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Bayesian recursive parameter estimation for hydrologic models 

M. Thiemann, • M. Trosset, 2 H. Gupta, and S. Sorooshian 
Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona 

Abstract. The uncertainty in a given hydrologic prediction is the compound effect of the 
parameter, data, and structural uncertainties associated with the underlying model. In 
general, therefore, the confidence in a hydrologic prediction can be improved by reducing 
the uncertainty associated with the parameter estimates. However, the classical approach 
to doing this via model calibration typically requires that considerable amounts of data be 
collected and assimilated before the model can be used. This limitation becomes 

immediately apparent when hydrologic predictions must be generated for a previously 
ungauged watershed that has only recently been instrumented. This paper presents the 
framework for a Bayesian recursive estimation approach to hydrologic prediction that can 
be used for simultaneous parameter estimation and prediction in an operational setting. The 
prediction is described in terms of the probabilities associated with different output values. 
The uncertainty associated with the parameter estimates is updated (reduced) recursively, 
resulting in smaller prediction uncertainties as measurement data are successively assimilated. 
The effectiveness and efficiency of the method are illustrated in the context of two models: a 
simple unit hydrograph model and the more complex Sacramento soil moisture accounting 
model, using data from the Leaf River basin in Mississippi. 

1. Introduction and Scope 

The science of hydrology is occupied primarily with the 
processes that make up the hydrologic water cycle and the 
hydrologic implications of climatic and anthropogenic changes. 
A variety of hydrologic models have been developed to facili- 
tate this task, i.e., to simulate the water cycle (or a portion of 
it) for a region of interest. While some of the parameters of 
these models may represent measurable attributes such as wa- 
tershed area, others typically represent conceptual (effective) 
attributes such as mean hydraulic conductivity or rates of 
drainage for hypothetical lumped water storages. Therefore 
the numerical values of many of the parameters are not easily 
inferred from quantities that can be measured and must be 
specified by calibration. 

The aim of model calibration procedures is to reduce the 
uncertainty in the correct choice of the parameter values (pa- 
rameter uncertainty) while accounting for uncertainties in the 
values of the measured input-output time series (data uncer- 
tainty) and uncertainties in the structural ability of the model 
to simulate the processes of interest (model uncertainty or 
structural uncertainty). The collective impact of the parameter, 
data, and structural uncertainties gives rise to uncertainties in 
the predictions made using the model (prediction uncertainty). 

During the past two decades, much work has been done to 
understand and improve hydrologic model calibration meth- 
ods. Sophisticated measures have been developed to measure 
the closeness of fit between the predicted and observed outputs 
[e.g., Sorooshian and Dracup, 1980; Sorooshian, 1981], effective 
and efficient global optimization strategies such as the shuffled 
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complex evolution developed by the University of Arizona 
(SCE-UA) algorithm have been developed to search the pa- 
rameter space [Duan et al., 1992, 1993; Sorooshian et al., 1993], 
and procedures have been developed for the statistical analysis 
of parameter uncertainty [e.g., Spear and Hornberger, 1980; 
Jones, 1983; Kuczera, 1988; Spear et al., 1994]. Recent innova- 
tions include generalized likelihood uncertainty methods [Bin- 
ley and Beven, 1991; Romanowicz et al., 1994; Franks and Beven, 
1997] and multicriteria methods [Gupta et al., 1998; Yapo et al., 
1998; Gupta et al., 1999; Bastidas et al., 1999]. 

The primary focus of the aforementioned research has been 
the "batch" calibration approach. This approach assumes the 
model parameter values to be time invariant and typically 
requires that considerable data be collected before the proce- 
dure can be implemented to arrive at "optimal" estimates for 
those parameters. Only after the model has been calibrated 
and tested can it be employed to make predictions. Further, by 
focusing on an optimal parameter set the approach implicitly 
ignores parameter uncertainty. Calibrated models are typically 
used to generate model predictions, which are then reported 
without estimates of the underlying prediction uncertainty. 
Only recently has attention been given to methods that incor- 
porate prediction uncertainty [e.g., Beven and Binley, 1992; 
Kuczera et al., 1993; Mroczkowski et al., 1997; Franks and Beven, 
1997]. 

The limitations of the batch calibration approach become 
immediately apparent when we attempt to generate hydrologic 
predictions for a previously ungauged watershed that has only 
recently been instrumented. The lack of sufficient historical 
data makes it impossible to apply batch methods to calibrate a 
model for the watershed; for example, calibration of the Sac- 
ramento soil moisture accounting (SAC-SMA) model [Bur- 
nash et al., 1973] used by the U.S. National Weather Service for 
flood forecasting typically requires at least 11 years of data. 

This paper develops the framework for a recursive approach 
to hydrologic prediction that performs parameter estimation 
and output prediction in "on-line" mode. The method, called 
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Bayesian Recursive Estimation (BARE), requires only an ini- 
tial guess of the region of the parameter estimates to be spec- 
ified before the model can be used to begin the generation of 
one-step-ahead (and multiple-step-ahead) predictions. These 
predictions are described in terms of the probabilities associ- 
ated with different output values (or can be summarized in 
terms of a "most likely" prediction and a "Bayesian confidence 
interval"). As might be expected, the uncertainty associated 
with the prediction will be relatively large in the beginning. A 
recursive procedure is used to update (reduce) the uncertainty 
associated with the parameter estimates as successive input- 
output measurement data are assimilated. The reduced param- 
eter uncertainty results in smaller prediction uncertainties. 

This paper is organized as follows. Section 2 presents a 
review of the mathematical basis for Bayesian inference, its 
relationship to prediction and calibration, its role in recursive 
inference, and some comments about the Generalized Likeli- 
hood Uncertainty Estimation (GLUE) procedure presented by 
Beven and Binley [1992]. The BaRE methodology and algorith- 
mic procedure is developed in section 3, while section 4 illus- 
trates the usefulness of BaRE methodology by means of two 
preliminary case studies involving streamflow prediction. Fi- 
nally, section 5 discusses the strengths and weaknesses of the 
procedure and makes suggestions for further improvements. 

2. Bayesian Inference 
The fundamental problem with which we are concerned is to 

predict (and to quantify the uncertainty in our predictions of) 
measurable hydrologic quantities (outputs) from observed hy- 
drologic data (inputs) using a specified family of mathematical 
models that simulate actual input-output relations. For exam- 
ple, suppose that we are given the following: (1) a family of 
mathematical models that simulate the runoff response to rain- 
fall for a specified watershed, perhaps together with some 
information about which models in the family are most plau- 
sible and (2) time series of observed input-output data (e.g., 
precipitation, potential evapotranspiration, and streamflow) 
for the specified watershed from some time t = 1 in the past 
to the present time T. Then a typical problem might be how to 
predict streamflow at time T + 1 and further into the future. 

