
UC San Diego
Technical Reports

Title
Data Exchange, Data Integration, and Chase

Permalink
https://escholarship.org/uc/item/2ht889k5

Authors
Nash, Alan
Deutsch, Alin
Remmel, Jeff

Publication Date
2006-04-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2ht889k5
https://escholarship.org
http://www.cdlib.org/

Data Exchange, Data Integration, and Chase

Alan Nash
anash@cs.ucsd.edu

Alin Deutsch
deutsch@cs.ucsd.edu

Jeff Remmel
remmel@math.ucsd.edu

University of California, San Diego

ABSTRACT

We study the problem of computing certain answers to a query over

a target schema for a source instance under constraints which relate

the source and target schemas. Prior work has shown that, for re-

stricted constraints (source-to-target and target-to-target embedded

dependencies) and unions of conjunctive queries, there is a special

instance, known as a universal solution, such that running the query

on it essentially yields the certain answers. Such a universal solu-

tion does not always exist for even slight extensions of these classes

of constraints and queries.

We show that there may be a finite set of instances, which we

call a universal set solution, which suffices to compute the certain

answers. We also introduce the notion of a k-universal set solution,

which is sufficient to compute the certain answers to queries with

at most k variables, even when no universal set solution exists. We

show how to compute such universal and k-universal set solutions

for universal-existential constraints and existential queries.

The main algorithm for computing the universal set solution is

an extended chase. We provide a completeness result for this chase

and sufficient conditions for termination, which strictly extend the

best previously known conditions (such as weak acyclicity). We

also introduce a new kind of chase to compute k-universal set so-

lutions.

1. INTRODUCTION
Recent years have witnessed the development of two related re-

search fields: data integration and data exchange. In both cases, the

setup consists of a source schema � and a target schema � which

are related by a set of constraints �.

In data exchange we are interested in transfering a source in-

stance S of � to a target instance T of � such that S and T satisfy

the constraints in �. Such T is called a solution to the data ex-

change problem in [8]. This task is motivated by such activities

as data migration, data sharing, and even schema evolution. The

data exchange problem consists of finding such a solution T , given

S and �. Depending on the constraints in �, there are usually

infinitely many solutions. [9] suggests that the preferred solution

should be the core of a universal solution, which is unique up to

isomorphism and is the smallest among the most general solutions.

In data integration, the target schema is the schema of a mediator,

against which client applications can pose their queryQ. The target

instance is virtual, i.e. not materialized, and the task of the mediator

is to compute the answer to Q using the source instance S. The

answer to Q is defined as the intersection of the results of Q on

all solutions:
T

solution T

Q(T). This intersection is called the

certain answers to Q. We refer to the task of computing the certain

answers as the data integration problem. As in data exchange, there

may be infinitely many solutions T corresponding to S.

[8] reveals a beautiful connection between the data exchange and

the data integration problems: if the client query Q is a union of

conjunctive queries and the constraints in � are source-to-target

and target-to-target embedded dependencies, then any universal so-

lution U of the data exchange problem provides a solution to the

data integration problem: the certain answers to Q are the tuples in

Q(U) over the active domain of the source. Moreover, [8] shows

that a universal solution can be computed using the chase proce-

dure. The importance of these results is that they eliminate the

challenge posed by the non-algorithmic definition of certain an-

swers, which is based on infinitely many possible solutions. All

one needs to do to find the certain answers is to compute a univer-

sal solution using the chase, and run the client query over it.

Unfortunately, the connection between the two problems breaks

down as soon as more expressive queries or constraints are consid-

ered. As already observed in [8], if Q contains even one inequal-

ity, then its result on a universal solution may strictly contain the

certain answers. Furthermore, it is shown in [10] that, when the

constraints in � are not source-to-target, there simply may not be

any universal solution, yet the set of certain answers may be non-

empty. Looking at constraints beyond the source-to-target class is

motivated in [10, 12] in the setting of peer data management. This

case is also relevant to incorporating materialized warehouses and

cached queries into the mediator for data integration [5].

Contributions. This paper makes the following contributions.

1. Universal set solutions. We restore and strengthen the con-

nection between data exchange and data integration by introducing

the notion of a universal set solution. This is a finite set U of so-

lutions, sufficient to compute the certain answers to a query Q of

arity r as follows:

certain answers of Q = dom(S)

r

\

\

T2U

Q(T):

2. Wider classes of queries and constraints. We show that

this type of connection holds for wider classes of queries than just

unions of conjunctive queries and for wider classes of constraints

than just source-to-target and target-to-target embedded dependen-

cies. In particular, we show how to compute certain answers for

� arbitrary monotonic queries,

� unions of conjunctive queries with inequality and negation

(UCQ:; 6=or 9-queries), and

� embedded dependencies extended with disjunction, inequal-

ity, and negation (89-constraints), arbitrarily expressed over

the combined schemas � and � (i.e. not restricted to be

source-to-target and target-to-target) which satisfy the termi-

nating conditions in item 8 below.

3. Data exchange. Our work provides solutions to the data ex-

change problem beyond the setting of source-to-target embedded

dependencies studied in the literature [8, 10]. In our more general

setting, the single universal solution may not exist, or may not be

useful for correctly computing certain answers to queries beyond

conjunctive queries. Previous research does not provide any guide-

lines on what solution to materialize in that case. A natural choice

is to materialize one solution from the universal set solution, if it

exists. We show how to compute such solutions using the chase.

4. Relaxing universality. We address the case when there is

no universal set solution, showing that certain answers can some-

times be computed for unions of conjunctive queries with at most

k variables by finding a “not quite universal” set solution which we

call k-universal. We introduce an interesting variant of the chase to

compute k-universal set solutions.

5. Query containment, etc. Our results, concepts, and tech-

niques are widely applicable beyond the data exchange and integra-

tion settings. In particular, they provide a unified solution for de-

ciding query containment under constraints for expressive classes

of queries and constraints which allow disjunction, inequalities and

negated literals.

The machinery we develop to carry out the research program de-

tailed above involves the following technical contributions.

6. Templates. We introduce the concept of a template of

a class of instances, which generalizes the notion of a universal

set solution and is relevant to the data exchange, data integration

and containment problems. Given constraints �, we distinguish

between a template for the set of all finite models of � which

we call weak templates and a template for all (both finite and in-

finite) models of � which we call a strong template. We show

that some embedded dependencies � have a weak template, but no

strong template. It turns out that a universal set solution for S un-

der � is precisely a weak template for constraints �

S

satisfying

T j= �

S

iff (S; T) j= �:

7. New chase. We show that strong templates are precisely what

any “chase-like” procedure computes if it terminates. We start by

formalizing the well-known ordered chase procedure to provide a

unifying treatment of all chase extensions from recent prior work to

cover arbitrary 89 constraints. We show that this ordered chase is

incomplete, that is, it may fail to find a strong template even when

one exists.

We then introduce a novel chase procedure, which we call the

unordered minimizing chase, that is order-independent. We show

that the unordered minimizing chase is complete for finding strong

templates. That is, the unordered minimizing chase terminates if

and only if there is a strong template. From the point of view of

completeness, this is the best any chase-like procedure can achieve.

In particular, the unordered minimizing chase terminates whenever

any chase-like procedure terminates and if there is a universal set

solution that any chase-like procedure can find, the unordered min-

imizing chase will.

8. New termination conditions. We provide a widely-applicable,

sufficient condition for termination of the ordered chase, which can

be checked effectively on the constraints �. If this condition holds,

we say that � is stratified. This new stratification condition is

strictly more general than the best previously known such condi-

tion: weak acyclicity [8, 6].

Related Work. We have already discussed above the pioneering

work in [8]. The chase was introduced in [14] where its connec-

tion to logical implication was established (an early ancestor was

introduced in [2]). Related formulations of the chase for various

kinds of dependencies were introduced in [13, ?]. The chase was

extended to embedded dependencies in [3], to include disjunction

and inequality in [6], and to arbitrary 89-sentences in [4].

