
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
The networked device driver architecture : a solution for remote I/O

Permalink
https://escholarship.org/uc/item/2hp395ft

Author
Taylor, Cynthia Bagier

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hp395ft
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Networked Device Driver Architecture: A Solution for Remote I/O

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Cynthia Bagier Taylor

Committee in charge:

Professor Joseph Pasquale, Chair
Professor Sheldon Brown
Professor William Griswold
Professor Ramesh Rao
Professor Amin Vahdat

2012

Copyright

Cynthia Bagier Taylor, 2012

All rights reserved.

The Dissertation of Cynthia Bagier Taylor is approved and is acceptable

in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION
To Neal S. Reeves.

iv

EPIGRAPH

I’ll put a girdle round about the earth
In forty minutes. Puck, A Midsummer Night’s Dream, William Shakespeare

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

List of Listings . xii

Acknowledgements . xiii

Vita . xv

Abstract of the Dissertation . xvi

Chapter 1 Introduction . 1

Chapter 2 The Problem . 6

Chapter 3 Related Work . 11
3.1 X-Windows . 11
3.2 VNC . 12
3.3 USB over IP . 13
3.4 THINC . 13
3.5 CameraCast . 14
3.6 The Berkeley Continuous Media Toolkit . 14
3.7 Cascades . 14
3.8 Virtual Reality Applications . 15
3.9 Streams . 15
3.10 Plan 9 and 81

2 . 15
3.11 Container Shipping . 16
3.12 Orthogonal Work . 17
3.13 Conclusion . 17

Chapter 4 System Architecture . 19
4.1 Design Goals . 19
4.2 Architecture Summary . 20
4.3 Data Streams . 21

vi

4.4 Header Format . 23
4.5 Device Communication Module . 23
4.6 Network Modules . 24
4.7 Application Communication Module . 25
4.8 Transformation Modules . 25

4.8.1 Transformation Module Pairs . 26
4.8.2 Functionality . 27

4.9 Out-of-Band Messages . 30
4.10 Conclusion . 31

Chapter 5 Implementation . 33
5.1 Data Transfer . 34

5.1.1 Implementation with Pipes . 35
5.1.2 Implementation with Shared Memory . 37
5.1.3 Using Pipes versus Shared Memory . 38

5.2 Devices . 40
5.2.1 Space Navigator . 40
5.2.2 Mouse and Keyboard . 41
5.2.3 Video Card . 43

5.3 Network Modules . 43
5.4 Conclusion . 45

Chapter 6 Performance . 47
6.1 Base End-to-End Time . 47
6.2 End-to-End Time Across a Single Machine . 50
6.3 Base Throughput . 52
6.4 Update Speed of Networked Device Drivers Compared to Standard Drivers 53
6.5 The Networked Device Driver Compared to VNC 56
6.6 Adding Transformation Modules . 58
6.7 Performance of Transformation Modules . 60

6.7.1 Buffering . 61
6.7.2 Bundling . 63

6.8 Effects of Adding Transformation Modules with both Shared Memory
and Pipes . 64
6.8.1 Transformation Modules and System End-to-End Time 65
6.8.2 Transformation Modules and Machine End-to-End Time 68

6.9 Video Driver Performance with Added Transformation Modules 73
6.9.1 Video Inter-frame Times Across the System 73
6.9.2 Single Machine End-to-End Time and Batching Effects 80

6.10 Conclusion . 86

Chapter 7 Conclusion . 88

vii

Bibliography . 91

viii

LIST OF FIGURES

Figure 2.1. Device and application on a single machine. 7

Figure 2.2. Device and application on separate machines. 8

Figure 2.3. Updates travel from device to application on a single machine. . . . 9

Figure 2.4. Updates traveling across two machines. 10

Figure 4.1. The network device driver encapsulates all networking 20

Figure 4.2. An overview of network device driver data stream 22

Figure 4.3. The message and header format . 23

Figure 4.4. Paired transformation modules preserve transparency 26

Figure 4.5. Synchronization of multiple devices . 29

Figure 4.6. Transformation module pairs exchange out-of-band messages 30

Figure 5.1. The network device driver runs predominately in user space 34

Figure 5.2. Processes communicate through read and write pipes 37

Figure 5.3. Our shared memory implementation has pipes for control messages 38

Figure 6.1. Experimental setup for end-to-end time . 48

Figure 6.2. Results of the end-to-end time experiment . 49

Figure 6.3. Experimental setup for end-to-end time on a single machine 50

Figure 6.4. End-to-end times across a single machine . 51

Figure 6.5. Experimental set for bandwidth experiments 52

Figure 6.6. Instrumentation of the Spacenav device driver 54

Figure 6.7. The design of the video card networked device driver 55

Figure 6.8. The video card networked device driver compared to VNC 56

Figure 6.9. Adding compression to the video card networked device driver . . . 58

ix

Figure 6.10. Design of the networked device driver with compression 59

Figure 6.11. The design of the buffering experiment . 60

Figure 6.12. Results of the buffering experiment . 61

Figure 6.13. The design of the bundling experiment . 62

Figure 6.14. Results of the bundling experiment . 64

Figure 6.15. Experimental set up for end-to-end latency, across the entire system 65

Figure 6.16. End-to-end times for pipes, across the entire system 66

Figure 6.17. End-to-end times for shared memory, across the entire system . . . 67

Figure 6.18. Experimental setup to measure single-machine end-to-end latency 70

Figure 6.19. End-to-end time on a single machine for pipes 71

Figure 6.20. End-to-end time on a single machine for shared memory 72

Figure 6.21. Experimental setup for video inter-frame times 75

Figure 6.22. Frames per second across machines using pipes 76

Figure 6.23. Frames per second across machines using shared memory 77

Figure 6.24. Inter-frame time in microseconds across machines 78

Figure 6.25. Average inter-frame time using shared memory 79

Figure 6.26. Inter-frame time of pipes versus shared memory 80

Figure 6.27. Experimental design to measure end-to-end time on one machine . 81

Figure 6.28. Results of single machine end-to-end time . 83

Figure 6.29. End-to-end time across varying numbers of frames in shared memory 84

x

LIST OF TABLES

Table 6.1. End-to-end time on a basic network device driver 50

Table 6.2. Single-machine end-to-end time . 52

Table 6.3. The throughput of the networked device driver. 53

Table 6.4. VNC inter-frame times in microseconds . 56

Table 6.5. Networked driver inter-frame times, with and without compression 57

Table 6.6. End-to-end times across the system using pipes 68

Table 6.7. End-to-end time across the system using shared memory 69

Table 6.8. Single-machine end-to-end time, using pipes 69

Table 6.9. Single machine end-to-end time, using shared memory 73

Table 6.10. Average inter-frame time using pipes . 74

Table 6.11. Average inter-frame time using shared memory 74

Table 6.12. End-to-end time on a single machine with pipes 82

Table 6.13. End-to-end time on a single machine with shared memory 82

Table 6.14. End-to-end time across varying numbers of frames in shared memory 85

xi

LIST OF LISTINGS

Listing 5.1. A pipes-based transformation module . 36

Listing 5.2. Using pipes to connect transformation modules 36

Listing 5.3. A shared-memory-based transformation module 39

Listing 5.4. The main loop in the keyboard device communication module . . . 41

Listing 5.5. The user space keyboard application communication module 42

Listing 5.6. The kernel space keyboard application communication module . . . 42

Listing 5.7. The framebuffer application communication module 44

Listing 5.8. The network communication module for TCP 45

xii

ACKNOWLEDGEMENTS

I almost certainly would not have made it through the long and arduous process of

graduate school without the support of my family, friends, the UCSD computer science

faculty, and my fellow graduate students. I especially could not have done it without the

following people, who are all amazing and have brightened my time here considerably.

My advisor, Joe Pasquale offered a ridiculous amount of support and guidance,

attended too many practice talks to count, proof read numerous papers, and always kept

me going when I wanted to give up.

My committee, Bill Griswold, Amin Vahdat, Sheldon Brown and Ramesh Rao,

were both helpful and kind every time I went to one of them for guidance.

Beth Simon offered invaluable assistance both when teaching my first class, and

during my job search.

My parents, Mara Bagier and Steve Taylor, who are generally The Best Parents,

and taught me the importance of reading and thinking and making things.

Paul Ruvolo kept me from the Coyote Option.

Steve Checkoway has never gotten around to finding another friend, despite his

many threats.

Matt Tong has dragged me out to fun things for the last seven years.

Helena Bristow is capable at everything.

Marisa Brandt listens and makes art and throws great parties.

Brian McFee is a terrific roommate, despite being at least a quarter cephalopod.

John McCullough is always willing to go to lunch or second lunch or walk to the

co-op.

Chris Kanich knows about everything on the internet five minutes before anyone

else.

The No Hobo 2012 Club offered a ridiculous amount of help with applications

xiii

and job talks and kept me from living in a box car.

My office, 3140, is the best office, filled with the best people.

Lastly, thanks to Sophie Natasha Wigglesworth, for all the biting.

Chapters 3, 4, 5 and 6, in part, have been submitted for publication of the material

as “Performance Aspects of Data Transfer in a New Networked I/O Architecture” by

Cynthia Taylor and Joseph Pasquale. The dissertation author was the primary investigator

and author of this paper.

Chapter 1,3,4,5 and 6, in part, are a reprint of the material as it appears in the

article “A Remote I/O Solution for the Cloud”, by Cynthia Taylor and Joseph Pasquale,

which appears in the Proceedings of the 5th International Conference on Cloud Comput-

ing, Honolulu, HI, June 2012. The dissertation author was the primary investigator and

author of this paper.

xiv

VITA

2002 Bachelor of Arts, Oberlin College, Oberlin, Ohio

2008 Master of Science, University of California San Diego, La Jolla

2012 Doctor of Philosophy, University of California San Diego, La Jolla

PUBLICATIONS

C. Taylor, J. Pasquale, A Remote I/O Solution for the Cloud, 5th International Confer-
ence on Cloud Computing, Honolulu, HI, June 2012.

C. Taylor, J. Pasquale, Improving Video Performance in VNC Under Latency Conditions,
2010 International Symposium on Collaborative Technologies and Systems, Chicago, IL,
May 17, 2010.

C. Taylor, The Proximal Workspace Architecture: A Latency-focused Approach to
Supporting Context-Aware Applications, Doctoral Dissertation Consortium, 2010 Inter-
national Symposium on Collaborative Technologies and Systems, Chicago, IL, May 17,
2010

C. Taylor, J. Pasquale, Towards a Proximal Resource-based Architecture to Support
Augmented Reality Applications, Workshop on Cloud-Mobile Convergence for Virtual
Reality, Waltham, MA, March 2010

C. Taylor and J. Pasquale, Improving VNC Performance, UCSD/CSE Tech. Report
CW2009-0943, May 2009.

J.R. Movellan, F. Tanaka, I. Fasel, C. Taylor, P. Ruvolo, and M. Eckhardt, The RUBI
project: a progress report, ACM/IEEE International conference on Human-robot Interac-
tion, Arlington, VA, March 2007

xv

ABSTRACT OF THE DISSERTATION

The Networked Device Driver Architecture: A Solution for Remote I/O

by

Cynthia Bagier Taylor

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Joseph Pasquale, Chair

With rise of both mobile devices and the cloud, we see users frequently turning

to remote servers for both data storage and software services, including running applica-

tions. However, once applications are no longer co-located with devices, the traditional

device driver architecture no longer facilitates communication between them. Frequently,

applications must be rewritten in order to receive data from a remote, rather than local,

device.

The networked device driver architecture is designed to support input/output

devices that are separated by the network from the application(s) to which they are

xvi

supplying data. The introduction of the network between the device and application also

introduces issues such as high latency, low bandwidth, and jitter. We wish to compensate

for these problems by alling for the processing of the data sent between the device and

application. We also want to maintain network transparency, so that applications do not

need to be modified in order to use remote devices.

The networked device driver is split into two parts, one on each side of the

network. At one end is the device and its unmodified device driver, and on the other end

is the unmodified application. An I/O stream that is sourced at one end and sinked at the

other may be modified by a set of pipelined transformation modules. Each module comes

in a pair, one on each side of the network, with one side typically applying some operation

and the other side applying a corresponding one, such as encoding and decoding the

format of the data or pausing and resuming the sending of messages.

We support network transparency with the pairing of modules, guaranteeing that

any modification performed on the data stream will be undone before the message reaches

the application. We additionally design our system with the goal of supporting ease of

customization/extensibility in support of the vastly different needs of various applications

and devices that can benefit from remote I/O. In this work, we explore the necessary

trade-offs between ease of development and performance, demonstrating that we can

leverage many existing mechanisms without creating a limiting amount of overhead.

xvii

Chapter 1

Introduction

In this dissertation, we present a new system architecture, the networked device

driver, designed to support remote input/output devices. This work is motivated by several

current trends in computer science: the ubiquity of light-weight, low-power mobile

devices, the rise of cloud computing, and computation and data intensive applications

which rely on sensor data.

With the rise of smart phones, we now have tiny computers packed with sensors

that we carry around with us everywhere. Typical phones have video and audio input,

compasses, GPS and accelerometers, among other sensors. Having such sensor-rich

devices that are so well incorporated into user’s lives opens up amazing possibilities for

ubiquitous computing and machine-learning based applications. Because these devices

are constantly with us and capable of collecting rich, multi-faceted data, they open up

whole new ways to interact with users based on information collected about both the user

and their surrounding environment.

We want these applications to be able to both collect a huge amount of data, and

to be able to perform computations over this rich dataset. However, because these new

mobile devices require a lightweight, small form-factor, they are much more limited in

both storage and computational power than most machines today. One solution to this is

to move these applications to more powerful machines, and let them communicate with

1

2

mobile I/O devices over the network. Applications may run on servers in the cloud, or on

home or work machines belonging to the user.

Even if these mobile devices were as powerful as current servers, there are still

many reasons to support remote I/O devices. As we build more powerful machines,

we also build more computationally intensive applications which produce more and

more data, so there will always be applications that can run in real-time only on the

most powerful servers. In addition, many sensors and devices are valuable precisely

because of where they are located. Scientific sensors which are measuring aspects of the

environments in which they are situated can be much more conveniently worked with

when using remote access. Robots, drones, and other machines which quickly change

location also require remote access of devices. While offloading computation is our main

motivation for this work, there are many other reasons to support remote I/O devices.

