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Abstract

Here, we leverage a unique collection of 708 prospectively collected autopsied brains to assess the 

methylation state of the brain's DNA in relation to Alzheimer's disease (AD). We find that the 

level of methylation at 71 of the 415,848 interrogated CpGs is significantly associated with the 

burden of AD pathology, including CpGs in the ABCA7 and BIN1 regions, which harbor known 

AD susceptibility variants. We validate 11 of the differentially methylated regions in an 

independent set of 117 subjects. Further, we functionally validate these CpG associations and 

identify the nearby genes whose RNA expression is altered in AD: ANK1, CDH23, DIP2A, 

RHBDF2, RPL13, RNF34, SERPINF1 and SERPINF2. Our analyses suggest that these DNA 

methylation changes may have a role in the onset of AD since (1) they are seen in presymptomatic 

subjects and (2) six of the validated genes connect to a known AD susceptibility gene network.

Introduction

Evidence is emerging that DNA methylation levels at certain CpG dinucleotides can be both 

highly variable across individuals and stable over time within an individual1,2. This suggests 

that differences in DNA methylation in certain loci could be correlated with life experiences 

of a given individual, such as a disease risk factor or a diagnosis3. The most compelling 

evidence that the epigenome may influence AD comes from the manipulation of histone 

deacetylases (HDAC) in model systems of AD and in off-label treatment of AD patients 

with HDAC inhibitors4,5. To date, results of epigenomic studies of AD are sometimes 

conflicting and have not yet returned robust associations 6-9. Further, there is a gradual 

increase in methylation at many sites throughout the genome with increasing age that has to 

be carefully considered when studying AD.8,10-12 In this study, we present the results of a 

statistically rigorous gene discovery effort to identify regions of the genome that are 

differentially methylated in relation to the burden of AD neuropathology. We show that 71 

discrete CpG dinucleotides in the human genome exhibit altered DNA methylation levels in 

relation to AD, that these changes are an early feature of AD, that the transcription of genes 

found in these differentially methylated regions is also independently associated with AD 

pathology, and that these differentially expressed genes connect to a previously reported 

genetically defined AD susceptibility network13.

Description of subjects and data

Our data set consists of methylation measures at 415,848 discrete CpG dinucleotides in 708 

subjects. These methylation profiles were generated using the Illumina 

HumanMethylation450 beadset and a sample of dorsolateral prefrontal cortex obtained from 

each individual. Since we dissected out the gray matter from each sample, we have profiled 

a piece of tissue composed primarily of different neuronal populations and other 

parenchymal cells such as glia. These subjects are part of the Religious Order Study (ROS) 

or the Memory and Aging Project (MAP), two prospective cohort studies of aging that 

include brain donation at the time of death. Since the subjects are cognitively non-impaired 
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at study entry, we have studied a random selection of the older population. Over the course 

of the study, some subjects decline cognitively and display a range of amyloid pathology 

burden at the time of death, with 60.8% of subjects meeting a pathologic diagnosis of AD14 

(Supplementary Table 1a). To technically validate the nature of our data, we compared our 

Illumina-derived data to genome-wide DNA methylation sequence data generated from the 

same brain DNA samples in four of the subjects (two non-impaired and two AD subjects): in 

these four subjects, we see a very strong correlation (mean r= 0.97) between the estimated 

levels of methylation generated by the two technologies, consistent with prior reports15.

Interestingly, when examining the nature of human cortical methylation profiles across our 

subject population, we note that the mean Pearson correlation of methylation levels for all 

possible subject pairs is 0.98 (Supplementary Figure 1), suggesting that that majority of 

CpG sites do not show significant interindividual variation in methylation levels despite the 

very different life course of each of these older subjects. As expected, we see many more 

differences in DNA methylation profiles between our cortical samples and lymphoblastic 

cell lines from HapMap individuals that were profiled for assessments of data quality in our 

experiment (Supplementary Figure 2).

Discovery study to identify differentially methylated chromosomal regions

Our analytic strategy involves three stages, which are illustrated in Figure 1: Stage 1 is our 

DNA methylation screen for chromosomal regions in which methylation levels correlate 

with AD pathology. Details of the analytic model are presented in the Online Methods 

section. It is followed by Stage 2 in which we replicate the significantly associated CpGs 

from Stage 1 in an independent set of subjects. In Stage 3, we attempt to functionally 

validate the role of the differentially methylated regions that are replicated in Stage 2 using 

mRNA obtained from AD and non-AD subjects. This strategy accomplishes 2 goals: (a) 

further confirms the role of a given differentially methylated region by showing that a 

meaningful biological effect (transcriptional change) relates to the disease and (b) helps to 

narrow down which of the genes near the differentially methylated CpGs are differentially 

expressed and may therefore be the target gene(s) in a given region.

In the primary analysis of our cortical methylation profiles (Stage 1), we identified 

autosomal CpGs whose level of methylation correlates with the burden of neuritic amyloid 

plaques (NP), a key quantitative measure of Alzheimer's disease neuropathology. NP burden 

better captures the state of the brain of a deceased subject since cognitively intact 

individuals display a range of NP pathology, some of which meet neuropathologic criteria 

for a diagnosis of AD16,17. Table 1 and Supplementary Table 2 contain the results of the 

primary genome-wide analysis: 137 CpGs are associated with the burden of NP pathology at 

a p<1.20×10−7. This threshold of significance accounts for the testing of all 415,848 tested 

CpGs by imposing a Bonferroni correction on a standard p<0.05. Since the exact number of 

functionally independent units of methylation in the genome is currently unknown, we have 

chosen this simple but conservative strategy to account for the testing of multiple hypotheses 

and correct for the testing of each CpG that was measured. Since the proportion of neurons 

found in each sample was not related to AD (p=0.08), we did not include this as a term in 

the primary analysis. However, to focus only on the most conservatively associated CpGs, 
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we performed a secondary analysis that includes the variable that captures the proportion of 

neurons as well as surrogate variables that capture structure in the methylation data that do 

not correlate with known confounders and may capture cryptic technical or other artifacts. 

