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Method

Functional DNA methylation differences between
tissues, cell types, and across individuals discovered
using the M&M algorithm
Bo Zhang,1,16 Yan Zhou,2,3,16 Nan Lin,4,16 Rebecca F. Lowdon,1,16 Chibo Hong,5

Raman P. Nagarajan,5 Jeffrey B. Cheng,6 Daofeng Li,1 Michael Stevens,1 Hyung Joo Lee,1

Xiaoyun Xing,1 Jia Zhou,1 Vasavi Sundaram,1 GiNell Elliott,1 Junchen Gu,1 Taoping Shi,1,17

Philippe Gascard,7 Mahvash Sigaroudinia,7 Thea D. Tlsty,7 Theresa Kadlecek,8

Arthur Weiss,8 Henriette O’Geen,9 Peggy J. Farnham,10 Cécile L. Maire,11

Keith L. Ligon,11,12 Pamela A.F. Madden,13 Angela Tam,14 Richard Moore,14

Martin Hirst,14,15 Marco A. Marra,14 Baoxue Zhang,2,18 Joseph F. Costello,5,18

and Ting Wang1,18

1–15[Author affiliations appear at the end of the paper.]

DNA methylation plays key roles in diverse biological processes such as X chromosome inactivation, transposable element
repression, genomic imprinting, and tissue-specific gene expression. Sequencing-based DNA methylation profiling pro-
vides an unprecedented opportunity to map and compare complete DNA methylomes. This includes one of the most
widely applied technologies for measuring DNA methylation: methylated DNA immunoprecipitation followed by se-
quencing (MeDIP-seq), coupled with a complementary method, methylation-sensitive restriction enzyme sequencing
(MRE-seq). A computational approach that integrates data from these two different but complementary assays and
predicts methylation differences between samples has been unavailable. Here, we present a novel integrative statistical
framework M&M (for integration of MeDIP-seq and MRE-seq) that dynamically scales, normalizes, and combines MeDIP-
seq and MRE-seq data to detect differentially methylated regions. Using sample-matched whole-genome bisulfite se-
quencing (WGBS) as a gold standard, we demonstrate superior accuracy and reproducibility of M&M compared to
existing analytical methods for MeDIP-seq data alone. M&M leverages the complementary nature of MeDIP-seq and MRE-
seq data to allow rapid comparative analysis between whole methylomes at a fraction of the cost of WGBS. Comprehensive
analysis of nineteen human DNA methylomes with M&M reveals distinct DNA methylation patterns among different
tissue types, cell types, and individuals, potentially underscoring divergent epigenetic regulation at different scales of
phenotypic diversity. We find that differential DNA methylation at enhancer elements, with concurrent changes in
histone modifications and transcription factor binding, is common at the cell, tissue, and individual levels, whereas
promoter methylation is more prominent in reinforcing fundamental tissue identities.

[Supplemental material is available for this article.]

The haploid human genome contains ;28 million CpGs that exist

in methylated, hydroxymethylated, or unmethylated states. The

methylation status of cytosines in CpGs influences protein–DNA

interactions and chromatin structure and stability, and conse-

quently plays a vital role in the regulation of biological processes

such as transcription, X chromosome inactivation, genomic im-

printing, host defense against endogenous parasitic sequences,

and embryonic development, as well as possibly playing a role in

learning and memory (Watt and Molloy 1988; Boyes and Bird

1991; Khulan et al. 2006; Suzuki and Bird 2008; Laird 2010; Day

and Sweatt 2011; Jones 2012). Recent genome-wide studies re-

vealed that DNA methylation patterns in mammals are tissue-

specific (Eckhardt et al. 2006; Khulan et al. 2006; Kitamura et al.

2007; Illingworth et al. 2008; Maunakea et al. 2010), as has been

reported for individual genes. However, our current understanding

of the regulatory role of tissue-specific DNA methylation remains

incomplete. Until recently, this has been limited by our ability to

comprehensively and accurately assess the genomic distribution of

tissue-specific DNA methylation (Laird 2010; Bock 2012) and by

the lack of methylome maps of many human tissues and primary

cell types.

Sequencing-based DNA methylation profiling methods pro-

vide an opportunity to map complete DNA methylomes. These

technologies include whole-genome bisulfite sequencing (WGBS,

MethylC-seq [Cokus et al. 2008; Lister et al. 2009] or BS-seq [Laurent

et al. 2010]), reduced-representation bisulfite-sequencing (RRBS)
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(Meissner et al. 2005, 2008), enrichment-based methods (MeDIP-

seq [Weber et al. 2005; Maunakea et al. 2010], MBD-seq [Serre

et al. 2009]), and methylation-sensitive restriction enzyme based

methods (HELP [Suzuki and Greally 2010], MRE-seq [Maunakea

et al. 2010]). These methods yield largely concordant results but

differ significantly in the extent of genomic CpG coverage, res-

olution, quantitative accuracy, and cost (Bock et al. 2010; Harris

et al. 2010). For example, WGBS-based methods produce the most

comprehensive and high-resolution DNA methylome maps, but

typically require sequencing to 303 coverage which is still ex-

pensive for the routine analysis of many samples, particularly those

with a large methylome (e.g., human). Additionally, bisulfite-based

methods, including WGBS and RRBS, conflate methylcytosine (mC)

and hydroxymethylcytosine (hmC) (Huang et al. 2010) unless com-

bined with additional experiments (Booth et al. 2012; Yu et al. 2012).

Because MeDIP-seq generates cost-effective and whole-

genome methylation data, it is currently a widely used sequencing-

based method for whole-methylome analysis. MeDIP-seq relies

on an anti-methylcytidine antibody to immunoprecipitate

methylcytosine-containing randomly sheared genomic DNA

fragments. Therefore, MeDIP-seq read density is proportional to the

DNA methylation level in a given region. The anti-methylcytidine

antibody used in MeDIP does not bind hmC, although DNA frag-

ments with both mC and hmC could be immunoprecipitated in

this protocol. Importantly, local methylated CpG density also in-

fluences MeDIP enrichment and must be accounted for in analyzing

MeDIP data (Pelizzola et al. 2008; Laird 2010; Robinson et al. 2010).

Several computational tools have been developed for analyzing

MeDIP data using a CpG coupling factor to normalize MeDIP

signal across regions with differing mCpG densities. These in-

clude Batman (Down et al. 2008), which implements a Bayesian

deconvolution strategy, and MEDIPS (Chavez et al. 2010), which

produces similar results as Batman but with higher computa-

tional efficiency.

MRE-seq is a complementary approach to MeDIP-seq that

identifies unmethylated CpG sites in the restriction sites for mul-

tiple methylation-sensitive restriction enzymes (Harris et al. 2010;

Maunakea et al. 2010). By using simple heuristics, we demonstrated

that the combination of these two methods showed promise in

identifying differentially methylated regions (DMRs) as well as

intermediate or monoallelic methylation (Harris et al. 2010). Here,

we further explore and leverage the complementary nature of

MeDIP-seq and MRE-seq by integrating them in a statistical frame-

work. Our approach is based on the principle that all observed

genome-wide measurements (MeDIP-seq, MRE-seq, WGBS, etc.)

are derived from methylation states of the sample. We infer

methylation states from the observed data, which are sequencing

reads aligned to the reference genome. However, all current ap-

proaches to assessing DNA methylation have their own inherent

errors and biases. Because MeDIP-seq and MRE-seq are indepen-

dent, complementary measurements of the same methylation

states, our confidence in inferring methylation states should in-

crease when results from these two methods are integrated

(Stevens et al. 2013). For example, a decrease of MeDIP-seq signal

could reflect a biological event (we infer that this region is

demethylated) or could be a methodological artifact; but if it is

corroborated by an increase of MRE-seq signal, then the inference

of demethylation is much more likely to be accurate. Thus, in-

tegrating MeDIP-seq and MRE-seq is expected to improve our ability

to detect DMRs accurately.

Here, we describe a novel statistical framework which we call

‘‘M&M’’ (for integration of MeDIP-seq and MRE-seq) that detects

DMRs. M&M explicitly models the relationship between DNA

methylation level, CpG content, and expected MeDIP and MRE

reads in any given genomic context. By analyzing WGBS, MeDIP-

seq, and MRE-seq data for the same DNA samples, we show that

M&M outperforms MEDIPS in detecting DMRs. We applied M&M

to 19 human samples representing nine cell types from four tissues

(embryonic stem cells, breast, blood, and brain) which we assayed

with MeDIP-seq and MRE-seq. Our results revealed a large, defini-

tive panel of known and mostly novel tissue type-, cell type-, and

individual-specific DNA methylation differences. Consistent with

expectations, we identified enrichment of DMRs in promoter re-

gions of genes with tissue-specific functions. Importantly, we

identified a large number of DMRs that were undermethylated in

tissues where the same local region also harbored enhancer chro-

matin signatures. These enhancer-marked DMRs comprised 30%

of the tissue-specific DMRs, >70% of the cell type-specific DMRs,

and >40% of the individual-specific DMR landscape.

