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SUMMARY

Spermatogenesis has been intensely studied in rodents but remains poorly understood in humans. 

Here, we used single-cell RNA sequencing to analyze human testes. Clustering analysis of 

neonatal testes reveals several cell subsets, including cell populations with characteristics of 

primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). In adult testes, we identify 

four undifferentiated spermatogonia (SPG) clusters, each of which expresses specific marker 

genes. We identify protein markers for the most primitive SPG state, allowing us to purify this 

likely SSC-enriched cell subset. We map the timeline of male germ cell development from PGCs 

through fetal germ cells to differentiating adult SPG stages. We also define somatic cell subsets in 

both neonatal and adult testes and trace their developmental trajectories. Our data provide a 

blueprint of the developing human male germline and supporting somatic cells. The PGC-like and 

SSC markers are candidates to be used for SSC therapy to treat infertility.
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Graphical Abstract

In Brief

Sohni et al. use scRNA-seq analysis to define cell subsets in the human testis. Highlights include 

the identification of primordial germ cell- and spermatogonial stem cell-like cell subsets in 

neonatal testes, numerous undifferentiated spermatogonial cell states in adult testes, and somatic 

cell subsets in both neonatal and adult testes.

INTRODUCTION

Spermatogenesis is the process by which sperm are generated from male germ cell precursor 

cells. Spermatogenesis depends on an orchestrated series of events in germ cells first 

initiated in undifferentiated spermatogonia (SPG). A subset of undifferentiated SPG—called 

spermatogonial stem cells (SSCs)—have the ability to continuously self-renew and, thus, are 

responsible for maintaining the male germline throughout life. When not self-renewing, 

SSCs form progenitors, which proliferate and differentiate to form more advanced SPG cell 

types. The most differentiated SPGs give rise to spermatocytes (SPCs), which go through 

meiosis to become haploid cells known as spermatids (STs), which ultimately become 

sperm.

Germ cell differentiation requires the support of specialized somatic cells. This includes 

Sertoli cells (SCs), the nurse cells in direct contact with all germ cells in the seminiferous 

epithelium; peritubular myoid cells (PTMs), which are factor-secreting muscle cells 

surrounding the seminiferous tubule; and Leydig cells (LCs), which reside outside of the 

seminiferous epithelium and secrete androgens and other factors critical for spermatogenesis 

(Oatley and Brinster, 2012).

Most of what we know about spermatogenesis comes from investigations in rodents 

(Kanatsu-Shinohara and Shinohara, 2013). Although some of this information is likely to 
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bear on human spermatogenesis, it is clear that human spermatogenesis is significantly 

different from rodent spermatogenesis, including seminiferous epithelium organization, the 

pattern of SPG development, and sperm output per gram of tissue (Fayomi and Orwig, 

2018).

Given the differences between rodent and human spermatogenesis, there has been increasing 

interest in conducting studies on spermatogensis in humans. A major focus has been human 

SSCs, as these cells have the potential to be used clinically to treat infertility (Valli et al., 

2014a). An active area of investigation has been the identification of protein markers that 

label cells with the morphology of human SSCs. However, many of these markers—

including ENO2, LIN28, PLZF, SALL4, SSEA4, UCHL1, and UTF1—recognize not only 

undifferentiated SPG but also differentiating SPG (Dym et al., 2009; Fayomi and Orwig, 

2018). Others—such as ID4 and FGFR3—are relatively specific for undifferentiated SPG 

(Guo et al., 2017; Sachs et al., 2014), but their relative selectivity for human SSCs is unclear. 

As another approach to identify SSCs and SSC markers, Guo et al. (2017) used single-cell 

RNA sequencing (scRNA-seq) to identify 4 SPG “states” and define markers that label the 

state most likely to be enriched for SSCs. Although this study was an important advance, a 

marker of unclear specificity—SSEA4—was used to enrich undifferentiated SPG, which 

introduced potential bias and, thus, most SSCs may not have been included in their analysis. 

The purified populations used in this study also precluded an analysis of other testicular 

subsets, including other germ and all somatic cell subsets.

In this communication, we used scRNA-seq to analyze all cells in the human testis. This 

allowed us to define all major germ and somatic cell subsets, including a specific 

undifferentiated SPG subset exhibiting the characteristics of highly enriched SSCs. Using 

immunofluorescence (IF), immunohistochemistry (IHC), and fluorescence-activated cell 

sorting (FACS), marker proteins were identified that labeled this cell subset and allowed for 

its purification. We also addressed the events that lead to the initial establishment of human 

SSCs. In mice, primordial germ cells (PGCs) undergo epigenetic reprogramming and 

convert into SSC precursor cells—called ProSPG or gonocytes—that progress through 

distinct proliferative and quiescent stages, leading to mitotically active SSCs soon after birth 

(de Rooij, 2017). In contrast, we know little about SSC formation in humans. Germ cells 

have been identified in late-stage human male fetuses and young male children (Sadri-

Ardekani et al., 2011; Wu et al., 2009), and yet, these cells are not well characterized and 

their relationship with SSCs is unknown. Here, we performed scRNA-seq on neonatal 

human testes, allowing us to define the germ and somatic cell subsets at this critical stage of 

development. By comparing gene expression profiles of cells from neonatal and adult testes, 

we also defined the developmental trajectories of germ and somatic cell types. Together, our 

results provide a roadmap of germ and somatic cell development in the human testis.

RESULTS

Cell Subsets in the Adult Human Testis Defined by scRNA-Seq

To define the cell types in the adult human testis, we used scRNA-seq to analyze cells from 

freshly isolated whole testes samples from two fertile adults (aged 37 and 42 years). After 

filtering out poor-quality cells, 18,723 cells remained for subsequent analysis. Using 
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pathway and gene set overdispersion analysis (PAGODA2), we identified cell clusters 

corresponding to known cell types in the testis, including SPG, SPCs, STs, PTMs, LCs, 

blood and endothelial cells (ECs), and macrophages (Ms) (Figures 1A and S6C). Figure S1A 

shows some of the gene markers we used to identify these cell subsets (other markers are 

listed in Table S1). Few whole SCs were observed, probably because adult SCs are 

extremely large branched cells; indeed, we obtained many likely adult SC fragments that 

expressed SC markers, none of which were included in our analysis (data not shown).

Identification of SPG Cell Clusters

Our initial clustering analysis suggested that the SPG cluster is itself comprised of several 

cell subsets (Figure 1A). To further assess this possibility, we performed clustering analysis 

on only SPG (Figure 1B). This revealed 4 distinct cell clusters, which we defined as (1) 

SSC-1, (2) SSC cluster-2 (SSC-2), (3) Early differentiating (diff) SPG (Early diff-SPG), and 

(4) Diff-SPG, based on several lines of evidence, as described below. The pan-germcell 

markers DDX4 and MAGEA4 (Kossack et al., 2013) labeled cells in all 4 clusters (Figure 

S1B), as expected. Table S2 lists genes enriched in each of these 4 SPG subsets.

The SSC-1 subset is likely to be SSC enriched, as most cells in this subset expressed 

previously recognized human SSC marker genes (Di Persio et al., 2017), including UTF1 
(Figure 1B). The SSC-2 subset shares the expression of several SSC genes with the SSC-1 

subset but also selectively expresses some genes, including NANOS3 (Figure 1B). Most 

cells in both the SSC-1 and SSC-2 subsets have a cell cycle gene expression profile 

indicative of them being in gap 0 (G0) or gap 1 (G1) phase, with only a few cells in 

synthesis (S) or gap 2 (G2)-mitosis (M) phase (Figures 1C and 1D). This suggests that most 

SSC-1 and SSC-2 cells are not proliferating and/or undergoing slow proliferation, consistent 

with past studies that have directly examined the proliferation of undifferentiated human 

SPG; i.e., A-SPG (Di Persio et al., 2017). We note that while we refer to the SSC-1 and 

SSC-2 cell clusters as “SSCs,” scRNA-seq is not a functional assay and thus we do not know 

the percentage of cells in these clusters with SSC activity. These subsets almost certainly 

contain other A-SPG cells, including SPG progenitors that have committed to differentiate.

Human A-SPG differentiate into actively mitotic B-SPG (Aponte et al., 2005). We identified 

two subsets—Early diff-SPG and Diff-SPG—that likely correspond to early and late stages, 

respectively, of B-SPG. Evidence for this includes (1) most cells in both subsets 

predominantly express S or G2-M genes consistent with their undergoing active mitosis 

(Figures 1C and 1D) and (2) most cells in these 2 subsets express known B-SPG markers, 

such as KIT, SOHLH1/2, STRA8, MAGEA4, and DMRT1 (He et al., 2010; Suzuki et al., 

2012) but lack or weakly express meiotic genes (e.g., SYCP3 and PRDM9) (Figure 1B and 

Table S2). The Early diff-SPG subset is positioned—as defined by PAGODA2 clustering 

analysis—between the SSC-2 and Diff-SPG subsets (Figure 1B). Consistent with this, most 

Early diff-SPG cells express the NANOS3, L1TD1, and ASB9 genes, which are also 

expressed by most SSC-2 cells (Figures 1B and S1B). Similarly, most Early diff-SPG also 

express several genes expressed by Diff-SPG, including DMRT1, TUBA3D, DNMT1, and 

CALR (Figures 1B and S1B). Diff-SPG are selectively labeled by SOHLH2 (Figure 1B), 
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consistent with the fact that SOHLH2 encodes a transcription factor that promotes SPG 

differentiation in mice (Suzuki et al., 2012).