This section is organized as follows. In section 2.1 we for- 
mulate problems like the above as problems of Bayesian infer- 
ence for nonlinear regression. We explain why the Bayesian 
framework for statistical inference is admirably suited to such 
problems and assemble the basic mathematical concepts which 
will be employed. Our notation is intended to facilitate com- 
parison with the comprehensive exposition of Bayesian meth- 
odology in the classic treatise by Box and Tiao [1973]. In sec- 
tion 2.2 we show how the Bayesian formulation permits 
hydrologists to quantify uncertainty about prediction in a nat- 
ural and meaningful way. This is accomplished without re- 
course to calibration, which can be conceptually and/or prac- 
tically problematic for certain applications. However, because 
hydrologists may encounter applications for which calibration 
is meaningful, in section 2.3 we explain how to calibrate within 
the Bayesian framework. We introduce a recursive formulation 
of the Bayesian framework in section 2.4. Our application of 
Bayesian methodology to problems in hydrology has certain 
conceptual similarities to the GLUE procedure of Beven and 
Binley [1992] but differs from it in certain important respects 
that we explore in section 2.5. 

2.1. Formulation 

We are interested in mathematical models that predict out- 
puts from inputs. The models are indexed by parameters, 
which may (or may not) be physically interpretable. Following 
Box and Tiao [1973], we denote the predictive model by r/, the 
vector of all its parameters by 0, inputs by •, and outputs by y. 
Given model parameter values of 0 and input values of •, we 
predict output values 

) = r•({• 0). (1) 

Given observed output values of y, we denote the residual 
errors from our predictions by 

=y -) (2) 

and summarize these relations by writing 

This is a standard formulation of nonlinear regression. 
Next we elaborate on the structure of the above quantities. 

First, we assume that 

0 • © C_ •k, (4) 

where •k denotes k-dimensional Euclidean space. 
Assume that there are p inputs, indexed by r = 1, ..., p 

and s outputs indexed by s = 1, ..., m, available for time 
steps t = 1,..., T. Thus • denotes the value of input r, 
measured at time t, and y• denotes the value of output s, 
measured at time t. Often, we will manipulate entire arrays of 
these quantities, e.g., writing • and y to denote all of the inputs 
and outputs up to the current time T. On this basis we wish to 
predict the as yet unobserved outputs for the following time 
steps. For simplicity, we restrict this study to the next time step 
T + 1. Accordingly, the nonlinear regression equation of 
interest is 

Yr+l- + ST+i. (5) 

Equation (5) contains various sources of potential prediction 
error: (1) measurement error in which, for example, it may be 
that r•( 101) is an accurate representation of the physical data- 
generating process but that the devices used to measure Y r+ 1 
are somewhat inaccurate; (2) parameter identification error in 
which it may be that r•( 101) is not an accurate representation 
of the physical data-generating process but that r•( 02) is 
accurate; and (3) model specification error in which it may be 
that for no 0 G © is the model r•( 10) an accurate represen- 
tation of the physical data-generating process. Thus, regardless 
of the sophistication of the mathematical model r•, there re- 
mains uncertainty about the predictions that we use r• to make. 
The purpose of this paper is to explicate a formal methodology 
for quantifying that uncertainty. 

The uncertainties which we have identified so far differ in a 

fundamental respect. Uncertainty about the measurements can 
be formalized in a familiar way: The residuals are assumed to 
be drawn from a suitable probability distribution. In contrast, 
uncertainty about the parameters (about which we will say 
much) and uncertainty about the model itself (about which we 
will say little) express degrees of belief. However, one way to 
quantify the latter type of uncertainty is to introduce suitable 
subjective probability distributions. Expressing uncertainty in 
terms of probabilities is one of the defining features of Bayes- 
ian inference. Once this has been done in an appropriate way, 
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inference becomes a matter of manipulating various probabil- 
ity distributions according to the rules of mathematical prob- 
ability. 

We begin by introducing a probability distribution on the 
possible parameter sets and denoting its density function by 
p(0 ). This is an unconditional distribution in the sense that it 
does not depend on the currently available values of the inputs 
g or outputs y. In the context of Bayesian inference it is usually 
called the prior distribution because it can be specified before 
any data are collected. The purpose of the prior distribution is 
to quantify initial uncertainty about which parameter values 
should be employed. Usually, the prior distribution expresses a 
great deal of initial uncertainty. For example, Beven and Binley 
[1992] suggested restricting attention to a large rectangle of 
parameter values and imposing a uniform prior distribution on 
that rectangle. However, the prior distribution can also reflect 
knowledge about the parameter values based on the analysis of 
historical data from previous events or from another system 
(e.g., watershed) having similar characteristics. 

All of the other probability distributions with which we will be 
concerned are conditional distributions. We will denote their den- 

sity functions by writing expressions of the form p( I ). Argu- 
ments on the left of the vertical bar denote the variables of the 

density; arguments on the right of the vertical bar denote the fixed 
values on which the density is conditioned. Context is to be in- 
ferred by examining which symbols appear in which roles. 

Thus, p (y r+ •, ylg; 0) is the conditional probability density of 
the outputs Y o to y r+ •, given the inputs and the model param- 
'eters. The functional form of this density must be specified by 
the hydrologist, usually by selecting a plausible family of dis- 
tributions for the residual errors in (5). We will have more to 
say about how this might be done in section 3. 

Once the prior density and conditional density have been 
specified, everything else follows automatically. The condi- 
tional density of the outputs and the model parameters, given 
only the inputs, is 

P(Yr+•, Y; 01g) =P(Yr+•, ylg; O)p(O), (6) 
and the conditional density of those outputs to be predicted 
and of the model parameters, given all of the data that have 
been collected, is 

P(Yr+•; 01g, y) = Cp(yr+•, y; 01g), (7) 

where C -• - •P(Yr+•, Y; 01g)d(y). Therefore (7) gives a 
posterior density that quantifies all the uncertainty that re- 
mains about the outputs to be predicted and the model pa- 
rameters after the information in the data has been assimi- 

lated. The derivation of this density is usually identified as 
Bayes theorem. 

What we do next depends on whether we are interested in 
quantifying the uncertainty in our predictions or in selecting 
specific values for the parameters of the model (i.e., model 
calibration). Notice that (7) is a joint posterior density of the 
outputs to be predicted and of the model parameters to be esti- 
mated. If we are interested in prediction, then we require the 
marginal posterior density of the outputs to be predicted; if we are 
interested in calibration, then we require the marginal posterior 
density of the model parameters to be estimated. Of course, one 
obtains a marginal density from a joint density by integrating the 
joint density with respect to the variables that are not of interest. 
Thus, in the Bayesian formulation of the problem, prediction and 
calibration are accomplished by symmetric operations. We pro- 
ceed to describe these operations in greater detail. 

2.2. Prediction 

Prediction is the problem of describing a plausible set of 
values for y r+ •, the as yet unobserved outputs. To predict, we 
first compute the marginal posterior density of Y r+ •: 

P(Yr+•]•, Y) = fo P(Yr+•; 01•, y) dO. (8) 
Once this density has been computed, prediction is merely a 
question of identifying and reporting meaningful summaries of 
it. For example, one might use one of the following methods. 

1. Report a single-predicted value ofy r+ • by stating some 
measure of central tendency of (8), e.g., its mean, median, or 
mode. 

2. Report a set of plausible values ofy r+ • by constructing 
a region of highest posterior density (HPD) for (8). A subset R 
of the domain ofp is called an HPD region of content 1 - a 
ifP(R) = 1 - a andp(y•) -> P(Y2) for anyy• • R andy2 
•R. 

3. If there is only m - 1 output to predict, then one can 
summarize (8) simply by reporting several percentiles of it. If 
there are m -> 2 outputs to predict, then construction of an 
HPD region may be time consuming. If the outputs are not 
highly correlated, then one may prefer to calculate marginal 
percentiles for each output. 