Results

Summary of the M&M algorithm

Differentially methylated regions (DMRs) are defined as any ge-

nomic region where the overall CpG methylation levels are sta-

tistically significantly different between cell populations of two

samples being compared. The M&M algorithm identifies DMRs by

computing a probability score for the difference in DNA methyl-

ation for any given genomic region based on observed MeDIP-seq

and MRE-seq measurements. We made several simple assumptions

and definitions. First, we only considered CpG methylation and

made the reasonable assumption that all signals obtained from

MeDIP-seq and MRE-seq are the result of CpG methylation. We

note that methylation of cytosines in the non-CpG context (i.e.,

CHG and CHH) is rare in somatic cells but is more common in

embryonic stem cells, albeit at low levels at any given site, and is

associated with highly methylated CpGs (Lister et al. 2009). The

biological significance of CHG and CHH methylation in mam-

malian cells is yet to be determined. Our statistical model is general

enough to incorporate non-CpG cytosine methylation, but to fa-

cilitate comparisons with existing tools, we only considered CpG

methylation in this study. Second, we assumed that MeDIP-seq

signal is proportional to the number of methylated CpGs in any

given region. This assumption was made by previously published

tools (Pelizzola et al. 2008; Chavez et al. 2010; Maunakea et al.

2010), and we confirmed that the rule, in general, holds (Sup-

plemental Fig. S1A). Third, we assumed that MRE-seq signal is

proportional to the number of unmethylated CpGs at the enzyme

recognition sites (defined as MRE sites) (Supplemental Fig. S1B).

We further assumed that, within the same region of interest,

methylation levels of CpGs in MRE sites reflect levels of nearby

CpGs that are not within the MRE sites. Finally, we defined meth-

ylation level (m) as the proportion of methylated CpGs versus total

CpGs in a given region. Thus, observed MeDIP-seq and MRE-seq

data become a function of methylation level, CpG content, and

MRE site content of a given genomic region. MeDIP-seq signal and

MRE-seq signal are related by the methylation level, m, of the region,

with their expectations proportional to m and (1�m), respectively.

When comparing two samples in the same genomic region, we are

testing the null hypothesis that methylation levels are the same

between the samples. This hypothesis is conditioned on the ob-

served MeDIP-seq and MRE-seq data, given the CpG content and

MRE-site content; CpG and MRE-site content are fixed for any

Genome Research 1523
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specific genomic region when SNP, mutation, or copy number dif-

ferences are not considered. When genetic variation data is available

for the sample, corrections can be made to reflect known variation.

To better formulate the problem, we illustrate the algorithm by

taking a window-based approach and partitioning the reference

genome into B equally spaced, nonoverlapping windows (typically

500 bp in size). We only considered windows that contain CpG

sites. For the ith i = 1; . . . ;Bð Þ window, let mi denote the number of

CpGs and ki denote the number of CpGs in MRE sites. Let X1i and

X2i denote the MeDIP-seq read counts of the two samples being

compared. Since many CpGs are not in MRE sites, MRE-seq read

counts are not on the same scale as MeDIP-seq read counts. To

integrate the two signals into the same framework, we normalized

the raw MRE-seq read counts by multiplying a scaling factor mi=ki,

and call the normalized MRE-seq read counts Y1i and Y2i. We then

assumed that X1i, X2i, Y1i, and Y2i are mutually independent

Poisson random variables with expected values E Xji

� �
= lji and

E Yji

� �
= gji, where j = 1;2 refers to the two samples being com-

pared. Let Lj1 = +B
i = 1lji and Lj2 = +B

i = 1gji. We then modeled the

expected values of Xji and Yji as

E(Xji) ¼ lji ¼
mjimi

Sj1
Lj1 and E Yji

� �
¼ gji ¼

(1� mji)mi

Sj2
Lj2; ð1Þ

where Sj1 = +B
i = 1mjimi, Sj2 = +B

i = 1(1� mji)mi, and m1i and m2i are the

unknown methylation levels of the two samples in the ith window.

Under this model, we detected DMRs by testing for all

i = 1; . . . ;B;

H0 : m1i ¼ m2i versus H1 : m1i 6¼ m2i ; ð2Þ

which is equivalent to testing

H0 : m1i 1� m2ið Þ ¼ m2i 1� m1ið Þ versus H1 : m1i 1� m2ið Þ
6¼ m2i 1� m1ið Þ : ð3Þ

From Equation 1, we can rewrite Equation 3 as

H0 : c1l1ig2i ¼ c2l2ig1i versus H1 : c1l1ig2i 6¼ c2l2ig1i ; ð4Þ

where c1 = S11L21ð Þ= S21L11ð Þ and c2 = S12L22ð Þ= S22L12ð Þ can be esti-

mated from the data. Note that Lj1 and Lj2 can be estimated from

the observed read counts, whereas Sj1 and Sj2 cannot be directly

estimated, but their ratio can. We then used a conditional test

based on the test statistic:

Ti ¼ c1X1iY2i � c2X2iY1i :

Let ni be the sum of the observed MeDIP-seq and MRE-seq read

counts in the ith bin. Based on Agresti (2007), given ni, the joint

distribution of X1i, X2i, Y1i, and Y2i is a multinomial distribution

(Supplemental Notes), which allows deriving the P-value defined as

pi ¼ P Tij j > tij kX1i þX2i þ Y1i þ Y2i ¼ nið Þ ; ð5Þ

where ti is the observed value of Ti. For windows in which only

MeDIP-seq data are available, let T 9
i = c1X1i �X2i. Then, the P-value

is given by pi = P T 9
i

�� �� > t9
i

�� jX1i + X2i = ni

� �
with t9

i being the observed

value of T 9
i . In this case, our method reduces to the SAGE test

(Robinson and Oshlack 2010). When the total read count ni is large,

we can achieve accurate analytical approximation to the discrete

P-value in Equation 5 by normal approximation to estimate

P-values analytically (Lehmann and Romano 2005) (Supple-

mental Notes).

Finally, since we applied M&M to genomic windows genome-

wide, the genome-wide false discovery rate (FDR) was controlled

using the group Benjamini-Hochberg method previously described

in Hu et al. (2010).

The overall flow of the M&M algorithm is illustrated in Sup-

plemental Figure S2 to facilitate understanding. Additional details

of the M&M algorithm are described in Supplemental Notes.

Benchmarking M&M’s performance

Because M&M implements a novel test statistic, we evaluated

its sensitivity, specificity, and reproducibility on multiple DNA

methylomes from human tissues and populations of cells strongly

enriched for individual cell types. We tested the performance of

M&M against MEDIPS.

We generated complete DNA methylome data for 19 human

samples (Supplemental Table 1) as a part of the NIH Roadmap

Epigenomics project (Bernstein et al. 2010). Tissue and primary cell

types included embryonic stem cells (H1 ESCs), fetal brain tissue,

neural stem cells (neurosphere cultured cells, ganglionic eminence

derived), adult breast epithelial cells (luminal epithelial cells,

myoepithelial cells, and a stem cell-enriched population), unfrac-

tionated peripheral blood mononuclear cells (PBMCs), and adult

immune cells (CD4+ naive and memory and CD8+ naive cells). All

samples were assayed by both MeDIP-seq and MRE-seq. For H1

ESC, two biological replicates were obtained. In addition, we ob-

tained WGBS data for H1 ESCs (Lister et al. 2009). We also gener-

ated a second WGBS data set for short-term cultured human fetal

neural stem cells (HuFNSC02, neurosphere cultured cells [NSCs],

ganglionic eminence derived, fetal age of 21 wk) for which we also

generated MeDIP-seq and MRE-seq data. We compared M&M’s

performance against that of MEDIPS by applying M&M and

MEDIPS (which uses MeDIP-seq data only) for pairwise compar-

isons between the two H1 ESC replicates and between H1 ESCs

and fetal NSCs. All tests were performed on 500-bp-sized, non-

overlapping windows genome-wide (a total of 5,313,352 windows;

windows without CpGs in the hg19 build of the human genome

were not considered). In each pairwise comparison, M&M and

MEDIPS generated a P-value for each window, which was used to

determine if the region within the window exhibited differential

methylation between the two samples. In addition, for each DMR,

the relative methylation status for the two samples was also de-

termined, i.e., which sample was relatively hypermethylated and

which sample was relatively hypomethylated.

We then examined the distribution of P-values across the

different comparisons. In Figure 1A, we plotted histograms of all

P-values generated by M&M when comparing the two H1 ESC

biological replicates and when comparing H1 ESCs and fetal NSCs.