Paper Outline. In Section 2 we introduce some notation and ba-

sic concepts. In Section 3 we show how to compute certain answers

using universal set solutions. Universal set solutions are special

kinds of templates; we introduce the latter in Section 4. In Section 5

we show how to compute templates using the chase. In Section 6

we extend our results to constraints beyond embedded dependen-

cies and in Section 7 to mappings other than homomorphisms and

queries beyond UCQ. In Section 8 we show how templates apply

to checking containment under constraints and implication. Then

in Section 9 we show how to compute certain answers to queries

with k-variables, even when universal set solutions do not exist.

and finally we conclude in Section 10.

2. PRELIMINARIES
Basics. A schema � is a list of constants and relation symbols

and their arities. An instance A over � has one relation for every

relation symbol in �, of the same arity. Unless we say otherwise,

we refer to finite instances. For an instance A, we write dom(A)

for the domain of A, jAj for the size of dom(A), and RA for the

value of the relation R in A. We need to consider instances which

have two types of values: constants and variables. The latter are

also known as labelled nulls [8]. If A;B are both over �, we write

A � B if for every relation symbol R 2 �, RA � RB and A v B

if for every relation symbol R 2 �, RA = R

B

jdom(A).

Queries. We consider the class CQ of conjunctive queries and

the class UCQ of unions of conjunctive queries and their extensions

to include inequality (CQ6=,UCQ6=), negation (CQ:,UCQ:), or

both (CQ:; 6=,UCQ:; 6=). Notice that UCQ:; 6= is the same as the

class of existential queries 9Q. A query Q is monotonic if A � B

implies Q(A) � Q(B). We write MonQ for the class of mono-

tonic queries.

Constraints. We consider constraints � of the form

�(�u; �w)! 9�v (�u; �v)

where � and are conjunctions of atoms, which may include equa-

tions. Such constraints are known as embedded dependencies. We

call � the premise and the conclusion. For a given constraint

�, we write P
�

for the former and C
�

for the latter and we write

9P

�

for 9 �wP
�

and 9C
�

for 9�vC
�

. If �v is empty, then � is a

full dependency. If consists only of equations, then � is an

equality-generating dependency (EGD). If consists only of rela-

tional atoms, then � is a tuple-generating dependency (TGD). Ev-

ery set � of embedded dependencies is equivalent to a set of EGDs

and TGDs. We write A j= � if the instance A satisfies all the

constraints in �. We will extend our treatment to more expressive

constraints in Section 6. All sets of constraints we refer to are finite.

Homomorphisms. A function h : dom(A) ! dom(B) is a

homomorphism if whenever R(�a) holds in A, R(h(�a)) holds in

B and if h(
) =
 for every constant in A. A homomorphism

h : A ! A is an endomorphism of A. We write A ! B in case

there is a homomorphism between A and B. A homomorphism

r : A ! B � A is a retraction if r is the identity on dom(B). A

retraction is proper if it is not surjective. If A ! B and B ! A,

we say that A and B are homomorphically equivalent and we write

A$ B. IfK is a set of instances, we extend! to sets of structures

K;L as follows:

K ! L iff (8B 2 L)(9A 2 K)(A! B):

It is easy to verify that this extension of! is reflexive and transi-

tive. Notice that K � L implies L ! K. We say that a structure

or set of structures T is universal for K if T ! K.

Data exchange. We consider the setting where we have two

schemas � and � which do not share any relation symbols. Given

an instance S over � and instance T over � , the instance (S; T)

over � [� is the instance which has all the relations in S and all

those in T . Given a set of constraints � over � [� , we say that

T is a solution for S under � if (S; T) j= �. When � is clear

from context, we simply say that T is a solution for S. We say that

U is a universal solution for S if it is a solution for S and if it is

universal for the set of all solutions for S. Furthermore, we require

the homomorphisms witnessing this universality to be the identity

on dom(S).

A constraint � over � [� is source-to-target if the premise of

� is over � and the conclusion of � is over � . We will consider

the special case of settings where � = �

st

[�

t

with �

st

a set

of source-to-target TGDs and �

t

a set of EGDs and TGDs. With

these restrictions, (�; �;�
st

;�

t

) is known in the literature [8] as a

data exchange setting.

Data integration. We consider the same setting as for data ex-

change, adding an r-ary client query Q over the target schema � .

Given source instance S, we are interested in finding the certain

answers to Q for S under �, denoted
ert

�

Q

(S) and defined as

ert

�

Q

(S) =

\

(S;T)j=�

Q(T):

3. CERTAIN ANSWERS
In this section, we show that, even when a single universal solu-

tion does not exist or when a universal solution exists but is insuf-

ficient for computing certain answers, there may exist an adequate

universal set solution which does allows us to compute certain an-

swers.

DEFINITION 1. Given a data exchange setting, we say that U

is a universal set solution for source instance S under constraints

� iff U is finite, contains only solutions, and is universal for the set

of all solutions: U ! fT : (S; T) j= �g.

The following example shows that, if the queries are unions of

conjunctive queries and the constraints are standard embedded de-

pendencies beyond the source-to-target class, then it can be the case

that there is no universal solution, so the certain answers cannot be

computed in this way. However, there may be a universal set solu-

tion U , which suffices to compute certain answers correctly to any

union of conjunctive queries Q, by computing
T

T2U

Q(T).

EXAMPLE 1. Let the source schema and target schema consist

of the binary relation symbol E, respectively the quaternary F , and

consider a source instance S:

S = fE(a; b

1

); E(b

1

;
); E(a; b

2

); E(b

2

;
)g:

The constraint set � = f�st; �tsg connects the two schemas as fol-

lows:

�st : E(x; y); E(y; z)! 9u9w F (x; u; z; w)

�ts : F (x; u; z; w)! E(x; u); E(u; z)

Consider the target queryQ(x; z) :� F (x; b

1

; z; w)_F (x; b

2

; z; w).

It is easy to check that the set of solutions for S contains, among

others, T
1

= fF (a; b

1

;
; w

1

)g, T
2

= fF (a; b

2

;
; w

2

)g, where

w

1

; w

2

are distinct. Indeed, (S; T
1

) and (S; T

2

) satisfy �. Note

that there are infinitely many solutions, since w
i

can take infinitely

many values. However, it can be shown that each solution must

include either T
1

or T
2

, for some value of w
1

, respectively w
2

.

Therefore, Q has the certain answer (a;
).

Note that there is no single universal solution C yielding the cer-

tain answers to Q. This is because by universality, C would have

to map homomorphically into both T
1

and T
2

and therefore cannot

contain the values b
1

or b
2

. The answer to Q on C would therefore

be empty and thus not coincide with the certain answers.

However, the certain answers can be computed from a universal

set solution. It turns out (as will be detailed later) that a univer-

sal set solution U in this setting contains precisely two elements,

U = ffF (a; b

1

;
; w

1

)g; fF (a; b

2

;
; w

2

)gg, where w
1

; w

2

are

variables (labelled nulls) which can in principle take any value. It

is easy to check that the certain answers to Q can be obtained by

computing
T

T2U

Q(T). Indeed,

Q(fF (a; b

1

;
; w

1

)g) \Q(fF (a; b

2

;
; w

2

)g) =

f(a;
)g \ f(a;
)g = f(a;
)g.

Example 1 is not a fortunate accident: Theorem 1 below shows

that universal set solutions always yield the certain answers.

THEOREM 1. If W is a universal set solution for S under �

and Q 2 UCQ has arity r, then

ert

�

Q

(S) = dom(S)

r

\

\

T2W

Q(T):

PROOF. The inclusion� is clear, sinceW consists only of solu-

tions for S under � and since
ert�
Q

(S) � dom(S)

r by genericity

of Q. For the opposite inclusion it is enough to show that for every

solution T 0, there is T 2 W such that Q(T)\dom(S)

r

� Q(T

0

).

Accordingly, pick a solution T 0. Then there must be T 2 W and

a homomorphism h such that h : T ! T

0 and h is the identity on

dom(S). Since UCQ is closed under homomorphisms by Theo-

rem 12 below, we have �a 2 Q(T) implies h(�a) 2 Q(T 0). Further-

more, since h is the identity on dom(S), we have �a 2 dom(S)

r

implies h(�a) = �a and therefore

dom(S)

r

\Q(T) � dom(S)

r

\Q(T

0

) � Q(T

0

)

as desired.