2.3. Calibration 

Calibration is the problem of describing a plausible set of 
values for 0, the parameters of the models. To calibrate, we 
must first compute the marginal posterior density of 0: 

p(olg, Y) = f P(Yr+•; 01g, y) dyr+•. (9) 
An HPD region for this density describes a set of plausible 
models. 

If we desire a formal estimate of 0, then we must specify a 
loss function. Let L (O,a) denote the loss incurred by the hy- 
drologist if 0 • © is true and a • © is estimated. The Bayes 
estimate of 0 is the a • © that minimizes the function 

f(a) = •o L(O, a)p(O g, y) dO. (10) 
If L(O,a) = (a - 0) 2, then the Bayes estimate is the mean 
of (9). 

Of course, L(O,a) = (a - 0)2 is rarely an appropriate loss 
function for calibrating hydrologic models. The parameters 
may lack intrinsic meaning, in which case measuring errors by 
imposing a metric on the parameter space seems contrived. 
Furthermore, because the HPD region may be disconnected, 
several sets of parameter values are plausible but their mean is 
not. In view of these considerations, Beven and Binley [1992] 
persuasively argued that losses should be measured in the 
space of possible outputs, not in the space of possible param- 
eter values. To do so, let 

m(o, a) = f X[r•(gl0), n(gla)]w(dg), (•) 
where X measures the badness of fit between two predicted 
series of outputs and w is a probability distribution that weights 
the possible inputs. 
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Furthermore, we note that we could define several loss func- 
tions and construct an estimate by multiobjective optimization 
[Gupta et al., 1998; Yapo et al., 1998]. In this paper, we assume 
that all objectives of interest have been collected in a single 
loss function. 

2.4. Recursive Inference 

Bayesian inference provides a formal mechanism for com- 
bining previous information with new information. In the 
words of Box and Tiao [1973, p. 12], "Bayes' theorem describes, 
in a fundamental way, the process of learning from experience, 
and shows how knowledge about the states of nature repre- 
sented by 0 is continually modified as new data become avail- 
able." In the present context, the Bayes theorem provides a 
way of updating information about the hydrologic model as 
more data are collected. 

Suppose we have collected input-output data (g,y) from time 
t = 1 to the current time t = T. Our current knowledge about 
the model parameters • is contained inp(•l•, the marginal 
posterior of • defined in (9). Observing that 

p(01g, y)p(y) = p(y; 0 •) = p(yl; O)p(O), (12) 

we see that 

p(O •, y) •c p(y •; O)p(O). (13) 

Now suppose that we collect additional input-output data 
(•r+l; Yr+l). By the same reasoning, 

P(0l•r+l, •, Yr+i,Y) •c P0'r+l, Y •r+•,, •; O)p(O). 

(14) 

If Yr+ • and y are conditionally independent given (•r+ •, •), 
then 

P(Yr+i, YI•r+i,, •; O)p(O) 

-p(yt+llCt+,, •; 0)p(y •; O)p(O) 

•c p(yr+•l•r+l,, •; O)p(ol, y). 

Thus, (14) becomes 

•, yr+•, y) •c P(Yr+•l•r+•,, •; O)p(ol, y), 

(15) 

a recursive formula for updating information about 0. Notice 
that the marginal posterior density in (9) plays the same role in 
(15) that the prior density played in (6). Finally, notice that we 
can substitute (15) into (8). 

2.5. Bayesian Inference and GLUE 

The sequential nature of Bayes theorem follows from ele- 
mentary properties of joint, marginal, and conditional proba- 
bility density functions. The Bayesian paradigm, in which den- 
sities are manipulated according to the rules of mathematical 
probability, has many appealing consequences. For example, it 
guarantees that the order in which n mutually independent 
previous events occurred does not affect inferences about the 
current event. However, if the probability density functions in 
(13) and (15) are replaced by other quantities, then these 
relations cease to be meaningful updating formulae. 

Such a substitution (in a somewhat less general framework) 
is a distinctive feature of the GLUE procedure of Beven and 

Binley [1992]. If we write P(Yr+ •, Y[•; 0) as a function of its 
unknown arguments 

l(yT+l; 01, Y) = P(Yr+i, yl; 0), (16) 

then l is traditionally called the likelihood function of the 
unknown quantities given the known quantities [Fisher, 1922]. 
Beven and Binley [1992] replaced the likelihood function l with 
a "likelihood measure" L, which they take to be a measure of 
how well the model predictions fit the observations [Beven and 
Binley, 1992, p. 281]: "We use the term likelihood here in a very 
general sense, as a fuzzy belief, or probabilistic measure of how 
well the model conforms to the observed behavior of the sys- 
tem, and not in the restricted sense of maximum likelihood 
theory .... " 

The GLUE methodology does not respect the rules of 
Bayesian inference. Formally, GLUE admits any likelihood 
measure L in place of the likelihood function l. Some likeli- 
hood measures use a "likelihood shape factor" N, which is set 
by the user to control the peakedness of the likelihood function 
[Binley and Beven, 1991; Freer et al., 1996; Franks and Beven, 
1997; Franks et al., 1998]. In addition, a user-defined "behav- 
ioral threshold" T that separates multiple "behavioral" (accu- 
rate) from "nonbehavioral" (less accurate) simulations is com- 
monly employed [Beven and Binley, 1992; Freer et al., 1996; 
Franks and Beven, 1997; Franks et al., 1998]. Both N and T 
demonstrate the emphasis on the use of subjective, user- 
defined parameters within the GLUE methodology to evaluate 
parameter probabilities. The use of N and T also supports the 
philosophy behind GLUE that there exists no optimal model 
due to parameter insensitivity, parameter interactions, and 
nonuniqueness of model structures. This is termed as "equifi- 
nality" by Beven [1993]. 

In contrast, the BaRE methodology draws inferences within 
the Bayesian framework. Respecting this framework leads to 
the examination of GLUE's likelihood measures from several 

new perspectives. 
1. The examples of likelihood measures discussed by Beven 

and Binley [1992] are measures of fit. They are naturally ac- 
commodated by the Bayesian framework as possible choices of 
X in (11). 

2. Beven and Binley [1992] chose L to be the reciprocal of 
the sum of the squared residuals raised to a power specified by 
the user. In section 3.2 we show that if the measurement errors 

have an exponential power distribution, then a certain power 
of the sum of the squared residuals is actually proportional to 
the posterior distribution of 0. 

3. Beven and Binley [1992, p. 287] regarded L as "a fuzzy 
measure that reflects the degree of belief of the modeler." In 
the Bayesian framework such information is incorporated into 
the inference via the prior distribution of 0. When the prior 
distribution is derived from the sample, it is sometimes called 
an empirical prior distribution. Accordingly, we note the pos- 
sibility of using L as an empirical prior distribution for 0. 

