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Abstract

Computational Framework for the Ab Initio Description of Noncollinear Magnetism

By

Guy Carleton Moore

Doctor of Philosophy in Engineering Science - Materials Science and Engineering

University of California, Berkeley

Professor Kristin A. Persson, Chair

The accurate description of correlated electronic states in magnetic strongly correlated sys-
tems, e.g. many transition metal oxides (TMOs), presents a significant challenge in density
functional theory (DFT), especially when dealing with noncollinear magnetism. Identify-
ing noncollinear ground states is inherently complex and computationally demanding due
to the high-dimensional landscape of spin configurations and the critical role of spin-orbit
coupling. This dissertation addresses these challenges through a sequential and integrated
computational approach, encompassing the development of workflows, implementation of
new exchange-correlation (XC) functionals, and the introduction of a novel optimization
algorithm for identifying noncollinear magnetic ground states.

First, we present a high-throughput computational study using the DFT+U method to cor-
rect self-interaction errors (SIE) in the description of correlated electronic states. This study
focuses on the accurate determination of Hubbard U and Hund J parameters using the linear
response (LR) methodology. We compute the U and J values for transition metal d-electron
states in over 1000 TMOs, providing a valuable reference for researchers. An automated
workflow developed within the atomate framework enables these calculations on massively
parallel supercomputing architectures. The applicability of this workflow is demonstrated
through the calculation of spin-canting magnetic structures and unit cell parameters of the
multiferroic olivine LiNiPO4, showing strong effects of Ni-d U and J corrections and signifi-
cant improvements in computed lattice parameters when including an O-p U value.

Building on this foundation, we expand the source-free (SF) exchange-correlation (XC) func-
tional developed by Sangeeta Sharma and co-workers to plane-wave DFT based on the pro-
jector augmented wave (PAW) method. This implementation, integrated within the VASP
source code, leverages parallel three-dimensional fast Fourier transforms (FFTs) for im-
proved computational efficiency. We explore the enhanced convergence behavior and the
impact on non-collinear magnetic ground states when applying the SF constraint to the
GGA-PBE+U+J functional. Our findings show significantly improved agreement with ex-
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perimentally measured magnetic structures. Additionally, we analyze the importance of
probability current densities and XC torque in spin-polarized systems, highlighting con-
nections to spin-current density functional theory (SCDFT) and paving the way for future
extensions of the SF corrected XC functional.

Finally, we propose and implement a novel hybrid meta-heuristic optimization algorithm,
SpinPSO, designed to identify noncollinear global ground states in magnetic systems. This
algorithm combines particle swarm optimization (PSO) with atomistic spin dynamics, al-
lowing for the accurate determination of magnetic ground states using inputs directly from
non-collinear DFT calculations. The workflow, implemented in atomate, is optimized for
high-performance computing environments. SpinPSO successfully converges to experimen-
tally resolved magnetic ground states for diverse test materials exhibiting exotic spin tex-
tures.

This dissertation demonstrates a comprehensive and integrative approach to tackling the
complexities of correlated electronic states and magnetic ordering in TMOs, contributing
useful computational tools and methodologies to the field of condensed matter physics. Sec-
tions, figures, and tables are included, with permission, from: Ref. [1] (Copywrite 2024
American Physical Society), Ref. [2] (Copywrite 2024 Springer Nature), Ref. [3] (Copywrite
2023 arXiv), and Ref. [4] (Copywrite 2023 arXiv).
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To Grandpa Jay, and his memory

To dream the impossible dream
To fight the unbeatable foe

To bear with unbearable sorrow
To run where the brave dare not go

...

- Written and composed by
Joe Darion and Mitch Leigh
in “Man of La Mancha”

...
“Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!
Beware the Jubjub bird, and shun
The frumious Bandersnatch!”

...
And, as in uffish thought he stood,
The Jabberwock, with eyes of flame,

Came whiffling through the tulgey wood,
And burbled as it came!

...

- Lewis Carroll
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of her group, who have already welcomed me as one of their own.

This research would not be possible without the funding and academic freedom provided
by the Department of Energy Computational Science Graduate Fellowship (DOE CSGF)
under grant DE-SC0020347. I thank my undergrad mentors at LBNL, including Dr. Andy
Nonaka, Dr. Changho Kim, Dr. Ann Almgren, Dr. John Bell, and Dr. Dan Martin, for
their support, encouraging me to apply, and guiding me through the application process.



xiv

This includes my undergraduate professors who gently directed me towards graduate school
and to apply for fellowships, which includes Dr. Elizabeth Basha, Dr. Aleksei Beltukov,
Dr. Kieran Holland, and Dr. Rahim Khoie at the University of the Pacific. In addition
to the generous public funds, the academic community of DOE CSGF is truly welcoming,
astounding, and wide-reaching. I’ve felt continuous support and engagement from my friends
in the program. I look forward to providing the same mentorship and comradeship to others
in current and future classes of the program. I am eternally grateful for public funding
in science such as DOE CSGF and the opportunities it provides to students to flourish in
academia and the national lab environment.

I would like to thank my family next for their continuous and unwavering care for my
education. I firmly believe that I would not be where I am now if it wasn’t for my mom’s
decision to homeschool me until college and enroll me in community college courses starting
at the age of thirteen. While I don’t consider myself very bright, I’m curious to an extent that
is hard to sequester. My mom’s guidance and teaching allowed me to follow my academic
interests without getting burnt out or losing the love of the subject. My dad has always
supported my dreams and ambitions in a loving and gentle way. He is my role model in
terms of both work ethic and how not to take myself too seriously. I’m certain that most
parents of PhD students do not read their child’s papers; mine listened to them using a
text-to-speech app! Rachel, my sister, is one of my best friends. She has always been there
for me through it all, and she has become so interested in my work that she is letting me
give her Python coding lessons on weekends.

Next, I would like to thank my Grandma Karin and Grandpa Jay, to whom this disser-
tation is dedicated. I would not have found my love for math and science if it wasn’t for my
grandpa. As a set designer for Broadway and film during his professional career, he always
found a way to weave together art and mathematics. My sister and I spent countless hours
in “math camp,” which would span several days at a time at my grandparents house. I was
only able to enjoy it and avoid burnout because Grandma knew when we were approaching
saturation and when it was time for a walk outside. I only wish you were here to chat physics
now, Grandpa.

If I were to thank all of my friends who showed their support for me during my PhD, it
would take many more pages. I’ll start from oldest to newest. My friends Gustavo Bartolo
and Kyle Poe from undergrad were always willing to share in the struggles of grad school,
even though they were across the country, in completely different research fields. Somehow we
are still able to have fascinating and in-depth conversations about math and physics. Next,
I’d like to thank my good friend and colleague Dr. Shivani Srivastava, for her incredible
friendship, support, and mentorship (even though she is only one year my senior). Having a
friend close by to have a quick coffee and confide in was invaluable. I look forward to many
more years of friendship and collaboration. Lastly, to Bo Lotti, my neighbor turned friend:
I’m so happy that I get to experience this potent and exciting part of our life together. He
keeps me inspired on a creative level and also reminds me not to take myself too seriously.

And of course, to Shelly, my love and best friend. I could not have made it this far if
it wasn’t for your reminders to take a breath of fresh air and smell the wild roses. This



xv

isn’t to mention the countless existential crises and feelings of self-doubt that you helped
me navigate. You remained supportive of my academic career through it all, despite the
challenges it has presented for us. To say that I lucked out meeting you would be an
enormous understatement.

In conclusion, I extend my deepest gratitude to all who have supported me throughout
my tilting at windmills. Your guidance, support, and encouragement have been invaluable,
and I am forever grateful.



1

Chapter 1

Introduction

1.1 In search of the magnetic ground-state, an alleged

ground-truth

Beyond the horizon of the place
we lived when we were young
In a world of magnets and
miracles
Our thoughts strayed constantly
and without boundary
The ringing of the division bell
had begun
...
Leaving the myriad small
creatures trying to tie us to the
ground
To a life consumed by slow
decay

Pink Floyd

The arts magnetic
The flow athletic
Dimensions is effected whether
static or kinetic
And power blast pressure amass
beyond measure

dj honda feat. Mos Def
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The magnetic state of materials couples directly to their functional performance in appli-
cations including quantum computers, spintronics, multiferroics, magnetic refrigeration, and
alternatives to rare-earth permanent magnets [5]. In order to design materials for improved
functionality, it is necessary to correctly identify the magnetic ground state and its correla-
tion with other properties. While the collinear magnetic ground states have been addressed
successfully using density-functional-theory (DFT) automatic workflows [6], non-collinear
magnetic ground-states - attributable to a variety of different phenomena such as spin-orbit
coupling (SOC) [7], to magnetic frustration, both geometric and other [8, 9], are inherently
more challenging.

1.2 Theoretical Approach and Background

In this section, we will briefly layout the theoretical background for the computational and
theoretical approaches of this study, which will include density functional theory (DFT) in
Section 1.2.1, as well as atomistic spin dynamics (ASD) in Section 1.2.2.1 and particle swarm
optimization (PSO) in Section 1.2.2.2. The latter two methods will set the stage for the
hybrid physics informed meta-heuristic optimization algorithm, SpinPSO, and accompanying
workflow for optimizing to the global noncollinear magnetic ground-state.

1.2.1 Ab initio foundations

1.2.1.1 From the Many-Body Schrödinger Equation to Density Functional
Theory

The foundation of quantum mechanics is the Schrödinger equation, which describes how
the quantum state of a physical system changes over time. For a system of N interacting
electrons, the many-body time-independent Schrödinger equation is:

ĤΨ(r1, r2, . . . , rN) = EΨ(r1, r2, . . . , rN), (1.1)

where Ĥ is the Hamiltonian operator, given by

Ĥ = −
N∑
i=1

ℏ2

2m
∇2

i +
∑
i<j

e2

|ri − rj|
+

N∑
i=1

vext(ri). (1.2)

Solving this equation exactly for many-electron systems is computationally infeasible due to
the exponential growth of complexity with N .

1.2.1.2 Hartree-Fock Theory

To make the problem tractable, approximations are introduced. The Hartree-Fock (HF)
method is an important approximation that simplifies the many-body problem by considering
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a single Slater determinant as an approximate wavefunction:

Ψ(r1, r2, . . . , rN) =
1√
N !

det[ψi(rj)], (1.3)

where ψi are the single-electron orbitals.
Following from the statement made in Ref. [10], the HF energy can be stated in the

convenient form

EHF =
1

2

∑
σσ′

∫
dr

∫
dr′ uσσ′(∆r)

[
ρσ(r)ρσ′(r′)− ζσσ′(r, r′)ζσ′σ(r

′, r)
]
, (1.4)

where ∆r = r− r′, and uσσ′(∆r) = e2/|∆r| is the Coulomb kernel. The electron densities,
ρσ, and ζσσ′ can be defined in terms of single-electron wave functions as

ρσ(r) =
∑
i

ψ∗
σ,i(r)ψσ,i(r) (1.5)

ζσσ′(r, r′) =
∑
i

ψ∗
σ,i(r)ψσ′,i(r

′). (1.6)

The non-spin-polarized exchange contribution to the energy is given by [11]:

Ex = −e
2

2

∑
i,j

∫ ∫
dr dr′

ψ∗
i (r)ψi(r

′)ψ∗
j (r

′)ψj(r)

|r− r′|
, (1.7)

which cannot be stated in terms of the electron density ρ(r) alone. While HF theory captures
exchange effects exactly, it does not fully account for electron correlation, which is crucial
for an accurate description of many-body systems. This approximation comes from the
assumption of the single Slater determinant used in HF theory, in Equation 1.3.

1.2.1.3 The Exchange Hole

Along these lines, in HF theory, the exchange interaction is introduced through the concept of
the exchange hole, which represents the reduction in the probability of finding two electrons
with the same spin close to each other. The Hartree-Fock energy can then be conveniently
expressed as the following pairwise potential,

EHF =
1

2

∑
σσ′

∫
dr

∫
dr′ ũσσ′(∆r)ρσ(r)ρσ′(r′), (1.8)

with

ũσσ′(r, r′) = uσσ′(∆r)

(
1− ζσσ′(r, r′)ζσ′σ(r

′, r)

ρσ(r)ρσ′(r′)
δσσ′

)
. (1.9)

It is interesting to note the links between ũσσ′(r, r′)/uσσ′(∆r) and the pairwise correlation
functions between electron densities of spin σ and σ′ [10, 11]. This expression provides an
interdependence between the pairwise potential between electrons and their pair correlation
function, which in principle should be calculated self-consistently, in addition to the electron
density.
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1.2.1.4 Kohn-Sham Equations and Density Functional Theory

DFT addresses the limitations of HF theory by introducing the electron density ρ(r) as
the central variable. The Hohenberg-Kohn theorems [12] provide the foundation of DFT,
stating that the ground-state properties of a system are uniquely determined by its electron
density. The Kohn-Sham (KS) approach [13] reformulates the problem in terms of electrons
interacting in an effective potential:(

− ℏ2

2m
∇2 + vKS(r)

)
ψi(r) = ϵiψi(r), (1.10)

where the KS potential vKS is given by:

vKS(r) = vext(r) + e2
∫

ρ(r′)

|r− r′|
dr′ + vxc(r). (1.11)

Here, vxc(r) is the exchange-correlation potential, which, in principle should incorporate all
many-body effects.

1.2.1.5 Exchange-Correlation Functionals

The exchange-correlation energy Exc[ρ] is a functional of the electron density and is crucial
for the accuracy of DFT. However, an exact mathematically tractable form of Exc[ρ] is
not known, so several assumptions are needed [11]. Several approximations exist for Exc,
including [11, 14]:

• Local Density Approximation (LDA): Assumes Exc depends only on the local density
ρ(r).

• Generalized Gradient Approximation (GGA): Includes the gradient of the density
∇ρ(r) to account for inhomogeneities.

• Hybrid Functionals: Combine exact exchange from HF theory with GGA.

1.2.1.6 The Hubbard functional

DFT is a workhorse of computational materials science. However, the proper treatment of
electronic exchange and correlation within the framework of DFT is a long-standing challenge
[15]. Local density approximation (LDA) and generalized gradient (GGA) [14] functionals
were developed to add exchange-correlation (XC) contributions to the energy functional
within the Kohn–Sham (KS) formalism [13]. However, numerous studies have shown that
these XC functionals have an associated self-interaction error (SIE) [15–17]. This short-
coming ultimately derives from the difficulty in quantifying exact exchange and correlation
effects, without solving the many-body Schrödinger equation, using only density-based ap-
proximations.
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The Hubbard functional is a corrective functional, in the sense that it involves adding
a corrective term EHub − Edc on top of some base functional EDFT (typically a local or
semi-local functional), resulting in a total energy functional

EDFT+U+J

[
ρ,
{
nσ

γ

}]
= EDFT [ρ]

+ EHub

[{
nσ

γ

}]
− Edc

[{
nσ
γ

}]
= EDFT [ρ] + EU/J

[{
nσ

γ

}]
(1.12)

where EHub and Edc are defined and discussed below. The (nσ
γ)mm′ = ⟨φγm| ρ̂σ |φγm′⟩ are

matrices that represent the projection of the (spin-dependent) density operator onto Hubbard
subspaces (indexed γ) defined by some set of orbitals |φγm⟩. These orbitals are typically
atom-centred, fixed, spin-independent, localised, and orthonormal, often corresponding to
the 3d or 4f subshell of a transition metal or lanthanide. The nσ

γ occupation numbers are
the corresponding traces of nσ

γ matrices.
In the following paragraphs, we will provide a summary of some of the most well known

formulations of DFT+U(+J). We note that because we are interested in the fully localized
limit (FLL), we will not discuss extensions of DFT+U+J to metallic systems, where an
“around mean field” (AFM) double-counting correction may be more appropriate [18].

Starting from DFT+U+J implementations of the highest complexity, and moving for-
ward through increasing levels of simplification, we introduce the rotationally invariant im-
plementation proposed by Liechtenstein et al. [19]. Within this flavor of DFT+U+J , EHub

and Edc take the following form

EHub =
1

2

∑
{m},γ,σ

⟨m,m′′|Vee|m′,m′′′⟩(nσ
γ)mm′(n−σ

γ )m′′m′′′

+
1

2

∑
{m},γ,σ

{
⟨m,m′′|Vee|m′,m′′′⟩ − ⟨m,m′′|Vee|m′′′,m′⟩

}
(nσ

γ)mm′(nσ
γ)m′′m′′′ (1.13)

Edc =
∑
γ

Uγ

2
nγ

(
nγ − 1

)
+
∑
γ,σ

Jγ
2
nσ
γ

(
nσ
γ − 1

)
, (1.14)

where ⟨·|Vee|·⟩ are the Coulomb integrals projected on the orbital basis, indicated by the
associated {m} set of quantum numbers [18–20]. This correction is parameterized by both
Hubbard Uγ and Hund Jγ coupling constants through the double-counting energy contribu-
tion, Edc.

As an aside, we note that it is possible to extend this formalism to non-collinear mag-
netism, which is essential for the inclusion of spin-orbit coupling (SOC). In this case the
on-site occupation matrix acquires off-diagonal elements (nσ,σ′

γ )mm′ , in accordance with the
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spinor extension of DFT, and DFT+U+J by extension [21–24]. Within this formalism, the
notion of “up” and “down” spin electron densities is tied to the eigenvalues of the nσ,σ′

, and
become n↑ = 1

2

(
n+ |m|

)
and n↓ = 1

2

(
n− |m|

)
, where m = [mx my mz]

T is the magnetiza-
tion, on-site or otherwise [25]. Equations 1.13 and 1.14 still apply to the non-collinear case,
provided (nσ

γ)mm′ are obtained from a spin-diagonalization of (nσ,σ′
γ )mm′ .

Simplified versions of Equations 1.13 & 1.14 were proposed by Dudarev et al. [26], and
later by Himmetoglu and coworkers [27], which approximate ⟨·|Vee|·⟩ using Slater integrals,
which can be parameterized through U and J values. There are many helpful explanations
for this approximation, such as those summarized in Refs. [18, 20].

In the spirit of following increasing levels of simplification, we will start with the Him-
metoglu implementation [27], inspired by the work of Solovyev et al. [28]. Using the Slater
integral parameterization of U and J , it is possible to approximate and simplify EU/J from
Equations 1.13 & 1.14 into the following

EU/J = EHub − Edc =∑
γσ

Uγ − Jγ
2

Tr
[
nσ

γ(1− nσ
γ)
]
+
∑
γσ

Jγ
2
Tr
[
nσ

γn
−σ
γ

]
. (1.15)

A well known further simplification of Equation 1.15, notwithstanding that it substantially
pre-dated the latter, is the formulation of DFT+Ueff put forth by Dudarev et al. [26] and
given by

EU = EHub − Edc =
∑
γσ

U eff
γ

2
Tr
[
nσ

γ(1− nσ
γ)
]
. (1.16)

This approximation arises by assuming spherical symmetry of the Coulomb interactions,
⟨·|Vee|·⟩ [18, 20, 27]. Within the simplified Dudarev DFT+Ueff of Equation 1.16, the effective
Hubbard U becomes U eff

γ = Uγ − Jγ [18, 20, 26].

1.2.1.7 Hubbard U and Hund J spin polarized linear response

The DFT+Ueff correction of Equation 1.16 adds a convex energy penalty to fractional occu-
pations of the orbitals that diagonalize nσ

γ , which can (in principle) counterbalance the SIE
present in these Hubbard subspaces. In the linear-response approach, one measures the cur-
vature in the total energy as a function of the subspace occupancy, and then chooses a value
U to match the observed curvature. Näıvely computing this energy curvature as a function
of the subspace occupancy would require a constrained DFT calculation, but one can recast
the problem and instead measure the energy curvature with respect to the magnitude vγ of
an on-site perturbing potential v̂γ =

∑
mm′ vγ |φγm⟩ ⟨φγm′ |. The energy functional is then

given by

E[{vγ}] = minρ(r)

E[ρ(r)] +∑
γ

vγnγ

 (1.17)
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from which one computes the response matrices

χγγ′ =
∂nγ

∂vγ′
. (1.18)

Thus far we have used a general index “γ” to represent each site. Conventionally, this index
refers purely to the atom γ on which the Hubbard site is centered. In this case, the Hubbard
parameter for that subspace is given by

Uγ =
(
χ−1
0 − χ−1

)
γγ

(1.19)

where χ and χ0 are the interacting, (or self-consistent) and non-interacting (or non-self
consistent) response matrices [16, 18]. We note that the sign of the response matrices in
Equation 1.19 is consistent with the foundational linear response body of literature, such
as in Ref. [16], however, they are defined as having opposite sign within VASP (Vienna ab
initio Simulation Package) [29], which is used throughout this thesis.