Typically, once moved across the network, applications must be rewritten in order

to process data coming from the network, rather than directly from the input device. This

means that in order to relocate an application, one must have the source code for that

application, and be able to redesign it. If the source code is not available, this involves

tactics such as automatically rewriting the GUI and manually translating and forwarding

user input[10, 12]. Even if the source code is available, it opens up issues of parallel code

maintenance. Our goal is for the network to be completely transparent, and the device

and application to both behave as though they are on the same machine.

Once the application is moved to a remote machine while the I/O devices remain

local, issues of network delay have to be dealt with. Updates will be delayed by the

trip over the network, and the rate at which they arrive may be uneven. They may also

arrive out of order or corrupted. Because the characteristics of the data flow are changed

by being sent over the network, we want our software architecture to provide a way to

modify the data in order to account for this and counteract the changes effected by the

3

network.

One approach to solving this sort of problem has been thin client computing,

i.e. moving the application from the local machine to a server and forwarding all user

I/O between the local computer and server over the Internet. However, traditional thin

clients are not designed to work with the plethora of I/O devices currently available,

often limiting their support to the keyboard, mouse, and video card. We want a versatile

solution that can easily be extended to support any device.

Our architecture is based on the concept of a networked device driver, in which

a device driver is split into two halves, one half running on the client with the device,

and the other half on the server with the application. Network communications occurs

between the two halves, transparent to both the device and application. This means that

legacy applications can be migrated across the network, with no modification.

In order to allow processing of the data, our architecture supports customizable

transformation modules that can be designed to dynamically process the device informa-

tion appropriately. These transformation modules are designed to run in pairs, with one

module on the client applying some transformation (e.g. compression, encryption), and

the other on the server, reversing the transformation (e.g. decompression, decryption).

This allows us to preserve transparency, while supporting processing of data.

Our architecture promotes ease of customization and extensibility (to support

new devices). With this in mind, we designed the system to run primarily at user level,

rather than within the operating system kernel. This avoids the security issues that come

with allowing arbitrary code within the kernel, and allows someone writing modules

for our system to leverage existing mechanisms provided by the operating system, such

as blocking I/O calls. Our decision to run at the user level required care to ensure that

the implementation was not creating significant performance overhead, especially with

large updates (i.e. transferring large amounts of data between the modules in our system),

4

and many transformation modules (that may require many memory copies per update).

Consequently, we provide two different mechanisms for transferring data between the

system – one using pipes and one using shared memory – and show that high levels of

performance are achievable, even with using standard pipes.

We are also motivated by the rise of cloud computing. With more users turning to

the cloud for both data storage and software services, there is a rising need for the cloud to

support applications that require remote I/O. The networked device driver architecture is

uniquely suited to support cloud applications that require input from remote I/O devices.

Applications in the cloud are often executed in virtual machines, allowing for

benefits such as consolidation of resources, application migration and security. However,

this means that input devices must also be virtualized, adding additional complexity

and overhead to the hypervisor [23]. Since our system virtualizes the device driver by

splitting it into two parts, the application half of the driver can run entirely within the

virtual machine, without the hypervisor having to virtualize the device.

One of the advantages of the cloud is its support for parallel computation, across

many virtual machines. The networked device driver architecture supports modules

designed to intelligently multiplex and demultiplex information across these machines.

Depending on the needs of the application, messages to can be copied to all machines,

sent to alternate machines in a round robin fashion, or each message can be divided up,

and the parts sent to different machines. The flexibility of the networked device driver

architecture easily combines with the different ways the cloud is used.

In summary, we present a new architecture to support remote I/O. This architec-

ture supports network transparency, while still allowing the data passing through it to

be processed in order to compensate for the network. It is easy to customize and extend,

due both to be very modular, and being implemented almost entirely at the user-level.

We present two different implementations, in order to demonstrate the trade-offs between

5

ease-of-implementation, and performance.

Chapter 1, in part, is a reprint of the material as it appears in the article “A Remote

I/O Solution for the Cloud”, by Cynthia Taylor and Joseph Pasquale, which appears in

the Proceedings of the 5th International Conference on Cloud Computing, Honolulu, HI,

June 2012. The dissertation author was the primary investigator and author of this paper.

Chapter 2

The Problem

Assume a device, such as a webcam, is attached to a computer. This webcam

produces frames at 30 frames per second, at 600 by 800 pixels, and uses USB to

communicate with the computer. The webcam will produce a frame of video, which

will be read in by the USB controller, and then sent to the webcam driver. The driver

will then forward the video frame to the application, which will display it. (The display

process will in turn involve sending information to the video card driver, the video card,

the monitor driver, and the monitor.) This is illustrated in Figure 2.1.

However, once the application is moved across the network, to a new machine,

this system breaks down, as shown in Figure 2.2. There is no longer a clear path between

the device and the application. Frequently, the solution to this is to write specialty helper

applications which read from the device driver on the client, and write to the network,

and then either rewrite the application to read directly from the network, or write a new

helper application on the server side which translates the data from the network to a form

the existing application can understand. For the webcam, we would have to write an

application that reads the pixel data for each frame from the webcam driver, and then

sends this data over the network. We would then rewrite our application to read from the

network driver instead of the webcam driver, and to account for any format changes that

occurred when packaging the data from the network. It would be necessary to have the

6

7

device

device
driver

application

Figure 2.1. When the device and application are co-located, they communicate easily
through the device driver.

source code for the application, and then to maintain this new source code, written for

the networked device, in parallel with our source code for the local device.

In the networked device driver architecture, the device driver is split into two

halves, one of which runs on the client, with the device, and one of which is on the server,

with the application. All transmission over the network occurs between the two halves of

the driver. This means that the application does not need to be rewritten at all. It interacts

with the server half of the networked device driver just as it would interact with the driver

for the device. The network is completely transparent to both device and application.

When the device is running on the same machine as the application, several

assumptions can be made about how the messages will be delivered from the device

to the application. We can assume that messages will be delivered very quickly, that

they will arrive in order, and that they will be spaced evenly (i.e. that the time between

8

server client

device

device
driver

application

network

Figure 2.2. When the application is moved to a different machine, there is no longer a
clear way for the device and application to communicate.

when two messages are delivered will be very similar to the time between when two

messages are received). This is shown in Figure 2.3. We can make these assumptions

because data generally travels very quickly within the machine, with minimal external

interference. This means that when the application displays frames from the webcam as

it receives them, the video will play at the speed it was recorded at, the frames will play

at the correct order, and it will be free from jitter, without the application doing any error

checking, buffering, or other compensation.

Once the application is moved to a separate machine, we can no longer make these

assumptions, as illustrated in Figure 2.4. The network, due to uncontrollable external

factors, may add a large delay to the time it takes for messages to reach the application.

Messages may suffer from jitter, meaning they will be timed very differently when they

arrive for when they were created. And, depending on what network protocol we are

using, messages may arrive out of order or not at all. For our webcam and application,

this means that the application will need to, at minimum, solve the issues of delay and

jitter, usually through buffering. If it uses UDP rather than TCP, messages will arrive

more quickly, but there will need to be some way to reassemble messages that arrive out

of order, and a way to deal with messages that are lost. This will necessitate rewriting

9

device

device
driver

application

1

2

3

Figure 2.3. When the device and application are on the same machine, updates are
received relatively quickly, in order, and with the same temporal spacing as when created.

our application again, in order to add this compensation for the network.

We support customizable modules in our architecture, which allow this processing

to occur within the networked device driver, rather than within the application. This

means that rather than rewriting the application to add buffering, we can just add a

buffering module to the networked device driver. Furthermore, we can add this module

to any device that needs buffering, not just the webcam.

In summary, moving applications across the network necessitates finding a new

way for them to communicate with devices, as we can no longer simply use the existing

device driver. The current solution frequently involves rewriting the application, which is

impractical for many applications. We encapsulate the network with a networked device

driver, making it transparent to both the device and application. In addition, the presence

of the network means that we can no longer assume messages from the device will reach

10

server client

device

device
driver

1

2

3

1
2

3

application

network

Figure 2.4. When the network is added, updates may be delayed, arrive out-of-order, or
not arrive at all.

the application quickly, in order, or at all. Rather than requiring that applications be

rewritten to compensate for this, we add support for processing modules to the networked

device driver architecture, allowing for processing of data while preserving transparency.

Chapter 3

Related Work

In our related work section, we look at a selection of thin clients and related

mechanisms for interacting with devices over the network. We also look at related

intra-machine mechanisms. We conclude by describing what our system takes away from

the described work, and how it is different.

3.1 X-Windows

One of the classic approaches to sending I/O over the network are demonstrated

by X-Windows [20]. X is a window system for Unix that uses a network protocol as

its base system. X uses high-level graphics encoding: the server will request the client

create a window, text in a specific font, a cursor or an image, and the client will return a

handle for it to the server.

Because X is serving as a window manager, using high-level graphical commands,

quite a lot of work must be done on the client. The client is responsible for knowing how

to create various graphical components and figuring out where to draw them in relation

to each other, including overlapping windows. Every time a window is revealed by user

movement of components, the client must query the server to find out what to draw in the

revealed space. However, the client is sent information from all applications, even ones

that are obscured. The client is responsible for figuring out which process the mouse

11

12

and keyboard input is meant for, and sending it to the appropriate server and application.

The amount of server-client synchronization required for applications and the amount of

work the client must do both slow X down. The client workload also means that X is a

bad choice for lightweight client devices such as cellphones or PDAs. However, the fact

that the client is taking care of multiplexing keyboard and mouse input and generating

where application windows appear in relation to each other means that within a user

session, different processes can be run on different servers with no apparent difference to

the user, a functionality not available in other thin clients. Applications must be written

specifically using X in order to be able to use it as a thin client system.

3.2 VNC

The Virtual Network Computing (VNC) [17] System is one of the oldest and

simplest thin clients, and defined the first stateless open cross platform standard. The

server records changes in its framebuffer, encodes them, and sends them to the client,

who updates its framebuffer. All encoding is based around putting a rectangle of pixel

data at a given position. The Remote Framebuffer (RFB) Protocol [18] used by VNC

defines the following encodings: Raw encoding, where information for each pixel is

specified; copy-rectangle encoding, where the client is sent the x,y coordinate to copy

the rectangle from, which is useful for scrolling text or moving windows; and RRE,

Hextile, and ZRLE encodings, all of which involve setting background pixel data for a

large rectangle and then drawing sub-rectangles using either other background colors or

raw pixel data. In addition, users can extend the protocol with their own encodings.

VNC uses lazy client-pull updating, where updates are sent only when clients

request, and all updates in between client requests are combined into a single update.

Connections between client and server are stateless, with no computation being done on

the client side other than translating updates and updating the frame buffer. VNC can

13

be used with unmodified commercial software, on unmodified commercial applications,

and can be used to access applications that run on one OS from a computer running

a different OS. While it preserves transparency, VNC is limited in that it is designed

expressly for mouse, keyboard and video data, and it is difficult at best to add support for

new I/O devices.

3.3 USB over IP

Work on USB over IP has focused on sending device information below the driver

level by creating a Virtual Host Controller Driver for the USB controller [4]. On the server

where the device is physically located, the USB updates are collected by a stub driver

below the USB core driver and sent over the network to the client. On the client, updates

are sent from a Virtual Host Controller Interface Driver up to various virtualized USB

drivers. This has the advantages of both transparency and full functionality. However,

there is no way to change the network behavior of different devices or control how

different updates are sent.

3.4 THINC

THINC [3] creates a virtual device driver that intercepts drawing commands at

the device layer. THINC has a command protocol similar to VNC, with commands RAW,

COPY, SFILL, PFILL, and BITMAP. These are also the commands most commonly

found in hardware, making it easy for THINC clients to translate from its protocol to

the local hardware. THINC captures display commands and translates them into its own

commands while preserving any semantic information available about the command.

THINC uses a lazy server-push update scheme in which the server stores commands in

command queues while waiting to send them to the client. THINC is focused on specific

devices (mouse, keyboard, video card, and audio card in THINC), and does not allow for

14

users to add application-specific modules to process data.

3.5 CameraCast

CameraCast [8] also uses a logical driver designed for video data being sent over

a network. CameraCast works as a set of kernel-level abstractions. It extends a standard

Linux video interface to allow it to be accessed remotely. It also allows plug ins to

process the video, and provides an API for additional functionality for remote video.

CameraCast is designed purely for video, and runs entirely at the kernel-level, including

user-supplied plug-ins.

3.6 The Berkeley Continuous Media Toolkit

The Berkeley Continuous Media Toolkit creates a development environment

for distributed multimedia applications [9]. They create a system architecture where

application code is run on top of their services. They provide an extension of the Tcl

scripting language that is designed to support multimedia applications with services such

as buffering, synchronization, and other abstractions. Their system runs at the application

layer. In contrast, our work has the notion of paired processing modules, and does not

require applications be written in any specific language or be designed for our system.

3.7 Cascades

Cascades is a system architecture for sensor networks with middleware mod-

ules [5]. They use the Python scripting language to create a series of “filters” that can be

connected together to modify streams of data from sensors. Our work differs in that it

is more general (for more general networks and types of devices), and we use pairs of

processing modules.

15

3.8 Virtual Reality Applications

There is also work in the area of support for virtual reality applications, regarding

creating networked VR devices [16, 22, 6]. The Open Tracker work creates a general

framework for applications using remote I/O, that includes the notion of “filter” nodes

that can modify data [16]. Multi-modal event streams are an extension of Open Tracker

that adds abstraction and an event-based message system in order to combine related

data from different devices [6]. Both of these systems create generic virtual devices,

obscuring the original device, and applications must be modified to communicate with

the system, rather than the original device.

3.9 Streams

Other systems have been designed with the idea of being able to modify I/O

data. The classic work is the UNIX Streams system [19]. In UNIX Streams, a duplexed

I/O stream has two end-points (on the same machine) and intermediate modules which

can alter the information being passed through them, allowing users to create their own

modules to modify data. This system was designed to function within one computer

(though multiple computers can be connected with network devices), and uses a co-

routine model of processing. Our model integrates the network as a central object, and

we use a mostly user-level implementation for maximum flexibility, portability and ease

of implementation.

3.10 Plan 9 and 81
2

Plan 9 builds on UNIX Streams, but with better integration for the network and

its 8 1/2 windowing system [14, 13]. Plan 9 was designed to be a distributed system,

with users’ local machines being just powerful enough to run the window system and do

16

simple interactive tasks, and most of the real work being done on more powerful remote

servers. It treats all I/O as files, and uses pipes to transmit I/O commands between clients

and the windowing system on the server. It can then multiplex and compose these pipes

in various ways.