Of the 137 CpGs discovered in the primary analysis, 71 CpGs remain significant in the more 

conservative secondary analysis (Table 1, Supplementary Table 2). Some of these 71 

CpGs are found in the same chromosomal segment and are highly correlated in their level of 

methylation. Altogether, the 71 CpGs are found in 60 discrete differentially methylated 

regions distributed throughout the genome (Figure 1): in 8 of these 60 regions, up to three 

neighboring CpGs with correlated levels of methylation emerge as significant in our analysis 

and probably capture the same effect.

Individually, any one of the significantly associated CpGs (Table 1, Supplementary Table 
2) has a modest effect on the brain's NP burden: on average, each the 71 CpGs explains 

5.0% (range 3.7-9.7%) of the variance in NP burden. However, this is greater than the 

proportion of variance explained by genetic variants associated with AD, with the exception 

of APOE. For example, in our subjects, the well-validated CR1 susceptibility allele explains 

just 1% of variance in NP burden18, and all known AD variants and APOE ε4 account for 

13.9% of the variance in NP burden. If we consider all 71 CpGs in one comprehensive 

model, they explain 28.7% of the variance in NP burden, suggesting that methylation levels 

of certain genomic regions is correlated and that cortical DNA methylation of a large 

number of discrete regions is strongly correlated with a key measure of AD neuropathology.

Notably, two of the 71 significantly associated CpGs (Supplementary Table 2) are found in 

loci that harbor known AD susceptibility alleles: cg22883290 in the BIN1 locus (beta=4.44, 

p=9.00×10−8) and cg02308560 in the ABCA7 locus (beta=3.62, p=2.45×10−12)19-22. 

cg22883290, is located 5 kb from the 5’ end of the BIN1 gene and 92 kb from the index 

SNP, rs744373, that best captures the genetic association to AD in this region (Figure 2c)19. 

The susceptibility variant rs744373 is moderately associated with the level of methylation at 

cg22883290 (p=0.0003). However, the CpG association with AD pathology is not driven by 

the variant: adjusting for rs744373 does not meaningfully change the effect size of the CpG 

association to NP burden (model with rs744373 as a covariate: beta=4.37, p=4.91×10−7). 

Within our dataset of modest size, rs744373 is not associated with AD susceptibility, and we 

therefore cannot formally test for mediation of the SNP's association to disease by CpG 

methylation. In the case of ABCA7, the index SNP (rs3764650) is associated with NP 

burden23 but has no association (p=0.07) with the level of methylation at cg02308560 which 

is 25 kb away, so, in both of these regions, SNPs and CpGs appear to have independent 

effects on AD susceptibility. Overall, risk of AD may therefore be affected by different 

sources of genomic variation (genetic and epigenetic) that have independent effects on the 

disease process.

To facilitate the interpretation of our results, we performed a secondary analysis correlating 

the level of methylation at these 71 CpGs with a post-mortem, neuropathologic diagnosis of 

AD. 22 of the NP-associated CpGs are also associated with a diagnosis of AD at a genome-

wide level of significance (Table 1 and Supplementary Table 2), and all of the CpGs 

associated with NP burden display at least some evidence of association (p<0.001) with AD. 

This is not surprising since NP burden is one criterion for a neuropathologic AD diagnosis. 
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We note an interesting polarization in the direction of these associations: 82% of the 

differentially methylated regions are more methylated in subjects with a diagnosis of AD. 

As noted above, the increased level of methylation in relation to AD at any one associated 

probe is modest (Figure 2a and 2b).

Validation of the associated CpG in an independent sample set

To further assess the robustness of our results, we evaluated the 71 significantly associated 

CpGs in an independent collection of 117 subjects with a different quantitative measure of 

AD pathology (Braak staging)24. These subjects were profiled in a sample of frontal cortex 

using the same Illumina Humanmethylation 450 platform; demographic details are presented 

in Supplementary Table 1b. We imposed a Bonferroni correction in this analysis and find 

that 12 CpGs are significant in this analysis (Table 1); since two of these CpGs are found in 

the same differentially methylated region near RHBDF2 (Figure 2D), eleven of the 

differentially methylated regions from the discovery study are validated (Supplementary 
Figure 3). Thus, despite the use of a different but related measure of AD pathology and a 

much smaller sample size, we see robust replication of our discovery screen's results. In 

addition to the significant CpGs, many other CpGs display suggestive evidence of 

association: when evaluating the entire set of 71 CpG, we see that the effect size of most of 

these CpGs is consistent across the two datasets (Supplementary Figure 4), suggesting that 

most of these CpGs will be validated as larger sample sizes are profiled. Both the BIN1 

(p=0.0067) and the ABCA7 (p=0.011) CpGs display suggestive evidence of replication 

(Table 1).

Cognitively non-impaired subjects display the same alterations in methylation

To begin to explore the question of whether the increased level of DNA methylation in the 

associated regions is a cause or an effect of the neurodegenerative process of AD, we limited 

the NP analysis to those subjects who were deemed to be cognitively non-impaired at the 

time of death (no AD and no mild cognitive impairment). As has been well documented in 

neuropathological and imaging studies25,26, a large fraction of non-impaired, older 

individuals demonstrate accumulation of amyloid pathology that is asymptomatic. Within 

the subset of non-impaired subjects, the p value for the CpG associations is diminished 

given the reduced sample size (n=237), but the beta values, which capture the magnitude of 

the association's effect, are not significantly different from the beta values calculated from 

the entire sample collection (Supplementary Table 3). This suggests that the altered DNA 

methylation that we have identified in our discovery study is an early feature of AD 

pathology and occurs in the presymptomatic stage of the disease. These DNA methylation 

changes are therefore not secondary to the later stages of the dementing process. The 

question of whether altered DNA methylation contributes to the pathologic process or is an 

early epiphenomenon of the neurodegenerative process remains open.

