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Abstract 

Causal judgments are stubborn. If people learn about two 
correlated variables B and C, and judge that B causes C, they 
typically stick to that judgment even when contradictory 
evidence comes to light. One form of contradictory evidence 
is that a third variable A causes both B and C, explaining the 
correlation. This paper extends prior work showing that 
simply presenting statistical evidence that A is the common 
cause of both B and C does not lead to belief change about B. 
However, if first subjects learn to categorize phenomena by 
their underlying causal relationships (i.e., as exemplars of a 
common cause category), then they can transfer their category 
knowledge to properly interpret the evidence. They recognize 
that A is the common cause of B and C and revise their belief 
about B. These results suggest that teaching abstract causal 
categories is a promising strategy to help revise false beliefs. 

Keywords: belief revision; categories and concepts; analogy; 
causal learning 

Introduction 
False beliefs are pervasive, leading to many harmful 

decisions. For example, Steve Jobs famously delayed 
surgery for his cancer, and instead chose naturopathic 
treatments that have no supporting scientific evidence for 
their efficacy. While it is hard to be certain, there is 
evidence that decision led to his death (e.g., see Walton, 
2011 https://tinyurl.com/ybbc3jnk). A more common 
example is attributing the fast recovery from a cold to an 
herbal supplement when in reality recovery would have 
been just as fast without taking it. Large sample public 
surveys and laboratory experiments reinforce the notion that 
false beliefs are at once easily formed, and resistant to 
change (see Lewandowsky et al., 2012; and Hornsey & 
Fielding, 2017 for review).  

Taylor and Ahn (2012) developed a laboratory paradigm 
to investigate the mechanisms underlying the real-world 
problem of stubborn false beliefs.  In their paradigm, they 
demonstrated the phenomenon of “causal imprinting” 
wherein once a causal judgment was made, it was resistant 
to change despite new contradictory evidence. They used an 
observational learning method wherein subjects considered 
a series of patient medical files to determine if B (the 
“Burlosis condition”) caused C (the “Caprix condition”). In 
the twenty medical files, the two conditions were highly 
correlated (see Figure 1, top), and so most subjects endorsed 
that yes, B does cause C. Then the subjects were told that a 
new potential cause, A (the “Ablique virus”) had been 
discovered and they should look over the medical files 
again, now with information about whether or not patients 

had that virus. The statistics now suggested that the 
correlation between B and C was due entirely to A; that is 
when A was present, B and C were also likely to be, and 
when A was not present, B and C were likely not to be (see 
Figure 1, bottom). That is, A was the common cause of both 
B and C. Although subjects saw the causal power of A, this 
did not change their view about B. They thought A could 
cause B and C, but also that B caused C. On the other hand, 
if subjects saw the patient files that included A from the 
beginning, they readily inferred that A caused B and C, and 
that B did not cause C. Across four experiments Taylor and 
Ahn ruled out several simple hypotheses about why people 
failed to revise their beliefs about B, for example not 
properly recognizing the relationship between the two sets 
of observations. Rejecting these alternative explanations, 
they concluded the causal power of B was imprinted on the 
subjects’ minds. What could help change this belief? 

 

 
Figure 1: Co-occurrence statistics across twenty 

observational learning trials. Each number refers to the 
number of trials where some combination of variables was 
present or not. Negatives refer to “not present.” In the 
contingency table with all three variables, the column labels 
refer to combinations of A’s and C’s presence. This shows 
how the correlation above is explained by A. 

