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ABSTRACT OF THE DISSERTATION 

Development of experimental and computational tools for  

high-throughput microbial “omics” 

 

by 

 

Gordon Jeff Bean 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

 

University of California, San Diego, 2014 

 

Professor Trey Ideker, Chair 

 

As the study of biology has increasingly utilized high-throughput 

experimental platforms, the need for rigorous, computational analysis of 

systems biology data has never been greater. Here I present three aims 
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towards solving important computational problems in the field of high-

throughput genetic interaction mapping and screening.  

In Chapter 1, I provide a reproduction of published work in which 

we present a strategy that leverages statistical information from the 

experimental design to produce a novel, quantitative differential 

interaction score, which performs favorably compared to previous 

differential scores. We also discuss the added utility of differential genetic-

similarity in differential network analysis. 

In Chapter 2, I present previously published work in which we 

present an ultra-high-density, 6144-colony arraying system and analysis 

toolbox. Using budding yeast as a benchmark, we find that these tools 

boost genetic screening throughput 4-fold and yield significant cost and 

time reductions at quality levels equal to or better than current methods. 

We conclude that the new ultra-high-density screening tools enable 

researchers to significantly increase the size and scope of their genetic 

screens. 

In Chapter 3, I present work being prepared for publication, in 

which we utilize the new 6144-colony agar format to perform genome-

wide time-lapse analysis of the yeast gene deletion collection to quantify 

dynamic growth phenotypes and identify key biological processes 

involved in adaptation to metabolic stress through nutrient depletion. We 



 

xvi 

then apply our method to study the dynamic response to UV-radiation 

and observe that growth profiles recapitulate key biological processes in 

DNA repair and suggest novel relationships.  

As a whole, this thesis is a combined work of both computational 

and biological research. In Aim 1, I develop a new statistical score and 

make biological insights from genetic interaction profiles. In Aim 2, I 

developed an image analysis toolkit that supports the emerging 6144-

colony format. In Aim 3, I use the new 6144 format and image analysis 

toolkit to develop a novel experimental platform using time-lapse imaging 

of yeast on agar. We use this platform to identify key cellular pathways 

involved in adaptation to standard growth conditions and suggest 

important relationships in the UV-radiation response. 

 



 

1 

CHAPTER 1 

INTRODUCTION 

Systems biology is founded on the belief that the miracle of life can 

be modeled and understood as a composite of many interacting systems 

– networks of cellular components and their relationships. Key to creating 

these models is the knowledge of the components – the genes, proteins, 

metabolites, etc. – and the interactions that relate them to one another 

and describe their activity. In its quest to answer these questions, systems 

biology is characterized by the use of high-throughput technologies, 

making dozens to thousands to millions of measurements in single 

experimental efforts. In consequence of the overwhelming amount of 

information being generated in pursuit of biological understanding, the 

need for bioinformatics solutions has never been greater.  

Saccharomyces cerevisiae, or “baker’s yeast,” has been an 

effective model organism for studying eukaryotic cellular systems. 

Molecular methods for genetic manipulation of yeast are well established 

and inexpensive, making yeast an ideal candidate for research. 

Additionally, from early on the relevance of understanding biological 

systems in the context of yeast has been recognized, and what is learned 
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from this model organism provides important information about other 

species [1,2]. 

In this thesis, I describe the systems biology tools and informatics 

solutions I have developed in the field of genetic screening and 

interaction mapping in the model organism Saccharomyces cerevisiae. In 

this chapter I introduce the context of my work and explain the 

technologies upon which my work was built. 

1.1 The yeast gene deletion collection 

In the past 20 years, many genomic technologies have been 

developed for performing systems biology experiments in Saccharomyces 

cerevisiae [3]. One of these tools is the yeast gene deletion collection 

[4,5]. Through the use of homologous recombination, the KanMX4 drug-

resistance marker, flanked by barcoding sequences, was systematically 

inserted into most known open reading frames (ORFs), creating haploid 

deletion strains for 4,757 non-essential genes (Figure 1.1). More recently, a 

“decreased abundance by mRNA perturbation” (DAmP) collection for 

essential genes was created, in which the insertion of the KanMX4 

cassette at the 3’ end of the gene locus disrupts transcription and causes 

a non-lethal down-regulation of the gene product [6]. These collections of 

mutant strains have been an invaluable resource in systems biology. 
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1.2 Genetic interactions 

Genetic interactions have been defined in many ways, and 

different experimental platforms are each uniquely adapted to quantify 

or observe genetic interactions according to different criteria. In general, 

a genetic interaction is observed when the double mutant phenotype 

differs from what is expected given the two single mutant phenotypes 

alone [7]. In the field of high-throughput genetic interaction mapping in 

yeast, the primary observed phenotype is relative growth rate (growth 

rate of the mutant relative to growth rate of the control, often summarized 

as colony size or “fitness”), and the expected double mutant phenotype is 

the product of the two single mutant phenotypes [8,9]. The specific 

relationships between the single and double mutant phenotypes can 

sometimes provide a more nuanced interpretation of the interaction [10–

12] (Figure 1.2), but in most cases simply observing whether the double 

mutant grows faster or slower than expected is all that is reported [13].  

1.3 High-throughput genetic interaction mapping in yeast 

While the investigation of genetic interactions in yeast double 

mutants had been performed for many years previous, in 2001 Tong et al. 

developed a series of pinning procedures to efficiently generate double 

mutants strains using the gene deletion collection, dramatically increasing 

the throughput of genetic interaction screens [14]. Furthermore, by using 
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an agar format, instead of liquid culture, colony fitness could be 

quantified using inexpensive imaging equipment, as compared to more 

involved methods such as microarray hybridization [15,16].  

In brief, in the procedure described by Tong et al., a haploid query 

strain is created containing a mutation (i.e. gene deletion) of the MATα 

mating type. This strain is crossed with a collection of other haploid 

mutants of the MATa mating type, known as the “array”. The resulting 

diploids are sporulated and then passaged through as series of selection 

steps, ending with the selection of haploid double mutants. This final 

selection is accomplished because both the query and the array have 

respective drug-resistance markers inserted at the locus of the deleted 

gene. Only spores inheriting the deletion allele from the query and the 

array will have the two drug-resistance markers. This high-throughput 

mating/selection process was termed “synthetic genetic array” (SGA; 

Figure 1.3). Tong et al. applied the SGA approach to screen for synthetic 

lethal pairs – double mutants of which the respective single mutants are 

viable, the but the combination is not [14,17] (see also [13,18] for reviews 

on early high-throughput genetic interaction screening). 

In 2005, Schuldiner et al. introduced two important developments to 

the SGA paradigm [6]. First, they created special hypomorphic alleles of 

essential genes, called “decreased abundance by mRNA perturbation” 
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(DAmP) alleles. In these strains, the drug-resistance marker and associated 

promoter are inserted just upstream of the gene in question. The 

placement of the resistance cassette into the promoter region of the 

gene decreases mRNA stability, effectively reducing the quantity of the 

gene in the cell. They demonstrated that when the deletion allele is 

inviable, these special alleles are effective surrogates for deletion alleles 

for probing gene functions.  

The second important contribution, described in greater detail a 

year later in Collins et al. 2006, was a quantitative scoring pipeline that 

accurately measured expected double mutant growth rates in order to 

identify double mutants that exhibited epistatic, interactions [19] (see also 

[20]). This important computational development greatly expanded the 

potential of the SGA approach, allowing it to accurately identify both 

positive (suppressing, rescue, and masking) as well as negative (synthetic 

sick and synthetic lethal) interactions. This quantitative approach was 

termed “epistatic mini-array profiling” (EMAP). The authors of the EMAP 

approach used this system to study relatively small gene collections 

(hundreds of genes) belonging to specific pathways or cellular 

components. Since the initial study of the early secretory pathway [6], the 

EMAP approach has been used to study chromatin remodeling [21], 
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kinase/phosphatase signaling [22], and transcription factor organization 

[23], among others.  

The discovery of complex networks of genetic interactions begged 

the availability of a genome-wide genetic interaction map, informing not 

only how members of specific pathways interact, but also showing the 

relationship across the cellular landscape. In 2010, Costanzo et al. 

presented such a resource, crossing approximately 1,000 queries with over 

4,000 arrays [24]. They found that genetic interaction profiles – i.e. the 

vector of interaction scores for all tested gene pairs of a given gene – 

clustered according to functional groups. Using some of the key ideas in 

the EMAP computational pipeline, these authors presented additional 

computational improvements to SGA analysis that allowed them to 

successful process the large dataset they created [25].  

Throughout the development of the genetic interaction mapping 

field, computational tools were designed to analyze the specific images 

and data of each respective group. Because each tool was designed 

with a specific workflow and experimental format in mind, subsequent 

studies in other labs – with different needs and setups – were largely 

required to develop computational tools de novo. This has lead to a great 

abundance of yeast-on-agar image analysis and statistical analysis tools, 

each specializing in some particular format or need[26–31]. 
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1.4 Differential epistasis mapping 

As the SGA platform matured, with technological improvements 

increasing ease of use and throughput, SGA studies transitioned from 

mapping interactions in standard conditions to identifying genetic 

network changes in novel growth environments, as had been done in 

lower-throughput platforms before [11]. Just weeks before the landmark 

study of Costanzo et al., Bandyopadhyay et al. presented an EMAP study 

comparing the topology of genetic networks in two growth conditions – 

with and without the addition of methyl methanesulfonate (MMS), a DNA-

damaging agent [32]. They discovered that many genetic interactions 

appeared, disappeared, or even changed sign when the yeast were 

grown under DNA-damage stress. This differential epistasis-mapping (d-

EMAP) approach opened the door to many new studies probing the 

dynamics of genetic relationships. Several other studies have investigated 

genetic network modifications in the presence of other DNA-damaging 

stresses [33,34]. Other studies are underway using the dEMAP approach to 

study autophagy and telomere-deficient aging. 

The development of the dEMAP pipeline posed a new 

computational challenge. The EMAP interaction-scoring paradigm had 

been developed with single-condition, unpaired data in mind. The early 

dEMAP studies relied upon an ad-hoc approach to quantify interesting 
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changes in the genetic networks. In Chapter 2, I present published work in 

which we develop a statistically rigorous, differential interaction score. We 

also demonstrate how this new score can be further analyzed to reveal 

additional insights to stress-response genetic effects.  

1.5 Technological developments in SGA/EMAP technology 

As new technologies became available, the quality and 

throughput of genetic interaction mapping has improved. Early studies 

used the 384-colony format, similar to other platforms such as liquid and 

liquid-to-agar. However, researchers quickly discovered that one of the 

primary advantages of the agar-to-agar platform was its scalability, and 

studies began using 768- and 1536-colony formats. As these new formats 

were used, computational tools had to be adapted to handle the image 

analysis and data processing.  

In Chapter 3, I present published work in which we assess the quality 

and performance of the new 6144-colony format and provide the 

computational tools needed for image analysis and data processing of 

the new format. 

1.6 Growth-curve analysis 

Growth curve analysis has been used for many years in liquid and 

liquid-to-agar platforms in order to determine or quantify the growth rate 

of mutant strains (reviewed in [35]). To summarize, in these studies, multiple 
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measurements of colony density, quantified either through liquid optical 

density (OD) or sum colony pixel intensity (SCPI) readouts. Many 

approaches exist for extracting the growth-rate information from growth 

curve data. Some fit standard-form logistic functions to the measured 

data, and the growth rate is directly determined from the parameters of 

the fitted function, whereas others use custom, ad-hoc approaches that 

are better adapted to the specific curve shapes and context of the 

experiment at hand. 