Distribution of associated CpGs among different chromatin states

To better understand the functional consequences of the associated CpGs, we interpreted our 

results in relation to a chromatin map of the dorsolateral prefrontal cortex, generated in 

collaboration with the Epigenomics Roadmap team (http://www.roadmapepigenomics.org). 
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It is derived from two MAP subjects who were cognitively non-impaired at the time of death 

and had minimal AD-associated pathology on post-mortem examination. Using histone 

modification profiles and established methods27, each 200 bp segment of the genome is 

annotated as being in one of 11 chromatin states (Figure 3a) that capture the transcriptional 

states and putative regulatory elements found in this tissue. Using this reference map, we see 

that at least some of the 71 associated CpGs are found in every chromatin state but that there 

is an enrichment of associated CpGs in regions predicted to be weak enhancers (p=0.0098) 

or to be in a weakly transcribed chromatin state (p=0.028), (Figure 3b, Supplementary 
Table 4). Further, we see a strong under-representation in regions displaying a strong 

promoter profile in the reference chromatin map (p=8×10−4). These data suggest that the 

chromatin architecture of strong promoters that drive fundamental cellular processes of 

neurons and glia in the healthy brain may not be strongly altered by AD. Rather, methylation 

changes appear to primarily affect genomic regions that are weakly transcribed or inactive in 

the healthy older brain. There are no enrichments noted in different genic features or in 

different structures defined in relation to CpG islands (Supplementary Figure 5a and 5b).

Functional validation of the CpG associations

Focusing on the 12 CpGs that have been validated in the replication stage, we evaluated 

their role in AD by assessing the level of expression of genes found in the vicinity (±50 kb) 

of these DMRs in an independent set of 202 AD and 197 non-AD individuals assembled by 

the Mayo Clinic (see Supplementary Table 5 for demographic characteristics) that have 

RNA data from the temporal cortex. We find that the level of expression of 8 of the 21 

selected genes have significant associations (p<0.0023) with AD in these data (Table 2): 

ANK1, CDH23, DIP2A, RHBDF2, RPL13, RNF34, SERPINF1 and SERPINF2.

Integrating our results with known AD genes

To further evaluate the role of these eight genes in relation to well-validated AD genes, we 

used the DAPPLE algorithm to evaluate the connectivity of these genes with the network of 

known AD susceptibility genes. We have previously used this method that requires co-

expression of interacting protein pairs and adjusts for gene size, and we reported the 

existence of an AD susceptibility network derived from protein:protein interaction data13. 

Here, we use an updated model that includes the latest results from genome-wide association 

studies and the studies of rare variation. First, we find that the network of susceptibility 

genes from genome-wide association studies and mendelian AD genes is significant both in 

terms of direct connectivity (p=0.0072) and indirect connectivity (proportion of 

susceptibility genes sharing a common interactor, p=0.037)(Supplementary Figure 6). We 

then repeated the analysis after adding the eight genes found in the validated differentially 

methylated regions that also display altered RNA expression in AD. As seen in Figure 4, 

several of the differentially expressed genes found in the differentially methylated regions - 

ANK1, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2 - connect to the AD 

susceptibility network derived from genetic studies. The direct (p=0.0072) and indirect 

(p=0.042) network connectivity remain significant in the iteration of the network analysis 

that includes the eight genes with altered RNA expression levels.
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Discussion

Overall, while our study has certain limitations due to the Illumina platform - such as 

surveying only a fraction of the human genome's CpGs and the array's inability to 

distinguish two closely related chromatin marks (DNA methylation and DNA 

hydroxymethylation) we nonetheless report several replicated, functionally validated 

associations between altered DNA methylation and the presymptomatic accumulation of AD 

pathology. These changes do not appear to be part of a generalized, genome-wide process: 

specific differentially methylated regions are targeted in AD and are unlikely to be found in 

genes that are actively transcribed in the healthy older brain. Instead, the associated regions 

are more likely to be in a poorly transcribed chromatin conformation in the older healthy 

brain (Figure 3b). Altered DNA methylation (Table 1) and enhanced mRNA expression 

(p=1.09×10−4) of the BIN1 gene in AD in the Mayo clinic dataset links our study to a well-

validated AD susceptibility locus and a recent report of enhanced BIN1 expression in AD.28 

The BIN1 cg22883290 association is significant in our discovery study, and, while the 

results are suggestive (p=0.0067) in the small replication analysis, the direction of the effect 

is consistent (Table 1), suggesting that the association is likely to validate with additional 

subjects. Our results therefore refine our understanding of the BIN1 locus and suggest that 

different types of genomic variation (SNP and CpG) can have independent effects that 

integrate on the expression of BIN1 and influence AD susceptibility. Similarly, cg02308560 

in the ABCA7 locus is associated to AD pathology, and this association is independent of the 

susceptibility allele found in its vicinity. These two loci illustrate the point that, while 

genetic variation can drive differences in DNA methylation for certain CpGs3, the 

associations that we report are not driven by genetic associations with AD pathology: we 

have also recently completed a genome-wide SNP association study with the same trait in 

the same subjects and found no significant genetic associations23. Thus, our CpG 

associations are not driven by SNP associations.

The colocation of genetic susceptibility with CpG associations to AD pathology, along with 

the presence of the CpG associations in cognitively non-impaired subjects (Supplementary 
Table 3) and the connection of six of the differentially methylated genes (Figure 4) to an 

existing AD susceptibility network (Figure 4), suggest that DNA methylation changes play 

a role in the onset of AD. However, as with genetic studies, our epigenome-wide scan only 

reports associations with a trait. Thus, we cannot state that the observed changes in 

methylation are causal: given the plasticity of the epigenome, it is possible that these 

changes are an early consequence of AD pathology. Further experimental work needs to be 

conducted to resolve this important question.

Looking at the AD network map, DIP2A connects directly to the known SORL1 

susceptibility gene29 and indirectly to PLD3, a recently reported AD susceptibility gene that 

is otherwise not connected to the AD susceptibility network. DIP2A may function as a cell 

surface receptor protein30 and, given the putative role of PLD331 and SORL1 in amyloid 

processing, its relation to the burden of NP pathology may well be related to a direct effect 

on amyloid processing. SERPINF1 and SERPINF2 also connect to elements of the amyloid 

machinery. Interestingly, SERPINF1 mRNA expression is reduced in AD (Table 2), and its 
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knockdown in an in vitro system leads to reduced neurite outgrowth32, suggesting one 

potential effect of this gene.

