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ABSTRACT 

 

Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are 

widespread in the marine environment. The importance of this symbiosis to reef-building 

corals and reef nutrient and carbon cycles is well documented, but little is known about 

the mechanisms by which the partners establish and regulate the symbiosis.  Because the 

dinoflagellate symbionts live inside the cells of their host coral, the interactions between 

the partners occur on cellular and molecular levels, as each partner alters the expression 

of genes and proteins to facilitate the partnership.  These interactions can examined using 

high-throughput techniques that allow thousands of genes to be examined 

simultaneously.  We are developing the groundwork so that we can use DNA microarray 

profiling to identify genes involved in the Montastraea faveolata and Acropora palmata 

symbioses. Here we report results from the initial steps in this microarray initiative, that 

is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 

cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs 

to identify candidate genes to include in the microarrays. An understanding of how the 

coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and 

ocean sciences, conservation biology, the study and diagnosis of coral bleaching and 

disease, and comparative studies of animal-protist interactions. 

 

 

 

INTRODUCTION 

 

The field of genomics has generated new tools for studying biology at the cellular 

and molecular levels.  For example, high-throughput methods for examining gene 

expression (DNA microarrays) have allowed biologists to collect information about the 

activity levels of thousands of genes at once, thus permitting the identification of genes 

and pathways that operate in a particular scenario.  While developed primarily for 

biomedical questions, these approaches are successfully being applied to ecological and 

environmental questions.  We are interested in developing cDNA microarrays to study 
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interactions between corals and their endosymbiotic dinoflagellates.  In particular, we are 

interested in identifying genes and pathways that are involved in establishing and 

regulating the symbosis.   

 

Significance of coral-algal symbioses:  Scleractinian corals are key organisms in the 

formation of the most phylogenetically diverse of marine ecosystems, coral reefs.  Reef-

building scleractinian corals and shallow water octocorals are characterized by their 

mutualistic symbiosis with dinoflagellate algae (zooxanthellae).  By mechanisms still 

poorly understood, the zooxanthellae contribute to their hosts’ nutrition and high rates of 

calcification (e.g., Muscatine and Cernichiari 1969; Lewis and Smith 1971; Muscatine 

and Porter 1977; Chalker and Taylor 1978; Falkowski et al. 1984; Muscatine et al 1984).  

These are vulnerable ecosystems, however, because coral health is so highly dependant 

on a functioning symbiosis. Disruption of the coral-zooxanthellae symbiosis can have 

fatal consequences for the host, thus coral survival is highly correlated with a stable 

symbiotic relationship. Understanding the host-symbiont interactions gains a new sense 

of urgency under the present and increasing threat of global warming. 

Bleaching is often characterized as a stress response of the host (Glynn 1993, Brown 

1997); but is increasingly clear that the zooxanthellae may play an active role in the 

disruption of the symbiosis, when responding to stresses such as extremes in temperature 

or light (Rowen et al 1997; Perez et al 2001, Iglesias-Prieto et al 1992, Hoegh-Guldberg 

1999, Fitt et al 2001, Jones and Hoegh-Guldberg, 2001). It is critical that we begin to 

understand in more detail the events that occur to cause disruption in the symbiotic 

interaction.  However, to do this, we need to understand what is involved in the stable 

and functioning symbiosis. 

It is now well established that the genus Symbiodinium is highly speciose, with at least 

6 clades containing hundreds of distinct genotypes.  This diversity carries over to the 

symbiosis; molecular approaches have shown that some hosts can simultaneously harbor 

more than one symbiont genotype (Rowan and Knowlton, 1995, Rowan et al 1997, 

Coffroth et al 2001), and that a host’s complement of symbionts can change over time. 

For example corals recovering from bleaching became populated with a different 

genotype than they had before bleaching (Baker 2001, Baker et al. 2004, Lewis and 
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Coffroth 2004, Rowan 2004, Toller et al, 2001).  This tremendous diversity and apparent 

flexibility in host-symbiont specificity suggests that there may be complex and 

environmentally-regulated processes leading to the specificity of a particular host-

symbiont combination.  