Because both liquid-to-agar and agar-to-agar platforms use image 

analysis of yeast on agar to quantify growth, there are important 

similarities between the two platforms. In both cases, colony 

recognition/labeling and pixel thresholding algorithms are needed, and 

various methods exist for each unique experimental approach [30,28]. 

However, important differences distinguish liquid-to-agar from agar-to-

agar experiments. In liquid-to-agar, colonies are pinned using broad, flat 

pins dipped in liquid culture. This leaves an invisible circular region of 

inoculated agar. Over time, the opacity of this region increases as the 

yeast grow, while the overall area does not increase as much. Thus, 

measuring colony opacity is key to tracking growth. This differs from agar-

to-agar platforms. Here, yeast material is transferred from one agar plat to 

another, inoculating the fresh plate with semi-formed, visible colonies. 
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While initially a little transparent, these colonies achieve full opacity within 

hours of pinning (compared to days in the liquid-to-agar case) and the 

growth is manifested in the increase of colony area. Because growth in 

the liquid-to-agar setting can occur in 2 dimensions (increasing area and 

increasing depth), the growth dynamics are super-linear. However, in 

agar-to-agar platforms, the growth rate is directly proportional to the 

radius of the colony.  

While in most studies based on growth curve analysis, only the 

growth rate is measured, some studies have shown that other 

physiological phenotypes can be easily measured from growth curve 

data, such as length of lag phase or total growth efficiency, and that 

these phenotypes convey important information growth rate alone does 

not [36,37]. These studies, however, have been limited to the 96-well 

format, using the liquid OD platform, and are limited in coverage of both 

mutants and conditions.  

There is good precedent for performing growth curve analysis in 

genetic screens, and there is strong evidence that useful information 

besides growth rate can be extracted, but to date no one as leveraged 

the super-high-throughput capacity of agar-to-agar platforms to perform 

genome-wide growth characterizations. In Chapter 4, I present a novel 

experimental platform for quantifying growth curve information using the 
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new 6144-colony format and time-lapse imaging. This new platform allows 

for screening the entire yeast gene deletion collection and DAmP 

collection in a single agar plate, which permits performing genome-wide 

screens across a multitude of genetic backgrounds or growth media 

without increasing experimental costs or overhead.  
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1.7 Figures 

 

Figure 1.1 Development of the yeast gene deletion collection. 
Deletion cassettes are generated by PCR such that each cassette is 
flanked by two 45-bp regions of yeast DNA sequence that correspond to 
the intended deletion target. These short regions of homology direct the 
integration of the deletion cassette to its intended genomic locus, 
resulting in a precise start-to-stop codon gene replacement. (ORF, open 
reading frame); KanMX4, marker that confers resistance to the antibiotic 
geneticin (G418).) Adapted by permission from Macmillan Publishers Ltd: 
Nature Reviews Genetics. “Emerging technologies in yeast genetics.” 
Nature Reviews Genetics 2, 302-312 (April 2001), copyright 2001{Kumar 
2001}.  
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Figure 1.2 Classic interpretations of negative and positive genetic 
interactions. 
(b) Example of a negative synthetic lethal genetic interaction, whereby 
the observed fitness of the double mutant (ab = 0.0) is lower than 
expected (ab = 0.35). (c) Example of a positive suppressive genetic 
interaction, whereby the observed fitness of the double mutant (ab = 0.7) 
is greater than expected (ab = 0.35) and greater than the sickest of the 
single mutants (b = 0.5). (d) Example of a positive coequal genetic 
interaction, whereby the fitness phenotypes of the two single mutants and 
the double mutant are quantitatively indistinguishable (a = b = ab = 0.7). 
Figure and legend adapted from Baryshnikova, A., Costanzo, M., Myers, 
C. L., Andrews, B. & Boone, C. Genetic interaction networks: toward an 
understanding of heritability. Annu. Rev. Genomics Hum. Genet. 14, 111–
33 (2013). 
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Figure 1.3 Synthetic genetic array methodology.  
(i) A MATα strain carrying a query mutation (bni1Δ) linked to a dominant 
selectable marker, such as the nourseothricin-resistance marker natMX 
that confers resistance to the antibiotic nourseothricin, and anMFA1pr-
HIS3 reporter is crossed to an ordered array ofMAT a viable yeast deletion 
mutants, each carrying a gene deletion mutation linked to a kanamycin-
resistance marker (kanMX). Growth of resultant heterozygous diploids is 
selected for on medium containing nourseothricin and kanamycin. (ii) The 
heterozygous diploids are transferred to medium with reduced levels of 
carbon and nitrogen to induce sporulation and the formation of haploid 
meiotic spore progeny. (iii) Spores are transferred to synthetic medium 
lacking histidine, which allows for selective germination of MAT a meiotic 
progeny because these cells express the MFA1pr-HIS3 reporter specifically. 
(iv) The MAT a meiotic progeny are transferred to medium that contains 
both nourseothricin and kanamycin, which then selects for growth of 
double-mutant meiotic progeny. From  Tong, a H. et al. Systematic 
genetic analysis with ordered arrays of yeast deletion mutants. Science 
294, 2364–8 (2001). Reprinted with permission from AAAS. 
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CHAPTER 2 

DIFFERENTIAL ANALYSIS OF HIGH-THROUGHPUT 

QUANTITATIVE GENETIC INTERACTION DATA  

Gordon Bean and Trey Ideker 

2.1 Abstract 

Synthetic genetic arrays (SGA) have been very effective at 

measuring genetic interactions in yeast in a high throughput manner and 

recently have been expanded to measure quantitative changes in 

interaction, termed 'differential interactions', across multiple conditions. 

Here, we present a strategy that leverages statistical information from the 

experimental design to produce a novel, quantitative differential 

interaction score, which performs favorably compared to previous 

differential scores. We also discuss the added utility of differential genetic-

similarity in differential network analysis. Our approach is preferred for 

differential network analysis, and our implementation, written in MATLAB, 

can be found at 

http://chianti.ucsd.edu/~gbean/compute_differential_scores.m. 
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2.2 Background 

Genetic interactions are functional dependencies between genes, 

which become apparent when the phenotypic effect of one mutation is 

altered by the presence of a second. In model organisms such as yeast, 

genetic interactions can be rapidly assessed through the systematic 

construction of double mutants and measurement of quantitative 

phenotypes such as growth rate. Quantitative interactions may be 

positive or negative, indicating less or more severe double mutant 

phenotypes than expected from the single mutant phenotypes. Many 

large genetic network maps have been constructed from high-

throughput genetic interaction screens in yeast, providing insight into the 

global landscape of interactions within the cell as well as the functional 

relationships between specific components of biological processes and 

pathways [1–5].  

Recently, we used genetic interaction mapping in a “differential 

mode” to compare the changes in genetic networks across experimental 

conditions [6–8]. To demonstrate this approach, called differential epistasis 

mapping, we compared the difference between quantitative genetic 

interaction scores derived from yeast grown on standard versus DNA-

damaging media [6]. We found substantial changes in interaction 

patterns and demonstrated that the difference in scores was more 
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effective than the scores in either static condition for highlighting 

interactions relevant to the pathway under study (DNA damage 

response). Other biological networks, such as protein-protein interaction 

(PPI) or protein-DNA interaction networks, have also progressed from 

observing single experimental conditions to comparing the changes in 

interactions across multiple experimental conditions or genetic 

backgrounds. For example, Wrana and colleagues developed the LUMIER 

(luminescence-based mammalian interactome mapping) strategy to 

identify pairwise PPIs among a set of human factors with and without 

stimulation by transforming growth factor β [9]. Similarly, Workman et al. 

used genome-wide chromatin immunoprecipitation to focus on changes 

in transcription factor binding after exposure to the DNA damaging agent 

methyl methanesulfonate (MMS) [10]. More recently, a quantitative 

approach has been presented by Bisson et al. for measuring differential 

interactions in PPI networks [11]. This approach, which the authors call 

affinity purification-selected reaction monitoring (AP-SRM), was used to 

map quantitative changes in interaction with the protein Grb2, which 

changes showed that the composition of Grb2 complexes was 

remarkably dependent on the stimulation. By focusing on additional hub 

proteins beyond Grb2, this method is likely to be useful for obtaining a 

global overview of protein network remodeling in response to a stimulus. 
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The progression from static to differential network biology in many 

fields increases the need for specialized statistical strategies for scoring 

differential networks. One approach to improving differential signal is to 

use paired experimental designs that reduce the noise between treated 

and untreated measurements. For example, experimental designs such as 

the two-color microarray were originally developed to reduce the noise 

resulting from technical variability, and various statistical methods have 

been developed to leverage the paired structure of these experiments 

(reviewed in [12–15]). Similar to two-color microarrays, differential network 

measurements can pair treated and untreated measurements. While 

some of the differential interaction studies [6,7] have employed such an 

experimental design, they did not utilize this information in their analysis, 

treating each measurement as independent.  

Here, we investigate the statistical structure of two large-scale 

differential genetic interaction experiments [6,7] and present a 

generalized strategy for scoring differential genetic interaction data. Our 

strategy produces differential genetic interaction networks that are more 

reproducible and more enriched for biologically relevant interactions than 

previous approaches based on network subtraction. A MATLAB 

implementation of our strategy is provided as an additional file with the 

online version of this article.  
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2.3 Results and discussion 

2.3.1 The differential interaction model 

The format of a differential genetic interaction experiment takes 

growth-rate measurements for each double mutant across two or more 

conditions. A single mutant yeast strain, called the query, is mated with an 

entire set of other single mutants (e.g. deletions of all non-essential yeast 

genes), referred to as array strains. The resulting diploids are sporulated 

and then undergo multiple selection steps to produce colonies of haploid 

double deletion mutants. In the last step of the pipeline, the same yeast 

colonies are replicated onto different media exhibiting the chosen growth 

conditions (Figure 1a; see [3,6,16] for high-throughput genetic interaction 

screening protocols).  

Because one run of this experimental pipeline produces double 

mutant colonies that are grown in separate conditions but share the same 

initial steps, we had reason to believe that the double mutant growth-rate 

measurements are not independent. Using data from Bandyopadhyay et 

al. [6], we tested this hypothesis by comparing the correlation of 

experimental replicates (i.e. colonies generated in separate pipelines but 

grown in the same condition) with the correlation of colonies generated in 

the same pipeline but grown in different final conditions. Strikingly, we 

found that the correlation of colonies grown in different conditions was 
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much greater than the correlation of experimental replicates (Figure 1b), 

even though the experimental replicates were grown under identical 

growth conditions and the conditional replicates were not.  This 

observation suggested some degree of statistical dependence between 

the conditional replicate measurements.  

We further assessed the dependence across the conditional 

measurements with an analysis of the variance of replicate 

measurements. Assuming independence, the difference between two 

normally distributed random variables is distributed normally, with a 

variance equal to the sum of the variances of the original distributions 

(Equation 1).  

 
(1)  

Therefore, for each double mutant, the variance of the differences 

between the static measurements should be equal to the sum of the 

variances of the static measurements.  