3. Bayesian Recursive Estimation (BARE) 
Algorithm 
3.1. Selection of the Error Model 

Implementation of the Bayesian inference scheme requires 
selection of a functional form for the conditional probability 
density of the outputs by selecting a plausible family of distri- 
butions for the residual errors in (5). In this paper, we consider 
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the case of a single input (p -- 1) and a single output (m -- 
1). We shall assume that there exists a one-to-one and con- 
tinuous invertible transformation 

z = #(y), (17) 

such that the measurement errors in the transformed output 
space, given by 

v = g(y) - g(•) (18) 

are mutually independent, each having the exponential power 
density E(rr,/3) described by Box and Tiao [1973, section 3.5]: 

p(vlrr, t3)- ,o(t3)rr exp (19) 
where 

c(t3) = r[(1 + 13)/2]J ' 
{F[3(1 +/3)/2]) •/2 

,o(13) = + + t3)/2]) (20) 
the "shape parameter"/3 G (-1,1] is fixed, and the standard 
deviation of the measurement errors rr > 0 is unknown but 

constant with respect to time. The parameter /3 can be re- 
garded as a measure of kurtosis, indicating the extent of the 
"nonnormality" of the parent population; for example, the 
density is normal when/3 = 0, double exponential when/3 = 1, 
and tends to a uniform distribution as/3 --> -1. Note that the 
transformation # allows us to handle the nonconstant variance 
(heteroscedastic) error situations which are common in hydrol- 
ogy, that is, where the variance of the measurement error 
associated with y varies with flow level [e.g., see Sorooshian and 
Dracup, 1980]. Although not explicitly handled in this paper, 
the error model could also be extended to autocorrelated er- 

rors [e.g., see Sorooshian and Dracup, 1980; Kuczera, 1988] for 
data which Indicate that the error series of the used model is, 
in fact, not independent. 

3.2. Derivation of the Recursive Form 

Given the error model specified by (20), the conditional 
density of the transformed outputs observed at times t = 
1, ..., Tis 

T 

p(zl; 0, t3) = T exp - c(/3)• 
t=l 

vt(O) 

(21) 

2/(• +/3) ] . 
(22) 

Box and Tiao [1973] treated the standard deviation parameter 
o- as a "nuisance" parameter and showed that by assuming a 
noninformative prior density of the form p ( 0, rr I/3) oc rr- 1, the 
influence of o- can be integrated out, leading to the following 
form for the posterior density for 0: 

p(ol, z; t3) • [M(O)] -(r)(•+/3)/2, (23) 
where 

T T 

m(o)- Iv,(0)l (24) 
t=l t=l 

Notice that in the case of normally distributed errors (/3 = 
0), M is simply the familiar "sum of the squared measurement 
errors" function that is commonly minimized in model calibra- 
tion. Note also that as T --> •, this distribution begins to 
concentrate on the global minimizer of M(0 ), i.e., on 0'. Thus 
our calibration procedure is a consistent estimator of 0. 

Unfortunately, the use of (24) for computing the posterior 
density of the parameters given the data leads to numerical 
stability problems as T --> •; M(0) tends to a constant value 
when evaluated at a given 0, but the term [M(0)] -(T)(1+t3)/2 
grows without bound. Further, there is a practical advantage to 
computing an explicit estimate for the unknown parameter 
Therefore we follow Box and Tiao [1973] in assuming that 0 
and log o- are independent, but instead of assuming a locally 
uniform prior in 0 and rr and integrating out the influence of 
we compute the maximum likelihood estimate of o' t at the 
current time step by maximizing (23) with respect to o': 

0'r(0)2/(•+/3) _ 1 2c(/3) r -7 (1 + t3) 5; Iv(O)l (25) 
t=l 

Numerical experiments have shown that the practical implica- 
tions of this difference in strategy are insignificant. Equation 
(25) can be rewritten in recursive form as 

t•'T(0)2/(1+/3) __ T - 1 )2/(•+/3) 1 2c(/3) - T d'r_•(0 +7 (1 +/3) Ivr(0) ß 
(26) 

Substitution of (26) into (19) leads to the following recursive 
formulation for estimating the posterior density for 0. 

p(01•, zr+•, z; /3) • Nr(O)p(01•, z; /3), (27) 
where 

1 I lvr(O) l Nr(0) = &r(0) exp -c(/3) &r(0) . (28) 
As more and more data are collected, the posterior density 

described above will tend to concentrate on the set of values of 

0 that minimize M( 0 ). Of course, this set of minimizing values 
will be sensitive to the choice of the predictive model, the error 
model and transformation, and the data used. In addition, the 
"best" parameter sets can vary over time, as vr(0) in (28) will 
always emphasize the ability of a certain parameter set to 
reproduce the most recent observation. If a formerly superior 
parameter set cannot simulate the desired processes at the 
current time T, it will receive lower weight in the computation 
of the posterior density, hence allowing a shift in the estimated 
elements of 0'. 

3.3. BaRE Algorithm 
In view of the inevitably complicated nature of the hydro- 

logic model r/, it is evident that an explicit expression for the 
various posterior and conditional densities is not possible. In- 
stead, we employ the power of digital computing to construct 
approximations of these various quantities via Monte Carlo 
simulation as described in the following algorithm: 

3.3.1. Preparation. Preparation for use of the BaRE algo- 
rithm involves the following steps: 

1. Choose the system model y - r•(01•), the transforma- 
tion model z = #(y), and the error model v --- E(o-,/3). 

2. Select a value for the kurtosis parameter/3 and an initial 
estimate for the variance parameter &o of the error model. 
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3. Define the feasible parameter space © in terms of upper 
and lower limits for each element of 0. 

4. Define the prior probability distribution po(0) for 0. In 
the absence of any information, select a uniform prior. 

3.3.2. Discrete sampling. Sample n distinct parameter sets 
0 i, i - 1, ..., n from a uniform distribution on ©. Larger 
values for n will result in more accurate approximations for the 
various density functions. 

3.3.3. Initialization. To establish initialization, perform the 
following: 

1. Set T = 0. 

2. Initialize the priorp(Oil•, z; /3) = po(O) and &o(0 i) - 
&o for each parameter set (i - 1, ..., n). 

3.3.4. Prediction of the output. Here we estimate the out- 
put prediction uncertainty associated only with the current 
uncertainty in the model parameters. If the model has no 
structural error, this is an estimate of the uncertainty in pre- 
diction of the "true" output, i.e., of observations that are not 
disturbed by measurement errors. 

1. Compute the transformed model output •r+•(0 i) - 
#(,l(0/l•)) for each parameter set (i = 1, ..., n). 

2. Sort the outputs in order of increasing magnitude in 
preparation for the next step (step 3); that is, compute {j - 
1,..., n} = sort{i = 1,..., n} such that 2r+•(0/) >- 

3. Compute the cumulative distribution function of the 
predicted output in the transformed space P(zr+• -< alg, z, 
/3) = Zf-p(0'lg, z, /3), where 2r+•(0 k) -< a < 
•T+l(Ok+l). 

4. Compute appropriate percentiles to define the HPD 
region for St+ •, and transform these to the original output 
space. 

3.3.5. Prediction of the output measurement. Here we in- 
crease the prediction uncertainty to account for the total re- 
sidual error (i.e., structural error plus as yet unobserved output 
measurement error) as estimated by the error model. 