The x-axis denotes negative log10 transformed P-values, and the

y-axis denotes the log10 transformed number of DMRs at each

P-value cutoff. Similarly, in Figure 1B, we plotted P-values from the

same comparisons made by MEDIPS. At any reasonable cutoff,

M&M and MEDIPS both predicted more DMRs between H1 ESCs

and fetal NSCs than between the two H1 ESC replicates, consistent

with our expectations. Because the H1 ESC samples are biological

replicates, this comparison can be used to estimate the number

of false positives at any P-value cutoff. At a P-value less than 1 3

10�10, M&M reported 70 DMRs, while MEDIPS reported 2066

DMRs. Thus, the false positives rate was 0.43% for M&M and

18.51% for MEDIPS. Using the same P-value cutoff for the com-

parison between two different cell types, i.e., H1 ESCs and fetal

NSCs, M&M reported 16,398 DMRs, while MEDIPS reported

Zhang et al.
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Figure 1. Benchmarking the performance of M&M. (A) The distribution of P-values generated by M&M when comparing two H1 ESC biological
replicates (blue area) and when comparing H1 ESC and fetal NSC (red area). At a P-value cutoff of less than 1 3 10�10 (green line), M&M predicted
70 DMRs between the two H1 samples, and 16,398 DMRs between H1 ESC and fetal NSC. (B) The distribution of P-values generated by MEDIPS for the
same comparisons as in A. At a P-value cutoff of less than 1 3 10�10 (green line), MEDIPS predicted 2066 DMRs between the two H1 ESC replicates, and
11,162 DMRs between H1 ESC and fetal NSC. (C ) Whole-genome bisulfite sequencing (WGBS) data were used to validate DMRs predicted by M&M
between H1 ESC and fetal NSC. DMRs predicted by M&M were ranked according to their P-values, then average DNA methylation levels for each of the
top 1000 significantly hypermethylated DMRs (red) and the top 1000 significantly hypomethylated DMRs (blue) in fetal NSC were computed using WGBS
data from the same two samples (H1 ESC and fetal NSC). Distribution of the DNA methylation level differences was plotted for hypermethylated DMRs and
hypomethylated DMRs separately. The gray area represents the distribution of DNA methylation differences in the whole-genome background, calculated
at 500-bp-window resolution using the same WGBS data sets. (D) Same as C, except that DMRs were predicted by MEDIPS. (E) DNA methylation
differences between H1 ESC and fetal NSC were calculated using WGBS data for individual CpGs within the top 500, 1000, 2000, 5000, and 10,000
hypermethylated and hypomethylated DMRs (predicted by M&M, at varying cutoffs). These values were plotted as a boxplot. (F) Same as E, except that
DMRs were predicted by MEDIPS. (G) Concordance between M&M (red) or MEDIPS (blue) predicted DMRs and differential methylation for these regions
calculated from WGBS data. DMRs predicted by M&M and MEDIPS were ranked based on their P-values. At different cutoffs, DMRs were determined to be
concordant with WGBS data (if differences in WGBS data were greater than 0.1 and were in the correct direction). (H) Reproducibility of DMR predictions
in M&M (red) and MEDIPS (blue). DMR discovery was performed between two cell types from the same individual and repeated in a second individual.
DMRs identified in each individual were ranked according to their P-values and intersected between the two individuals. The percentages of overlapping
DMRs at different cutoffs were plotted.
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11,162; only about 70 DMRs called by M&M from the H1 vs. fetal

NSC comparison were expected to be false positives, while about

2066 of the DMRs called by MEDIPS could be false positives.

These numbers suggest that M&M has higher specificity com-

pared to MEDIPS.

To compare the sensitivities of the methods, we examined

the enrichment of individual CpGs with significantly different

methylation levels within the predicted DMRs. We focused again

on the comparison between H1 ESC and fetal NSC samples because

WGBS was available for both samples from which we could derive

methylation levels at single CpG resolution. In this pairwise com-

parison, we used M&M or MEDIPS to define any DMR in which fetal

NSCs had a higher methylation level than H1 ESC as a hyper-

methylated DMR, and any DMR in which fetal NSCs had a lower

methylation level than H1 ESC as a hypomethylated DMR. Based on

ranked P-values, we used the top 1000 predicted hypermethylated

DMRs and top 1000 hypomethylated DMRs for this comparison.

Using the WGBS data, we derived methylation levels for individual

CpGs located within the predicted DMRs. We then calculated

methylation level differences by subtracting the individual CpG

methylation values in H1 ESCs from their values in fetal NSCs.

The histograms of individual CpG methylation level differences

were plotted for both hypermethylated DMRs and hypomethyl-

ated DMRs, as shown in Figure 1, C and D for M&M and MEDIPS,

respectively. Compared to the background methylation level dif-

ferences between the two cell types, the top 2000 DMRs predicted

by M&M were enriched for differentially methylated CpGs. While

MEDIPS also enriched for differentially methylated CpGs, it did

so to a much lesser degree than M&M. The trend remained the

same when we compared differing numbers of top predicted DMRs

(Fig. 1E,F).

We then analyzed the concordance between these DMR pre-

dictions with the WGBS data. For any predicted DMR, we defined it

as concordant if it was predicted as a hypermethylated (or hypo-

methylated) DMR by M&M or MEDIPS and the averaged differ-

ences of WGBS methylation values across all CpGs in the DMR

were greater than 0.1 (or less than �0.1; fetal NSC WGBS values

minus H1 ESC WGBS values). Otherwise, the predicted DMR was

called a discordant prediction. The rates of concordance for both

M&M and MEDIPS were plotted for the top DMRs generated at

increasingly relaxed statistical cutoffs (Fig. 1G). The high concor-

dance between M&M’s prediction and actual CpG methylation

differences inferred from WGBS data was robust regardless of the

P-value used. Furthermore, M&M’s concordance rate was higher

than that of MEDIPS.

We also examined the reproducibility of DMR predictions be-

tween biological replicates. We performed comparisons using the

same two cell types isolated from two different individuals—breast

luminal epithelial cell samples (RM066BreLum and RM070BreLum)

and breast myoepithelial cell samples (RM066BreMyo and

RM070BreMyo). The comparison between two cell types from

one individual should enrich for DMRs underlying cell type speci-

ficity, and these DMRs should be identified again in the comparison

between the same two cell types of another individual. We exam-

ined reproducibility by intersecting the DMRs from both in-

dividuals at multiple P-value cutoffs. M&M had three- to fourfold

higher reproducibility than MEDIPS in this analysis (Fig. 1H).

In addition to these evaluations, we also examined the agree-

ment among DMRs detected by M&M, MEDIPS, and by WGBS,

between H1 ESC and fetal NSC (Methods). Of the top 10,000 DMRs

predicted by each method, M&M and WGBS overlapped by

4224, while MEDIPS and WGBS overlapped by 2979 (Supplemental

Fig. S3A). As expected, the average DNA methylation difference

(calculated by using WGBS data) was the greatest for the DMRs

predicted by two methods; interestingly, DMRs predicted by M&M

only and DMRs predicted by WGBS only had almost identical av-

erage DNA methylation differences, while those predicted by

MEDIPS only had smaller DNA methylation differences (Supple-

mental Fig. S3B).

Overall, we conclude that M&M has high specificity, sensi-

tivity, and reproducibility, and exhibits superior performance in

terms of these metrics when compared to a recently published

MeDIP-seq analysis method, MEDIPS. We hypothesize that the

improved prediction of DMRs when using the M&M algorithm

likely results from the integration of complementary measure-

ments of the underlying methylation state. We note that the

comparison between M&M and MEDIPS was on different grounds.

Adding MRE-seq data to MEDIPS did not further improve MEDIPS’

performance (Supplemental Notes; Supplemental Fig. S4); however,

MEDIPS was not designed to work on MRE-seq data. M&M’s superior

performance is likely due to both having complementary data sets

and a new statistical model designed specifically for this scenario.

Detecting tissue-specific DMRs across four tissue types

We applied M&M to understand how DNA methylation underlies

identity at three levels: tissue types, different cell types within tis-

sues, and matched cell types from different individuals. We gener-

ated 19 methylomes from embryonic stem cells, adult blood cells,

adult breast cells, and fetal brain cells, representing four tissue types.

We plotted the P-value distributions generated by each pairwise,

genome-wide M&M comparison on 500-bp-sized windows (Fig. 2A;

Supplemental Fig. S5). These distributions suggested that methyl-

ation differences between tissues outnumber differences between

cell types of the same tissue or between the same cell types from

two individuals, at least in the context of the current study.

We used a subset of the above pairwise comparisons to define

known and novel tissue-specific DMRs. We identified genomic

windows in which DNA methylation levels were similar between

cell types from the same tissue but different from all cell types from

the three other tissues. We required a window to have a Q-value

of less than 1 3 10�5 in all comparisons between any cell type of

one tissue to all cell types in the three other tissues but to have a

Q-value of greater than 1 3 10�5 in all intra-tissue cell-type com-

parisons. Based on these criteria, a total of 2775 DMRs were de-

fined as tissue-specific DMRs (Table 1; supporting website http://

epigenome.wustl.edu/MnM/). Methylation levels of these DMRs

clearly delineated the tissue types, as illustrated by biclustering

analysis of MeDIP-seq and MRE-seq in these DMRs (Fig. 2B).