Using the data from two differential interaction mapping 

experiments comparing MMS and standard growth conditions [6,7], we 

found that the variance of the difference for each double mutant was 

less than half of the expected differential variance, and even less than 

the variance of static (non-differential) measurements (Figure 2). These 

results confirm that the across-condition measurements are not 
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independent and raise the possibility that significant error reduction may 

be achieved by the differential mode of analysis.  

2.3.2 The dS Score: A quantitative measure of differential interaction 

Accordingly, we developed a strategy for scoring differential 

genetic interactions, which accounts for the dependency structure of the 

data. Assuming a growth constant p for each plate, which captures 

plate-to-plate differences in growth rate, the observed double mutant 

colony size zqai can be factored as follows: 

 
(2)  

Where q and a represent the query and array strains, i represents 

the experimental replicate, c represents the condition, f indicates the 

single mutant fitnesses, and  represents the residual. Collins et al. [17] 

developed a strategy that uses colony size population trends to estimate 

p, fq, and fa and obtain a measurement of the residual, which serves to 

quantify the degree of genetic interaction between the query and array 

mutants.   

For differential interactions, the null or “non-interaction” model is 

that the mean of the differences between paired residuals is equal to 

zero: 

 

(3)  

zqaic = pqic · fqc · fac + �qaic

n�

i

�qaic − �qaic0
n

=
n�

i

δqaic
n

= 0
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where c indicates the treatment and c0 indicates the untreated, or 

reference, condition, and δ represents the difference in colony size 

residuals. Assuming the  are normally distributed, the degree to which this 

mean differs from zero given the variance of the replicates can be 

modeled using the paired t-statistic. We call our statistic the dS score, “d” 

for “differential” and “S score” after the name of the statistic used by 

Collins et al. [17]. 

 
(4)  

where δqac is the mean of the differences of the residuals (Equation 

3) and sqac is the sample standard deviation of the differences of the 

residuals. Unlike the S-score [17], we found that the sample variance was 

the best approximation of the variance (based on the quality control 

metrics described below) and did not employ a minimum bound or any 

modifiers or priors (such as in the case of SAM, Cyber-T, or LIMMA in 

microarray analysis [18,19,15], see also [20]). 

2.3.3 Similarity of differential interaction profiles provides distinct 

functional information 

Previously, it has been shown that the correlation of static 

interaction profiles identifies many gene functional relationships not 

identified by direct genetic interactions (a genetic interaction profile is the 

dS score =
δ̄qac

sqac/
√
n
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set of all interactions with a given gene) [1,17]. Given our new 

quantitative score for differential interactions, we therefore investigated 

whether differential interaction profiles could also be used to provide 

distinct functional information. Indeed, we found that the correlation of 

differential interaction profiles was able to identify relationships relevant to 

the treatment response and, furthermore, that these links were not 

identified either by direct interactions (static or differential) or by 

correlation of static profiles. 

For example, using the dS score, we observed a very high 

differential similarity score between SWI4 and the subunits of the HIR 

complex (Figure 3). In contrast, when computing genetic profile similarity 

between SWI4 and HIR in either static condition (standard or MMS-

treated), similarity scores were strikingly low. SWI4 is the DNA-binding 

member of the SBF complex, a key regulator of genes involved in DNA 

synthesis and repair in G1 to S phase [21,22]. HIR1, HIR2, and HIR3 are 

subunits of the HIR complex which negatively regulate histone protein 

transcription [23] under control of the DNA-damage checkpoint kinase 

DUN1 [24]. Although SWI4 and HIR have not been previously implicated in 

a genetic relationship, SWI4 has been shown to regulate histone gene 

expression [25,26] suggesting that an interaction between SWI4 and HIR is 

feasible, especially in context of the DDR. Thus, differential similarity can 
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identify functional relationships between genes that are not apparent 

from profile similarity analysis in static conditions.  

We identified a total of 99 functional associations like SWI4 and HIR, 

i.e. gene pairs with low static similarity and high differential similarity. These 

gene pairs indicate DDR-relevant interactions that would not be identified 

through previously available methods. One of the key limitations of static 

profile similarity is that the static profile is populated by interactions 

pertaining to both the treatment as well as general cell growth. These 

non-relevant interactions diminish the similarity between genes that 

otherwise function very similarly in the treatment response. Additionally, 

the larger variance inherent in the static measurements contributes to 

noisier interaction profiles which decreases the similarity of otherwise 

related profiles. Differential interactions are effective at identifying 

treatment-relevant relationships because they cut down the noise and 

eliminate non-related interactions.  

2.3.4 Performance of the dS score and differential profile similarity 

We investigated the quality of the dS score by examining its false 

discovery rate, reproducibility and biological enrichment. As a baseline for 

comparison, where applicable dS scores were compared to the 

differential p-values described by Bandyopadhyay et al. [6], which 

indicate an empirically-determined significance for the difference in S 
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scores between two conditions. We designate the –log p-values from 

Bandyopadhyay et al. [6] as the “B score”. To estimate the false discovery 

rate of different dS score thresholds, we first generated a dS null 

distribution using the data from Bandyopadhyay et al. [6], in which the 

final step involved pinning each double mutant twice in the same 

condition.  These two colonies were paired and scored as if they were 

colonies grown in separate conditions (corresponding to zqaic and zqaic0 in 

eqn. (2) above). We observed that the dS score has approximately 

symmetric false discovery rates for positive and negative scores (Figure 

4a).  

Next, we assessed reproducibility of the dS score by comparing B 

and dS scores generated using replicates 1-3 and, separately, 4-6 from 

Guénolé et al. [7]. Using only gene pairs that were scored in both 

analyses, we found that the dS score yields a much tighter reproducibility 

across replicates than the B score (Figure 4b-c; Additional file 4, Figure S1). 

In particular, the Pearson correlation across replicates was remarkably 

higher for the dS score than the B score (Figure 4d; the values on the far 

right correspond to data shown in Figure 4b-c). We found it of particular 

interest that for the most significant interactions, the dS score tends to 

greater and greater reproducibility, while the reproducibility of the B score 
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drops to zero, indicating that for larger and larger values, the B score picks 

up on less and less signal. 

To measure the biological enrichment of the dS score, we 

generated a bronze-standard set of interactions similar to that used by 

Bandyopadhyay et al. [6]. We included in our standard set any gene pair 

in which both genes were annotated as “DNA-damage response” (DDR) 

in the Gene Ontology [27] (corresponding to 903 or 2,575 gene pairs in the 

Bandyopadhyay et al. [6] or Guénolé et al. [7] data sets, respectively), as 

well as any gene pair defined by the YeastNet 2.0 benchmark set [28] 

containing at least one DDR gene (390 or 772 gene pairs, respectively). As 

a second standard, we used the set of co-complex interactions compiled 

by Baryshnikova et al. [29], which is based on the set of macromolecular 

complexes recorded in the Saccharomyces Genome Database 

(www.yeastgenome.org) or in the CYC2008 protein complex catalogue 

[30]. Using these two standards, we generated precision-recall plots for 

two previously-published differential interaction networks 

(Bandyopadhyay et al. [6] and Guénolé et al. [7]).  This analysis indicated 

that the dS score has essentially the same precision for recovering the 

DDR and the co-complex standards as the original p-values published by 

Bandyopadhyay et al. [6](Figure 5; see also Additional File 4, Figures S2-4). 

However, we observed a notable improvement in enrichment for DDR 
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interactions when using profile similarity of dS scores as compared to 

profile similarity of B scores (Figure 5a,b).  

Additionally, it is well known that gene pairs with high profile 

similarity are often members of the same physical complexes [31,32], so 

we investigated whether the same is true for differential-profile similarity. 

We found that the genes with similar dS score profiles are strikingly more 

enriched for co-complex pairs (Figure 5c,d), and specifically for protein 

complexes involved in the DDR (Additional file 4, Figure S2). For example, 

differential profile similarity was able to achieve a precision of 60-100% for 

recovering either DDR pathway interactions or protein complexes, using 

data from either of two studies. This performance was in contrast to that of 

individual differential interactions, which had a precision of 1-20% using 

these same standards and data.  

It is interesting that B score profile similarity is under-enriched for 

meaningful relationships. Part of this behavior may be explained by our 

observation that extreme B score values tend to capture noise and are 

not reproducible (Figure 4b-d). Because profile similarity is heavily 

influenced by larger values, B score profile similarity is overly sensitive to 

noise. Thus, relatively few spurious interactions can have an extensive 

influence on profile similarity.  
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We finally compared dS scores and dS profile similarity scores to the 

static S scores and profile similarity scores from the same data. We found 

that differential similarity scores are more enriched for DDR interactions 

than static similarity scores, even though static scores are more enriched 

for non-DDR specific interactions (Additional file 4, Figure S3).  

The reasons for the improved performance in identifying relevant 

genetic relationships of the dS score over the B score and the static scores 

deserve some attention. Genetic interaction mapping experiments are 

subject to many systematic sources of noise. For example, the ratio of 

double mutant cells to single mutant cells in the colonies growing on the 

single-mutant selection plate (see Figure 1 for an outline of the 

experimental workflow) affects the observed double mutant fitness in the 

following step. Other sources of systematic noise include uneven agar 

surfaces, which affect the quantity of material that is picked up and 

deposited during plate pinning, and variations in incubation time, 

humidity, etc. (Table 1). Despite sophisticated data processing methods, 

traces of these systematic artifacts may be preserved, and this noise can 

influence the estimation of interaction effects. The current experimental 

design for static interaction mapping experiments does not control for 

these artifacts, and the previous method for scoring differential 

interactions did not take advantage of built-in controls. However, our 
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approach uses the paired relationships between plates to eliminate many 

sources of systematic noise, increasing our ability to identify reproducible 

and relevant differential interactions (Figures 1, 2, 4). This result is of broad 

interest because finding the appropriate control plays an important part 

in differential experimental design in many fields.  

2.3.5 Interpretation of the dS score 

The previous approach to scoring differential interactions derived a 

score from the difference between static interaction scores in each 

condition. This explicit comparison of scores led to a natural discussion 

about the interpretation the differential score based on the sign and 

magnitudes of the static scores [6]. However, because the dS score is not 

based on the difference between static scores, we suggest the dS score 

be interpreted following the same logic as static interaction scores. In the 

static case, positive interactions generally denote gene relationships 

within the same pathway or complex, while negative interactions 

generally indicate gene relationships that span parallel or redundant 

pathways [33]. The difference between differential and static 

interpretation is that static scores indicate interactions that affect general 

cell growth, whereas differential scores indicate interactions that affect 

the treatment response.  
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While the theoretical interpretation of the dS score is 

straightforward, the practical interpretation is more complex because the 

static interaction scores provide a context for the interpretation of the dS 

score. For example, a gene pair exhibiting a positive interaction in 

untreated conditions that is more positive in MMS (yielding a positive dS 

score) should be interpreted differently than an interaction that is 

negative in untreated conditions that becomes positive in MMS (also 

yielding a positive dS score). According to the standard interaction 

model, the latter example is supposedly going from a between-pathway 

relationship in untreated conditions to a within-pathway relationship in the 

treatment, which quality the former example does not have, even though 

both examples exhibit a co-pathway relationship in the DDR response. 

These various classes of differential interactions exhibit different 

enrichment rates for our DDR standard (Additional file 4, Figure S4), 

suggesting that there may be unique qualities to each class, but a more 

detailed investigation of differential interaction interpretation is left for 

future work.  