The above strategy does not delineate between spin channels: during the linear-response
calculations the spin-up and spin-down channels are perturbed simultaneously by the same
amount, i.e., v↑γ = v↓γ and we only observe the change in total occupancy nγ = n↑

γ + n↓
γ. If

we want to calculate J , one must instead consider the spin-dependent perturbation

v̂σγ =

{
+
∑

mm′ vγ |φγm⟩ ⟨φγm′ | σ =↑
−
∑

mm′ vγ |φγm⟩ ⟨φγm′ | σ =↓
(1.20)

and then construct a second set of response matrices which then relate to J in a completely
parallel approach [30] to the calculation of U in Equation 1.19.

A separate but ultimately equivalent strategy is to treat the spin channels separately
[17]. In this case a general index runs over both the atom index γ = {1, ..., N} and also the
two spin channels σ = {↑, ↓}. In this case the response matrices of Equation 1.18 become
rank-four tensors, i.e.,

χσσ′

γγ′ =
∂nσ

γ

∂vσ
′

γ′
. (1.21)

and now the equivalent of Equation 1.19 is

fσσ′

γγ =
(
χ−1
0 − χ−1

)σσ′

γγ
(1.22)

where now we must now prescribe how to map the 2×2 matrix fσσ′
γγ to the scalar parameters

Uγ = GU(f
σσ′
γγ ) and Jγ = GJ(f

σσ′
γγ ). Possible definitions for these mappings GU and GJ

are motivated and explored in detail in Ref. [17], but the end result is the following: there
are two possible approaches. In the first approach one can define this mapping in order to
recover the Uγ and Jγ that one would obtain using the conventional spin-agnostic approach
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of Equations 1.19 and 1.20. In this approach, the spin moment is permitted to vary during
a charge perturbation, and vice versa. We will hereafter refer to this as the “conventional”
strategy (in the language of Ref. [17] this is the “scaled” approach). Throughout this work,
unless otherwise stated, we will use the conventional strategy, which as the name suggests is
the one that has been in almost universal use to date.

In the second approach, one defines the mapping to impose the condition that the local
magnetic moment (local occupation) is held fixed during the perturbation while calculating
the Hubbard (Hund) parameter, specifically by means of the equations rather than in the
explicit sense of fixing these quantities using constrained DFT. We will refer to this as the
“constrained” approach (the “simple” approach in Ref. [17]). This approach has recently
been demonstrated to be the correct one for use with a DFT+U type functional “BLOR”
explicitly designed to impose the flat-plane condition upon subspaces [31]. The spin-polarized
linear response formalism permits us to compute the “constrained” approach U and J values
simultaneously, at no additional cost.

1.2.1.8 Link Between Exchange Integral and Heisenberg Exchange Constants

The exchange integral in HF theory has a direct connection to the Heisenberg exchange
constants Jij used to describe magnetic interactions in the Heisenberg model. In both the
quantum and classical Heisenberg models, the Hamiltonian for a system of spins is given by:

H = −
∑
⟨i,j⟩

JijSi · Sj, (1.23)

where Jij represents the exchange interaction between spins at sites i and j.
The HF exchange integral can be related to Jij by considering the energy contributions

from spin-spin interactions [32]. Specifically, the exchange integral measures the energy
gain due to the parallel alignment of electron spins, analogous to the exchange term in the
Heisenberg Hamiltonian. Thus, Jij can be interpreted as an effective exchange parameter
derived from the HF exchange integrals, capturing the interaction strength between localized
magnetic moments.

Furthermore, through the intuition of the Hubbard model and its extensions, the ex-
change constants can be directly related to Hubbard U and Hund J values [33]. However,
we will not dive too deeply into these relationships here, because the meaning of +U within
DFT+U is distinct from its definition within the Hubbard model, as well as from hopping
integrals [1].

1.2.1.9 Spin-Current Density Functional Theory

There are two primary approaches for incorporating magnetism in DFT. The first approach
is spin density functional theory (SDFT), in which a functional is defined with respect
to spin-up and spin-down electron densities, ρ↑(r) and ρ↓(r), respectively. The extension
of SDFT to non-collinear magnetism motivates a spinor representation of the functional,



CHAPTER 1. INTRODUCTION 9

inspired by the Pauli matrix spin-1/2 formalism. Under this reformulation, functionals of
ρ↑(r) and ρ↓(r) can be expressed in terms of total electron density ρ(r) = ρ↑(r) + ρ↓(r), and
magnetization, which in both collinear and non-collinear formulations obeys the relationship
|m(r)| = |ρ↑(r)− ρ↓(r)|, under a local diagonalization of the spinor 2 × 2 representation
[34]. Details on the connection between the spinor and density/magnetization formulation
of non-collinear DFT is touched on in Equation 2.52, Equation 2.54, and Equation 2.55 in
Section 2.2.2.4.

The second DFT formulation that incorporates non-collinear magnetism is current den-
sity functional theory (CDFT). This methodology is commonly used to incorporate elec-
trodynamic effects in time-dependent density functional theory (TDDFT) [35, 36]. The
“current” in CDFT conveys the reformulation of the functional of the ground state energy
to be minimized with respect to the spin current density js(r) ∝ ∇ × m(r), rather than
m(r), the magnetization field itself [37].

Several works have explored the theoretical justification for reformulating SDFT func-
tionals within the CDFT setting [37–39]. In particular, Sharma and coauthors show through
variational calculus that applying a divergence-free constraint to Bxc is equivalent to redefin-
ing the exchange correlation energy functional Exc[ρ,m] in terms of∇×m(r), Exc[ρ,∇×m],
which is consistent with CDFT methodology [38].

In conventional SDFT, the exchange correlation local potential fields can be expressed
as follows

vxc(r) =
1

2

(
v↑xc(r) + v↓xc(r)

)
Bxc(r) =

1

2

(
v↑xc(r)− v↓xc(r)

)
m̂(r), (1.24)

which are the complementary local potential fields for total electron density, ρ, and mag-
netization density, m, respectively, and m̂(r) is the unit vector in the direction of the
magnetization.

Spin-current density functional theory (SCDFT) generalizes DFT to account for spin-
dependent phenomena and spin currents [40, 41]. The basic variable in SCDFT are spin
and probability currents, which we will explore in more detail in the Methods chapter.
The Kohn-Sham equations in SCDFT are modified to include spin and current-dependent
potentials: ∑

β

{
1

2m

(
−iℏ∇+

e

c
Aeff(r)

)2

+ Veff(r)

}
αβ

ψβ(r) = ϵψα(r) (1.25)

where Aeff and Veff are the effective magnetic vector and scalar potentials, respectively.

1.2.2 Physics-informed optimization

This section provides the theoretical background that inspired our algorithm SpinPSO for
identifying noncollinear magnetic ground-states, with input from noncollinear DFT data.
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1.2.2.1 Atomistic Spin Dynamics

Atomistic spin dynamics [42] is a theoretical framework applied towards modeling the time
evolution of magnetic moments at the atomic scale. This method is particularly useful for
studying the dynamic properties of magnetic materials, including their response to external
fields, thermal fluctuations, and the effects of spin currents [42]. One of the key equations
governing the dynamics of magnetic moments is the Landau-Lifshitz-Gilbert (LLG) equation,
which can be extended to include stochastic terms to account for thermal fluctuations.

The LLG equation describes the precession and damping of a magnetic moment Si under
the influence of an effective magnetic field Beff,i. The equation is given by [42, 43]:

dSi

dt
= −γSi ×Beff,i −

γλ

S
Si ×

{
Si ×Beff,i

}
, (1.26)

where γ is the gyromagnetic ratio, γ λ
S

is the Gilbert damping parameter, and Si is the
magnitude of the spin moment at site “i.” The first term on the right-hand side represents
the precession of the magnetic moment around the effective field, while the second term
accounts for the damping that aligns the magnetic moment with the effective field.

To model the effects of thermal fluctuations, the LLG equation is extended to include a
stochastic term, resulting in the stochastic Landau-Lifshitz-Gilbert (SLLG) equation. This
term introduces random thermal fields that mimic the effect of temperature on the magnetic
moments. The SLLG equation is written as [42, 43]:

dSi

dt
= −γSi ×

(
Beff,i +Bth,i

)
− γλ

S
Si ×

{
Si ×

(
Beff,i +Bth,i

)}
, (1.27)

where Bth,i is the thermal magnetic field, which is typically modeled as a Gaussian white
noise with the following properties:

⟨Bth,i(t)⟩ = 0, (1.28)

⟨Bµ
th,i(t)B

ν
th,j(t

′)⟩ = 2Dδijδµνδ(t− t′), (1.29)

D =
λ

1 + λ2
kBT

γS
(1.30)

where µ and ν denote the Cartesian components, kB is the Boltzmann constant, T is the
temperature, and δ represents the Dirac delta function.

1.2.2.2 Standard & Guaranteed Convergence PSO

The particle swarm optimization (PSO) method [44] is a multi-agent method where agents
optimize a fitness function by moving based on their own knowledge (moving towards the
best point that they have reached before) and the knowledge of the other agents in the
“swarm” (moving towards some local or global optimum point). For the application of
finding a ground-state by optimizing over structural and magnetic degrees of freedom, for



CHAPTER 1. INTRODUCTION 11

example, the fitness function is the potential energy function defining the potential energy
surface (PES). Traditional PSO algorithms are gradient-free, which can result in a reduced
cost compared to traditional optimization methods.

To identify local minima on the PES, we have employed a particle swarm optimization
(PSO) algorithm. The general PSO algorithm can be described by the following dynamical
relations:

vn+1
p,i = avnp,i + acognitionrc · (xnp,i − yp,i) + asocialrs · (xnp,i − ŷi)

xn+1
p,i = xnp,i + vn+1

p,i

where xn+1
p,i and vn+1

p,i are the position and velocity of an agent p in dimension i, at the
subsequent time-step. The first contribution to the velocity update includes an inertial term
based on the velocity at the previous time-step (with a < 1 for stability). The second term
includes a “cognition” term based on the previous “personal best” location of the agent yp,i.
The last addition to the velocity updates includes a “social” term that governs each agent’s
attraction to the best position of the swarm, ŷp,i. The cognitive and social terms are both
weighted with uniformly distributed random numbers rc and rc between 0 and 1. These
random numbers perturb the relative attraction between each contribution to the velocity,
allowing each agent to sufficiently explore the possible pathways to a global optimum.

In order to increase the convergence capabilities of the minima finder, we have modified
the conventional PSO algorithm to the guaranteed convergence particle swarm optimization
(GCPSO) developed by Brits and Engelbrecht [45]. This algorithm can ensure convergence
by introducing a random perturbation to the velocity of the agent in the subswarm that has
the “best fitness” (with particle index = ∗):

vn+1
∗,i = −xn∗,i + ŷi + avn∗,i + ρn+1rρ, ρn+1 =

{
cρn # of successes > ls
1
c
ρn # of failures > lf

xn+1
∗,i = xn∗,i + vn+1

∗,i

where rρ is a uniformly distributed random number between -1 and 1, and c < 1.

1.3 Brief outline of subsequent chapter

In the following Methods chapter, we will expand and develop upon the theory introduced
in this chapter, towards the application of identifying the magnetic ground-state of magnetic
materials using density functional theory. A brief outline is as follows:

• We discuss the implementation and benchmarking of a high-throughput algorithm for
calculating Hubbard U and Hund J values using linear response.

• Next, we will delve into an exploration to a divergence-free constraint on the Bxc, and
the connections it lends between spin DFT and current DFT.
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• Lastly, a custom physics-informed optimization algorithm, SpinPSO, is discussed, in-
cluding its theoretical foundations and implementation as a workflow in atomate [46].
This algorithm uses energy and local field values from DFT, the results of which will
strongly depend on the treatment of the first two initiatives.
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Chapter 2

Methods

2.1 Density Functional Theory: DFT+U+J and

Linear Response

Over the past couple of decades, DFT+U has found favor as a method that strikes a reason-
able balance between accuracy and computational cost, making it particularly suitable for
high-throughput computation [18, 47–50]. DFT+U functionals add a correction to the con-
ventional XC functional to account for the Coulombic interaction between localized electrons
[16, 51]. In more recent studies, various researchers have explored extensions of DFT+U with
the goal of further correcting for static correlation effects and delocalization errors [20, 52,
53].

One drawback to DFT+U type functionals is that one must first determine its associated
parameters, the Hubbard U and Hund J , and possibly also inter-site electronic interactions
denoted as “+V ” [54–56]. The results of a DFT+U calculation can quantitatively and even
qualitatively change depending on these parameters, and so obtaining reliable values is of
paramount importance. This is as true for the Hund J as it is for the Hubbard U , even in the
simplified rotationally invariant DFT+Ueff functional [26]. In this particular functional, the
Hubbard U and Hund J are grouped in single effective Hubbard parameter Ueff, defined as
Ueff = U−J . This formalism assumes spherically symmetric on-site interactions, and results
in a corrective term that only couples electrons of the same spin [18, 23, 26]. Nevertheless,
the reduction in the effective parameter by J can be significant.

While the aforementioned approximation may seem more justifiable for systems with no
magnetic order, in the case of magnetic systems it results in a lost opportunity to use the
Hund J to beneficially enhance the spin moments in simulated broken-symmetry ground
states. Moreover, when we move to non-collinear magnetism, the spin texture of materials
is particularly sensitive to screening interactions between spin channels [21, 23, 24]. In
fact, magnetic exchange constants can be derived from the extended Hubbard model, from
which it is possible to relate exchange constants to ratios between U and J values [33].
The famous Hubbard model provides a simplified framework on which to explain the rich
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physics of correlated transition metal compounds [33]. Additionally, it has been shown that
the Hund J term is important for describing important physical phenomena, such as Jahn-
Teller distortions [33, 57], emergent intra-atomic exchange, and the Kondo effect [58, 59].
Therefore, the introduction of explicit unlike-spin exchange corrections beyond simplified
rotationally invariant DFT+Ueff is clearly of interest, and this requires the treatment of the
Hund J on the same footing as the Hubbard U .

2.1.1 Strategies for determining Hubbard parameters

A common approach for determining Hubbard U values is to tune them such that some
desired property — for example, the DFT+Ueff band gap, or a formation energy — matches
its experimental value, or a value obtained via more accurate and computationally expensive
beyond-DFT methods [60, 61]. There are several problems with this strategy. Firstly, it is not
systematic: just because one result (e.g., the band gap) now matches experiment, this does
not guarantee the same will be true for other observables (e.g., local magnetic moments).
Indeed, there are a multitude of reasons why DFT may not match experiment, and can
be problematic to rely on Hubbard corrections to correct for errors that do not arise from
self-interaction [62]. Secondly, this strategy is not predictive: it relies on the existence of
experimental/beyond-DFT data. This makes it particularly ill-suited to the prediction of
novel materials and high-throughput studies.

Yet another difficulty that arises is the lack of transferability of Hubbard and Hund
parameters. It has been repeatedly shown that these parameters are in fact very sensitive to
the local chemical environment [63]. Even the specific pseudopotentials [17] or the specific
site occupation projection scheme [64] have a significant effect on the computed Hubbard U
values. The end result is that U values (and by extension Hund J values, which are albeit
normally less environment-sensitive) are not transferable: they cannot be tabulated, and
must always be determined on a case-by-case basis.

These issues can be overcome by calculating the Hubbard and Hund parameters from
first principles. The two primary methods for doing so are the constrained random phase
approximation (cRPA) [65, 66] and the linear response (LR) methods [16, 18]. In this study,
we focus on the LR method due to its lower computational cost compared to existing cRPA
methods, which are not yet appropriate for high-throughput applications.

The linear response method, as introduced by Cococcioni and coworkers [16], is founded
on the idea that SIE can be related to the behaviour of the total energy as a function of the
total occupation [67]. It is known that the total energy ought to be piece-wise linear with
respect to total site occupation numbers in the dissociated limit [31], but in fact for semi-
local DFT XC functionals, the energy is erroneously convex at fractional electron numbers.
Cococcioni and co-workers illustrated that the +U correction counteracts this erroneous
curvature within local subspaces (the hope being that correcting local curvature will help
address the erroneous global curvature [68]). Crucially, the magnitude of this curvature can
be directly measured by a DFT linear response calculation, allowing the value of U to be
determined accordingly. Unlike empirical fitting, this approach is (a) systematic, because
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the value of U is derived directly as a measure of the underlying SIE present in the DFT
calculation, and (b) it is predictive, because it only requires DFT calculations to extract the
Hubbard parameters, and not experimental or beyond-DFT results.

2.1.2 Implementation of linear response within a
high-throughput workflow

In this study, we implemented the linear response method as a workflow within the high-
throughput atomate framework [46]. The workflow allows the user to compute Hubbard
U and Hund J values using either a spin-polarized or a non-spin-polarized response. In
addition to screening between spin channels, the implementation provides the straightforward
extension to multiple levels of screening, including inter-site and inter-spin-channel responses
[17]. A more detailed explanation of how these screening matrices are computed is provided
in Section 2.1.3.

All of the individual DFT calculations within this workflow were performed with VASP
(Vienna ab initio Simulation Package) [29], a plane-wave DFT code. The PBE exchange-
correlation functional was used throughout as the base functional [69]. Unless otherwise
stated we use PAW PBE pseudopotentials, which are the default pseudopotentials for the
pymatgen input sets for VASP [70]. In this regard, our work supplements the high-throughput
work of Bennett et al. [71] where ultrasoft pseudopotentials were used to reduce computa-
tional cost in high-throughput computations [71], mirroring early foundational studies on
the linear response method [16, 54].

We have used an automatic k-point generation scheme that uses 50 k-points per reciprocal
angstrom, and a cutoff energy of 520 eV. The full set of input parameters can be found in
the HubbardHundLinRespSet in the atomate repository [72], and the derived VASP input
sets in the pymatgen repository [70]. For the linear response analysis, the on-site applied
potential vIσ range was from −0.2 eV to +0.2 eV (−0.05 eV to +0.05 eV for the periodic
table data set) sampled at nine points at uniform intervals. In Section 2.1.5, we address the
sensitivity of the linear response analysis to the truncated precision in VASP’s occupation
number I/O, which we observed for some TMO systems.

2.1.3 Screening matrix inversions

Below are the matrix representations of the response matrices at each level of response matrix
inversion outlined by Linscott and others for a system with two Hubbard sites [17].

Point-wise 1× 1 inversion:

χ−1 =

(
1/χ11 0
0 1/χ22

)
(2.1)
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Atom-wise (conventional) 2× 2 inversion:

χ−1 =

(
χ11 χ12

χ21 χ22

)−1

(2.2)

We can extend this formalism to the multiple site (multi-site) responses by considering the
response matrix for two sites, χij, where i and j are the site indices.
Point-wise inversion:

χ−1 =


(
1/χ↑↑

11 0

0 1/χ↓↓
11

)
0

0
(
1/χ↑↑

22 0

0 1/χ↓↓
22

)
 (2.3)

Atom-wise (conventional) inversion:

χ−1 =


(
χ↑↑
11 χ↑↓

11

χ↓↑
11 χ↓↓

11

)−1

0

0
(
χ↑↑
22 χ↑↓

22

χ↓↑
22 χ↓↓

22

)−1

 (2.4)

Full inversion:

χ−1 =


χ↑↑
11 χ↑↓

11 χ↑↑
12 χ↑↓

12

χ↓↑
11 χ↓↓

11 χ↓↑
12 χ↓↓

12

χ↑↑
21 χ↑↓

21 χ↑↑
22 χ↑↓

22

χ↓↑
21 χ↓↓

21 χ↓↑
22 χ↓↓

22


−1

(2.5)

We note that in the latter case, when performing a spin-polarize linear response calculation,
one constructs a 2N×2N response matrix where N is the number of Hubbard sites (or N×N
in the case of non-spin-polarized linear response). For bulk systems often several Hubbard
sites will be equivalent, and one can save computational time by performing linear response
calculations for the set of inequivalent sites, and then populating the response matrix for all
equivalent Hubbard-site pairs.