81
2 is a windowing system designed for the Plan 9 operating system [13]. 81

2

provides functionality equivalent to that of X. Since all resources in Plan 9 are represented

as files, 81
2 essentially works as a file server, providing client processes with files in the

/dev directory that represent the mouse, screen, keyboard, and display. Each process

has its own version of the files in its own namespace. Processes access the window

system by reading and writing these files. A process cannot tell if it is running remotely

or on a local machine; it sees the same files, regardless. Because 81
2 simulates its own

environment for its clients, it can run recursively inside itself, providing an easy way to

open a session on a remote machine where each process in the session is automatically

opened on the remote machine. Because 81
2 is a window system, it has many of the

same drawbacks X does, especially with regards to the amount of work done by the

client machine. It offers advantages over X in that the mechanisms for running remote

programs are even more transparent, and 81
2’s recursive abilities make it easy to open a

distinct session on a remote machine. We share many ideas with Plan 9, though a key

difference and central notion in our work is that of paired modules to support networked

I/O with transformations.

3.11 Container Shipping

In Container Shipping, Pasquale et al describe an operating system mechanism

for transferring large data between multiple processes [11]. It introduces the idea of

containers, a set amount of shared space between processes, and pallets, units of data

within that shared space. This separation of units of transfer and units of access is similar

17

to how we define the difference between containers and messages (described in Section

4.4).

3.12 Orthogonal Work

There has also been related work in the area of routing. The Click Modular Router

uses the concept of modules acting on a datastream to make it easy to create routers with

different functionality [7]. This work differs from ours in that it deals specifically with

routing.

Remote DMA is a network protocol designed to speed up transmitting large

amounts of data over the network [15]. It copies data directly into a buffer within a

process’s address space, avoiding multiple copies through the kernel. This work is

orthogonal to our own, in that it could be combined with our work by creating Network

Modules that use the protocol.

3.13 Conclusion

We share ideas with all of these systems. Like classic thin clients, our goal is to

support remote I/O devices, although we wish to do it in a way that is easy to expand to

new devices. Similarly to USB over IP, we want to support transparency by encapsulating

the network within the device driver. Our use of modules to transform the data is reflected

by many of these systems, but most classically by Streams. We combine all of these ideas,

as well as the novel idea of pairing modules across the network, to develop a system that

supports network transparency by hiding networking inside the driver, and uses modules

to make the system easy to customize and extend.

Chapter 3, in part, has been submitted for publication of the material as “Per-

formance Aspects of Data Transfer in a New Networked I/O Architecture” by Cynthia

18

Taylor and Joseph Pasquale. The dissertation author was the primary investigator and

author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in the article “A Remote

I/O Solution for the Cloud”, by Cynthia Taylor and Joseph Pasquale, which appears in

the Proceedings of the 5th International Conference on Cloud Computing, Honolulu, HI,

June 2012. The dissertation author was the primary investigator and author of this paper.

Chapter 4

System Architecture

4.1 Design Goals

Our aim is for our system to meet the following goals:

Transparency: We seek to make the network as transparent as possible to both

device and application, and to require no modification to the application. By moving the

network functionality into the network device driver, we allow both the device and the

application to act as they normally would, without being aware of the network.

Customization: We wish to support customization on many levels, whether it

comes from the user, application designer, or device designer. Building our design around

network device drivers provides an easy way to support this customization, as it allows

us to create multiple discrete pieces that can be customized in various ways.

Modularity: Since there are a myriad of possible I/O devices, it is unrealistic

to expect a single application to be able to know about all of them and be capable of

forwarding their input in an intelligent manner. Device drivers are by nature modular,

and we design our system to take advantage of this and to be as extensible as possible.

Granularity: A basic abstraction in our architecture is the idea of the device-

application pair. We allow customization of behavior at this fine-grained level: users

may wish for a device’s updates to behave differently for different applications, and we

19

20

server client

device

networked
device
driver

networked
device
driver

application

network
network

card
network

card network

Figure 4.1. All networking is encapsulated in the networked device driver, invisible to
the application and device.

support this.

Extensibility: It should be easy to add devices to the system. By making the

system modular, a designer only needs to write the pieces of the system that are unique

to their device, and can leverage all of the existing general pieces easily.

4.2 Architecture Summary

At its most basic level, the system architecture must support the passing of updates

between a device and an application, each on a different machine, communicating over

the network. Updates are created at either the device or application, passed through

one half of the networked device driver, transformed in some manner and sent over the

network. On the other machine, they are read from the network, the transformation may

be reversed, and they are passed on to their destination (either application or device).

The system consists of four types of modules. The application communication

module is responsible for passing data between the application and the networked device

driver. Similarly, the device communication module passing data between the device and

the networked device driver. Network modules send and receive updates over the network.

Lastly, optional transformation modules modify updates as they are sent through the

21

system, making changes to them to compensate for the effects of the network.

When designing the architecture, we focused on our design goals. To preserve

transparency, we encapsulated all network and network-related operations within a

networked device driver, as show in Fig. 4.1. We designed our system as a series of

modules to make it easy to add new pieces to the system, whether a module to support a

new device, a module to add new functionality, or a module to support a new network

protocol. This also allows us to support extensibility, as a designer may add whatever

pieces they need easily to the system as new modules, while continuing to use all existing

modules.

To support customization of functionality and make it easy to add new features and

methods of processing data, we created transformation modules, described in Section 4.8,

each of which perform exactly one operation on the data stream. To support transparency,

we paired these transformation modules across the network, so when a transformation

module makes a change to a message on the client, its paired transformation module on the

server undoes the change, and passes the message to the application in its original form.

The ability to swap out transformation modules also allows us to support granularity,

making it easy to change functionality for different device-application pairings.

4.3 Data Streams

We refer to the main flow of communication in a networked device driver as

a data stream. The data stream consists of messages that travel between the device

and application, as illustrated in Figure 4.2. They travel in only one direction, being

sourced at one end, and sinked at the other end. Updates are created by the device or

application, and retrieved by the communication module. They are then passed through

any transformation modules on the source machine, with each transformation module

modifying the update in some way. The network module on the source machine then

22

server

networked device driver

client

device

device
driver

device
module network

module
network
module

network
card

network
card

application
module

application

network

networked device driver

trans1 transN … transN’ trans1’ …

Figure 4.2. This illustrates a data stream which is sourced at the device, and sinked at
the application. Messages travel from the device, across all modules, before reaching the
application.

sends the updates over the network to the network module on the sink machine. They are

then passed to any corresponding transformation modules, where each module has the

opportunity to possibly reverse the modification applied by its matching transformation

module on the source machine. The updates are then sent to the communication module,

which feeds them to the sink. The system allows messages to be modified/repackaged in

order for them to be effectively sent over the network, but still returned to their original

form to be passed to the sink by its communication module in a network-transparent

fashion.

Each networked device driver has at least one data stream. In most cases, the

networked device driver will have two data streams, once sourced at the application and

sinked at the device, and one sourced at the device and sinked at the application. Having

application-to-device and device-to-application data streams handled separately and in a

possibly asymmetric fashion allows the system to handle each data stream in a way that

best fits its unique data profile. We next discuss how the various modules operate on a

data stream in more detail.

23

Size Timestamp

Data

Optional Transformation
Module Headers

Figure 4.3. The only required header fields are size, and creation time. Individual
transformation modules can add their own optional headers, which intermediate transfor-
mation modules treat as part of the data. Optional headers are stripped off by the paired
transformation module on the server side.

4.4 Header Format

Each message in the I/O stream is encapsulated in a container, which has a short

header. Fields in this header are the size of the message, and a timestamp added by the

communication module when the container is created. In addition to this, individual

transformation module pairs may add their own header fields after these two, as shown

in Figure 4.3. Headers for specific transformation modules will be added by one half

of the pair, and stripped off by the other half of the pair. Thus, they are encapsulated

with the message for all transformation modules in between the pair. This allows for all

of the transformation modules to access the most frequently needed information (size

of message, and time created), while individual modules can add information about the

message that is specific to their modification, and have it be ignored by the rest of the

modules.

4.5 Device Communication Module

The function of the device communication module is to receive information

from the raw driver, i.e. the original, unmodified device driver supplied by the device

24

manufacturers. To get the information from the raw driver, the device communication

module interacts with the driver through its API, just as any other application would.

Since it uses an API specific to the device, the device communication module must

be custom-written for each device. It may wait for events raised by the device or poll,

depending on how a particular API works. The device communication module operates

at the user level. After the device communication module has received information from

the raw driver, it forwards it to the first of the transformation modules or to the network

module. Since we discuss transformation modules in a separate section, we next describe

the network modules.

4.6 Network Modules

The network modules are a pair of modules, one on each side of the network. The

role of the network module is to send data over the network: any higher level functionality,

such as buffering or ordering of updates, is left to the transformation modules. The only

additional work the network module does is to send an entire update to the transformation

modules, even if it takes multiple reads from the network, rather than sending partial

updates as it receives them.

The network modules are generic, and can be used with any device. For example,

TCP may be appropriate for non real-time applications reading from video devices, where

large updates may be split up into multiple packets, and it is important to receive packets

in order. For devices that send smaller updates, where updates are already timestamped

or ordering does not matter, UDP may be a natural fit. Modules for new or experimental

network protocols may also be created.

25

4.7 Application Communication Module

The last transformation module passes the update to the application communi-

cation module, which communicates with the application using the raw driver interface.

Since the application communication module is based on the raw driver for the device,

it must be custom-written for the device. If the raw driver is purely a kernel driver, the

application communication module will consist of both a user-level component and a

kernel-level component. The kernel-level component is necessary for the application to

be read from the device without modification, and so we include it to support transparency.

For devices with user-level drivers, the user-level component of the driver may simply be

rewritten to accept input from a pipe, rather than from the raw driver.

4.8 Transformation Modules

Messages generated at either the application or device pass through a series of

optional transformation modules before they reach their destination. These modules

are designed to give the system the ability to add extra functionality, without losing

the advantages of transparency. Each module is designed to perform a specific task,

whether it is averaging messages from the device, encrypting or decrypting, or doing

more complex video processing such as face finding. Modules may not require specific

knowledge of the message content or format and thus are able to process any update, or,

if they depend on knowing particular attributes of the message format, must be written

for a single device.

The type of additional functionality required will vary for each application. Some

applications only require that each update be buffered. Applications that have real time

constraints may make do with only the latest updates or an average of past updates.

Applications that process a lot of data may benefit from compressing information before

26

it is sent over the network as a performance optimization. Sensitive applications may

benefit from having their information encrypted before sending. Because of this, the

ideal source of information on how the networked device driver should act can be the

application developers or end users.

Different functionality will require different levels of customization for the device.

A function such as averaging will require knowledge of the exact message format,

especially for a message which may contain multiple parts, e.g. an X coordinate, a

Y coordinate, and a timestamp. However, functions similar to compression will be

completely agnostic about the format of the data they are acting on, and can be used for

all devices. In the middle lie functions like downsampling video, which will need to be

aware of the video width, height, and general format, but can be used across multiple

devices.

4.8.1 Transformation Module Pairs

server client

device

device
driver

device
module

comp decomp

network
module

network
module

network
card

network
card

application

application
module

encrypt decrypt

network

Figure 4.4. Transformation modules work in pairs, one applying an operation, such as
compression, and one undoing it (i.e. decompressing). They are automatically ordered so
that actions are undone in the reverse of the order in which they are performed.

To preserve transparency, any change made to the format of the message must

later be undone. If a message is encrypted on the client side, it must be decrypted on the

27

server side before it reaches the application. Operations must be undone in reverse of

how they were performed: if encryption is done before compression, then decompression

must be done before decryption. Some transformation modules (e.g. averaging) change

the content of the message, rather than its form, and thus may have no natural reverse of

their action. Each such module is paired with a “no-op” module.

4.8.2 Functionality

We now present examples of transformation modules. These illustrate the kinds

of tasks transformation modules are designed for, and what part they play in our system.

Averaging Similar to receiving the most recent update at set intervals, some applica-

tions work best with an average of the updates received in a time period. Averaging

requires knowledge of the format of the message, since many updates contain attributes

that need to be treated separately (e.g. x and y coordinates, timestamps). Thus, averaging

modules must be written for a specific update format.

Buffering For devices such as video where the rate of the updates matter more than

their freshness, users may want to buffer. Buffering modules work as follows: On the

sink machine, the module takes as parameters a minimum and maximum number of

updates to buffer. When the number of messages it is holding fall below the minimum

parameter, it sends a request out-of-band to the module on the source machine, requesting

the number of updates that will bring it back to the maximum. The module on the source

machine releases up to that number of updates into the data stream. The module on the

source machine also takes as a parameter maximum number of updates to buffer; when it

reaches that limit, it discards earlier updates.

28

Bundling The bundling module is designed to send several small updates as a single

network packet. It takes as a parameter the number of updates to be bundled into one

container. On the source side, the module collects updates until it has the required

number, then packages them into one container and passes it to the next module in the

data stream. On the sink side, the module unpacks the container, and release the updates

inside back into the data stream using the time intervals they were originally sent at.

Compressing Compression is useful to avoid sending a large amount of data over

slow networks. Since message lengths are prepended to updates, it does not matter that

compression changes the update size. We implemented compression/decompression

modules using the zlib compression library.

Encrypting/Decrypting When using sensitive applications over insecure networks,

users may wish to add security by encrypting updates. Since all the module needs to

know to encrypt or decrypt is the length of the message, this easily generalizes to multiple

devices. The transformation module on the source side of the driver encrypts the message,

and the module on the sink side decrypts it. We implemented AES encryption modules

using OpenSSL.

Multiplexing Since a key advantage of the cloud is the ability to perform distributed

processing, our system needs the ability to send input from a device to multiple applica-

tions on multiple machines. We can create transformation modules which multiplex data

in intelligent ways - for example, depending on how we are processing video input, we

might want for all the video to go to every machine, different frames to go to different

machines, or different portions of each frame to go to different machines.

29

Periodic Updates Some applications do not require every device update, and only need

to receive the most recent update at set time periods. This transformation module takes a

time constant and sends the latest update at set intervals.

Pre-Fetching For applications that request updates and exploit some sort of locality,

requests for updates clustering around the current update could be artificially generated

and sent to the device, with the responses stored on the server side awaiting the appli-

cation’s request. This requires specific knowledge of application behavior and request

formats.

server client

video

device
driver

application

network
module

network
module

device
module application

module

sync desync

device
driver

device
module

GPS

application
module

comp buffer buffer decomp

network
card

network
card

device
driver

device
driver

network

Figure 4.5. The synchronization module combines the data streams from multiple
devices. Modules can be ordered so operations are applied to each device’s stream
separately, or the combined stream.