Other kinds of universality. In Definition 1, universality of a set

solution is defined with respect to homomorphisms. We mention

here that it is very useful to consider universality with respect to

other kinds of mappings, since the resulting universal set solutions

yield the certain answers for more expressive queries. We consider

such mappings in Section 7.

THEOREM 2. IfW is a universal set solution for S under � for

1. injective homomorphisms and Q 2 MonQ,

2. full homomorphisms and Q 2 UCQ

:, or

3. embeddings and Q 2 UCQ

:; 6=,

and Q has arity r, then

ert

�

Q

(S) = dom(S)

r

\

\

T2W

Q(T):

PROOF. Essentially the same as that of Theorem 1, also using

Theorem 12 below.

The following example (adapted from [8]) pertains to part 1 in

Theorem 2. It shows that, even if the constraints are source-to-

target embedded dependencies, if the query contains even one non-

equality, the universal solution is insufficient for correctly comput-

ing the certain answers. However, there is a universal set solution

U for injective homomorphisms which, according to Theorem 2,

suffices for correct computation of certain answers.

EXAMPLE 2. Let the source schema consist of the binary rela-

tion symbolE, and the target schema contain binary relations F;G.

Consider a source instance

S = fE(a

1

; b

1

); E(a

2

; b

2

)g:

The two schemas are connected by � = f�stg, where

�

st

: E(x; z)! 9y F (x; y); G(y; z)

Consider the query Q(x; z) :� F (x; y); G(y0; z); (y 6= y

0

).

Q has no certain answers, since its result on the solution

T

1

= fF (a

1

; y);G(y; b

1

); F (a

2

; y);G(y; b

2

)g

is already empty. However, a universal solution according to [8] is

T

0

= fF (a

1

; y

1

); G(y

1

; b

1

); F (a

2

; y

2

); G(y

2

; b

2

)g

and, as observed there, the result ofQ on T
0

is non-empty: Q(T
0

) =

f(a

1

; b

2

); (a

2

; b

1

)g: As shown in Section 5, there exists a universal

set solution U for injective homomorphisms, which correctly cap-

tures the certain answers to Q. Indeed, U contains two instances,

U = fT

0

; T

1

g: Then Q(T
0

) \ Q(T

1

) correctly yields the empty

set of certain answers. Notice that there is a homomorphism, but

no injective homomorphism, from T

0

into T
1

.

Universal set solutions do not always exist:

EXAMPLE 3. Consider the constraints �:

S(x; y) ! T (x; y)

T (x; y) ! 9z T (y; z)

T (x; y); T (y; z) ! T (x; z)

and a source S containing a single edge. Then any solution, since it

must be finite, must have a cycle. But for any finite set of solutions

U , there must be a solution C
n

which is a cycle larger than any

cycle in U . Then U 6! C

n

. Therefore, there is no universal set

solution for S under �.

4. TEMPLATES
Universal set solutions depend not only on the constraints �,

but also on the source S. In this section, we generalize univer-

sal set solutions by introducing the concept of templates. Given a

set of constraints �, we define a set of constraints �
S

such that

the universal set solution for S under � is precisely a template for

�

S

. Templates have other applications outside of data exchange

and data integration, including checking query containment under

constraints. We will see in Section 5 that the chase is a general al-

gorithm for producing templates, not just universal set solutions, so

the extra generality gives a better understanding of the power and

limitations of the chase.

Furthermore, we will gain some insight on the nature of the uni-

versal set solution for S under � by looking at the form of the

constraints �
S

. In particular, it will turn out that for embedded de-

pendencies �, �
S

is not always equivalent to a set of embedded

dependencies, but when it is, then there is a universal solution if

and only if there is a universal set solution.

DEFINITION 2. We define �
S

so that

T j= �

S

iff (S; T) j= �

by replacing every occurrence in � of R�x where R is a relational

symbol in � with
W

�
2R

S

�x = �
. This may give constraints which

have disjunction in the premise, but we “normalized away” such

disjunctions. On the other hand, when there are any constraints

with relation symbols from � in the conclusion, we may get dis-

junction in the conclusion which can not be normalized away.1

EXAMPLE 4. We revisit Example 2, where � = f�stg,

�

st

: E(x; z)! 9y F (x; y);G(y; z)

and the source S is fE(a
1

; b

1

); E(a

2

; b

2

)g. The set �
S

contains

the single constraint

x = a

1

; z = b

1

_ x = a

2

; z = b

2

! 9y F (x; y);G(y; z)

which is equivalent to the set of TGDs

x = a

1

; z = b

1

! 9y F (x; y); G(y; z)

x = a

2

; z = b

2

! 9y F (x; y); G(y; z)

It is easy to see that T is a solution for S under � iff T j= �

S

.

DEFINITION 3. A set of finite structures T is a template for a

set of structures K if it satisfies the following conditions:

1. (universality) T ! K,

2. (conformance) T � K,

3. (finiteness) T is finite, and

4. (minimality) there is no T 0 � T such that T 0 ! T .

These conditions imply that there is no T 0 satisfying 1, 2, and 3

such that jT 0j � jT j. We write [K℄ for the template of K, if it

exists and we write [�℄ for [mod(�)℄, where mod(�) is the class

of all finite models of �.

The connection between universal set solutions and templates

is as follows: a template for �
S

is a universal set solution for S

under �. (We give the precise statement in Proposition 3 below.)

Therefore, templates can also be used to compute certain answers.

THEOREM 3. If [�
S

℄ exists and Q is a conjunctive query of

arity r, then

ert

�

Q

(S) = dom(S)

r

\

\

T2[�

S

℄

Q(T)

= f�
 : �

S

j= Q(�
)g:

PROOF. The proof of the first equation is very similar to that of

Theorem 1, except that we use the fact that if T 0 is a solution for

S under �, then T 0 j= �

S

and therefore there is T 2 [�

S

℄ such

that T ! T

0. The second equation follows immediately from the

definition of certain answers and �
S

.

Why standard data exchange admits a universal solution. We

have defined templates for arbitrary constraints, which are not nec-

essarily source-to-target, and may contain disjunction. This case

goes beyond the data exchange setting in the literature [8]. We

now prove from the basic properties of templates the fact that in

the particular case of embedded source-to-target dependencies, the

template is a singleton (or, equivalently, there exists a universal so-

lution).

PROPOSITION 1. If � is a set of embedded dependencies where

all conclusions are over � , then �
S

is a set of embedded dependen-

cies. In particular, this holds in the case where � is a set of source-

to-target TGDs and target-to-target TGDs and EGDs, as in [8].

1Since here we start chasing with an empty instance, we will need

to allow for chase steps (see Section 6) of the form A

n

�;�a

! A

n+1

where �a is not necessarily in A
n

for these constraints to fire once
we chase.

Embedded dependencies have some nice closure properties.

THEOREM 4. If � is a set of embedded dependencies, then �

is closed under retractions and products. That is:

1. If A j= � and A ,! B, then B j= �.

2. If A;B j= �, then A�B j= �.

In particular, closure under products is enough to guarantee that

universal set solutions are in fact simply universal solutions.

PROPOSITION 2. If [K℄ exists and K is closed under products,

then [K℄ is a singleton. Furthermore, in this case
ore(f
Q

A2K

Ag)

is a template for K.

COROLLARY 1. If there is a universal set solution for S under

� and � is a set of source-to-target and target-to-target TGDs and

EGDs, �
S

is a set of embedded dependencies, or �

S

is closed

under products, then there is a universal solution for S under �.

Templates for finite and infinite solutions. We say that T is

a strong template for � if T is a template for imod(�), the class

of all models (finite and infinite) of �. We say that T is a weak

template for � if T is a template for mod(�), the class of all finite

models of �.

PROPOSITION 3. A weak template for �
S

is precisely a univer-

sal set solution for S under �.

Clearly, any strong template is also a weak template. However,

the converse is not true, as shown by the following separation result.

We discuss in Section 5 how we compute both template flavors.

THEOREM 5.

1. There is a set � of TGDs which has a weak template, but no

strong template.