1. Define the output region of interest. (1) Find indices [/, 
u] such that St+ 1(0l) = min { St+ l(0i), i = 1, ..., n } and 
$r+1(0") = max {$r+•(0i), i = 1, ..., n}. (2) Define the 
upper and lower output values r mi ..... min [at+l, at+l] such that ar+l 
= $r+1(0/) - 2a-r(0/) and a•_x• = $r+1(0") + 2&r(0"). 
(3) Define a discrete set of n a uniformly spaced sampling 
points b on the output range (e.g., n a = 100) according to 

ar+l- ar+l (m - 1), m = n min _]_ b = aT+ 1 l'l a -- I , ... , a ß 
2. Compute the probability density of the as yet unob- 

served output measurement in the transformed space 

t/ 

p(•t+,: ba g, y) = C • Nt+,(0lg, a•,/3)[ p(O' •, y), 
i=1 Z7+l=bk 

where C is a constant that normalizes the total probability 
mass to 1.0. 

3. Compute the cumulative density of the as yet unob- 
served output measurement in the transformed space 

k 

P(•r+• -< ba g, y) = • P(2r+• = blg, y). 
j=l 

4. Compute appropriate percentiles to define the HPD 
region for •r+ • and transform these to the original output 
space. 

3.3.6. Updating. When the observation of Y r+ 1 becomes 
available, the following steps are taken. 

1. Compute the transformed measurement z r+l = 
g(Yr+l). 

2. Update the estimates of the error model variance, 
&r+l(0a) for i = 1, ..., n according to (26). 

3. Compute the posterior parameter density 

p(O i g, z, ZT+i) = 13) zr+p(O i •, y) 

for i - 1, ..., n and use as the prior distribution for the next 
time step. 

4. Set T = T + 1 and resume with prediction of the 
output. 

4. Case Studies 

We illustrate the power and applicability of the Bayesian 
Recursive Estimation scheme by means of two simple case 
studies. The first is a synthetic study using the two-parameter 
Nash- cascade model [Nash, 1960]. This illustrates the ability of 
the BaRE method to locate (i.e., assign) the highest probability 
to the region of the known true parameter values. The second 
study explores the utility of BaRE in an operational setting 
involving the prediction of streamflow for an "uncalibrated" 
watershed using the SAC-SMA model developed by Burnash et 
al. [1973]. In both cases, we predict a scalar-valued output (i.e., 
m = 1), assume a Gaussian error model (i.e.,/3 = 0), and use 
a uniform distribution on 0 as the prior distribution p(0). 

4.1. Study Watershed and Data 

The hydrologic data used in the case studies consist of -11 
years (July 28, 1952, to September 30, 1962) of observation 
time series from the Leaf River basin. This humid 1944 km 2 

watershed, located in southern Mississippi, has been investi- 
gated intensively [e.g., Sorooshian et al., 1983; Brazil, 1988]. 
The data, obtained from the Hydrologic Research Laboratory, 
consist of mean areal precipitation (mm per 6 hours), potential 
evapotranspiration (mm/d), and streamflow (m3/s). The mean 
annual precipitation for the entire period, excluding the 65-day 
spin-up period in water year (WY) 1952, is 1324 mm, and the 
mean annual runoff is 27.13 m3/s. Data from WY 1953 are used 
extensively in this study. The mean annual precipitation for 
that period is also 1324 mm, but the mean runoff is 33.60 m3/s, 
more than 10% higher than the l 1-year average. 

4.2. Case Study I: Nash-Cascade Model 

In this section, we investigate the general characteristics of 
the BaRE method by means of a synthetic data study using the 
two-parameter Nash-cascade model, a very simple unit hydro- 
graph model. The use of synthetic output data (generated 
using the observed precipitation and an assumed true param- 
eter set) allows an assessment of the prediction and parameter 
estimation potential of the Bayesian methodology under the 
controlled conditions of no errors in model structure and 

known properties of the data measurement error. 
The Nash-cascade model is a channel routing scheme that is 

based on a series of linear reservoirs [Nash, 1960]. Conceptu- 
ally, the inflow is successively routed through n reservoirs that 
all have the same recession coefficient k. Mathematically, this 
response function can be written as 

h(t)-kF(n) exp - , n>0, k>0, 
(29) 
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where n represents the number of reservoirs (the continuous 
mathematical formulation allows n to be noninteger), k rep- 
resents the average travel time through each reservoir, t de- 
notes the elapsed time from the time of impulse, and F( ) is 
the gamma function. This scheme can be used as a very simple 
rainfall-runoff model, where n and k describe the unit hydro- 
graph of the watershed of interest. Because n and k are un- 
known conceptual properties of the simulated watershed, they 
must be estimated via calibration. 

Synthetic daily output data (in cm3/s) were generated for the 
period June 28, 1952, to September 30, 1953, by driving the 
Nash-cascade model with mean areal rainfall and fixed values 

for the parameters (n = 2.0 (dimensionless) and k = 25.0 
(1/6 hours). The synthetic true output time series was per- 
turbed by imposing normally distributed noise, with mean zero 
and a variance of 20% of the mean of the true flows, to 
generate synthetic "measured" streamflow data. 

A variety of experiments were performed to assess the ef- 
fectiveness of the BaRE methodology in terms of its ability to 
generate accurate and precise streamflow predictions and to 
locate the region of the true parameter values. We were also 
concerned with algorithm efficiency, particularly the amount of 
data required by the algorithm to converge to the known an- 
swers. To explore the sensitivity of the algorithm to the way in 
which the feasible parameter space is sampled, we made sev- 
eral runs using three different sampling strategies. The feasible 
space was defined by allowing n to vary from 1.0 to 3.0 and k 
to vary from 2.0 to 48.0 days. The initial guess for the variance 
• was set to 5.8 (equal to the variance of the streamflow). To 
reduce sensitivity to initialization, a 65-day warmup period was 
used during which no updating of the density functions was 
performed. After that, the observed data were assumed to be 
available at each time step. The results obtained for each 
sampling strategy are discussed below. In the interest of brew 
ity, graphical results are presented only for strategy 2. 

4.2.1. Strategy 1. In this experiment the parameters n and 
k were sampled over the feasible space using a rectangular grid 
of 21 by 21 points (total 441 points) that contains the true 
parameter values at the midpoint of the grid. As expected, the 
BaRE algorithm pinpointed the true parameter values for both 
the "perfect data" case and the 20% measurement error case. 
For the perfect data case the algorithm exactly reproduced the 
true hydrograph, and the prediction uncertainty reduced to 
zero after only three time steps. For the 20% measurement 
error case the parameter uncertainty (and hence the associated 
output prediction uncertainty) became insignificant after -75 
days. In addition, the 95% Bayesian confidence intervals asso- 
ciated with the output measurement reached a constant width 
that included -90% of the measured streamflow values, 
slightly less than the expected value of 95%. 

4.2.2. Strategy 2. In this experiment the parameters n and 
k were sampled over the feasible space using a rectangular grid 
of 20 by 20 points such that the sampled set does not contain 
the true parameter values (a more realistic situation). In this 
case, the BaRE algorithm resulted in a slower but steady con- 
vergence of the HPD region into the vicinity of the true pa- 
rameter values. Figure 1 shows the evolution of the HPD 
region of the posterior parameter probability density (in the 
form of one-dimensional projections, with darker shading in- 
dicating higher probability) for the case of 20% measurement 
error. Notice that it took -tee days to detect the most likely 
parameter set (a grid point just next to the true parameter 
values, indicated by an asterisk on the plots) and -125 days for 

the algorithm to assign a probability >95% to the same pa- 
rameter set. Figure 2 shows three snapshots, at time steps of 
50, 75, and tee days, of the posterior joint density of the two 
model parameters. Figure 2a shows that by day 50 the BaRE 
methodology has begun to assign higher probabilities to -25 
points in the region having higher k and lower n than the true 
values (ktrue -- 24 days, t/true -'- 2.0). By day 75 the algorithm 
has concentrated on 12 points arranged along an arc, indicat- 
ing interaction between the parameters, but has selected two 
possibilities for the most likely points (Figure 2b). By day tee, 
one of the four grid points surrounding the true parameter 
values has been assigned the highest probability, although 
there are still two other possible competitors (Figure 2c). 