Synchronizing Multiple Data Streams For applications that receive data from multi-

ple devices, it may be necessary to synchronize the updates from these devices. This may

be achieved by time stamping the updates as they are generated, and ordering them by

these time stamps on the sink machine. The updates may either be combined into one

data stream, or continue as two separate data streams.

30

server client

device

device
driver

device
module

trans A trans A’

network
module

network
module

network network

device
driver

device
driver

application

application
module

network

Figure 4.6. Transformation module pairs may send out-of-band messages in order to
exchange control messages, which do not need to traverse the entire data stream. This
avoids processing control messages, which have different characteristics and delivery
needs, as though they were data messages.

Additional Functionality Applications may extend their functionality by performing

modifications to the I/O stream. For example, video frames can resized, color-shifted,

or even have computer vision techniques such as object-tracking added. Since these

functions need to have specific knowledge about the content and format of messages,

they need to be designed for a specific device.

4.9 Out-of-Band Messages

All transformation modules also support out-of-band messaging, i.e. using a

separate communication channel than the one carrying the data stream. Out-of-band

messages contain meta information about how the modules should process the messages

being sent through their stream. For example, when a buffer transformation module on

the server is running low on buffered updates, it will send a request for new updates to

the buffer module on the client. This is required to enable transformation modules to

respond as a pair across the network, especially when reacting to changes in network or

other conditions.

31

When designing the system, we decided it was necessary for transformation

module pairs to be able to exchange control messages directly, rather than passing them

along the data stream. Messages in the data stream are passed through transformation

modules, which are designed optimally process messages from the device. However,

control messages between modules will have different data characteristics and needs, and

should not be treated the same as data messages. For example, if the data stream is being

buffered, we will not want control messages, which may need to convey information

immediately, to also be buffered. Furthermore, sending control messages along the data

stream would require transformation modules to check each message to see if it was a

data or control message, and if it was a control message for that particular transformation

module, requiring more fields added to the headers for every message. Instead, we simply

send control messages directly between paired modules, allowing them to be processed

for their own data characteristics, rather than that of the data messages, and avoiding the

addition of complicated addressing schemes.

4.10 Conclusion

In the networked device driver architecture, we encapsulate the network and all

related processing within the device driver, in order to preserve network transparency.

We add transformation modules to the architecture in order to be able to process the

data for the network, e.g. compressing, encrypting, buffering, synchronizing. These

transformation modules are paired across the network, so that if the data is compressed

on the client side, it is decompressed on the server side, preserving transparency. This

pairing also implies an ordering of operations, as pairs are nested across machines:

if the data stream is compressed and then encrypted on the client, on the server it

will be decrypted and then decompressed. In addition to transformation modules, our

system consists of device communication modules which receive data from the device,

32

application communication modules which pass data to the application, and network

modules which send and receive data across the network.

Chapter 4, in part, has been submitted for publication of the material as “Per-

formance Aspects of Data Transfer in a New Networked I/O Architecture” by Cynthia

Taylor and Joseph Pasquale. The dissertation author was the primary investigator and

author of this paper.

Chapter 4, in part, is a reprint of the material as it appears in the article “A Remote

I/O Solution for the Cloud”, by Cynthia Taylor and Joseph Pasquale, which appears in

the Proceedings of the 5th International Conference on Cloud Computing, Honolulu, HI,

June 2012. The dissertation author was the primary investigator and author of this paper.

Chapter 5

Implementation

When implementing our system, we kept in mind our design goals, described in

Section 4.1. We aim to make it easy to customize networked device drivers or create new

ones. With this in mind, most of our system is implemented at the user level (i.e. outside

the operating system kernel) whenever possible. We violate this only when necessary

to preserve transparency. We avoid running arbitrary code in the kernel for two reasons:

Buggy processes are more likely to create catastrophic system failures on errors if they

are run in the kernel, and processes have the ability to maliciously affect the system if

run in the kernel. Running on the user level also allows us to use all of the mechanisms

provided by the kernel, such as memory copying and scheduling.

An exception is made for the application communication module, where we

sometimes use kernel modules to create the device driver interface that the application

is familiar with, as illustrated in Figure 5.1. Adding this kernel module at the very end

allows us to preserve transparency, while still giving us all the advantages of running at

the user level for the rest of the system. All device communication modules, network

modules, and transformation modules run at the user level. All of our implementation

is done for the Unix/Linux kernel, although our system could be generalized to any

operating system.

Throughout this work, we have been extremely conscious of the tension between

33

34

server client

device

device
module

trans A trans A’

network
module

network
module

network
card

kernel

network
card

device
driver

device
driver

device
driver

application
driver

application
module

application

network

Figure 5.1. An illustration of the networked device driver architecture, with a transforma-
tion module. Only the application driver and raw driver run within the kernel, meaning
only one kernel module must be created. All other modules run at user-level, allowing
them to use all mechanisms provided by the operating system.

ease of creation of system modules, and the run-time performance of the system. While

running modules as separate processes on the user-level gives us many advantages, it

also means that we must depend on the performance of said mechanisms. We use the

generic scheduler provided by the system, while a custom-built scheduler designed

specifically for our system may have be able to provide better performance. While

running modules as user-level processes gives us built-in modularity and makes it easy to

swap out functionality, it also means that we must transfer data between separate process,

which requires making calls to the kernel, adding a significant amount of overhead. These

trade-offs are especially apparent in how we do data transfer, and because of that, we

developed two separate system implementations, one using pipes and one using shared

memory, which we compare in Section 5.1.

5.1 Data Transfer

In this section, we discuss two different implementations of our system, one of

which uses shared memory for data transfer, and the other using pipes. Pipes present a

35

simple and easy mechanism to transfer data from one process to another. Pipes do not

require any notion of an address for data: it is simply written to the pipe by one process,

and read from the pipe by the next process. A messages can vary in size, and can be

written/read all at once, or in sequential pieces. The process will naturally block on read

calls and wait for data to become available. However, pipes require a data copy between

every process, which causes a lot of overhead.

In contrast, shared memory has much less overhead, due to not requiring a mem-

ory copy between processes. However, it does not have any of the built-in mechanisms

that make pipes such a natural fit for our system. In order to use shared memory without

data copies, we must create a pool of shared memory between all processes in our system,

and then communicate to each process what part of this memory they currently own,

building a synchronization system. We must also be able to communicate what parts of

the shared memory are free and can be re-used for more messages. In addition, there

are issues with what happens when messages change sizes across the data stream. We

describe this in detail in Sections 5.1.2 and 5.1.3.

5.1.1 Implementation with Pipes

In our pipe-based implementation, all links between modules in the data stream

are created with pipes, as shown in Figure 5.2. Each transformation module has a

read pipe and a write pipe. It reads a message from the read pipe, performs some

transformation on the data, and then writes it to the write pipe. This is illustrated in

Listing 5.1, an example of a pipes-based transformation module which reads in a message,

prints it, and writes it to the next transformation module. Specifying the read and write

pipe allows us to order the modules, e.g. if the compression module writes to pipe

A and the encryption module reads from pipe A, messages will be compressed and

then encrypted. Similarly, the device communication module, network modules, and

36

Listing 5.1. The body of a pipes-based transformation module which prints messages.
int size;

char buffer[MAXSIZE];

for (;;) {

/* read the message */

read(read_driver , &size , sizeof(int))

int received = 0;

while (received < size) {

numread = read(read_driver , buffer+received ,

size -received);

received = received + numread;

}

/* print the message */

int i;

for (i=0;i<size;i++){

printf("%c", buffer[i]);

}

/*write the message */

write(write_driver , &size , sizeof(int));

write(write_driver , buffer , size);

}

Listing 5.2. Using pipes to connect transformation modules
./ video_devicecommunicationmodule -w /tmp/out0

./ encrypt -r /tmp/out0 -w /tmp/out1

./ compress -r /tmp/out1 -w /tmp/out2 &

./ networkmodule -w /tmp/out2 -i 7845

37

client

trans 1

network
module

network
card

synthetic
device
module

trans N …
read read

read read write

write
write

write

Figure 5.2. The networked device driver architecture, using pipes. Each transformation
module has a read pipe and a write pipe it uses to read data from the module before it,
and write data to the module after it.

application communication module communicate with the transformation modules they

are connected to by reading and writing to pipes. This is shown in Listing 5.2. Each

message starts with a fixed length header field containing the message content’s length,

so variable sized messages can be read and written within the same data stream.

5.1.2 Implementation with Shared Memory

In our shared memory implementation, a large pool of memory is simply memory

mapped between all of the modules in the networked device driver. Updates are written

to the shared memory by the device communication module on the device side, with

multiple updates kept in the memory pool at the same time. Each update is modified

by each transformation module in order, with all changes occurring within the shared

memory (synchronization is done via pipes, discussed below). When the update has gone

through all the transformation modules, the network module reads it from the shared

memory, writes it to the network, and sends a message to the device communication

module letting it know the area of memory occupied by the update is now available to be

38

client

trans 1

network
module

network
card

synthetic
device
module

trans N …
read read

read read write

write
write

write

shared memory
read

write

Figure 5.3. The networked device driver architecture, using shared memory. Control
messages are sent through pipes, in order to let processes know which section of shared
memory currently belongs to them.

written over. Similarly, on the application side, the network module reads in an update,

and then writes it to the shared memory pool, where it is modified by the transformation

modules. When it is read by the application communication module, the latter sends a

message to the network module, letting it know that space in memory is now available.

To synchronize between the modules, we have a system of pipes similar to the

implementation described in Section 5.1.1, but used purely for synchronization, shown

in Figure 5.3. When a module is done processing an update, it writes the starting address

and size of the update to the next module in the data stream, signaling that the next

module is now the owner of that region of the shared memory. This is shown in Listing

5.3, an example of a simple shared-memory-based transformation module.

5.1.3 Using Pipes versus Shared Memory

Pipes generally provide a more natural and flexible interface than shared memory.

Using pipes automatically provides support for messages that change size while traveling

through the data stream, such as in compression, messages that are combined, such as in

39

Listing 5.3. The main loop of a shared-memory-based transformation module which
prints messages

int start ,size =0;

for (;;) {

/*read the starting location and size of the message

in shared memory */

read(read_driver , &start , 4)

read(read_driver , &size , 4)

/*print message */

int i;

for (i=0;i<size;i++) {

printf("%c", sharedspace[start + i]);

}

/* write start and size */

write(write_driver , &start , 4);

write(write_driver , &size , 4);

}

bundling, and the additional headers that are added and removed by many transformation

modules. When using shared memory, the module creator must keep track of the memory

used so that it can eventually be reported as free by the network module once the message

has been sent to the network, and then reused by the device communication module. This

becomes more complicated when the size of the message changes across modules (from

when the message was created by the device communication module to when it reaches

the network module).

Complexity increases when the message size increases as it traverses the data

stream. This leads to two alternatives: One can allocate some maximum amount of

space to each message when the device communication module creates it, and have

the potential of large amounts of wasted shared memory. Or one can try to create a

system where non-adjacent sections of memory belong to the same message, and deal

with the complexity and overhead of keeping track of which sections are in use, and

40

communicating this information to all modules. Either way, it is clear that pipes are

easier to use, though the question remains whether memory copying – an unavoidable

result when using pipes but avoidable when using shared memory – creates intolerable

overhead. We address this question in Section 6.8.

5.2 Devices

Another goal is to allow device makers, application creators, and users the extend

the system as they see fit. To add support for a new device, what must be provided

are a raw driver, a device communication module using the API for that driver, and an

application communication module. These three components will allow the device to

work with all of the pre-existing functionality provided by the transformation modules.

Below, we describe three devices we built networked device drivers for, and the process

of building modules for them.

5.2.1 Space Navigator

As an example of what is involved in supporting a somewhat exotic device, we

created a networked device driver for a 3D mouse device called the Space Navigator [2].

The Space Navigator is a joystick designed for manipulating three dimensional objects

and spaces. It produces updates with six different values: 3 translation values, and 3

rotation values. The device produces new values at a rate of 62.5 Hz.

The device communication module for the Space Navigator runs as a user-level

process that receives events from the Space Navigator, processes these events into our

update format, and then writes the updates to a pipe.

The native device driver that comes with the Space Navigator actually operates

at user level, so to create an application communication module for it, we rewrote the

device driver to receive updates from a pipe (rather than from the raw device). This was

41

Listing 5.4. The main loop in the keyboard device communication module
while (1) {

/* how many bytes were read */

size_t rb;

/* the events (up to 64 at once) */

struct input_event ev [64];

/*read from the evdev event file*/

rb=read(fd,ev ,sizeof(struct input_event)*64);

/* iterate over each event we just read*/

int yalv;

for (yalv = 0;yalv < (int)(rb / sizeof(struct input_event));

yalv ++)

{

int keybd [3];

int size [1];

size = 3;

keybd [0] = ev[yalv].type;

keybd [1] = ev[yalv].code;

keybd [2] = ev[yalv].value;

/* write the size of the message to the write pipe*/

write(write_driver , &size , sizeof(int));

/* write the keyboard evdev information to the write pipe*/

write(write_driver , &keybd , sizeof(int)*3);

}

}

simple and required very few changes to the structure of the driver. Because the modified

driver continues to raise events in exactly the same way as the original, no modification

is needed for any application to use our version of the driver.

5.2.2 Mouse and Keyboard

We created networked device drivers for the basic mouse and keyboard. In Linux,

both the mouse and keyboard use evdev events, so we created modules for them that work

in very similar ways [21]. The device communication modules (which run as user level

processes) read from the drivers of the devices and capture their events, as illustrated in

42

Listing 5.5. The user space keyboard application communication module
while (1) {

int size;

int evdev [3];

/*read the keyboard information from the read pipe */

read(read_driver , &size , sizeof(int)))

read(read_driver , &evdev , size);

/* Send information to the kernel keyboard driver */

sprintf(buffer , "%d %d %d ", evdev[0], evdev[1], evdev [2]);

write(sim_fd , buffer , strlen(buffer));

fsync(sim_fd);

}

Listing 5.6. The kernel space keyboard application communication module
/* Sysfs method to input simulated coordinates to the

virtual mouse driver */

static ssize_t write_vms(struct device *dev ,

struct device_attribute *attr , const char *buffer ,

size_t count)

{

int button ,press ,type;

/*scan input buffer */

sscanf(buffer , "%d%d%d", &type , &button , &press);

/* generate event based on input*/

if (type == EV_KEY) {

input_report_key(vms_input_dev , button , press);

input_sync(vms_input_dev);

} else if (type == EV_MSC) {

input_event(vms_input_dev , EV_MSC , MSC_SCAN , press);

}

return count;

}

43

Listing 5.4. Updates with information from the events are generated and written to the

output pipe.