2.4 Conclusions 

Here, we have put forth a quantitative differential interaction score, 

the dS score, based on important statistical information inherent in the 

experimental design. This score not only provides more information about 
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each interaction than previous approaches, but also shows improved 

reproducibility and comparable biological enrichment. Additionally, 

quantitative differential interactions give rise to differential interaction 

profiles, which we demonstrate to be biologically relevant and uniquely 

insightful. Furthermore, we provide a new interpretation for differential 

interactions based on the accepted interpretation of static genetic 

interactions. We conclude that our differential interaction score is 

preferred to the previous approach for differential genetic interaction 

mapping analysis.  

2.5 Methods 

2.5.1 Correlation of query replicates 

We used normalized colony size residuals to calculate the 

correlation of query replicates (Figure 1b). Our approach to computing 

these residuals is based on the approach published by Collins et al. [17]. In 

brief, the raw colony sizes are pre-processed to filter bad colonies and 

correct spatial artifacts. Each plate (i.e. the set of all colony sizes from the 

same plate) is normalized by the plate mode, calculated using a kernel 

density estimation method [34]. Next, array single mutant fitnesses are 

estimated using the median normalized colony size for a given array 

position across all plates, which are then subtracted from the respective 

double mutant colony sizes to yield normalized colony size residuals. These 
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residuals are, in turn, used to calculate several quantities: (1) the pair-wise 

correlation for each pair of conditional plate replicates, i.e. double 

mutant selection plates derived from the same single mutant selection 

plate differing only in the growth condition; (2) pairwise correlation of 

untreated experimental replicates; and (3) pairwise correlation of 

randomly selected queries.  

2.5.2 The dS score 

Normalized differentials are obtained by subtracting untreated 

normalized colony sizes from the corresponding treated normalized 

colony sizes. The dS score is then computed as the pooled t-statistic of the 

six replicates for a given double mutant versus all double mutant 

measurements containing the respective array gene deletion. Note that 

the S score, for scoring static interactions, employs a minimum bound on 

the variance of the six double mutant replicates [17], while the dS score 

does not bound the variance. 

2.5.3 Scoring null differential interactions 

The null distribution of dS scores was generated by using replicate 

pairs of measurements grown on the same plate (and therefore same 

condition) and following the same scoring procedure already described. 

The differentials for the three replicates in each condition were pooled to 

produce six total replicates for each gene pair. We computed false 
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discovery rates for each dS score cutoff as the ratio of the proportion of 

null scores beyond the cutoff to the proportion of observed dS scores 

beyond the cutoff.   

2.5.4 Biological enrichment  

The “bronze” standard for differential genetic interactions in 

response to DNA damage was compiled as (1) the set of all gene pairs in 

which both genes are annotated as “DNA damage response” (DDR) in 

the Gene Ontology [27] (term ID GO:0006974, direct association; 

accessed December 2011), and (2) the set of all gene pairs indicated by 

the YeastNet 2.0 benchmark set [28] in which at least one gene is 

annotated as DDR. The lists of DDR genes and bronze-standard DDR gene 

pairs are provided as additional files. 

The gold standard used for co-complex membership is defined by 

Baryshnikova et al. [29]. Precision-recall plots were computed using the 

absolute value of the dS scores (treating positive and negative 

interactions equally).  

2.5.5 Significance of Pearson correlation 

To assess the significance of the difference between the correlation 

coefficients of the scores in Figure 3, we calculated the correlation of 

bootstrapped data for 10,000 iterations in a paired fashion and counted 
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the number of cases in which the correlation of B scores was greater than 

the correlation of the dS scores.  

2.5.6 Determining associations similar to SWI4-HIR 

To identify gene associations similar to SWI4 and HIR, where the 

differential similarity is high and the static similarity is low, we used the 

cutoffs of >0.35 and <0.15 for differential and static similarity scores, 

respectively.  

2.6 List of abbreviations 

DDR – DNA-damage response  

SGA – Synthetic Genetic Array 
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2.11 Figures  

 

Figure 2.1 The paired experimental pipeline.  
(a) The pipeline for generating differential genetic interactions is the same 
as for static genetic interactions except for a split onto treated and 
untreated plates in the last step. (b) Normalized colony size profiles for the 
same experimental replicate across the two conditions (blue) have the 
greatest Pearson correlation, as compared to the profiles of two 
experimental replicates of the same condition (green) or the profiles of 
different queries (red). 

 



41 

 

 

Figure 2.2 Theoretical and observed differential variances.  
Bar plot of the observed static, expected differential (assuming 
independence), and observed differential variances of normalized colony 
size residuals. The median values across all double mutants are shown. 
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Figure 2.3 Differential profile similarity between SWI4 and HIR. 
(a) Bar plot showing the Pearson correlation of HIR1/2/3 profiles with SWI4 
for untreated, MMS, and differential (dS) scores. (b) Heatmaps of the 
untreated, MMS, and differential interaction profiles of SWI4 and HIR1; the 
bottom panel illustrates the interactions with greatest similarity between 
SWI4 and HIR1. 
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Figure 2.4 False discovery rate and reproducibility the dS score.  
(a) Plot of the false discovery rate of the dS score as a function of score 
magnitude. (b-c) Scatter of differential scores calculated on independent 
replicate subsets using (b) the B scores and (c) the dS score; the points 
shown in either panel are only those scored by both analyses. (d) Plot 
comparing the Pearson correlation of significant interactions for the B and 
dS scores (blue and green, respectively) over a full range of significance 
thresholds – i.e. the correlation of the top n percent of the interactions for 
n = 0.1% (left side) to n = 100% (right side); error bars indicate the 95% 
confidence intervals of the correlation coefficient.  
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Figure 2.5 Performance of dS score and differential profile similarity.  
(a-d) Precision-recall plots comparing the biological enrichment of B and 
dS scores and their corresponding profile similarity scores for DDR 
interactions (a,c) and co-complex interactions (b,d) using the data from 
Bandyopadhyay et al. (a,b) and Guénolé et al. (c,d). 
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Table 2.1 Sources of noise and their effect on interaction scores. 
Noise affects score? 

Source of noise Static 
score 

dS score 

Double/single mutant ratio, pre-DM selection ✓  
Double/single mutant ratio, DM selection ✓ ✓ 
Uneven agar surface, pre-DM selection ✓  
Uneven agar surface, DM selection ✓ ✓ 
Variation in environment, pre-DM selection ✓  
Variation in environment, DM selection ✓ ✓ 
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CHAPTER 3 

DEVELOPMENT OF ULTRA-HIGH-DENSITY SCREENING 

TOOLS FOR MICROBIAL “OMICS” 

Gordon J. Bean, Philipp A. Jaeger, Sondra Bahr, and Trey Ideker. 

3.1 Abstract 

High-throughput genetic screens in model microbial organisms are 

a primary means of interrogating biological systems. In numerous cases, 

such screens have identified the genes that underlie a particular 

phenotype or a set of gene-gene, gene-environment or protein-protein 

interactions, which are then used to construct highly informative network 

maps for biological research. However, the potential test space of genes, 

proteins, or interactions is typically much larger than current screening 

systems can address. To push the limits of screening technology, we 

developed an ultra-high-density, 6144-colony arraying system and analysis 

toolbox. Using budding yeast as a benchmark, we find that these tools 

boost genetic screening throughput 4-fold and yield significant cost and 

time reductions at quality levels equal to or better than current methods. 

Thus, the new ultra-high-density screening tools enable researchers to 

significantly increase the size and scope of their genetic screens.



50 

 

 

3.2 Introduction 

Large-scale genetic screening experiments (i.e. simultaneous 

analysis of many mutants, either pooled or arrayed) have enabled 

researchers to identify gene functions and functional relationships 

underlying many processes (for numerous examples see Nature Reviews 

Genetics series “The Art and Design of Genetic Screens”). In an increasing 

number of model organisms, such screens take advantage of available 

mutant libraries, including complete collections of gene knockout strains, 

over-expression constructs, and the like. In the most typical mode, these 

screens identify genes that are required for, or modulate, a phenotype of 

interest. Very similar screens can be performed to identify gene and 

protein interactions using systems such as Synthetic genetic arrays (SGA) 

and Yeast two-hybrid (Y2H)[1-5].  

In this context, single-cell organisms have proven extraordinarily 

useful due to their ease of genetic manipulation and straightforward 

growth conditions. Suitable species can be found in bacteria (e.g. E. coli), 

fungi (e.g. S. cerevisiae, S. pombe), and algae (C. reinhartdii), allowing 

researchers to assess the effects of a gene across large evolutionary 

timescales [6-9]. However, even the comparatively small genomes of 

these model species contain thousands of genes that can be screened in 
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any number of growth conditions. Furthermore, screening for 

combinations of mutants, such as in genetic interaction screening or 

physical interaction mapping, requires hundreds of thousands to millions 

of possible strains.  

Most current screening methods rely on growing microbial model 

organisms on a solid, nutrient-rich agar surface in a regular grid pattern to 

allow for reliable parallel quantification of a simple phenotype such as 

growth [6-8]. The maximum density of microbial colonies per surface unit, 

the duration of necessary growing time, and the sensitivity and robustness 

of the downstream image acquisition and analysis pipeline are all 

important factors that determine screening throughput, and present 

screening systems typically allow for up to 1536 colonies per agar plate 

[10].  

Here, using S. cerevisiae as a benchmark, we substantially enhance 

screening throughput by enabling growth and analysis of 6144 mutant 

yeast colonies on a single agar plate. The significance of achieving this 

number is that the vast majority of microbial model organisms have gene 

counts very near but not exceeding this number, allowing for an entire, 

genome-wide screen to be performed on a single agar plate. We 

evaluate data quality and cost performance of this new, ultra-high-
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density colony-transfer system in comparison to current methods, and 

provide a free computational toolset for ultra-high-density image analysis. 

3.3 Material and methods 

3.3.1 6144-density pad development 

The new 6144-density pads were produced in collaboration 

between Singer Instrument Co. Ltd. (Roadwater/UK), KREO Technologies 

(Oakville, ON/Canada) and S.B. in the Boone laboratory (University 

Toronto, ON/Canada). Different pressure molds were cut and several trial 

pads were cast by varying plastic temperature, injection pressure etc. 

Pads were evaluated for flatness, stiffness, and pinhead quality using 

standard, SingerPlus plates as well as aluminum and 

polytetrafluoroethylene SingerPlusPlate+ prototypes. The pad with the 

overall best performance and tolerance was chosen for production and is 

now commercially available (Singer Instrument Co. Ltd.). 

3.3.2 Yeast deletion strains, agar plates, and media preparation 

The yeast strains used in this report are based on the commercially 

available yeast knockout (YKO) strain collection (Thermo Fisher Scientific 

Inc., Waltham/MA) with kanamycin as a deletion marker. The collection 

was stored in glycerol stocks at -80ºC in 96-well format until used. We 

produced higher-density plates by first pinning thawed glycerol stocks 
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onto agar plates and then robotically combining 96 plates into 

increasingly higher densities. Media and agar plates were composed 

following established E-MAP protocols [6-8,10-12] in standard Singer plate 

clones (IGENE Supplies, Shanghai/China). Microtiter-format agar plates 

were poured manually with 42ml of liquid agar-medium in each plate, 

cooled on the bench top overnight, and were allowed to dry for 24hrs at 

room temperature. It is critical for high-density pinning that the agar 

surface is dry before pinning starts. 