To examine the developmental relationship of these 4 SPG subsets, we performed Monocle 

pseudotime trajectory analysis, which aligns individual cells along a developmental 

trajectory, based on differentially expressed genes (Trapnell et al., 2014). This analysis 

indicated that these cell subsets had the following developmental order: SSC-1 → SSC-2 → 
Early diff-SPG → Diff-SPG (Figure 1E, top). Figures 1E (bottom) and S1C show the 

expression of stage-specific markers along this developmental trajectory. Using the 

likelihood ratio test (Trapnell et al., 2014), we found that the differentially expressed genes 

(DEGs) most enriched for the SSC-1 subset are CELF4, EGR4, FGFR3, FSD1, LPPR3, 
PIWIL4, and TSPAN33 (Figures 1E and S1C), which we propose is a molecular signature of 

SSCs.

Gene Ontology (GO) analysis revealed distinct categories of genes enriched in each of the 4 

SPG subsets (Figure S1D; Table S2). SSC-1 are enriched for gene regulatory pathways; 

SSC-2 express genes involved in transcription and cellular differentiation; and Early diff-

SPG and Diff-SPG are both enriched for functions related to cell proliferation, which is 

consistent with their high proliferation rate (Di Persio et al., 2017) (Figures 1C and 1D).

Transition Cells Bridging SSCs with Differentiating SPG

Monocle analysis revealed the existence of a group of cells that branched from the linear 

path of the pseudotime trajectory (Figure 1E, top). These Monocle-defined cells had 

characteristics of three distinct cell clusters—SSC-1, SSC-2, and Early diff-SPG—all of 

which also converge when defined by Pagoda clustering analysis (Figure 1B, top). We 

postulated that this group of cells is comprised of transition cells (TCs) that bridge the SSC 

and differentiating SPG stages (Figure 2A). A prediction of this hypothesis is these cells 

actively express genes of the later stage but still retain expression of genes corresponding to 

the earlier stage. In agreement with this, two groups of TCs co-expressed SSC-1 and SSC-2 

marker genes (Figure 2B, left and middle boxes), suggesting they are transitioning between 

the SSC-1 and SSC-2 stages. A third group of cells co-express marker genes from all three 

subsets (Figure 2B, right box), suggesting they are transitioning to become Early diff-SPG. 

While it is possible that some of these “TCs” are cell doublets, the average mitochondrial 

content, number of genes expressed, and unique molecular indices (UMIs) per cell in the TC 

subset were comparable with other cell subsets (see STAR Methods); in addition, these TCs 

expressed markers largely not expressed in the related cell clusters (Figure 2A, bottom), 

suggesting doublets are rare. TCs may represent the transition between infrequent and active 

cell proliferation. The preceding stages—SSC-1 and SSC-2— have a cell cycle gene 

expression patterns consistent with infrequent cell proliferation, whereas the stage that 

immediately follows the TC stage—Early diff-SPG— has an active proliferation expression 

pattern (Figures 1C and 1D).

Identification of 3 Undifferentiated SPG States Expressing Distinct SSC Marker Genes

We noticed that several genes were expressed in distinct “zones” within the SSC-1 cluster 

(Figure 1B, bottom). This raised the possibility that there are distinct cell states within the 
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SSC-1 subset, which we tested by performing PAGODA clustering analysis on only SSC-1 

cells. This revealed the existence of three sub-clusters—SSC-1A, SSC-1B, and SSC-1C 

(Figures 2C and 2D)—each of which selectively expressed specific genes (Figures 2E and 

S2). These 3 sub-clusters, as well as the other SPG sub-clusters in and above the 

“doughnut,” were robust, as they were also observed when clustering parameters (such as 

n.oddgenes), and sub-sampling iterations were tested (data not shown). We also validated 

these sub-clusters using DoKMeans (Seurat function) and non-negative matrix factorization 

clustering analyses (data not shown). Monocle trajectory analysis of these 3 subsets—alone 

or in combination with other germ cell subsets—indicated that SSC-1B is the least 

developmentally advanced (Figure 2F), which is consistent with the notion that SSC-1B is 

the most SSC enriched. Figure 2C presents a model—supported by both our Monocle and 

Pagoda analyses—which posits that SSC-1B cells convert into either SSC-1A or SSC-1C 

cells (travel left or right around the doughnut, respectively) to ultimately become 

differentiating SPG. However, our data do not exclude other possibilities, including that 

SSC-1A and/or SSC-1C are alternative stem cell states (see Discussion). Table S2 lists genes 

enriched in these 3 undifferentiated cell states.

Identification of Candidate SSC Marker Proteins

The identification of human SSC protein markers is critical for studying human SSCs, 

including generating methods to expand these stem cells for clinical use. Our discovery of a 

small subset of highly undifferentiated SPG provided an opportunity to potentially identify 

more selective SSC marker proteins than those currently known. As a positive control, we 

first performed IHC analysis with the well-established undifferentiated SPG markers FGFR3 

and UTF1 (Di Persio et al., 2017; Guo et al., 2017) (Figures 3A and S3A). Antibodies 

against these 2 proteins marked cells at the periphery of the seminiferous tubule (Figures 3A 

and S3A), where SSCs are known to selectively reside. We then performed IHC analysis 

with antibodies against 5 proteins encoded by genes expressed in the least advanced SSC 

subset—SSC-1B—and found that all 5 are also localized in the tubule periphery (Figure 

3A). We focused our subsequent analysis on 2 of these candidate SSC marker proteins: 

PIWIL4 and LPPR3 (also known as PLPPR3). Co-staining cells with PIWIL4 and UTF1 

antibodies showed that PIWIL4 labeled ~64% of UTF1-positive cells, suggesting that the 

PIWIL4 protein is a more specific marker than the UTF1 protein (Figure 3B). This is 

consistent with the PIWIL4 gene exhibiting a more specific pattern of expression in 

undifferentiated SPG subsets than the UTF1 gene (Figures 1B and 1E). LPPR3 exhibited 

two patterns of expression: whole nucleoplasm (LPPR3-NP+ cells) and speckled nuclei 

(LPPR3-SPEK+ cells) (Figure 3B). Co-staining with UTF1 showed that ~61% of UTF1+ 

cells were LPPR3-NP+ and ~34% of UTF1+ cells were LPPR3-SPEK+ (Figure 3B, right), 

suggested that, similar to PIWIL4, LPPR3 labels a highly specific undifferentiated SPG 

subset.

We next examined the expression profile of selected SSC markers by whole mount IF 

staining, which allows for an analysis of intact SSCs in their natural topographical 

distribution (Di Persio et al., 2017). By co-staining with the undifferentiated SPG marker 

GFRA1 (Di Persio et al., 2017), we found that PIWIL4 was expressed in only ~38% of 

GFRA1-positive cells (Figures 3C and S3B), providing further evidence for the specificity 
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of PIWIL4. Whole-mount IF of LPPR3 co-staining with GFRA1 shows that LPPR3-NP+ 

cells tended to express higher levels of GFRA1 than LPPR3-SPEK+ cells (Figure S3C). 

Together, this protein analysis, coupled with our scRNA-seq analysis, suggested that 

PIWIL4 and LPPR3 label a specific subset of undifferentiated SPG with the characteristics 

of SSCs.

Because it is essential that an SSC marker be present on the cell surface to be useful for SSC 

isolation, we tested the efficacy of candidate SSC markers encoding cell surface proteins for 

this purpose. We selected LPPR3 and TSPAN33, as both encode cell membrane proteins 

(Luu et al., 2013; Yu et al., 2015) and both are selectively expressed in primitive 

undifferentiated SPG (Figures 1B and 1E), with relatively infrequent expression in other 

adult testicular cells (Figure S3D). Using FACS, we found that antibodies against both of 

these cell-surface proteins highly enriched cells expressing undifferentiated SPG and 

candidate SSC marker genes (Figure 3D). GFRA1, which is widely used as both a mouse 

and human SSC marker (Garbuzov et al., 2018; He et al., 2012), was less enriched than most 

other SSC markers (Figure 3D), consistent with our evidence that GFRA1 is infrequently 

expressed at levels detected by scRNA-seq in primitive undifferentiated SPG (Figure 1B). 