The application communication module consists of two parts, a user level process,

and a kernel module. The user level process reads in the update from its input pipe,

and writes it to a sysfs node which maps to the kernel module, as shown in Listing 5.5.

The kernel module then generates the evdev event for the update, shown in Listing 5.6.

Because we use the kernel module to generate evdev events, the system reacts exactly

as though the mouse and keyboard events had been generated by a physical mouse and

keyboard.

5.2.3 Video Card

A video card is generally accessed through a frame buffer, the area of memory

that holds the pixel values for the display. Its device communication module (that runs as

a user level process) reads the framebuffer values, and then writes them to its output pipe.

Likewise, for the application communication module, pixel values are read from its input

pipe, and then written to the frame buffer of the remote display, shown in Listing 5.7.

5.3 Network Modules

We have implemented network modules for both TCP and UDP. Additional

network modules could easily be written for other network protocols. The code for the

network module is quite short, about 200 lines of C code. For the pipe implementation

of the network driver, we simply read in from a pipe into a buffer, and then write the

contents of the buffer to a socket, shown in Listing 5.8. Similarly, on the server side, we

read from the network socket into a buffer, and then write that buffer to a pipe. For our

shared memory implementation, we simply write to a socket from a designated section

of shared memory, and similarly read from a socket into a designated section of shared

44

Listing 5.7. The framebuffer application communication module
for (;;)

{

/* read in the size of the update , and its X and Y

values */

int size , X, Y;

read(read_driver , &size , sizeof(int));

/*X and Y are headers added by the

device communication module */

read(read_driver , &X, sizeof(int));

read(read_driver , &Y, sizeof(int));

struct iovec iov[Y];

/* since we can display portions of the buffer , we need to

map the beginning of each row to the correct spot in

the frame buffer */

for (i=0; i<Y; i++)

{

unsigned char *temp=fbbuf;

temp=temp+i*vinfo.xres*cell_size;

iov[i]. iov_base = temp;

iov[i]. iov_len = X*cell_size;

}

/* read into the frame buffer */

int r = readv(read_driver , iov , Y);

}

45

Listing 5.8. The network communication module for TCP
int size;

char buf[MAXSIZE];

for (;;) {

read(fd_driver , &size , sizeof(int));

received = 0;

while (received < size) {

numread = read(fd_driver , buf + received , size -received);

received = received + numread;

}

send(_s , &size , sizeof(int),0);

sent = 0;

while (sent < size) {

numwrite = send(_s, buf+sent , size -sent ,0);

sent = sent + numwrite;

}

}

memory on the application side.

5.4 Conclusion

We created a Linux implementation of the networked device driver architecture.

Each module runs as a process in our implementation, and these processes run almost

entirely at the user-level. This allows us to leverage existing Linux mechanisms such

as scheduling. We present two separate implementations of data-passing, one using

shared memory, and one using pipes. While our shared memory implementation has

less overhead, the pipes implementation is drastically easier to implement, automatically

providing many of the features we must implement separately when using shared memory.

We also provide examples of device and application communication modules for several

devices, including the mouse, keyboard and video card.

46

Chapter 5, in part, has been submitted for publication of the material as “Perfor-

mance Aspects of Data Transfer in a New Networked I/O Architecture by Cynthia Taylor

and Joseph Pasquale. The dissertation author was the primary investigator and author of

this paper.

Chapter 5, in part, is a reprint of the material as it appears in the article “A Remote

I/O Solution for the Cloud”, by Cynthia Taylor and Joseph Pasquale, which appears in

the Proceedings of the 5th International Conference on Cloud Computing, Honolulu, HI,

June 2012. The dissertation author was the primary investigator and author of this paper.

Chapter 6

Performance

6.1 Base End-to-End Time

We first wanted a base measurement of how long it will take a message to travel

along the data stream from the source to the sink, on the most basic of network device

drivers. This tells us how much latency our system is adding to the device, and helps

determine if our system adds an unreasonable amount of overhead.

In order to measure this, we created a basic network device driver, consisting of a

device communication module, two network modules, one on each side of the network,

and an application module. We measured the end-to-end time for a variety of message

sizes, as our system must work for all devices, regardless of how much data they produce.

In order to test this, we created a synthetic device module which produces a random

character array in a specified size every two seconds. The device module paused for two

seconds between sending messages to avoid any bandwidth issues from sending multiple

messages at a time. When the character array was created, it was time stamped. After it

had reached the application communication module, another time stamp was taken, and

the first time stamp was subtracted from the second to determine the travel time of the

message.

Our experiment was made more complicated because we could not synchronize

47

48

server client

network
module

network
card network

network
module

synthetic
device
module

network
module

network
card

network
module

application
module

Figure 6.1. The experimental setup for our base end-to-end time. The system must
be effectively doubled in order to measure results on the same clock, so there are two
network modules on each machine, and the synthetic device module and application
module are both located on the client.

clocks across machines with enough granularity to make our measurements. In order to

get reliable times, the timestamps had to be created in both the device communication

module and the application communication module on the same machine. To do this, the

network device driver was essentially doubled: two network modules are created on each

machine, one sending and one receiving, and the application communication module is

moved onto the same machine as the device communication module. A message was

created by the device communication module, sent to network module, which sent it

across the network, where it was read in by one network module, forwarded the next

network module, which sent it back across the network, where it was read in by the final

network module, and sent to the application communication module, where the second

time stamp was taken, and the round trip time calculated. This experimental setup is

illustrated in Figure 6.1. To get the end-to-end times from the round trip times being

measured, the times were divided by two.

All tests were performed on a two Dell Optiplex 320 machines with dual-core

Intel Celeron Chips and 133 MHz FSB clocks. We used these machines because they are

examples of relatively inexpensive off-the-shelf hardware. Both machines are running

Ubuntu Linux. Both machines have wired connections to a relatively fast campus network,

49

Figure 6.2. Random character arrays in different sizes are sent across the network device
driver, and their traversal times are measured. Since the network device driver is doubled,
the round trip times are divided by two to get the end-to-end times, displayed here.

with a sample ping round-trip time of 0.235 msec. All measurements are averaged over

450 tests, as this gaves us sufficient data points while also allowing the tests to complete

in a reasonable time.

Our results are shown in Figure 6.2 and Table 6.1. For an array of 1000 characters,

it took 632 usec to travel from sink to source under pipes, and 618 usec under shared

memory. For an array of 1024000 characters, it took 91988 usec to traverse the network

device driver wit pipes, and 90032 usec with shared memory. If we fit a line to this data,

it has a slope of 0.17, so each additional character will add approximately 0.17 ucsec, a

very small amount of time.

For the end-to-end times of our basic network device driver, with no transforma-

tion modules, we see that there is very little difference between the pipes implementation

and the shared memory implementation. We also demonstrated that our system adds a

relatively small amount of overhead, especially for smaller message sizes. For example,

50

Table 6.1. The average time to for a message, consisting of a random character array, to
completely traverse the system in microsends. Each column represents a different array
size.

Num Characters 1000 5000 10000 50000 100000 500000 1024000

Pipes 632 819 1287 5408 10320 45942 91988
Shared Memory 618 826 1270 5739 11539 44322 90032

client

network
module

network
card

synthetic
device
module

Figure 6.3. The experimental setup for end-to-end time on a single machine. Measure-
ments are taken before the message is sent by the device communication module, and
before it is sent to the network by the network communication module.

the default rate for polling a USB mouse in both Windows Vista and Ubuntu Linux is

125 Hz, or every 8000 usec. At the base rate of 632 usec for a 1000 character array

(much larger than the data from a mouse), adding a network device driver would not add

a significant delay to a USB mouse.

6.2 End-to-End Time Across a Single Machine

We also wanted to look at the end-to-end time across a single machine, i.e. the

time it takes from an update to be generated until it is sent across the network. Looking

51

Figure 6.4. The time it takes for a message, consisting of a random character array, in
various sizes, to be sent across a single machine. The time measured is from when the
message is generated, to when it is about to be sent to the network. Measurements are in
microseconds.

at this gave us a better idea of the performance of the system due to memory copies, as

this metric will not have the slowing effects of the network.

In order to measure this, we created a basic device driver, as shown in Figure 6.3.

A character array is created in the synthetic device module, and a timestamp is added

to it. This character array is sent to the network module, where a second time stamp is

taken right before the message is written to the network socket. The first time stamp is

subtracted from the second, giving us the time the message spent within the networked

device driver on the client machine, from creation to send time. There is a pause for 2

seconds between sending each array, to avoid having multiple messages in the system at

once. All results are averaged over 450 messages.

Our results are shown in Figure 6.4 and Table 6.2. For a 100 character array, it

took 46 usec to cross the machine using pipes, and 41 usec using shared memory. For

a 1024000 character array, it took 1742 usec using pipes, and 2233 usec using shared

52

Table 6.2. The average time it took a message, consisting of a random character array,
to traverse a single machine, in microsends. Each column represents a different size of
character array.

Chars 100 500 1000 5000 10000 50000 100000 500000 1024000

Pipes 46 34 32 58 56 106 173 597 1742
Shared 41 35 43 42 56 99 137 564 2233

server client

network
module

network
module

network
card

network
card

synthetic
device
module

application
module

network

Figure 6.5. The experimental setup for our base bandwidth measurements. We add an
out-of-band link between the application module and device module, in order to make
measurements on the same computer clock.

memory. For most message sizes, the time added by data transfer across a single machine

is less than a millisecond, showing that our system is adding very little overhead. In

addition, we see that with no transformation modules, the memory copy overhead of

pipes and shared memory is very similar.

6.3 Base Throughput

We next wanted to find the base throughput of our system, in order to make sure

bandwidth will not be the limiting factor when dealing with devices which output large

amounts of data. This is important for dealing with devices which produce large updates.

In order to measure the bandwidth of the system, a basic network device driver

was created with a synthetic device communication module which produces a random

53

Table 6.3. The throughput of the system, in Megabytes/second. We compare the
throughput of pipes and shared memory.

Pipes 10.5004 MB/sec
Shared Memory 11.0023 MB/sec

character array of a given size, as in Section 6.1. Once again, the issue of having two

separate computer clocks had to be dealt with. Unlike in our previous experiment,

simply doubling the device driver would not work, as this would change the amount

of information traveling through the system. Instead, an out-of-band connection was

added between the device communication module and the application communication

module. A large amount of data was sent through the network device driver, and once the

application module had received it all, it sent a small acknowledgement message back to

the device communication module. The device communication module created a large

character array, took a time stamp, sent the array, waited for the acknowledgement from

the application module, took a second time stamp, and subtracted the first time stamp

from the second to find the time it took to send the data. This is illustrated in Figure 6.5.

Testing just the network speed while running these experiments, we got a base

time of 11.3 Megabytes/second when using rcp to download a large file between the two

machines. We got very similar times with our system, with throughput of 10.5 MB/s

with pipes, and 11.0 MB/s with shared memory. This indicates that the throughput of our

basic system is largely dependent on the throughput of the underlying network.

6.4 Update Speed of Networked Device Drivers Com-
pared to Standard Drivers

We next wanted to see how much overhead our system adds when used with an

actual device, to get a more realistic picture. We wanted to make sure that our system

54

server client

network
mod

network
mod

device
comm

app
comm

.036 ms .38 ms .017 ms

Figure 6.6. The results of instrumenting the Spacenav device driver. The majority of
overhead is traveling over the network, with very little overhead due to computation.

does not add enough overhead to interfere with the device and cause significant lag. Here

we use the Space Navigator, described in Section 5.2.1.

We developed a device driver for the space navigator, with a device communica-

tion module, network modules, and application communication module, and instrumented

them in order to measure the time it takes an update to travel through the system. The

system needed to actually forward device information from the client to the server, so the

system cannot simply be doubled, as in our previous experiment, described in Section 6.1.

Instead, since the update takes a one way path over the network, the system was measured

in three discrete parts in order to get an accurate measurement. All measurements were

taken using the rtdsc and rtdscl registers to determine the number of clock cycles that

had passed, and converting from clock cycles into milliseconds. All measurements were

averaged over 2000 tests, in order to achieve statistical signficance. All measurements

used the pipes implementation.

Our results are shown in Figure 6.6. On the driver side, the time between when

the device communication module received an update, and when the network module

was ready to send it over the network was measured: this took an average of 36 usec,

with a standard deviation of 9 usec. For the network, it was necessary to measure a round

trip time in order to make accurate measurements using the same computer clock. We

took a round trip measurement of the time it took the network module on the driver side

55

server client

video card

framebuffer
driver

device
module network

module
network
module

network
card

network
card

application
module

network

Figure 6.7. The design of the networked device driver for the video card. The application
module is instrumented to measure the time between when it receives frames, which
includes the time to display the frame.

to write an update to the network, the network travel time to the application side, the

application communication module reading the update and immediately writing it back

to the network, the travel time back to the driver side, and the device communication

module reading the update. The resulting measurement was divided by two to get the

one-way time, resulting in an average time of 380 usec with standard deviation of 14

usec. (A ping taken at the same time had a one-way average time of 120 usec.) On the

application side, the time from right after the network module had read the update to the

time when the application communication module generated an event to the application

was measured, for an average time of 17 usec with standard deviation of 15 usec. The

total time that our system added to the update was 433 usec.

The Space Navigator operates as a rate of 62.5 Hz, or every 16000 usec, so 433

usec would not add a perceptible delay. This shows us that when operating as a real,

usable system with an actual device, the network device driver architecture does not

present an obstacle to use by adding an overwhelming amount of overhead.

56

Figure 6.8. The frame rate of the video card networked device driver compared to VNC.
The two send rates are very similar, with the networked device driver performing as well
or better than VNC. VNC is limited to 24 frames per second at best, due to only sending
frames when there is a change in the pixels.

Table 6.4. The average inter-frame time for VNC in microseconds, along with the
average number of pixels forwarded per frame.

Average Pixels 55480 222918 297620 404672 627935

VNC interframe 44500 107786 127290 167625 246812

6.5 The Networked Device Driver Compared to VNC

We wanted to compare our system against custom device-forwarding applications,

to show how we perform against current state-of-the-art applications also designed to

solve the problem of remote I/O. We wished to show that our system performs as well

as custom solutions designed for specific devices. To do this, we compared our system

against VNC, the class thin client that is designed to forward video, keyboard input and

mouse. We compared purely against the video forwarding capacity, comparing the frame

57

Table 6.5. The average inter-frame time for the video card networked device driver, with
and without compression, in microseconds.