 

Establishment of the host-symbiont relationships: When corals (scleractinian and 

octocorals) reproduce, most species produce eggs without zooxanthellae (Szmant 1986, 

Harrison and Wallace 1990).  The larvae or the newly settled polyps are faced with 

acquiring zooxanthellae from the environment.  The larvae of some species can acquire 

zooxanthellae upon development of a functioning mouth and gastric cavity (Schwarz et al 

1999, Schwarz et al 2002), and newly settled hard corals and gorgonians can acquire 

zooxanthellae within a week when maintained on the reef as well as when cultured in the 

laboratory (Coffroth et al 2001, Szmant in prep). Some corals brood their larvae to an 

advanced planula stage and most of these acquire their zooxanthellae from the parental 

colony before they are released (Szmant 1986, Harrison and Wallace 1990).  

This pattern of corals producing asymbiotic larvae, with each new generation 

acquiring zooxanthellae de novo, presents us with an ideal experimental system with 

which to study the development of the symbiosis at the molecular level.  We can rear 

large quantities of larvae and experimentally infect them with symbionts, to ask questions 

about which genes are activated or repressed when the symbiosis is initiated.  

 

The Central Dogma:  Every individual organism responds to changes in its internal or 

external environment by altering the suites of proteins that are used to respond to the 

changes.  Although it is currently impossible to build a comprehensive picture of how 

biochemical pathways are modified in response to variables, there are methods to study 

each of the steps that alter protein synthesis and behavior.  Currently, the most accessible 

stage of protein regulation that can be examined is the gene expression step, because 

microarray technology has become increasingly available to the larger scientific 

community.  Examining the gene transcript levels present in a complete mRNA sample at 

any specific time can give a reasonable approximation of which proteins are active.  By 

capturing the mRNA transcripts that are generated when genes are expressed, the 
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researcher can compare the populations of mRNA under different conditions, to identify 

genes that are upregulated or downregulated.  It is this approach we are are employing to 

study the coral symbiosis. 

 

Molecular interactions and regulation of the symbiosis:  Microarray technology is a 

relatively new and powerful technique that permits a genome-wide assessment of gene 

expression in a time series (Schena et al 1995), making it an ideal tool for examining 

complex interactions between organisms (reviewed in Gibson, 2002). This approach will 

allow us to effectively look at snapshots of the transcriptional state of genes as the 

symbiosis is initiated and as it matures. Microarray analysis can thus clarify the 

physiological process of symbiosis by relating the transcriptome to a time course that 

marks the initiation, maturation and decline of the symbiosis. An additional advantage to 

using a gene expression approach is that the large number of Expressed Sequenced Tags 

(EST) data will generate a first glance at genomic composition for these organisms that 

will benefit  any other genomic study undertaken for these species in the future.  It is 

likely that both a coral genome and a symbiont genome will be sequenced in the next few 

years, and this  EST project will be of use in annotating those genomes.   

One of our main goals is to gain a comprehensive understanding of the 

transcriptome involved in the symbiotic relationship based on both the host and symbiont 

gene expression profiles. Evidence from model organisms as diverse as yeast and mouse 

has demonstrated a marked shift in gene expression profiles under different metabolic 

states correlated with environmental conditions (De Risi et al 1997, Chu et al 1998, Lee 

et al 2000). In the case of anthozoan hosts and their symbionts, we will test the 

hypothesis that their tight mutualistic relationship is highly dependant on suites of genes 

that are differentially expressed during different stages of the symbiosis, as well as under 

varying environmental regimes.  