 
Rottman, Gentner, and Goldwater (2012) showed that 

science novices are not particularly perceptive of when 
phenomena share underlying causal relations. The novices 
were given descriptions of phenomena from a number of 
domains to sort into categories (e.g., economics, biology), 
and decided to sort them based on domain, regardless of any 
differences in their underlying causal structure. On the other 
hand, science experts saw past the domains, and sorted 
phenomena via their causal structure. For example, they 
sorted descriptions of biological and economic phenomena 
together that each showed a common cause structure 
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wherein A (an allergic reaction; high unemployment, 
respectively) caused both B (rash; increased crime) and C 
(coughing; lower GDP) independently. Another causal 
category that guided science experts’ sorting was a causal 
chain wherein A (increased oil prices) caused B (increased 
transportations costs) which in turn directly caused C 
(increased price of consumer goods). Building on this work, 
Goldwater and Gentner (2015) taught novices the causal 
system categories by scaffolding their comparison of 
phenomena from different domains that shared causal 
structure. After the comparisons, subjects sorted novel 
phenomena descriptions via their causal structures in a 
manner similar to the science experts in Rottman et al. 
(2012).   

The current work examined whether learning the causal 
system categories as in Goldwater and Gentner (2015) can 
aid subjects in either preventing or undoing causal 
imprinting. If subjects had a more general understanding of 
common causes, they could potentially use that 
understanding to recognize when they had falsely believed 
that B caused C, and instead attribute the cause of both B 
and C to A. In terms of Taylor and Ahn (2012) if they 
recognized that the relationships among the Ablique Virus 
and the Burlosis and Caprix conditions was actually an 
exemplar of a common cause category, they could use their 
knowledge of the category to help them interpret the 
statistical pattern in the medical files. To investigate 
whether this method can aid belief revision, the current 
work simply combined the category learning task of 
Goldwater and Gentner (2015) with the observational 
learning task of Taylor and Ahn (2012).  

In Experiment 1, all subjects reviewed patient files with 
information about the Ablique Virus from the beginning, 
when prior work showed they could properly infer that A 
was the common cause of B and C. Before reviewing the 
patient files some of the subjects received the causal system 
category training, and some did not. Here, we predicted that 
the training would have no effect. Our working hypothesis 
was that learning the causal categories would specifically 
support belief revision, and when subjects learn about A, B, 
and C from the start, there will be no need to revise beliefs. 
This established a baseline for the efficacy of the category 
training shown in the next two experiments. 

In Experiment 2, all subjects first learned about B and C, 
and then reviewed the files again with information about A. 
This was the condition from Taylor and Ahn (2012) that 
showed causal imprinting. Subjects received causal category 
training, and were given a second opportunity to consider 
the patient files with information about A, B, and C. Here 
we expected the causal system category training to reduce 
the size of the causal imprinting effect. In Experiment 3, we 
compared the causal category training to a control condition 
to ensure that the effects of Experiment 2 were not simply 
due to having an additional opportunity to consider the 
statistical evidence.  

Because the pattern is complex, we briefly summarize the 
overall rationale for the series of experiments before 

describing them. We predicted that learning the common 
cause structure as a category should specifically help belief 
revision (as in E2 and E3), but have no effect when no 
revision is needed (when the statistics support a common 
cause inference from the start in E1). In E2, we contrasted 
whether category training could prevent causal imprinting 
with its potential to help undo imprinting. In E3, we 
compared how the category training helps to undo 
imprinting to a control condition. 

Experiment 1 
This experiment had a simple design of two conditions 
manipulated between-subjects.  All subjects reviewed 
patient files containing information about A, B, and C from 
the start. Some of the subjects received the causal system 
category training before reviewing the patient files. Some 
received no category training.  

Methods 
Subjects. Sixty-two subjects were recruited from an 
introductory psychology class at the University of Sydney, 
and received course credit for their participation. 
Materials and Procedure. Thirty-nine of the subjects 
(randomly assigned) started with the causal system category 
training task adapted from Goldwater and Gentner (2015).  
The training focussed on two causal systems such that any 
application of the category training to the observational 
learning phase would have to be selective of which category 
was relevant, and contrasting two categories improves 
learning of each (e.g., Rohrer & Pashler, 2010). The training 
task presented two examples each of common cause and 
causal chain systems along with clear explications of their 
respective causal structures. Participants were asked why 
examples of these systems belonged to their respective 
categories and to identify the elements of one example that 
corresponded to elements of another example of the same 
causal system (See Figure 2). Subsequently, participants 
were provided with four novel examples (two common-
cause and two causal chain) and asked which category they 
belong to and why. Finally, participants were asked to 
respond to the question: “What are the key differences 
between common cause systems and causal chain systems?”  
 