We hypothesized that these tissue-specific DMRs underlie

important tissue-specific functions. Therefore, we examined their

genomic distribution, chromatin patterns, and the functional en-

richment of genes near or containing these DMRs. Of the 721 H1

ESC-specific DMRs, >80% were hypermethylated (Fig. 3A). Forty-

eight percent of these overlapped CpG islands, and 23% overlapped

gene promoters (Fig. 3A). By our definition, H1 ESC hyper-

methylated DMRs were hypomethylated in blood, breast, and

fetal brain samples. Intriguingly, when we examined the histone

modification profiles at H1 ESC-hypermethylated DMRs in blood,

breast, and brain samples, we found that >50% were enriched for

H3K4me3 signal (a promoter-associated histone modification),

while only a small fraction (5%) was enriched for H3K4me1 signal

(an enhancer-associated histone modification) (Fig. 4A; Table 1).

This suggested that many H1 ESC hypermethylated DMRs were
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associated with genes that were expressed in differentiated cells

but repressed in H1 ESC cells. The apparent gain of H3K4me3, in

the absence of gain of H3K4me1, in differentiated cells suggested

that the up-regulation of expression of these genes relies on a key

mechanism that is promoter-, rather than enhancer-, dependent.

These DMRs represent a class of DNA-methylation-silenced pro-

moters that are not marked by bivalent domains in H1 ESC. Genes

associated with H1 ESC-specific hypermethylated DMRs enriched

for zinc finger DNA binding proteins based on GREAT analysis

(Fig. 3B; McLean et al. 2010), while H1 ESC-specific hypomethyl-

ated DMRs enriched for ‘‘target of Nanog’’ (Fig. 3C) and enriched

for H3K4me3 in ESC (Fig. 4A). Some of the H1 ESC-specific hyper-

methylated genes may encode general differentiation factors (Sup-

plemental Fig. S6). Interestingly, H1 ESC-specific hypermethylated

DMRs displayed a moderate level of H3K4me1 enrichment, which

may correlate with a transcriptionally poised state (Fig. 4A).

In contrast to ESCs, the majority of tissue-specific DMRs

identified in blood, breast, and fetal NSC samples were hypo-

methylated (Table 1; Fig. 3A). Analysis of histone modification

profiles for these regions revealed enrichment of H3K4me3 and

H3K4me1 in the corresponding samples. GREATanalysis revealed

that genes associated with tissue-specific DMRs strongly enriched

for functions relevant to each tissue type (Fig. 3C). For example,

fetal brain hypomethylated DMRs enriched for ‘‘neural tube pat-

terning’’ (P < 1 3 10�14) and ‘‘spinal cord development’’ (P < 1 3

10�14), whereas breast hypomethylated DMRs enriched for ‘‘mam-

mary gland epithelium development’’ (P < 1 3 10�14) and blood

hypomethylated DMRs enriched for ‘‘immune response’’ (P < 1 3

10�19) (Fig. 3C). Interestingly, blood hypermethylated DMRs dis-

played enrichment of H3K4me3 and H3K4me1 signals in ESC,

breast, and fetal brain samples, suggesting that these DMRs were

regulatory regions that were specifically turned off in blood cells

but were active or permissive for activity in other cell types (Fig.

4A). Representative genes included HOXA5 and ISYNA1 (Supple-

mental Fig. S7).

These data suggested a strong connection between tissue-

specific DNA methylation and tissue-specific gene activity. When

hypomethylated, DMRs were almost always associated with tissue-

specific gene regulatory elements. As expected, many DMRs in

tissue-specific genes occurred at promoters, while others appeared

to be associated with enhancers. The majority of tissue-specific

DMRs were hypermethylated in embryonic stem cells. They be-

came unmethylated in differentiated cell types, and 41% acquired

a promoter-associated histone mark (H3K4me3), while 30% ac-

quired an enhancer-associated histone mark (H3K4me1) (Fig. 4A).

These epigenetic changes underscored the importance of DNA

methylation in tissue differentiation.

This result was further supported by chromatin state anno-

tation of genomic sequences predicted to be tissue-specific DMRs

(Fig. 4B). We obtained chromatin state transition maps generated

by chromHMM using nine cell lines (Ernst et al. 2011; Ernst and

Kellis 2012; Methods). Almost all tissue-specific DMRs across ESC,

fetal brain, breast, and blood were annotated as regulatory ele-

ments, including promoters, enhancers, and insulators. The only

exception was fetal brain-specific hypomethylated DMRs—while

most of these were marked by H3K4me1 in fetal brain samples,

60% did not have chromHMM annotation. This may be explained

Figure 2. M&M analyses of DNA methylation differences across multiple tissue types, cell types, and individuals. (A) P-value distributions of M&M
predictions between tissue types (green lines), cell types (blue lines), and individuals (red lines). (B) Biclustering analysis of tissue-specific DMRs. (Left panel)
Based on RPKM values of MeDIP-seq; (right panel) based on RPKM values of MRE-seq.

Table 1. Tissue-specific DMRs

ESC
Adult
blood

Adult
breast

Fetal
brain Union

Total DMRs 721 725 578 751 2775
Hypermethylated DMRs 593 229 115 0 937
Hypomethylated DMRs 128 496 463 751 1838
DMRs with H3K4me3

peak
55% 54% 33% 20% 41%

DMRs with H3K4me1
peak

5% 36% 51% 30% 30%
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by the lack of a neural cell type among the nine cell lines used to

produce the chromatin state map (Methods). Interestingly, pro-

moters were more enriched in hypermethylated DMRs, while

epigenetically defined enhancers dominated the hypomethylated

DMR list (Fig. 4B).

Finally, gene expression data also supports a strong associa-

tion between tissue-specific DNA methylation and tissue-specific

gene activity. By using RNA-seq, we profiled transcriptomes of a

subset of the samples. Expression levels of genes near tissue-specific

DMRs were significantly higher in samples that were hypometh-

ylated at these DMRs (Fig. 4C).

Tissue-specific DMRs that span large chromosomal domains

The majority of the tissue-specific DMRs we identified were rela-

tively small in size, reflecting discrete regulatory elements such as

enhancers. We also observed large domains of DNA methylation

changes, some of which spanned over 75 kb in length. These dis-

tinct DMR patterns suggested that different underlying mecha-

nisms could generate tissue-specific DMRs. We have summarized

these large DMR domains in Supplemental Table 2. We describe

two such examples below, with another four examples presented

in Supplemental Figs. S8 and S9.

We discovered 18 breast-specific DMRs clustered in a 75-kb

region on chromosome 22. This large region was hypomethylated

in all breast-cell samples analyzed, as evidenced by decreased

MeDIP-seq signal and increased MRE-seq signal (Fig.5A; Supple-

mental Fig. S10A for bisulfite validation). This region spanned six

CpG islands and five noncoding genes, including two long non-

coding RNA genes, LINC00899 and LOC150381, a putative coding

gene C22orf26, and two isoforms of the tumor-suppressor miRNA

MIRLET7, MIRLET7A3, and MIRLET7B. The MIRLET7 family was

discovered in Caenorhabditis elegans and is functionally conserved

from worm to human. The human MIRLET7 family includes 13

isoforms located on nine different chromosomes. Silencing of

MIRLET7 plays an important role in breast cancer progression (Yu

et al. 2007), as reduced MIRLET7 expression promotes cancer cell

invasiveness and metastasis (Qian et al. 2011). We also examined

the methylation state of this large region by WGBS from breast

cancer cell line HCC1954 (Fig. 5A). Compared to normal human

mammary epithelial cells (HMECs), this region was dramatically

more methylated in the HCC1954 cancer cell line. This epigenetic

event may reflect silencing of the pri-miRNA gene, MIRLET7BHG,

that hosts the MIRLET7 genes and potentially contribute to the

invasiveness and increased proliferation previously reported in

breast cancer cells.

A 740-kb region on chromosome 5 containing three Proto-

cadherin (PCDH) gene families provided another interesting ex-

ample where large domain changes consisted of many smaller, local

changes (Fig. 5B; Supplemental Fig. S10B for bisulfite validation).