3.3.3 1536- and 6144-density-format pinning 

To achieve estimates of technical and biological variances, we 

pinned a minimum of 18 replicate plates of each format and imaged 

each plate at 0, 3, 6, 9, 12, 24, and 48 hours after pinning (the 96 and 384 

plates were not imaged on the 3- and 9-hour time points). Additionally, 

we imaged every plate’s source plate immediately before pinning. 

Overall, we acquired over 1200 high-resolution plate images. Unless 

otherwise specified, measurements and analyses using the 6144 format 

were done on the 12-hour images, while measurements and analyses 

using the 384- and 1536 formats were done using the 48-hour images. 

All liquid-to-solid and solid-to-solid yeast transfers were conducted 

using a Singer RoToR robotic plate handler (Singer Instrument Co. Ltd). 96- 

to 1536-format pinnings were performed using the respective factory 
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standard settings for source and target plates. 1536-to-6144 (1536x4) 

pinnings with a 1536 pad were performed with default factory settings at 

the source plate (with 0.15 mm offset) and custom settings for the target 

plate (pin pressure 64%, speed 10mm/s, overshoot 1mm, no offset). 6144-

to-6144 pinnings with a 6144 pad were performed with custom settings at 

the source (pin pressure 50%, speed 10mm/s, overshoot 0.6mm, no offset) 

and the target plate (pin pressure 64%, speed 10mm/s, overshoot 0.6mm, 

no offset).  

For clean 1536-to-6144, 6144-to-6144, and 6144-to-24576 transfers it is 

essential not to overgrow the source plates (max. 6-12hrs incubation) as 

the pinheads are very small and overly large source colonies lead to 

cross-contamination and smear formation between neighboring colonies. 

For hyper-density plates, we first pinned 6144 source plates, incubated 

those for only 3hrs at room temperature and the immediately pinned 

again to 24576. 

3.3.4 Digital image acquisition 

All digital images were acquired with a commercially available SLR 

camera (18Mpixel Rebel T3i, Canon USA Inc., Melville/NY) with an 18-

55mm zoom lens. We used a white diffusor box with bilateral illumination 

and an overhead mount for the camera in a dark room. Images were 

taken in highest quality, 8-bit JPEG. Down-sampling experiments suggest 
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that 10Mpixel cameras should be sufficient for 6144-format image 

acquisition (data not shown). 

3.3.5 Image analysis and data processing  

Images were normalized, spatially corrected, and quantified using a 

set of custom algorithms (aka “The Colony Analyzer Toolkit”) written in 

Matlab (MathWorks Inc., Natick/MA). The complete software package is 

available online (https://github.com/brazilbean/Matlab-Colony-Analyzer-

Toolkit). The workflow for measuring colony size from digital images is as 

follows: (1) the image is cropped to the plate, (2) the colony grid is 

overlaid on the plate image, (3) the size of each colony is measured, (4) 

colony sizes are plate normalized, and (5) colony sizes are spatially 

corrected to remove local, nutrient-based growth effects. Colony size 

quantification and analysis generally followed the same procedures used 

in other studies [6,11].. However, the toolkit can be easily adapted to 

measure other features besides size, such as color or average pixel 

intensity. An additional version of the toolkit, written in Python, is under 

development and will be made available at 

https://github.com/brazilbean/Python-Colony-Analyzer-Toolkit. 
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3.4 Results 

3.4.1 Technical and computational improvements required for ultra-high-

density plates 

Current transfer pads only exist up to a maximum density of 1536 

pins per pad. To increase colony density further, we developed a novel 

transfer pad with 6144 individual pinheads, allowing us to print plates with 

6144 or 24576 clearly defined yeast colonies (Material and Methods). To 

compare the various density performances, we grew single gene deletion 

mutants from the haploid yeast knockout strain collection in 384-, 1536-, 

and 6144-colony grids in large plate replicate numbers for 48hrs (N=18). 

Mutant colonies grown at lower densities were a subset of those grown at 

higher densities, allowing us to compare the same 384 yeast mutant fitness 

values across densities (Figure 1). Colony sizes were measured and 

analyzed as described in the Material and Methods. 

Growing 6144 yeast colonies on a single agar plate introduces 

unique challenges in plate image analysis, rendering previous data 

extraction approaches inadequate [6,10-13], and led us to develop a 

new image analysis and data normalization software package (available 

at https://github.com/brazilbean/Matlab-Colony-Analyzer-Toolkit). Small errors in 

orientation in the 6144 format are sufficient to misalign colonies at the 

ends of each row or column due to the increased proximity of colonies 



57 

 

(Figure 2a). Consequently, we needed an algorithm that could precisely 

identify the locations of each colony in the 6144 grid, which is particularly 

challenging with small colonies (i.e. 0-hour time point, Figure 2b). We 

achieved a highly-accurate grid alignment by estimating the angle of 

grid orientation using the aspect ratio of the cropped image (Figure 2c 

and Supplemental Note 1 included with the original online version of this 

chapter), estimating the locations of the four corners of the grid based on 

grid dimensions and spacing, and iteratively interpolating the remaining 

locations of the grid/colony positions by describing each location as a 

linear function of the grid row and column positions [6,13] (Figure 2d). 

Previous algorithms [6] relied on a single plate-wide pixel-intensity 

threshold to measure colony sizes, an approach we found to be 

inaccurate leading to over- and under-estimation of small colony sizes. 

This effect was particularly obvious at early time points with small colonies 

(0-3 hrs ‘Global thresholding’ Figure 3a,b) and at late time points for 

peripheral colonies (24-48 hrs ‘Global thresholding’ Figure 3b). We 

overcame this problem by implementing an algorithm that determines a 

dynamic pixel-intensity cutoff for each colony based on the distribution of 

local background pixel-intensities (Figure 3c). Additionally, when colonies 

are overgrown, the pixels between adjacent colonies may have intensities 

greater than the threshold, resulting in multiple colonies being counted as 
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one, a problem we solved by determining the local minima surrounding 

each colony (Figure 3d). In summary, we developed an image-processing 

pipeline with an improved ability to correctly identify colonies over a large 

dynamic range of colony sizes, using sensitive local background detection 

(Figure 3e and 4) and improved colony identification algorithms. 

3.4.2 Growth performance, cost, and signal quality of ultra-high-density 

plates 

Utilizing our image analysis software package, we then compared 

the growth and noise performance of 1536-colony and 6144-colony 

formats (referred to as 1536 and 6144 formats). While typical screens in the 

1536 format are imaged 48 hours after pinning, we found that plates in the 

6144 format begin to overgrow after 12 hours (Figure 5a); therefore, we 

make all our comparisons between the 1536/48-hour images and the 

6144/12-hour images. Despite the decreased incubation time, 6144 plates 

exhibit a comparable fold-growth to 1536 plates (~7-fold versus ~8-fold, 

Figure 5b), because the much smaller pin heads on the 6144 pads 

produce smaller starting colony sizes (Figure 6a-c).  

To benchmark the usability of our new technology, we performed 

colony-based fitness measurements on yeast gene-deletion mutants, 

identical to the technique used in epistasis or chemo-genetic screens. The 

goal of any fitness-based genetic screen is to establish which mutants 
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exhibit a significant deviation from expected fitness levels. The fitness 

variance across replicates is a crucial parameter that determines what 

minimal fitness difference (“fitness resolution”) can be called significant. 

We observed that the variance of colony measurements increased as 

plate density increased, and decreased as colonies were grown for a 

longer time (Figure 6d). Consequently, the 6144 format suffers from lower 

fitness resolution than the 1536 format, assuming identical numbers of 

replicates (1536 and 6144 N=6, Figure 5c). However, the 6144 format’s 

higher density allows more replicates to be run at equal or lower cost, 

which can increase 6144 fitness resolution to be as good or even better 

than the 1536 fitness resolution (6144 N=12, 18, 24, Figure 5c).  

Additionally, the dynamic range of fitness levels was slightly larger in 

6144 compared to 1536 plates (Figure 6e), indicating that 6144 plates 

could be cost and quality competitive. To explore the relationship 

between cost (i.e. replicate number) and fitness resolution, we calculated 

the minimum fitness phenotype resolvable as a function of the number of 

replicates and found 6144 plates to be less expensive at equal quality 

(17% cost reduction). Conversely, better quality could be achieved at 

equal cost (+7% fitness resolution) compared to 6 replicates of 1536 plates 

(Figure 5d). We also calculated the fraction of single mutants found 

significantly different from wildtype at a specific replicate number or cost 
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level (p<0.05, Figure 5e) and observed that the 6144 format can be used 

to increase the percentage of mutants with a significant phenotype at 

equal cost (+2.5%), or to allow for cost savings at equal identification level 

(25% cost reduction, Figure 5e). Importantly, 6144 plates allow the 

experimenter to dramatically decrease expenses without risking statistical 

errors that arise with small numbers of replicates. For example, a typical 

experiment might run 6 replicates in the 1536 format, or 18 replicates in 

the 6144 format; however, reducing the number of replicates by a factor 

of 3, 2 replicates in the 1536 format would produce data subject to 

statistical errors, while 6 replicates of the 6144 plates would not, causing 

only a mild degradation in data quality. In summary, 6144 plates can be 

used to improve data quality at equal cost, to cut cost by about 15-20% 

while maintaining equal data quality, or to finely choose the quality-for-

cost balance for a given experiment, while substantially reducing 

screening time in all cases (-75%, 12hrs vs. 48hrs). 

3.4.3 Ultra-high-density plates from high-density pads 

Higher-density plates can be produced from lower density source 

plates by pinning multiple source plates onto a common target plate, a 

process we call “up-scaling” (Figure 7a). We examined whether it is 

possible to use 1536 pads to create 6144 plates with the same beneficial 

properties as described above. We found that 6144 plates pinned with 
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1536 pads (“1536x4”) and analyzed via the normal data analysis pipeline 

showed a dramatic increase in variance (Figure 7b, “1536x4 w/o intra-

plate correction”). Further analysis revealed that most of this variance 

increase was due to batch effects unique to each source plate that were 

preserved in the target plate (Figure 7c, top). Analyzing the colonies 

pertaining to each source plate as separate, lower-density plates 

improved the variance dramatically (Figure 7c, bottom, and b,”1536x4”). 

Overall, up-scaling using 1536-pads yields growth-curves, dynamic ranges, 

and quality levels close to 6144 pad pinned plates (Figure 8). However, 

four pinning pads are used to up-scale for each ultra-high-density plate, 

thus cost benefits cannot be realized using up-scaling (Figure 7d, 

assuming a cost ratio of 2:1 for plates to pads and equal cost per pad). 

3.4.4 Feasibility of hyper-density plates with 24576 individual colonies 

Here we have described the technical qualities of the emerging 

6144 format we developed for yeast high-throughput screening, and one 

could certainly consider the possibility of future increases in colony-

density. Given the promising findings on data quality using up-scaling, we 

explored the technical feasibility of pinning 24576 yeast colonies onto a 

single agar plate using 6144 pads (“hyper-density plates”). Using a 

modified 6144 pinning protocol, we successfully created plates with this 

tremendous colony density, allowing us to run a genome-wide single 
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mutant screen with four replicates on a single agar plate (Figure 7e). At 

such small scales the spatial precision required to place pinheads in 

perfect geometric alignment (to avoid uneven colony neighbor 

distances) increases. However, we found colony alignment to err by less 

than one pixel on average (Figure 7f). The resulting fitness values, while 

increasingly noisy, nevertheless correlate well with lower density data 

(Figure 7g). At these densities, colonies are only 100-200µm in diameter 

and new technical challenges arise: colony images become pixelated, 

resulting in more noise, and the contrast between colony and 

background pixel intensity decreases, making colony detection more 

difficult. Furthermore, colonies arrayed at this density begin to overgrow 

within 3 to 6 hours, reducing the amount of time for growth-defects to be 

manifest. However, we believe that this hyper-density format could find 

useful screening applications, especially when combined with further 

improvements in data acquisition and analysis. 