2.1.4 Post-processing & uncertainty quantification

In order to extract the response matrices from the raw DFT data, curve fitting was performed
using a least-squares polynomial fit implemented in numpy [73]. The uncertainty associated
with each computed slope was obtained from the covariance matrix produced as a result of
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the least-squares fit. These uncertainty values were then utilized to determine the errors
associated with the Hubbard U and Hund J values. The error quantification was performed
by computing the propagation of uncertainty based on the Jacobian of each scaling formula
for Hubbard U and Hund J . This method for error propagation is general to multiple levels
of screening between spin, site, and orbital responses.

We begin by considering the following screening matrix introduced in Equation 1.22,
from which Hubbard U and Hund J values are derived [17]

fij =
(
χ−1
0 − χ−1

)
ij

Derivatives of the χ−1 matrix with respect to individual χkl can be obtained by the following
relation:

∂

∂χkl

(
χ−1
)
= −χ−1

(
∂

∂χkl

χ

)
χ−1

where
∂

∂χkl

{χ}ij =

{
1 if kl = ij

0 otherwise

∂

∂χkl

{
χ−1
}
ij
= −

{
χ−1
}
ik

{
χ−1
}
lj

(2.6)

Using this fact, it is possible to obtain the full Jacobian of f with respect to response χ
matrices which can be used to obtain the covariance uncertainty matrix associated with the
elements of fij, to a first-order expansion of fij [74]

Σf = Jχ0Σχ0J
T
χ0

+ JχΣχJ
T
χ (2.7)

whereΣf is a N
2×N2 matrix (f is N×N). Each element ofΣf ,

{
Σf

}
ij,kl

, corresponds to the

covariance between fij and fkl matrix elements. Σχ and Σχ0 are the covariance matrices for
each {χ}kl and {χ0}kl, and the diagonal elements are populated using the squared uncertainty
values associated with the slopes fit to the response data. In addition, Jχ and Jχ0 are
the symbolically derived Jacobians corresponding to each response value, as proposed in
Equation 2.6. Assuming that the individual elements of χ and χ0 are independent, we can
assume that Σ covariance matrices are diagonal in order to make the following simplification:

σ2(fij) =
∑
kl

(
∂

∂ {χ0}kl
fij

)2

σ2({χ0}kl)

+
∑
kl

(
∂

∂ {χ}kl
fij

)2

σ2({χ}kl), (2.8)

where σ2(fij), σ
2({χ0}ij), and σ2({χ}ij) correspond to the diagonal elements of Σf , Σχ0 ,

and Σχ, respectively.
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With the established expression for the uncertainty values of f in Equation 2.8, we can
express the squared uncertainty of U , for an atomic site γ, in the next level of uncertainty
propagation,

σ2(Uγ) =
∑
σ,σ′

(
∂

∂fσσ′
γγ

GU(fγγ)

)2

σ2(fσσ′

γγ ). (2.9)

Equation 2.9 can be extended to an expression of the squared uncertainty of Hund J , where
GU and GJ are functions of 2×2 sub-matrices along the diagonal of f , as introduced in
Equation 1.22, and depend on the different scaling schemes introduced in Ref. [17]. The
results of this error analysis are shown in Table 3.2.

2.1.5 VASP precision issue

We found that for some closed-shell systems, such as those containing Zn, the I/O precision
of the occupation numbers in VASP had a significant effect on the resulting linear response
analysis. This is because the change in occupation number on Zn-d states induced by the
on-site potential was on the same order of magnitude as the precision cutoff itself. For this
reason, we created a very basic patch to the VASP version 6.2.1 source code to increase the
precision of occupation numbers and site magnetization written in the VASP OUTCAR file.

Using this higher precision, we found that the U and J calculated using linear response
for Zn-d were 2.3±0.1 eV and 1.7±0.0 eV, respectively. This is in stark contrast to the
original VASP code I/O precision, which wrongly produced U , J = 0.0 eV.

2.1.6 An exploration of inter-site Hubbard forces due to both
+U and +V contributions

2.1.6.1 Including on-site forces due to +V , in addition to +U

The following is based on Section 4.1 of Chapter 4, by Matteo Cococcioni, of [15], “The
LDA+U Approach: A Simple Hubbard Correction for Correlated Ground States.” Our goal
is to expand on Section 4.1 to include the +V contributions to the Hubbard forces, in addition
to +U , with the goal of providing a footing on which to compare the force contributions from
+U versus +V . The force acting on site α in spatial direction i due to the +U+V correction
can be expressed as

FUV
α,i = −∂EUV

∂ταi
= −

(
∂EU

∂ταi
+
∂EV

∂ταi

)
, (2.10)

where ταi is the i
th component of the position vector corresponding to a site indexed by α.

The partial derivatives can be expressed using the chain rule, following from Equation (20)
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in [15]:

∂EU

∂ταi
=

∑
γ,m,m′,σ

∂EU

∂nγγσ
mm′

∂nγγσ
mm′

∂ταi
and (2.11)

∂EV

∂ταi
=

∑
γ,γ′,m,m′,σ

γ ̸=γ′

∂EV

∂nγγ′σ
mm′

∂nγγ′σ
mm′

∂ταi
, (2.12)

where the sum is over site indices γ & γ′, m & m′ quantum numbers, and σ spin channels.
From the definition of EUV , Equation (54) in [15], we can write derivatives of the +U+V
energy with respect to occupancy numbers

∂EU

∂nγγσ
mm′

= uγγσmm′ = −U
γ

2

(
2nγγσ

m′m − δm′m

)
and (2.13)

∂EV

∂nγγ′σ
mm′

= vγγ
′σ

mm′ = −V γ′γnγ′γσ
m′m. (2.14)

The occupancy numbers are defined as

nγγ′σ
mm′ =

∑
k,v

fσ
kv ⟨ψσ

kv|ϕ
γ′

m′⟩ ⟨ϕγ
m|ψσ

kv⟩ . (2.15)

in Equation (51) in [15]. The derivatives of occupancy numbers w.r.t. positions ταi, can be
expressed as

∂nγγ′σ
mm′

∂ταi
=
∑
k,v

fσ
kv

[
∂

∂ταi

(
⟨ψσ

kv|ϕ
γ′

m′⟩
)
⟨ϕγ

m|ψσ
kv⟩+ ⟨ψσ

kv|ϕ
γ′

m′⟩
∂

∂ταi

(
⟨ϕγ

m|ψσ
kv⟩
)]

=
∑
k,v

fσ
kv

[
δαγ′ ⟨ψσ

kv|ϕγ
m⟩

∗ ∂

∂τγ′i

(
⟨ϕγ′

m′ |ψσ
kv⟩

∗)
+ δαγ ⟨ψσ

kv|ϕ
γ′

m′⟩
∂

∂τγi

(
⟨ϕγ

m|ψσ
kv⟩
)]

= δαγ′

(
ñγ′γσ
m′m

)∗
i
+ δαγ

(
ñγγ′σ
mm′

)
i
. (2.16)

Note the short-hands that we have defined so far for energy and occupancy partial derivatives

in Eqns. 2.13, 2.14, and 2.16: uγγσmm′ , v
γγ′σ
mm′ , and

(
ñγγ′σ
mm′

)
i
, respectively. The Kronecker deltas

in front of each term is discussed following Equation (26) in [15], which also provides the
relevant insight

“[T]he derivative of the atomic wave function is different from zero only in the
case it is centered on the atom which is being displaced. Thus, the derivative in
Eq.(23) only contributes to forces on atoms subject to the Hubbard correction.
Finite off-site terms in the expression of the forces arise when using ultrasoft
pseudopotentials.”
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2.1.6.2 Bond forces for the one-dimensional binary lattice

Next, let us consider a simplified Hubbard chain of alternating α and β species, as illustrated
in Figure 2.1. For the sake of simplicity, we are only considering next-nearest V αβ inter-site
terms, but the following derivation can be easily extended to systems of higher complexity.
For the force acting on an α-β bond, and therefore along the inter-site vector ταβ = τα−τβ,

Figure 2.1: One-dimensional Hubbard chain of alternating α and β species. Only NN V αβ

inter-site terms are considered for simplicity. The goal here is to provide a simplified picture
of a binary TM-O system.

where Fi

(
τα − τβ

)
corresponds to the i direction of the inter-site bond force between α and

β, we have 1

FUV
i

(
τα − τβ

)
= − ∂EUV

∂
(
ταi − τβi

) = −∂EUV

∂ταi
+
∂EUV

∂τβi
= FUV

α,i − FUV
β,i

= −∂EU

∂ταi
+
∂EU

∂τβi
− ∂EV

∂ταi
+
∂EV

∂τβi
. (2.17)

1Here, we use ∇uf = ∇f · u, the expression of the directional gradient of a multivariate function f in
the direction of u, in terms of the gradient ∇f .
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The individual contributions to these forces can be expressed as follows, calling on the
derivatives that we have expressed in Eqn.’s 2.13, 2.14, and 2.16:

FU
α,i = −

∑
m,m′,σ

2ℜ
{
uαασmm′ (ñαασ

mm′)i
}

and (2.18)

F V
α,i = −

∑
m,m′,σ

[
vαβσmm′

(
ñαβσ
mm′

)
i
+ vβασmm′

(
ñαβσ
mm′

)∗
i

]
= −

∑
m,m′,σ

vαβσmm′

[(
ñαβσ
mm′

)
i
+
(
ñαβσ
mm′

)∗
i

]
= −

∑
m,m′,σ

2ℜ
{
vαβσmm′

(
ñαβσ
mm′

)
i

}
. (2.19)

We have used the symmetry of the occupation numbers that can be shown following from
Equation 2.15,

nγγ′σ
mm′ =

∑
k,v

fσ
kv ⟨ψσ

kv|ϕ
γ′

m′⟩ ⟨ϕγ
m|ψσ

kv⟩ =
∑
k,v

fσ
kv ⟨ψσ

kv|ϕγ
m⟩

∗ ⟨ϕγ′

m′|ψσ
kv⟩

∗

=

∑
k,v

fσ
kv ⟨ψσ

kv|ϕγ
m⟩ ⟨ϕ

γ′

m′|ψσ
kv⟩


∗

=
{
nγ′γσ
m′m

}∗
= nγ′γσ

m′m, (2.20)

where the last step was justified on the grounds that occupation numbers must be real. This
symmetry holds for vγγ

′σ
mm′ , in accordance with Equation 2.14, which permits the factorization

in Equations 2.19 & 2.22.
Next, we can write the bond force terms as follows2:

FU
i

(
τα − τβ

)
= FU

α,i − FU
β,i = −2ℜ

 ∑
m,m′,σ

[
uαασmm′ (ñαασ

mm′)i − uββσmm′

(
ñββσ
mm′

)
i

] . (2.21)

F V
i

(
τα − τβ

)
= F V

α,i − F V
β,i = −2ℜ

 ∑
m,m′,σ

[
vαβσmm′

(
ñαβσ
mm′

)
i
− vβασmm′

(
ñβασ
mm′

)
i

]
= −2ℜ

 ∑
m,m′,σ

vαβσmm′

[(
ñαβσ
mm′

)
i
−
(
ñβασ
mm′

)
i

] . (2.22)

At this point, it is helpful to keep in mind that uαασmm′ ∝ Uα, uββσmm′ ∝ Uβ, and vαβσmm′ ∝ V αβ

from Eqs. 2.13 & 2.14. We see that while the contribution to the force from V αβ is only

2The reader may notice that in FV
i terms, the contributions from α′ and β′ sites are neglected, as shown

in Figure 2.1. These would intuitively “tug on” the corresponding β and α sites in the opposite direction.
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dependent on the difference between ñ occupation number derivatives, the contribution from
U values depends additionally on the relative magnitude of Uα and Uβ.

This is not to say that the former is insignificant, but rather that both +U (to both
species) and +V contributions should be accounted for if one is interested in correcting for
α-β bond length. It is common practice to add a correction to d and f -block species alone
(“α” sites). Adding a U value to O-p sites (“β”), if large enough, could possibly reverse
the sign of FU

i

(
τα − τβ

)
. This could explain the improved bond lengths after adding +U

corrections to O-p sites, and not solely to TM-d and f sites.
Based on TMO test cases in this study, and the results of other studies [17, 54], it appears

that applying a U to TM sites only overestimates the TM-O bond-length. Furthermore, both
(a) adding a +U to the O-p manifold [17] and (b) +V between TM and O sites [54] appears
to reduce the severity of this overestimation. This leads us to assume that starting from the
DFT (no +U/J/V ) optimized structure, FU

α < 0 (tensile) and FU
β < 0 (compressive), where

it’s still the case that |FU
α | > |FU

β | (tensile), because the bond lengths are still overestimated
with +U(O-p). Finally, we may asssume that F V

α −F V
β > 0 (compressive), on the basis that

Campo et al. appear have found that +V helped correct for TM-O bond length in NiO [54].

2.2 Spin-Current DFT (SCDFT) and the Source-Free

(SF) Exchange Correlation (XC) Functional

It is a well-known physical fact that Maxwell’s equations preclude the existence of unphys-
ical magnetic monopoles. It is less conventional to apply this divergence-free constraint to
density functional theory functionals for ab initio calculations. It has recently been a topic
of exploration to apply this constraint to the exchange correlation component of the effec-
tive internal magnetic field, Bxc [37, 75]. Previous studies have shown that applying this
physically inspired constraint to Bxc results in improved agreement with the majority of a
small test set of over twenty experimentally measured magnetic structures, both in terms
of magnetic moment magnitudes [37] and non-collinear ground states [75], which can be
challenging to accurately match experiment with conventional DFT approaches.

The source-free constraint is applied by projecting the original exchange-correlation mag-
netic field onto a divergence-free field. Consistent with the work of Sharma and others, we
use the fundamental theorem of vector calculus, the Helmholtz identity, to reformulate our
equations in terms of vector and scalar fields. This theorem states that any once differen-
tiable, C1, vector field can be decomposed into a divergence free and a curl free component,

B(r) = −∇ϕ(r) +∇×A(r) +B (2.23)

where ϕ is a scalar field, and A is a vector potential field. The identity is conveniently
written in this way due to two important mathematical properties: the curl of a gradient is
zero everywhere in the domain ∇×∇ϕ = 0 and likewise for the divergence of the curl of a
vector field ∇ · (∇ ×A) = 0. For a magnetic field B, such that ∇ ·B = 0, we can define
B = ∇×A, where A is the well-known magnetic vector potential.
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One may ask why we include a constantB, which is not included in most statements of the
Helmholtz identity. This comes down to the fact that under periodic boundary conditions,∫

Ω

dr ∇ϕ(r) = 0 (2.24)∫
Ω

dr ∇×A(r) = 0 (2.25)

by Equations 2.43 & 2.44 in Section 2.2.2.2. Therefore, we must include a constant term,
such that

∫
Ω
dr B(r) need not be the zero vector.

By taking the divergence of both sides of Equation (2.23), we see that, for the exchange-
correlation magnetic field,

∇ ·Bxc = −∇ · (∇ϕ) = −∇2ϕ. (2.26)

Therefore, solving for ϕ requires the solution to the Poisson equation above, which is the
method suggested by Sharma et al. for applying the source-free constraint [37]. It is inter-
esting to note that B′

xc(r) must be non-collinear, as we show in Section 2.2.3.2.
Equation (2.23) can be employed rigorously, because while the Helmholtz decomposition

is not unique, it can be under the correct constraints. The uniqueness of the gradient of the
solution to the Poisson equation (e.g. ∇ϕ) can be used to prove this. In summary, each field
in Equation (2.23) can be uniquely solved for under periodic boundary conditions (PBCs),
as follows

1. The curl-free term:

∇2ϕ = −∇ ·Bxc. (2.27)

Therefore, ∇ϕ is unique under PBCs.

2. The divergence-free term:

∇2Axc = −∇×Bxc, (2.28)

subject to the Coulomb gauge constraint, ∇ ·Axc = 0 (see Appendix 2.2.2.5). Under
this constraint, ∇Axc,i are unique under PBCs.

3. The constant term:

Bxc =
1

VΩ

∫
Ω

dr Bxc(r). (2.29)

Therefore, in order to compute B′
xc, the source-free projection of Bxc, one simply needs to

compute ∇ϕ

B′
xc(r) = Bxc(r) +∇ϕ(r)

= Bxc(r) +Hxc(r)

= ∇×Axc(r) +Bxc (2.30)
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In other words, we leave Bxc untouched from SDFT, to be consistent with Ref. [37]. In
Sections 4.2.6 & 2.2.1, we explore the justifications and implications of this, and lay some
potential groundwork for future studies to employ in a more careful treatment of the constant
term, B′

xc. In a concrete sense, we explore the role ofB′
xc on the converged magnetic ground

states in Section 4.2.6.

2.2.1 Source-free implementation

In Section 2.2.1.1, we provide the details of the source-free Bxc implementation in VASP
[29], which, generally speaking, should be consistent with both References [37] & [76]. As
stated in Equation (2.37), we do not modify the q = 0 component of B′

xc. In other words,

we set B̂′
xc(q = 0) = B̂xc(q = 0), which still satisfies the divergence-free constraint. Our

choice appears to be consistent with the implementation of Ref. [37] in the Elk source code
[77, 78].

Our justification for leaving B′
xc = Bxc is the arbitrary choice of B̂′

xc(q), which is appar-
ent from the singularity with respect to |q|2 in Equation (2.37). However, one can entertain
possible physically motivated constraints on B′

xc. For example, B′
xc will enter into the net

torque expression, Equation (2.74). Therefore, one may consider a least-squares constraint
on B′

xc, based on the ZTT, as well as a possible term that preserves the net XC energy
expression from SDFT. An in-depth and rigorous treatment of B′

xc, the real-space integral
of B′

xc, will be left to future studies.