Seventy-five of the 83 CpG islands in this region were specifically

hypermethylated in H1 ESC. However, in differentiated tissues,

these CpG islands gained a strong unmethylated signal, while

maintaining a strong methylated signal (i.e., simultaneous high

MeDIP-seq signal and high MRE-signal), indicating the CpG is-

lands carry an intermediate methylation level. The PCDH gene

Figure 3. Genomic distribution and functional enrichment of tissue-specific DMR. (A) Genomic distribution of tissue-specific DMRs. (B) Functional
enrichment of H1 ESC-specific hypermethylated DMRs by GREAT analysis. (C ) Functional enrichment of tissue-specific hypomethylated DMRs by
GREAT analysis.
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family members belong to the cadherin superfamily and are pres-

ent in all vertebrate genomes and highly conserved in mammals

(Wu and Maniatis 1999). Most PCDH family members are clustered

in three loci on chromosome 5, and share one highly conserved

motif in their promoters (Wu et al. 2001). PCDH genes are known

to play important roles in neuronal cell differentiation and brain

development (Prasad et al. 2008; Garrett and Weiner 2009; Lin

et al. 2010). Previous studies suggest that the expression of each

PCDH member is monoallelic and regulated independently (Esumi

et al. 2005; Kaneko et al. 2006), an observation that is consistent

with our data, since an intermediate methylation level is a signa-

ture of monoallelic methylated sites. De novo methylation of the

PCDH gene cluster is also associated with tumorigenesis (Novak

et al. 2008; Dallosso et al. 2009), raising the possibility that estab-

lishing monoallelic methylation constitutes an important event

in maintaining differentiated states. In contrast, promoters of the

PCDH family are highly methylated in cells of all three germ layers

differentiated from mouse ES cells but not in ES cells themselves

(Singer 1988). Whether the acquisition by differentiated cells of

intermediate DNA methylation patterning in this region is spe-

cific to humans and how this phenomenon evolved awaits fur-

ther investigation.

Cell type-specific DMRs underlie enhancers associated
with relevant pathways

Our data set includes three breast cell types (a breast stem cell-

enriched population, luminal epithelial cells, and myoepithelial

cells) and three blood T cell types (naive CD4+ T cells, memory

CD4+ T cells, and naive CD8+ T cells). This presented a unique

opportunity to discover cell type-specific DMRs and to compare

their epigenomic signature to that of tissue-specific DMRs. To de-

fine such cell type-specific DMRs, we required a genomic window

to have a Q-value of less than 1 3 10�5 in all comparisons between

two cell types of the same tissue in two independent biological

replicates. This analysis revealed that the most striking feature of

cell type-specific DMRs is the enrichment of an enhancer chro-

matin signature. We use the following example to illustrate this

discovery.

We examined DNA methylation changes that were associated

with maturation of naive CD4+ T cells into memory CD4+ T cells

in the immune system. In addition to producing cytokines and

chemokines, CD4+ T cells also act as mediators for other lym-

phocytes via cell-cell contact (Swain et al. 2006). During responses

to antigens, most CD4+ T cells die within a few days after receiving

Figure 4. Tissue-specific DMRs are enriched for regulatory histone modifications. (A) H3K4me1 and H3K4me3 profiles at tissue-specific DMRs in H1
ESCs, CD4 memory T cells, breast myoepithelial cells, and fetal brain tissue. (B) ChromHMM regulatory function annotation of tissue-specific DMRs.
(C ) Expression of genes near tissue-specific DMRs in samples representing different tissues.
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Figure 5. Identification of tissue-specific DMRs spanning large chromosomal domains. (A) A breast-specific hypomethylated region containing multiple
noncoding RNA genes. (Green box) ;75-kb region hypomethylated in all breast cell types (luminal [Lum], myoepithelial [Myo], and stem cell-enriched
[BSC]). (Red box) Hypermethylation events within the same region in the HCC1954 breast tumor cell line. (B) A large H1 ESC-specific hypermethylated
chromosomal domain spanning the PCDHG gene cluster. (Orange box) H1 ESC-specific hypermethylated DMRs in the vicinity of the promoters of several
PCDHG gene family members.
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antigen stimulation, while only a small fraction survives. This

small population corresponds to mature memory CD4+ T cells that

contribute to later adaptive immune responses and reproduce

rapidly upon restimulation of the same antigen. We compared

the DNA methylomes of naive CD4+ T cells (CD4N) and memory

CD4+ T cells (CD4M) from two individuals to identify cell type-

specific DMRs (intra-CD4 DMRs). Compared to CD4N, CD4M cells

showed hypomethylation in 349 genomic regions and hyper-

methylation in 287 regions (Fig. 6A). We detected enrichment of

H3K4me1 signal in the majority of intra-CD4 hypomethylated

DMRs in the samples where the DMRs are hypomethylated (62%),

while a small fraction of DMRs displayed H3K4me3 signal (11%)

(Fig. 6B; Table 2). The frequent overlap of intra-CD4 hypomethyl-

ated DMRs with enhancers was further supported by chromHMM

annotation (Fig. 6D). Histone modification profiling supported that

many of the intra-CD4 DMRs are regulatory sites. This is further

supported by data from ENCODE, in that 88% of these DMRs

directly overlapped DNase I hypersensitivity sites, and 17% di-

rectly overlapped EP300 binding sites in at least one of the cell

lines assayed by ENCODE (Supplemental Fig. S11; The ENCODE

Project Consortium et al. 2012; Thurman et al. 2012). Therefore,

we reasoned that the intra-CD4 DMRs would harbor binding sites

Figure 6. Cell type-specific DMRs between CD4 naive cells and CD4 memory cells. (A) Genomic distribution of CD4 memory cell hypomethylated
DMRs (green) and CD4 naive cell hypomethylated DMRs (red). (B) Histone modification profiles (H3K4me1 and H3K4me3) of DMRs between CD4
memory cells and CD4 naive cells. (C ) Functional enrichment in CD4 memory cell (green) and CD4 naive cell hypomethylated DMRs (red).
(D) ChromHMM regulatory function annotation of CD4 memory cell DMRs and CD4 naive cell DMRs. (E) TFBS enrichment of CD4 memory cell DMRs
(green) and CD4 naive cell DMRs (red).
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of relevant transcription factors. Indeed, by examining inte-

grated ENCODE TFBS data, we found significant enrichment of

many transcription factor-binding sites in these DMRs (Fig.6E).

Binding of transcription factors to genomic DNA motifs is asso-

ciated with changes in the local epigenetic landscape (Asp et al.

2011; Stadler et al. 2011). Our data further support this type of

association at DMRs that define different cell types within breast

tissue.

Functional enrichment analysis (Fig. 6C) of CD4N hypo-

methylated DMRs identified genes enriched for functions in-

cluding lymphocyte differentiation and T cell receptor V(D)J re-

combination. These regions became methylated during the process

of CD4+ T cell maturation. Increased CD4M DNA methylation was

also observed in genes involved in apoptosis and cellular response

to interleukin-4 (IL4). These DNA methylation events were con-

sistent with transitions in cellular function during the maturation

process. In contrast, DNA hypomethylation in CD4M was detected

in the vicinity of genes involved in the immune system process

and activation, and protein synthesis, including protein trans-

lation and elongation. Interestingly, some hypomethylated DMRs

in CD4M were found to be close to genes that regulate the pro-

duction of the Th2 cytokine interleukin-4, including the 59 region

of the IL4 gene (Supplemental Fig. S12). As a key factor during

CD4+ T cell maturation, IL4 induces long-term proliferation of

neonatal Tcells and stimulates production of other cytokines (Wu

et al. 1994). Some memory CD4+ T cells produce IL4 and perform

important immune regulatory functions (Cosmi et al. 2010; Xu

et al. 2011).

Several genes important for CD4M function, including

NDFIP1, EBI3, SIVA1, and TNFRSF4 (Supplemental Fig. S12), dis-

played decreased DNA methylation at regions upstream of their

respective promoter in CD4M, although the promoter itself was

unmethylated in both CD4N and CD4M. These hypomethyl-

ated DMRs also gained H3K4me1 signal in CD4M (Supplemental

Fig. S12). Therefore, epigenetic regulation of expression of these

CD4+ T cell type-specific genes is likely to involve enhancers

rather than promoters. Taken together, our data highlight that

a majority of cell type-specific DMRs likely correspond to cell type-

specific enhancer elements, while tissue-specific DMRs enrich pri-

marily for gene promoters.

DMRs between individuals overlap with gene regulatory
elements

Epigenetic polymorphisms, including DNA methylation differences

between individuals, are increasingly associated with phenotypic

diversity and disease susceptibility (Tost et al. 2006; Baranzini et al.

2010; Coolen et al. 2011; Eichten et al. 2011; Gertz et al. 2011;

Gervin et al. 2011). Unlike genetic polymorphisms such as SNPs and

copy number variation, epigenetic polymorphisms can be influ-

enced by both genetic and environmental determinants (Anway

et al. 2005; Li et al. 2011; Crews et al. 2012; Skinner et al. 2012). In

our study, we obtained biological replicates from two individuals for

the breast, fetal brain, and blood data sets. We did not address the

association between genotype and epigenotype in the current study.

Rather, we sought to identify regions of the genome that are hot-

spots for individual-specific differential methylation by comparing

DNA methylomes of the same cell types between different indi-

viduals (Table 3).

We identified 1032 DMRs between each pair of individuals

(inter-individual DMRs) (Fig. 7A). We noticed that 389 of these

DMRs overlapped with satellite DNA and microsatellite repeats.