Pixels 28000 66000 312000 420000 560000 789504

Networked Device Driver 7209 18040 87434 132071 190754 542916
NDD with Compression 11598 25275 105541 184731 285813 494565

rate of a networked device driver built for the video card to the frame rate of VNC.

Using the pipe-based implementation, we built a basic networked device driver

for the video card, shown in Figure 6.7. Both the network device driver and an imple-

mentation of Tight VNC[1] were instrumented to record how long it took to receive and

display each frame. After initialization the VNC Client goes into a loop where it reads

and processes an update, sends a request to the server, and then waits for the next update.

The client was instrumented to measure how long it takes for the client to go through

each iteration of this loop. Similarly, the application communication module for the

Video Card runs in a loop where it reads in an update, and writes that information to

the framebuffer. Code was added to this module to measure how long it takes for each

cycle of reading and updating. Their performance was measured displaying a video of

the television show Leverage, running at 24 frames per second. All measurements were

averaged over 2000 updates.

In Fig.6.8 we compare the frames per second for different average pixels per

frame being transmitted by both systems. Since VNC transmits less than the entire frame

when not all pixels have changed between frames, this is a lower value than the frame

size. For lower average pixel values, in the forty-five to fifty-five thousand pixel range,

the networked device driver sends an average of 139 frames per second, while VNC

sends an average of 23 frames per second. This is due to VNC only sending updates

when there is a change in the pixel values, limiting it to the video’s frame rate. However,

58

Figure 6.9. The video card networked device driver, with and without compression,
compared to VNC. Even with an added compression module, the networked device driver
performs as well as VNC.

when the update rate drops below frame rate at around 200,000 pixels, we see that the

networked device driver sends slightly more frames per second than VNC. Our results

are displayed in Tables 6.4 and 6.5.

As the average numbers of pixels per frame are increased, the networked device

driver keeps pace with VNC, generating as many or more frames per second. The

performance of our generic networked device driver is on par with that of VNC, an

application specifically designed and optimized for forwarding video card data. Our basic

implementation, even using pipes, is capable of performing on par with a commercial

application designed for a specialized remote I/O task.

6.6 Adding Transformation Modules

A key component of our system is the ability to add transformation modules to

process updates for the network. We wanted to show that adding a transformation module,

59

server client

video card

framebuffer
driver

device
module

compress decompress

network
module

network
module

network
card

network
card

application
module

network

Figure 6.10. The design of the networked device driver for the video card, with compres-
sion. A compression transformation module is added between the device communication
module and network module on the client side, and a decompression transformation
module is added between the network module and application communication module
on the server side.

a typical use cause, will not cause the system’s performance to degrade drastically, or

cause it to perform worse than VNC.

The networked device driver running the compression module (shown in Figure

6.10) was compared to the networked device driver without it (shown in Figure 6.7). The

purpose of this experiment is not to demonstrate speed-up from compression: we are

running on a fairly high-bandwidth network, and not compressing significantly enough

to cause significant improvement. Instead, we wished to demonstrate that the memory

copying and added computation from compression does not cause a significant detriment

to performance.

At twenty-eight thousand pixels per frame, on the lower side of the spectrum,

the networked device driver with compression has a lower frame rate than the one with

compression, at 86 frames per second versus 139 frames per second. However, it is still

significantly above the actual frame rate of the video, at 24 frames per second. Once

the frame rate of both versions of the networked device driver is below the frame rate of

the video, at three hundred thousand pixels, the difference in frame rates remains below

60

server client

Synthetic
spacenav

device
module

buffer buffer

network
module

network
module application

module

network network

device
driver

device
driver

network

Figure 6.11. The design of the buffering experiment. Buffering modules are added on
each side of the network. They exchange out-of-band control messages, so the buffering
module on the server side can request new updates when it is running low.

two frames per second. The frame rate of the networked device driver with compression

remains consistent with VNC’s frame rate. These results demonstrate that adding a

transmission module to the networked device driver does not cause a significant drop in

performance, even in our pipe-based implementation.

6.7 Performance of Transformation Modules

We wanted to demonstrate that using specific transformation modules is effective

in counter-acting negative performance effects due to the network. In this section, we

present results from using two different modules, buffering and bundling, to counter

network effects (in this case, jitter). While the use of buffering to counter-act jitter is

already well-known, we present these results to show the ability of the system, configured

with specific modules, to meet our goal of transparently counter-acting the temporal

effects of the network on the update rate.

61

Figure 6.12. The average difference between creation inter-message time and received
inter-message time, in msec. The standard deviation is show as bars. Using the buffering
module drastically lowers the effects of jitter on the system. This demonstrates the
buffering modules’ ability to recreate the original timing between messages, due to
messages being timestamped on the client side.

6.7.1 Buffering

To demonstrate our buffer modules’ ability to recreate the timing of updates across

the network, two network device drivers were created, one with the buffer modules, and

one without. A version of the spacenav driver that automatically generates updates every

16 ms was used. This was read from by the device communication module, as normal.

It was then passed to the buffering module, and then to the network module and on the

sink side, it was read by the network module, passed to the buffering module, and then

to the application communication module. This setup is illustrated in Figure 6.11. The

sink buffer module was set to have a maximum buffer of 10 updates, and the source side

buffer to have a maximum buffer of 400 updates. The inter-message distance is measured

in the application communication module. It had to be measured here instead of in the

application because the application communication module strips off timestamps before

62

server client

Synthetic
spacenav

device
module

bundle bundle

network
module

network
module application

module

network network

device
driver

device
driver

network

Figure 6.13. The design of the bundling experiment. The bundling module on the client
side collects messages 10 and sends them together as one message, while the bundling
module on the sever breaks up the message, and sends the collected messages one at a
time, recreating the original timing between them.

passing an update to the application, in order to preserve transparency. The results from

our buffered network device driver are compared against a network device driver which

is set up exactly the same, except without the bundling module. Both network device

drivers use TCP-based network modules.

To measure the jitter in both systems, the inter-message time for the updates

when they were generated were compared to the inter-message time when they were

received. Since each update is timestamped by the device communication module when

it is generated, we were able to create an application communication module for testing

purposes which generates a timestamp when it receives a new update, uses that to compute

the time between it and the last update received, and compares it to the time between their

generation timestamps. Our jitter metric was the difference between the inter-message

times at generation and on receiving.

We ran this experiment over different amounts of network jitter varying from 5

ms to 200 ms, created using netem. Netem created this jitter by delaying sending each

packet for a random number of milliseconds between 0 and N, where N is the specified

maximum. All measurements are averaged over 200 runs. Our results are shown in

63

Figure 6.12. As shown in the figure, under the buffered system, the inter-message time at

receiving remained very close to the timing when the updates were originally sent. At

200 msec of jitter, the difference was still averaging less than 1.5 msec, and until it the

jitter passes 50 msec, it was averaging less than 0.1 msec difference. In contrast, without

the buffering the difference between timing at send and receive immediately becomes

apparent, with just 5 msec of jitter causing an average 3.6 msec time difference, and

going all the way up to an average of 28.8 msec of difference at 200 msec of jitter. The

standard deviations also remain much lower under the buffered system: it is under 1 msec

with 50 msec of jitter with buffering, while without buffering it is already at 12 msec.

This demonstrates that the use of the buffering module within the networked device driver

architecture is effective in counter-acting network jitter.

6.7.2 Bundling

To show that our bundling module also prevents jitter, an experimental setup was

created that is the same as in Section 6.7.1, except using a bundling module instead of

a buffering module, as illustrated in Figure 6.13. Again, two identical network device

drivers were set up, one with a bundling module and one without. The application com-

munication module was instrumented to measure the difference between inter-message

time on sending, and inter-message time on receiving. It was tested by using netem to

add 5, 10, 25, 50, 100 and 200 ms of jitter, averaging each test over 200 trials.

As shown in Figure 6.14, with the bundling module our inter-message time stayed

constant between sending and receiving, while without it quickly started to vary greatly.

With bundling, the average difference in inter-message time stayed under 1 msec until

over 100 msec, while without it the difference was already up to an average of 25.6 msec

at 100 msec of jitter. The standard deviation stayed low with the bundling module also,

showing that the inter-message time wasn’t varying greatly. Standard deviation stayed

64

Figure 6.14. The average difference between creation inter-message time and received
inter-message time, in msec. The standard deviation is show as bars. The bundling
module is able to recreate the original send times between messages, despite added
network jitter.

below 1 msec on with the bundling module until over 50 msec of jitter, while without the

bundling module it was already at 12.3 msec at that point.

This demonstrates that using our bundling module is effective in counter-acting

jitter in the network. With both the buffering and the bundling module, we demonstrate

the utility of using specific transformation modules with the networked device driver

architecture, and the utility of processing the data stream with transformation modules.

6.8 Effects of Adding Transformation Modules with
both Shared Memory and Pipes

Since our design adds functional modules as processes, we needed to make sure

that adding these modules does not significantly impact performance. This is especially

true of our pipes implementation, where each added module will require another memory

65

server client

trans 1

network
module

network
card network

trans N … trans N’ trans 1’ …

trans 1’ trans N’ … trans N trans 1 …

network
module

synthetic
device
module

network
module

network
card

network
module

application
module

Figure 6.15. The experimental set up. The network device driver, including transforma-
tion modules, is effectively doubled, so start and end measurements can both be taken on
the same machine. Measurements start in the synthetic device module, and end in the
application module.

copy. In this section, we performed a number of experiments across different numbers of

transformation modules with both shared memory and pipes, in order to determine the

performance cost of adding a transformation module under both implementations.

6.8.1 Transformation Modules and System End-to-End Time

We first wished to determine what effect adding a transformation module pair has

on the time it takes for a message to cross the entire system. This told us exactly how

much extra time we add to each message with new transformation. We measured this for

varying numbers of transformation modules, for both shared memory and pipes.

As in the experiments described in Section 6.1, all measurements had to be taken

on the same machine. To get around this issue, an experimental setup was created,

illustrated in Figure 6.18, in which the network device driver is essentially doubled.

Each machine had two network modules, one sending and one receiving, and twice the

number of transformation modules. This allowed both the device communication module,

66

Figure 6.16. End-to-end times for pipes, across the entire system, in microseconds. Each
transformation module adds an average of 6.6 percent of overhead.

where the message originates, and the application communication module, where we

take the final timestamp, to be on the same machine, and thus the same clock. To get the

end-to-end time for a single networked device driver, the round trip time was divided by

two. This may give higher measurements than in the actual system, as more processes

are running on each machine than would be running in a single version of the networked

device driver. Both machines were running in single core mode. All results are averaged

over 450 runs. The round trip ping time between the two machines was an average of

226 usec, giving a one-way time of 113 usec.

As shown in Figures 6.16 and 6.17, and Tables 6.6 and 6.7, our end-to-end times

for the entire system clustered relatively closely together, especially compared to the

end-to-end times for a single machine (shown in Table 6.8, Table 6.9 and Figures 6.19

and 6.20). This tighter clustering is most likely due to the performance the network,

67

Figure 6.17. End-to-end times for shared memory, across the entire system, in microsec-
onds. There is much less impact from adding a transformation module when using shared
memory than there is using pipes (see Figure 6.16).

which will be the same in both networked device drivers. For a 1000 character array, it

took 632 usec to completely traverse the system with no transformation modules, and

837 usec to traverse it with 6 transformation modules, under the pipes implementation.

Under the shared memory implementation, it took a 1000 character array 618 usec with

no transformation modules, and 818 usec with 6 transformation modules. It took a

1024000 character array 91988 usec to complete the pipe system with no transformation

modules, and 122761 usec with 6 transformation modules. With the shared memory

implementation, a 1024000 character array took 90032 usec with no transformation

modules, and 91168 usec with 6 transformation modules.

Under our shared memory implementation, adding a transformation module

added 1.9 percent to the latency of the entire system. Using pipes, each transformation

module added an average of 6.6 percent of overhead. The pipes implementation was 1.09

percent faster than the shared memory implementation with no transformation modules,

68

Table 6.6. The average time to completely traverse the system in microsends under pipes.
Columns are grouped by the size of the character array. Rows are grouped by the number
of transformation modules.

Array Size 1000 5000 10000 50000 100000 500000 1024000

0 Trans Mods 632 819 1287 5408 10320 45942 91988
1 Trans Mods 636 862 1326 5348 9741 46190 96547
2 Trans Mods 675 904 1374 5320 9980 48432 100604
3 Trans Mods 699 940 1432 5438 10130 52189 105845
4 Trans Mods 746 985 1483 5666 10916 53984 113937
5 Trans Mods 774 1028 1532 5850 11452 56794 115333
6 Trans Mods 837 1322 1851 6070 11890 64064 122761

but each transformation module added an average of 3.41 percent of overhead to the

pipes implementation compared to the shared memory implementation. We also saw that

the speed of the system is heavily dependent on message size. A networked device driver

with 1000 character messages and 6 transformation modules had an end-to-end time of

only 837 usecs, while a device with 1024000 character messages had an end-to-end time

of 91988 usecs with no transformation modules.

Our experiments show that while using shared memory offers significant perfor-

mance advantages for networked device drivers with large message sizes and a larger

number of transformation modules, the pipes implementation performs similarly to

shared memory for networked device drivers with a smaller number of transformation

modules, and smaller message sizes.

6.8.2 Transformation Modules and Machine End-to-End Time

We next wanted to look at the end-to-end time on a single machine, without the

effects of the network. This let us know more about the direct impact of pipes versus

shared memory on performance, without the smoothing effect of the network.

69

Table 6.7. The average time to completely traverse the system in microsends under
shared memory. Columns are grouped by the size of the character array. Rows are
grouped by the number of transformation modules.

Array Size 1000 5000 10000 50000 100000 500000 1024000

0 Trans Mods 618 826 1270 5739 11539 44322 90032
1 Trans Mods 661 856 1310 5766 11640 44586 89827
2 Trans Mods 690 889 1344 6064 11694 44733 92354
3 Trans Mods 723 946 1381 6596 11924 46218 90688
4 Trans Mods 754 1190 1410 5515 11741 43680 89388
5 Trans Mods 790 1216 1454 5915 13217 47402 90729
6 Trans Mods 818 1024 1474 6012 11750 45184 91168

Table 6.8. The average single machine end-to-end time in microsends under pipes.
Columns are grouped by the size of the character array. Rows are grouped by the number
of transformation modules.