2.2.1.1 Numerical details of source-free constraint

Because plane-wave DFT is defined on periodic boundary conditions, we can start with the
definition of the inverse discrete Fourier transform, because the density fields lie in regular
three-dimensional grids,

ϕn =
1

M

∑
k

ϕ̂k exp
(
i2πkTD−1n

)
= F−1ϕ̂ (2.31)

where D =

Nx 0 0
0 Ny 0
0 0 Nz

 , and M = NxNyNz

where ni, ki ∈ [0, 1, ..., Ni], and Nx, Ny, Nz are the dimensions of the 3D grid. If we define the
real-space position vector as r = LD−1n, where L has columns as lattice vectors L = [a b c].
Therefore, kTD−1n = kTD−1DL−1r = kTL−1r. From here, we can apply the convenient
“scaling” property describing how differential operators commute with the inverse discrete
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Fourier transform, where l = x, y, z is the dimension of the partial derivative,

∂

∂rl
ϕ(r) ≈ i2π · F−1

(
qlϕ̂
)

(2.32)

where ql =
∑
j

L−1
jl kj, q = L−Tk

To obtain the (discrete) spectral approximation of the divergence of the B field:

∇ ·Bxc =
∂Bx

∂x
+
∂By

∂y
+
∂Bz

∂z

≈ i2π · F−1
(
qxB̂x + qyB̂y + qzB̂z

)
≈ i2π · F−1

(
qT B̂xc

)
(2.33)

In order to solve the Poisson equation, as posed in Equation (2.26), we apply a similar
reasoning as before, and see that

∇2ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2

≈ −(2π)2 · F−1
(
(q2x + q2y + q2z)ϕ̂

)
≈ −(2π)2 · F−1

(
|q|2ϕ̂

)
(2.34)

Therefore, combining Equations (2.26), (2.33) and (2.34), we find that the discrete Fourier
transform of ϕ can be expressed as

ϕ̂(q) =

 i
2π

q·B̂xc(q)
|q|2 , |q| ≠ 0

0, |q| = 0
(2.35)

We are interested in ∇ϕ. Which we can approximate as

−∇ϕ ≈ F−1

(
qT B̂xc(q)

|q|2
q

)
(2.36)

Therefore, the source-free correction is achieved by performing the following

B̂′
xc(q) = B̂xc(q)−

q·B̂xc(q)
|q|2 q, |q| ≠ 0

0, |q| = 0
(2.37)

and as a result, ∇ ·Bxc
′ = 0 is obtained in the discrete numerical sense.
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2.2.1.2 Hubbard U , Hund J and neglect of the exchange splitting parameter

In our implementation of the source-free correction [79], we leave out the exchange-splitting
scaling parameter s included in the study of Sharma and coworkers. In other words, s =
1 in our implementation. There are two primary reasons that we neglected this scaling
parameters. The first reason for not including this parameter, is that while s is not material-
specific in theory, it requires fitting to the magnetic structure of a finite set of material
systems. In addition to this ambiguity, it has been shown that Hubbard U and Hund J values
have a significant effect on the magnitude of magnetic moments, as well as non-collinear
magnetic structure [75]. For this reason, we utilize pre-computed, and/or custom-computed,
U and J values for the magnetic systems that we explore in this study.

That is not to say that the inclusion of s is unjustified – its inclusion maintains the
variational nature of the XC functional with respect to the magnetization field, m [37].
However, we choose to not include this feature, due to its ambiguous nature, and the fact
that it has nothing to do with the source-free constraint itself 3. In our implementation and
test cases, we did not find a need for s ̸= 1.

2.2.2 Leveraging connections between SF XC functional and
SCDFT

2.2.2.1 The comparative degeneracies of Exc for SDFT versus CDFT with
respect to m

Capelle and Gross (CG) show that within SDFT, the exchange-correlation energy, Exc only
depends on the magnetization via the “spin vorticity” [38]

νs(r) = ∇×
(
js(r)

ρ

)
=
c

q
∇×

(
∇×m(r)

ρ(r)

)
, (2.38)

where c and q are the speed of light and elementary charge, respectively. Therefore, trans-
formations of the magnetization density, m(r) 7→ m′(r), of the form

m′(r) = m(r) +∇α(r) + Γ(r) (2.39)

where ∇× Γ(r) = ρ(r)∇γ(r)

will have no effect on XC contributions to the SDFT functional, ES
xc, i.e. E

S
xc[ρ,m

′] = ES
xc[ρ,m].

α(r) and Γ(r) are arbitrary functions, which are only subject to the relevant aforementioned
constraints.

By comparison, in CDFT, EC
xc depends on m via the spin current, js =

c
q
∇×m [37, 38].

Therefore, EC
xc is invariant to transformations of the form, m(r) 7→ m′(r),

m′(r) = m(r) +∇α(r), (2.40)

3After all, Sharma et al. describe the s scaling as an “additional modification” to the XC functional [37].
This was further confirmed in conversation with S. Sharma and J. K. Dewhurst.
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for arbitrary ∇α(r). Therefore, Γ(r) of the form in Equation (2.39) provides the additional
degree of freedom that introduces ambiguity into the non-collinear magnetic ground state
obtained using SDFT compared with CDFT.

Again, we emphasize that the functions α, Γ, and γ are all completely arbitrary, and
have been introduced to illustrate the gauge invariance of non-collinear SDFT [38]. The
high number of degrees of freedom associated with Γ(r) provides an explanation for the
highly degenerate energy landscape in non-collinear SDFT. The additional gauge invariance
explains why the site-projected magnetic moments – related to m – rotate very little during
convergence, compared with the source-free functional, which is in fact a current density
functional, to reiterate [37, 38]. This is the core computational exploration of the present
study.

2.2.2.2 Vanishing integrals under periodic boundary conditions

We can see by the fundamental theorem of calculus, that the following integral is zero under
periodic boundary conditions (PBCs) on a grid of dimensions Lx × Ly × Lz∫

Ω

∂ϕ

∂xi
dr =

∫ Lj

0

∏
j ̸=i

dxj

∫ Li

0

dxi
∂ϕ

∂xi

=

∫ Lj

0

∏
j ̸=i

dxj
[
ϕ(xi = Li, ..., xj ̸=i)− ϕ(xi = 0, ..., xj ̸=i)

]
= 0, (2.41)

because ϕ(xi = Li, ..., xj ̸=i) = ϕ(xi = 0, ..., xj ̸=i) by the definition of PBCs. From Equa-
tion 2.41, it is straightforward to show that the following integrals are also zero under PBCs:∫

Ω

∇ ·L dr = 0 (2.42)∫
Ω

∇ϕ dr = 0 (2.43)∫
Ω

∇×L dr = 0. (2.44)

2.2.2.3 Consideration of additional currents arising in CDFT

Within the framework of current density functional theory (CDFT), we can introduce the
probability (denoted with subscript p) current density [38, 41]. The classical field of the
probability current, (also known as the “paramagnetic current”) can be expressed as the
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expectation of the quantum mechanical operator

jp(r) =
〈
ĵp(r)

〉
=

ℏ
2mi

〈
Ψ̂(r)†∇Ψ̂(r)−∇Ψ̂(r)†Ψ̂(r)

〉
=

ℏ
2m

〈
ℑ
(
Ψ̂(r)†∇Ψ̂(r)

)〉
. (2.45)

The probability current can be motivated by expressing the Schrödinger equation as a con-
servation law, ∂ρ/∂t = ∇ · jp [80]. Therefore, jp is directly related to the probability flux
of an electron in real space. It is also known as the “paramagnetic current,” because jp
couples in a Zeeman-like manner to the external vector potential in a similar fashion to
Equation (2.50). Therefore, the magnetization induced by jp will preferentially align with
the external magnetic field.

Capelle and Gross explore the form of jp within Kohn-Sham (KS) SDFT [38],

jKS
p =

iℏ
2m

N∑
k=1

(ϕk∇ϕ∗
k − ϕ∗

k∇ϕk) , (2.46)

where ϕk are Kohn-Sham orbitals, and the sum is over the N lowest-energy bands. ℏ is
the familiar reduced Planck constant, and m is the electron mass. Any complex function,
and therefore ϕk, can be expressed as ϕk(r) = |ϕk(r)|eiS

′
k(r). Letting Sk(r) = ℏS ′

k(r), it is
possible to show that [80]

jKS
p (r) =

N∑
k

1

m

∣∣ϕk(r)
∣∣2∇Sk(r). (2.47)

Next, we consider the case in which all ∇Sk are equal to the same function, ∇S. In this
case, the following simplification can be made

j̃KS
p (r) =

1

m
ρ(r)∇S(r). (2.48)

We have drawn on the fact that ρ(r) =
∑N

k

∣∣ϕk(r)
∣∣2, and are reminded that ∇S is linked

to classical momentum [80]. Therefore, jKS
p (r) = j̃KS

p (r) only in the case when these ∇Sk

momenta are equal across all ground state KS orbitals, ϕk(r).
In their original seminal work, Vignale and Rasolt (VR) consider the physical constraint

that the current density functional should be invariant to gauge transformations of the
external magnetic vector potential A′ 7→ A+∇Λ, where Λ(r) is an arbitrary function [81].
Under this gauge invariance constraint, VR demonstrate that Exc depends on jp through
the probability/paramagnetic current vorticity alone, which is defined as such [81]

νp(r) = ∇×
[
jp(r)

ρ(r)

]
. (2.49)
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This result is a foundational pillar of CDFT, and provides a basis for useful results in other
key works, such as Ref. [38].

Interestingly, in the hypothetical case in which jKS
p (r) = j̃KS

p (r) (Equation (2.48)) we
see that νp(r) = 0 everywhere, and therefore we may neglect any jp contributions to Exc

entirely. However, this is not the case for differing ∇Sk. We presume that, among other
effects, the inhomogeneity across ground state ∇Sk is accentuated by spin-orbit coupling
(SOC) [82], which will introduce an angular-momentum dependence on ϕk. This hypothesis
can most likely be further explored by the machinery proposed in Ref. [83], which provides a
framework for rigorously incorporating SOC within SCDFT. However, on a more elementary
level, even a non-interacting homogeneous electron gas will obey Fermi statistics. Therefore
the electron gas will possess a distribution of momenta, which can be directly related to
single-electron ∇Sk [80, 84].

Under no external magnetic field, i.e. a curl-freeA, jp enters into the exchange-correlation
component of the CDFT functional in the following form [38, 41, 81],

Ep ≡ −
∫
Ω

jp(r) ·Axc(r) dr. (2.50)

In VR’s extension of SCDFT to non-collinear magnetism, a set of spin-projected currents,
jp,λ, and their associated Axc,λ are introduced as additional quantities. As we will see later,
jp,λ play a crucial role in the extension of the zero torque theorem, Equation (2.78). Fur-
thermore, in Ref. [83], Bencheikh demonstrates that Axc,λ become essential in the inclusion
of SOC effects in SCDFT. However, because SOC is treated differently in VASP [82], we will
not explore this further here.

The probability current, jp, has been introduced as the gauge-invariant kinetic energy
density in the metaGGA extension of SCDFT [35, 85]. Following from Ref. [85],

τ̃σ = τσ −m

∣∣jp,σ∣∣2
ρσ

(2.51)

where σ denotes the different spin channels, σ ∈ {↑, ↓}. Starting from the definitions of VR
[86], it is straightforward to show that the squared magnitude of the spin probability currents∣∣jp,σ∣∣2 in Equation (2.51) can be related to

∣∣jp,λ∣∣2, which we explore in Section 2.2.2.4.
Therefore, we hope it to be the subject of future studies to explore the extensions of this
work to metaGGA functionals.

Furthermore, in Appendix 2.2.2.7, we abstract from the definition in Equation (2.45),
and consider a separation of jp,λ into divergence and curl-free contributions. We provide
these small derivations to the reader in the hope that may be useful for the reformulation of
SDFT metaGGA functionals to their SCDFT counterparts.
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2.2.2.4 Expressing kinetic energy contributions in terms of projected spin
currents

It has been established in Ref. [86] that the density and spin current matrices within SCDFT
are related via the following relations

ραβ(r) = ρ(r)δαβ +
3∑

λ=1

sλ(r)σ
λ
αβ (2.52)

jp,αβ(r) = jp(r)δαβ +
3∑

λ=1

jp,λ(r)σ
λ
αβ. (2.53)

From Ref. [41], ŝ denotes the “direction of the local spin polarization,” from which it is
possible to define a set of variables projected along spin orientation

|s(r)| =

∑
λ

sλ(r)
2

1/2

(2.54)

ρ±ŝ(r) =
1

2

(
ρ(r)± |s(r)|

)
(2.55)

jp±ŝ(r) =
1

2

(
jp(r)± jp∥(r)

)
(2.56)

jp∥(r) =
3∑

λ=1

jpλ(r)sλ(r)/|s(r)| (2.57)

where jp∥(r) is the “longitudinal (in spin-space) current.” Armed with these definitions, it
is straightforward to show that∣∣jp,↑∣∣2 + ∣∣jp,↓∣∣2 = 1

2

∣∣jp∣∣2 + 1

2

∑
λ

∣∣jp,λ∣∣2 (2.58)

Therefore, we can express the relationship between current contributions to kinetic energy
densities (Equation 2.51) as

ρ↑
ρ
τ ↑ +

ρ↓
ρ
τ ↓ =

1

2

τ +∑
λ

ρλ
ρ
τλ

 , (2.59)

where τµ = −m
∣∣jp,µ∣∣2 /ρµ.

2.2.2.5 Choice of Axc gauge

It is worth noting that two gauge choices ofAxc have been presented in the literature. Within
the original works of Vignale and Rasolt [41, 81, 86], the ∇ · (ρAxc) = 0 arises naturally.
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However, by comparison, in [38], the Coulomb gauge ∇·Axc = 0 is implied by the Helmholtz
decomposition.

Under the ∇ ·Axc = 0 gauge, it is possible to solve for Axc using the following Poisson
equation,

∇× (∇×Axc) = ∇×Bxc

−∇2Axc +∇ (∇ ·Axc) = ∇×Bxc

∇2Axc = −∇×Bxc (2.60)

In order to solve for Axc subject to ∇ · (ρAxc) = 0, we can employ another Helmholtz
decomposition

Axc = A′
xc +∇ξ

(2.61)

where ∇·A′
xc = 0 and is solved using Equation (2.60), and ξ is determined from the following

elliptical equation

∇ · (ρ∇ξ) = −∇ ·
(
ρA′

xc

)
. (2.62)

However, the spatial dependence of ρ in Equation (2.62) makes the equation more difficult to
solve using a single spectral solve step. Instead, an iterative spectral solver could be used to
solve this elliptical equation, using the subtractive solver presented in Ref. [87], for example.

2.2.2.6 Considerations for jp ·Axc energy contributions under periodic
boundary conditions

We will use the following result, Equation (2.63), to draw a few conclusions. Let’s start by
considering two differentiable functions α(r) ∈ R and L(r) ∈ R3. The following integral can
be expressed as ∫

Ω

∇α(r) ·L(r) dr

=

∫
Ω

{
∇ ·
[
α(r)L(r)

]
− α(r)

[
∇ ·L(r)

]}
dr

=

∮
∂Ω

[
α(r)L(r)

]
· dS −

∫
Ω

α(r)
[
∇ ·L(r)

]
dr (2.63)

If Ω obeys periodic boundary conditions, then
∮
∂Ω

[
α(r)L(r)

]
· dS = 0.

We can start by considering the Coulomb gauge ∇ ·Axc = 0. If this gauge is chosen,
charge conservation should still be obeyed through the following

∇ ·
(
jp + ρAxc

)
= 0 (2.64)
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By the Helmholtz identity, we can decompose jp into the following

jp = ∇η +∇× Γ. (2.65)

Therefore, we may rewrite Equation (2.64) as

∇2η = −∇ · (ρAxc) (2.66)

Here, it is interesting to note that while η can satisfy charge conservation, by Equation (2.63),
under periodic boundary conditions and the ∇ ·Axc = 0 gauge, the following is true∫

Ω

∇η ·Axc dr = 0. (2.67)

Therefore, η will not enter into the energy term, Equation (2.50), allowing us to conclude
that

Ep

∣∣
∇·Axc=0

=

∫
Ω

(∇× Γ) ·Axc dr

∀
{
jp, Axc|∇·Axc=0

}
. (2.68)

Equation (2.68) states that while the curl-free projection of jp, ∇η, maintains local charge
conservation, only the divergence-free projection, ∇× Γ, enters into the expression for Ep.

2.2.2.7 Considerations for jp,λ

Starting from a Helmholtz decomposition of the probability current density

jp,λ = ∇ηλ +∇× Γλ (2.69)

We see that the following conservation law

∇ ·
[
jp,λ +mλAxc

]
= (m×Bxc)λ (2.70)

only places a constraint on the curl-free contribution to jp,λ, similarly to Equation (2.66),

∇2ηλ = −∇ · [mλAxc] + (m×Bxc)λ . (2.71)

Therefore, only the divergence-free component, ∇×Γλ, is independent from this conservation
law, and will contribute to the energy in an analogous form of Equation (2.68).
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2.2.2.8 Orbital magnetic moments

Having explored the connections to CDFT, we will now turn our attention to the orbital
magnetic moments, which are a measurable link to the orbital current density, jorb. The
orbital character of the magnetic moment can be teased out using x-ray magnetic circular
dichroism (XMCD) [88, 89], and sometimes in combination with other x-ray spectroscopy
techniques, such as Resonant Inelastic X-ray Scattering (RIXS) [89].

It is possible to express the orbital magnetic moment in terms of the orbital current [90]

morb
i =

∫
Ωi

ri × jorb(ri) dri, (2.72)

where Ωi is a region surrounding the magnetic site i, such as a PAW sphere, and ri is the
position vector relative to the center of the sphere. The orbital magnetic moment is directly
associated with the expectation value of the orbital angular momentum at an atomic site.
Consequently, the magnitude and direction of the orbital moment relative to the spin moment
can be influenced by factors such as Hund’s rules, crystal field splitting (CFS), and spin-orbit
coupling (SOC) [84]. SOC primarily determines the orientation of the orbital moment, while
CFS can significantly reduce or quench the orbital moment, a phenomenon particularly
notable in 3d transition metal species [84]. In contrast, CFS has a lesser impact on the
orbital moments in uranium and other f -block elements, as the partially filled f -states are
more effectively shielded from crystal fields by outermost electrons [84]. We will explore the
effect of the source-free constraint on the ground state orbital moments in the UO2 test case
explored in Section 4.2.4.

2.2.3 Zero torque theorem and τxc

Within full magnetostatic spin-current DFT (SCDFT), additional spin currents arise subject
to the following continuity equation

∇ ·
[
jp,λ +mλAxc

]
= (m×Bxc)λ (2.73)

where λ = 1, 2, 3 and corresponds to the three components of the non-collinear magnetic
fields. Some SCDFT formulations include additionalAxc,λ fields as well [86]. Equation (2.73)
is an extension of the zero torque theorem (ZTT), in which local torques may arise without
violating conservation laws.

The magnetic torque due to the XC component of the functional can be expressed as
τxc = m × Bxc [91]. We call on the definition of Bxc in Equation (1.24), as defined in
conventional SDFT, to show that τxc = m ×Bxc = 0. This is simply due to the fact that
Bxc ∥ m everywhere in Ω (the periodic domain) at every self-consistency step. The zero
magnetic torque theorem [91],∫

Ω

τxc dr =

∫
Ω

m×Bxc dr = 0 (2.74)
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states that “a system cannot exert a net torque on itself.” Since τxc = m ×Bxc = 0 then
Equation (2.74) is trivially satisfied at every step of the DFT minimization algorithm.

By comparison, within the source-free implementation, local torques may arise [37], in
which case, from Equation (2.30) we see that

τ ′
xc = m×B′

xc

= m×Bxc +m×Hxc

= m×∇ϕ
= ϕ(∇×m)−∇× (ϕm). (2.75)

Under periodic boundary conditions on Ω, we may show that∫
Ω

τ ′
xc dr =

∫
Ω

τxc dr +

∫
Ω

m×∇ϕ dr

=

∫
Ω

ϕ (∇×m) dr. (2.76)

Again, we have used the property that the surface integral vanishes under periodic boundary
conditions,

∫
Ω
dr ∇× (ϕm) = 0, via Equation 2.44 provided in Section 2.2.2.2. It is not

apparent why Equation (2.76) should be zero, and therefore why ZTT should be obeyed for
the source-free functional. From Equation (2.76), it is clear that the net XC torque possesses
the same gauge invariance of EC

xc (Equation (2.40)), and therefore it cannot be eliminated
via the addition of a gradient field to m. In Section 4.2.5, we explore the adherence to the
ZTT computationally, and possible ways to maintain the zero torque condition in Appendix
2.2.3.1.

Several previous studies have sought to address adherence to the ZTT with various pro-
posed XC non-collinear functionals. For example, in Ref. [92], the authors rigorously explore
the dependence of Bxc on m that would result in satisfying the ZTT for all m. Additionally,
Ref. [91] proposed a way to maintain the zero global torque constraint in Section III of
their Supplemental Material. While their approach is promising, the method that we propose
in Appendix 2.2.3.1 leverages the convenient property that volume integrals of derivatives
disappear under PBCs. Therefore, in comparison to Ref. [91], we are able to ensure that

1. The resultant B′
xc is indeed source-free, i.e. ∇ ·B′

xc = 0, by solving for the auxiliary
vector potential, A′, rather than the magnetic field itself.