Figure 3 shows how the BaRE algorithm translates the pa- 
rameter uncertainty into model predictions of the true and 
measured streamflows. Figure 3a shows the predicted and ob- 
served streamflows, and Figure 3b shows the residuals and 
prediction uncertainties measured in terms of the differences 
from the true streamflow values. The dark shaded region, 
representing the 95% Bayesian confidence interval for the 
prediction of the true streamflows, is associated with the cur- 
rent uncertainty in the parameter estimates. This region is seen 
to be relatively wide for the first 140 days, reflecting the im- 
precision in the parameter estimates but collapses to a line 
when the algorithm settles on a best parameter set. Notice that 
the results indicate a small tendency toward positive bias, re- 
flecting the fact that the true parameters are not contained in 
the feasible sample. The light shaded region represents the 
95% Bayesian confidence interval for the prediction of the 
streamflow measurement (i.e., the total prediction uncertainty 
associated with parameter, structure, and measurement er- 
rors). In contrast to the dark shaded region, this confidence 
interval tends toward a constant width centered on the "most 

likely" prediction and is found to bracket -90% of the ob- 
served data. In addition, the unreasonably large initial value 
assigned to • is reflected in the exponentially decreasing width 
for the uncertainty region during the first 30 days. In general, 
the impact of the choice of • decays rapidly and does not 
substantially affect the overall results. 

4.2.3. Strategy 3. In general, the method of regular sam- 
pling from a rectangular grid is only useful for models having 
a small number of parameters (one to four) because the sam- 
ple size in a grid-sampling scheme grows exponentially with 
parameter dimension. A more practical approach would in- 
volve random sampling of a predetermined number of points 
from the feasible space in such a way as to uniformly sample all 
the parameter regions of interest. Therefore, in this experi- 
ment the parameters n and k were sampled randomly over the 
feasible space using a uniform distribution for a total of 441 
points. (Note that the sample did not include the true param- 
eter set.) The number of points was selected to correspond to 
the numbers of points in the earlier strategies. The perfor- 
mance of this strategy Was comparable to the grid-based ap- 
proach, with the algorithm converging to one of the parameter 
sets close to the true values after -120 days. 

To test the sensitivity of the algorithm to sample size, a 
second run was made using a sample of only 25 points distrib- 
uted uniformly over the feasible space. In this case, the algo- 
rithm quickly selected a single best parameter set at -50 days 
but then jumped back and forth several times between this and 
two other parameter sets before finally selecting one of them at 
-220 days. The reason for this "jumping" behavior is that 
unlike the earlier grid-sampling strategy, the relatively sparse 
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Figure 1. Evolution of the 99.99% parameter high probability density region for the Nash-cascade model 
(strategy 2, 20% measurement error) for (a) n and (b) k. Darker shading indicates higher probabilities. The 
asterisk denotes the "true" parameter values. 

and irregular sampling of the feasible space did not (in this 
case) result in a very good potential candidate. This was also 
reflected in poorer overall simulation of the streamflow hydro- 
graph and wider prediction uncertainty bounds (for details, see 
Thiemann [1999]). 

4.3. Case Study II: Sacramento Model 

The SAC-SMA model (see Figure 4) is one of the compo- 
nents of the National Weather Service River Forecast System. 
This conceptual rainfall-runoff model, first introduced by Bur- 
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Figure 2. Snapshots of the posterior joint density of the two Nash-cascade model parameters n and k at time 
steps (a) 50, (b) 75, and (c) 100 days. 



THIEMANN ET AL.: BAYESIAN RECURSIVE ESTIMATION FOR HYDROLOGIC MODELS 2529 

15 
a) Predicted and Observed Streamtlow 

! - I I I I I I 
. 

. 

. 

ß 

. 

• . 

' - - ii'iii .... 

:i -.:•.:.-'?.-: :•::•.i•:::::: • ......... •:.:•:•!: :•::!•::::•i• :•:•:•ii::•:• ::::11i::iJ' ':•i•}i•.. '•i:::::::: ..... ::::: ::i•:' -:i•:. :•i:.•!•:: ::11::i•:.i: i:: •i.•i•i:i:•!•'$.-'i•:::::: •:ii-'..::::: ..... ::i:i: i:: '::i:!½- ....... -:*•:_ •" .' '•!i!: .... ::•ii:-.-'::::!:!:i:•i:•!i: i 
•:. iii:: .•""•i• ........... •:::•:•.•gi•::::.. ;i ......... •:;!11•:::• ........ •!::: :•i!•:....:ii::!ii½ • ...... •'-' 

ii;iiii• .... :'"ii•::!i:;:•!ii: "::•!i: -•::::•i•iii •::' :i•:'.......:• ........ •::•i • iii•"!•?:i:.•ii:iiii• ............... •11•:•::.:.::•:• • ' "•111111iiii• ...... •' ':•::iii::?:• .... 

!iii:ii!iii!ii!?;ii'ii:iii',!::?•:•,,:: .......................... :,-----.-•' '""-'--•' - '"•'• ........ ::'::•'•' - ":':'::?:i•'• •: ':•iiiii•'• .... '•i•!:½::,:.•i•i:'•:•,',',-• .................... •,::•::!•:: ....... 
50 100 150 200 250 300 350 

b) Streamflow Uncertainties relative to "True" Flows 
6 ! - ! • t • • t 

ß . 

. 

. 

4- :•, : . - 
. 

1::I . •i.:..: ' - 

0 ........... .il. "'-..:.-.!i!i.:.-'!i•i•!ii?.:i. "' ::•!:-;:.:•.::i.?':.•.:•.".::• "•4i' ' .::•i!!5....!i!i•!!!:•::.:ii!ig.:!i!i!iiii:•..:i•i!i!ii•!•ii!!ii(/•.:.:!iii...!•.:.:.•....i.8• g ::::!i•::::::•:i!i•i•!!i•i:•.<•?.•[•i•!:•:::•::•:iii!•i!i::.•.•!!!•:i:!;i•ii:;•i:i!:.:..:•i:!i:!:i:!:!!:!:•:!:i..•i:!..•....::::::::!:::!::.::.:.•.:.r.:::.:.:?.....:.. :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::•.: 

50 100 150 200 250 300 350 
Day of Water Year 1953 

Figure 3. Probabilistic streamflow predictions made using the Nash-cascade model (strategy 2, 20% mea- 
surement error). Solid dots denote the "measured" streamflow, the dark shaded region indicates the 95% 
confidence intervals for prediction of the "true" streamflow, and the light shaded region indicates the 95% 
confidence intervals for prediction of the measured streamflow. (a) streamflow predictions and (b) streamflow 
uncertainties relative to "true" flows. 

nash et al. [1973], has been used extensively for parameter 
estimation and streamflow forecasting studies [e.g., Sorooshian 
and Gupta, 1983; Brazil, 1988; Duan et al., 1994; Gupta et al., 
1998]. This case study illustrates the usefulness of the BaRE 
methodology to hydrologists who wish to use the SAC-SMA 
model for flow forecasting on a watershed that has not yet been 
calibrated and for which data monitoring has only recently 
been initiated. Hydrologists must therefore make the best use 
of the limited amounts of available data, crude parameter 
estimates (ranges) based on nearby watersheds, and new gauge 
data as they become available. 