On the other hand, ANK1 and RHBDF2 connect to PTK2B, an AD gene that is a key element 

of the signaling cascade involved in modulating the activation of microglia and infiltrating 

macrophages. Several other AD genes, such as CD33 and EPHA1, connect to this molecule 

as well. While little is known on the potential role of ANK1, the connection of RHBDF2 

with PTK2B is consistent with the known role of this molecule in myeloid cells: it is 

necessary for the transport of TNFα converting enzyme (TACE, also called ADAM17), 

which releases TNFα from the cell surface33. Absence of RHBDF2 in mice impacts the 

normal release of TNFα from the cell surface34 and impairs systemic immune responses to 

pathogens35. In vitro work also suggests that RHBDF2 may function in regulating the 

substrate specificity of the TACE/ADAM17 protease which functions in the release of 

TNFα but also of other proteins such as epidermal growth factor (EGF)36 Its exact role in 

AD is not clear at this point, but our data suggests that RHBDF2 expression is increased in 

the context of AD (Table 2). Its connection to PTK2B further suggests that it may be 

involved in the role of microglia and infiltrating macrophages in the AD pathophysiological 

process. Consistent with this, adjusting for an estimate of the number of microglial cells 

using an RNA-based model seems to account for the AD-associated differences in RHBDF2 

mRNA expression (Supplementary Table 7a and 7b).

Such cell type adjustment using surrogate markers for different cell types37-39 are crude 

analyses but are helpful to begin to assign some of the transcriptional alterations to certain 

cell types. For example, using GFAP expression as surrogate marker for astrocytes, we see 

that adding a term for GFAP expression in our assessment of CDH23 RNA expression 

largely abrogates the association of CDH23 RNA expression with AD (Supplementary 
Tables 7b). Since GFAP expression is enhanced with astrocyte activation40,41, we cannot 

distinguish whether the alteration of CDH23 RNA expression (and presumably its altered 

DNA methylation) is caused by an increased number of astrocytes near neuritic plaques, the 

activation of these astrocytes, or a combination of both effects. Regardless of the exact 

mechanism, in the case of CDH23, our DNA methylation screen has uncovered a robust 

alteration in methylation that can now be dissected mechanistically.

The human cortex has a complex architecture that includes many different types of neurons, 

glia, and other cells such as microglia, peripheral immune cells, and endothelial cells from 

cortical capillaries. The changes in DNA methylation that we report most likely represent 

the altered methylation state of a subset of cells within our cortical sample since AD 

pathology accumulates over several decades and only a small number of cells will be 

affected at a given time. It is too early to confidently differentiate between three possibilities 

that could explain these modest but robust changes in methylation that occur in relation to 

AD pathology: (1) a fraction of the constituent cortical cells are changing, such as activated 

astrocytes in the vicinity of neuritic plaques that overexpress CDH23, (2) the relative 

proportion of the constituent cell populations of the cortex is changing as some populations 

such as neurons are lost, or (3) there is a modest influx of immune cells from the systemic 

circulation that alters the relative abundance of the different cortical cell populations. It is 

also likely that more than one of these or other, unsuspected processes may be at work.
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Overall, the replication of our study's results by an independent study24 and its functional 

validation with RNA data makes our strategy for investigating the brain's epigenome more 

broadly relevant to other epigenomic epidemiology studies. With clear effect sizes in hand, 

our results can be used to calibrate the design of future human studies in the brain or other 

organs. We have also made the important observation that these epigenomic changes are 

happening early in the pathologic process: while subjects display no cognitive impairment 

but have accumulated amyloid pathology. Going forward in the aging brain, we clearly need 

to more precisely map the alterations of chromatin structure that contribute to AD 

pathophysiology and to assess, using model systems, whether remodeling the epigenome is a 

fruitful goal for the development of AD therapies.

Online Methods

Subjects and genotypes

The analyses in this manuscript included deceased subjects from two large, prospectively 

followed cohorts maintained by investigators at Rush University medical Center in Chicago, 

IL: the Religious Orders Study (ROS) and the Memory and Aging Project (MAP). The ROS 

cohort, established in 1994, consists of more than 1,100 Catholic priests, nuns, and brothers 

from 40 groups in 12 states who were at least 55 years of age and free of known dementia at 

the time of enrollment. The MAP cohort, established in 1997, consists of more than 1600 

men and women primarily from retirement facilities in the Chicago area who were at least 

53 years of age and free of known dementia at the time of enrollment. All participants in 

ROS and MAP sign an informed consent agreeing to annual detailed clinical evaluations and 

cognitive tests, and the rate of follow-up exceeds 90%. Similarly, participants in both 

cohorts signed an Anatomical Gift Act donating their brains at the time of death. The overall 

autopsy rate exceeds 85%. As in previous manuscripts17, we analyzed the ROS and MAP 

cohorts jointly since they were designed to be combined, are maintained by a single 

investigative team, and a large set of phenotypes collected are identical in both studies. All 

aspects of these studies were approved by the Institutional Review Boards of Rush 

University Medical Center and Partners Healthcare. More detailed information regarding the 

two cohorts can be found in previously published literature42,43. Genotypes were available 

from prior studies and were derived from Affymetrix GeneChip 6.0 or Illumina Omni1-

Quad genotypes and imputation using the HapMap reference, as previously described.23

The replication DNA methylation analysis uses samples of prefrontal cortex (PFC) obtained 

from 117 individuals archived in the MRC London Neurodegenerative Disease Brain Bank 

(http://www.kcl.ac.uk/iop/depts/cn/research/MRC-London-Neurodegenerative-Diseases-

Brain-Bank/MRC-London-Neurodegenerative-Diseases-Brain-Bank.aspx). All samples 

were dissected by trained specialists, snap-frozen and stored at -80°C. Genomic DNA was 

isolated from ~100mg of each dissected brain region using a standard phenol-chloroform 

extraction method and tested for degradation and purity prior to analysis.