2. Our least-squares solution only requires solving 3 linear equations, whereas Ref. [91]
requires solving 3P − 3 linear equations, where P is the size of the real-space grid [91].

3. We treat all points on the real-space grid on the same footing. In other words, we do
not solve for the field to maintain ZTT on “boundary” grid points separately from the
bulk, as proposed in Ref. [91]. In our setting of PBCs, there is no notion of “edge”
versus “bulk” to begin with.
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We emphasize again that our proposal to maintain the ZTT in Appendix 2.2.3.1 is not
currently implemented in our VASP code patch. We hope that this will be the subject of
subsequent studies.

All this being said, ZTT may not be a strict constraint on the spin-current density
functional. We see this by starting from Equation 33 of Ref. [83], which is also Equation
6.10b of Ref. [86],

∇ · jp,λ +
2

ℏ
∇ · (mλAxc) +

q

mc
∇ ·
(
ρAxc,λ

)
= −2

ℏ
[m×Bxc]λ +

2q

ℏc
∑
µ,ν

ϵλµνjp,ν ·Axc,µ. (2.77)

where jp,λ are defined in Section 2.2.2.4, and q
c
Axc,λ = δExc/δjp,λ. Additionally, ϵλµν is the

Levi-Civita symbol. In the spirit of Ref. [92], we see that by taking the integral of both sides,
and imposing periodic boundary conditions on the region of integration Ω, we arrive at∫

Ω

dr [m×Bxc]λ =
q

c

∫
Ω

dr
∑
µ,ν

ϵλµν jp,ν ·Axc,µ. (2.78)

There is no reason for the right hand side of this equation to be zero. Therefore, the above
continuity equation provides an extension of the “zero torque theorem.” In other words, in
order to satisfy the steady state conservation law, it is no longer necessary for the net torque
to be zero, i.e.

∫
Ω
dr m×Bxc = 0 need not be obeyed.

2.2.3.1 A general approach to satisfy the zero torque theorem

Our goal is to solve for an auxillary field A′ such that the zero torque condition is obeyed∫
Ω

dr m×B =

∫
Ω

dr m× (∇ϕ+∇×A′) = 0. (2.79)

The trivial solution, ∇ × A′ = −∇ϕ, can only hold if ∇ϕ = 0. Therefore, we recast the
problem as such ∫

Ω

dr m× (∇×A′) = −
∫
Ω

dr m×∇ϕ = −τ ′. (2.80)

By expanding the triple product, we see that

m× (∇×A′) =
[
mj∂iA

′
j −mj∂jA

′
i

]
êi

= ∇A′(m ·A′)− (m · ∇)A′. (2.81)

At this step, we can apply the product rule, u∂xv = ∂x(uv)− v∂xu, to show that integrals of
the form

∫
dr ∂x(uv) vanish under periodic boundary conditions (PBCs) by Equation 2.43.
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Having leveraged this convenient property of the PBCs, it is possible to transfer the deriva-
tives from A′ to m such that we can restate Equation (2.80) as∫

dr m× (∇×A′)

=

∫
dr
[
A′

i∂jmj − A′
j∂imj

]
êi = −τ ′ (2.82)

Now, we will introduce the following discretized approximation for the L2 inner product on
regular grids

⟨u, v⟩ =
∫
Ω

dr u(r)v(r) ≈ 1

∆V
uTv, (2.83)

where ∆V = ∆x∆y∆z. We introduce this shorthand for the purposes of this study, however,
it is just as applicable to continuous functions. With this definition, we can recast the
problem in Equation (2.82) as a matrix-vector system

Ma = −τ ′, (2.84)

where a =
[
A′T

x A′T
y A′T

z

]T
, and the matrix M is defined as

M =
1

∆V

mT
y,y +mT

z,z −mT
y,x −mT

z,x

−mT
x,y mT

z,z +mT
x,x −mT

z,y

−mT
x,z −mT

y,z mT
x,x +mT

y,y

 , (2.85)

in which case mi,j = ∂mi

∂xj
. Because the system of equations is underdetermined (i.e. M is

“short and fat”), we can can solve for a using a least-squares approach,

a = −M+τ ′, (2.86)

which solves for the solution a with minimal L2 norm,

||a||2 =

 ∑
i=x,y,z

∫
Ω

dr |A′
i(r)|2


1/2

. (2.87)

M+ is the correspanding Moore-Penrose right-hand pseudoinverse M+ = MT
(
MMT

)−1

such that MM+ = I, as long as the rows of M are linearly independent. We note that
MMT is diagonally dominant, because it contains L2 norms (which are guaranteed to be
positive) of the spatial partial derivatives of m along the diagonal. Therefore, MMT should
be invertible, so long as the magnetization varies in all spatial directions over the domain,
which it should for spin-polarized systems.
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In conclusion, by applying both source-free and ZTT corrections to the exchange-correlation
magnetic field, Bxc,

Bxc 7→ B′
xc

B′
xc = Bxc +∇ϕ+∇×A′ (2.88)

we can simultaneously satisfy

I. The source free constraint:

∇ ·B′
xc = 0

II. The zero torque theorem: ∫
Ω

dr m×B′
xc = 0.

However, we should stress that the second ZTT constraint is not implemented in the code
at present. In other words, we set A′(r) = 0 in the context of this study.

2.2.3.2 Noncollinear nature of Bxc

The source-free constraint forces the resultant Bxc to be noncollinear, and therefore this
constrained functional is not applicable to collinear magnetic functionals. To illustrate this,
consider the example where we define the magnetic field vector field Bxc(r) over R3. If
we only allow one component of this three-dimensional vector field to be non-zero (in the
z-direction for instance, where Bxc(r) = Bz

xcẑ) we can rewrite the divergence-free constraint
of Bxc(r) as

∇ ·Bxc(r) =
∂

∂z
Bz

xc = 0 (2.89)

Therefore, Bz
xc must be constant with respect to z, whereBxc(r) = Bz

xc(x, y)ẑ. In general, we
would expect the ground-state magnetization fieldm(r) to align parallel to the corresponding
Bxc(r), and therefore this constraint on Bxc(r) severely limits the possible m(r) in ways
that are unphysical.

As we will demonstrate in the subsequent results chapters, we find improved local con-
vergence to the magnetic ground-state, and better global convergence using a novel hybrid
metaheuristic optimization algorithm, SpinPSO, which we introduce in the following sections.

2.3 SpinPSO Algorithm and Workflow: Noncollinear

Ground-States

Previous computational and theoretical studies have had success in predicting non-collinear
magnetic orderings using advanced symmetry-based models informed by first-principles for
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collinear [93, 94] and noncollinear [95, 96] magnetic systems. The incorporation of symmetry
has benefits from the standpoint of reduced computational cost [95, 96]. However, these
approaches will not be suitable for systems of lower or broken crystal symmetry, such as in
systems with interfaces or other defects, or amorphous magnets. Although we do not study
these systems here, our methodology could be applicable in these instances, which we hope
is a topic of future exploration.

In our algorithm, denoted SpinPSO, we modify the guaranteed convergence particle swarm
optimization (GCPSO) algorithm developed by Ref. [45] & [97] by incorporating a variation
of the well-known atomistic Landau Lifshitz Gilbert (LLG) equation [42, 98] into the PSO
methodology.The LLG formalism is known to describe magnetization dynamics at multiple
length scales [42, 99, 100] which makes it suitable for our purpose. Comparing to the
inspirational work of Payne et al [101], in which the authors necessitate the definition of a
distance metric between spins, our modification allows the facile extension to dynamics on
S2.

Agent-based meta-heuristic schemes often have improved global convergence [45], in the
sense that a large initial scattering of agents on the potential energy landscape reduces
the possiblility of being trapped in a local minimum, compared to gradient descent based
optimization schemes. Indeed, Payne et al [101] used a firefly optimization algorithm - the
algorithmic cousin of PSO - towards optimizing noncollinear magnetic orderings. Notably,
firefly has been shown to outperform PSO for noisy objective functions [102], however, DFT
calculations, derived from variational principles, should exhibit noise on the order of the
energy convergence tolerance, wherefore, in this study, we propose a PSO-based algorithm
for convergence efficiency [103, 104].

In the formulation that we found to be the most successful, SpinPSO is further distinct
from conventional GCPSO in the sense that we have included gradient information in the op-
timization scheme. While not conventionally included in most implementations of PSO,[45,
97] GCPSO does not explicitly preclude gradient information. After all, GCPSO was mo-
tivated on the grounds that PSO-type optimization schemes perform well when identifying
global valleys of the potential energy surface (PES) [45]. However, the order of convergence
can become sluggish - and even unsuccessful in some instances - within the same convex hull
of the global minimum [45, 97]. Therefore, within the GCPSO formalism, a random noise
term is added to the velocity of the agent with the “best” position on the PES [45], allowing
for more thorough exploration of the local energy landscape.

Therefore, inspired by gradient-descent type optimization strategies, we inform the “best
agent” dynamics with gradient information, as opposed to a fluctuating noise term. While
this doesn’t appear to be common knowledge within the non-collinear DFT community,
information on the gradient, or a local effective magnetic fields, can be obtained from con-
straints on local magnetic moments, as implemented in VASP [1, 105]. The details of how
we compute these local effective fields, and incorporate them into the workflow, are included
in Section 2.3.1.2. We also explore how including gradient information improves convergence
speed by orders of magnitude. This possibly explains why we are able to achieve much higher
rates of convergence compared with other agent-based optimization strategies for computing
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the noncollinear magnetic ground-states [101].

2.3.1 SpinPSO methodology

2.3.1.1 Physical inspiration for SpinPSO

This optimization strategy is comprised of a swarm of agents, in which each agent, or particle,
corresponds to a different magnetic configuration. Each agent’s position on the potential
energy landscape is evolved in a fictitious “time” τ according to the atomistic LLG equation

∆si,j
∆τ

=
sn+1
i,j − sni,j

∆τ

= −γsni,j × hn
i,j − αsni,j ×

(
sni,j × hn

i,j

)
(2.90)

Each “agent” i corresponds to a spin configuration
{
si,1, ..., si,n

}
, where each atomic moment

is normalized within R3, s.t. si,j ∈ S2. Each spin is evolved in τ according to a forward-
difference Landau Lifshitz Gilbert (LLG) equation at interval ∆τ indexed by time-step n. To
ensure that the norms of the spins remain constant (|s| = 1), we perform a simple re-scaling
of the individual spins after each time step. We do not employ a more advanced time-
stepping routine (e.g. mid-point method), because we are currently more concerned with
convergence to the minimum energy ground-state than accurately describing the kinetics of
the spins themselves.

The two terms on the right-hand side of the LLG equation can be intuited as follows.
The single cross product term induces a precession of the moments about the effective field;
e.g. about the best state in the pure particle swarm optimization scheme. This allows for
slight curvature in the path towards convergence, which should in practice increase explo-
ration of the potential energy landscape near to the identified lower energy state. Notably, in
other particle swarm optimization dynamical schemes inertial terms are included in the opti-
mization; here we opt for this precession term instead. The second term, the triple product,
promotes a damping motion of the moments, resulting in a tendency to align with the on-site
effective field, h. These terms have physical meaning as the LLG equation can be derived
from the quantum mechanical Heisenberg time evolution equation for spin operators [42] –
at least without damping (α = 0). As noted previously, the LLG equation has demonstrated
effectiveness at describing magnetization dynamics at multiple length scales [99], and its use
is often motivated on phenomenological grounds for this reason [100]. In the context of our
algorithm, the damping term is the most important, because at convergence/equilibrium
the spins should eventually align with the effective field, which contains information on the
swarm’s best position in the configuration space. For stability and convergence, we choose
the coefficient of the second, α, to be significantly higher than the first, γ. We found a good
rule of thumb to be at least a factor of three difference.
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2.3.1.2 Swarm and gradient informed local fields

The effective field on individual moments, hn
i,j, is informed by particle swarm optimization

input quantities from the swarm of agents,

lni,j = acσcs̃
n
i,j + asσsŝ

n
j

hn
i,j =

lni,j
|lni,j|

(2.91)

where (1− σc) ∼ U (0, 1) and (1− σs) ∼ U (0, 1). The local fields are normalized stochastic
linear combination of s̃ni,j and ŝnj , which are the “personal best” and “swarm best” spin
configurations, respectfully, consistent with the PSO formalism. Particle swarm optimization
algorithms are inherently stochastic, so in an analogy to their Cartesian counterparts, we
introduced these random uniform weighting of the cognition term, which corresponds to the
historical best position of the corresponding agent over its trajectory directory. In addition,
we include the social term characteristic of particle swarm optimization schemes, which stores
the best position compared to each time step of all agents over time.

To remain consistent with the guaranteed convergence particle swarm optimization (GCPSO)
scheme developed by van den Bergh and Engelbrecht [45], we define an alternative time
evolution equation to the “best” agent at any particular time. We replace the random per-
turbations of the “best” agent evolution in the guaranteed convergence PSO (GCPSO) [45]
with gradient information from local moment constraints implemented in VASP, indicated
by (heff)

n
i,j.

(heff)
n
i,j = − ∂E

∂sni,j

l̂ni,j = ρ
(heff)

n
i,j

|sni,j|
+

lni,j
|lni,j|

ĥn
i,j =

l̂ni,j

|l̂ni,j|
(2.92)

Therefore, this approach can be intuited as an extension of swarm optimization algorithms
inspired by stochastic dynamics of variables belonging to sub-domains of Rn to the dynamics
of a collection of spins that respectively belong to S2. A noted, prior work has applied a
firefly optimization strategy to identifying noncollinear ground-states [101]. However, one
comparative benefit of the LLG approach, is that it precludes the need to explicitly define a
distance metric between spin configurations, in addition to the fact that the LLG equation,
and its variants, emerges in magnetic systems at multiple length-scales [99].

It is through this effective field that we may also introduce gradient information in order
to improve convergence near the local minima. The constraining effective site magnetic field,
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Heff
i , can be described as the following [105]

Heff
i = 2λ

[
Mi − M̂ 0

i

(
M̂ 0

i ·Mi

)]
(2.93)

where Mi are the integrated magnetic moments at site i, and M̂ 0
i are the unit vectors

pointing in the individual site constraining directions [105].
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Chapter 3

Linear response calculation of U and J
values

We call upon the people
People have this power
The numbers don’t decide

Radiohead

In this chapter, we discuss the calculation of Hubbard U and Hund J values using linear
response, based on the methods and theory introduced in Sections 2.1, 1.2.1.6, and 1.2.1.7.
Furthermore, we perform a more in-depth study of BiFeO3, LiNiPO4, and NiO as material
test cases, highlighting the importance of accurately obtained U and J corrections to describe
the magnetic properties of correlated electronic systems.

3.1 Results

We calculated Hubbard U and Hund J for over one thousand transition metal oxides using
the linear response workflow that we implemented in atomate, as introduced in Chapter 2.
The majority of the calculations corresponded to materials containing Mn-d, Fe-d, and/or Ni-
d species. All the systems studied were previously predicted by Ref. [6] to have a collinear
magnetic ground-state using a separate high-throughput workflow. That work used the
empirical Hubbard U values reported on the Materials Project.

In addition, a representative set of O-p responses were calculated and analyzed. It is
less common to include Hubbard corrections to oxygen 2p states. However, an appreciable
number of studies have shown how O-p on-site corrections have improved the agreement
with experimentally measured bond lengths between oxygen and transition metal species
[17, 30, 106–109]. It is perhaps less intuitive to apply spin-polarized Hund J parameters
to oxygen sites, because O-p states are conventionally not included in effective models for
magnetism. However, while oxygen atoms do not develop magnetic moments, early studies



CHAPTER 3. LINEAR RESPONSE CALCULATION OF U AND J VALUES 43

have demonstrated theoretically and computationally that O-p states mediate the antifer-
romagnetic superexchange interaction in transition metal oxides, such as MnO [33, 110,
111].

Table 3.1: Comparison of computed Ueff in the present work with values used by the Materials
Project [63, 113]. Copyright (2024) by the American Physical Society. Reproduced from
Ref. [1] with permission.

element mean Ueff (eV) UMP
eff (eV) diff. (eV)

Co 4.430 ± 1.474 3.32 1.110
Cr 2.425 ± 0.472 3.7 -1.275
Fe 4.108 ± 1.322 5.3 -1.192
Mn 4.135 ± 0.724 3.9 0.235
Mo 1.911 ± 0.318 4.38 -2.469
Ni 5.258 ± 0.773 6.2 -0.942
V 3.060 ± 0.673 3.25 -0.190
W 1.461 ± 0.218 6.2 -4.739

3.1.1 Periodic table sample set

Figure 3.1 displays two periodic tables containing the distributions of computed Hubbard
Ueff and Hund J values for each transition metal element (and oxygen) computed for different
structures within the database. In Table 3.1, values obtained in this study are listed alongside
the standard Ueff values employed by the Materials Project [63, 113]. Those values were
determined using the procedure outlined by Wang et al. [114] which finds a Ueff value that
minimizes the error in formation energy for several representative redox couples. Due to the
limited amount of experimental data available, these Ueff values are determined with only
experimental data from a single redox couple (Co, Cr, Mo, Ni, and W) or two redox couples
(Fe, Mn, and V). Therefore, it is possible or likely that these Ueff values are not appropriate
for a more general system containing these elements. Nevertheless, the MP Ueff values are
found to be the same as the Ueff values in the present work within the standard deviation for
most elements (Co, Fe, Mn, and V) or slightly outside the value in the present work (Ni).
Exceptions are Cr, Mo, and W, with the largest, notable discrepancy of 4.739 eV for W.

To evaluate the impact of these discrepancies, compounds containing W from a dataset of
experimental formation energies [115] used by the Materials Project were taken and relaxed
using the new Ueff value for W from the present work but with all other calculation settings
kept consistent with standard Materials Project settings, to obtain a new set of computed
energies. These energies substantially lowered the correction introduced in Ref. [115] for
W from -4.437 eV/atom to 0.12 eV/atom, suggesting that the newer Ueff is indeed more
appropriate for the calculation of formation energies.
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element
U J

mean σ N mean σ N
V 4.123 0.471 84 0.599 0.162 84
Mn 4.792 0.830 63 0.740 0.246 63
Cu 7.773 1.251 61 1.366 0.932 61
Fe 4.659 0.826 55 0.279 0.378 55
Ti 4.907 0.481 53 0.635 0.185 53
Cr 2.906 0.471 46 0.611 0.135 46
Nb 0.536 0.157 43 0.241 0.082 43
W 1.844 0.252 42 0.423 0.043 42
Zn 1.917 0.564 40 1.790 0.456 40
Co 5.159 0.608 31 0.560 0.292 31
Ni 5.849 0.797 31 0.682 0.186 31
Ta 3.733 0.164 30 0.668 0.041 30
Zr 4.199 0.244 28 0.907 0.091 28
Ag 2.254 0.852 25 1.236 0.256 25
Mo 2.561 0.321 23 0.483 0.062 23
Hg 0.521 0.142 20 0.429 0.032 20
Re 0.620 0.233 19 0.269 0.103 19
Cd 0.238 0.469 19 0.632 0.097 19
Sc 1.921 0.352 17 1.169 0.396 17
Y 4.302 0.343 17 1.694 0.361 17
Hf 3.515 0.229 13 1.085 0.167 13
Ru 3.000 0.371 11 0.506 0.146 11
Pt 1.554 0.315 10 0.447 0.041 10
Os 1.911 0.440 8 0.392 0.078 8
Pd 3.757 0.899 7 0.691 0.063 7
Au 1.120 0.248 6 0.495 0.034 6
Rh 1.528 0.196 5 0.457 0.056 5
Ir 1.902 0.095 4 0.315 0.324 4
Tc 2.946 0.012 3 0.580 0.004 3
Total 814 814

Table 3.2: The mean and standard deviation (σ) in the U and J parameters used in the
periodic tables of Figure 3.1, alongside the number of samples N .

We stress that these values are not transferable to studies that use DFT+U+J imple-
mentations in other codes. Quantum ESPRESSO and Abinit use localized projections
that are separately different from that in the projector augmented wave (PAW) method
implemented in VASP [64], for different reasons.