 

 

Experimental approach  

Our goal is to gain an understanding of how coral-algal symbioses are set up at a 

molecular level, from each partner’s perspective.  Our two working goals are: first, to 
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generate sequence data from transcriptomes of several stages of coral, symbiont, and 

symbiosis development and to perform a thorough annotation of each gene identified 

from this sequencing effort.  This will serve as a valuable resource to the entire coral 

research community, as well as to other research groups that are interested in comparative 

genomics.  Our second goal is to perform microarray expression profiling to identify 

genes and cellular pathways involved in host-zooxanthella symbioses. To develop the 

microarrays, we are constructing multiple cDNA libraries representative of different 

ontogenetic stages involved in the initiation and maintenance of symbiosis.  Based on the 

sequence information obtained under Goal 1, individual clones from each library will be 

chosen for the microarrays, with the ultimate goal of creating as comprehensive a 

selection of genes as possible from each partner.  The resulting microarrays will then be 

employed in a time course study, to identify genes that are differentially expressed under 

different stages of symbiosis.   They will also be employed to study other questions in 

coral/dinoflagellate biology, for example response to environmental stress.  

 

 

METHODS 

 

Study organisms  

We are using two scleractinian corals, Montastraea faveolata and Acropora 

palmata, and the dominant symbiont strain from each species as our study organisms.   

These two species are the major reef-building corals of the Caribbean and are therefore 

extremely important to the ecology of the Caribbean.  For many reasons, they provide an 

excellent model system for studying the symbiosis.  First, they produce azooxanthellate 

eggs and larvae that can be reared under laboratory conditions.  Second, spawning of 

these species is predictable, producing copious amounts of material to generate thousands 

of larvae (Szmant 1986, 1991).  Third, we can experimentally infect the larvae with 

selected strains of Symbiodinium.  Together, these aspects of the experimental system sets 

the stage for generating sufficient material to proceed with the microarray studies.  
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Collection of Material 

Gametes from the two coral species were collected as described in Szmant et al. 

(1997).  Conical nets suspended over spawning colonies collected the positively buoyant 

gamete bundles.  Gamete bundles from multiple colonies (and in the case of A. palmata, 

from multiple reefs) were combined within an hour of release to obtain cross-fertilization 

among different genets (these hermaphroditic species do not self-fertilize).  Sperm 

concentrations were not measured but the gametes were kept concentrated in a ratio of 20 

% gamete bundles to 80 % seawater to maintain high sperm concentrations.    After one 

hour, sperm were washed out with several rinses of clean filtered seawater.  Batches of 

fertilized eggs were put into 4 L plastic bins for culture at concentrations of about 2-3 

thousand embryos per liter.  Water was changed 2-3 times per day or whenever it became 

cloudy. 

 M. faveolata larvae reach a swimming planula stage by 48 hrs after fertilization, 

while those of A. palmata take ca. 60 hrs.  Settlement begins about 2 days later.   

 

Infection studies 

 We are currently in the process of isolating the dominant strain of Symbiodinium 

in A. palmata and M. faveolata so that our cDNA libraries will represent the host in 

association with its dominant strain.  Future studies will examine how different host-

symbiont combinations influence gene expression patterns.  Currently we have 6 and 54 

isolates from A. palmata and M. faveolata, respectively that we are genotyping using 

microsatellites.  These represent members of clade A, B and C for A. palmata and clades 

A, B, C and D for M. faveolata (data not shown).  Zooxanthella isolations and 

characterizations followed standard methods (Santos et al 2001, Coffroth et al. 2001).  

 

 

Target stages for cDNA library construction 

 

Ultimately, we will create a total of 16 cDNA libraries that will represent a range 

of stages in both host and symbiont development and symbiosis: these 16 target stages 
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are described in Table 1.  This paper describes cDNA libraries from 4 of the target stages:  

1) A. palmata eggs 2) M. faveolata eggs, 3) M. faveolata embryos and 4)  M. faveolata 

adult tissue.   