Temporal cortex expression levels for the autopsied Mayo Clinic subjects were obtained as 

part of a recently published brain expression GWAS (eGWAS), where the methodology is 

described in detail (eGWAS)44,45. Briefly, expression levels of 24,526 transcripts were 

measured from the temporal cortex of autopsied brains from subjects with pathologic AD 
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(n=202) and those with other brain pathologies (non-AD, n=197). Total RNA extraction and 

QC were done using the Ambion RNAqueous kit and Agilent 2100 Bioanalyzer, 

respectively, according to published methods. Whole genome DASL expression microarrays 

(Illumina, San Diego, CA) were used for the transcriptome measurements of RNA samples 

that were randomized across chips and plates using a stratified approach to ensure balance 

with respect to diagnosis, age, sex, and RNA Integrity Numbers (RIN). Raw probe-level 

expression data exported from Genome Studio software (Illumina Inc.) were preprocessed 

with background correction, variance stabilizing transformation, quantile normalization and 

probe filtering using the lumi package of BioConductor46,47. Preprocessed probe transcript 

levels were used in the downstream analysis.

Phenotypes

Our primary phenotype of interest in this manuscript was the burden of neuritic plaques, a 

quantitative measure of the amount of AD neuropathology in the brain at the time of death. 

Brain autopsies in ROS and MAP were performed across the US, as described in detail 

elsewhere42,43 Bielschowsky silver stain was used to visualize neuritic plaques within tissue 

sections from five brain regions: the midfrontal, middle temporal, inferior parietal, and 

entorhinal cortices, and the hippocampal CA1 sector. As in prior publications17 a 

quantitative composite score of neuritic plaque burden was then computed for each 

individual by dividing the subject's raw count in each of the 5 regions by the population 

standard deviation in that same region, and then taking the average of the standardized 

counts across the 5 regions. Because the distribution of these average standardized counts is 

skewed, we used the square-root transformed values in our statistical analyses.

To put the associations with neuritic plaque burden in the context of an AD diagnosis, we 

also assessed for associations with a neuropathologic diagnosis of AD, which is determined 

on post-mortem examination. Specifically, subjects were classified as having a pathologic 

diagnosis AD if they had intermediate or high likelihood of AD based on the National 

Institute on Aging (NIA)-Reagan criteria. The NIA-Reagan criteria, which integrates both 

the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) estimates of 

neuritic plaque density and Braak staging of neurofibrillary tangle pathology, was 

implemented as reported48. These diagnoses are made by board-certified neuropathologists 

without access to the clinical data collected during the study. All neuropathologic data is 

collected in a blinded fashion (relative to clinical diagnosis) by the neuropathology staff.

Experimental Protocol for DNA Extraction from Post-mortem Brain

100 mg sections of frozen dorsolateral prefrontal cortex were obtained from each of 761 

deceased subjects from the ROS and MAP studies based at the Rush Alzheimer's Disease 

Center. These sections were thawed on ice, and the gray matter was carefully dissected from 

the white matter. DNA extraction was performed using the Qiagen (cat: 51306) QIAamp 

DNA mini protocol. The Qubit 2.0 Fluorometer was used to quantitate the DNA. 16uL of 

DNA at a concentration of 50ng/uL as measured by PicoGreen, was used by the Broad 

Institute's Genomics Platform for data generation by the Illumina 

InfiniumHumanMethylation450 bead chip assay. The platform produces a data file by 

implementing the recommended procedures of the proprietary Illumina GenomeStudio 

De Jager et al. Page 10

Nat Neurosci. Author manuscript; available in PMC 2015 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



software, which includes color channel normalization and background removal. All data 

generation was conducted by laboratory personnel who were blinded as to the clinical and 

neuropathological phenotypes of each subject

Subject and Probe Quality Control

For the initial quality check of the data, we used the detection p-value criteria recommended 

by Illumina. These p-values represent the quality of the probes compared to background 

noise. We selected probes, which have detection p-value < 0.01 for all samples to ensure the 

use of good quality probes. Using these criteria, we selected 470,913 out of a total of 

485,577 tested probes for further analysis. Of these 470,913 probes, 460,045 are found in 

one of the autosomes.

However, not all probes are unique: some probes are predicted to cross-hybridize with the 

sex chromosomes49 based on sequence alignment. Many of these probes showed strong 

association to gender in a recent report that recommends discarding probes in which 47/50 

nucleotides match the sex chromosome sequence during sequence alignment using BLAT49. 

Specifically, the authors recommend discarding 29,233 probes from the Illumina 

InfiniumHumanMethylation450 bead chip assay that meet this sequence match criterion. We 

implemented this recommendation and removed the 29,233 probes from our probe list for 

downstream analysis. Further, as noted below, we adjusted for gender in our analytic model 

given the well-described influence of sex on methylation levels.

In addition to cross-reactive probes, a substantial fraction of CpG probes also overlap with 

known Single Nucleotide Polymorphic sites (SNPs) based on the 1000 genome database49. 

Methylation level of these CpGs could be affected by a subject's genotype. However, SNPs 

with very low minor allele frequencies should not have major effect on the methylation data 

given our sample size. Therefore, we removed CpGs in which a SNP with a minor allele 

frequency (MAF) ≥0.01 exists within 10 base pairs upstream or downstream of the CpG site, 

where single base extension occurs. Based on the analysis reported by Chen and 

colleagues49, we found a total of 14,964 autosomal, polymorphic CpGs with 0.01 ≤ MAF 

(EU) ≤ 0.99 in subjects of European ancestry, such as our subjects. These CpGs were 

removed from consideration, leaving 415,848 autosomal CpGs for downstream analysis.

We also evaluated the “per subject” quality of the data after the initial CpG data cleaning. 