The trends across these periodic tables — and in particular, the increasing U across
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the 3d transition metals — are reminiscent of results from early studies that related the
Hubbard and Hund parameters to Slater integrals over the Coulomb operator [18, 26, 116,
117]. For example, Ref. [116] proposes a linear relationship between the atomic number
Z and the Hubbard and Hund parameters, based on both Hartree-Fock calculations and
empirical observations. Note, however, that this is only valid for unscreened Coulomb kernels
[18], and the Slater integrals are in fact highly dependent on the screening of Coulomb
exchange between electrons (and hence the chemical environment) [18, 66]. We also do
not want to overstate this comparison, which mixes older definitions of the Hubbard and
Hund parameters (i.e. as derived from Slater integrals) with those used in this work (i.e. as
measures of the deviation of the DFT functional from piecewise linearity).

Table 3.3: Computed range of U , J , and Ueff values compared with reported Ueff on the
Materials Project (MP) [113], as well as the MP literature [63]. Each mean value has an
associated standard deviation indicated after the “±.” Copyright (2024) by the American
Physical Society. Reproduced from Ref. [1] with permission.

mean mean mean reported reported
computed computed computed MP [113] range [63]

Species U (eV) J (eV) Ueff = U − J (eV) Ueff (eV) Ueff (eV)
Mn-d 4.953 ± 0.635 0.520 ± 0.156 4.433 ± 0.654 3.9 3.60 – 5.09
Fe-d 4.936 ± 0.700 0.177 ± 0.367 4.759 ± 0.790 5.3 3.71 – 4.90
Ni-d 5.622 ± 1.221 0.399 ± 0.434 5.223 ± 1.296 6.2 5.10 – 6.93
O-p 10.241 ± 0.910 1.447 ± 0.171 8.794 ± 0.926 N/A N/A

3.1.2 Focused study on Mn-d, Fe-d, Ni-d, and O-p, including the
reason for large O-p Hubbard U values

We now present a more detailed study on materials containing Mn-d, Fe-d, Ni-d, and O-p
Hubbard sites. For these systems, the distributions of the computed Hubbard U and Hund
J values are provided in Figure 3.2. The variations in U and J values calculated for these
three species is immediately apparent, with a range on the order of approximately 1 to 2 eV.
These distributions reflect the intrinsic screening environment dependence of the calculated
value for a given element. At this point, we note only their apparently universal unimodality
(single peak) and the near-general decrease in U with chemical period within a given group,
however we will return presently to a more physically and chemically motivated observation.
In Table 3.3 we list for comparison the U values currently used in Materials Project (fitted
empirically) as well as a range of U values found for a set of spinels and olivines by Zhou
and co-workers (calculated via self-consistent linear response) [63].

We find that O-p exhibits the largest associated Hubbard U value of approximately 10
eV, which agrees with the linear response results from a previous study using a different
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code and somewhat different linear-response formalism [17]. While large oxygen Hubbard
U values may seem surprising within a strongly correlated materials context, it has become
more accepted in recent years within first-principles solid-state chemistry that oxygen 2p
orbitals can warrant, both by direct calculation and by necessity (when resorting to fitting),
a remarkably high U value in DFT+U .

3.1.2.1 Interpretation of Hubbard U in terms of the subspace chemical
hardness

We will now attempt to motivate and explain the phenomenon of comparatively larger O-
p U values. We note from the outset that the element projector orbital profile plays a
complicating role in the following analysis. Over a sample of materials, we observe that the
2×2 averaged diagonal elements of the χ−1

0 non-interacting response are of approximately
the same magnitude for both TM-d and O-p site matrix elements, with a mean difference
close to zero. The non-self-consistent response can be interpreted as the response due to
non-interacting response effects at a site due to its surroundings [18], and thus it can be
understood as a property primarily of the environment of the atom under scrutiny. Then,
unless screening is very short ranged (as it may be in a very wide-gap insulator), this quantity
may be said to be somewhat similar, on average, for metal and oxygen ions in an oxide.
Thereby, the chemical trends in the Hubbard U arise mostly in the interacting response,
instead.

Next, for this same sample of materials, we note that the magnitude of the O-p interacting
response χ tends to be significantly less than the interacting TM-d response. This indicates
that −χ−1 = d2E/dn2

γ, the curvature of the total energy versus occupation, nγ, is greater
for O-p states. This greater curvature versus occupation can be explained in terms of known
trends in the chemical hardness, i.e., the second chemical potential, i.e., the derivative of
the chemical potential with respect to total charge at fixed external potential. (We note
in passing that some authors choose to include a factor of one half in the definition of the
chemical hardness for historical reasons, but we suppress that discussion here.) Specifically,
we can focus on the finite difference (three-point) approximation to the global chemical
hardness [118], namely in terms of the following energy differences

ν ≡ d2E/dN2 ≈ E (N − 1)− 2E (N) + E (N + 1)

=
[
E (N + 1)− E (N)

]
−
[
E (N)− E (N − 1)

]
≡ Ei − Ea ≡ Eg, (3.1)

which is nothing but the fundamental band-gap. This is a quantity that has been tabulated
many times. Using the results of Ref. [119], we find that for atomic oxygen its value is
11.2 eV, compared to that of the transition metal atoms, where it ranges from 5.8 eV (Ti &
Zr) to 8.0 eV (Mn) if we exclude the often problematic zinc group, where it reaches 11.6 eV.
This mirrors and explains the observed relatively large first-principles Hubbard U value for
oxygen 2p states predicted in this and several previous studies.
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Ultimately, we conclude that the Hubbard U may be interpreted as the subspace-projected,
environment-screened chemical hardness. More precisely, U can be intuited as contributions
to the hardness due to interactions such as Hartree, exchange, correlation, and perhaps
other terms like implicit solvent and PAW potential. After all, it is from these interactions
that most chemical trends appear to arise in practice. For subspaces that project heavily
at both band-edges, as in normal DFT+Ueff practice, the U inherits chemical trends from
the chemical hardness (fundamental gap) of the atom that it resides upon. This is higher
for a greater atomic ionization energy Ei (that of oxygen is generally around twice that of
transition metals) and higher also for a more negative electron affinity Ea (that of oxygen is
more negative than that of most but not all transition metals). By and large, both quantities
are well known to increase in magnitude as we move ‘up and right’ in the periodic table, and
this same broad trend is reflected in our periodic table of Hubbard U values.

When a DFT+Ueff subspace projects only onto one band edge, as is the case for charge-
tranfer insulators, then only the trend in either the ionization energy or electron affinity will
be very relevant to the trends in U . Due to the relatively large electronegativity of oxygen,
typically there will be little weight at the conduction band edge for oxygen 2p orbitals
projectors. Therefore, the particularly clear trend in ionization energy drives the relatively
large U value for oxygen. Indeed, if this argument holds, then one would guess that the
oxygen 2p U value is roughly twice that of an average transition-metal d-subspace, which
turns out to be the case from first principles linear response.

Within the present formalism, the Hund J may be interpreted as an analog for the spin
degree of freedom, and specifically as minus (by a convention thought to originate with Ising)
the interaction part of the subspace-projected, environment screened spin-hardness, where
the spin-hardness is a quantity discussed for example in Ref. [120].

3.1.2.2 Trends in U and J values

In order to explore trends in the distribution of U and J values, we have plotted these on-site
corrections in scatter plots within Figure 3.2. These plots illustrate the relationship between
U and J values with respect to site occupations. For transition metal species, we plot U
and J versus the “d” component of the projected moment m, denoted as “ml=2.” These
moment values are those output by VASP as the difference between up and down spin site
occupancy numbers computed using PAW core-region operators. Because the oxygen atoms
do not have an associated magnetic moment, we plot O-p Hubbard U and Hund J versus
nl=1 occupations on oxygen sites.

We should stress that the values of “ml” and “nl” are only computed from the calculation
without the +U/J correction. One reason for using the bare PBE computed ml and nl is
that these occupations should be independent from the applied Hubbard U or Hund J
values. This would offer the “bare” m, as well as n, as a possible predictors of U and J
values. However, it is important to note that these occupations could change significantly
with applied U and J values [17, 121, 122].
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There is an apparent clustering of datapoints at different on-site ml magnetizations in
Figures 3.2a, 3.2b, and 3.2c. This grouping at different on-site magnetization values is most
likely due to different spin and charge states dependent on the underlying chemistry. We
also observe a larger range of U and J values for higher values of ml, which is due to the
coupling between highly spin-polarized states to on-site Coulomb screening for TM species.
As would be expected, we see similar trends for J , a measure of the screened interaction
between spin channels.

The clusters that lie at the associated maximum computed ml fall off and exhibit a
negative slope trend with the magnitude of the site moment. This is likely due to the
fact that ml is highly dependent on the local chemical environment, which will govern the
interacting and non-interacting energy curvatures with respect to spin-occupations, which
are related to U and J within linear response [16]. The clear trend for the manganese may
be due to the strong tri-modal distribution of Mn magnetic moments seen in Figure 1 of
Ref. [6]. The “stable” magnetic configurations from this study were used in the LR analysis,
therefore a similar statistical distribution should hold for the subset of structures used in
this LR analysis.

The trends of the datapoints for Hubbard U and Hund J values in Figure 3.2d appear to
show a downward trend for U versus p-occupation numbers, nl=1, and a slower, upward trend
for J values versus nl=1. We expect that the nl=1 occupations will be strongly dependent on
the oxidation/reduction state of oxygen atoms. Due to the nature of TM-O bonding in these
oxides, and their generally greater electronegativity, the oxygen atoms will tend to maximize
their valence. Therefore, building on the previous explanation of the magnitude of O-p U
values based on chemical hardness and specifically the more relevant ionization potential
component of that, the higher electron count for oxygen corresponds to a lower ionization
potential, and therefore to a reduced Hubbard U , as observed.

3.1.2.3 Occupations calculated from DFT (no on-site corrections) versus
guessed oxidation state

In Figures 3.4a-3.4c we provide scatter plots of the locally projected d (l = 2) component of
the magnetic moments, |m-d|, versus oxidation state guessed using the bond valence method
(BVM) [123] for a set of Mn, Fe, and Ni containing structures. Analogous plots versus
total d occupations, n-d, are provided in Figures 3.4d-3.4f. We emphasize again that these
local projections are obtained from VASP DFT calculations, without any on-site corrections
applied. We use the BVM implemented in pymatgen [70].
As expected from chemical intuition, there are clear trends of |m-d| and n-d versus guessed
oxidation. However, in a few cases, namely the trends of |m-d| versus Mn oxidation state in
Figure 3.4a, the trends of |m-d| is clearer than that of n-d. For this reason, we provide plots
of the calculated U and J values versus |m-d| in the manuscript. One of the goals of this
study is to lay the groundwork for a future study to explore the chemical and/or physical
justification for these trends.
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3.1.2.4 Multiplet theory and U and J

The correlation between on-site corrections and projected site moments is not surprising.
After all, Hund’s rules introduce a link between the magnetic spin moment of an atom and
its charge state [84, 116, 124]. This has been widely observed in DFT studies [125–127], and
it has even been argued that DFT magnetic moments are often the most convenient and
reliable indicator of charge states [125].

A model of multiplet splitting Next, we will summarize the theoretical basis for the
comparison between our computed on-site corrections and multiplet theory, which we explore
in Section 3.1.2.4. This theoretical foundation is based on the book by John C. Slater [124],
in which the author presents the following energy expression

E =
∑
i

I(nl) +
∑
ii′

E(nl, n′l′). (3.2)

The first sum runs over each single electron contribution to the multiplet state, and the
second double sum runs over pairs of electrons, interacting via Coulomb exchange, which can
be described in terms of Slater integrals [124]. The first two quantum numbers of electrons
in states i and i′ are indicated by nl and n′l′, respectively. While simple in its elocution, this
energy expression has the power to describe the ground-states multiplets of transition metal
and lanthanide charge states [116, 124], and therefore a quantitative explanation of Hund’s
rules.

Van der Marel and Sawatzky implement this theory in their paper, Ref. [116], in order
to express the multiplet exchange energy in terms Ueff and J . Therefore, we directly use
the mathematical expressions from their study in our analysis. Starting from the simple
Hamiltonian in Equation 3.2, Van der Marel and Sawatzky arrive at the energy expression

E = αII + αF 0F 0 + αJJ + αCC, (3.3)

where the αµ coefficients are integer values that depend on the ground-state multiplet state,
and C is the “angular part of the multiplet splitting” [116, 124]. From Equation 3.3, the au-
thors obtain an expression for Ueff [116] using a finite difference scheme identical to Equation
3.1.

It is worth reemphasizing that the Slater integrals (F 0, F 2, F 4, and F 6) themselves are
highly dependent on the screening of Coulomb exchange between electrons, and therefore
the chemical environment [18, 66]. Therefore, the Slater integrals themselves are not an
intrinsic property of the elemental species. Furthermore, the relationship of U and J to
Slater integrals is valid only for “unscreened Coulomb kernels” [18]. Specifically, within
the rotationally invariant formalism [19], the unscreened Coulomb integrals result in the
well-known expressions for U and J , for d-states:

U = F 0 (3.4)

J =
F 2 + F 4

14
. (3.5)
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In fact, these expressions are termed the “multiplet-averaged” Coulombic exchange correc-
tions [18, 116, 124].

Despite the caveats outlined in the previous paragraph, Equation 3.2 is derived from first-
principles [116, 124], and is therefore generalizable. Additional mechanisms for multiplet
splitting, such as the hyperfine structure, are explored in Volume II of Ref. [124]. However,
we do not explore these effects here, because the splitting of energy levels will be of smaller
magnitude compared to the first-order mechanisms for splitting via the electrostatic and
spin-spin interactions [124].

As we touched on in Section 1.2.1.7, it is possible to express the effective U as Ueff = U−J .
Therefore, as a shorthand, we define Jh as Jh = F 0 − Ueff, where F

0 is the Slater integral
commonly associated with the conventional Hubbard U . Therefore, based on Ref. [116], this
effective Jh incorporates “angular part of the multiplet splitting,” C [116], such that Jh is
a function of J and C. While the expression for Ueff is multiplet-specific, the unscreened,
multiplet-averaged U of Equation 3.4 is not. Therefore, we can think of Jh as an approximate
quantity, dependent on the ground-state multiplet of a given charge state. We conclude that
this simple model (Equation 3.3) can account for the oxidation-state dependence of the
on-site corrections via the ground-state multiplet. This permits us to explore a simplified
picture in which the influence of the chemical environment enters through the ground-state
charge state of the cation. The quantitative behavior of Jh is explored in Section 3.1.2.4,
and compared to our Hund J values calculated from linear response.

For illustration, in Ref. [66], the authors calculate the screened versus bare F 0 for a
selected number of 3d species in SrMO3 (M = V, Cr, Mn) [128]. For example, for SrVO3,
the authors find F 0

screened = 3.2 eV versus F 0
bare = 19.5 eV for V-d states, and observe a

similar relative magnitude for the other 3d species. Therefore, this lower value is likely due
to Coulombic screening from the oxygen octahedral environment of B-sites in the perovskite
SrMO3.

While this connection is physically motivated, localized states do not encompass all of
the levels of correlation effects that are neglected by the specific DFT functional [52]. This
perspective of U and J values as functional-specific, and not universal quantities, expands
the definition of U and J from their initial inspiration from the Hubbard model, which treats
U and J as intrinsic atomic properties.

To provide some theoretical background for the trends across these periodic tables, we
turn our attention to Ref. [116]. In this study, van der Marel and Sawatzky apply Slater’s
multiplet energy splitting theory [124], in order to express Ueff in terms of Coulomb exchange
and pair-hopping integrals, as well as the “angular part of the multiplet splitting” [116, 124].
This paper provides a convenient toy model for exploring the dependence of Ueff on ground-
state multiplets for different cation charge states (e.g. Fe2+ versus Fe3+). The authors obtain
an expression for Ueff [116] using a finite difference scheme reminiscent to Equation 3.1.

In this paper, the authors assume a linear increasing relationship between F 0 and the
atomic number, Z. As we cover in Section 2.1.1 with several caveats, the unscreened U value
is equal to F 0. Therefore, the overall increasing trend of U across the 3d row in Figure 3.1a
can be explained by this increasing Coulomb interaction with periodic table group index.
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Furthermore, the multiplet splitting analysis in Ref. [116] may help to explain the dipping of
Fe3+ spin-flip Hund J values into negative numbers. We leave an in-depth theoretical study
of negative J values (consistent with the linear response methodology) to future studies.

Comparison with multiplet theory In this section, we compare the computed Ueff and
J with their theoretical “unscreened” counterparts from the effective model for multiplet
exchange, Equation 3.2, as discussed in Section 3.1.2.4. In Figure 3.5a, we plot a comparison
of Ueff across 3d species. The “mean theoretical” values are obtained from an equally weighted
average over the common oxidation states for each element. This mean is not appropriately
weighted for the TMO dataset used in this paper. Therefore, the mean theoretical values
are intended for visual comparison, and not as a direct comparison.

The expression for the F 0 Slater integral was adjusted heuristically to fit the compu-
tational trends. Specifically, we use the following approximate linear expression: F 0 =
3.0 + 0.5(Z − 21), reported in electron volts. This expression differs from the linear expres-
sion used in Ref. [116]: F 0 = 15.31 + 1.50(Z − 21) eV. This modified expression for F 0

can be justified from the more recent cRPA calculations presented in Ref. [66], in which the
authors calculate the screened versus bare F 0 for a selected number of 3d species in SrMO3

(M = V, Cr, Mn) using the WIEN2k code framework [128]. For example, for SrVO3, the
authors calculate F 0

screened = 3.2 eV versus F 0
bare = 19.5 eV for V-d states, and observe a

similar relative magnitude for the other 3d species. Therefore, this lower value is likely due
to Coulombic screening from the oxygen octahedral environment of B-sites in the perovskite
SrMO3. Furthermore, the atomic number scaling relationship that we use for F 0(Z) across
the 3d row brings the expression into closer agreement (on order of magnitude) with the
values fit to empirical data, as reported in Ref. [116]. A complimentary comparison to the
mean conventionally screened Hund J values is included in Figure 3.5b. The linear scal-
ing relationship of Hartree-Fock unscreened J values versus atomic number Z is plotted as
well, as reported in Ref. [116]. For most species, the mean conventionally screened J values
calculated from linear response fall within the range of theoretical Jh values predicted for
different oxidation states.

Generally speaking, the parameters from Hartree-Fock 1, have provided a theoretical
basis on which to explain some trends that we observe across the 3d row elements. Namely,
one observes the presence of strongly negative Fe-d Hund J values for Fe3+, which agrees
with the computational trends shown in Figure 3.2b. Fe3+ has a higher spin moment than
Fe2+ [84], so the downward trend of J values with the magnetic moment can be explained
on this basis. For Ueff in Figure 3.5a, we observe a general upward trend of values with
atomic number, from Cr on, which is in agreement with the the average theoretical trends.
This trend arises from the increasing behavior of F 0 versus Z. For most elements, there
are theoretical values that fall within the computational error bars, with the exception of
titanium. It is apparent that while this simple analysis from multiplet energies [116, 124]
helps us provide quantum chemistry insight into some general trends, it is by no means a

1As tabulated from Ref. [116], which is fit to data from Ref. [129]
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predictive technique. By the distributions of the U and J values alone, it is clear that other
modes of Coulombic screening from the local environment play a key role in determining the
final value of the on-site corrections.

3.1.2.5 Exploration using random forest regression

To more robustly tease apart these observed trends, we performed a rudimentary random
forest regression test on the dataset, ultimately in an attempt to predict the on-site correc-
tions U and J from the input crystal structures and site properties. We used the random
forest regression algorithm as implemented in scikit-learn. The input quantities supplied
to the random forest regression routine consisted of the corresponding PBE-computed ml

and nl (i.e. without on-site corrections), as well as the oxidation state estimated using the
bond-valence method [123], and finally a selection of relevant site featurizers provided by the
matminer Python package [130]. Unsurprisingly the U and J values appeared to be the most
sensitive to the magnetic moment magnitude, m = n↑−n↓, and site occupation, n = n↑+n↓.
This is in accordance with what would be expected from the dependence on the Hubbard U
values on spin and charge state [121, 122]. However, these features proved to be insufficient
to accurately predict U and J .