In keeping with previous studies [e.g., Brazil, 1988; Yapo et 
al., 1996], 13 model parameters were assumed to be unknown 
and to have the uncertainty ranges defined in Table 1. The 
feasible parameter space defined by these ranges was uni- 
formly sampled at 10,000 randomly selected locations and was 
assigned a uniform prior probability density function. Further, 
we assumed that the output errors have a heteroscedastic 
(nonconstant) variance that is related to flow level and which 

can be stabilized by the Box-Cox transformation z - (yX - 
1)/X with X - 0.5 [see, e.g., Sorooshian and Dracup, 1980]. The 
model simulations were assumed to begin on July 28, 1953, 
with measured streamflow data only becoming available on 
October 1, 1953, at which point, operational forecasting and 
model updating using the BaRE methodology was initiated. 
Hence the initial 65 days represent a spin-up period to help 
minimize model initialization errors. From October 1 onward, 
BaRE was used to generate one-day-ahead streamflow predic- 
tions using the current parameter probability distribution and 
to update the parameter probability distribution daily as soon 
as a new streamflow measurement became available. The ini- 

tial guess for the variance O•o was set to 10.0, a value selected 
to be twice the variance of the streamflows for illustrative 

purposes only. In general, O•o should normally be selected to 
reflect the anticipated size of the prediction uncertainty, which 
will typically be much smaller than the variance of the stream- 
flows. 

The streamflow prediction results for WY 1953 are shown in 
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Figure 4. Conceptual flow diagram of the SAC-SMA model. 

Figure 5. Figures 5a and 5b show the results in the original and 
in the transformed output spaces, respectively, while Figure 5c 
shows the residuals (for the transformed outputs) measured in 
terms of the differences from the maximum likelihood stream- 

flow predictions. Notice that the model predictions appear to 
track the observations fairly well. The dark shaded region, 
representing the 95% Bayesian confidence interval for the 
prediction of the true streamflows, narrows very quickly in the 
first 35 days but continues to widen and narrow intermittently 

(until about day 200) each time the algorithm is forced to deal 
with larger than expected prediction errors. Thereafter, the 
confidence region collapses to a line, reflecting the fact that the 
probability mass associated with the most likely parameter set 
has become large enough not to be further disturbed during 
the course of the run. Further, the residuals (in transformed 
output space) during those first 200 days are relatively uncor- 
related but thereafter show a tendency toward systematic pos- 
itive bias (predictions larger than observations). These results 

Table 1. Comparison of Parameter Values Estimated by Brazil [1988] (Interactive Multilevel Calibration), SCE-UA, and 
BaRE 

Characteristics Models 

Parameter Unit Lower Bound Upper Bound Fixed Value Brazil SCE-UA BaRE 

UZTWM mm 

UZFWM mm 

UZK 

PCTIM 

ADIMP 

RIVA 

ZPERC 
REXP 

LZTWM mm 

LZFSM mm 

LZFPM mm 

LZSK 
LZPK 

PFREE 

RESERV 

SIDE 

DRMS a 

1.0000 150.0000 9.000 14.089 
1.0000 150.0000 39.800 63.825 
0.1000 0.5000 0.200 0.100 
0.0000 0.1000 0.003 0.000 

0.0000 0.4000 0.250 0.363 
0.0000 

1.0000 250.0000 250.000 249.972 
1.0000 5.0000 4.270 2.459 
1.0000 1000.0000 240.000 237.779 
1.0000 1000.0000 40.000 3.191 
1.0000 1000.0000 120.000 99.826 
0.0100 0.2500 0.200 0.019 
0.0001 0.0250 0.006 0.021 
0.0000 0.6000 0.024 0.001 

0.3000 

0.0000 

33.610 

76.120 

0.332 
0.016 
0.266 

117.300 

4.948 

235.6OO 
131.900 
123.500 

0.089 
0.015 

0.146 

20.3 18.2 21.8 

aDaily root-mean-square error of prediction for the 11-year period WY 1953-1963 
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Figure 5. Probabilistic streamflow predictions made using the SAC-SMA model for the Leaf River basin, 
Mississippi (WY 1953). Solid dots denote the measured streamflow, the dark shaded region indicates the 95% 
confidence intervals for prediction of the "true" streamflow, and the light shaded region indicates the 95% 
confidence intervals for prediction of the measured streamflow: (a) streamflow predictions, (b) streamflow 
predictions in transformed output space, and (c) streamflow uncertainties relative to the most probable 
forecast in the transformed output space. 
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Figure 6. Evolution of the 99.99% parameter high probability density region for the SAC-SMA parameters 
uzfwm, uzk, lzfpm, and lzpk for WY 1953. Shading indicates higher probabilities, and the dashed line indicates 
the most probable parameter value. 

suggest that too much confidence may have been assigned to 
the model, a point we will return to in section 5. In contrast, the 
width of the light shaded region, representing the 95% Bayes- 
ian confidence interval for the prediction of the streamflow 
measurement (in transformed output space; see Figure 5c), 
decreases to a relatively small value during the first 100 rela- 
tively dry days, thereafter doubling over the next 3 months of 
significant rainfall activity. This variation in estimated predic- 
tion uncertainty suggests that a better choice for the error 
model may be possible. 

The evolution of the parameter estimates is illustrated in 
Figures 6a-6d for four of the model parameters upper zone 
free water capacity m (uzfwm), upper zone free water with- 
drawal rate k (uzk), lower zone primary free water capacity m 
(lzfpm), and lower zone primary free water withdrawal rate k 
(lzpk). This plot shows a projection onto each parameter axis 
of the parameter values for the points belonging to the 99.99% 
HPD region at each time step. In the beginning, due to the 
uniform prior probability, all the points appear on the plot (see 
the first few time steps). As the streamflow data are processed, 

the number of points belonging to the updated HPD region 
decreases rapidly, leaving only a few competing parameter sets. 
However, the competing parameter sets appear to be scattered 
at different locations within the feasible parameter space, in- 
dicating that different parameterizations of the SAC-SMA 
model can give rise to a similar ability to predict the outputs for 
the limited amount of data processed so far. In particular, the 
HPD for the lower soil zone recession constant lzpk first tends 
toward the lower portion of the feasible space but later shifts 
toward a much higher value. 

Also marked in Figure 6 is the location of the most probable 
(maximum likelihood) parameter set at each time step (dashed 
line). In the beginning, the most probable value jumps back 
and forth from one to another of the competing parameter sets 
but finally settles down to a best value at about day 200. It is 
interesting to note that the major jumps coincide with some of 
the large storm events. The similarity of this jumping phenom- 
enon to that observed in strategy 3 of the synthetic case study 
suggests that a possible cause is insufficient density of sampling 
in the region of good parameter values. However, one should 
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also consider the possibility that the assumed models (i.e., 
hydrologic model, error model, and transformation model) do 
not adequately represent the observed input-output process. 