The first step in this component of our quality control pipeline was to remove subjects with 

poor quality data from further consideration. Specifically, we used Principal Component 

Analysis (PCA) to select subjects that are within ± 3 SD from mean of a PC for PC1, PC2 

and PC3. PCA was performed using a random selection of 50,000 autosome probes for all of 

the samples. Using these criteria, we removed 13 subjects from a total of 761 subjects for 

which the Illumina assay was attempted. We excluded an additional 8 samples having for 

poor bisulfite conversion (BC) efficiency, which is defined as having at least 2 of the 10 BC 

control probes that fail to reach a value of 0.8. Hence, after our “per subject” quality check, 

a total 708 samples were selected for downstream analyses.
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Normalization of the data

We observed a strong batch effect in our data due to the use of two different thermocyclers 

during data generation. This batch effect was also confirmed by our PCA analysis. We 

evaluated different approaches to normalize our data, including COMBAT50 and 

independent component analysis (ICA). However, when applying these approaches to our 

data and comparing them with an approach in which we adjust for given confounding 

variables (such as batch number and age) that we find to be associated with principal 

components within our data, these approaches (COMBAT and ICA) are overly conservative 

in normalizing our data. In particular, ICA includes adjustments for many unknown 

variables that capture structure within a set of data and are not associated with known 

confounders. Thus, such ICA-derived variables could be related to elements of disease 

pathophysiology that is not yet understood.

ICA is a matrix factorization technique that separates a matrix into statistically independent, 

non-Gaussian factors using the R-package “fastICA” developed by Marchini and 

colleagues51. We applied ICA to the matrix of methylation beta values to infer number of 

statistically independent components k iteratively from 1 to 40. In each instance, all samples 

are assigned k surrogate variables representing k entries of the mixing matrix. We then 

performed a refinement step similar to that used in “iSVA”52 where for each independent 

component i (1 <= i <=k) we created a sub-matrix of the beta values populated only by 

methylation probes that were significantly associated with component i. We then performed 

ICA on this sub-matrix and selected the independent component most correlated with 

component i, and used those refined components as the surrogate variables. To set an 

optimal k we explored the average variance explained in the methylation matrix by each 

value of k, and determined that 7 was a conservative number of components that explained 

an appreciable percentage of the variance. These 7 surrogate variables were then used in our 

evaluation of normalization methods.

In our comparison of the results obtained using the two different approaches (including 

known technical confounders such as batch vs. COMBAT and ICA normalization), we find 

that the top 70 CpG in the primary analysis remain significant regardless of the approach 

used and that, while the p-value of the other 67 CpGs that are significant in our primary 

analysis fluctuates below our threshold of significance, they retain strongly suggestive 

evidence of association to the neuritic amyloid trait (95% remain at a p<5×10−5). As a 

result, and given our strategy of validating the CpG analysis with two rounds of RNA 

analyses to minimize false positives (Figure 1), we opted to use the batch variable approach 

to directly address the source of technical variation and avoid over-correcting our data for 

variables that are not demonstrated to be associated with technical or demographic 

confounders. Thus, we prefer to minimize the risk of false negative results and minimize 

false positives with two rounds of validation.

Accounting for differences in the proportion of cell types in our tissue

Since the proportion of neurons and other cell types found in the human cerebral cortex can 

change with AD, we evaluated a technique to account for the possible difference in the 

proportion of neuronal cells in our brain samples. As discussed in the main text, we used an 
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R package53 to quantify the proportion of NeuN+ cells (primarily neurons) in each brain 

sample using DNA methylation data. We used the data from the NeuN+ nuclei found in this 

package to create convex combinations of purified profiles using non-linear least squares. 

This yielded an estimate of the proportion of NeuN+ nuclei in each of our samples. 

However, the resulting measure is not significantly associated with a pathologic diagnosis of 

AD (p=0.08), and we therefore have not included it as a covariate in our primary analysis. 

However, we add it as a covariate in a secondary analysis that leads us to identify the most 

conservatively associated subset of 71 CpG.

Data analysis and statistical modeling

For our primary and secondary analyses, we used the β-values reported by the Illumina 

platform for each probe as the methylation level measurement for the targeted CG site in a 

given sample instead of M-values (logistically transformedβ-values)52. While M-values 

have certain favorable statistical properties relative to β-values, they are less biologically 

interpretable than β-values54. We therefore have opted to use β-values which range from 0 

(no methylation) to 1 (100% methylation), and show good correlation to estimates of DNA 

methylation derived from whole genome bisulfite sequencing approaches (see below for 

details). Any missing β-value was imputed using a K-nearest neighbor algorithm for k=100.

In order to perform our methylome-wide association study (MWAS) and discover 

differentially methylated regions associated with neuritic plaque pathology, we used a linear 

model, adjusting for age at death, sex, study (ROS or MAP), experimental batch and 

bisulfite conversion efficiency. A logistic regression was used for the AD analysis, using the 

same covariates. As noted in the section above, we considered but elected not to include 

terms for (1) the proportion of neurons in each sample or (2) surrogate variables that 

displayed no correlation with available technical or demographic variables. To account for 

the testing of multiple hypotheses, we used a Bonferroni correction which yields a p<1.20 

×10−7 as the threshold for genome-wide significance given the 415,848 autosomal CpG 

probes tested in our analysis. For annotation of the CpG probes, we used the hg19 human 

reference genome.

The bisulfite conversion efficiency term is calculated using the bisulfite conversion control 

probes, based on Illumina guidelines. Ten CpG sites designated by Illumina as control sites 

(6 CpGs targeted by type I probes and 4 CpGs targeted by type-II probes), where we expect 

each CpG to be 100% methylated, are used to control for non-complete bisulfite conversion. 

The bisulfite conversion efficiency term used in the primary analysis is the median 

methylation estimate from the 10 control sites. The bisulfite conversion term is calculated by 

taking the median value of the probes that Illumina provides to estimate bisulfite conversion 

efficiency.

To assess whether changes in DNA methylation are an early feature of AD, we compared 

the results of our association analysis obtained from the full set of subjects (n=708) to those 

obtained from the subset of subjects who were cognitively non-impaired at the time of death 

(n=217) by assessing, for a given CpG, whether the beta estimate from the non-impaired 

subset was different from the beta estimate derived from the entire cohort. We used the fact 

that the non-impaired subjects are a subset of the entire cohort and tested, using a 1 sample 
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test and the t distribution, whether the results from this subset, specifically the beta estimate 

taking into account the standard error, were different from those measures obtained from the 

entire population (i.e. the total cohort of 708 subjects) from which the subset was drawn.