2. There is a set � of TGDs which has no weak template.

PROOF. (1) Consider the set of axioms �
1

:

�

1

: 9x; y E(x; y)

�

2

: E(x; y) ! 9z E(y; z)

�

3

: E(x; y); E(y; z) ! E(x; z)

Any model of axioms �
1

and �

2

must have an infinite walk.

Therefore, if the model is finite, it must have a cycle. If it has a

cycle, then by axiom �

3

it must have a self-loop. Since the struc-

ture with a single self-loop satisfies these axioms, it is a weak tem-

plate for �
1

. On the other hand, the transitive closure of an infinite

path also satisfies axioms �
1

, �
2

, and �
3

, but no finite structure with

a cycle has a homomorphism into it. Therefore �

1

has no strong

template.

(2) Now consider � := f�

1

; �

2

g. As we have seen above, any

finite model of � must have a cycle. But for any finite set U of such

models, there is another model C
n

, a cycle larger than any cycle in

U and therefore U 6! C

n

.

5. COMPUTING TEMPLATES
Given a set of constraints �, we are interested in computing the

template [�℄. In this section we concentrate on computing tem-

plates for embedded dependencies. To this end, we start from the

well-known chase procedure [2, 14, 13, 7, 3, 1], extending it to

a novel procedure called the unordered minimizing chase which

turns out to be strictly better at computing templates than the stan-

dard chase. We will show in Section 6 how to extend the chase to

compute templates for larger classes of constraints and under more

general universality assumptions, as required by queries which are

more expressive than unions of conjunctive queries.

By Theorem 4 and Proposition 2, if they exist, templates for em-

bedded dependencies consist of a single structure. To simplify the

presentation we refer to this single structure also as a template.

DEFINITION 4. (Chase Step) If � is a TGD or EGDs, we write

A

�;�a

! B if

1. A j= 9P
�

(�a),

2. A 6j= 9C
�

(�a), and

3. B =

�

A�a� C

�

if � is a TGD

h(A) if � is an EGD

whereA�a�C
�

is the result of attaching toA a copy of C
�

by iden-

tifying �awith the free variables of C
�

and where h(a
i

) = h(a

j

) =

a

i

and h is the identity elsewhere in case 9P
�

has as free variables

�u and C
�

is u
i

= u

j

. If 1 and 2 hold, we say that � applies to A on

�a. We do not require �a 2 dom(A), which is important in case the

premise has constants.

DEFINITION 5. (Chase Sequence) Assume � is a set of EGDs

and TGDs.

1. A �-chase sequence S (or just chase sequence if � is clear

from context) is a sequence of structures A
0

; A

1

; : : : such

that every structure A
s+1

in it is obtained from the previous

one A
s

by a chase step. That is, there are � 2 � and �a such

that A
s

�;�a

! A

s+1

: We say that S starts with A if A
0

= A.

2. A chase sequence A = A

0

; : : : ; A

n

is terminating if A
n

j=

�. In this case we say that A�

= A

n

is the result of the

chase.

3. We say that the chase terminates if there is a terminating

chase sequence. A� is defined whenever there is some ter-

minating chase sequence starting with A, but its value may

depend on the chase sequence. We will see later that all

chase results are homomorphically equivalent, so we can of-

ten speak about A� without referring to a particular chase

sequence.

4. We say that an infinite chase sequence is fair if whenever

� applies to A
s

on �a there is some r > s such that A
r

j=

9C

�

(�a).

5. If � consists of TGDs only and A = A

0

; A

1

; : : : is an in-

finite chase sequence, we set A�

!

=

S

i

A

i

. If no sequence

is specified, we take A�

!

to be obtained as above from any

fair infinite chase sequence. Then A�

!

is only defined up to

homomorphic equivalence as in the case of A�.

The following theorem lists some essential properties of the chase,

which we will generalize for the extended chase. There results

are considered folklore or appear implicitly in proofs related to the

chase [2, 14, 13, 7, 3, 1].

THEOREM 6. If� is a set of TGDs and EGDs,A = A

0

; A

1

; : : :

is a finite or infinite chase sequence, and

K = fB 2 imod(�) : A! Bg;

then:

1. A
0

! A

1

! A

2

! : : :

2. A
0

; A

1

; A

2

; : : :! K

3. If A� is defined, then A�

j= �.

4. If � consist of TGDs only, then A�

!

is universal for K and

A

�

!

j= �.

5. If B j= � and there is a homomorphism h : A

n

! B, then

there is a homomorphism h

0

: A

n+1

! B extending h (if �

is a TGD) or identifying some values in the domain of h (if �

is an EGD).

6. If B j= �, A� is defined, and there is a homomorphism

h : A! B, then there is a homomorphism h

0

: A

�

! B.

PROOF. See the appendix.

COROLLARY 2.

1. If A� is defined, then A� is a template for

K = fB 2 imod(�) : A! Bg:

2. If ;� is defined, then ;� is a strong template for �.

PROOF. Immediate from parts 2 and 3 in Theorem 6.

We say that any sequence is chase-like if it satisfies the condi-

tions of Theorem 6. We say that an algorithm is chase-like if it pro-

duces chase-like sequences. It would be nice to have an algorithm

that satisfied the conditions of Theorem 6 only for finite instances,

but it is not clear at all how such algorithm can be obtained. Cer-

tainly, it can not be obtained by simply adding a copy of the con-

clusion of some constraints to the next instance in the sequence.

Therefore, any chase-like algorithm, if it terminates, produces a

strong template. A natural question, then, is the following:

Is the chase complete for strong templates?

That is, for any � with a strong template, will the chase always

find it? More precisely, will any (long enough) �-chase sequence

terminate? For the chase outlined above, the answer is no, as the

following example shows.

EXAMPLE 5. Consider the set � consisting of following TGDs:

�

1

: 9u; v E(u; v); E(v; u)

�

2

: E(x; y); E(y; x) ! 9uE(u; u)

�

3

: E(x; y) ! 9uE(x; u); E(u; y)

The singleton template consisting of the self-loop is a template for

�, yet any �-chase sequence starting with ; must be infinite. This

is because �
1

must fire first to give a cycle of length 2. Assume

�

2

fires next to give a disjoint self-loop. From now on, ignore this

loop. Set A
0

:= C

2

, the cycle of length 2. Now it is easy to show

that if A
s

�

3

;a;b

! A

s+1

where a 6= b, then two new edges a
 and
b

are added to A
s+1

and that

A

s+1

6j= 9C

�

3

(a
) and A
s+1

6j= 9C

�

3

(
b):

Therefore, if A
s+1

6j= �

3

, which results in an infinite chase se-

quence.

A Complete Chase. We now define a novel chase procedure, the

unordered minimized chase or um-chase, which is order-independent

and which, more importantly, is complete for strong templates, and

therefore superior to the chase introduced above (which we also

call the ordered chase) for the task of finding templates, which is

what chase-like algorithms are all about.

Intuitively, the unordered chase step proceeds by first firing all

applicable standard chase steps simultaneously, then minimizing

the resulting structure by computign its core. We formalize the

procedure below.

DEFINITION 6. (Unordered-chase step)

If � is a set of TGDs, we write A
�

! B if

1. A 6j= � and

2. B =

S

�2�;�a2dom(A);A

�;�a

!D

D:

That is,B is the structure obtained fromA by simultaneously firing

all applying chase steps. If � also contains EGDs, then we also

identify all elements which have been identified by every constraint

� and any tuple �a such that � applies to A on �a.

For the minimization part of the next step, we need to define

cores. An instance is a core if it has no proper retractions. A core

C of an instance A is a retract of A which is a core. Cores of an

instance A are unique up to isomorphism and therefore we can talk

about the core of A. It follows that A and B are homomorphically

equivalent iff their cores are isomorphic.

DEFINITION 7. (Unordered-minimizing-chase step)

We write A
�#

! B if A
�

! B

0 and B =
ore(B

0

).

We extend the definition of chase sequence to um-chase sequence

in the obvious way. Notice that um-chase sequences are determined

up to isomorphism, since cores are determined up to isomorphism.