Example of common cause phenomena description : 
Policies often have many consequences, some planned and some unintended. No 
Child Left Behind has increased the national averages of 4th and 8th grade Math scores.  
However, in order to boost the number of children who pass the test, there has been 
particular focus on children who score just below passing (children on the “bubble”), 
while students way below passing get ignored. And unfortunately, there has been 
evidence of teachers changing students’ answers.  

 
Figure 2. Example phenomena description from category 

training task (top), and correspondence task to scaffold a 
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structural comparison (bottom; see Goldwater & Gentner 
2015 for complete description and evidence of 
effectiveness).  

 
All subjects completed the observational learning task, 

which started with a practice round based on Dennis and 
Ahn (2001; also used by Taylor & Ahn, 2012) For space we 
have cut out detail here, but to summarize: Subjects were 
asked to determine whether ingesting an exotic plant causes 
people to become sick by observing several cases describing 
whether or not an exotic plant was ingested and whether or 
not that person became sick. After two blocks, one 
suggesting a causal relationship, and one that did not, 
participants were provided with a summary of the cases and 
an explanation demonstrating how to infer the strength of 
the causal relationship between events based on the co-
occurrence statistics and how to score the strength of the 
causal relationship on a scale from 0-100. They were given 
four examples to calibrate their use of the scale (again based 
on Taylor & Ahn 2012). 0 was labelled “not a cause” and 
the example given was “the degree to which one rain drop 
causes a rise in the stock market.” 30 was labelled “a weak 
cause” and the example was “the degree to which getting 
wet causes a cold.” 70 was labelled “a strong cause” and the 
example was “the degree to which being exposed to a virus 
causes a cold.” 100 was labelled “a very strong cause” and 
the example was “the degree to which rain causes the 
ground to be wet.” Subjects could refer to these guidelines 
for each rating they made throughout the experiment. 

Next all subjects moved onto the primary observational 
learning task wherein subjects were told:  

“Now, imagine that you are a research assistant at the 
Garvan institute of medical research. Scientists have 
recently discovered three new medical conditions and are 
trying to understand if there is a relationship between them. 
Blood was taken from 20 patients and it was found that 
three events were common among the samples. These 
events were  

1. “Has Burlosis condition” or “No Burlosis condition”  
2. “Has Caprix Condition” or “No Caprix condition.”  
3. “Has Ablique virus” or “No Ablique virus.”  
…From the preliminary research scientists have 

discovered that the ‘Caprix’ condition can NOT cause the 
‘Burlosis’ condition or the ‘Ablique’ virus. For this reason, 
your job as a research assistant will be to observe 20 
patients to determine whether:   

1. The ‘Burlosis’ condition causes the ‘Caprix’ condition   
2. The ‘Ablique’ virus causes the ‘Burlosis’ condition  
3. The ‘Ablique’ virus causes the ‘Caprix’ condition” 
Then the subjects reviewed the 20 patient files at their 

own pace, and after completion they rated the three potential 
causal relationships from 0 to 100. 

Results 
Figure 3 shows the causal strength ratings for B causes C, 
and the average of A causes B and A causes C. Using the 
average of both A ratings allows for an easier visual 

comparison between A’s perceived causal strength (the true 
cause), and B’s (the false cause). The two A ratings never 
significantly differed from each other across the three 
experiments.  

To simplify the statistical analyses for all three 
experiments, we subtract the B causal strength rating from 
the average A rating. A value of zero means they see A and 
B as equally causally strong. A positive value means A is 
seen as stronger than B. A negative value means B is seen as 
stronger than A. We note the higher the positive value, the 
more consistent the ratings are with a common cause 
relationship among the variables.  