As more evidence for selectivity, LPPR3 and TSPAN33 marked a more selective subset of 

testicular cells (~ 1% to 3% of total testicular cells) (Figure 3D) than FGFR3 (~6% of total 

testicular cells) (Figure S3A). FGFR3 is a previously identified cell-surface protein enriched 

on undifferentiated SPG (Guo et al., 2017) that is encoded by a gene that we find is broadly 

expressed across all undifferentiated SPG states (Figures 1B and 1E).

Identification of Cell Subsets in Testes from Human Neonates

To assess the developmental origins of the primitive undifferentiated SPG in adult testes, we 

performed scRNA-seq analysis on human neonatal testis. After pre-filtering, 14,862 cells 

were obtained from two newborn human whole testes (2 days and 7 days old). Clustering 

using PAGODA2 allowed us to classify these neonatal testes cells into 5 major cell clusters

—germ cells, SCs, PTMs, LCs, and ECs (Figures 4A and S6C)—based on known marker 

genes (Figure S4A; Table S2). Astriking difference between the neonatal testes with the 

adult testes is the former have a much lower percentage of germ cells (Figure 4A). This is 

consistent with the fact that spermatogenesis has yet to initiate at birth, as well as past 

studies quantifying germ cells by morphology from human newborns and infants (Cortes et 

al., 1995).

Germ Cell Subsets in Neonatal Human Testes

To elucidate the nature of the germ cells in the neonatal testis, we performed clustering 

analysis specifically only on the germ cells. PAGODA2 clustering analysis revealed 2 

neonatal germ cell clusters (Figure 4B). One cell cluster has an expression profile highly 

reminiscent of PGCs (e.g., expression of pluripotency genes; e.g., POU5F1 and NANOG 
[Figure 4B, bottom]), and thus, we named this cluster “PGC-like” (PGCL). The second cell 

cluster is dominated by cells that have largely extinguished the expression of PGC genes and 

instead express several genes known to mark human pre-SPG (Hayashi etal., 2012; Song 

etal., 2013), including MAGEA4 and RHOXF1 (Figure 4B, bottom), and thus, we refer to 

this cluster as “PreSPGs.” Monocle clustering divided the PreSPG into two distinct clusters 
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that we named “PreSPG-1” and “PreSPG-2” (Figure 4B). We validated these 2 PreSPG 

clusters and the PGCL cluster using the DoKmean function in Seurat (data not shown). The 

PreSPG-1 subset expresses several genes that most PreSPG-2 cells only weakly express, 

including DOCK8, SERINC2, LY6K, MAGEA4, and RHOXF1 (Figure 4B, bottom). 

Conversely, other genes selectively mark the PreSPG-2 subset, including COL1A2, TIMP2, 
TTC14, DVL1, and ZFHX3 (Figure 4B, bottom, and data not shown). Table S2 lists genes 

enriched in the 3 neonatal germ cell clusters we identified.

To investigate the nature of these 3 neonatal germ cell subsets, we compared their expression 

profiles with the published datasets from Guo et al., who performed scRNA-seq analysis on 

gonadal PGCs from human fetuses between 4 weeks and 19 weeks old (Guo et al., 2015). 

Pearson correlation analysis showed that the average expression of genes in PGCs (at all 5 

gestational time points) was more similar to that of the PGCL subset than it was to PreSPGs 

(Figure 4C and data not shown), confirming the similarity of the neonatal PGCL subset with 

fetal PGCs. The correlation coefficient increased with PGC gestational age, consistent with 

the maturation of PGCs as fetuses age. As further evidence for the similarity of neonatal 

PGCLs with embryonic PGCs, t-distributed stochastic neighbor embedding (tSNE) analysis 

showed that the PGCL subset clustered near cells from the last PGC time point (19 weeks) 

(Figure S4B). Together, these data support the notion that the PGCL subset in the neonate 

are similar to (and perhaps directly derived from) the PGCs in the developing embryonic 

gonad.

To further examine the developmental relationship of PGCs and the neonatal germ cell 

subsets, we performed Monocle trajectory analysis. The least differentiated cells—the 4-

week PGCs—clustered on one end of the pseudotime axis (the left side) and the later stage 

PGC samples aligned according to their gestational age (Figure 4D, top). Directly following 

the oldest PGC sample (19 weeks) were cells from the PGCL cluster (Figure 4D, top), 

confirming that PGCs and PGCLs are highly related. Following the PGCL cluster along the 

pseudotime trajectory were PreSPG-1 and PreSPG-2 cells (Figure 4D, top). Together, these 

data are consistent with the following developmental order: PGC → PGCL → PreSPGs 

(PreSPG-1 and PreSPG-2).

To identify neonatal germ cell marker genes, we generated a list of genes differentially 

expressed in neonatal germ cell subsets (Table S2). This allowed us to identify several genes 

co-expressed in the fetal PGCs and the neonatal PGCL subset but rarely in cells in the 

neonatal PreSG subsets (Figure 4D, bottom). This not only provided a useful set of markers 

but was further evidence that PGCs and PGCLs are similar to each other but distinct from 

PreSPG. We identified other marker genes differentially expressed between PGCs and 

PGCLs (Figure 4D), which will be useful to specifically mark the neonatal stage of germ 

cell development. We found that MAGEA4—which has widely been used to mark both 

PreSPG and adult SPG (Hayashi et al., 2012)—is a good gene marker to discriminate 

between PreSPG and PGCL, as it is rarely expressed by the latter (Figure S4B, bottom). 

Together, these genes and other genes listed in Table S2 have the potential to serve as 

valuable markers to study both embryonic and neonatal male germ cell development.
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Identification of PGCL Marker Proteins

Our data suggest that the PGCL subset is a key transition stage between embryonic PGCs 

and adult SPG. To screen for PGCL-specific protein markers, we identified genes 

differentially expressed between PGCLs and other germ cells (Table S2) and examined the 

expression of their encoded proteins in neonatal testes by IHC. We found that antibodies 

against 3 proteins—ETV4, PIM2, and POU5F1—selectively labeled neonatal cells with 

large nuclei (Figure 4E, top), a characteristic typical of germ cells (Gaskell et al., 2004). To 

determine the selectivity of these markers, we also stained with an antibody against UTF1, 

which is encoded by a gene highly expressed in all 3 neonatal germ subsets (Figure 4D). 

There was an average ~7 UTF1+cells/tubule section, whereas there was an average of ~2 

ETV4+, PIM2+, and POU5F1+ cells per tubule section (Figure 4E, bottom). This 

demonstrates the specificity of these markers and suggests that they selectively label PGCLs. 

We note that although the POU5F1 and PIM2 antibodies only appeared to stain germ cells, 

the antibody we used against ETV4 also stained cells outside of the seminiferous tubule 

(Figure S4C), suggesting that ETV4 is also expressed in LCs. Together, these PGCL protein 

markers will be valuable for analyzing this key transition stage of human germ cell 

development.

Neonatal Germ Cells Progress to a Near-Adult SSC State

To determine the relationship of neonatal germ cells with adult SSCs, we performed 

PAGODA2 analysis on neonatal germ cells merged with the adult SSC-1 subset. SSC-1 cells 

formed a large cluster that also harbored PreSPG-1 and PreSPG-2 cells (Figure 4F, top), 

consistent with these neonatal germ cell subsets exhibiting a similar gene expression profile 

as adult SSCs. Indeed, the PreSPG and SSC-1 subsets co-expressed many genes, including 

ID4, MAGEA4, and UTF1 (Figure 4F, bottom; Table S2). In contrast to PreSPGs, PGCLs 

clustered with embryonic PGCs on the periphery of the SSC-1 cluster (Figure 4F, top), 

further supporting our earlier analyses indicating that the PGCL and PreSPG neonatal 

subsets are distinct and that the latter is more advanced (Figure 4D). As further support, 

Pearson correlation analysis of cumulative gene expression showed a stronger correlation 

between the SSC-1 subset and the PreSPG-1 and PreSPG-2 subsets than the PGCL subset 

(Figure S4D). Monocle analysis confirmed that PGCL cells are the most undifferentiated 

neonatal subset (migrating just after embryonic PGCs), followed by PreSPG-2, PreSPG-1, 

and SSC-1 (Figure 4G). Although most PreSPG-1 cells preceded SSC-1 cells along the 

pseudotime trajectory, some co-migrated with the SSC-1 cells, suggesting that the neonate 

has a small cohort of germ cells with SSC characteristics.

Somatic Cells in Developing and Adult Human Testes

To define somatic cells in neonatal and adult testes, we first performed additional filtering 

followed by PAGODA2 clustering on our entire dataset described above to obtain 25,669 

human testicular cells. This analysis revealed discrete cell clusters corresponding to neonatal 

ECs, LCs, SCs, and PTMs (Figures S5A and S5B). Adult ECs, LCs, and PTM clusters were 

also identified; their position in the tSNE plots differed from the corresponding neonatal cell 

clusters (Figures S5A and S5B), indicative of significant differences in gene expression 

between the neonatal and adult stage. As discussed above, we were not able to identify an 
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adult SC cluster, likely due to the very large size of adult SCs. Cluster identities were 

assigned based on the expression of established mammalian somatic cell markers (Table S1). 