Size 100 500 1000 5000 10000 50000 100000 500000 1024000

0 TM 46 34 32 58 56 106 173 597 1742
1 TM 56 59 58 69 86 176 344 1259 3797
2 TM 85 87 82 98 107 242 459 2117 5571
3 TM 84 100 88 117 142 308 605 2830 7872
4 TM 110 108 120 127 158 400 720 4114 9680
5 TM 123 127 119 150 188 460 918 5264 11593
6 TM 150 137 148 168 219 514 1019 6495 14034
7 TM 156 158 163 195 244 605 1190 7303 15555
8 TM 181 166 181 202 246 672 1375 8342 18376

70

client

trans 1

network
module

network
card

synthetic
device
module

trans N …

Figure 6.18. The experimental set up. Measurements start in the synthetic device module,
and end in the network module. This allows us to measure how overhead differs between
pipes and shared memory, without the effects of the network.

As in Section 6.2, we measured the time from when a message is generated, to

when it is sent over the network, within a single machine. In order to calculate this, a

timestamp was taken immediately before the message was written to the write pipe for

the device communication module, another timestamp was taken immediately before

the message was written to the network by the network communication timestamp, and

the first timestamp was subtracted from the second. A synthetic message was generated,

consisting of a large character array, and the device communication module paused two

seconds between sending each message, in order to make sure multiple messages are not

in the system at the same time. This experimental design is illustrated in Figure 6.18. All

measurements were taken in single core mode. Each measurement was averaged over

450 trials.

Our results are displayed in Tables 6.8 and 6.9 and Figures 6.19 and 6.20. For

a character array of size 100, it took 46 usec to travel through the pipe-based system,

71

Figure 6.19. Time from source to sink on a single machine, in microseconds, using pipes.
The overhead from adding a transformation module under pipes is much clearer than
when looking at the whole system.

and 41 usec to travel through the shared-memory-based system, with no transformation

modules. With 8 transformation modules, it took a 100 character array 181 usec to travel

through the pipe-based system, and 195 usec to travel through the shared-memory based

system. When transferring such a small amount of data, the performance of the shared

memory and pipes is very similar. Since our shared memory implementation uses pipes

for its control path, its performance will be very similar to the pipes implementation

when transferring very small messages.

For a 1024000 character array, it took 1742 usec to go through the pipe-based

system, and 2233 usec to go through the shared-memory based system, with no trans-

formation module. With 8 transformation modules, it took a 1024000 character array

18376 usec to go through the pipe-based system, and 2279 usec to go through the shared-

memory based system. At this larger message size, the performance differences between

pipes and shared memory are much more apparent.

72

Figure 6.20. Time from source to sink on a single machine, in microseconds, using
shared memory. Adding a transformation module using shared memory adds very little
overhead, as opposed to using pipes.

In our single machine measurements, the performance difference between pipes

and shared memory was much more apparent. Each transformation module added an

average of 33.5 percent of overhead to the pipes implementation over the overhead of

the shared memory implementation, as opposed to 3.41 percent in our whole-system

measurements. The addition of the network, which will have the same performance for

both systems, results in the two system having a much smaller performance difference.

Our experiments are taking place on a relatively fast, high-bandwidth, low-latency

university network: on slower networks, the two systems will have a more similar

performance. When we look at the experimental results in this section and Section

6.8.1, we see that while there is a significant performance difference in terms of memory

copying when adding transformation modules, it is to a large extent over-shadowed by

the performance of the network.

73

Table 6.9. The average single machine end-to-end time in microsends under shared
memory. Columns are grouped by the size of the character array. Rows are grouped by
the number of transformation modules.

Size 100 500 1000 5000 10000 50000 100000 500000 1024000

0 TM 41 35 43 42 56 99 137 564 2233
1 TM 63 59 63 75 80 128 154 612 2234
2 TM 79 83 75 87 103 134 207 593 2237
3 TM 104 99 101 99 127 156 180 641 2283
4 TM 118 113 130 125 134 181 207 619 2188
5 TM 126 144 130 136 164 192 233 712 2193
6 TM 154 155 171 161 171 212 253 665 2260
7 TM 173 173 172 175 194 223 262 643 2340
8 TM 195 188 185 206 218 261 343 633 2279

6.9 Video Driver Performance with Added Transforma-
tion Modules

We wanted to test the performance of a real networked device driver, using a real

device, with both implementations, over varying numbers of transformation modules. For

these tests, we used the video driver, which is challenging as it produces a large amount

of data relatively quickly. Measuring how our system performs using a real device gave

us a realistic idea of its performance, and how much that performance is affected by our

different implementations.

6.9.1 Video Inter-frame Times Across the System

We first measured how well the networked device driver as an entire system per-

forms, to give us an idea of overall performance, and how our different implementations

effect it. We measured performance in both implementations across different numbers

of transformation modules, in order to see how much the addition of a transformation

module effects the system performance with a real device.

74

Table 6.10. The average inter-frame time in microsends under pipes. Columns are
grouped by the width/height of the frame - all frames are square. Rows are grouped by
the number of transformation modules.

Frame Size 100 200 300 400 500 600 700

0 Trans Mods 2915 11281 27523 43761 75776 112462 165544
1 Trans Mods 3321 12492 30766 49554 84825 112714 166403
2 Trans Mods 3362 12554 31057 51241 86899 115094 169070
3 Trans Mods 3478 12795 31710 51958 88636 117945 172447
4 Trans Mods 3555 12903 32237 53069 91230 120553 176393
5 Trans Mods 3559 13239 33684 54745 92584 124439 179495
6 Trans Mods 3552 13479 34438 55928 94546 125136 182701
7 Trans Mods 3646 13973 34774 57019 96342 126648 185991
8 Trans Mods 3691 14338 35657 58412 98516 128457 189348

Table 6.11. The average inter-frame time in microsends with shared memory. Columns
are grouped by the width/height of the frame - all frames are square. Rows are grouped
by the number of transformation modules.

Frame Size 100 200 300 400 500 600 700

0 Trans Mods 2576 10297 23227 47972 75864 109041 148327
1 Trans Mods 2876 11664 26845 48269 75334 108052 147537
2 Trans Mods 3088 11680 26506 47000 75642 109044 148317
3 Trans Mods 2961 11985 27138 48199 75689 108325 148042
4 Trans Mods 2949 11924 27277 48398 75235 108492 148277
5 Trans Mods 2952 11871 27040 48081 75519 109543 147986
6 Trans Mods 3060 11915 27019 48025 75343 108811 147808
7 Trans Mods 3064 12068 27137 48367 75887 109354 148276
8 Trans Mods 2930 11867 27014 47847 75152 108769 148178

75

server client

framebuffer
driver

trans 1

network
module

network
module

network
card

network
card

device
module application

module

network

trans N

video card

… trans N’ trans 1’ …

Figure 6.21. The design of the experiment, measuring interframe time across machines.
Since we are measuring the time between frames, it is not necessary for the application
communication module and device communication module to be on the same machine.

Since we were using video, a natural metric is how many frames per second

our system can display. Using this metric let us take time measurements on the same

machine, avoiding having to double the system as we did in our experiments in Section

6.1.

To test the overhead of adding additional modules using pipes, a transformation

module was created that simply read from an input pipe, and wrote to an output pipe,

performing no computation on the data (allowing us to focus purely on communication

overhead). The video card network device driver was used to send various sized frames

of video through a range of multiple copies of the simple transformation module. The

application communication module of the video card was instrumented to measure how

long it took to receive and display a frame. Since the application communication module

for the video card runs in an infinite loop, reading in a frame from the read pipe and then

writing it to the frame buffer, a timestamp was taken at the end of this loop. The previous

timestamp was subtracted from the current timestamp to get the inter-frame time, and

then average this over five thousand runs for each frame size. This experimental setup is

illustrated in Figure 6.21.

76

Figure 6.22. The frame rate in frames per second of different sized frames with added
transformation modules, using pipes. An additional transformation modules adds approx-
imately two percent of overhead.

To test shared memory, a similar transformation module was created, which

simply passed the data through without modifying it. Using our shared memory imple-

mentation, this means the transformation module read the starting point and size of the

update in shared memory, and then wrote it to the next transformation module, without

touching or accessing any of the data in the shared memory.

We first looked at the performance of the pipe-based implementation. As shown

in Figures 6.22 and 6.24, adding transformation modules increases overhead, resulting in

it taking longer to send and display a frame, as expected. The number of transformation

modules listed in the figure is the number of transformation module pairs: for two

transformation modules, there are two parts on each side of the network. Even without

transformation modules, the data must be moved between the communication module

and the network module on each side.

77

Figure 6.23. The frame rate in frames per second of different sized frames with added
transformation modules, using shared memory. Each added transformation module adds
0.36 percent of overhead.

Larger frame sizes are more affected by adding transformation modules, since

larger frames result in more data to copy. We tested frame sizes from 100 by 100 to 700

by 700 pixels. With zero transformation modules, it takes 2915 usec between frames

for a 100 pixel square frame, and 165544 usec for a 700 pixel square frame, while

with 8 transformation modules, it takes 3691 usec for a 100 pixel square frame, and

189348 usec for a 700 pixel square frame. The main performance dip is in adding the

first transformation module: this adds 8.91 percent of overhead to the system with no

transformation modules. Each additional transformation module adds an average of 2.27

percent overhead.

These incremental overheads are small and tolerable, and in a sense are indicative

of worst-case cost since they will only become a smaller portion of the overall time when

the transformation modules actually do useful work (and thus take up time themselves),

or when network times grow beyond that of the fast network used in our experiments.

78

Figure 6.24. The average inter-frame time in microseconds per frame of different sized
frames with added transformation modules, using pipes. As the framesize increases, so
does the impact of adding an additional transformation module.

As show in Figures 6.23 and 6.25, the times in the shared memory implementation

are essentially unaffected by adding transformation modules. Without transformation

modules, it took the system 2576 usecs to send a 100 by 100 pixel frame, and 148327

usecs to send a 700 by 700 pixel frame. With eight transformation modules, it took 2930

usecs for a 100 by 100 pixel frame, and 148178 usecs for a 700 by 700 pixel frame.

Again, the biggest performance dip is the first transformation module, which added 5.57

percent of overhead to the system. Each additional transformation module added an

average of 0.36 percent.

The shared memory implementation added very little overhead with each addi-

tional transformation module. This makes it very well suited for devices such as the

video card, which produce a large amount of data.

In Figure 6.26 we showed the average time it takes between transfers of a frame

79

Figure 6.25. The average inter-frame time in microseconds per frame of different sized
frames with added transformation modules, using shared memory. Performance remains
relatively constant across the number of transformation modules.

of video in both shared memory and pipe implementations, across varying numbers

of transformation modules. Focusing on the minimal times (with no transformation

modules), for a 100 square pixel frame, it took 2915 usecs using pipes and 2576 usecs

using shared memory. For a 700 square pixel frame, it took 165544 usecs using pipes

and 148327 usecs using shared memory. From the rest of the graph, one can see that

additional overhead from using pipes grew with both the number of transformation

modules and the frame size, though the slopes are not large.

Without transformation modules, the system using pipes took 6.72 percent longer

to display a frame on average. Each additional transformation module added 2.34 percent

of overhead when compared to the shared memory implementation using the same

number of transformation modules. Again, this difference in overhead is a worst-case

scenario since the transformation modules were simply transferring data. In more realistic

80

Figure 6.26. Performance of pipes versus that of shared memory, grouped by size of
frame. Additional transformation modules increase the performance difference between
pipes and shared memory by approximately two percent.

cases where the modules are doing a computation, the differences in transfer speed will

be a smaller proportion of the processing time, and slower network transfer times will

also cause the intra-machine transfer time to have less impact. As in our results from

Section 6.8.1, we see that with large amounts of data and many transformation modules,

shared memory provides us with a significant performance advantage. For devices with

smaller amounts of data, or with few transformation modules, the two implementations

perform similarly.

6.9.2 Single Machine End-to-End Time and Batching Effects

We next looked at the results from a single machine, which gave us a view of

performance without the effects of the network, making the differences in performance

for our different implementations clearer.

We measured the end-to-end time on a single machine, comparing over different

81

client

trans 1

network
module

network
card

trans N …

framebuffer
driver

device
module

video card

Figure 6.27. The design of the experiment, measuring end-to-end time for one machine.
A message is timestamped right after creation in the device communication module, and
right before being sent to the network by the network module, and the difference is taken.

numbers of transformation modules. Note that while in our experiments in Section 6.9.1

were measuring the time in between frames, we were now measuring the time a single

frame takes from being copied into the device communication module until it is ready to

be sent over the network by the network module. Our experimental design, illustrated in

Figure 6.27, was identical to our experiments in Section 6.2.

Our results are shown in Figure 6.28 and Tables 6.12 and 6.13. The most startling

characteristic of these results is that the pipes have shorter end-to-end times than the

shared memory implementation, especially at large frame sizes. For a frame of 700 square

pixels, with 8 transformation modules, we found an end-to-end time of 211646 usec

using pipes, and an end-to-end time of 249453 usec using shared memory. This is counter

to all of our previous results, in which shared memory performed better, especially with

larger messages. This is especially mysterious since the inter-frame time for the video

card driver does not display this same pattern. As shown in our results from Section

82

Table 6.12. The average end-to-end time in microsends with pipes, on a single machine.
Columns are grouped by the width/height of the frame - all frames are square. Rows
are grouped by the number of transformation modules. All measurements are taken in
single-core mode.

Frame Size 100 200 300 400 500 600 700

0 Trans Mods 3420 12353 32267 52653 86687 117514 175065
1 Trans Mods 4030 13399 32684 53141 90701 119323 177204
2 Trans Mods 3746 13686 33138 54289 91995 122109 182296
3 Trans Mods 4234 13705 33516 54713 94095 124431 185870
4 Trans Mods 4387 13944 34042 56571 95657 127190 189502
5 Trans Mods 4208 14118 34515 57399 98632 131760 194653
6 Trans Mods 4581 14620 34951 59234 100573 135676 199830
7 Trans Mods 4652 15037 35729 59906 103035 139448 205886
8 Trans Mods 4599 15120 36186 61878 105466 142826 211646

Table 6.13. The average end-to-end time in microsends with shared memory, on a single
machine. Columns are grouped by the width/height of the frame - all frames are square.
Rows are grouped by the number of transformation modules. All measurements are taken
in single-core mode.