 

 
Figure 3. Mean (and standard error) causal strength ratings 
for Experiment 1.  

 
There was no difference between the two conditions, as 

the subjects who received the category training (M = 25.97) 
and the subjects who did not (M = 33.50) both rated A as 
having greater causal strength than B, t (60) = .68, p =.50. 
Consistent with predictions, and replicating Taylor and Ahn 
(2012), when all three variables are introduced together, 
subjects can clearly infer that A is the common cause of B 
and C, and B is not a direct cause of C. 

Experiment 2 
The second experiment now tested whether causal system 
category learning could prevent or undo causal imprinting. 
Here, the observational learning task induced causal 
imprinting in the same manner as Taylor & Ahn (2012) by 
first having subjects review patient files with information 
only about B and C (the BC block), and then following up 
with the block with information about A, B, and C (ABC 
block) from Experiment 1. This experiment added a second 
ABC block identical to the first to give subjects a second 
time to reflect on the statistical pattern and potentially 
change their causal strength ratings. This order of BC block, 
then ABC block, then another ABC block was identical for 
all subjects.  

In addition, all subjects received the causal system 
category learning task from Experiment 1, however the 
timing of the causal system category learning task was 
manipulated between-subjects (see Figure 4). Subjects either 
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received the category training right from the start, or 
received it in between the two ABC blocks. If there were 
differences between the two conditions’ causal strength 
ratings after the first ABC block, this would suggest that the 
causal category training could mitigate the size of causal 
imprinting from the start. If the second ABC rating differed 
from the first, this would suggest that the causal category 
training could aid belief revision and undo some of the 
effects of causal imprinting. We predicted that the category 
training would elicit an effect of increasing A’s causal 
strength rating relative to B’s, but we were agnostic to an 
effect of when this occurred.  

 

 
Figure 4. Task sequence for Experiment 2 

Methods 
Subjects. 151 subjects were recruited from an introductory 
psychology class at the University of Sydney, and received 
course credit for their participation. 
Materials and Procedure. The materials and procedure 
were largely identical to Experiment 1. The primary 
difference is that at the start of the primary observational 
learning task, the instructions only mentioned the Burlosis 
and Caprix conditions. Similar to the previous instructions, 
the subjects were told that the earlier research ruled out that 
the Caprix condition could cause the Burlosis condition, but 
they were to consider whether Burlosis could cause Caprix. 
They then reviewed the twenty medical files without any 
information about the Ablique virues. To be consistent with 
Taylor and Ahn (2012), subjects did not rate the strength of 
B causes C after the BC block (their pilot work showed that 
rating B’s causal strength before the ABC block has no 
effect on the causal imprinting shown after the ABC block). 

After the BC block, the instructions told the subjects that 
a new discovery had been made, the Ablique Virus, and that 
they were to re-examine the same patient files now with 
information about who had or did not have the Ablique 
Virus. From there, the instructions proceeded identically to 
the ABC block from Experiment 1. Another novel part of 
the procedure was the second ABC block wherein subjects 
were instructed to consider the ABC block one more time 
and were then given a second opportunity to rate the causal 
strength of the three candidate causal relationships.  

The final novel aspect of the procedure was that 
approximately half (n=76) of the subjects received the 
category training task before the observational learning task, 

while the other subjects (n=75) received the training in 
between the two ABC block (randomly assigned; Figure 4).  

Results 
Figure 5 shows the full pattern of causal strength ratings. 
Subjects viewed B’s causal strength as quite close to A’s on 
the first rating, replicating Taylor and Ahn’s (2012) causal 
imprinting effect.  The second rating however shows belief 
revision, with a reduction in B relative to A. 

 

 

 
Figure 5. Mean (and standard error) causal strength ratings 
for Experiment 2.  

 
For the statistical analyses we again use the summary 

strength score that subtracts B’s causal strength rating from 
the average of both of A’s ratings. Recall high positive 
scores show subjects recognized that A is the greater cause 
of B and C than B is the cause of C. However scores close 
to or below 0 show causal imprinting. They view B’s causal 
strength as similar or greater to A’s.  