Reclustering of only somatic cells from neonatal and adult testis corroborated these 

assignments (Figures 5A and 5B). An analysis of cell cycle gene expression suggests 

somatic cells are seldom cycling (Figure 5C), consistent with an earlier study (Berensztein et 

al., 2002).

To identify marker genes enriched in the SC, LC, or PTM populations, we performed 

differential gene expression analysis, comparing each somatic cell population with all other 

cells from the entire dataset. These data corroborated previously known mammalian somatic 

cell markers (Figures 5D and S5C—S5E) and defined new markers labeling LCs (LHX9, 
IGF2, DCN, and PTGDS) (Figure S5C), PTMs (AEBP1 and PTCH1) (Figure S5D), and SCs 

(BEX1 and CITED) (Figure S5E).

Pseudotime analysis showed that neonatal LCs comprise one end of the developmental 

trajectory, whereas adult LCs are on the opposite end (Figure 5E), providing evidence that 

LCs undergo a discrete developmental shift between the neonatal and adult stage. The LC 

marker genes INHBA, LHX9, and IGF2 are downregulated, whereas DCN, PTGDS, and 

IGF1 are upregulated during this developmental transition (Figure S5C). Some classes of 

genes enriched for expression in fetal LCs compared to adult (Figure 5E; e.g., ribosomal 

genes, Table S3) suggest that fetal LCs are more metabolically active than adult LCs.

Pseudotime analysis showed that, similar to LCs, PTMs primarily align according to their 

age of origin, although we identified a subset of neonatal-like adult PTMs (PTM-NL) 

(Figure 4F). This PTM-NL subset has a gene expression pattern similar with neonatal PTMs 

and resides in a distinct cluster alongside neonatal PTMs (Figures 5B and 5F). Our data 

suggest the PTM marker genes TAGLN and MYH11 are downregulated as PTMs develop, 

whereas AEBP1 and PTCH1 are upregulated during this developmental transition (Figure 

S5D).

Ligand and Receptor Gene Expression in Human Neonatal Testes

It is well established that spermatogenesis depends on signaling between somatic and germ 

cells (Rossi and Dolci, 2013). However, the signaling events occurring prior to 

spermatogenesis—including during SSC establishment—are largely unknown. To 

investigate signaling events that may occur between cells at the neonatal stage, we identified 

ligand and receptor gene pairs expressed in neonatal testicular cell populations (Table S3). 

This revealed potential instances of NOTCH, KIT, HEDGEHOG (Hh), and WNT signaling 

(Figure 6). Other examples of ligand-receptor pairs expressed in germ and somatic cell types 

of the neonatal and/or adult testis are provided in Table S3. Although many of the signaling 

genes appear to be expressed in a relatively small subset of germ cells, this may be an 

underestimate due to the low sensitivity of scRNA-seq analysis. The expression of these 

signaling genes may also be transient in germ cells. See the Discussion for implications of 

these findings.
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DISCUSSION

Male germ cell development is a complex and intricate pathway that propels embryonic 

germ cells—PGCs—to progress through a series of states involving cell proliferation, 

apoptosis, and differentiation to become SSCs, which, through self-renewal and 

differentiation, continuously generate sperm through the process of spermatogenesis. 

Although much has been learned about these various steps in rodents, we are only just 

beginning to unravel male germ cell development and spermatogenesis in humans. In this 

communication, we shed light on these processes through scRNA-seq analysis of neonatal 

and adult human testis.

Neonatal Male Germ Cell Development

Classical studies using morphological analysis and protein markers have suggested that only 

a single germ cell type exits in human newborn testes (Fukuda et al., 1975; Gaskell et al., 

2004; Vilar, 1970). Our discovery of 3 distinct germ cell states at the newborn stage—which 

we have named PCGL, PreSPG-1, and PreSPG-2—enriches our view of this stage of human 

male germ cell development. Our analyses support a model in which human fetal PGCs 

differentiate into PGCLs and, subsequently, PreSPGs, both of which populate the human 

testes at birth (Figure 7A). Although neonatal PGCLs are similar to embryonic PGCs, they 

express different gene and protein markers, which will be critical for future studies to 

isolate, culture, and characterize PGCLs. It will be intriguing to know whether epigenetic 

reprogramming events occur in PGCLs as a means to prepare them to ultimately become 

SSCs.

It will also be intriguing to functionally define the other two neonatal germ cell states we 

identified: PreSPG-1 and PreSPG-2. Another future question will be to determine their 

relationship: one may give rise to the other, they may be interconvertible, or they may be 

part of two parallel differentiation pathways in the neonatal testis. We identified some 

PreSPG cells that have a SSC-like gene expression pattern. These may be emergent SSCs 

that have begun to seed the human testis, by analogy with what occurs in mice soon after 

birth (Niedenberger et al., 2015). This idea is also consistent with classical studies showing 

that neonatal germ cells begin being replaced by cells harboring the morphology of SSCs in 

the first year of human life (Culty, 2009; Paniagua and Nistal, 1984). Further investigation is 

needed to assess whether these SSC-like neonatal cells are functional stem cells. The only 

currently known approach to measure human SSC activity is xenotransplantation of human 

testicular cells into the testes of immunocompromised mice, followed by an assessment of 

colony number (Nickkholgh et al., 2014; Valli et al., 2014b). Although transplanted human 

SPG are unable to fully progress through spermatogenesis, this xenotransplantation assay 

allows one to at least infer human SSC activity (Fayomi and Orwig, 2018).

Cell Signaling during Neonatal Testicular Development

Although cell-cell signaling events have been shown to be important for developing male 

embryonic germ cells and during spermatogenesis (Rossi and Dolci, 2013), we know little 

about signaling mechanisms that act on male germ cells between these two stages. In this 

study, we begin to fill this gap by identifying several examples of cell-cell signaling events 
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that may occur during the neonatal period (Figure 7B). First, NOTCH ligand and receptor 

genes are expressed in human neonatal testis in a pattern suggesting that germ cells signal to 

SCs through the NOTCH pathway. This is of interest given that NOTCH signaling is critical 

for germ cells and SCs at other stages of development (Barrionuevo et al., 2006). Second, 

KIT and its ligand are expressed in neonatal germ cells and somatic cells, respectively. It 

will be interesting to determine what role KIT signaling might have in neonatal cells. It has 

been shown that the KIT pathway is essential for PGC survival and proliferation during fetal 

development and postnatal SPG differentiation in mice (Rossi, 2013). Third, the Hh ligand 

gene DHH and its receptor gene PTCH1 are expressed in the neonatal testes in a pattern that 

suggests that neonatal SCs signal through the Hh pathway to several other neonatal cell 

types, including PreSPGs. This is intriguing given that Dhh is essential for normal testis 

formation and germ cell development in mice (Bitgood et al., 1996), and mutations in DHH 
are associated with human gonadal disgenesis (Canto et al., 2004). Finally, we found that 

neonatal germ cells and SCs express the WNT activator ligand and receptor genes RSPO2 
and LGR4, respectively, the latter of which is known to be critical for fertility in mice 

(Mendive et al., 2006). WNT signaling may also be important for somatic-somatic cell 

communication, as we found that neonatal SCs and PTMs express the WNT ligand WNT6 
and corresponding receptor FRZB, respectively.

We also identified receptor-ligand pairs expressed in adult human testes. For example, adult 

germ cells express the WNT activator RSPO2, whereas adult PTMs express the WNT 

receptor LGR4, suggesting a role for WNT signaling in spermatogenesis. Hh signaling may 

also have a role in spermatogenesis, based on our finding that the Hh ligand/receptor pair 

DHH and PTCH1 is expressed in adult germ and somatic cell subsets. Together, the 

receptor-ligand datasets we generated (Table S3) provide a potentially important resource for 

future investigation into the signaling events critical for both early human male germ cell 

development and human spermatogenesis.

SPG Subsets

Our scRNA-seq and protein marker analyses of adult human testes revealed the existence of 

4 human SPG subsets: SSC-1, SSC-2, Early diff-SPG, and Diff-SPG (Figure 7A). Our 

evidence indicates that the SSC-1 subset is the most primitive, suggesting that this subset 

harbors all or most human SSCs. Similar to the SSC-1 subset, the SSC-2 subset is comprised 

of undifferentiated SPG but appears to be more advanced developmentally. The Early diff-

SPG and Diff-SPG likely correspond to early and late B-SPG stages, respectively, based on 

the expression of several marker genes.

We obtained several lines of evidence for the existence of an intermediate cell state between 

the undifferentiated and Early diff-SPG stages that we named the “TC” subset (Figure 7A). 

We posit that TCs represent the transition between infrequent and active cell proliferation. 

