explored multiple computational approaches that can exploit
the relationship to make concrete predictions of future recall
performance.
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