This class of DMRs could result from genetic polymorphism (i.e.,

copy number differences in satellite repeats) among the individ-

uals and not epigenetic polymorphism (Haaf and Willard 1992) or

could be known artifacts associated with mapping short reads to

satellite repeats. Therefore, we excluded these regions from further

analysis (Table 3).

The remaining 643 DMRs, when considered together, did

not seem to associate with genes that enrich for any particular

function. Nevertheless, more than half of these DMRs were anno-

tated by chromHMM as regulatory elements (Fig. 7B). Interestingly,

>40% of the inter-individual DMRs identified using the fetal brain

samples (inter-brain DMRs) from two monozygotic twins dis-

played individual-specific H3K4me1 marks (Fig. 7C,D; Table 3).

These inter-brain DMRs strongly enriched for association with

genes in brain development (Fig. 7E) and also enriched for tran-

scription factor binding sites (Fig. 7F). Taken together, we hy-

pothesize that at least some of the inter-individual DMRs might

influence gene expression in an individual-specific manner and

therefore influence particular traits. For example, we found po-

tentially regulatory DMRs in the introns of CYP2D6 and CYP2E1,

both of which belong to the cytochrome P450 family and are

implicated in metabolizing precarcinogens, drugs, and solvents

to reactive metabolites (Agundez 2004; Bozina et al. 2009). Other

examples included DMRs located near neuronal specific genes,

e.g., FGFR3, a gene that plays an important role in neuronal de-

velopment (Puligilla et al. 2007), NFIX, a gene that regulates ex-

pression of glial fibrillary acidic protein, GFAP (Singh et al. 2011),

and NAV1, a member of the neuron navigator family (Supple-

mental Fig. S13; Maes et al. 2002).

Table 2. Cell type-specific DMRs

Breast Blood Union

DMR hypomethylated in luminal epithelial cells 2826 DMR hypomethylated in CD4 naive cells 349 NA
DMR hypomethylated in myoepithelial cells 6213 DMR hypomethylated in CD4 memory cells 287 NA
DMRs with H3K4me3 peak 9% DMRs with H3K4me3 peak 11% 9%
DMRs with H3K4me1 peak 73% DMRs with H3K4me1 peak 62% 72%

Table 3. Individual-specific DMRs

TC007 vs.
TC009
(Blood)

RM066 vs.
RM070
(Breast)

TwinA
vs. TwinB

(Fetal
brain) Union

Total DMRs 310 55 307 643
DMRs with H3K4me3 peak (no data) (no data) 16% NA
DMRs with H3K4me1 peak (no data) (no data) 42% NA

A complete list of tissue-specific, cell type-specific, and individual-specific
DMRs is provided at the following supporting website: http://epigenome.
wustl.edu/MnM/. H3K4me3 and H3k4me1 peaks were identified using
MACS (Zhang et al. 2008). A DMR was defined to have histone peaks
when at least 50% of the DMR overlapped with histone peaks.
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Discussion

DNA methylation plays important roles in cells, including the

regulation of genes during development and disease (Robertson

2005; Lister et al. 2009; Deaton et al. 2011; Jones 2012). It has been

increasingly associated with tissue-specific gene activity (Kitamura

et al. 2007; Illingworth et al. 2008; Maunakea et al. 2010). The

technology is now available for studying DNA methylation genome-

wide, at high resolution and in a large number of samples, pre-

senting an unprecedented opportunity to map DNA methylation

Figure 7. Individual-specific DMRs. (A) Genomic distribution of individual-specific DMRs identified in blood (blue), breast (red), and fetal brain (green).
(B) ChromHMM regulatory function annotation of individual-specific DMRs. (C ) Histone modification profiles (H3K4me1 and H3K4me3) of individual-
specific DMRs identified in fetal brain. (D) Human Epigenome Browser (Zhou et al. 2011) view of 30 juxtaposed individual DMRs identified in fetal brain
with DNA methylation, H3K4me3, and H3K4me1 profiles. (E) Functional enrichment of individual-specific DMRs identified in fetal brain. (F) TFBS en-
richment of individual-specific DMRs in fetal brain.

Discovering DNA methylation differences with M&M

Genome Research 1533
www.genome.org

 Cold Spring Harbor Laboratory Press on February 18, 2022 - Published by genome.cshlp.orgDownloaded from 



differences between tissues and cells in healthy and diseased

states and during development (Bock 2012).

Here, we introduce a novel statistical framework, ‘‘M&M,’’

to detect differentially methylated regions by integrating two

next-generation sequencing-based technologies—MeDIP-seq and

MRE-seq. MeDIP-seq, or methylated DNA immunoprecipita-

tion followed by sequencing, uses an antibody that recognizes

5-methylcytosines in the genome. Because the MeDIP-seq pro-

tocol is straightforward and generates unbiased, cost-effective, and

full-genome methylation levels, it is widely used for whole-genome

DNA methylation analysis. Several computational tools, including

Batman (Down et al. 2008), MEDIPS (Chavez et al. 2010), and

MeQA (Huang et al. 2012), were developed to process and analyze

MeDIP-seq data. MRE-seq was recently developed as a comple-

mentary technique to MeDIP-seq, such that it utilizes methylation-

sensitive restriction enzymes to digest genomic DNA and generate

DNA fragments where the free ends contain single unmethylated

CpGs. Previously, we showed that by combining MeDIP-seq and

MRE-seq we can generate genome-wide DNA methylation maps of

very high coverage and can identify intermediate and/or mono-

allelic methylated regions (Harris et al. 2010). We now show that

utilizing M&M to combine data from MeDIP-seq and MRE-seq in

a statistically rigorous manner provides improved prediction of

differentially methylated regions. Since these two methods assay

for opposing methylation states, an increase in the signal when

using one method is expected to be accompanied by a decrease in

the signal when using the other method. The M&M algorithm

models the expected MeDIP-seq and MRE-seq values in relation to

the numbers of methylated and unmethylated CpGs in any given

genomic interval, and unifies these two complementary data types

by the relative methylation levels. M&M then detects DMRs by

testing for the null hypothesis that the methylation levels of two

samples are the same, given the observed MeDIP-seq and MRE-seq

data. The complete M&M package is now part of Bioconductor

under the name of ‘‘methylMnM.’’

To benchmark the performance of M&M, we selected two

samples (H1 ESC and fetal NSC) for which we had characterized

genome-wide DNA methylation profiles using WGBS, MeDIP-seq,

and MRE-seq. We applied M&M to discover DMRs between H1 ESC

and fetal NSC and compared the results with those obtained by

applying MEDIPS, one of the leading software tools currently

used for analyzing MeDIP-seq data, on our MeDIP-seq data. M&M

displayed superior sensitivity, specificity, and reproducibility as

highlighted by a much higher concordance for methylation level

differences when compared to those determined by WGBS data

(Fig. 1C–E). The addition of MRE-seq data provided independent

information about methylation state, which M&M takes advan-

tage of by integrating MeDIP-seq and MRE-seq under the same

statistical framework for more accurate DMR detection. It should

be noted that the statistical framework can be generalized and can

potentially integrate other types of DNA methylation data.

As part of the Roadmap Epigenomics Initiative, we produced

a large collection of DNA methylomes using MeDIP-seq and MRE-

seq, representing multiple tissue and cell types from multiple in-

dividuals. By applying M&M to selected data sets, we were able to

create comprehensive lists of DMRs that are either tissue type-, cell

type-, or individual-specific. This resource is publicly available

through the Wash U Human Epigenome Browser (Zhou et al. 2011,

2013) and the UCSC Genome Browsers (http://VizHub.wustl.edu).

DNA methylation has been investigated for its role in speci-

fying tissue-specific gene expression (Song et al. 2005; Shen et al.

2007; Irizarry et al. 2009; Laurent et al. 2010; Maunakea et al. 2010;

Liang et al. 2011; Andersen et al. 2012; Davies et al. 2012). It has

long been appreciated that DNA methylation of non-CpG island

gene promoters is a durable mechanism that results in repres-

sion of genes in specific tissues during development (Lamson and

Stockdale 1989; Luo et al. 2000; Winders et al. 2004). Cancer cells

also exploit a similar mechanism to turn off tumor suppressor

genes (Momparler and Bovenzi 2000; Robertson 2005; Daniel et al.

2011). Promoters and CpG islands have been, therefore, the pri-

mary focus of DNA methylation studies. Recently, cell type-specific

‘‘lowly methylated regions’’ (LMRs) distal to genes have been dis-

covered in the mouse genome. These LMRs are created by binding

of DNA binding factors outside of promoter regions (Stadler et al.

2011), highlighting the importance of comprehensive compari-

sons of DNA methylomes and DMR discovery beyond promoters

and CpG islands.

Our analysis revealed distinct histone modification and gene

regulatory signatures underlying tissue-, cell type-, and individual-

specific DMRs. Consistent with our expectations, DNA methylation

differences were strongly associated with gene regulatory elements.