We use the notation A� to refer also to the result of a terminating

um-chase sequence. Such result is unique up to isomorphism. Sim-

ilarly, we use A�

!

also for the um-chase. Which chase we have in

mind should be clear from context. Theorem 6 also holds for the

um-chase.

THEOREM 7. If � is a set of EGDs and TGDs, then

1. The unordered minimizing chase terminates iff there is a strong

template for �.

2. The result of the unordered minimizing chase is a strong tem-

plate for �.

PROOF. See the appendix.

COROLLARY 3. If � is a set of embedded dependencies and

any chase-like algorithm terminates on input A under � to give

U , then the unordered minimizing chase terminates on input A and

gives the strong templateA� which is homomorphically equivalent

to U .

PROOF. If such chase-like algorithm terminates on input A un-

der � giving U , then U is a strong template by Corollary 2. There-

fore, by Theorem 7 part 1, the unorderd minimizing chase termi-

nates and by part 2 gives a strong template A�. Since both U and

A

� satisfy � by Theorem 6, we have U ! A

� and A�

! U by

their universality.

5.1 Conditions for Termination
A widely-applicable, sufficient condition on � for the termina-

tion of the chase, weak acyclicity was identified by Alin Deutsch

and Lucian Popa and first published in [6] and [8]. We give this

definition below, then we introduce a strictly more general condi-

tion, stratification, which is also sufficient for termination of the

chase.

DEFINITION 8. (Weakly Acyclic)[6, 8] A position is a pair

(R; i) (which we write Ri) where R is a relation symbol of ar-

ity r and i satisfies 1 � i � r. The dependency graph of a set �

of TGDs is a directed graph where the vertices are the positions of

the relation symbols in � and, for every TGD � of the form

�(�u; �w)! 9�v (�u; �v)

there is an edge between Ri and Sj whenever (1) some u 2 f�ug

occurs in Ri in � and in Sj in or (2) some u 2 f�ug appears in

R

i in � and some v 2 f�vg occurs in Sj in . Furthermore, these

latter edges are labelled with 9 and we call them existential edges.

� is weakly acyclic if its dependency graph has no cycles with an

existential edge.

Notice that any set of source-to-target TGDs is weakly acyclic. We

say that a set � of TGDs and EGDs is weakly acyclic if the �0 � �

consisting of the TGDs in � is weakly acyclic.

THEOREM 8. [8, 6] For every weakly-acyclic set � of EGDs

and TGDs, there are b and
 such that, for any A, regardless of the

order of the chase,

1. A� is defined, and

2. A� can be computed in O(jAjb) steps and in time O(jAj
).

Now consider the following example.

EXAMPLE 6. Consider the set � = f�g where � is the follow-

ing TGD:

9y R(x; y); R(y; x)! 9u; v R(x; u); R(u; v); R(v; x):

It is easy to check that � is not weakly acyclic, yet it is clear that

A

� is defined for the ordered chase for any chase order since intro-

ducing 3-cycles will never create any new 2-cycles.

We introduce a strictly wider, effectively checkable condition

which is also sufficient for termination of the chase, which is moti-

vated by the example above.

DEFINITION 9. (Stratified) Given EGDs or TGDs � and � we

write � � � if there exists A, B, �a 2 dom(A), and �b 2 dom(B)

such that

1. � does not apply toA on�b, possibly because f�bg 6� dom(A),

2. A
�;�a

! B for some B, and

3. � applies to B on �b

The chase graph G of a set of TGDs � has as vertices the con-

straints in � and there is an edge between two constraints �; � 2 �

if � � �. We say that C is a cycle-component of G if C is a con-

nected component of the graph G0 consisting only of those edges

which participate in cycles. A set of EGDs and TGDs� is stratified

if every cycle component of the chase graph of � is weakly-acyclic.

THEOREM 9. If � is a stratified set of EGDs and TGDs, then

there exists
 such that for every A, the length of every chase se-

quence A�

0

; A

�

1

; : : : is bounded by jAj
.

PROOF. (sketch) Consider the chase graph G of � and its asso-

ciated graphG0 where every cycle component has been replaced by

a single vertex. G0 is acyclic. Each vertex in G0 is a set of weakly-

acyclic TGDs or a single TGD. Now chase as follows. Pick a vertex

v of indegree 0 in G0, chase with the associated TGD or weakly-

acyclic set of TGDs until this subchase terminates, remove v from

G

0 and repeat. Each subchase must terminate because � fires after

� only if � � � and because a subchase with a weakly-acyclic set

of TGDs terminates by Theorem 8.

THEOREM 10. Given TGDs � and �, checking whether � � �

holds is decidable.

PROOF. See the appendix.

THEOREM 11. Weakly-acyclic sets of EGDs and TGDs are strat-

ified, but not conversely.

PROOF. If a set of EGDs and TGDs is weakly acyclic, then it

is stratified by the definition. The set � = f�g from Example 6

satisfies � 6� � and therefore is stratified, yet not acyclic. To see

this, notice ifA
�;�a

! B then B has no new 2-cycles or 1-cycles, that

is, no such cycles which are not already in A.

6. BEYOND EMBEDDED DEPENDENCIES
In this section we extend our consideration to constraints of the

form
_

1�i�p

�

i

(�u; �w)! 9�v

_

1�i�

i

(�u; �v)

where each �
i

and
i

is a conjunction of relational atoms, negated

relational atoms, equations, or inequalities. We call such constraints

negation disjunctive embedded dependencies or NDEDs to be con-

sistent with the name disjunctive embedded dependencies or DEDs

for the same class of constraints without negation introduced in

[6]. It is easy to check that every 89 constraint is equivalent to an

NDED. We extend the results of the previous sections to these kinds

of constraints. To do this, we first show how to handle disjunction

and then we show how to handle negation.

Adding disjunction. First of all, notice DEDs that are not closed

under products as the following example shows. This is in constrast

to embedded dependencies (cf. Theorem 4).

EXAMPLE 7. The following disjunctive TGD �

9u; vEuv;Evu or 9u; v; wEuv;Evw;Ewu

is not closed under products. We have C
2

; C

3

j= � where C
k

is the

directed cycle of length k, yet C
2

� C

3

= C

6

and C
6

6j= �.

As a consequence, a template for a set � of such constraints is

not necessarily a singleton set. We now explain an extended chase

for DEDs introduced in [6]. The comments above imply that such

chase must have at each step not a single instance, but instead a set

of instances. Therefore, we aim to define K
�

! L where K and L

are finite sets of instances and � is an DED to parallel Definition 4.

Then we extend the results from Section 5 and we show how to

extend them to NDEDs.

DEFINITION 10. (Extended Chase Step) First assume that � is

a DED of the form shown above. Set

�

i

:=

_

1�i�p

�

i

(�u; �w)! 9�v;

i

(�u; �v)

so that P
�

= P

�

1

= : : : = P

�

p

and C
�

=

W

1�i�

C

�

i

: We write

A

�;�a

! fB

1

; : : : ; B

g if

1. A j= 9P
�

(�a),

2. A 6j= 9C
�

(�a), and

3. for each i, A
�

i

;�a

! B

i

.

If 1 and 2 hold, we say that � applies to A on �a. Notice that this is

consistent since if 2 holds, then alsoA 6j= 9C
�

i

(�a) for every i. That

is, we create one new instance for every disjunct in the conclusion.

We write K
�;�a

! L where K and L are finite sets of instance if

L = K

1

[

[

A2K

2

;A

�;�a

!M

M

where

K

1

:= fA 2 K : f�ag 6� A or A 6j= 9P
�

(�a) or A j= 9C
�

(�a)g

and K
2

:= K � K

1

. That is, K
1

is the set of instances in K to

which � does not apply on �a and K
2

is the set of instances in K to

which � does apply on �a. The instances in L are those obtained by

a chase step with � and �a from an instance in K or those instances

in K to which � does not apply on �a.

Given this definition of a chase step, the definitions of chase se-

quence, chase result, etc. from Section 5 extend naturally to the

situation where at each step we have a finite set of instances in-

stead of a single instance. This extension was made in [6]. We

keep the notation of Section 5 since this makes the presentation

simpler and more intuitive. Notice that A�

!

may now be an infinite

set of instances. Then Theorems 6 and Theorems 7 go through with

DEDs instead of EGDs and TGDs. Only minor and straightforward

changes are needed in their proofs.