 
Stage  Source of RNA M. faveolata  A. palmata 

NS Coral Eggs Completed Completed 

NS Coral Embryos Completed In progress 

NS Coral Larvae  In progress In progress 

S Coral Larvae In progress In progress 

S Coral adult colony Completed In progress 

NS Symbiodinium grown in culture  In progress In progress 

S Symbiodinium isolated from larvae  In progress In progress 

S Native Symbiodinium isolated from adult colony  In progress In progress 

 
Table 1.  Target stages of symbiosis for which cDNA libraries will be created.  Status of 
each library is indicated for both host species and the respective strains of Symbiodinium 
used to infect the host.  NS = non-symbiotic, S = symbiotic. 
 
 
 
cDNA library construction 

 Total RNA was isolated from tissue samples using Qiazol reagent (Qiagen), 

according to manufacturer’s instructions, and passage through a 21G syringe to lyse the 

cells.  To remove residual phenol or other contaminants, the RNA was purified using an 

RNEasy clean up kit (Qiagen).   Total RNA was quantified using an Agilent Bioanalyzer.  

To construct the cDNA libraries, we chose to use the Clontech SMART cDNA Library 

Construction Kit with the pDNR-lib vector because the kit is designed to create 

directionally cloned cDNA libraries from very small amounts of starting RNA (nanogram 

to microgram amounts of total RNA).  Briefly, RNA was reverse transcribed to cDNA 

using PowerScript Reverse Transcriptase, using kit primers SMART IV Oligonucleotide 

and CDS III/3’ PCR primer.  The cDNA was PCR-amplified using the Advantage 2 PCR 

kit, using the MSART 5’ PCR III primer and CDS III/3’ PCR primer, using between 18 

and 26 cycles, depending on the starting amount of RNA.  The polymerase was removed 

with Proteinase K, and then the amplified cDNA was digested with the restriction 

enzyme SfiI, which produces different 5’ and 3’ overhanging sequences to allow for 
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directional cloning into the pDNR-lib vector.  To minimize cloning incomplete or 

degraded transcripts, we preferentially selected cDNA >500bp, by first passing the SfiI-

digested cDNA over CHROMA SPIN-400 columns, and then cutting out a >500bp smear 

from a 1.1% agarose gel.   The size-selected cDNA was ligated to the pDNR-lib vector.  

Electrocompetant cells were transformed with the vector, grown overnight in liquid 

suspension and then plated onto Teknova LB agar plates with 30µg/ml chloramphenicol.  

Depending on the library, between 2 and 5 plates were chosen for sequencing. 

 From each plate chosen for sequencing, 384 clones were robotically picked from 

the plate and processed for Rolling Circle Amplification (RCA) to amplify the vector.  

These were then sequenced from both 5’ and 3 ‘ ends, on ABI 3730 Sequencers.   

 

Sequence Assembly and Analysis 

 EST clusters and consensus sequences were generated using the Joint Genome 

Institute's Prototype EST Analysis Pipeline.  All results are preliminary.  Vector sequence 

was trimmed from each EST and then ESTs were clustered based on NCBI blastn 

similarities (Altschul 1990).  Blast hits considered significant cover at least 150 bases 

with 96% identity.  All ESTs sharing significant similarities were clustered together.  

Additionally, ESTs from the same cDNA clone, but without significant similarity, are 

placed in the same cluster.  Clusters containing a single EST are allowed: ESTs with no 

significant similarities to any other EST are given their own cluster ID number and are 

referred to as “singletons.” 

After ESTs are placed in clusters, the ESTs making up each cluster were  

assembled into a consensus sequence using phrap (Green 1996) with default parameters.  

Due to splice variants or sequencing errors, phrap may produce more than one consensus 

sequence for each cluster.  All consensus sequences are then compared to nr, using NCBI 

blastx with default parameters.  