The majority of the DNA methylation differences were accompa-

nied by differences in the active chromatin marks H3K4me3 and

H3K4me1, suggesting that these DMRs overlap promoters and/or

enhancers. Genes associated with DMRs strongly enriched for

functions relevant to the tissue or cell types in any given com-

parison. Surprisingly, the proportions of promoter-like DMRs and

enhancer-like DMRs were quite different between tissue-specific

DMRs and cell type-specific DMRs—about 40% of tissue-specific

DMRs were annotated as promoters, while >70% of cell type-

specific DMRs were annotated as enhancers (Tables 1, 2). This sig-

nature suggests that different mechanisms may establish and

maintain DNA methylation patterns during development and dif-

ferentiation, resulting in different phenotypic consequences. DNA

methylation of promoters likely has a strong impact on gene

expression, equivalent to an on/off switch that keeps genes in an

active state or shuts down gene expression completely. Thus,

methylation of gene promoters can be a mechanism for major cell

lineage determination. Our most significant finding was that

many differentially methylated regions associate with tissue- and

cell type-specific enhancers, as determined by histone modifica-

tions and chromHMM annotations (Tables 1, 2; Figs. 4, 6B,C, 7B,E).

DNA methylation in enhancers may vary with binding of specific

transcription factors (Stadler et al. 2011) and also influences tran-

scription factor binding and modulates gene expression. Methyla-

tion of enhancers, thus, could provide a mechanism that allows cells

to fine-tune gene activity and make a final lineage commitment or

maintain a distinct cell fate.

We also identified 307 individual-specific DMRs when com-

paring the same tissue type (fetal brain tissue) between two mono-

zygotic twins. Interestingly, these DMRs also enriched for strong,

individual-specific H3K4me1 enhancer signal, highlighting the

potential functional impact of epigenetic variation between ge-

netically identical individuals. Epigenetic polymorphism has at-

tracted enormous interest in recent years. Several recent studies

investigating the connection between genetic variation and epi-

genetic variation revealed that epigenetic polymorphisms are

likely the result of a complex interplay between genetic and en-

vironmental factors (Anway et al. 2005; Li et al. 2011; Crews et al.

2012; Skinner et al. 2012). Our finding provides additional support

for the potential functional impact of epigenetic polymorphisms.

Leveraging new sequencing-based DNA methylome mapping

technologies and a novel, integrative statistical framework, we

mapped DNA methylation differences across multiple tissues and
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cell types from multiple individuals at the whole-genome level.

Differences in DNA methylation can be tightly associated with

gene regulation, impacting regulatory elements such as promoters

and enhancers, and defining the cellular epigenetic landscape.

Interestingly, the DMRs identified in our study were enriched for

evolutionarily conserved sequences (Fig. 8). Many of the func-

tional elements in the human genome have been identified by

comparative genomic approaches based on evolutionary princi-

ples (Lindblad-Toh et al. 2011). Sequence conservation correlates

with conservation of some epigenetic marks, including DNA

methylation, between species. Furthermore, conserved localiza-

tion of epigenetic marks can be used to define regulatory DNA

elements (Maunakea et al. 2010; Xiao et al. 2012). Enrichment

of conserved sequences in DMRs suggests that these sequences

may be under purifying selection and that their regulatory

functions may be evolutionarily selected. It would be exciting to

examine whether the same principle applies to tissue-, cell type-,

and individual-specific DNA methylation for other species.

Methods
All data were obtained from the NIH Roadmap Epigenomics
Mapping Centers’ repository for the human reference epigenome
atlas (Bernstein et al. 2010). Experiments were performed under
the guidelines of the Roadmap Epigenomics project (http://www.
roadmapepigenomics.org/protocols). Specifically, MeDIP-seq and
MRE-seq experiments were performed as described previously
(Maunakea et al. 2010). ChIP-seq was performed as described in
O’Geen et al. (2011). All data have been previously submitted to
NCBI (Supplemental Table 1).

M&M statistical model

The complete M&M statistical model derivation, data processing
and normalization, and false discovery rate control are described in
Supplemental Notes.

Processing of MeDIP-seq and MRE-seq data

The reads were aligned with Bowtie (Langmead et al. 2009) to
hg19. MRE reads were normalized to account for differences in
enzyme efficiency. Scoring consisted of tabulating reads with CpGs
at each fragment end (Maunakea et al. 2010).

Processing of Roadmap Epigenomics histone modification data

H3K4me3 and H3K4me1 ChIP-seq data for relevant cell types were
produced as part of the Roadmap Epigenomics project and de-
posited to GEO (GSE16368). Mapped read density was generated
from aligned sequencing reads using customized Perl scripts. Read
density overlapping DMRs and their 5-kb upstream/downstream
regions were extracted at 50-bp resolution as RPKM values, with
histone input data subtracted.

ENCODE HMM chromatin state annotation

ChromHMM annotations for ENCODE cell lines (Ernst et al. 2011)
were obtained from the UCSC Genome Browser (Rosenbloom et al.
2012). The nine cell lines are: H1 ESC, GM12878, K562, HepG2,
HUVEC, HMEC, HSMM, NHEK, and NHLF. For each DMR, we
examined overlapping annotation of ‘‘promoter,’’ ‘‘enhancer,’’ and
‘‘insulator’’ states in these chromHMM maps.

ENCODE DHS and EP300 binding sites data

ENCODE DNase I hypersensitive sites (DHS) and EP300 binding
sites data were downloaded from the UCSC Genome Browser
ENCODE data portal (Rosenbloom et al. 2012). DHS data contain
999,988 regions, and EP300 binding sites data contain 92,623
regions.

Whole-genome bisulfite sequencing data processing

The whole-genome bisulfite sequencing data for H1 ESC and
human fetal brain NSC (sample HuFNSC02) were downloaded
from GEO (GSE16368). For validation of methylation changes
in each DMR between H1 ESC and HuFNSC02, the averaged
methylation difference between all CpG sites in the DMR was
calculated.

The whole-genome bisulfite sequencing data for normal
breast cells (HMEC) and breast cancer cells (HCC1954) were down-
loaded from GEO (GSE29127). The raw data were processed and
mapped to human genome hg19 assembly using Bismark (Krueger
and Andrews 2011).

Figure 8. Sequence conservation of DMRs. Vertebrate phastCon scores
were obtained at 100-bp resolution for each DMR and their respective
upstream/downstream 5-kb regions. Averaged scores in each 100-bp
window were plotted. (A) Conservation of tissue-specific DMRs. (B)
Conservation of cell type-specific DMRs. (C ) Conservation of individual-
specific DMRs.
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RNA-seq data processing

RNA-seq data of H1 ESC, fetal brain, myoepithelial cells, and PBMC
were downloaded from GEO (GSE16368). Data were processed
with Cufflinks (Trapnell et al. 2010) to obtain RPKM values for all
RefSeq genes (annotation obtained from UCSC Genome Browser).

Detecting DMRs from WGBS data

WGBS-defined single CpG resolution DNA methylation levels
of H1 ESC and fetal NSC were used as input. For each genomic
interval, a Student’s t-test was performed on the two groups of
methylation levels to obtain a P-value. DMRs were selected based
on ranked P-values.

Applying MEDIPS

The MEDIPS package was downloaded from Bioconductor. The
command lines utilized were as described in the MEDIPS manual
(version 1.0.0) with genomic window size set to 500 bp. DMRs
were selected by commands: MEDIPS.selectSignificants(), using
the parameters suggested in the manual.

Applying MACS to histone data

The following parameters were used to apply MACS (Zhang et al.
2008) to histone data for the identification of peaks:

--petdist¼200; --bw¼300; --p1e-5; --slocal¼1000;

--llocal¼1000; --shiftsize¼100; --verbose¼2:

A DMR was defined as enriched for histone signal when at least
50% of the DMR overlapped with histone peaks.

ENCODE TFBS enrichment

ENCODE TFBS data were downloaded from the UCSC Genome
Browser ENCODE data portal (Rosenbloom et al. 2012). The
binding site enrichment score (ES) for each transcription factor
with respect to DMRs was calculated as:

ES ¼ ntfbs=nDMR

Ntfbs=Nall
;

where ntfbs is the number of DMRs that contain experimentally
annotated TFBS; nDMR is the total number of DMRs; Ntfbs is the
number of genomic windows with annotated TFBS; Nall is the
number of 500-bp windows in the human genome (hg19).

Genomic features

RepeatMasker annotations, CpG islands, genomic super duplica-
tions, 46-way phastCons, and refGene features (including 59 UTR,
exons, introns, and 39 UTRs) were all downloaded from the UCSC
Genome Browser (Kent et al. 2002; Meyer et al. 2012). Promoters
were defined as 2.5 kb around the most 59 transcription start site
(2 kb upstream of and 0.5 kb downstream from TSS) of any refGene
record. Intergenic regions were defined as regions between neigh-
boring refGene loci.