Adding negation. We now explain a further extension to handle

negation, introduced in [4]. We first extend DEDs with constraints

that may have ? as their conclusion and we extend the definition

of a chase step as follows. If � has ? as its conclusion, then

K

�;�a

! L iff L = fA 2 K;A 6j= 9P

�

(�a)g:

That is, if � applies to A on �a, it “kills” A. We call such constraint

DEDFs for DEDs with falsehood. Implicitly, such constraints are

already needed for a much smaller kinds of constraints in order to

handle contradictions which arise, for example, from equating two

constants.

Using DEDFs, we can simulate NDEDs. The details of this sim-

ulation are given in the next section; here we only provide a rough

sketch. Given a set � of NDEDs over signature �, we compute a

set ^� of DEDFs over the signature

�̂ := � [f

^

R : R 2 � [fNg

where ^

R�x “stands for” :R�x and Nxy “stands for” x 6= y. If the

chase terminates, the result will be a template under embeddings,

rather than homomorphisms. From such result, it is straightforward

to extract a template under homomorphisms (cf. Theorem 14).

7. BEYOND UCQ AND HOMOMORPHISMS
In order to be able to compute certain answers to queries which

are not unions of conjunctive queries, we need set solutions which

are universal not under homomorphisms, but under other kinds of

mappings. Universality under other kinds of mappings is useful

also for other applications, including checking containment under

constraints.

We are interested in the following kinds of homomorphisms. We

say that a homomorphism h : A! B is full ifA j= R(�x) iff B j=

R(h�x) for all relationsR inA andB. An embedding is a full injec-

tive homomorphism. We write hom for the set of homomorphisms

on finite instances, ihom for injective homomorphisms, fhom for

full homomorphisms, and emb for embeddings.

THEOREM 12.

1. UCQ is closed under homomorphisms.

2. MonQ is closed under injective homomorphisms.

3. UCQ: is closed under full homomorphisms.

4. UCQ:; 6= is closed under embeddings.

That is, for any of these classes of queries and the corresponding

class of mappings,

h : A 9 9 KB and �a 2 Q(A) implies h(�a) 2 Q(B):

PROOF. See the appendix.

We fix some family F of mappings on finite instances such as

injective homomorphisms and we write A 9 9 K B if there is h :

A! B in F . We extend 9 9 Kto sets of structures as we did for!.

We say that a structure or set of structures T is F -universal for K

if T 9 9 KK.

DEFINITION 11. A set of finite structures T is an F -template

for a set of structures K if it satisfies the following conditions:

1. (F -universality) T 9 9 KK,

2. (conformance) T � K,

3. (finiteness) T is finite, and

4. (minimality) there is no T 0 � T such that T 0 ! T .

Therefore, a plain template is a hom-template.

It turns out that we can compute strong templates under F in

case F 2 fihom; fhom; embg by using a reduction to the case of

homomorphisms. Other families of mappings may be handled by

similar reductions.

THEOREM 13. Given F 2 fihom; fhom; embg and a signa-

ture �, there is a signature �̂ � � and constraints � such that for

every A;B over �, there are unique expansions ^

A;

^

B over �̂ of

A;B satisfying ^

A;

^

B j= �. Furthermore,

h : A 9 9 KB iff h :

^

A!

^

B

PROOF. (a) If F consists of injective homomorphisms, set �̂ :=

� [fNg where N is a new binary relation symbol and set � to

contain the constraints

x = y _N(x; y) x = y;N(x; y)! ?

whereN stands for 6=. Now assume 1, 2, and 3 hold. If h :

^

A!

^

B

is a homomorphism, then also h is a homomorphism A! B. Now

if x 6= y, we must have A j= Nxy by the first constraint in �

and therefore B j= Nh(x)h(y). Then the second constraint in

� implies h(x) 6= h(y). That is, h is injective. The converse is

obvious.

(b) If F consists of full homomorphisms, set �̂ := �[f

^

R : R 2

�g where each relation symbol ^

R is new and of the same arity as

R. Set � to contain all constraints of the form

R(�x) _

^

R(�x) R(�x);

^

R(�x)! ?

for every relation symbol R 2 �. The rest of the proof is similar to

case (a).

(c) Embeddings are precisely full injective homomorphisms, so

this case is handled by combining (a) and (b).

The one-to-one correspondence betweenA and ^

A j= � is clear.

THEOREM 14. If � is a set of NDEDs over signature � and

F 2 fihom; fhom; embg, then there is a signature �̂ and a set of

DEDFs ^� such that the following are equivalent

1. There is a strong template for �.

2. There is a strong F -template for �.

3. There is a strong template for ^�.

4. The unordered chase with minimization terminates for ^

�,

producing a strong template for ^�.

Furthermore, ^

� can be obtained efficiently from � and each of

these strong templates can be efficiently obtained from the other.

PROOF. See the appendix.

Theorem 14 allows us to compute templates and universal set

solutions for NDED constraints.

8. CONTAINMENT
Templates are useful for checking containment, containment un-

der constraints, and implication as we show next.

DEFINITION 12. We write P v Q in case P (A) � Q(A) for

all finite structures A. and P v
�

Q in case P (A) � Q(A) for

all finite structures A j= �. The containment problem consist of,

given P and Q, deciding whether P v Q. The containment un-

der constraints problem consist of, given P;Q, and �, deciding

whether P v
�

Q.

In order to state general results in a simple manner we consider

some fixed class of mappings F closed under composition, such

as hom, fhom, ihom, or emb and we consider the corresponding

F -templates. We write A 9 9 KB if there is a mapping h : A! B

such that h 2 F . We say that a class of structures K is closed

under 9 9 Kif A 2 K;A 9 9 KB imply B 2 K. Similarly, we say

that � is closed under 9 9 Kif mod (�) is.

In a sense, an F -template is an incomplete, but finite description

of a classK, unless that classK is closed under F . The importance

of the result below, is that reduces an infinite problem (part 1) to

checking finitely many instances for the existences of a mapping

(part 3).

THEOREM 15 (CONTAINMENT). IfK;L are sets of structures,

L is closed under 9 9 K, and [K℄ and [L℄ exists, then the following

are equivalent.

1. K � L.

2. [K℄ � L.

3. [L℄ 9 9 K[K℄.

PROOF. If (1) holds, then [K℄ � K � L so (2) holds. If (2)

holds, then [L℄ 9 9 KL and therefore [L℄ 9 9 K[K℄ so (3) holds. Now

assume (3) holds and pick A 2 K. Since [K℄ 9 9 K K, there is

B 2 [K℄ such that B 9 9 KA. Since [L℄ 9 9 K [K℄, there is C 2 [L℄

such that C 9 9 KB 9 9 KA. Since [L℄ � L, C 2 L. Since F is

closed under composition, C 9 9 KA and since L is closed under

9 9 K, A 2 L. This shows that (1) holds.

We want to be able to speak of a set of instances associated with

a query Q. Therefore, given a query Q, we define a sentence ^

Q

obtained from Q by replacing the free variables �x of Q with new

constants �
. Notice that with this definition, we have by Theo-

rem 12:

1. If Q 2 UCQ, then ^

Q is closed under homomorphisms.

2. If Q 2 MonQ, then ^

Q is closed under inj. homomorphisms.

3. IfQ 2 UCQ

:, then ^

Q is closed under full homomorphisms.

4. If Q 2 UCQ

:; 6=, then ^

Q is closed under embeddings.

To simplify the notation, we write [Q℄ instead of [^Q℄. If Q 2

CQ, then [Q℄ is precisely what is known as the frozen instance of

Q. Therefore, for the case of queries, templates generalize the no-

tion of frozen instances. Furthermore, we have the following natu-

ral generalization of what is known as the homomorphism theorem

for conjunctive queries [1]:

COROLLARY 4 (QUERY CONTAINMENT). If P;Q 2 L and

L is closed under the mappings F , then

P v Q iff [Q℄! [P ℄:

The following important result follows from Theorems 15 and 6.