To assess mediation by a third factor (as in the analyses presented in Figure 3), we 

compared models with and without that third factor. For example, to test if a mRNA 

expression mediates the association between a CpG and NP burden, we compared the beta 

estimate of the CpG from the model with only the CpG and our standard confounders to the 

beta estimate of the CpG from the model with CpG, our standard confounders and a term for 

the mRNA. If the beta estimate from the model with the mRNA term is >10% less that the 

model without the mRNA term we say that the mRNA mediates the effect between CpG and 

NP.

Bisulfite-sequencing data generation and analysis

For four individuals (two with AD and two non-impaired, each pair consists of a man and a 

woman), we used the same DNA sample profiled using the Illumina HumanMethylation 

Array to perform whole genome bisulfite sequencing. Genomic DNA was fragmented to 

100-500 bp using a Covaris S2 sonicator. DNA fragments were end-repaired, A-tailed, and 

ligated with methylated paired-end adapters (purchased from ATDBio). Whole genome 

bisulfite sequencing (WGBS) was performed as previously described55. In short, Illumina 

genomic DNA adapters were added to the fragments, and the adapter-ligated fragments were 

size-selected prior to two rounds of 5-h bisulfite treatments using the Epitect Bisulfite kit 

(Quiagen). Libraries were then purified and run on the Illumina HiSeq2000 using a standard 

36 base protocol55.

The WGBS libraries were aligned using BSMap 2.756 to the hg19/GRCh37 reference 

assembly. Subsequently, CpG methylation calls were made using custom software57, 

excluding duplicate, low quality reads as well as reads with more than 10% mismatches. 

Only CpGs covered by ≥5x reads were considered for further analysis.

Methylation profile from 4 samples (2 with AD; 2 non-AD) generated from Illumina450k as 

well as Bisulfite-sequencing, were compared by selecting a random 50,000 autosomal CpG 

sites that are present in both datasets for each individual. In each subject, the estimated level 

of methylation at each CpG measured by the two technologies was compared using a student 

t-test. The results of the comparison of the technical replicates (Illumina vs. WGBS) are as 

follows: subject # ROS20963578, r=0.975; subject # MAP5797875, r=0.969; subject # 

MAP50403446, r=0.971; and subject # ROS20214850, r=0.972. Across the 4 subjects, the 

mean r=0.972.

Chromatin State Map

In collaboration with the Broad Institute's Roadmap Epigenomic Mapping Center, chromatin 

immunoprecipitation using antibodies targeting six different chromatin marks (H3K36me3, 

H3K27me3, H3K4me1, H3K4me3, H3K9ac, and H3K9me3) was performed independently 

for two MAP subjects who were cognitively non-impaired at the time of death and had 

minimal evidence of AD, vascular and lewy body pathology on neuropathological 
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examination. In both cases, samples were obtained from the dorsolateral prefrontal cortex 

that is also sampled in our DNA methylation scan. Chromatin was extracted from each of 

the cortical samples. Library construction and sequencing were performed as previously 

reported58. Chromatin state maps were then learned from the sequence data (available at 

http://www.roadmapepigenomics.org). The H3K36me3 and H3K27me3 data were from 

donor id 149 while the other data sets were from donor id 112. The data were dichotomized 

using the default settings of the “BinarizeBed” command of ChromHMM59 except and 

applying the ‘-center’ option to the already signal extended bed files. The models were 

trained by applying the “LearnModel” command with default settings from ChromHMM. 

We selected a model with 11 distinct chromatin states as the optimal model for our tissue 

sample.

To assess whether certain chromatin states are enriched for associations in our analysis, we 

compared the distribution of the 137 associated CpGs across the 11 chromatin states to that 

of all 415,848 probes tested using a chi-square test.

RNA data & analysis

A detailed description of the RNA data from the Mayo Clinic samples has been reported 

elsewhere44,45 Since the analysis here explored the relation of mRNA levels to an AD 

diagnosis, a multivariable linear regression model was implemented, adjusting. covariates to 

correct for technical or biological variables, including age at death, sex, PCR plate, RIN and 

(RIN-RINmean)2. For those analyses which corrected for the expression levels of genes that 

are specific for the main five cell types present in the central nervous system (CNS), the 

following probes were used as covariates: ENO2 for neurons (ILMN_1765796), GFAP for 

astrocytes (ILMN_1697176), CD68 for microglia (ILMN_2267914), OLIG2 for 

oligodendrocytes (ILMN_1727567) and CD34 for endothelial cells (ILMN_1732799). Some 

or all of these 5 expression levels were included to account for neuronal loss, gliosis and/or 

vascular tissue in the assessed brain regions, where indicated.

Pathway analysis

We constructed a protein-protein interaction (PPI) network using the online tool DAPPLE 60 

in order to determine whether the genes identified in our DNA methylation study 

significantly interact with known AD associated proteins discovered in genetic studies. We 

compiled a list of genes associated with AD, including 25 late onset AD GWAS genes, 3 

early onset AD associated genes, and TREM1 (Replogle et al., submitted). We produced a 

PPI network with a cutoff of 2 interacting binding degrees. DAPPLE creates direct and 

indirect networks of connected proteins using evidence of physical interaction from the 

InWeb database, which contains 169,810 high-confidence pair-wise interactions involving 

12,793 proteins 61. To assess the statistical significance of PPI networks, DAPPLE applies a 

within-degree node-label permutation strategy to build random networks that mimic the 

structure of the original network and evaluates four network connectivity parameters on 

these random networks to generate empirical distributions for comparison to the original 

network. Our genetically defined AD network was significantly connected based on its 

Direct Edge Count (p=0.0072) and Seed Common Interactors Degrees Mean (p=0.037). 