The preceding stage, SSC-1, has a cell cycle gene expression pattern consistent with 

infrequent cell proliferation, whereas the stage that immediately follows the TC stage, Early 

diff-SPG, has an active proliferation expression pattern. Several genes exhibit elevated 

expression in TCs relative to the less advanced SPG subsets. Two of these TC-enriched 

genes—CCND2 and SPRY1—encode cell proliferation-promoting proteins (Glickstein et 
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al., 2009; Shea et al., 2010), raising the possibility that these genes coerce TCs to enter the 

proliferation program characteristic of differentiating B-SPG. We note that Wang et al. 

(2018) also obtained some evidence for cells intermediate between undifferentiated and 

differentiating SPG, but the gene markers expressed in these cells (e.g., DMRT1 and KIT) 

suggest a later stage of differentiation than the TC state we identified.

We also obtained several lines of evidence for the existence of 3 states within the SSC-1 

subset, each of which is selectively labeled with different gene markers (Figures 2C and7A). 

Clustering and trajectory analyses suggested that the most primitive state—SSC-1B—harbor 

cells that can traverse two different pathways to generate differentiating SPG. There are 

various explanations for this bifurcation. The possibility we favor comes from the classical 

notion that there are two types of stem cells in the testes: reserve SSCs that function only in 

response to injury and active SSCs that divide slowly on a regular basis to maintain 

homeostasis (Oakberg, 1971). The SSC-1B and SSC-2 subsets may represent these two stem 

cell states. Both ultimately give rise to cells that differentiate to form B-SPG, but cells in the 

SSC-1B state must go through the SSC-1A and TC states to become B-SPG (clockwise 

around the doughnut in Figure 2C), whereas cells in the SSC-2 state can go directly to the 

TC state to become B-SPG (anti-clockwise around the doughnut in Figure 2C). We suggest 

that the reserve and active SSCs each serve a different purpose; the former provide a stem-

cell reserve (e.g., as a reservoir in the case of insult) and the former divide regularly (albeit 

infrequently to minimize mutation rate) to provide a continuous supply of progenitors under 

steady-state conditions. By analogy, the olfactory system depends on reserve and active stem 

cells (Schwob, 2002), and the hematopoietic system harbors long-term and short-term stem 

cells (Wilson et al., 2009).

We further speculate that the cells in the different states in the doughnut in Figure 2C are in 

equilibrium, such that they can interconvert. Although this concept is somewhat 

controversial in the field,several studies have obtained evidence that some SPG states in 

mice can interconvert (e.g., Hara et al., 2014; Nakagawa et al., 2010). We suspect that a 

particular direction will be favored (e.g., SSC-1B converting to the SSC-1A and -1C states), 

but the ability to reverse direction at some frequency explains why we found many cells in 

the different states, particularly because SSCs only rarely divide.

During preparation and review of our manuscript, three papers were published that also used 

scRNA-seq analysis to define human SPG and other human testicular cell types (Guo et al., 

2018; Hermann et al., 2018; Wang et al., 2018). Wang et al. (2018) and Hermann et al. 

(2018) identified SPG subsets that likely correspond—based on gene markers—to the SSC-1 

and SSC-2 subsets we defined. Guo et al. (2018) performed detailed analysis of 3 

undifferentiated SPG states that they named “State 0-2,” which likely correspond to our 

SSC-1B, SSC-1A and SSC-1C, and SSC-2 subsets, respectively, based on gene markers 

expressed. Together, our four studies reinforce each other by defining common cell states 

marked by specific genes. Our studies also complement each other. By analyzing more cells 

and using additional approaches, our study identified additional SPG subsets, obtained 

evidence as to their developmental lineage, and defined new protein markers that are strong 

candidates to be highly selective for human SSCs.
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SSC Markers

A focal point of interest in the field has been SSCs, as these stem cells maintain 

spermatogenesis and have clinical potential for treating male infertility. Despite the intense 

interest in SSCs, it is not yet possible to identify SSCs with any level of certainty because no 

SSC-specific markers have yet been defined. Although considerable progress has been made 

in identifying SSC markers in the mouse, no single unambiguous SSC marker has been 

identified that only labels mouse SSCs (Kubota and Brinster, 2018). Some effort has been 

made to identify SSC markers in humans, but only a few human SSC markers have been 

identified and their specificity is unclear (von Kopylow and Spiess, 2017). In our study, we 

leveraged our scRNA-seq analysis to identify genes selectively expressed in the most 

primitive undifferentiated SPG subset: SSC-1B. We verified the specificity of five of these 

SSC-1B-enriched genes by performing IF, IHC, and FACS analyses on their encoded 

proteins. Using an initial scRNA-seq screen similar to ours, Guo et al. (2018) identified 

some of the same candidate SSC protein markers.

Our analyses suggested that several markers shown to enrich for mouse SSCs—such as Id4, 
Eomes, and Zbtb16 (Fayomi and Orwig, 2018; Helsel et al., 2017)—may also be useful for 

enriching human SSCs. However, we found that human ID4 and ZBTB16 are broadly 

expressed in human SPG, whereas EOMES is only expressed in a small proportion of 

primitive undifferentiated human SPG, at least as detected by scRNA-seq. We found that 

several markers previously suggested to enrich for human SSCs—such as GFRA1, FGFR3, 

and UTF1 (Di Persio et al., 2017; Guo et al., 2017)—are not only expressed in the primitive 

SSC-1B subset but also more advanced SPG subsets, including SSC-2 and/or Early diff-

SPG. Although these previously defined markers are less selective than the SSC-1B markers 

we have defined, they will potentially still be useful, as they will likely mark SPG 

progenitors and may also mark alternative SSC-enriched cell subsets. The expression level 

of broadly expressed SPG markers can also be useful for staging.

We used antibodies against two of the cell-surface SSC-1B protein markers we identified—

LPPR3 and TSPAN33—to highly enrich for primitive undifferentiated SPG, based on qPCR 

analysis of a plethora of markers. We were able to use unfractionated adult testicular cells 

for this enrichment, as scRNA-seq analysis of all human testicular cells showed that the 

genes encoding these two cell-surface proteins are relatively selective for primitive SPG. 

Together, this provides a proof of principal for future clinical studies to use SSC therapy as a 

means to treat human male infertility. SSC therapy will also require the development of 

methods to expand human SSCs in culture (Vij et al., 2018). Our identification of genes 

expressed by testicular somatic cells, including those encoding cell-cell signaling factors, 

may prove useful in developing cocktails containing “testes niche” factors that allow for the 

propagation and expansion of human SSCs in vitro for clinical application in vivo.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Miles F. Wilkinson (mfwilkinson@ucsd.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject details—The experiments with human material were approved by the UCSD 

Human Research Protections Program (HRPP) council and the HRPP council coordinated 

by the University of Michigan Office of Research. Informed consent was obtained from all 

the human subjects.

Testicular biopsies were obtained from two fertile men aged 37- and 42-years, undergoing 

vasectomy reversal at the UCSD Medical Center, following IRB-approved protocol 

#120471. The biopsies were transported to the research laboratory on ice in Minimum 

Essential Medium Alpha Medium (aMEM) + 10% FBS. The samples were then immediately 

cut into smaller portions and cryopreserved using freezing media composed of 10% DMSO 

+ 90% FBS under controlled cooling conditions in a freezing container (Thermo Fisher 

Scientific cat # 5100-0001) at −80°C. The samples were subsequently transferred to liquid 

nitrogen storage until use. The neonatal testes we used for our scRNaseq analysis were 

obtained from the University of Michigan Medical Center, following IRB-approved protocol 

HUM00097035. These testes were from unrelated day 2 and day 7 neonates who died as a 

result of non-testicular-related medical dysfunction; they were cryopreserved in vials in 

liquid nitrogen and later transported to UCSD on dry ice.

Human testis samples preparation—Single testicular cells were isolated using a two-

step enzymatic digestion protocol described previously (Valli et al., 2014b). In brief, 

testicular tissue was mechanically disrupted and enzymatically digested with 1 mg ml−1 

collagenase type IV (Worthington Biochemical) in Hank’s Balanced Salt Solution (HBSS; 

GIBCO) at 37°C. The tubules were sedimented and washed with HBSS and digested in 

0.25% Trypsin-EDTA (ThermoFisher) and Deoxyribonuclease I (Worthington Biochemical). 

The suspension was triturated vigorously ten times, incubated at 37°C for 5 min, followed 

by repeat trituration and incubation. The digestion was stopped by adding the same volume 

of αMEM + 10% FBS medium and the cells were size-filtered through 70 mm 

(ThermoFisher) and 40 μm strainers (ThermoFisher) and pelleted by centrifugation at 300 g 

for 5 min.

Integrin-α6 (ITGA6)+ cells were purified from the isolated testicular cell preparations 

described above using the MACS system. The cells were re-suspended in MACS buffer 

(PBS, 0.5% BSA, 2mM EDTA) + Deoxyribonuclease I, incubated with ITGA6 antibody 

(BD PharMingen; 1:50) for 20 mins on ice, washed with MACS buffer, incubated with anti-

rat IgG microbeads for 20 mins on ice, washed in MACS buffer, re-suspended in 500μl 

MACS buffer, and run through a MACS MS column (Miltenyi Biotec, cat # 130-042-201). 