Most of the matminer site featurizers were tested as input to the random forest regression
model. Additionally, the oxidation states calculated using the bond valence method (BVM)
[123] were also included as input to the model. For learning trends across different atomic
species, the atomic number of the associated element was also supplied. Additionally, we
tested the orbital field matrix (OFM) features as formulated by [131, 132]. The OFM en-
codes the orbital character of the surrounding chemical environment. For more information
on this method please refer to Ref. [131]. The OFM functionality is not implemented in
matminer or pymatgen. We were motivated to test the vectorized OFM by the chemical
intuition that on-site Hubbard U and Hund J values are very sensitive to the local chemical
environment. Additionally, the OFM has demonstrated success in predicting DFT-computed
magnetic moments in the past [131]. Furthermore, the OFM nearest-neighbor contributions
are weighted according to the geometry of the Voronoi cell, which could possibly provide
information beyond the relative importance of the Voronoi matminer featurizer. Of the
matminer featurizers, Ewald energy and Voronoi site featurizers had the greatest associated
importance metric [130], second only to the on-site magnetization ml. The on-site magneti-
zation for Mn, Fe, and Ni, respectively, had an importance of at least ten percent more than
any of the other local chemical environment descriptors.

From Hund’s rules, it is possible to derive magnetochemistry rules governing the coupling
between the magnetic spin-moment and associated charge state, dictated by the associated
multiplet ground-state [84, 116, 124]. Therefore, the correlation between on-site corrections
and projected site moments is not surprising. After all, previous studies have explored the
connection between charge states of transition metal species and the integrated net spin
calculated from DFT [125–127]. In fact, recent studies show that the magnetic moment is
often the most convenient and reliable indicator of charge states [125].
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3.1.2.6 Conventional vs. constrained linear response

In introducing the linear response theory in Section 1.2.1.7, we mentioned that there are two
possible schemes for computing U and J : “conventional” and “constrained” linear response,
where in the latter case the linear response is performed in such a way that the magnetic
moment (occupation) is held fixed while measuring the curvature with respect to the occupa-
tion (magnetic moment). While arguments can be made as to theoretically which approach
is the most valid for a given corrective functional (a topic which is the subject of ongoing
research [31]), this dataset presents an opportunity to evaluate how much this choice will
practically affect the resulting Hubbard and Hund parameters.

For the majority of the computed U and J values using these two methods, the difference
between the two strategies fell within their computed uncertainty. However, we observed a
significant deviation from y = x behavior for the computed U and J values for iron Hubbard
U and Hund J values shown in Figure 3.3. The width of this deviation from equality is greater
than 1 eV for U in some regions, which is enough to affect computed physical properties [16,
121].

3.1.2.7 Dependence on structure and magnetic state

For some input magnetic structures, the magnetic configuration changed while applying
the on-site potentials during the linear response analysis. Our hypothesis is that the input
magnetic structure corresponds to a local minimum configuration, or possibly a metastable
state. Therefore, in our analysis, we screen out these structures with the intent that these
systems will be studied in the future using a self-consistent approach to calculating on-site
corrections.

In order to test the sensitivity of U and J values to the input structure specifically,
we perform a geometry-self-consistent linear response study of antiferromagnetic NiO in
Section 3.1.5.3. Each iteration consists of a step which includes geometry optimization of
cell shape, followed by a linear response calculation of the PBE-based U and J values at
the DFT+U+J geometry (so as to isolate the impact of the geometry from the matter
of parameter self-consistency). These on-site correction values are then used in the next
subsequent geometry optimization step. Self-consistency is achieved once the U and J values
fall within their corresponding uncertainty values. Starting from the input structure — which
was optimized using the current default Materials Project U values [113] — convergence was
achieved after only two iterations.

It has been well established in previous studies that U values should be computed self-
consistently with geometry optimization [121, 133]. As demonstrated from the experiments
with antiferromagnetic NiO in Section 3.1.5.3, both the Hubbard U and Hund J values should
be calculated self-consistently. In this self-consistency study, J had the largest relative
convergence, and therefore appeared to be most susceptible to geometric self-consistency.
Due to the coupling between Hund J and magnetic exchange [33], it is possible that both
magnetic and structural features should be included in the self-consistency cycle. Within
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the atomate framework, it would be possible to incorporate an iterative workflow that wraps
the workflow developed in this study, in order to alternate linear response calculations with
geometry relaxation until self-consistency is achieved.

3.1.3 Case study: BiFeO3

The following excerpts and figures are included, with permission, from Ref. [2].

3.1.3.1 Introduction

Multiferroic BiFeO3 (BFO) exhibits both a large, room-temperature ferroelectric polarization
and canted antiferromagnetism with deterministic coupling between these order parameters
[134–139]. Thus, the magnetic nature of BFO can be controlled with electric fields, poten-
tially paving the way for ultra-energy-efficient magnetic and spintronic devices with more
favorable scaling [139–143]. Indeed, electric-field control of magnetism in coupled ferromag-
netic layers using BFO been the subject of considerable attention [137, 144–146], and while
this functionality has long excited researchers, understanding of the process has generally
relied on mesoscale imaging and transport measurements to infer the structure and behav-
ior of the BFO. This has left gaps in our understanding of the microscopic mechanism and
details of this process.

In the bulk, BFO exhibits an antiferromagnetic (AFM) spin cycloid that exists in the
plane defined by P and the propagation direction, k, which points along a ⟨1 1 0⟩ that is
orthogonal to P [147–151]. This vector connects second-nearest neighbor iron sites which,
in an unperturbed G-type AFM, would be ferromagnetically coupled within {1 1 1} [151–
153]. The spin cycloid itself has been modeled as a Néel-type, rotating uncompensated
magnetization, M(r), that exists in the plane defined by k and P (i.e., the (1 1 2), where P
is along the [1 1 1] and k along the [1 1 0], unless otherwise noted) with a period of ∼ 65 nm
(Figure 3.6d). This has been described as

M(r) = m
[
cos(k · r)ek + sin(k · r)ep

]
where m is the volume-averaged magnetization, |k| = 2π/λ, r is a coordinate in real space,
and ek and eP are the unit vectors in the directions of k and P , respectively [154]. A
second-order canting also exists due to the Dzyaloshinskii-Moriya interaction (DMI) arising
from the antiferrodistortive octahedral rotations [152, 155–157], causing the magnetization
to buckle slightly out of the k−P plane (Figure 3.6e). This second-order spin-density wave,
noted here as MSDW , can be described [158] by

MSDW (r) = mDM cos(k · r)
(
ek × ep

)
. (3.6)
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Keff

(
µeVf.u.−1

)
UMS

(
µeVf.u.−1

)
θn

Unstrained 19.655 - -
Strained −3.011× 10−1 -20.125 56.57◦

Table 3.4: Fitted coefficients of Equation 3.7. Copyright (2024) Springer Nature. Repro-
duced from Ref. [2] with permission.

3.1.3.2 Computational results

While DFT simulations can provide powerful insight into the local atomic structure, predict-
ing the ground-state magnetic order of BFO is computationally intractable using plane-wave
DFT due to the long period of the cycloid (∼ 65 nm) and the corresponding large system
size required to fully simulate it [160]. A practical alternative is to use the generalized
Bloch condition for q-spirals which can account for rotations in the cycloidal plane, but this
cannot predict moments that are canted out of this plane due to boundary conditions. To
then help understand the ground-state magnetization of the system, here we discretize the
magnetic structure into subsections manageable by first principles. Starting from a 2×2×2
unit cell with G-type antiferromagnetism, where anti-aligned iron moments point along the
vector ±L, we systematically rotate the initial L within a fixed plane (given by the angle
ϕ, Figure 3.7a) to simulate the cycloid and resolve the canted magnetism. In this case, ϕ
is in the (1 1 2), defined by P and k, which hosts the cycloid. Additionally, calculations
are performed applying on-site Hubbard U and Hund J corrections to the O-p manifold,
in addition to the Fe-d and Bi-p, with further detail in Methods. We first demonstrate the
validity of our approximations and methodology by reproducing the established spin texture,
L, as reported in the literature. Specifically, we rotate L within an orthogonal plane, (1 1 1)
which leads to an approximately two-times greater energy cost than L in (1 1 2), relative to
the reference minimum energy spin quantization axis (Figure 3.7b).

Initializing the iron moments along the rotation angle ϕ in the (1 1 2), the canted MSDW

component of magnetization along the [1 1 2] spontaneously arises when the structure is
relaxed (Figure 3.8). In these simulations, MSDW is the net moment that comes from the
canting of the atomic moments away from the initialization direction L and is reported as
the vector sum of the iron spins. From our simulations, MSDW follows the same period as
the cycloid and reaches a maximum value when L is parallel to [1 1 0]. This is consistent
with the expectation from symmetry that MSDW emerges due to the DMI from octahedral
rotations with their axis along the polarization direction [152, 156, 157], whereDij ·

(
Si × Sj

)
is maximized when Dij and Sij are orthogonal, in this case Si,j∥k. The value of MSDW

reaches a maximum of 0.02 µB, which is consistent with previous predictions [160, 161] and is
of the order of previous experimental results [148, 154, 156, 158]. Discretizing the magnetic
cycloid in this way then produces results that agree exactly with previous experimental and
theoretical interpretations of the canted MSDW component of the cycloid [155–157], as well
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as quantitative analysis of the data presented here (Figure 3.10).
With the magnetic structure reproduced using DFT, we next consider how anisotropy is

introduced into the system through epitaxial constraints. Fixing the unit cell to the in-plane
lattice constants of DSO, a calculation is performed where the iron moments are rotated in
the planes defined by P and the three possible k directions (i.e., [1 1 0], [1 0 1], and [0 1 1]).
From these data, there is a clear anisotropy favoring the k ∥ [1 1 0], approximately four-times
lower than the original degenerate k. The preference for the k ∥ [1 1 0] is consistent with
experimental observations (Figure 2 of Ref. [2]). This is in contrast to the bulk, zero strain
state, where all possible directions of k are symmetry-wise and energetically equivalent.
Understanding, then, that substrate constraints intrinsically break the degeneracy of the al-
lowed k directions, one can then ask whether the state of the cycloid can be deterministically
changed with an electric field and whether this anisotropy is strong enough to persist in the
switched state.

Electronic structure calculation details DFT calculations were carried out in VASP.
Hubbard U and Hund J corrections for the valence states of all species were calculated
using collinear DFT using a linear response (LR) workflow developed in the atomate code
framework [1]. Linear response analysis was performed without the inclusion of SOC to
reduce computational cost, and because SOC has been found in other systems to have a
relatively small effect on the on-site corrections from LR [1]. These values were calculated
to be U , J = 5.2, 0.4 eV for Fe-d, U , J = 0.8, 0.8 eV for Bi-p, and U , J = 9.7 , 1.9 eV for
O-p. Because MAE is on the order of µeV, geometry relaxation, spin-orbit coupling (SOC),
and on-site Hubbard U and Hund J corrections are all accounted for in a holistic manner
to address their interdependence. In all calculations, Hubbard and Hund corrections are
applied to all outer shell manifolds (Fe-d, Bi-p, and O-p). These structures were calculated
for the structure endpoint reported in Ref. [159]. Using these calculated on-site Hubbard
corrections, full geometry relaxation of the structure was performed with SOC included until
self-consistency was reached for an electronic energy tolerance of 10−6 eV. All calculations
were performed for the 2×2×2 supercell (eight times the formula unit) to accommodate the
G-type antiferromagnetic structure. These computational subtleties are addressed in greater
depth in the Figure 3.9 and Section 3.1.3.2.

In the unstrained calculation, the on-site Hubbard U and Hund J parameters on O-p, in
addition to Fe-d, are primarily responsible for the minimum in the anisotropy energy along
[1 1 1], instead of the intersections with the (1 1 1) as previously reported [160]. For the U/J
parameters listed above, we observe that using U/J applied to Fe-d states alone, the [1 1 1]
corresponds to a local maximum in energy. Conversely, [1 1 1] is a local minimum if we apply
on-site corrections to the O-p manifold. This result appears to be agnostic to the flavor of
on-site correction used, i.e. DFT+U+J [162] versus DFT+Ueff [26] with Ueff = U−J . This
use of O-p Hubbard corrections could help to explain the differences between local minima
on the MCAE energy landscape compared to previous DFT studies.

Additionally, when comparing DFT + U + J to DFT + Ueff, both an effective reduction
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of antiferrodistortive rotations of oxygen polyhedra, as well as a reduction of ferroelectric
distortions of Fe atoms are observed. Conventionally, the inclusion of the Liechtenstein
DFT+U +J formalism is known to amplify oxygen polyhedral distortions [33, 57] compared
to the Dudarev DFT+Ueff counterpart. This can be explained on the basis that, in order to
motivate Ueff, a spherical symmetry of the Coulomb exchange integrals is assumed [18] which
is rarely the most accurate assumption, especially for transition metal oxide systems with
symmetry broken by crystal field splitting [33, 57]. In this case, however, the possible conflict
between SOC and the Hund J antisymmetric intra-orbital exchange is also considered, as
explored in reference [163] and [164].

Discussion of the magnetoelastic anisotropy From the calculations presented here,
the effective anisotropy is greatly reduced for the strained unit cell. This can be reconciled
from the insight of previous DFT studies, which computationally confirmed that the single
ion anisotropy is most strongly affected by ferroelectric distortions, while the net DMI vector
is most sensitive to the magnitude of antiferrodistortive rotations of oxygen octahedra [161].
From Figure 3.9, strain induces a dominant cooperative distortion of oxygen, relative to iron
and bismuth ions, which reduces the magnitude of the effective anisotropy. We observe the
quantitative outcome of these distortions in the reduction of |Keff| in Table 3.4. This helps
to rationalize, if the strained cell is not allowed to relax individual atomic positions, the
experimentally observed behavior for the cycloid k vector to orient along [1 1 0], compared
to [1 0 1] and [0 1 1], is not reproduced.

In order to provide further evidence for the magnetoelastic anisotropy induced by epi-
taxial strain, the data here are also fit to the analytical expression for the energy versus
rotation angle for BFO, derived in the SI of Ref. [165]. These results in Figure 3.9 showcase
an almost perfect agreement between the analytical expression and the data.

The anisotropy energy is defined in terms of the antiferromagnetic order parameter,
oriented along the z-direction, which is parallel to [1 1 1]. Keff includes both uniaxial mag-
netocrystalline anisotropy (MAE), as well as DMI energy contributions [165]. The mag-
netostrictive term accounts for plane strain in (0 0 1), where the unit vector defines the
direction normal to the film plane with P ∥ [1 1 1] under no applied stress. This energy can
be expressed as:

F ′ = Fanis + FMS = −KeffL
2
Z − U(L · n̂) (3.7)

where F ′ contains the effective anisotropy (Fanis) and plane-strain magnetostrictive (FMS)
contributions to the free energy and n̂ is the unit vector that is normal to the thin film
plane. Employing spherical coordinates, with the polar axis oriented along P ∥ [1 1 1]
and the azimuthal axis along [1 1 2], we can express the AFM order parameter as L =
|L|[sin θ cosϕ, sin θ sinϕ, cos θ]. Both energy contributions can then be expressed in terms of
the polar and azimuthal angles θ and ϕ:

Fanis = −Keff cos
2 θFMS = −U (sin θn sin θ cosϕ+ cos θn cos θ)

2 (3.8)
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where θn defines the orientation of n̂ within the polar reference frame. In the case of ϕ = π/2,
which corresponds to a (1 1 2) rotation plane,

F ′
112 = −

(
Keff + UMS cos

2 θn
)
cos2 θ (3.9)

If Keff + UMS cos
2 θn < 0, the [111] axis is favored. If Keff + UMS cos

2 θn > 0, however,
intersections between the (1 1 2) and (1 1 1) planes (i.e. [1 1 0] and [1 1 0]) are preferred over
the [1 1 1] axis. This agrees with the energy versus rotation angle provided in Figure 2 of
Ref. [2].

In Table 3.4, we report the fitted coefficients of the energy terms in Equation 3.7 for
both the unstrained, relaxed structure, as well as the unit cell constrained to the DyScO3

lattice parameters, a ∼= b ∼= 0.394 nm. The uncertainties of these obtained values from
scipy.optimize.curve fit, are less than 10−14 eV for all Keff and UMS values, and 0.003◦

for θn. By comparison, for the unstrained structure, θn = 54.7◦. The coefficient of the
magnetostrictive term is negative, US < 0, which is expected under compressive epitaxial
strain, based on the intuition provided by Ref. [165]. According to the calculation presented
here, |UMS| > |Keff|, which further supports the claim that in BiFeO3, strain strongly affects
the easy axis/plane preference and orientation.

3.1.4 Case study: LiNiPO4

We now present a detailed study on the olivine LiNiPO4, designed to test the results produced
by the linear response workflow. Previous GGA+U and GGA+U+J studies have attempted
to reproduce the experimentally-observed spin-canting structure and unit cell shape as shown
in Figure 3.11 [23, 63, 166].

We calculated U and J for this system via spin-polarized linear response. The spin-
polarized linear response method introduced in Section 1.2.1.7 can be generalized to non-
collinear DFT using the relationship between spin-density occupations and the magnitude
of the magnetic moment: n↑ =

1
2

(
n+ |m⃗|

)
and n↑ =

1
2

(
n− |m⃗|

)
[24]. Within the context

of linear response, this simplification is akin to assuming that EHub and Edc can be stated
as functionals of n and |m⃗| alone. As we discussed in Section 1.2.1.6, this assumption is
justified in both collinear and non-collinear (with spin-orbit coupling) DFT+U+J , as stated
in Equations 1.13 and 1.14. Reassuringly, |m⃗| and m hold similar meanings in both non-
collinear and collinear DFT, respectively.

For comparison to the “non-collinear” results, we also performed a collinear calculation,
where the magnetic configuration for LiNiPO4 was obtained by projecting the canted non-
collinear structure shown in Figure 3.11 along the z-direction. In addition to one unit cell
of the the collinear antiferromangetic (AFM) configuration, a linear response analysis was
performed on a 1×2×2 supercell. Table 3.5 summarizes the results of the computed Hubbard
U and Hund J values. From this table, it is evident that the U value is significantly smaller in
magnitude with the inclusion of spin-orbit coupling. A possible justification for this behavior
is the introduction of orbital contributions to the total localized magnetic moments with the
inclusion of spin-orbit coupling [33, 168].
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Table 3.5: Hubbard and Hund results for Ni-d in LiNiPO4 (Atom-wise screening). Copyright
(2024) by the American Physical Society. Reproduced from Ref. [1] with permission.

cell magnetism U (eV) J (eV)
1× 1× 1 collinear 5.43 ± 0.16 0.38 ± 0.07
1× 2× 2 collinear 5.44 ± 0.24 0.54 ± 0.07
1× 1× 1 non-collinear 5.09 ± 0.15 0.42 ± 0.05

3.1.4.1 Canting angle exploration

In order to explore the effects of Hubbard and Hund parameters on the energetics of non-
collinear magnetic structure, we calculated the energy as a function of constrained canting
angle, which has been experimentally measured for LiNiPO4 [166]. The non-collinear mag-
netic constraints were performed in VASP in accordance with the method developed by Ma
and Dudarev [169]. We used the experimentally derived spin canted structure as a reference
provided by the Bilbao Crystallographic Server, as shown in Figure 3.11 [166, 167]. The en-
ergy versus canting angle curve is shown in Figure 3.12a. We found that the stable canting
direction is in the opposite direction to the experimentally measured canting angle. However,
this discrepancy with experiment was limited to the canting direction; the computed stable
magnetic structure still obeyed the symmetry of the Pnm'a magnetic space group.