Once the nine genes that emerge from the RNA functional validation analysis are added to 
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the list of genes to be considered in the analysis, the PPI network is expanded and includes 

six of these genes. In this iteration of the analysis, both the Direct Edeg Count (=0.0072) and 

Common Interactors Degrees Mean (p=0.042) measures remain significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Summary of the genome-wide brain DNA methylation scan for NP burden and its 
validation using two sets of brain RNA data
Each sector of this diagram presents summary results of the three different analyses within a 

chromosome. The perimeter of this circular figure presents the physical position along each 

chromosome (in Mb). The cytogenetic bands of each chromosome are presented in the first 

circle, with the centromere highlighted in red. The next circle (green) reports the density of 

CpG probes successfully sampled by the Illumina beadset that are present in a given 

genomic segment. The blue circle reports the results of the DNA methylation scan: using a 

“–log(p-value)” scale, we report the results for each of the 71 associated CpG found in 60 

independent differentially methylated regions (DMR) from the analysis relating DNA 

methylation levels to NP burden. Similarly, the first red circle reports the –log(p-value) for 

the 71 CpGs in the replication analysis. The large lightly colored circle reports the names of 

genes found within 50 kb of each associated CpG (light blue letters). The ABCA7 and BIN1 

regions, which harbor AD susceptibility alleles, are highlighted in red letters. The subset of 

the genes with differential mRNA expression in AD in the Mayo clinic dataset are shown in 

black. The next, red circle reports the results of the association of RNA expression level of 

these genes to a diagnosis of AD in the Mayo clinic dataset. The central circle reports the set 

of validated CpGs who also have nearby genes whose expression is altered.
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Figure 2. Extent of differences in methylation levels at associated CpGs and regional distribution 
of associations.
Two of the most AD-associated probes - from the MCF2L (a) and ANK1 (b) differentially 

methylated regions, Table 1 - are selected to illustrate the increase in methylation levels 

seen, on average, with a diagnosis of AD in 82% of the CpGs that meet our threshold of 

significance. Each panel reports data for one CpG, which is listed at the top of the panel. 

The panel itself is a smoothed histogram presenting the distribution of DNA methylation 

values at that CpG for subjects classified as having a neuropathologic diagnosis of AD (case, 

red, n=460) and those subjects that do not meet these diagnostic criteria (control, green, 

n=263). The scale is truncated at a methylation level of 0.6 since there are no values beyond 

this point; a methylation value of “1.0” means that all CpG in the sample are methylated. 

We see that the distribution of AD subjects is statistically significantly different from that of 

the control subjects. However, the two distributions overlap, and the absolute difference 

between the two distributions is modest. (c) Regional association plot around cg22883290 in 

the BIN1 differentially methylated region (DMR) that has previously been associated with 

AD susceptibility in genome-wide association studies. Each diamond represents on CpG 

tested in this region; the x-axis reports the physical distance across the region. The y-axis on 

the left reports the magnitude of the p-value in the analysis relating DNA methylation to NP 

burden. The horizontal dotted blue line highlights the threshold of significance for this 

analysis. The vertical blue line reports the density of CpG probes at a given point; values 

(probes/kb) are reported on the y-axis on the right. The extent to which DNA methylation 

level at a given CpG correlates with the level of DNA methylation of the best CpG 

(cg22883290) is reported using the r2 value and visualized using a red,high/white, low scale 

(see upper right corner of each panel). Finally, above the diagram of the genes found in this 

DNA segment, we report the chromatin state of the region, as assessed in healthy, 

unimpaired older individuals with minimal AD-related pathology. The chromatin state is 

derived in 200 bp bins, and the color key is presented in the upper left corner of each panel. 

Overall, the BIN1 gene appears to be in an open, transcribed conformation in healthy, older 

dorsolateral prefrontal cortex, and the associated CpG appears to be located in a region just 

3’ to the gene, which is largely in a conformation found on the periphery of actively 

transcribed regions. (d) Regional association plot around the RHBDF2 DMR, centered on 

cg13076843, which meets our threshold of significance. Here, we have an associated CpG 

that is found in close proximity to two genes, and our RNA analyses suggest that it is 

RHBDF2 that is the target of the DMR since its expression is altered relative to AD (Table 
2).
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Figure 3. Distribution of CpGs associated (p<1×10−7) wih NP among 11 chromatin states found 
in mid-frontal cortex. (A) Chromatin map of the dorsolateral prefrontal cortex
Using data generated by the National Institute of Health's Epigenomic Roadmap effort, we 

assign each chromosomal segment to one of 11 discrete chromatin states that are listed in a 

column to the left of the figure. On the X-axis, we list the individual chromatin marks 
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(antigens) targeted in each set of ChiP-Seq data generated from MAP subjects that were 

cognitively non-impaired at the time of death and have minimal pathology on 

neuropathological examination. The heatmap (white, low; blue, high) graphically displays 

the relative abundance of sequences found in a segment of DNA after immunoprecipitation 

for a particular histone mark. Each chromatin state has a unique complement of histone 

marks. (B) We use the chromatin map illustrated in panel A to identify the chromatin state 

within which each of the interrogated CpG dinucleotides are found. The histogram compares 

the distribution of chromatin states found at those 71 associated CpG dinucleotides whose 

methylation level is associated with neuritic plaques (Table 1) (pink bars) to the overall 

distribution of chromatin states found in all 415,848 CpG dinucleotides that were analyzed 

(blue bars).
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Figure 4. Genes identified in our DNA methylation screen connect to a network of known AD 
susceptibility genes
Using protein:protein interaction data, the DAPPLE algorithm evaluated the extent of 

connectivity among known AD genes (susceptibility and Mendelian genes) and the eight 

genes found in DMRs that are also differentially expressed relative to AD. The figure 

displays the results of an analysis allowing for one common interactor protein that is not 

known to be associated with AD. For example, RHBDF2 is displayed at the top of the figure 

in green and connects to PTK2B, a protein tyrosine kinase genetically associated with AD 

susceptibility which has a central role in this network. Interestingly, SERPINF1 and 

SERPINF2 connect to different elements of the amyloid component of the network (bottom 

left). Further, DIP2A connects the recently described PLD3 gene that has a rare AD 

susceptibility allele to SORL1, a gene with a common AD susceptibility allele, that connects 

to the amyloid precursor protein (APP). These interconnections are consistent with the 

reported effects of both PLD3 and SORL1 on amyloid biology and implicate DIP2A in the 

same process. Alternative figures presenting the network with all interacting proteins listed 

and the result of the network analysis with only the genetically associated loci are found in 

Supplementary Figure 6. The colored nodes are the proteins encoded by genes implicated 

in AD (genetic and epigenomic associations); the colors have no meaning. The connecting 

proteins not known to be associated AD are shown in gray.
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