The cells were then eluted with MACS buffer and resuspended in PBS + 0.25% FBS. The 

dead cells were removed using the ClioCell Dead Cell Removal kit (Amsbio) following the 

manufacturers’ instructions. The samples from the 4 testes biopsies (neonatal + adult) were 

processed in exactly the same manner to minimize technical bias.

METHODS DETAILS

10X Genomics library preparation—Viable cells were washed once in PBS and 

resuspended in 0.04% BSA in PBS for loading on the 10x Chromium chip. Cell capturing, 
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and library preparation was carried as per kit instructions (Chromium Single Cell Kit [v2 

chemistry]). In brief, 10,000 cells were targeted for capture per sample, after cDNA 

synthesis,12-14 cycles were used for library amplification. The resultant libraries were size 

selected, pooled and sequenced using 2 × 100 paired-end sequencing protocol on an 

Illumina HiSeq 4000 instrument. The libraries initially underwent shallow sequencing to 

access quality and to adjust subsequent sequencing depth based on the capture rate and 

unique molecular indices (UMI) detected. All sequencing was performed at the Institute of 

Genomic Medicine at UCSD.

Mapping, cell identification and clustering analysis—Demultiplexed raw 

sequencing reads were processed and mapped to the human genome (Hg19) using Cell 

Ranger software (v2.2.0) with default parameters (Figure S6A). Filtered count matrices for 

each library were tagged with a library batch ID and combined across independent 

experiments using the Seurat package (Butler et al., 2018) in R. To check the quality of the 

single cell data and to remove any multiplets, we performed Seurat based filtering of cells 

based on three criteria: number of detected genes per cell, number of UMIs expressed per 

cell and mitochondrial content, using the following threshold parameters: nGene (200 to 

9000), nUMI (between -inf and 40,000), and percentage of mitochondrial genes expressed 

(< 0.5%) (see Figure S6B for violin plots of these parameters). In addition, we used known 

lineage marker profile to rule out that same barcode was not assigned to two cells of 

different lineages (multiplets). Normalization was performed as described in the package 

manual (https://satijalab.org/seurat/h) (Satija et al., 2015). Batch correction was performed 

using the JackStraw and/or RunCCA functions in the Seurat package. The RunCCA function 

was used to correct for platform differences when comparing 10x Genomics datasets with 

Fluidigm C1 datasets, as previously described (Butler et al., 2018; Satija et al., 2015).

After filtering out poor quality cells, we captured 7,974 ITGA6+ and 10,749 unfractionated 

cells from adult testes (total from 2 individuals); and 6,086 ITGA6+ cells and 8,776 

unfractionated cells from neonatal testes (total from 2 individuals). Because we found that 

ITGA6+ cells not only enriched for germ cells, but also some somatic cell types (in 

alignment with previous studies [He et al., 2012; Semon et al., 2010]), it was not useful for 

germ cell enrichment, so most of our clustering analysis was done on unfractionated cells 

and ITGA6+ cells combined. For our somatic cell analysis, we first combined both adult and 

neonatal cells to generate a dataset of 33,585 total cells. We then removed the germ cells and 

applied stringent filtering parameters (i.e., mitochondrial content percent cut-off was set to 

0.2), which left 25,699 cells. These cells were then re-clustered as described below to 

generate somatic cell clusters.

To identify cell clusters, we employed Pathway and Geneset OverDispersion Analysis 

(PAGODA2) (Fan et al., 2016). Parameters such as perplexity, number of overdispersed 

genes and K-nearest neighbor were adjusted to identify recognizable cell clusters. We then 

used igraph-based community prediction methods such as infograph, walktrap, and 

multilevel to identify clusters. The resulting tSNE cell embeddings were imported into 

Seurat for cluster annotation, based on established gene expression markers (Table S1). 

Analysis of the 2 neonatal testicular samples showed a similar distribution of cells in the cell 

clusters (Figure S6C). The same was observed for the 2 adult testicular samples (Figure 
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S6C). Additional evidence for similarity of the biological replicates was the strong 

correlation of average gene expression (R2 >0.95; Figure S6C). Annotated germ cells 

derived from either ITGA6+ adult testicular cells or unfractionated adult testicular cells 

exhibited an overlapping distribution in germ cells clusters defined on tSNE plots (Figure 

S6D, top left), indicating that ITGA6+ enrichment did not significantly bias the cell 

population to any specific cluster. As confirmation, average gene expression between 

annotated germ cells derived from ITGA6+ versus unfractionated adult testicular cells was 

strongly correlated (R2 > 0.99; Figure S6D, bottom left). Similar results were obtained with 

annotated SPG derived from ITGA6+ adult testicular cells versus unfractionated adult 

testicular cells (Figure S6D, middle), as well as annotated neonatal germ cells derived from 

ITGA6+ neonatal testicular cells versus unfractionated neonatal testicular cells (Figure S6D, 

right).

The FindMarkers function (Wilcoxon rank sum test) was used to determine differential gene 

expression between clusters (set at minimum expression in 25% of cells). The 

CellCycleScoring function was used to infer cell cycle phase, as this program determines 

relative expression of a large set of G2-M- and S-phase genes (Kowalczyk et al., 2015). 

Pearson correlation between two clusters was performed using the CellPlot function.

GO analysis was done using top differentially (positively) expressed genes with a p adjusted 

cut off of 0.05.

Cell trajectory analysis—Single-cell pseudotime trajectories were constructed with the 

Monocle 2 package (v2.8.0) (Qiu et al., 2017) according to the provided documentation 

(http://cole-trapnell-lab.github.io/monocle-release/). UMI counts were modeled as a negative 

binomial distribution; ordering genes were identified as having high dispersion across cells 

(mean_expression > = 0.01; dispersion_empirical > = 1). The discriminative dimensionality 

reduction with trees (DDRTree) method was used to reduce data to two dimensions. Gene 

sets identified from the destiny analysis were clustered and visualized using the 

plot_genes_in_pseudotime function.

FACS and qRT-PCR analysis—After dissecting single testicular cells, the cells were 

resuspended in staining buffer (PBS + 3% FBS) for 20 mins on ice, stained with the primary 

antibodies, washed with staining buffer, incubated with secondary antibodies for 20 mins on 

ice, resuspended in staining buffer and sorted by FACS.

For FACS, gating was set based on size (FSC) to remove small debris and doublets. We then 

used unstained and secondary antibody only (primary omitted) stained as negative controls 

for gating unstained and false positive stained cells respectively (Figure S3A, middle).

cDNAs were generated using the Iscript reverse transcriptase (RT) kit, according to the 

manufacturer’s protocol (Bio-Rad). The RT product and primer pairs (Table S4) were mixed 

with iQ SYBR Green supermix (Bio-Rad) and PCR was performed using an iCycler real-

time PCR machine according to the manufacturer’s protocol (Bio-Rad). The production of 

the amplicon was measured by SYBR green fluorescence and the threshold cycle (Ct) values 
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were calculated. Ct values obtained were normalized to Ct values for the ribosomal protein 

RPL19 (L19) gene.

Immunohistochemical analysis—Testicular biopsies were fixed for 6 h in 10% neutral-

buffered formalin, dehydrated in a series of ethanol washes of different concentration and 

embedded in paraffin using standard procedures. Sections were deparaffinized two times in 

xylene, followed by serial dilutions of ethanol. Unmasking was performed with 10 mM 

sodium citrate buffer, pH 6.0, using a steamer (IHCWORLD) for 40 min. Endogenous 

peroxidase activity was inactivated by incubation in 0.3% hydroperoxide in methanol for 15 

min. Blocking was performed by incubating in 3% serum (from the species that the 

secondary antibody was raised in) for 30 min at room temperature. The sections were then 

incubated overnight with the primary antibody at 4°C, incubated with secondary antibody 

for 1 h at room temperature, and peroxidase activity was detected using the Vectastain ABC 

kit (Vector Laboratory, Inc., Burlingame, CA, USA) and 3,3′-diaminobenzidine 

tetrahydrochloride (DAB) solution. Nuclei were counterstained with hematoxylin. After 

dehydration, a coverslip was placed over the sections with mounting medium. The sections 

were viewed with a Leica DMI6000 B inverted microscope (Leica). We noted that FGFR3 

although a cell surface marker was found to be nuclear as reported previously (Durcova-

Hills et al., 2006). Similarly, EGR4 a DNA-binding protein was reported to be cytoplasmic 

(Hadziselimovic et al., 2011). Although LPPR3 displayed different nucleic staining patterns, 

it is a lipid phosphate phosphatase that is known to localizes to the plasma membrane (Yu et 

al., 2015).