THEOREM 16 (IMPLICATION). If P;Q 2 L, L is closed un-

der the mappings F , and � is a set of sentences, then the following

are equivalent whenever all templates mentioned exist:

1. P v
�

Q.

2. � j= 8�x(P ! Q).

3. �;

^

P j=

^

Q.

4. mod(� [f

^

Pg) � mod(

^

Q).

5. [Q℄! [� [f

^

Pg℄

Furthermore, if some �-chase terminates on P , then 1-5 are also

equivalent to:

6. P�

v Q

Partial results similar to Theorems 15 and 16, except for the

mention of templates, are known for several special cases includ-

ing conjunctive queries and embedded dependencies. Our contribu-

tion is identifying the crucial roles of templates in them and there-

fore providing a uniform generalization to any kinds of constraints,

mappings, and queries closed under such mappings for which we

can find templates.

Notice also that in some cases, we do not need to chase to obtain

a template, but can simply asserts its existence to obtain the desired

result. In particular, we can then ‘use’ a weak template, which we

know can not be found by chasing. An example of a result of this

kind is the following generalization of Theorem 5 in [4]:

THEOREM 17. For any set� of universal-existential constraints,

if there is some
 such that for any P;Q 2 UCQ

:; 6=, a weak tem-

plate T = [� [f

^

Pg℄ exists and every instance A in it satisfies

jAj � jP j

, then we can check whether P v
�

Q holds in�P

2

.

PROOF. Assume the hypotheses. Now for every A satisfying

jAj � jP j

, A j= �, and A j= ^

P , check whether A j= ^

Q. If this

holds, then we must have T � mod(

^

Q), and therefore P v
�

Q

by Theorem 16. Otherwise, we have a counterexample.

9. QUERIES WITH K­VARIABLES
As we have seen in Theorem 5, there are sets of TGDs with no

templates and, more specifically, there are data integration settings

which have no universal set solutions as Example 3 shows. Can

we still compute certain answers in such situations? We show that

in many situations we can, by relaxing the notion of universal set

solution as follows. We write A
k

! B if

(8A

0

v A)(jA

0

j � k! A

0

! B):

That is, every restriction of A to at most k elements has a homo-

morphism into B. This notion can easily be generalized to other

kinds of mappings and it also applies to checking containment.

If A
k

! B, we say that there is a k-homomorphism from A

to B, even though this fact is not usually witnessed by a single

mapping. Nevertheless, the binary relation given by
k

! is reflexive

and transitive, and therefore
k

! gives a preordering. It turns out

this is all we need to define templates in the most general way:

we simply replace universality in the definition of template with

universality under some preordering. Here we define k-templates

for homomorphisms; a similar definition applies to other mappings.

DEFINITION 13. A set of finite structures T is a k-template for

a set of structures K if it satisfies the following conditions:

1. (k-universality) T
k

! K,

2. (conformance) T � K,

3. (finiteness) T is finite, and

4. (minimality) there is no T 0 � T such that T 0 ! T .

We define k-universal solutions similarly, using k-universality

instead of plain universality. It turns out that k-universality is all

we need to answer existential queries with k variables (we assume

variables are not reused). More precisely, CQ
k

is the set of con-

junctive queries with at most k variables (the existential quantifica-

tion has been pushed out). and UCQ

k

are unions of CQ
k

queries.

We define the other families of existential queries in a similar way.

THEOREM 18.

1. UCQ
k

is closed under k-homomorphisms.

2. MonQ

k

is closed under injective k-homomorphisms.

3. UCQ:

k

is closed under full k-homomorphisms.

4. UCQ
:; 6=

k

is closed under k-embeddings.

That is, for any of these classes of queries and the corresponding

class of mappings,

h : A

k

9 9 KB and �a 2 Q(A) implies h(�a) 2 Q(B):

PROOF. See the appendix.

THEOREM 19. If W is a k-universal set solution for S under

� for

1. homomorphisms and Q 2 CQ

k

,

2. injective homomorphisms and Q 2 MonQ

k

,

3. full homomorphisms and Q 2 UCQ

:

k

, or

4. embeddings and Q 2 UCQ

:; 6=

k

,

and Q has arity r, then

ert

�

Q

(S) = dom(S)

r

\

\

T2W

Q(T):

PROOF. (sketch) Similar to the proof of Theorems 1 and 2 using

Theorem 18 instead of Theorem 12.

THEOREM 20. For every k, there is a set �
k+1

of TGDs such

that � has a weak template and a strong k-template, but no strong

(k + 1)-template

PROOF. (sketch) Consider the set of axioms �
k+1

:

�

1

: 9x; y E(x; y)

�

2

: E(x; y) ! 9z E(y; z)

�

k+2

3

: E(u

0

; u

1

); : : : ; E(u

k+1

; u

k+2

) ! E(u

0

; u

k+2

)

fC

k+1

g is a weak template for�
k+1

and also a strong k-template.

IfG j= �

k+1

, then G must contain a cycle of length at most k+1,

so it can not be a strong (k + 1)-template.

To compute k-templates for � when � is closed under products,

we can use the following variant of the chase. Compute a chase

sequence ; = A

0

; A

1

; : : : using some chase-like algorithm, for ex-

ample the unordered minimizing chase. Simulatenously, compute

a chain of models of �: B
0

 B

1

 : : :. Such a chain can be ob-

tained, for example, by picking some enumeration of the models of

� and setting B
n

to be the product of the first n+1 models. Alter-

natively, given B
n

, we can set B
n+1

:= M

n+1

were M
n+1

is the

(n + 1)th model in this enumeration in case M
n+1

! B

n+1

and

B

n+1

:= B

n

otherwise. If we find some n;m such thatB
m

k

! A

n

we stop. The result isB
m

, which has the desired universality prop-

erty since B
m

k

! A

n

! mod(�) by Theorem 6. This can be

generalized to universal-existential constraints by considering the

situation where each A
i

and B
j

is a finite set of instances instead

of a single instance. We can show the following.

THEOREM 21. If there is a strong k-template for �, then the

procedure above using the unordered minimizing chase will termi-

nate and find it.

10. CONCLUSION
We have introduced universal set solutions and their more gen-

eral counterparts, templates, and we have shown how to use them

to compute certain answers. We have shown that any chase-like

algorithm produces strong templates and we have presented a new

chase, the unordered minimizing chase, which will always find a

strong template if there is one. We did not explore the complexity

of this new chase. Finding the core of a general structure is NP-

complete. However, we hope that the techniques for computing

cores of chase results in [9, 11] can be applied to give improve-

ments in efficiency.

We have also introduced new conditions for chase termination,

wider than those previously known. We have shown how to use

templates to check containment and containment under constraints.

Finally, we have shown that we can relax the notions of univer-

sal set solutions and templates to k-universal set solutions and k-

templates and have shown that these more relaxed notions are still

sufficient to compute certain answers to queries with at most k vari-

ables and for testing containment of queries with at most k vari-

ables.

We have also shown that the finite and unrestricted versions of

templates differ. We have an interesting situation: since we only

care about finite instances, we really need weak templates, but all

chase-like algorithms produce only strong templates. It is natural to

ask whether there are algorithms that can compute weak templates.

This remains a hard open problem, connected with the fundamen-

tal differences between finite model theory and unrestricted model

theory. We would like to close with an intriguing connection.

Given a set of instances K, set �

K := fB : 9A 2 K;A ! Bg.

Whether we consider only finite instances or unrestricted instances

should be clear from context. The following result follows from the

infinite and finite versions of the “preservation under homomor-

phisms” theorems, the latter recently proved by Benjamin Ross-

man [15].

THEOREM 22.

1. � has a strong template iff �

K is axiomatizable by a first-

order sentence, where K is the set of unrestricted models of

�.

2. � has a weak template iff �

K is axiomatizable by a first-order

sentence where K is the set of finite models of �.

11. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison Wesley, 1995.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in
relational databases. ACM Trans. Database Syst., 4(3):297–314,
1979.

[3] C. Beeri and M. Y. Vardi. A proof procedure for data dependencies.
J. ACM, 31(4):718–741, 1984.