Frame Size 100 200 300 400 500 600 700

0 Trans Mods 3457 14539 36462 73862 127105 182598 249516
1 Trans Mods 3453 14604 36341 73995 126938 182240 249465
2 Trans Mods 3354 14294 35958 73397 126939 182196 249465
3 Trans Mods 3351 14320 35956 73345 126940 182200 249412
4 Trans Mods 3354 14284 35880 73323 126875 182153 249452
5 Trans Mods 3284 14232 35923 73474 126895 182186 249424
6 Trans Mods 3384 14106 35834 73369 126951 182197 249476
7 Trans Mods 3352 14302 35985 73280 127001 182235 249393
8 Trans Mods 3366 14233 35891 73357 126961 182161 249453

83

Figure 6.28. The end-to-end time on one machine, comparing pipes and shared memory.
On a single machine, shared memory actually has higher end-to-end times than pipes for
video, especially for large frames.

6.9.1, the inter-frame times are lower for the shared memory implementation.

We hypothesized that the larger end-to-end times for shared memory were due to

batching in the system, i.e. each module processing several frames at a time, rather than

processing a single frame and then switching to a new process. In our experiments, three

“slots” for frames were open in shared memory, allowing modules to process up to three

frames at a time, if they were available. This batching would cause the average end-to-end

to be greater, as the frames would have to wait until the entire batch is processed before

being moved to the next module. This batching effect did not appear in pipes, since the

system was writing a large amount of data to the pipe. This caused the write to block

when the pipe is full, forcing a switch to one of the waiting processes, which would in

turn read from the pipe and process the message.

In order to clarify, we provide an example with, hypothetical times:

Say each process takes 2 usec to process, and 3 usec to switch between processes,

84

Figure 6.29. The end-to-end time on one machine, in microseconds, with differing
numbers of frames in shared memory, grouped by size of frame. The more frames are
available in shared memory, the higher the end-to-end time.

and there are 3 processes.

Without batching (i.e. for pipes), the end-to-end time for each update will be 2

usec + 3 usec + 2usec + 3 usec + 2 usec, or 12 usec.

Now, let’s say this is happening in batches of 10 updates. For the first update, its

end-to-end time will be 20 usec + 3 usec + 20 usec + 3 usec + 2 usec, or 48 usec, since it

has to wait for all 10 updates to be processed in all but the last update. The last update in

the batch will be 2 usec + 3 usec + 2 usec + 3 usec + 2 usec, or 12 usec. So the average

end-to-end time will be 10 usec + 3 usec + 10 usec + 3 usec + 2 usec, or 28 usec, much

larger than the non-batched version.

However, the inter-frame time will be larger without batching: without pipelining

effects, we would have 12 usec inter-frame without batching, versus an average of (20

85

Table 6.14. The average end-to-end time in microsends with shared memory. Columns
are grouped by the width/height of the frame - all frames are square. Rows are grouped
by the number of frames stored in shared memory at once. All measurements are taken
in single-core mode, with no transformation modules

Frame Size 100 200 300 400 500 600 700
1 Frame Slot 1206 4936 14041 32307 45471 78654 106673
2 Frame Slots 1210 7064 21545 37435 61052 82642 123043
3 Frame Slots 1213 8383 24550 61004 122869 178087 248269
4 Frame Slots 1216 9201 46222 110494 186068 254234 372837
5 Frame Slots 1219 11522 66958 147838 248755 360942 498348
6 Frame Slots 1226 21258 97038 184979 311316 440049 623286
7 Frame Slots 1241 38465 118381 228818 374561 543835 748093
8 Frame Slots 1255 50711 141260 268043 437147 625666 873701
9 Frame Slots 2021 59535 164374 309114 499082 727716 998573
10 Frame Slots 1572 68111 183734 352250 562398 812175 1123959

usec + 3 usec + 20 usec +3 usec + 20 usec)/10 = 6.6 usec for a batch of 10.

In order to support our batching hypothesis, we performed an experiment in

which we measured the end-to-end time of two modules with no transformation modules,

keeping a varying number of frames in shared memory. As shown in Figure 6.29 and

Table 6.14, the end-to-end time increases as more frames are available in shared memory.

This indicates that batching is what is causing end-to-end times to be longer for shared

memory than for pipes.

This result has important ramifications for the design of shared-memory-based

networked device drivers. Designers must decide how many frame ”slots” they wish to

make available in the pool of shared memory. More available slots will result in a more

parallelization within the system, supporting shorter inter-frame times, but also more

batching, resulting in longer end-to-end times and more jitter.

86

6.10 Conclusion

Throughout this chapter, we compare performance results two implementations,

one using pipes, and one using shared memory. We see that thanks to its avoidance

of memory copies between processes, the shared memory implementation has less

performance overhead, especially for large updates, or large numbers of transformation

modules. However, we also show that the performance of our pipe-based implementation

is not overwhelmingly high, especially for devices with smaller updates, or networked

device drivers with fewer transformation modules.

We believe that pipes provide a significant ease of implementation that justifies

their higher performance overhead. As described in Section 5.1.3, shared memory

requires a great deal of additional structure when designing and implementing modules.

We see this in our results from Section 6.9.2, which show that designers must consider

several trade-offs when choosing how many frames to hold in shared memory. When

using shared memory, designers must also consider how they will handle reserving and

freeing memory, what to do about messages that change size throughout the system, and

a number of other factors that are already taken care of when using pipes. Because of

this, the higher overhead of pipes becomes a worthwhile trade-off for many networked

device drivers.

Chapter 6, in part, has been submitted for publication of the material as “Perfor-

mance Aspects of Data Transfer in a New Networked I/O Architecture by Cynthia Taylor

and Joseph Pasquale. The dissertation author was the primary investigator and author of

this paper.

Chapter 6, in part, is a reprint of the material as it appears in the article “A Remote

87

I/O Solution for the Cloud”, by Cynthia Taylor and Joseph Pasquale, which appears in

the Proceedings of the 5th International Conference on Cloud Computing, Honolulu, HI,

June 2012. The dissertation author was the primary investigator and author of this paper.

Chapter 7

Conclusion

In this work, we presented a new networked device driver architecture to support

remote I/O devices. We support network transparency while also allowing processing of

data in order to compensate for the network. Our system is easy to extend to new devices,

and supports customization and the addition of new features.

To support network transparency, we encapsulated all networking and related

processing inside the networked device driver. This means applications do not need to

be modified to work with remote devices, since the network is in effect invisible to both

application and device. This makes it easy to support legacy applications, avoids parallel

code maintenance, and means that a developer can develop a network device driver for

an application, without having the source code for the application.

Inserting the network between the application and device means our system needs

to be able to handle issues such as security, latency, bandwidth restrictions, and jitter.

Furthermore, each device and application may have a different ideal solution to these

problems, requiring different solutions for different device and application pairings. We

introduced the idea of transformation modules, processes which enact transformations

on the I/O stream. These modules are invisible to the application and device, yet let the

system be customized for the exact needs of an individual application and device, and

their particular network conditions.

88

89

We introduced transformation module pairs, a key concept of our system. Each

transformation module on the client is paired with a matching transformation module

on the server. The client transformation module performs some transformation on the

data stream, and the server transformation module reverses this transformation, e.g.

compressing and decompressing. This pairing concept also allows us to automatically

order the transformation modules, since operations must be undone in the reverse order

of how they were applied (e.g. if the data stream is encrypted and then compressed, it

must be decompressed and then decrypted).

The network device driver architecture is designed to run within the application

layer whenever possible. Our system run within the kernel only when necessary to

preserve transparency. This avoids the security dangers that come with allowing arbitrary

code to run in the kernel. It also allows to leverage many existing mechanisms supplied

by the kernel. The main unit of modularity within our system is the process. Separate

functional modules each run as their own process. This allows us to use the kernel’s

scheduler, rather than having to write our own.

We presented two separate implementations of our system, one which uses pipes

to transfer data between modules, and one which uses shared memory. We showed that

the implementation using pipes incurs an overhead that, while expectedly more overhead

than that of the shared memory implementation, is relatively small and tolerable. The

benefit of pipes, of course, is their ease of use and the simplicity that results in the

system’s implementation. Using pipes are appropriate for many applications, especially

those that leverage their built-in flexibility when processing variably-sized messages

In our performance evaluation, we showed that our system adds a relatively small

amount of overhead. We compared a networked device driver for the video card with

VNC, a popular thin client software designed to efficiently transfer video, and show

that the networked device driver has similar performance. We also showed that using

90

transformation modules can result in a significant performance advantage over sending

raw data over the network.

In conclusion, we presented the networked device driver architecture, a distributed

architecture for remote I/O. This architecture supports network transparency, while at the

same time allowing processing of the data stream for the network. It provides a modular,

flexible solution which is easy to extend for new devices and new functionality.

Bibliography

[1] Tight VNC. URL http://www.tightvnc.com/.

[2] 3d Connexion. 3d Connexion Space Navigator. URL http://www.3dconnexion.com/.

[3] R.A. Baratto, L.N. Kim, and J. Nieh. Thinc: a virtual display architecture for
thin-client computing. In ACM SIGOPS Operating Systems Review, volume 39,
pages 277–290. ACM, 2005.

[4] T. Hirofuchi, E. Kawai, K. Fujikawa, and H. Sunahara. USB/IP: a peripheral bus
extension for device sharing over IP network. In Proceedings of the annual con-
ference on USENIX Annual Technical Conference, page 42. USENIX Association,
2005.

[5] J. Huang, W. Feng, N. Bulusu, and W. Feng. Cascades: Scalable, flexible and com-
posable middleware for multimodal sensor networking applications. In Proceedings
of The ACM/SPIE Multimedia Computing and Networking. Citeseer, 2006.

[6] T.C. Hudson, A. Seeger, H. Weber, J. Juliano, and A.T. Helser. VRPN: a device-
independent, network-transparent VR peripheral system. In Proceedings of the
ACM symposium on Virtual reality software and technology, pages 55–61. ACM
New York, NY, USA, 2001.

[7] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek. The click modular
router. ACM Transactions on Computer Systems (TOCS), 18(3):263–297, 2000.

[8] J. Kong, I. Ganev, K. Schwan, and P. Widener. Cameracast: Flexible access to
remote video sensors. In Proceedings of the ACM Multimedia Computing and
Networking Conference (MMCN). Citeseer, 2007.

[9] K. Mayer-Patel and L.A. Rowe. Design and performance of the berkeley continuous
media toolkit. In Multimedia Computing and Networking, pages 194–206. Citeseer,
1997.

91

http://www.tightvnc.com/
http://www.3dconnexion.com/

92

[10] X. Meng, J. Shi, X. Liu, H. Liu, and L. Wang. Legacy application migration to
cloud. In Cloud Computing (CLOUD), 2011 IEEE International Conference on,
pages 750–751. IEEE, 2011.

[11] J. Pasquale, E. Anderson, and P.K. Muller. Container shipping: operating system
support for i/o-intensive applications. Computer, 27(3):84–93, 1994.

[12] C. Phanouriou and M. Abrams. Transforming command-line driven systems to web
applications. Computer Networks and ISDN Systems, 29(8-13):1497–1505, 1997.

[13] R. Pike. 81
2 , the Plan 9 window system. In Proceedings of the Summer 1991

USENIX Conference, Nashville, TN, USA, June 10–14, 1991, pages 257–265 (of
x 473), Berkeley, CA, USA, 1991. USENIX. URL citeseer.ist.psu.edu/article/
pike91plan.html.

[14] D. Presotto, R. Pike, K. Thompson, and H. Trickey. Plan 9: A distributed system.
In Proceedings of Spring 1991 EurOpen, pages 49–56, 1991. URL citeseer.ist.psu.
edu/presotto91plan.html.

[15] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler. An rdma protocol
specification. Technical report, IETF Internet-draft draft-ietf-rddp-rdmap-03. txt
(work in progress), 2005.

[16] G. Reitmayr and D. Schmalstieg. OpenTracker: A flexible software design for
three-dimensional interaction. Virtual Reality, 9(1):79–92, 2005.

[17] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A Hopper. Virtual network
computing. Internet Computing, 2(1):33–38, 1998.

[18] Tristan Richardson. The RFB Protocol. Technical report, RealVNC Ltd, 2007.

[19] D.M. Ritchie. A stream input-output system. AT&T Bell Laboratories Technical
Journal, 63(8):1897–1910, 1984.

[20] Robert W. Scheifler and Jim Gettys. The x window system. ACM Trans. Graph., 5
(2):79–109, 1986. ISSN 0730-0301. doi: http://doi.acm.org/10.1145/22949.24053.

[21] S. Venkateswaran. Essential Linux device drivers. Prentice Hall Press, 2008.

[22] J. von Spiczak, E. Samset, S. DiMaio, G. Reitmayr, D. Schmalstieg, C. Burghart,
and R. Kikinis. Multi-modal event streams for virtual reality.. In Proc. 14th SPIE
Annual Multimedia Computing and Networking Conference (MMCN’07), San Jose,

citeseer.ist.psu.edu/article/pike91plan.html
citeseer.ist.psu.edu/article/pike91plan.html
citeseer.ist.psu.edu/presotto91plan.html
citeseer.ist.psu.edu/presotto91plan.html

93

California, 2007.

[23] C. Waldspurger and M. Rosenblum. I/o virtualization. Communications of the
ACM, 55(1):66–73, 2012.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	The Problem
	Related Work
	X-Windows
	VNC
	USB over IP
	THINC
	CameraCast
	The Berkeley Continuous Media Toolkit
	Cascades
	Virtual Reality Applications
	Streams
	Plan 9 and 812
	Container Shipping
	Orthogonal Work
	Conclusion

	System Architecture
	Design Goals
	Architecture Summary
	Data Streams
	Header Format
	Device Communication Module
	Network Modules
	Application Communication Module
	Transformation Modules
	Transformation Module Pairs
	Functionality

	Out-of-Band Messages
	Conclusion

	Implementation
	Data Transfer
	Implementation with Pipes
	Implementation with Shared Memory
	Using Pipes versus Shared Memory

	Devices
	Space Navigator
	Mouse and Keyboard
	Video Card

	Network Modules
	Conclusion

	Performance
	Base End-to-End Time
	End-to-End Time Across a Single Machine
	Base Throughput
	Update Speed of Networked Device Drivers Compared to Standard Drivers
	The Networked Device Driver Compared to VNC
	Adding Transformation Modules
	Performance of Transformation Modules
	Buffering
	Bundling

	Effects of Adding Transformation Modules with both Shared Memory and Pipes
	Transformation Modules and System End-to-End Time
	Transformation Modules and Machine End-to-End Time

	Video Driver Performance with Added Transformation Modules
	Video Inter-frame Times Across the System
	Single Machine End-to-End Time and Batching Effects

	Conclusion

	Conclusion
	Bibliography