Immunofluorescence analysis—Sections were deparaffinized two times in xylene, 

followed by serial dilutions of ethanol. Unmasking was performed with 10 mM sodium 

citrate buffer, pH 6.0, using a steamer (IHCWORLD) for 40 min. Blocking was performed 

by incubating with 5% serum (from the species that the secondary antibody was raised in) 

for 1 hour at room temperature. The sections were then incubated overnight with the primary 

antibody at 4°C and incubated with secondary antibody for 1 h at room temperature. The 

nuclei were counterstained with DAPI, a coverslip was placed over the sections with 

mounting medium, and the images were viewed using a Leica DMI4000 B fluorescence 

microscope (Leica).

Whole mount staining—Human seminiferous tubules whole mount immunofluorescence 

was performed as previously described (Di Persio et al., 2017). Briefly, seminiferous tubules 

were disentangled from testicular biopsies and immediately fixed in 4% PFA at 4° C for 4 h. 

After fixation, the seminiferous tubules were permeabilized with 0.5% Triton X-100 in PBS 

and treated with 1%BSA and 5% Normal Donkey Serum in PBS overnight at 4°C. 

Following three 30 min washes, the seminiferous tubules were incubated overnight at 4°C 

with primary antibody. Seminiferous tubules were washed three times for 30 min and 

incubated 2 h at room temperature with species-specific secondary antibodies conjugated to 

Alexa488, Cy3 or Cy5 fluorochromes. Following three 30 min washes, the nuclei were 

stained with TO-PRO-3. The primary and secondary antibody incubations and all washes 

were performed in 1% BSA 0.1% Triton X-100 in PBS. Seminiferous tubules were mounted 

on slides with Vectashield mounting medium and observed with a Leica TCS SP2 confocal 
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microscope with 40x oil immersion objective. Quantification of relative expression levels of 

selected markers was performed using LAS AF Software. Mean fluorescence or mean 

amplitude was assessed in selected ROI of a single Z or on Z-stacks, respectively.

QUANTIFICATION AND STASTISTICAL ANALYSIS

Single Cell Seq analysis—7,974 ITGA6+ and 10,749 unfractionated cells from adult 

testes (total from 2 individuals) and 6,086 ITGA6+ cells and 8,776 unfractionated cells from 

neonatal testes (total from 2 individuals) were used for scRNaseq analysis. The statistical 

method used to identify DEGs and pseudotime trajectory analysis are provided in the 

detailed methods above.

Immuno-staining quantification—Quantification of the immunostainings was 

performed by counting the positively stained cells in different fields of view. The number of 

cells counted is indicated on the respective figure or its figure legend.

qRT-PCR—mRNA levels were normalized to the housekeeping gene, RPL19, and 

quantified using the delta-delta Ct method. The values shown are mean ± SD from two 

biological replicates.

DATA AND SOFTWARE AVAILABILITY
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Highlights

• Neonatal and adult human testicular cell subsets are defined by scRNA-seq 

analysis

• The neonate contains both primordial germ cell- and SSC-like cells

• Numerous adult spermatogonial states with distinct markers are defined

• Neonatal and adult testicular “niche” cells and factors are defined
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Figure 1. Identification of Adult Human SPG Subsets
(A) tSNE plot of adult human testes cell clusters defined by scRNA-seq analysis. The 

fraction of the total cells in each subset is: spermatogonia (SPG) (39%), spermatocyte (SPC) 

(6%), spermatid (ST) (1%), Leydig cell (LC) (2%), peritubular myoid cell (PTM) (24%), 

endothelial cell (EC) and blood (27%), and macrophages (M) (1%).

(B) SPG subsets defined by clustering analysis. The tSNE plot (top) was generated from the 

cells in the SPG subset defined in (A). The feature plots (bottom left) and violin plots 

(bottom right) show the expression pattern of markers (both known and new) that chart the 

progression of human SPG.
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(C) Cell cycle gene expression in SPG subsets. The ridge plots show the expression of S, 

G2-M, and S-G2-M phase genes (TOP2A, CDK1, and MKI67, respectively). The MKI67 
tSNE features plot corroborates that Early diff-SPG and Diff-SPG cells tend to express 

higher levels of proliferation genes than spermatogonial stem cell 1 (SSC-1) and SSC-2 

cells.

(D) Heatmap of G2-M and S phase genes in the SPG subsets.

(E) Developmental timeline of SPG cell subsets. The top shows Monocle pseudotime 

trajectory analysis of the SPG cell subsets defined in (B).The arrow indicates the 

developmental direction, based on the SSC-1 and Diff-SPG subsets being the least and most 

advanced, respectively. The red box labels a branch of cells that evidence suggests are TCs 

(see text). The expression pattern of marker genes is plotted along the pseudotime axis 

(bottom; same genes as those shown in B). The marker genes are predominantly expressed 

in the SPG subsets indicated in the vertical bar on the right. ED, early differentiating; D, 

differentiating.
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Figure 2. Identification and Characterization of Human Undifferentiated SPG Subsets
(A) tSNE plot from Figure 1B showing that TCs are predominantly at the juxtaposition point 

of SSC-1, SSC-2, and Early diff-SPG subsets (top). The feature plot shows the expression of 

some gene markers enriched in TCs (bottom). The arrows indicate the developmental 

directionality of the cell subsets, based on our model (see text).

(B) Heatmap of top differentially expressed genes (DEGs) from the three cell subsets related 

to TCs compared to their expression in TCs themselves. DEGs that specifically mark the 

SSC-1, SSC-2, and Early diff-SPG subsets were defined as genes enriched in these 3 

respective cell clusters when TCs were excluded. The blue and green boxes denote TCs 
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expressing SSC-1A- and SSC-2-enriched genes. The red box marks TCs expressing genes 

enriched in SSC-1A, SSC-2, and Early diff-SPG.

(C) tSNE plot from Figure 1B showing the three SSC-1 subsets identified using PAGODA2.

(D) tSNE plot of only the 3 SSC-1 subsets.

(E) Feature plot, violin plot, and Monocle pseudotime trajectory expression pattern of 

SSC-1A, -1B, and -1C marker genes.

(F) Pseudotime trajectories of the adult SPG subsets shown in the key.
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Figure 3. Identification and Characterization of Primitive Undifferentiated SPG Markers
(A) IHC analysis of 5 candidate SSC marker proteins (representative images of 2 biological 

replicates). The genes encoding these proteins are predominantly expressed in the SSC-1B 

region, as shown by the tSNE plot. As a control, we included UTF1, a previously defined 

undifferentiated SPG marker (Di Persio et al., 2017) whose gene is broadly expressed in 

SPG, as shown in its tSNE plot.

(B) IF analysis of adult testis sections stained with the antibodies shown. Anti-LPPR3 

produced two different staining patterns: speckled (SPEK [pink arrow]) and whole 

nucleoplasm (NP [light blue arrow]). The cells were co-stained with an antibody against 

UTF1. Quantification of two biological replicates showed that both PIWIL4 and LPPR3 are 

expressed in a more selective set of cells than is UTF1. Scale bar: 50 μM.
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(C) IF analysis of intact human seminiferous tubules (whole mount) stained with the 

indicated antibodies (representative images of 2 biological replicates). Dashed lines outline 

the seminiferous tubules. The yellow arrows label PIWIL4+GFRA1+ and LPPR3+GFRA1+ 

cells, whereas the light blue arrows label GFRA1 single-positive cells. Scale bars: 100 (top) 

and 10 μM (bottom).

(D) FACS plot of adult human testicular cells stained with the antibodies shown (left). The 

percentage of positive and negative cells are indicated in upper and lower regions, 

respectively; <0.1% positive cells stained with secondary antibody only (see Figure S3A). 

qPCR analysis was performed on sorted positive cells and unfractionated cells. The values 

shown are from FACS-purified cells relative to unfractionated cells (mean ± SD from two 

biological replicates), the latter of which was given a value of 1 (dotted line). The 10 genes 

listed first are known undifferentiated SPG markers or candidate SSC markers identified 

herein. The last gene VIM is a somatic cell-expressed gene and, thus, serves as a negative 

control.
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Figure 4. Identification and Characterization of Neonatal Germ Cells
(A) tSNE plot of neonatal human testicular cells analyzed by scRNA-seq analysis. Cell 

subsets were identified based on the expression pattern of known marker genes (Figure 

S4A). The fraction of the total cells in each subset is: germ cells (1%), Sertoli cell (SC) 

(59%), LC (32%), PTM (5%), and EC and blood (4%).

(B) Neonatal germ cell subsets and markers defined by clustering analysis using Monocle. 

The tSNE plot (top) was generated from the cells in the germ subset defined in (A). Violin 

plots (bottom) show the expression pattern of selected PGCL and PreSPG gene markers.

(C) Pearson correlation analysis of the cumulative expression of genes in PGCs at the 

gestational ages indicated with neonatal cell clusters. The values at top are the R2 values.

(D) Developmental timeline of PGCs and neonatal germ cell subsets. The top shows 

Monocle pseudotime trajectory analysis of the neonatal germ cell subsets defined in (B), as 

well as PGCs at the gestational ages indicated from Guo et al. (2015). The arrow indicates 
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the developmental direction, based on the 4-week PGC and PreSPG subsets being the least 

and most differentiated, respectively. The expression pattern of marker genes is plotted along 

the pseudotime axis (bottom left) and with violin plots (bottom right).