Finally, Table 1 shows a comparison of the l 1-year forecast 
performance and final parameter estimates obtained using 
BaRE in on-line mode with two conventional off-line batch 

calibration runs, one reported by Brazil [1988] and the other 
performed by us. This comparison is possible because all three 
studies involve calibration of the SAC-SMA model to the Leaf 

River basin using the 11-year period WY 1953-1963. Brazil 
[1988] used a three-stage interactive multilevel calibration pro- 
cedure that combined manual and automatic methods, while 
we used the SCE-UA global optimization procedure devel- 
oped by Duan et al. [1994]. Note that while the batch methods 
have the advantage of being able to employ sophisticated 
search procedures to actively refine the location of the param- 
eter estimates, the current version of the BaRE procedure is 
limited to selecting from a fixed set of randomly specified 
points distributed rather coarsely throughout the feasible 
space. In spite of this, the BaRE method provided forecasts 
with an overall RMSE prediction error that is only slightly 
larger than that given by the Brazil [1988] results. Furthermore, 
the parameter differences are not very large (compared to the 
initial uncertainty ranges), with the exception of uzk, maximum 
percolation rate coefficient (zperc) (dimensionless), and per- 
colation equation exponent (rexp) (dimensionless), which are 
known to be generally less sensitive. It is interesting to note 
that the BaRE method converged to its final parameter esti- 
mates after processing only -1.5 years of data. This is impres- 
sive, considering that at least 11 years of data are generally 
considered necessary for obtaining reliable parameter esti- 
mates via conventional batch calibration. 

5. Summary and Discussion 
This paper has discussed a Bayesian probability-based ap- 

proach to simultaneous parameter estimation and output un- 
certainty prediction via on-line recursive processing of time 
series data as they become available. A practical algorithm, 
called the Bayesian Recursive Estimation (BARE) method, has 
been developed and tested. BaRE differs from conventional 
calibration and prediction methods in that it employs a recur- 
sive scheme for tracking the conditional probabilities associ- 
ated with several competing parameter sets (models) in an 
on-line mode instead of searching for a single best solution in 
an off-line mode. The parameter probabilities are used to 
compute probabilistic predictions of the desired output vari- 
ables. Probability updating, via Bayes theorem, facilitates the 
assimilation of new data as they become available. 

The most obvious practical advantage of the BaRE ap- 
proach is that it enables hydrologists to generate consistent 
model predictions, along with estimates of the uncertainty in 
those predictions, even if historical hydrologic data are not 
available for model calibration using conventional methods. 
While the initial predictions (and parameter estimates) may be 
crude, their quality can be refined recursively with time as data 
become available. The approach is therefore directly applica- 
ble when a watershed has only recently been gauged. However, 
this approach could also be extremely useful where the time 
and expertise required for conventional calibration are not 
available. In such situations the parameter estimates provided 
by BaRE could help to provide guidance to later model cali- 
bration efforts. Furthermore, we believe that the BaRE pro- 

cedure can be a very efficient and valuable tool for the refine- 
ment of parameters defined through regionalization, i.e., the 
transfer of parameters from a calibrated watershed to another 
watershed with similar hydrologic characteristics. In this case, 
the regionalized parameter values can be used to determine 
parameter ranges and prior distribution. This distribution can 
then be altered successively by BaRE to reflect the subtle 
differences between the calibrated and regionalized watershed. 

The two hydrologic case studies presented in this paper 
serve to illustrate the effectiveness and efficiency of the BaRE 
methodology, as well as some weaknesses of the current im- 
plementation. The first (synthetic data) study used a simple 
unit hydrograph model to show that the BaRE algorithm does 
indeed provide consistent one-step-ahead probabilistic predic- 
tions of the true and measured streamflow values. At the same 

time, the algorithm is able to quickly and precisely locate the 
region of the known true parameter values, even when the data 
contain significant amounts of noise. The second (real data) 
case study demonstrated the applicability of BaRE in the con- 
text of the SAC-SMA model used by the U.S. National 
Weather Service for operational streamflow forecasting. Al- 
though the SAC-SMA model cannot be considered to be a 
perfect representation of the watershed process for the Leaf 
River basin, the BaRE method produced good one-step-ahead 
flow predictions with reasonable uncertainty estimates, with an 
accuracy that compares well with traditional batch calibration 
methods. In both cases the algorithm was relatively insensitive 
to the initial estimate • for variance of the errors (for practical 
applications, we suggest setting • at -25-50% of the esti- 
mated long-term variance of the streamflows). Furthermore, it 
was somewhat surprising that BaRE converged to its final most 
likely parameter estimates after processing only a relatively 
small amount of data. The consistency of this finding needs to 
be evaluated through further studies. 

Our experiences with the current version of the BaRE algo- 
rithm suggest that there are several ways in which the imple- 
mentation can be improved. The first is related to the phenom- 
enon where the current most likely parameter set jumps large 
distances in the feasible parameter space. While this may be a 
natural consequence of parameter insensitivity, interaction, or 
nonuniqueness of the model structure, we suspect that a prob- 
able cause is a combination of uneven and insufficient density 
of sampling in the region of good parameter values. It is in- 
teresting to note that after all the available data have been 
processed, the final most likely BaRE parameter estimate is 
theoretically equivalent to the value that would have been 
obtained by conventional batch calibration using pure random 
search. However, state-of-the-art batch calibration methods 
iteratively.refine the search to focus on the most promising 
region of the parameter space. Thus we are exploring ways to 
implement progressive resampling in order to concentrate the 
samples in the current HPD region while terminating compu- 
tations in the nonproductive portions of the parameter space. 
At the same time, special procedures such as Latin hypercube 
sampling [e.g., Ye, 1998] can be implemented to control sample 
evenness. 

The second area of improvement is related to the selection 
of the output transformation and error models. The present 
algorithm assumes that the correct values for /3 and X are 
known and that the error variance in the transformed output 
space is constant. However, in the case of the SAC-SMA study 
the 95% Bayesian confidence interval for the prediction of the 
streamflow measurement varied substantially, suggesting the 
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need to investigate better choices for the transformation and 
error model parameters. We recognize, therefore, the need for 
objective procedures to guide the selection of the appropriate 
transformation and error models. 

Finally, the SAC-SMA case study also revealed that the 
model predictions tended to be unbiased during the early por- 
tion of the run when the parameter HPD region had not yet 
collapsed to a single point. However, during the later period, 
when the algorithm had decided on a single best parameter set, 
the residuals showed a tendency toward systematic positive 
bias. We speculate that the performance of the BaRE meth- 
odology might be improved by preventing the parameter HPD 
region from collapsing to a single point. We believe that the 
algorithm might overvalue the information in the most recent 
data, and we are currently testing different ways in which this 
could be prevented, such as the incorporation of a "forgetting 
factor" into the parameter probability updating rule. Such a 
strategy may also have the additional benefit of allowing the 
algorithm to track slowly varying changes in the hydrologic 
behavior of the watershed (e.g., due to deforestation). Our 
findings related to these potential algorithmic improvements 
will be reported in future papers. 
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