We analyzed the data with a 2 (Early Category Training 
vs. Late Category Training; between-subjects) X 2 (1st 
causal strength rating vs. 2nd causal strength rating; within-
subjects) mixed-measures ANOVA. There was no main 
effect of the timing of category training, as both the first 
rating (Early Training, M = 6.40; Late Training, M = 0.81), 
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and the second rating (Early Training, M = 19.49; Late 
Training, M = 12.85), showed similar scores between the 
two conditions, F(1,149) = 1.46, p = .23, η2

p = .010. 
However there was a main effect of rating, as subjects’ 
rating at the second rating were higher in both training 
timing conditions than at the first, F(1,149) = 16.58, p < 
.001, η2

p = .100. There was no interaction between the two 
variables as both the subjects in the Early Training 
condition (Rating Change M = 13.09) and Late Training 
(Rating Change M = 12.05) increased their ratings to similar 
degrees, F(1,149) = 0.03, p = .86, η2

p < .001. 

Experiment 3 
There were several important findings from Experiment 2. 
First is that we replicated the causal imprinting effect from 
Taylor and Ahn (2012) in the first set of causal strength 
ratings. B was seen as equally strong as A. Second is that 
the second set of ratings showed belief revision wherein the 
ratings moved towards the pattern from Experiment 1 when 
A was seen as the common cause of B and C, and B was not 
seen as a strong cause of C. Interestingly, the timing of the 
category training did not seem to have an effect on this 
pattern. It still required two considerations of the ABC data 
for the subjects who had the category training from the 
beginning.1  

The results of experiment 2 suggested that the category 
training provided a tool to foster belief revision if the 
subjects are given multiple chances to consider the 
statistical pattern. However, we cannot yet reject another 
plausible hypotheses- that having a second chance to 
consider the statistical pattern in the ABC block is sufficient 
to change the causal strength ratings, and that the category 
training had no effect.  In Experiment 3, we replicate the 
Late Training condition of Experiment 2, but add a control 
task in between the first and second ABC block.  

Methods 
Subjects. Sixty-five subjects were recruited from Amazon’s 
Mechanical Turk and were compensated $8 US for their 
participation. 
Materials and Procedure. The materials and procedure for 
thirty-five of the subjects (randomly assigned) were that of 
Experiment 2’s Late Training condition. The observational 
learning task was identical here for the Control condition, 
but instead of the category training between the two ABC 
blocks, the subjects read a passage about the logic of 
randomized control trials for medical research and then 
answered comprehension questions about that passage. 

Results 
Figure 6 shows the full pattern of results. Compared to 
Experiment 2, ratings across the board were higher, and B 
was actually seen as a stronger cause than A in the first 
rating (unlike in Experiment 2 when they were rated almost 

                                                             
1 The Early Training condition had a slightly higher summary 
score, but this was indistinguishable from random error.  

equally); this is most likely because E1 and E2 recruited 
undergraduates while E3 recruited from MechTurk. What is 
more important however are condition differences, not how 
the scale is used on average. Crucially, the second rating 
shows a reduction of B’s strength relative to A’s for the 
Late Training condition, while the Control condition shows 
no such reduction. Again, summary ratings scores are 
analyzed. Higher scores reflect a greater recognition of A as 
the common cause of B and C, while lower scores shows a 
greater effect of causal imprinting wherein B is seen as 
having causal strength comparable to or greater than A’s.  
 

 

 
Figure 6: Mean (and standard error) causal strength ratings 
for Experiment 3.  