3.5 Discussion 

Using a heavily utilized genetic screening system for benchmarking, 

our analysis suggests that the new 6144 format can be used to effectively 

cut experimental costs and duration while still maintaining the same level 

of discriminatory power and quality as the old 1536 format. The new 

format also gives the researcher more flexibility to choose the desired 
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cost-quality balance with dramatic cost savings possible (>50%). Our study 

of the feasibility of hyper-density plates with 24576 individual yeast 

colonies shows that simultaneous fourfold-coverage of the whole yeast 

genome on a single agar plate at reasonable quality-levels is now 

technologically possible.  

Our study suggests that our ultra-high-density pad and analysis 

pipeline exceeds the technical standards necessary to produce high 

quality data in different types of screens that are based on the 

quantification of individual microbial colonies. While recent developments 

in genetic screening technology have enabled researchers to perform 

some genetic screening experiments in pooled, liquid form [14,15] many 

“omics” screening technologies have or cannot be adapted to a this 

type of format, and these screens will undoubtedly benefit from the 

availability of the ultra-high-density pads. 

Intriguingly, our results suggest that if extreme data quality were 

desired and cost irrelevant, one could pin low-density plates using higher-

density pads (e.g. only every 4th or every 16th colony pinned), allowing for 

the benefits of very large fold-increases of growth (due to small pin heads) 

to be combined with longer incubation times leading to colony sizes with 

small biological and technical noise. These considerations and other 
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experimental techniques may be useful for further extending the limits of 

high-throughput screening technology.  

Data quality could also be improved through modifications to the 

image acquisition system. As the purpose of this study was to compare 

1536- and 6144-format experiments, we did not conduct thorough 

investigations into the relative merits of image acquisition improvements. 

However, adjustments in the number of megapixels, lens types, and 

aperture settings could be made to accomplish incremental 

improvements in image and data quality. Similarly, researchers desiring to 

use the 6144-format pads should still be able to acquire data of 

reasonable quality even if some element of their imaging system is not the 

same as ours (e.g. their camera provides 12Mpixels instead of 18Mpixels).  

3.6 Glossary 

epistasis – in double-mutant genetic screens, epistasis occurs when the 

phenotype of the double mutant deviates from the predicted 

combination of the single mutant phenotypes; epistasis is indicative of 

functional relationships among the genes perturbed by the mutations. 

fitness – in genetic screens, fitness refers to the ratio of the mutant 

phenotype (i.e. quantitative measurement, typically growth rate) to the 

control phenotype; e.g. a mutant with a fitness of 0.9 grows at 90% the 

growth rate of the control strain. 
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fitness difference – the difference in fitness between strains 

fitness variance – the variance of repeated measurements of a strain’s 

fitness 

fitness resolution – the minimum fitness difference needed to determine 

with statistical confidence that two strains exhibit different fitness 

phenotypes; greater dynamic range among possible fitness values and 

smaller fitness variance improve fitness resolution. 

hyper-density – 24576 colony format 

ultra-high density – 6144 colony format 
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3.10 Figures 

 

Figure 3.1 Experimental design and correlations between different colony 
densities. 
(a) Diagram indicating the overlap in yeast strains used in the various-
colony formats – mutants in lower density plates are always included in 
higher-density plates. (b) Snapshots of 384-, 1536-, and 6144-colony plates 
(top row, scale bar 1 mm) and mosaic view of identical mutant colonies 
assembled from 1536- or 6144-colony plates (zoomed) and compared to 
the 384-colony plate growth (bottom row). (c) To compare data quality 
between formats, we correlated replicates of the different formats 
internally or across (same format median of N=9 replicates each; across 
format median of N=18 replicates each).   
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Figure 3.2 Colony growth kinetics and colony grid alignment. 
(a) Diagram of rows of larger and smaller colonies, each angled at 0.5 
degrees relative to the reference (horizontal bars). Small errors in image 
rotation in the 6144-colony plates can lead to substantial colony 
identification errors. (b) Time-lapse imaging of the current 1536-density 
(above) and the new super-high-density format (below) reveals optimal 
imaging time points of 24–48 hrs for the 1536 and 12–24 hrs for the 6144 
format (identical scale for all images). (c) Geometric solution for the 
image rotation problem. Given that the corners of the plate touch the 
edges of the cropped image, the width and height of the image can 
each be decomposed into the sum of two smaller values. These four 
values (X1,X2,Y1,Y2) are all trigonometric functions of h, the angle of 
orientation of the grid, and the width and height of the plate. These 
functional relationships comprise a non-linear system of equations with a 
closed-form solution, which we solved for h. (d) Snapshots of colonies 
growing in the middle and on the edge of 6144-colony plates; blue dots 
indicate the positions of the grid before (upper row) and after (lower row) 
the grid-adjustment step (scale bars 1 mm).  
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Figure 3.3 Comparison of global and dynamic intensity threshold 
algorithms.  
(a, b) Snapshots of colonies in the plate center and periphery, 
respectively, 0, 3, 6, 9, 12, 24, and 48 hours; blue pixels in the middle and 
bottom rows of each panel indicate the pixels called by the respective 
algorithm as foreground (i.e. colony as opposed to background); red lines 
indicate predicted colony boundaries. The global intensity used in (a) was 
computed on the peripheral window, while the global intensity used in (b) 
was computed on the central window, highlighting the problems of 
global tresholding. (c) Gray-scale snapshots of a single colony at 12 hours 
(left, scale bar 500 mm); histograms showing the distribution of pixel 
intensities for the snapshot, the green curve represents the normal 
distribution fit to the leftmost peak (indicating the distribution of 
background pixel intensities), blue dotted lines indicate the threshold used 
to distinguish colony from background (middle); binary output (right, 
threshold applied). (d) Gray scale snapshot centered on an overgrown 
colony (left, scale bar 500 mm); line plot of median pixel intensity across 
the center of the snapshot (middle, blue line indicates local intensity 
threshold, red line indicates the colony boundary); binary image with 
intensity threshold and bounding box applied (right). (e) Local dynamic 
background estimation is very sensitive and allows for accurate colony-
size estimations across a large background intensity range. Original photo 
of a 0-hour 6144 plate (top); grey scale heat map of the estimated 
background intensity for each grid position in the 0-hour image (middle; 
red boxes indicate the positions of the central and peripheral snapshots 
shown in (a,b)); the reflection of the camera used (bottom) is clearly 
captured by the background intensity estimation algorithm, 
demonstrating its sensitivity.  
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Figure 3.3 Comparison of global and dynamic intensity threshold 
algorithms. Continued. 
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Figure 3.4 Effect of global versus dynamic background. 
(a) Comparison of globally or locally/dynamically thresholded colony 
sizes. While good correlation is achievable between 6 and 24 hrs, poor 
correlation is observed at the extreme ends of the experiment. (b) In 
general, using dynamic local thresholding (right) achieves much better 
data correlation across time-points than global thresholding (left). 
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Figure 3.5 Ultra-high-density format data quality and cost efficiency. 
(a) Percentage of colonies overgrown. (b) Growth curves based on 
median colony area fold-increase since pinning (dashed lines indicate 
fold increase at 12 hrs [6144] or 48 hrs [1536], N=18 for each colony 
density). (c) Distribution of fitness resolutions for 1536 and 6144 format (N= 
replicate numbers). (d) Mode fitness resolutions for a given cost/replicate 
level (dashed lines indicate equal cost/quality levels, N= replicate 
numbers). (e) Percentage of single mutants that can be resolved (dashed 
lines indicate equal cost/quality levels, N= replicate numbers). 
 



73 

 

 

Figure 3.6 Colony size, overgrowth, variance, and dynamic range over 
time.  
(a) Comparison of the different pin pad formats (6144, 1536, 384, 96; left to 
right). (b) Median colony size over time. (c) Percentage of plate 
overgrown over time. (d) Standard deviation between replicates over 
time. (e) Phenotype (fitness) dynamic range over time. 
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Figure 3.7 Up-scaling and hyper-density. 
(a) Schematic of the effects of up-scaling: the combination of different 
lower-density source plates into one higher-density target plate. (b) 
Comparison of variance in plates pinned with dedicated density-pads 
(1536, 6144) and plates using up-scaling with or without intra-plate source 
correction. (c) Colony size distributions obtained by the analysis pipeline 
without (top) and with (bottom) the intra- plate source correction. (d) 
Comparison of the percentage of single mutants that can be identified 
with a significant fitness phenotype at a given cost/replicate level (--- 
indicate N=6 at 1536 density). (e) Snapshots of 6144- and 24,576 hyper-
density colonies at equal scale (scale bar 1 mm). (f) Zoomed image 
showing jitter effect on colony placement; red grid represents perfect 
alignment, blue dots denote actual pin position (scale bar 100 mm). (g) 
Correlation of fitness measurements obtained with ultra-high- and hyper-
density plates. 
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Figure 3.8 Colony size, overgrowth, variance, and dynamic range over 
time including 1536x4. 
(a) Median colony size over time. (b) Percentage of plate overgrown over 
time. (c) Standard deviation between replicates over time. (d) Phenotype 
(fitness) dynamic range over time. 
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CHAPTER 4 

GENOME-WIDE CHARACTERIZATION OF DYNAMIC 

GROWTH PROFILES VIA MASSIVELY PARALLEL TIME-LAPSE 

IMAGING 

Gordon Bean, Philipp Jaeger, and Trey Ideker 

4.1 Abstract 

Time-lapse analyses of mutant colonies have long been performed 

on many experimental platforms, however few studies have identified 

phenotypes other than growth rate. Here we utilize the new 6144-colony 

agar format to perform genome-wide time-lapse analysis of the yeast 

knockout collection to quantify dynamic growth phenotypes and identify 

key biological processes involved in adaptation to metabolic stress 

through nutrient depletion. We then apply our method to study the 

dynamic response to UV-radiation and observe that growth profiles 

recapitulate key biological processes in DNA repair and suggest novel 

relationships. We also find evidence supporting a co-function of RAD23 

and RAD14 in the UV response. 
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4.2 Introduction 

As yeast cells grow on agar, they change their environment, 

drawing in nutrients and releasing waste. Consequently, the cell must be 

able to adapt to its changing environment in order to maintain optimal 

growth. In classic high-throughput screening approaches using agar 

plates, the cumulative effect of these dynamic changes is measured as 

the colony size after a fixed period of time. Using this single measurement, 

genetic interactions have been mapped for many cellular processes [1–

5]; however, not all genetic interactions can be observed in the standard 

growth condition, and it has been shown that by growing the colonies in 

different conditions, new, highly specific interactions are observed [6–8].  