(E) Representative images of the expression pattern of 3 PGCL protein markers in a single 

neonatal (D7) human testis, as determined by IHC analysis. Red arrows mark positive cells. 

Gray dotted lines mark the approximate margins of the seminiferous tubules. As a positive 

control, cells were stained with an antibody against UTF1, which is encoded by a gene 

expressed in most neonatal germ cells (Figure 4D). The violin plot below shows 

quantification of positively stained cells. Scale bar: 50 μM.

(F) Relationship of neonatal germ cells with PGCs and adult SSCs. tSNE analysis and violin 

plots of PGCs (from Guo et al., 2015), neonatal germ cell subsets (defined in B, above) and 

the SSC-1 subset. The violin plots show stage-specific marker genes.

(G) The neonatal testis has adult SSC-like cells. The top shows Monocle pseudotime 

trajectory analysis of the indicated germ cell subsets. The arrow indicates the developmental 

direction. The expression pattern of marker genes is plotted along the pseudotime axis 

(bottom).
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Figure 5. Characterization of Somatic Cell Populations in Human Testes
(A) tSNE plot of adult and neonatal testicular somatic cells. Clusters were annotated based 

on known markers shown in (D)–(F). The percentage of the total in each subset is neonatal 

SC (20.0%), neonatal LC (31.3%), neonatal PTM (1.3%), adult SC (0.2%), adult LC 

(23.0%), and adult PTM (24.2%).

(B) tSNE plot of the same clusters as in (A) with original sample source identities (neonatal 

and adult) indicated.
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(C) tSNE plot of the same clusters as in (A) marked by phase of cell cycle, as determined by 

average expression of G2-M and S phase gene expression (Kowalczyk et al., 2015) in each 

cell cluster relative to each other.

(D) Heatmap showing the expression profile of neonatal and adult somatic cell marker 

genes.

(E) LC markers used for cluster annotation. Monocle pseudotime trajectory of neonatal and 

adult LC subsets (top). Heatmap shows the expression profile of neonatal and adult LC 

markers (bottom).

(F) PTM markers used for cluster annotation. Monocle pseudotime trajectory of neonatal 

and adult PTM subsets. Heatmap shows the expression profile of neonatal and adult PTM 

markers (bottom).
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Figure 6. Receptor-Ligand Signaling Interactions in Human Testes
(A and B) Notch ligand-receptor co-expression in the neonatal testis. tSNE plot of all 

neonatal cells (from Figure 4A) showing expression of xthe receptor NOTCH2 (in neonatal 

SC) and the ligands DLL3 (in neonatal germ cells) (A) and DLK1 (in neonatal PreSPG, LC, 

and PTM) (B).The inset shows tSNE plot of expression of only the ligand genes in neonatal 

germ cells (from Figure 4B). The dotplot shows expression of the indicated genes in the cell 

subsets shown. Note that percentage of positive cells indicated is a conservative estimate 

from scRNA-seq, an insensitive technique.

(C) Kit ligand-receptor co-expression in the neonatal testis. KIT is expressed in neonatal 

germ cells and the ligand KITLG is expressed in neonatal SC and EC.
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(D) Hh ligand-receptor co-expression in the neonatal testis. The Hh receptor PTCH1 is 

expressed in neonatal PreSPG, LC, and PTM. The Hh ligand DHH is expressed in neonatal 

SC.
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Figure 7. Human Male Gametogenesis Model and Neonatal Signaling
(A) Model. Black arrows indicate the direction of differentiation. Grey arrows indicate 

transitions between different cell states. The expression pattern of key marker genes (both 

previously known and discovered in this study) are indicated by boxes (other marker genes 

are listed in Table S2).

(B) Top: neonatal and adult somatic cells and selected marker genes. Bottom: signaling 

interactions between cells in the neonatal testes predicted from the scRNA-seq data shown in 

Figure 6. Gray arrows, somatic cell-somatic cell signaling. Black arrows, somatic cell-germ 

cell signaling.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibody

Rabbit polyclonal anti-PLPPR3 antibody against 
human phospholipid phosphatase related 3.

Atlas Antibodies Cat # HPA057034; RRID:AB_2683316

Monoclonal mouse IgG2B against TSPAN33 R&D Systems Cat # MAB8405; RRID:AB_10629311

Rabbit polyclonal antibody to PIWIL4 (HIWI2) 
from human, mouse and rat. LifeSpan BioSciences Cat # LS-C482396; RRID:AB_2782961

Rabbit polyclonal antibody against FSD2 GeneTex Cat # GTX131769; RRID:AB_2782962

Rabbit polyclonal antibody to EGR-4 (EGR4) from 
human and mouse.

LifeSpan BioSciences Cat # LS-C402257; RRID:AB_2782963

Monoclonal mouse antibody against human 
FGFR3

Novus Biologicals Cat # NBP2-52468; RRID:AB_2782964

Rabbit Polyclonal antibody against PIM2 GeneTex Cat # GTX113928; RRID:AB_2037694

Rabbit polyclonal IgG antiboday against POU5F1 Novus Biologicals Cat # NB100-2379; RRID:AB_2167565

Rabbit polyclonal antibody to ETV4 (PEA3) from 
human and mouse

LifeSpan Biosciences Cat # LS-C335603; RRID:AB_2782965

Monoclonal Antibody against UTF1 EMD Millipore Cat # MAB4337; RRID:AB_827541

Biological Samples

Neonatal Day 2 Day 2 infant testis NA

Neonatal Day 7 Day 7 infant testis NA

Adult 1 Age 37 years Adult testis biopsy NA

Adult 2 Age 42 years Adult testis biopsy NA

Critical Commercial Assays

10x Chromium Single Cell A Chip Kit 10x genomics Cat# 1000009

iScript cDNA synthesis Kit BioRad Cat# 170-8891

SsoAdvanceD Universal SYBR Green Supermix BioRad Cat# 172-5274

Deposited Data

Filtered gene matrix, Gene list and cell barcodes Cell Ranger output from this paper NCBI/GEO data base accession GEO: GSE124263

Experimental Models: Organisms/Strains

Human testis samples Homo Sapiens Informed Consent and IRB approved

Oligonucleotides

See Table S4 for list of primers used for qRT-PCR This Paper NA

Software and Algorithms

Cell Ranger Version 2.0 10x genomics NA

Seurat R package Version 2.0 Butler et al., 2018, Satija etal., 
2015

https://satijalab.org/seurat/

Monocle R package Version 2.4.0 Qiu et al., 2017 http://cole-trapnell-lab.github.io/monoclerelease/

Cell Rep. Author manuscript; available in PMC 2019 March 06.
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REAGENT or RESOURCE SOURCE IDENTIFIER

R Version 3.4 or higher https://www.r-project.org NA

R studio Version 1.0.143 https://www.rstudio.com NA

PAGODA Version 2.0 Peter Kharchenko and Nikolas 
Barkas (NA). pagoda2: Single 
CellAnalysis and Differential 
Expression. R package version 
0.0.0.9002.

https://github.com/hms-dbmi/pagoda2

Cell Rep. Author manuscript; available in PMC 2019 March 06.

https://www.r-project.org
https://www.rstudio.com
https://github.com/hms-dbmi/pagoda2

	SUMMARY
	Graphical Abstract
	In Brief
	INTRODUCTION
	RESULTS
	Cell Subsets in the Adult Human Testis Defined by scRNA-Seq
	Identification of SPG Cell Clusters
	Transition Cells Bridging SSCs with Differentiating SPG
	Identification of 3 Undifferentiated SPG States Expressing Distinct SSC Marker Genes
	Identification of Candidate SSC Marker Proteins
	Identification of Cell Subsets in Testes from Human Neonates
	Germ Cell Subsets in Neonatal Human Testes
	Identification of PGCL Marker Proteins
	Neonatal Germ Cells Progress to a Near-Adult SSC State
	Somatic Cells in Developing and Adult Human Testes
	Ligand and Receptor Gene Expression in Human Neonatal Testes

	DISCUSSION
	Neonatal Male Germ Cell Development
	Cell Signaling during Neonatal Testicular Development
	SPG Subsets
	SSC Markers

	STAR★METHODS
	CONTACT FOR REAGENT AND RESOURCE SHARING
	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	Subject details
	Human testis samples preparation

	METHODS DETAILS
	10X Genomics library preparation
	Mapping, cell identification and clustering analysis
	Cell trajectory analysis
	FACS and qRT-PCR analysis
	Immunohistochemical analysis
	Immunofluorescence analysis
	Whole mount staining

	QUANTIFICATION AND STASTISTICAL ANALYSIS
	Single Cell Seq analysis
	Immuno-staining quantification
	qRT-PCR

	DATA AND SOFTWARE AVAILABILITY

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table T1