(Note to EDITOR: we are in the process of submitting all of the EST sequences to 

GenBank and would like to have the accession numbers listed here, once we receive 

them.) 
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Categorization of ESTs into larger-order biological functions 

 Our goal is to comprehensively annotate the ESTs in order to select genes that 

may be involved in biological pathways in host-symbiont interactions, for example roles 

in immunity (i.e. host-symbiont recognition), calcification, and specific metabolic 

pathways. To begin developing ways to group genes into pathways and higher-order 

biological categories, we performed a tblastx search against a TIGR database of human 

ESTs, each of which has a unique ID number that connects the EST to an assigned 

biological function (EGAD, The Expressed Gene Anatomy Database; 

http://www.tigr.org/tdb/egad/egad.shtml).  The sequences in our libraries that matched 

EGAD sequences were sorted into biological categories and summed.  We then 

calculated the fraction of EGAD matches that fall into each higher order category.   

 

 

RESULTS 

 

cDNA library sequence assembly and annotation  

 We have constructed four  cDNA libraries from the following tissues, A. 

palmata eggs, M. faveolata eggs, M. faveolata 60 hour old embryos, and M. faveolata 

adult.  We sequenced 3450 clones from both the 5’ and 3’ ends, to generate 6995 ESTs 

that assembled into 2144 clusters (i.e., two or more ESTs that overlap for part or all of 

their length, see methods) and 1552 singletons (i.e., a single EST sequence that does not 

match or overlap with any other EST sequence from that cDNA library, see methods). A 

summary of the cDNA libraries is shown in Table 2. 

We performed blastx searches against the non-redundant (nr) databases at 

GenBank to 1) assign putative identities to the genes in our libraries (Table 3), and 2) to 

determine the how many of the sequences in our libraries may represent “novel” 

sequences (Table 2).  To identify which sequences may represent “novel” sequences (i.e., 

almost certainly do not match any other sequence in the nr databases) we assigned a 

cutoff E value of 0.1 (Table 2).  The E value represents a statistical measure of the 

number of times one might expect to see a query sequence match another sequence in the 
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NCBI nr databases merely by chance (for example, an E value of 1e-6 has a one in a 

million chance of mistakenly matching with another sequence).   

  

 
 

Library 
# of 

ESTs 
# of 

Clusters 
Average length 
(# bp/cluster) 

ESTs/ 
Cluster 

# of 
Singletons 

% of library 
with no blastx 

match 
Ap eggs 4543 1210 820 3.77 774 42% 
Mf eggs 399 105 3.80 91 
Mf embryos 471 185 2.55 149 
Mf adults 1482 644 

 
560 

2.30 558 

 
73% 

 
Table 2. Summary of EST Assembly and Cluster sequence novelty.   

 
 
To examine some of the genes to which an almost certain identity could be 

assigned, we have drawn up a table showing the top ten blastx hits (based on 

significance). We excluded from this list any of the top blastx hits to mitochondrial genes 

and genes encoding ribosomal proteins. The top ten non-mitochondrial, non-ribosomal 

hits, based on E values, are shown for each library in Table 3. 

 

 
Cluster ID 

(cluster 
length) 

 
Organsim 

blastx top hits 
(NCBI Definition line) 

 
Accession  

 
E value 

Acropora palmata egg cDNA library 

161469 
(1254 bp) 

Strongylocentrotus 
purpuratus 

Actin, cytoskeletal IIB  113243 
 

e0.0 

160964 
(784 bp) 

Mus musculus similar to DYSKERIN 
 

28530336 
 

1e-177 

161030 
(1475 bp) 

Homo sapiens Serine/threonine protein phosphatase 2A 7387498 
 

1e-174 

161851 
(1258 bp) 

Homo sapiens protein phosphatase 1, catalytic subunit 4506005 
 

1e-172 

161779 
(1367 bp) 

Homo sapiens SH2 domain binding protein 1 7661950 1e-169 

161342 
(1407 bp) 

Homo sapiens chromosome 20 open reading frame 23; 
sorting nexin 23 

31077079 
 

1e-153 

161186 
(883 bp) 

Homo sapiens MAP/microtubule affinity-regulating 
kinase 2  

30583523 
 

1e-153 

160953 
(1231 bp) 