While these agar-based studies have been remarkably successful 

using only final colony growth, they do not provide much insight into the 

dynamic behavior of colony growth before the final image is taken. Full 

growth curves have been measured using other experimental platforms 

[9–12], but in these platforms the experimental throughput is limited to 96 

or 384 strains per run, making genome-wide experiments costly and time-

consuming. Additionally, even when the full growth curve information is 

available, most studies only quantify the growth rate and do not identify 

other growth features, such as length of lag phase or total growth 
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efficiency [9,13]. Even when additional features are measured, all growth 

curve studies to date have been limited to 96- or 384-well formats. 

Here we combine time-lapse imaging with the super-high-

throughput capacity of the new 6144-colony format for agar plates [14] to 

measure full growth curve information for all mutants in the yeast 

knockout collection on multiple conditions and characterize non-

standard growth phenotypes.   

4.3 Results 

Using a modification of genetic interaction-mapping techniques 

[15,16], we performed a massively parallel, genome-wide growth curve 

analysis of all non-essential and some essential yeast genes (Supplemental 

table S1). The colonies were pinned on synthetic complete (SC) and 

standard (YPAD) media and imaged every 2 minutes for 24 hours, with 12 

replicates per condition. The images were analyzed and the data were 

corrected, smoothed, and filtered using the Matlab Colony Analyzer 

Toolkit [14], as described in Methods. 

We found that regardless of final colony size (“ total growth 

efficiency”), normalized growth curves exhibit the same basic shape – 

that is, when normalized for initial and final colony size, most growth 

curves are nearly identical (Figure 1a-b). This result is particularly interesting 

– even when the growth rate of a mutant is reduced, the relative changes 
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in growth rate over time are the same for almost all mutants. Given the 

consistency of growth curve shape across many mutants, we use this 

population shape as a reference curve for quantifying the deviant 

behavior of mutants showing different curve shapes (Figure 1c). We 

compute the root mean squared error (RMSE) of each growth curve as a 

measure of total curve deviation to identify colonies that exhibit deviant 

behavior. The RMSE is by construction positive, but we apply a sign to 

distinguish curves that are >50% above the reference (which behavior we 

call “stall”) from those that are mostly below the reference (which 

behavior we call “lag”), and call our signed RMSE “total deviation”. 

Almost all curves that deviate to an appreciable degree fall either all 

above or all below the reference; we observed no mutants that oscillate 

significantly around the reference curve. Finally, to verify that growth 

curve deviation is not simply a recapitulation of final colony size (the 

standard metric), we scattered total deviation against normalized colony 

size and observed that total deviation is not a function of normalized 

colony size (Figure 1d). Thus, total deviation provides novel information 

about mutant phenotypes. 

We performed a genome-wide GO term enrichment for genes with 

deviant phenotypes in SC, controlling for false discovery rate (see 

Methods). We found that pathways and processes that are enriched for 
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deviant genes include lysine biosynthesis (stall), homoserine biosynthesis 

(stall), purine biosynthesis (stall), ergosterol biosynthesis (stall), vacuolar 

acidification (lag), tryptophan biosynthesis (lag), small ribosomal subunit 

assembly (lag), large ribosomal subunit biogenesis (predominantly lag), 

large ribosomal subunit assembly (both lag and stall), nonfunctional rRNA 

decay (lag and stall), exosome (lag and stall), and RNA processing (lag 

and stall) (Figure 2). 

The concurrence of stall phenotypes with biosynthetic pathways led 

us to the hypothesis that in many cases the stall phenotype may be 

caused by a premature stationary phase caused by a depletion of key 

nutrients in the media: i.e. because these mutants cannot synthesize their 

respective nutrients, once those specific nutrients are depleted from the 

media, the colony can no longer grow. For example, the lysine and 

homoserine biosynthesis pathways exhibit stall phenotypes when grown 

on SC; however, when grown on YPAD media, which is contains a greater 

abundance of essential nutrients, these same mutants do not show stall 

phenotypes (Figure 3). 

A previous study described mutants with prolonged lag phase as 

those that struggle to adapt to changing environmental conditions [17]. 

While the phenotype we have termed “lag” is more general than the 

previously described lag-phase phenotype, our results are consistent with 
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this interpretation, as we see several processes involved in turnover of 

cellular components and machinery exhibiting lag behavior, such as 

ribosome biogenesis and assembly or vacuolar acidification (necessary 

for proteolysis and autophagy).  

Because of its ability to capture dynamic behavior in growth, we 

applied our time-lapse analysis to study the cellular response to a 

dynamic UV radiation treatment. 5 hours after pinning onto SC media, we 

applied 0.015 Joules of UV radiation (see Methods). After analysis of the 

growth curves, we found that many of the known radiation-sensitive 

mutants exhibited a change in growth rate after the UV treatment (Figure 

4a). Using the topmost radiation-sensitive mutants, we performed a 

hierarchical clustering of the deviation profiles (i.e. amount a colony is 

above or below its expected colony size at each point in time; Figure 4b). 

We observed that the timing of the change in growth rate differs across 

these mutants and that mutants form functional groups cluster together. 

This can be seen when genetic interaction similarity data from Costanzo 

et al. [1] is arranged in the same order as the clustered deviation data – 

as genes with similar interaction profiles are arranged next to each other, 

squares of similar values are formed along the diagonal of the heatmap 

(Figure 4c).  
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As the primary feature distinguishing among these clusters is the 

timing of the change in growth rate after UV treatment, this clustering 

provides information about when each module in the DNA-damage 

response is needed for DNA repair. Genes in the nucleotide excision repair 

(NER) pathway are the first to show a response to the UV treatment, 

followed by the RAD52 epistasis group which handles double stranded 

break repair, and finally the RAD24 and RAD9 checkpoints and 

associated. Remarkably, this ordering of response to UV reflects the timing 

of gene function in the cell cycle: the first response to UV-induced lesions 

occurs with NER. Lesions that are not corrected lead to stalled replication 

forks and double stranded breaks. Throughout the cell cycle, DNA-

damage checkpoints seek to ensure that the cell does not proceed with 

growth until the DNA is repaired – errors not corrected during the course of 

the cell cycle should be caught by the final checkpoint. Errors that persist 

can lead to failure to complete mitosis and result in cell death.  

The clustering of specific gene pairs, successfully recapitulating 

double mutant fitness profile scores, is remarkable given that these data 

were acquired using only single mutant growth curves. Given the 

functional relevance of the clusters formed, these data may provide 

novel information about gene relationships. For example, RAD23 is known 

to bind with RAD4 to comprise a stoichiometric complex called NEF2 
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[18,19]; however, RAD23 clusters next to RAD14, a DNA-damage 

recognition factor. These genes have been shown to interact physically, 

forming a complex that helps to recruit TFIIH to the site of DNA damage 

[20,21]. Furthermore, while these genes do not show genetic profile 

similarity in untreated conditions (whereas RAD23 and RAD4 show a low 

level of similarity), their genetic interaction similarity is on par with that 

between RAD23 and RAD4 when screened in UV-treated conditions [8] 

(Figure 4d). These results together suggest that the association between 

RAD23 and RAD14 is of similar importance as the association of RAD23 

and RAD4 in NEF2, in the context of UV-induced DNA damage.  

4.4 Discussion 

Here we provide new phenotypic information for 4947 gene 

deletion mutants. Besides providing general, pathway-level information, 

these data highlight interesting biological relationships that can serve as 

starting points for future hypotheses. For example, the two genes AAH1 

and APT1 both operate on adenine as a substrate; however, AAH1 

exhibits a lag phenotype while APT1 exhibits a stall phenotype. Or, SSN2, 

SSN8, and SRB8 – members of the RNA Polymerase II Mediator CDK8 

complex – show lag phenotypes in SC; however, SRB7, a member of the 

RNA Polymerase II Mediator middle module, shows a stall phenotype. 

These contrasting phenotypes for related processes and components 



86 

 

may shed light on the role these pathways play in the metabolic function 

of the cell or contribute to cell growth.  

We have provided simple explanations for the processes underlying 

stall and lag phenotypes; however, it is easy to imagine that many cases 

require a more nuanced interpretation. For example, most of the amino 

acid biosynthesis pathways enriched for deviant behavior show stall 

phenotypes. In contrast, the tryptophan biosynthesis pathway exhibits lag 

phenotypes. This difference in trend suggests a unique role for tryptophan 

in cell growth compared to other amino acids. Another factor to consider 

is how colony efficiency (as measured by normalized colony size) can 

alter the interpretation of deviant phenotypes. For example, TAT2, the 

tryptophan-specific importer, shows a stall growth curve shape; however, 

it also grows faster and achieves greater growth efficiency than the 

population control, suggesting that the stall behavior may not be caused 

by premature depletion of a specific nutrient (such as in the lysine 

pathway cases), but because the rapidly growing colony runs into other 

constraints, such as glucose depletion or competition with neighboring 

colonies.  

It has been shown recently that examining mutant growth on 

special combinations of carbon and nitrogen sources provides useful 

metabolic information [12]. Using the super-high-throughput capacity of 
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the 6144-colony format makes it more feasible to interrogate many 

different media types, and time-lapse growth analysis can reveal 

additional insights that simple endpoint or growth-rate analyses cannot, 

making our platform a good candidate for future media-mutant 

interaction screens.  

Another recent study identified interesting relationships between 

amino acid concentrations and various cellular components and 

pathways [22]. Our platform could serve as a useful tool for identifying 

metabolically relevant genetic interactions. While we have used single-

mutant strains for this study, double-mutants can be screened just as 

easily. With both deviation and growth efficiency phenotypes to quantify, 

time-lapse analysis is powered to find more genetic relationships than can 

be found using colony size alone. With the vast assortment of media types 

and double mutant combinations possible, there are still many interesting 

experiments that can be done, and our platform is well adapted to make 

these screens.   

4.5 Conclusion 

We performed a genome-wide screen of the yeast gene deletion 

collection using time-lapse analysis. We discovered that while most genes 

exhibit the same growth curve shape, many mutants exhibit curve shapes 

that deviate from the norm and fall into two categories, which we term 
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“stall” and “lag.” Many pathways and components are enriched for 

deviant phenotypes, including some involved in metabolism and cellular 

state transitions. We also applied our method to a dynamic treatment of 

UV-radiation and found that deviation profiles contain inform functional 

gene clusters. The field of mutant screening in nutrient-restricted 

conditions continues to grow, and our platform – given its high throughput 

and information-rich measurements – is well suited for these studies.  

4.6 Methods 

4.6.1 Agar Preparation 

Yeast Peptone Adenine Dextrose (YPAD) and Synthetic Complete 

(SC) agar plates were prepared following standard procedures (Methods 

in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, 2005 

Edition). To maintain the yfgΔ::KanMX deletion, plates were supplemented 

with a final concentration of 100µg/ml G418 (Biopioneer). 

4.6.2 Colony Preparation 

Non-essential haploid strains were selected from the Yeast Knockout 

Collection (n = 5163; Open Biosystems) with the following genetic 

makeup: MATa; his3Δ1; leu2Δ0; ura3Δ0; met15Δ0; yfgΔ::KanMX 

(Background: BY4741). Essential haploid strains were selected from the 

Yeast DAmP Library (n = 768; Open Biosystems) with the following genetic 
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makeup: MATa his3Δ1; leu2Δ0; ura3Δ0; yfg-DAmP::KanMX (Background: 

BY4741). 

4.6.3 Plate propagation 

We started with our collection in 1536 format. These were up-scaled 

to 6144 density and grown for about 4 hours at 30 degrees. These were 

then repined using the 6144-pin tool. These repined, 6144-format plates 

were grown for 24 hours at room temperature and then put into the cold 

room for two days. An additional plate containing only the HO deletion 

strain in 6144 format was prepared and passaged through the following 

experiments alongside the deletion collection. 