Gene class enrichment analysis

Gene Ontology (GO) analyses for biological processes were per-
formed using the GREAT package (McLean et al. 2010). Gene reg-
ulatory domains were defined by default as the regions spanning
5 kb upstream of and 1 kb downstream from the TSS (regardless of
other nearby genes). Gene regulatory domains were extended in

both directions to the nearest gene’s basal domain but no more
than a maximum extension in one direction. Only categories that
were below a false discovery rate of 0.05 were reported.

Bisulfite treatment and library construction for WGBS

One to 5 mg gDNA was sonicated to an approximate size range of
200–400 bp. Size selection was achieved by PAGE gel and yielded
DNA fragments of 200–300 bp. DNA was quantified by fluorescent
incorporation (Qubit, Invitrogen). The library preparation in-
cluded end-repair and phosphorylation with NEBNextTM or Illu-
mina Sample Prep Kit reagents and addition of an ‘A’ base to the 39

end of the DNA fragments. Methylated adapters were ligated and
size selection was performed to remove excess free adaptors. The
ligated DNA was quantified by Qubit, and ;100 ng DNA was used
for bisulfite conversion. Methylated-adaptor ligated to unmeth-
ylated lambda-phage DNA (NEB) was used as an internal control
for assessing the rate of bisulfite conversion. The ratio of target li-
brary to Lambda was 1600:1. Bisulfite conversion of the methyl-
ated adapter-ligated DNA fragments followed the FFPE Tissue
Samples Protocol from Qiagen’s Epitect Bisulfite Kit. Cleanup of
the bisulfite-converted DNA was performed, and a second round
of conversion was applied. Enrichment of adaptor-ligated DNA
fragments was accomplished by dividing the template into five
aliquots followed by eight cycles of PCR with adaptor primers.
Post-PCR size-selection of the PCR products from the five reactions
was achieved by PAGE gel. Following 100-bp paired-end sequenc-
ing on a HiSeq2000, sequence reads were aligned and processed
through the Bismark pipeline.

Sample preparation

Blood

Buffy coats were obtained from the Stanford Blood Center (Palo
Alto, CA). Blood was drawn and processed on the same day.
Peripheral blood mononuclear cells (PBMC) were isolated by
Histopaque 1077 (Sigma-Aldrich) density gradient centrifugation
according to the manufacturer’s protocol. Further purification of
CD4 memory, CD4 naive, and CD8 naive T lymphocytes was
performed using a Robosep instrument and isolation kits for each
subpopulation as listed below (STEMCELL Technologies). Total
PBMC were karyotyped (Molecular Diagnostic Services, Inc) and
analyzed for cell cycle. PBMC and T cell subpopulations were
stained with antibodies and analyzed by FACS for purity. Cells
were aliquoted for DNA and RNA samples and were washed in
PBS. Cell pellets for RNA samples were resuspended in 1 mL TRIzol
reagent (Invitrogen), and frozen at �80°C. Cell pellets for DNA
samples were flash-frozen in liquid nitrogen and stored at�80°C.
Reagents and antibodies:

Anti-CD3 TRI-COLOR, Invitrogen
Anti-CD4 PE, BD Biosciences
Anti-CD8 FITC, BD Biosciences
Anti-CD4 TRI-COLOR, Invitrogen
Anti-CD45RO PE, Invitrogen
Anti-CD45RA FITC, BD Biosciences
Anti-CD8 TRI-COLOR, Invitrogen
EasySep Human Memory CD4 T Cell Enrichment Kit,
EasySep Human Naive CD4+ T Cell Enrichment Kit,
Custom Human Naı̈ve CD8 T Cell Enrichment Kit, STEMCELL

Technologies

Breast

Breast tissues were obtained from disease-free, premenopausal
women undergoing reduction mammoplasty in accordance with
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institutionally approved IRB protocol # 10-01563 (previously CHR
# 8759-34462-01). All tissues were obtained as de-identified sam-
ples and linked only with a minimal data set (age, ethnicity, and in
some cases, parity/gravidity). Tissue was dissociated mechanically
and enzymatically, as previously described (Romanov et al. 2001).
Briefly, tissue was minced and dissociated in RPMI 1640 with
L-glutamine and 25 mm HEPES (Fisher, cat. # MT10041CV) supple-
mented with 10% fetal bovine serum (JR Scientific, Inc., cat. # 43603),
100 U/mL penicillin, 100 mg/mL streptomycin sulfate, 0.25 mg/mL
fungizone, gentamycin (Lonza, cat. # CC4081G), 200 U/mL colla-
genase 2 (Worthington, cat. # CLS-2), and 100 U/mL hyaluronidase
(Sigma-Aldrich, cat. # H3506-SG) at 37°C for 16 h. The cell sus-
pension was centrifuged at 1400 rpm for 10 min, followed by a wash
with RPMI 1640/10% FBS. Clusters enriched in epithelial cells (re-
ferred to as organoids) were recovered after serial filtration through
a 150-mm nylon mesh (Fisher, cat. # NC9445658), and a 40-mm
nylon mesh (Fisher, cat. # NC9860187). The final filtrate contained
primarily mammary stromal cells (fibroblasts, immune cells, and
endothelial cells) and some single epithelial cells. Following cen-
trifugation at 1200 rpm for 5 min, the epithelial organoids and fil-
trate were frozen for long-term storage. The day of cell sorting, ep-
ithelial organoids were thawed out and further digested with 0.5 g/L
0.05% trypsin-EDTA and dispase-DNase I (STEMCELLTechnologies,
cat. # 7913 and # 7900, respectively). Generation of single-cell
suspensions was monitored visually. Single-cell suspensions were
filtered through a 40-mm cell strainer (Fisher, cat. # 087711), spun
down, and allowed to ‘‘regenerate’’ in MEGM medium (Lonza)
supplemented with 2% fetal calf serum for 60–90 min at 37°C.
This ‘‘regeneration’’ step enables quenching of trypsin and re-
expression of the cell surface markers prior to staining, as their
extracellular domain had been cleaved by trypsin.

The single-cell suspension obtained as described above was
stained for cell sorting with three human-specific primary anti-
bodies, anti-CD10 labeled with PE-Cy7 (BD Biosciences, cat. #
341092) to isolate myoepithelial cells, anti-CD227/MUC1 labeled
with FITC (BD Biosciences, cat. # 559774) to isolate luminal epi-
thelial cells, or anti-CD73 labeled with PE (BD Biosciences, cat. #
550257) to isolate a stem cell-enriched cell population, and with
biotinylated antibodies for lineage markers, anti-CD2, CD3, CD16,
CD64 (BD Biosciences, cat. # 555325, 555338, 555405, and 555526),
CD31 (Invitrogen, cat. # MHCD3115), CD45, CD140b (BioLegend,
cat. # 304003 and 323604) to specifically remove hematopoietic,
endothelial, and leukocyte lineage cells, respectively, by negative
selection. Sequential incubation with primary antibodies was per-
formed for 20 min at room temperature in PBS with 1% bovine
serum albumin (BSA), followed by washing in PBS with 1% BSA.
Biotinylated primary antibodies were revealed with an anti-human
secondary antibody labeled with streptavidin-Pacific Blue conjugate
(Invitrogen, cat. # S11222). After incubation, cells were washed
once in PBS with 1% BSA, and cell sorting was performed using
a FACSAria II cell sorter (BD Biosciences).

Fetal brain

Post-mortem human fetal neural tissues were obtained from
a case of twin nonsyndrome fetuses whose death was attributed to
environmental/placental etiology. Tissues were obtained with
appropriate patient consent according to Partner’s Healthcare/
Brigham and Women’s Hospital IRB guidelines (Protocol
#2010P001144). All samples and tissues were de-identified and
linked only with a minimal data set (age, gender, brain location).
Fetal brain tissue and fetal neural progenitor cells were derived from
manually dissected regions of the brain (telencephalon), specifically
the neocortex (pallium; GSM669614, GSM669615) and ganglionic
eminences (subpallium; GSM669613). The tissues were minced and
dissociated by combination of mechanical agitation (gentleMACS

device) during enzymatic treatment with papain, according to the
manufacturer’s protocol (Miltenyi Biotec, neural tissue dissociation
kit #130-092-628). Cell suspensions were then washed twice in
DMEM and plated at low density in human NeuroCult NS-A
media (Stem Cell Technology, # 05751) supplemented with hep-
arin, EGF (20 ng/mL) and FGF (10 ng/mL) in ultralow attachment
cell culture flasks (Corning, #3814).

ESC H1

Data were obtained from a previous publication (Harris et al. 2010).

Data access
M&M is an open source software. The source code, parameter sets,
and instructions, as well as sample data sets, are available at http://
epigenome.wustl.edu/MnM/. M&M has been released as an add-
on package called ‘‘methylMnM’’ for R 2.12.1 and is freely avail-
able from Bioconductor (Gentleman et al. 2004; http://www.
bioconductor.org/). A list of tissue-specific, cell-type specific, and
individual specific DMRs can be found in the Supplemental Material
and at http://epigenome.wustl.edu/MnM/.
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