Xenopus laevis XNop56 protein 
 

14799394 1e-149 

162082 
(1078 bp) 

Xenopus laevis CRM1/XPO1 protein 5690335 1e-148 

161197 
(1486 bp) 

Danio rerio ribonucleotide reductase M2 polypeptide 18859327 
 

1e-147 
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Montastraea faveolata egg cDNA library 
140530 
(645 bp) 

Rattus norvegicus Adapter-related protein complex 2 
(Alpha-adaptin C) 

113337 1e-91 

140517 (683 
bp) 

Homo sapiens transcription factor ICBP90 
 

6815251 
 

1e-82 

140495 
(563 bp) 

Homo sapiens Coatomer delta subunit (Delta-coat 
protein) 

1351970 3e-70 

140526 
(426 bp) 

 

Mus musculus zinc finger protein 403; dioxin inducible 
factor 3  

23346591 7e-58 

140523 
(617 bp) 

Homo sapiens ubiquitin carrier protein E2 - human 
 

345829 3e-51 

140450 
(1374 bp) 

Homo sapiens protein tyrosine phosphatase type IVA, 
member 1 
 

4506283 
 

3e-51 

140540 
(644 bp) 

Nymphicus 
hollandicus 

chromodomain helicase DNA binding 
protein 1 
 

5917756 
 

2e-50 
 

140521 
(714 bp) 

Mus musculus Ser/Arg-related nuclear matrix protein 7949115 1e-48 

140493 
(499 bp) 

Homo sapiens tumor necrosis factor type 1 receptor 
associated protein 2 

687239 
 

2e-48 

140441 
(447 bp) 

Mus musculus Kars protein 23270695 4e-42 

Montastraea faveolata embryo cDNA library 
140574 
(622 bp) 

Rattus norvegicus dynein, cytoplasmic, heavy chain 1 
 

31377489 
 

4e-83 
 

140672 
(724 bp) 

Homo sapiens ubiquitin specific protease 7  
 

4507857 5e-65 

140723 
(557 bp) 

Mus musculus Cysteinyl-tRNA-synthetase  
 

11191800 
 

3e-50 

140553 
(490 bp) 

Dictyostelium 
discoideum 

Fimbrin 
 

1706804 
 

2e-45 

140689 
(690 bp) 

Gallus gallus 
 

Transcriptional regulator Erg 3913600 2e-44 

140704 
(403 bp) 

Mus musculus 5'-3' exoribonuclease 1 6756025 
 

3e-38 

140635 
(318 bp) 

Bovine viral 
diarrhea virus 2 
 

polyprotein  5523975 9e-34 

140660 
(465 bp) 

Danio rerio Heat shock transcription factor 1a 8117742 8e-29 

140545 
(676 bp) 

Dictyostelium 
discoideum 

dynamin like protein 
 

2689219 
 

6e-24 

140626 
(249 bp) 

Homo sapiens Eukaryotic translation initiation factor 2 
subunit 1 (eIF-2A) 

124200 
 

3e-19 

Montastraea faveolata adult cDNA library 
141223 

(1279 bp) 
Sus scrofa cytosolic malate dehydrogenase 6226874 

 
 

1e-127 
 

140786 
(619 bp) 

Rattus norvegicus Dynein heavy chain 729378 4e-83 
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141158 
(556 bp) 

Montastraea 
cavernosa 

cyan fluorescent protein 
 

32188174 4e-78 

140803 
(568 bp) 

Branchiostoma 
belcheri 
tsingtaunese 

ubiquitin/ribosomal protein S27a fusion 
protein 

18071662 
 

3e-60 

141101 
(934 bp) 

Homo sapiens Pre-mRNA branch site protein p14  12585536 9e-48 

140922 
(594 bp) 

Mus musculus RING finger protein 7  37538006 8e-45 

141186 
(504 bp) 

Branchiostoma 
belcheri 
tsingtaunese 

cathepsin B 34979797 4e-42 

140852 
(544 bp) 

Hordeum vulgare 
subsp. vulgare 

14-3-3 protein homologue 
 

22607 
 

1e-41 

140868 
(655 bp) 

Morone saxatilis myosin heavy chain FM3A 10440888 9e-36 

141190 
(968 bp) 

Galaxea 
fascicularis 

galaxin 26106077  3e-35 

 
Table 3.  Top ten Blastx hits from each cDNA library. 
 