 
We conducted a 2 (Late Training vs. Control; between-

subjects) X 2 (1st Rating vs. 2nd Rating; within-subjects) 
mixed-measures ANOVA. There was no statistically 
significant main effect comparing the Late Training 
condition  (1st Rating M = -4.29; 2nd Rating M = 5.70) to the 
Control  condition (1st Rating M = -11.15; 2nd Rating = ------
-16.05), F(1, 63) = 3.62, p = .06, η2

p = .054. Nor was there a 
significant difference between the first and second rating, 
F(1, 63) = 0.62, p = .43, η2

p = .010. Critically there was an 
interaction between the two variables, F(1, 63) = 5.30, p < 
.05, η2

p = .078 because the Late Training condition’s ratings 
increased from the first to the second (Rating Change M = 
9.99), while the Control condition’s rating actually 
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decreased (Rating Change M = ---4.90). The Category 
Training condition’s increase was statistically significant, 
t(34) = 2.15, p < .05; the Control condition’s decrease was 
not t(29) = 1.11, p = .28.  

These results replicate the key finding of Experiment 2, 
that when following the category training, a second chance 
to consider the statistical pattern amongst the A, B, and C 
variables reduces the causal imprinting effect. While 
Experiment 3 seemed to show a larger causal imprinting 
effect overall than Experiment 2, the ratings change across 
the two experiments were similar (Experiment 2 Late 
Training M = 12.85; Experiment 3 Late Training M = 9.99).  

General Discussion 
Across three experiments a clear pattern emerged. When 
two correlated variables were observed together, subjects 
inferred that one caused the other. This inference became 
imprinted on the subjects’ minds. New statistical evidence 
showing that a third variable was in fact the common cause 
of the two original variables (which have no direct causal 
link) was not alone sufficient to change their minds. 
However, learning that the common cause relation was a 
more general causal structure that many phenomena shared, 
supported changing the interpretation of the statistical 
evidence. When subjects considered the statistical evidence 
for a second time, they (on average) applied their causal 
category knowledge and shifted their understanding in the 
direction of the true causal structure.  That Experiment 2 
showed no effect of category training at the first rating, and 
that in Experiment 3 only the category training condition 
elicited a significant difference between the first and second 
ratings suggests that both category training and having a 
second chance to interpret the evidence are necessary for 
belief revision.  

We suggest that causal system category training supports 
belief revision by offering a conceptual tool to make sense 
of statistical evidence. Many models of causal learning 
suggest that with each new piece of evidence, multiple 
causal structure hypotheses are evaluated (e.g., Tenenbaum, 
Griffiths, & Kemp, 2006). The current work is consistent 
with prior findings that explicit training in specific causal 
structures is sometimes necessary for those causal structures 
to be directly evaluated (Fernbach & Sloman, 2009). Here, 
learning about the common cause relation at a general, 
categorical level was necessary to revise beliefs to be more 
consistent with a common cause structure. In contrast, 
Experiment 1 showed category training was not necessary to 
infer a common cause structure when all relevant variables 
were considered from the beginning.  

In the category training task, subjects learned about 
common cause structures (relevant to the observational 
learning task) and causal chain structures (irrelevant to the 
observational learning task). Learning two categories 
suggests that subjects’ knowledge transfer from the category 
training task to the observational learning task was 
selective. In Experiments 2 and 3, category training elicited 
changes to causal strength ratings to be more consistent with 

a common cause structure, not a causal chain structure. The 
latter would have seen no decrease in B’s strength to cause 
C, but may have seen a decrease in the direct link from A to 
C. It is possible that by teaching them two causal system 
categories we made the revision task harder than the prior 
work on false beliefs (reviewed by Lewandowsky and 
colleagues, 2012). In that work, the original (false) causal 
explanation was explicitly refuted, and sometimes 
(depending on the study) an alternative explanation was 
given and stated as the true explanation. Here we were less 
direct, simply providing conceptual tools to the learner, and 
many were able to use them appropriately.  

Of course, we recognize that the success was not total. 
Comparing Experiments 2 and 3 to Experiment 1 shows that 
the category training did not make the ratings as consistent 
with a common cause structure as if causal imprinting was 
never induced. Still, given how stubborn false beliefs can 
be, any success in revising them is quite promising. The 
next steps in our research will examine whether this form of 
training can help change subjects’ pre-existing beliefs.  
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