All agar plates were poured on the same day, left untouched on 

the bench for 24 hours, then stacked and left on the bench for another 24 

hours before being bagged and placed in the cold room. 

Previous to each day of the experiment, the target plates for the 

following day were removed from the cold room and warmed to room 

temperature on the bench overnight. With the exception of the first day, 

for which the source plates came from the cold room, the source plates 

for the day’s experiments had been growing on the bench overnight. 

These were pinned onto 8 plates: 4 SC (2 SC and 2 SC+UV), 2 SC+GAL, 

and 2 YPAD. The HO-deletion plate was pinned onto SC. Each plate was 

also pinned onto an addition SC plate to become the source plate for the 
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following day. The sources for the next day were bagged and placed on 

the bench. The condition plates were imaged.  

Due to human oversight, the target plates for the second day were 

not warmed on the bench overnight, but were removed that morning 

and warmed in the 30-degree incubator for 30 minutes before pinning. 

The SC+GAL data were not included in this study. 

4.6.4 Experimental setup 

Plates were placed facedown without lids inside the imaging light-

box on a sanded, black acrylic surface in a 3x3 grid. They were imaged 

with a Nikon D800e camera fitted with an AF Micro Nikon 60mm lens using 

Nikon’s Camera Control Pro 2 software. 720 images were taken at 2-

minute intervals using a fixed focus (set initially using auto-focus), aperture 

priority with aperture at f/5 and exposure compensation at +1 2/3 EV 

(note: days 1 and 2 were shot using shutter priority with shutter speed at 

1/10). Images were saved in NEF format (Nikon’s raw image format). The 

guiding principle used in selecting these settings was to produce images 

in which the transition from agar to colony covered a larger range in the 

camera’s saturation capability. This produces images that appear to be 

overly bright, but the colony size information is superior to dimmer images.   

For the SC+UV condition, plates were taken from the setup 

immediately after image 150 was taken (5 hours), placed into a UV cross-
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linker and treated with 15,000 micro-Joules (dosage was chosen over the 

course of multiple pilot experiments as the amount resulting in little 

change to most colonies, but still evoking a response from known UV-

sensitive mutants). They were immediately placed back into the setup 

before the next image was taken. 

4.6.5 Image analysis 

NEF image files were converted to mosaicked TIFF using DCRAW. 

TIFF images were de-mosaicked using MATLAB’s demosaic function 

(although options exist that avoid using the Image Analysis Toolkit for those 

without it). Processed images were quantified using the Matlab Colony 

Analyzer Toolkit [14]. The crop and colony grid placement were defined 

manually for each plate and were reused for each image. The 

RawLocalFitted algorithm was used for pixel thresholding. The ColonyArea 

algorithm was used for colony size quantification. Colony sizes were 

converted to radius, spatially corrected, Gaussian smoothed, and 

normalized to initial colony size. Growth curve data were reduced from 

720 to 96 points using interpolation to decrease computational load for 

downstream analyses.  

4.6.6 Quality Control 

Data for some colonies were removed due to noise or artifacts that 

could not be corrected. All colonies on the border of the plate were 
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removed. Colonies in sparse regions were removed. Colonies obscured by 

scratches in the plastic were also removed. In the end, we retained 

information for about 5,000 colonies in each condition. 

4.6.7 Growth-curve analysis 

Normalized growth curves were averaged across the 12 replicates. 

Reference curves (representing “expected” or non-phenotype growth) 

were computed by normalizing all curves by their endpoint and by taking 

the mode across normalized curves for each point in time. For each 

curve, the difference between the normalized curve and the reference is 

taken. Subtle biases correlated with final colony size were corrected. The 

total deviation was computed as the mean sum of squared residuals. The 

sign was determined as the sign of the average deviation.  

4.6.8 HO-deletion control and FDR 

In addition to the 4 conditions already mentioned, we included 6 

replicates of a plate containing 6144 copies of the HO-deletion strain as a 

control. We scored these data using the same procedures for the rest of 

the gene deletion collection, and the resulting distribution of scores served 

as a null distribution for total deviation scores in the SC condition.  
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4.6.9 GO Enrichment 

Many methods exist for performing Gene Ontology[23] (GO) term 

enrichment – we found more practical and reliable to write our own than 

to find an existing method with the desired qualities. Given a list of scores 

for each gene, we computed the average score for each GO term, 

ignoring missing values. We permuted the scores and recomputed the 

average score for each term 1,000 times, creating a null distribution of 

random scores. Each score was assigned a false discovery rate (FDR) 

based on the null distribution of scores of the same term size. This method 

does not require that a score cutoff be applied. 
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4.8 Figures 

 

Figure 4.1 Computing the quantitative measure of deviant growth 
behavior.  
(a) Line plots of sample growth curves; curves exhibiting deviant behavior 
highlighted in blue and red; colony size = length of colony radius in pixels. 
(b) Line plot of all growth curves, normalized by endpoint; opacity of each 
curve set to 0.01. (c) Line plot demonstrating how curves are compared 
against the reference; blue and red lines correspond to the same in (a); 
dashed line indicates indicate the consensus curve shape suggested in 
(b). (d) Density scatter plot of normalized colony size (y-axis; the classic 
measure) against total deviation (x-axis; the root-mean-squared-error of a 
curve to the reference); red indicates high density, blue indicates low 
density/single points. 
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Figure 4.2 Cellular processes enriched for stall and lag phenotypes.  
Bar plots of pathways or components enriched for deviant phenotypes. 
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Figure 4.3 Changes in pathway phenotypes in response to different media. 
Diagram showing the lag and stall phenotypes mapped onto the lysine 
and homoserine biosynthesis pathways when grown on SC (a) and YPAD 
(b) media; networks adapted from KEGG Pathway sce00300.  
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Figure 4.4 Time-lapse analysis of the UV-response.  
(a) Heatmap showing the clustered deviation profiles (observed minus 
expected growth curves) for top UV-sensitive mutants; colorbar indicates 
relative magnitude of deviation values. (b) Heatmap showing the genetic 
profile similarity between for the same mutants in (a); colorbar indicates 
the magnitude of the profile similarity score; data from [1], with missing 
data shown in gray. (c) Bar plots of the untreated and UV-treated genetic 
profile similarity scores for RAD23 with RAD14 (blue) and RAD4 (red); data 
from [8]. 
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Figure 4.4 Time-lapse analysis of the UV-response. Continued. 
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CHAPTER 5 

CONCLUSION 

Three patterns emerge from the development of high-throughput 

genetic interaction screening in yeast. First is the tango between 

experimental and computational advances – an experimental 

improvement generates new computational problems, and solutions to 

these problems opens the door for new experimental improvements. First 

came the SGA mating technology [1], then the EMAP analysis and scoring 

algorithms (solving spatial artifacts, estimating expected double mutant 

phenotypes, and summarizing quantitative genetic interactions) [2], 

which in turn inspired the genome-scale interaction map [3], which 

necessitated new computational solutions (solving batch effects, new 

spatial artifacts, and neighbor effects). When differential genetic 

interaction mapping came about [4], more computational needs 

presented themselves, such as how to reliably score differential 

interactions and conduct further analyses on differential interaction data. 

In Chapter 2, I presented solutions to these challenges, introducing the dS-

score and describing how differential profile similarity can identify relevant 

biological hypotheses.  
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The second pattern is the steady increase in experimental 

throughput. Quickly the number of colonies on a single agar plate has 

increased from 384 to 768 to 1536 to 6144. As the number of colonies 

increased, the time each colony could grow before exhausting real 

estate decreased. Shorter growth spans raised concerns about data 

quality – was there sufficient time to bring out mutant phenotypes and 

escape the noise introduced in the pinning process. While the 6144-colony 

format was about to become commercially available, there were still 

concerns about its utility. In Chapter 3, I and colleagues answered these 

concerns, showing that the 6144 format could produce reliable data and 

opened the door for new experimental decisions that could not be made 

before, such as sacrificing data quality for resource and time savings. 

Furthermore, I developed an open-source, customizable toolkit to address 

the image analysis challenges associated with the 6144-colony format. I 

designed the toolkit in such a way as to make it adaptable to future 

experimental protocols, rather than to be specifically tailored to our 

pipeline.  

The third pattern we see is that old tools are repurposed to make 

new ones. The few-by-all approach used by Tong et al. [1,5] was 

repurposed to a many-by-many EMAP approach with distinct advantages 

and disadvantages [6]. The EMAP approach was later repurposed to 
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perform differential EMAP experiments. In these steps, the investigators 

identified small changes they could make to existing protocols to extract 

new information. In Chapter 3, I presented work that introduces the 

newest repurposing of the SGA/EMAP technology: time-lapse imaging 

and growth curve analysis. I show that through a simple modification to 

the standard protocol, full growth curve information can be measured. I 

provide a computational framework for analyzing growth curve data and 

quantifying new growth phenotypes.  

There is also much that can be done to improvement upon my 

work. Differential genetic interactions are still not completely understood. 

In their most simple explanation, they represent only the presence and 

absence of interactions across conditions; however, there is evidence to 

suggest that changes in magnitude and changes in sign (e.g. a positive 

interaction becoming negative) may hold more nuanced information. 

Further work may be able to more clearly establish the interpretation of 

these interactions. 

There are experimental improvements that still need to be done to 

optimize the 6144-colony format. Currently, border colonies – which are 

known to grow larger than colonies in the center of the plate, due to 

increased access to nutrients – are more susceptible to smearing when 

pinned with the 6144 pinning pad, resulting in colony contamination. Also, 
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the decreased depth of the 6144 pad makes the format more sensitive to 

agar surface topology – locations where the agar exhibits subtle 

depressions may result in missing colonies. Studies are under way to 

address these challenges. 

Finally, the computational and statistical analyses of growth curves 

can no doubt be improved. In Chapter 4 I present a simple approach 

that quantifies only the degree of curve deviation and yields sound 

biological information. However, more specific features, such as the 

length of the lag phase or the timing of stall effects, could be quantified 

and may yield additional insights [7]. Also, the cause and interpretation of 

stall and lag effects can be further elucidated. Furthermore, while the 

mechanism for expected double-mutant phenotypes is well understood 

for growth-rate data, it is not clear that the same patterns will hold for 

growth curve data, and novel interaction models will be needed when 

growth-curve analysis is applied in double-mutant contexts. 

My contributions have prepared the way for current and future 

work. The work presented in Chapters 2 and 3 have informed multiple 

ongoing differential epistasis mapping studies, several screens using the 

6144-format are now planned or underway, and my image analysis toolkit 

currently provides computational solutions for several projects.  
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As discussed in Chapter 4, a recent study showed that examining 

mutant growth on special combinations of carbon and nitrogen sources 

provides useful metabolic information [8]. Another recent study identified 

interesting relationships between amino acid concentrations and various 

cellular components and pathways [9], suggesting a rich field of genetic 

and metabolic interactions to be explored. Together, media conditions 

and genetic backgrounds constitute hundreds of thousands to millions of 

unique genetic/metabolic combinations to be screened. My time-lapse 

approach is capable of identifying metabolic and stress-related features, 

and in combination with the 6144-colony format, exploring these 

combinations of gene background and growth environment is now 

feasible.  
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