 

To begin developing ways to group expressed genes into pathways and higher-

order biological categories, we performed a tblastx search against a TIGR database 

(EGAD) of human ESTs each of which has a unique ID number that connects the EST to 

an assigned biological function.  The sequences in our libraries that matched EGAD 

sequences were sorted into biological categories and summed.  In this way, we were able 

to determine the fraction of each library that is composed of genes belonging to these 

higher order categories (Figure 1).  The cDNA libraries generated from eggs of both A. 

palmata  and M. faveolata  contained a high proportion of genes belonging to such 

functional categories as gene/protein expression, metabolism and cell/organism defense.  

In the libraries from embryos and the adult tissue of M. faveolata gene/protein expression 

genes were most abundant (Figure 1). 

 

 

DISCUSSION 

 
 This paper describes our initial efforts to develop the tools to examine coral-

dinoflagellate symbiosis using cDNA microarrays.  To date we have constructed 4 cDNA 

libraries from coral eggs, embryos, and adults.  We have sequenced 3450 clones and have 
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annotated the corresponding ESTs using blastx to assign putative identities to the genes, 

and EGAD to assign larger-order biological function to each gene.  From these 

preliminary annotation efforts, it is clear that the cDNA libraries show differences in gene 

expression (Figure 1), for example the embryo and adult libraries are enriched in 

members of the gene and protein expression categories.  Ultimately we would like to 

develop other methods to categorize genes into more specific categories, for example a 

particular signal transduction pathway, or genes that play roles in innate immunity.  This 

will require the development of additional computational tools to annotate ESTs for 

functional categories. 

 We are interested in gaining as comprehensive a collection of cDNAs as possible, 

from the hosts and their symbionts, so that our microarrays will be representative and 

non-redundant. The main challenge in developing cDNA libraries is that they often 

contain large amounts of ribosomal RNA and mitochondrial genes, so that unless these 

are somehow filtered out, the microarrays would contain large numbers of unwanted 

rRNA and mitochondrial cDNA spots.  By sequencing large numbers of cDNAs, we can 

selectively avoid clones that represent rRNA and mitochondrial genes, and choose clones 

that represent genes that we wish to examine.  However, we will not be able to examine 

every gene that is expressed at every target stage; even after sequencing almost 2300 

clones from the Acropora palmata egg library, we were still uncovering sequences that 

represented new genes within that library.  It would be impractical to sequence enough 

clones so that we could include in our microarrays all genes that are expressed at each 

target stage.  Thus we will have to balance the effort and cost of sequencing with the goal 

of creating microarrays with a comprehensive collection of genes. 

 The next steps in this project will be to construct the rest of the cDNA libraries 

and then construct the microarrays.  Eventually, we hope that the microarrays will 

provide a tool for the coral research community to examine a variety of questions. For 

example, we envision that the microarrays will be useful both for the study of coral 

symbiosis, as well as the study of coral disease, as many host genes involved in the 

establishment of the symbiosis may also play roles in the response to pathogenic 

organisms.  We will also be able to use the microarrays to examine the symbiosis with 

different host-symbiont combinations, or under different environmental conditions.   
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Figure 1. Relative abundance of genes belonging to larger-order biological processes in 
cDNA libraries representing two species and 3 developmental stages.  Developmental 
stages are organized by column, and species are organized by row (top row, Acropora 
palmata; bottom row Montastraea faveolata).  The notation shown for the Ap library is 
the same as for the Mf libraries. 
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