[4] A. Deutsch, B. Ludaescher, and A. Nash. Rewriting queries using
views with access patterns under integrity constraints. In ICDT, 2005.

[5] A. Deutsch and V. Tannen. Mars: A system for publishing xml from
mixed and redundant storage. In VLDB, pages 201–212, 2003.

[6] A. Deutsch and V. Tannen. Reformulation of XML Queries and
Constraints. In ICDT, 2003.

[7] R. Fagin. Horn clauses and database dependencies. J. ACM,
29(4):952–985, 1982.

[8] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering. ICDT 2003, full version in: Theor.
Comput. Sci. 336(1): 89-124 (2005).

[9] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the
Core. In ACM PODS, pages 90–101, 2003. Full version in ACM
TODS, 30(1):147-210(2005).

[10] A. Fuxman, P. G. Kolaitis, R. J. Miller, and W. C. Tan. Peer data
exchange. In PODS, 2005.

[11] G. Gottlob and A. Nash. Data exchange: Computing cores in
polynomial time. Manuscript, Submitted for publication, 2005.

[12] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
Mediation in Peer Data Management Systems. ICDE 2003.

[13] Maier, Sagiv, and Yannakakis. On the complexity of testing
implication of functional and join dependencies. J. ACM, 1981.

[14] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of
data dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

[15] B. Rossman. Existential positive types and preservation under
homomorphisisms. In LICS, pages 467–476, 2005.

APPENDIX

A. ADDITIONAL PROOFS

PROOF. (Theorem 6)

1. Follows from the definition of
�;�a

!.

2. Follows from 5 below.

3. Follows immediately from the definition of A�.

4. If A�

!

6j= �, then for some �a and � 2 �, we must have

A

�

!

j= 9P

�

(�a) and A�

!

6j= 9C

�

(�a). But then this must also

hold for A
s

for some s, the former because the range of any

homomorphism h : 9P

�

! A

�

!

�a is finite and the latter by

monotonicity of 9C
�

. But then, by definition of fairness, there

must be A
r

for some r > s such that A
r

j= 9C

�

(�a), contra-

dicting A�

!

6j= 9C

�

(�a).

5. Assume A
n

�;�a

! A

n+1

. Then since A
n

j= 9P

�

(�a), B j=

9P

�

(h(�a)). Therefore, there is �b (possibly empty) such that

B j= C

�

(h(�a);

�

b). If � is a TGD, then we can map C
�

to

C

�

(h(�a);

�

b) to get the desired extension h0. If � is an EGD,

then h must map the equated values to the same value in B,

so the restriction hjdom(A

n+1

) is also a homomorphism.

6. Follows from 5 above.

PROOF. (Theorem 7, sketch) Part 2 follows from Theorem 6.

Therefore, if the unordered minimizing chase terminates, then there

is a strong template for �, namely the result of the chase.

For the converse of part 1, assume first that � consists only of

TGDs and assume there is a strong template fTg for � and there

is no finite unordered chase with minimization sequence starting

with ;. Then there must be an infinite unordered chase sequence

starting with ;: ; = A

0

; A

1

; A

2

; : : :. Set A�

!

=

S

i

A

i

, which is

well defined because for all i, A
i

� A

i+1

. Since fTg is a strong

template for � and A�

!

! T by Theorem 6, T ! A

�

!

. Since T is

finite, T ! A

n

for some n and, by Theorem 6, A
n

! T . But then

ore(T) and
ore(A

n

) are isomorphic and therefore both satisfy

�. Now consider the unordered chase with minimization sequence

starting with ;: A
0

; A

1

; : : :. It is easy to verify by induction that

for every s, A
s

=
ore(A

s

). In particular, A�

n

=
ore(A

n

) and

therefore A�

n

j= � and this sequence is finite.

If � consists of EGDs and TGDs, we can simulate the EGDs

with TGDs to obtain �

� as explained in [11]. Then also
ore(T)

and
ore(A

n

) are isomorphic for some n as above and the rest of

the argument goes through unchanged.

PROOF. (Theorem 10) Assume � � �. Then, by the definition,

there are A;B; �a;�b satisfying conditions 1, 2, and 3 of the defi-

nition. In particular, there is a homomorphism h : 9P

�

! B

�

b.

Set B0 to be a minimal instance such that h(B) � B

0 and such

that there is A0 � B

0 satisfying A0
�;�a

! B

0. Then A0; B0

; �a;

�

b also

satisfies condition 2 of the definition by construction, and condi-

tions 1 by monotonicity of P
�

and condition 3 by monotonicity of

C

�

together with h(B) � B

0. Furthermore, such B0 must sat-

isfy jB0

j � jC

�

j + jP

�

j so we only need to examine a finite set

of candidates A0; B0. In fact, it is enough to consider unions of

homomorphic images of P
�

with C
�

as candidates for B and re-

move from them an induced substructure isomorphic to C
�

to get

candidates for A.

PROOF. (Theorem 12, sketch)

1. Assume that h : A ! B is a homomorphism, �a 2 Q(A),

Q 2 UCQ, and Q :=

W

1�i�k

Q

i

where each Q
i

2 CQ.

Then �a 2 Q

i

(A) for some i and this happens iff there is a

homomorphism g : Q

i

! A�a, that is a homomorphism from

Q

i

to A which maps the free variables �x of Q
i

to �a. But then

h Æ g : Q

i

! Bh(�a) and therefore h(�a) 2 Q(B).

2. Assume that h : A ! B is an injective homomorphism,

�a 2 Q(A), and Q 2 MonQ. Set A0 = h(A). That is, for

every relation inA, setRA
0

= h(R

A

). ThenA0 � B and h is

an isomorphism between A and A0. Therefore, by genericity,

h(�a) 2 Q(A

0

) and by monotonicity, h(�a) 2 Q(A).

3. Simlar to part 1. If �a 2 Q
i

(A) then there is a homomorphism

g : Q

i

! A�a which also preserves the absence of some

tuples. Composing h with g gives a homomorphism which

preserves the absence of those tuples.

4. Similar to part 3, but with embeddings.

PROOF. (Theorem 14) Set �̂ and � as in the proof of Theo-

rem 13 and set ^� := � [�.

1 implies 3: Assume there is a strong template T for �. Set ^T to

consist of all expansions of all homomorphic images of instances in

T to �̂ that satisfy �. Then ^

T satisfies all conditions for a template

except minimality as follows. Conformance and finiteness are ob-

vious. If ^

B j=

^

�, then its reductionB to � satisfies � and therefore

there is A 2 T and a homomorphism h : A ! B. Then there is

A

0

= h(A) 2 T such that g : A0 ! B is injective.

3 implies 2: Assume there is a strong template ^

T for ^

�. Then

the set T of structures in ^

T reduced to the signature � all con-

ditions for an F -template except minimality as follows. Confor-

mance and finitiness are obvious. Universality is satisfied by The-

orem 13, since if B j= �, there is an expansion ^

B of B such that
^

B j=

^

�. Then there is ^

A 2

^

T such that ^

A !

^

B and therefore

the reduction A of ^

A to � satisfies A 9 9 KB. It is easy to obtain

T

0

� T which satisfies minimality as well.

2 implies 1: Assume there is a strong F -template T for �. Since

every F -mapping is a homomorphism, T satisfies all conditions

for a template, except for minimality. It is easy to obtain T 0 � T

which satisfies minimality as well.

3 iff 4: This follows from Theorem 7.

The proof above shows how to obtain each of the strong tem-

plates from the others.

PROOF. (Theorem 18) (1) Assume that A
k

! B, �a 2 Q(A),

Q 2 UCQ, and Q :=

W

1�i�k

Q

i

where each Q
i

2 CQ. Then

�a 2 Q

i

(A) for some i and this happens iff there is a homomor-

phism g : Q

i

! A�a, that is a homomorphism from Q

i

to A

which maps the free variables �x of Q
i

to �a. Since jg(Q
i

)j � k,

we have A0 v A and homomorphism h : A

0

! B. But then

h Æ g : Q

i

! Bh(�a) and therefore h(�a) 2 Q(B). The proof of 2,

3, and 4 is similar to the corresponding parts in Theorem 18.