Similarly to the work by Bousquet and Spaldin [23], we observe an increasing canting
angle with Hund J value. Interestingly, adding a U and J correction to O-p results in a
slightly decreased stable canting angle. However, we find that in all cases, the computed
stable canting angle is significantly less than the experimentally measured canting angle of
7.8 degrees [166].

The constraining effective site magnetic field, H⃗eff
i , can be described as the following

H⃗eff
i = 2λ

[
M⃗i − M̂0

i

(
M̂0

i · M⃗i

)]
, (3.10)

where M⃗i are the integrated magnetic moments at site i, and M̂0
i are the unit vectors pointing

in the individual site constraining directions [169]. The x component of the constraining field
(in the direction of canting), Heff

i,x, is plotted versus the constraining angle in Figure 3.12b.
We see that where Heff

i,x changes sign corresponds to the minimum of Figure 3.12a.

3.1.4.2 LiNiPO4 response plots

The 2 × 2 spin-polarized response for Ni-d states is shown in Figure 3.13. In this figure,
each subplot corresponds to a different component to the spin-channel response tensor, χσσ′

,
where σ, σ′ =↑ or ↓.
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3.1.4.3 Effect of U and J values on geometry optimization

While the addition of Hubbard and Hund parameters go some way to addressing the canting
angle of LiNiPO4, introducing these terms can also alter the geometry of the system. To
explore this effect, we performed structural relaxations of the system with various combina-
tions of Hubbard and Hund corrections. In each of the structural relaxation calculations, a
maximum force tolerance of 10 meV/Å was used. The Hubbard U and Hund J values used
include those calculated using linear response, which are approximations of the values that
are reported in Table 3.5. Additionally, we tested the Ni-d U and J values used in Ref. [23].
All calculations included spin-orbit coupling, and were constrained to the experimentally
observed canting angle (7.8 degrees).

Table 3.6 lists the optimized unit cell parameters and volume, compared with the ex-
perimentally measured geometry [166]. For both the PBE+Ueff and PBE+U+J schemes,
adding corrections to the Ni-d space worsens the geometry relative to the uncorrected PBE
geometry (as earlier observed by Zhou and co-workers [63]). However, the further addition
of corrections to the O-p subspace reduces the errors by three-fold, resulting in geometries
that are closest to experiment. This is similar to observations in other studies when ap-
plying corrections to O-p subspaces [17, 30]. We note that applying a +J correction to
non-magnetic O-p states may seem unconventional. However, it should be stressed that this
correction is for localized static correlation error effects that do not vanish at zero magne-
tization. Nor, indeed, does the introduction of +J necessarily induce magnetization, and
the projected magnetic moments on LiNiPO4 remain just below 0.01 µB, with and without
on-site corrections to O-2p states. Meanwhile, we can see that adding a +J parameter does
not significantly alter the cell parameters.

3.1.4.4 Discussion on TM-O bond length versus U, J, and V corrections

Table 3.6 also presents the change in mean Ni-O bond length between nearest-neighbor pairs
for various on-site corrections. For the Ni-O bond length it is the same story as for the
cell parameters: applying U and J to the Ni-d sites worsens the results relative to the PBE
result, but by applying corrections to the O-p channels we obtain bond lengths that are in
closer agreement with experiment. In Ref. [17], some of us attempted to rationalize this
trend in the computed bond length between transition metal species and oxygen anions and
how it improves with the introduction of corrections to the O-p subspace. We suggested
that when +U is added to the Ni-d subspace the resulting shift in the potential disrupts
hybridization between the Ni-d and O-p orbitals, weakening the bonding between these two
elements (and thus leading to bond lengthening). Applying corrections to the O-p re-aligns
these two subspaces and allows them to “re-hybridize.” The DMFT community has sought
to address these issues with other approaches, including by tweaking the double-counting
term or by using results from GW [170, 171].

In an attempt to more thoroughly explore this reasoning, Figure 3.14 provides a compar-
ison for the projected density of states (DOS) of LiNiPO4 for PBE and PBE+U+J (with
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and without corrections to O-p). It is difficult to discern re-hybridization from these DOS
plots alone.

Without an explicit quantification of hybridization effects, we have added a derivation in
Section 3.1.4.4, that presents a mathematical expression of the forces acting on ions due to
+U+V corrections. This result is an extension of the theory put forth by Matteo Cococcioni
in Section 4.1 of Ref. [18]. We argue that in quantifying the forces on TM-O bond lengths
due to on-site corrections, it is possible to show that the force contributions due to both
+Uγ and +V γγ′

can, and should, be treated on the same footing, where γ and γ′ correspond
to atomic sites. It isn’t possible to definitively state the comparative magnitude, or sign, of
these force contributions without additional calculations or simplifications based on physical
intuition. However, the result suggests that the forces on TM-O bond-length due to O-p U
values will have a comparative magnitude to the forces due to inter-site Coulomb corrections
from +V .

In Section 3.1.4.4, we further hypothesized the sign of these force contributions, starting
from a DFT geometry-optimized structure without on-site corrections. Using these assump-
tions, which are based on computational trends in bulk TMOs, we conclude that either
applying a +U correction to the O-p manifold or a +V between TM and O states mitigates
the overestimation of TM-O bond lengths that arise when applying +U to localized states
around the TM species.

3.1.5 Case study: NiO

3.1.5.1 Supercell scaling test & Pseudopotential comparison

In this preliminary test, we perform a supercell scaling study for NiO using the antifer-
romagnetic (AFM) primitive cell, with lattice vectors a = [−2.02,+0.00,+2.02] Å, b =
[−2.02,+2.02,+0.00] Å, and c = [−4.04,−2.02,−2.02] Å. In all calculations, we test the
PBE GGA functional, and compare the various PAW PBE 52 pseudopotentials for nickel and
oxygen, namely: Ni pv, Ni, & Ni GW, as well as O & O GW, respectively. While we found that
supercell size did not change the U values outside of uncertainty, the type of pseudopotential
(PP) used had a very significant effect on the U/J values that resulted. While this isn’t all
together surprising, this demonstration should serve to underscore the lack of transferability
of on-site corrections, which are calculated using the same DFT functional, but a different
PP.

3.1.5.2 Full matrix inversion

In this short scaling study on NiO, we perform the full inversion on the primitive cell, and
a supercell with twice as many atoms, as shown in Table 3.10. These values are calculated
with the screening between all atoms included in the matrix inversion, i.e., 8 × 8 matrix in
the 1×1×1 cell (2 × spin-channels × (2 × Ni atoms + 2 × O atoms) = 8 sites), and 16×16
matrix in the 2× 1× 1 cell.
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It is evident that these values change significantly between the two cell sizes - by nearly 1 eV.
Therefore, we can conclude that for the full inversion, it is clear that more rigorous supercell
scaling must be performed. This is a question that we hope will be addressed in future
studies, which are interested in using this framework for obtaining V γγ′

inter-site exchange
values relevant for DFT+U+V .

3.1.5.3 Experiment in self-consistent geometry with applied U & J

In this section, we performed a manual geometry “self-consistency” cycle for the NiO test
case. The first iteration uses the relaxed primitive cell from using the MP default Ueff for
Ni-d of 6.2 eV. For each geometric optimization step, we use an SCF energy convergence of
1.0−4 eV (EDIFF), which corresponds to a ionic relaxation tolerance of 1.0−3 eV (EDIFFG).
As is evident from the table below, these tolerances were sufficient in order to achieve self-
consistent U and J values for Ni-d and O-p, within their corresponding uncertainties. The
smaller uncertainty values are due to the fact that we use seventeen evaluations for the
linear response analysis, instead of nine in the previous section. The parameters are com-
puted based on the PBE linear response, for the given Lichtenstein DFT+U+J geometry,
so this test does not concern corrective parameter self-consistency per se. For this system,
it is apparent that geometry-self-consistent on-site corrections are achieved within the first
iteration. However, this may not be true for more complex oxides, in which the rotation of
oxygen polyhedra play a more crucial role.

3.1.5.4 Electron localization function

In our study of NiO, we apply the electron localization function (ELF) to the system, as
defined by Silvi et al. [172] and implemented in VASP, which is written to the ELFCAR
output file. Other studies have shown that the ELF provides insight into locations of high
self-interaction error (SIE) [173]. In Figures 3.15a - 3.15c, we provide a comparison over the
visualized isosurfaces of the ELF for various levels of on-site corrections. We continue to
focus on the antiferromagnetic primitive cell of NiO studied in Section 3.1.5.1. Applying the
+U+J to all sites in this case appears to have the strongest effect on the localization around
the O-p states. It is interesting to note that it appears that in Figure 3.15b, applying on-site
corrections to Ni-d sites appears to have a stronger effect on the localization function sur-
rounding the oxygen atoms than the nickel atoms. While these visualizations are interesting
to observe, it is difficult to conclude on this basis why a larger U value is needed for O-p
sites.
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(a) Periodic Table of Hubbard U values computed from first principles.

(b) Periodic Table of Hund J values computed from first principles.

Figure 3.1: Periodic table of Hubbard U and Hund J values computed for representative set of
transition metal oxides. The color map indicates the mean value computed for each element
over each material. The materials used in the creation of these periodic tabled were selectively
chosen: noting that many databases, including the ICSD, contain a growing number of
hypothetical materials which may or may not be realizable, we selected materials that are
well-studied and exhibit more than two ICSD IDs each. Furthermore, to remove cross-
correlations between magnetic elements, we also require that these compounds only contain
a single d-block element (occupying a single symmetrically-equivalent site) with no f -block
species. Ultimately, these data correspond to the U and J values for over 800 materials, and
are distributed over the transition metal species. A more detailed table containing data on
the distribution of values is included in Table 3.2 in the Appendix. The plotted distributions
of U/J values are generated using a Gaussian kernel-density estimator implemented in scipy

[112]. Copyright (2024) by the American Physical Society. Reproduced from Ref. [1] with
permission.
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Figure 3.2: Distributions of Hubbard U and Hund J values computed using the linear
response method; For the sub-figures (a), (b), and (c) that correspond to d-electron TM site
corrections, the U and J values are plotted against the DFT (no +U+J correction) computed
site magnetic ml, where ml=2 corresponds to the d-character of the local moment, which has
an l = 2 angular momentum quantum number. The O-p U and J values in sub-figure (d)
are plotted against nl (the p-occupation in the case of O-2p) total site occupations. The
number of samples for on-site correction values for Mn-d, Fe-d, Ni-d, and O-p are 285, 248,
149, and 206, respectively. Copyright (2024) by the American Physical Society. Reproduced
from Ref. [1] with permission.
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Figure 3.3: Comparison between the conventional and constrained approaches for calculating
(a) Hubbard U and (b) Hund J values for Fe-d Hubbard sites. Copyright (2024) by the
American Physical Society. Reproduced from Ref. [1] with permission.
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(a) m-d of Mn (b) m-d of Fe (c) m-d of Ni

(d) n-d of Mn (e) n-d of Fe (f) n-d of Ni

Figure 3.4: Each sub-figure provides a scatter plot of the computed m-d and n-d site occu-
pations for Mn, Fe, and Ni, obtained from DFT calculations (without +U/J). These values
are plotted against the “guessed” oxidation states using the bond valence method (BVM),
as implemented in [70]. Copyright (2024) by the American Physical Society. Reproduced
from Ref. [1] with permission.
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(a) Calculated Hubbard Ueff versus theoretical counterpart.
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(b) Calculated Hund J versus theoretical unscreened J and Jh = F 0 − Ueff.

Figure 3.5: Mean computed (a) Ueff and (b) J for 3d block elements versus the theoretical
counterparts from multiplet theory, as covered in Section 3.1.2.4. The error-bars indicate
the corresponding standard deviation. The linear scaling relationship of C and J versus
atomic number, Z, are from those reported in Ref. [116]. The scaling that we employ for
F 0 is F 0 = 3.0 + 0.5(Z − 21) eV, which we justify in the main text. In addition to the
Hartree-Fock J (linear scaling) [116], we plot Jh = F 0 − Ueff.
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through coupled, multi-step rotations of the polarization11,18,19 (Fig. 1a,
b, c). Here, using NVmicroscopy, we directly image the straymagnetic
field at the surface resulting from the spin cycloid as it couples to
ferroelectric domains and complex (71°, 109°, and 180°) ferroelastic
and ferroelectric switching events.

In the bulk, BFO exhibits an antiferromagnetic (AFM) spin cycloid
that exists in the plane defined by P and the propagation direction, k,
which points along a h110i that is orthogonal to P20–24. This vector
connects second-nearest neighbor iron sites which, in an unperturbed
G-type AFM, would be ferromagnetically coupled within a f111g24–26.
The spin cycloid itself has been modeled as a Néel-type, rotating
uncompensated magnetization, MðrÞ, that exists in the plane defined
by k andP (i.e., the ð11!2Þ, whereP is along the ½111$ andk along the ½!110$,
unless otherwise noted)with a period of ~65 nm (Fig. 1d). This has been
described as

M rð Þ=m cos k % rð Þek + sin k % rð Þep
h i

ð1Þ

where m is the volume-averaged magnetization, k
!! !!=2π=λ, r is a

coordinate in real space, and ek and eP are the unit vectors in the
directions of k and P, respectively14. A second-order canting also exists
due to the Dzyaloshinskii-Moriya interaction (DMI) arising from the
antiferrodistortive octahedral rotations25,27–29, causing the magnetiza-
tion to buckle slightly out of the k-P plane (Fig. 1e). This second-order
spin-density wave, noted here as MSDW , can be described16 by

MSDW rð Þ=mDM cos k % rð Þ ek × ep
" #

ð2Þ

Example solutions to Eqs. 1 and 2 are provided in Supp. Figure 1.
The direction of k, and the magnetization are thus intimately tied to
the ferroelectric polarization of BFO, consistent with the fact that the
spontaneous polarization is the primary order parameter of multi-
ferroicity in this system. As the polarization is switched through

various pathways, themagnetoelectric coupling can then be evaluated
in real space.

InNVmicroscopy, the straymagneticfields (BðrÞ) from the sample
surface perturb the energy states of a singleNV center implanted into a
diamond scanning probe tip. By measuring the optically detected
magnetic resonance spectra of the NV center, one can detect small
magnetic fields (<2 μT

ffiffiffiffiffiffiffi
Hz

p &1
) with spatial resolution down to at least

10 nm. Combined with piezoresponse force microscopy (PFM), it is
possible to locally map the vectorial polarization distribution, P rð Þ, in
the ferroelectric domains and thereby correlate the relationship
between the magnetic and ferroelectric structure in BFO. While the
interaction of the cycloid with ferroelectric domains has been sug-
gested in previous work, where poling areas of the film results in a
locally uniform k (the cycloid propagation direction), the interaction
between ferroelectric domain walls and the cycloid has not been
directly demonstrated14. More importantly, it is not well understood if
and how the cycloid propagation direction changes during ferro-
electric switching, a question especially relevant to electric-field
manipulation of magnon transport30,31 and exchange coupling across
heterointerfaces4,11. Here,we show that direct mapping of the canted
antiferromagnetic texture to the ferroelectric domains can be
achieved. Of greater importance30,31, it is shown that upon applying an
electric field to switch the ferroelectric polarization, the relationship
between k and P is conserved, with k showing a strong anisotropy
along the in-plane ½110$ and ½!110$ which are both perpendicular to P. It
is also observed that this anisotropy persists irrespective of the
direction of electric field, through both in-plane and out-of-plane fer-
roelectric switching events.

Results
Anisotropy of the cycloid propagation
The model heterostructures studied here are ~100nm thick, (001)-
oriented BFO thin films deposited on DyScO3 (DSO) (110) substrates
using pulsed-laser deposition, both with and without metallic SrRuO3
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Fig. 1 | Complex structure of BiFeO3. a Schematic unit cell of BFO with P along
½111$. In thin films, an electric field applied in-plane, (b) switches the polarization by
71' to ½!111$. In contrast, a field applied in the out-of-plane direction, (c) will drive
successive 71° and 109° switches, resulting in a 180° final polarization along ½!1!1!1$.
d Ironmoments in BFO are antiferromagnetically aligned along the ½111$,modulated
by the cycloid propagation along k, ½!110$. Other allowed directions of k also lie

within this ð111Þ. The canting of the AFM alignment gives rise to an uncompensated
magnetization,MðrÞ, which rotates primarily in the k-P plane with the same period
as the antiferromagnetic moments, ~65 nm. e M is further frustrated by DMI asso-
ciatedwith the octahedral rotations, giving rise to amodulationMSDW ðrÞ out of the
k-P, ð11!2Þ plane. The ð11!2Þ plane is shown by the shaded plane and MSDW points
along the ½11!2$ direction.
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Figure 3.6: Complex structure of BiFeO3. a Schematic unit cell of BFO with P along [1 1 1].
In thin films, an electric field applied in-plane, b switches the polarization by 71◦ to [1 1 1].
In contrast, a field applied in the out-of-plane direction, c will drive successive 71◦ and 109◦

switches, resulting in a 180◦ final polarization along [1 1 1]. d Iron moments in BFO are
antiferromagnetically aligned along the [1 1 1], modulated by the cycloid propagation along
k, [1 1 0]. Other allowed directions of k also lie within this (1 1 1). The canting of the AFM
alignment gives rise to an uncompensated magnetization, M(r), which rotates primarily
in the k-P plane with the same period as the antiferromagnetic moments, ∼ 65 nm. e
M is further frustrated by DMI associated with the octahedral rotations, giving rise to
a modulation MSDW (r) out of the k-P , (1 1 2) plane. The (1 1 2) plane is shown by the
shaded plane andMSDW points along the [1 1 2] direction. Copyright (2024) Springer Nature.
Reproduced from Ref. [2] with permission.
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expectation from symmetry that MSDW emerges due to the DMI from
octahedral rotations with their axis along the polarization
direction25,28,29, where Dij ! ðSi × SjÞ is maximized when Dij and Si,j are
orthogonal, in this case Si,j || k. The value ofMSDW reaches amaximum
of 0.02 μB, which is consistent with previous predictions34,35 and is of
the order of previous experimental results14,16,21,28. Discretizing the
magnetic cycloid in this way then produces results that agree exactly
with previous experimental and theoretical interpretations of the
canted MSDW component of the cycloid27–29, as well as quantitative
analysis of the data presented here (Supp. Fig. S4).

With the magnetic structure reproduced using DFT, we next
consider how anisotropy is introduced into the system through epi-
taxial constraints. Fixing theunit cell to the in-plane lattice constants of
DSO, a calculation is performedwhere the ironmoments are rotated in
the planes defined by P and the three possible k directions (i.e., ½!110%,
½!101%, and ½0!11%). From these data, there is a clear anisotropy favoring
the k k ½!110%, approximately four-times lower than the original
degenerate k. The preference for the k k ½!110% is consistent with
experimental observations (Fig. 2). This is in contrast to the bulk, zero-
strain state, where all possible directions of k are symmetry-wise and
energetically equivalent. Understanding, then, that substrate con-
straints intrinsically break the degeneracy of the allowed k directions,
one can then ask whether the state of the cycloid can be determinis-
tically changed with an electric field and whether this anisotropy is
strong enough to persist in the switched state.

In-plane electric field switching of the cycloid
Through application of an in-plane electric field, perpendicular to the
striped 71° domain walls, we can reorient the in-plane component of
polarization in BFO to produce a net polarization (Pnet) along the ½100%

or ½!100%, composed of (½11!1% and ½1!1!1%) or (½!11!1% and ½!1!1!1%) polarized
domains, respectively. Test structures (Methods) used to apply this in-
plane field and the corresponding ferroelectric switching behavior are
shown in Fig. 4a,b. The ferroelectric domains measured by PFM are
shown for devices, respectively poled into the Pnet k ½010% (Fig. 4c) and
Pnet k ½0!10% (Fig. 4d) configurations. Mapping the spin cycloid, mea-
sured throughNVmicroscopy, to these domain images, the changes in
k map directly to the ferroelectric domain walls and the sense of the
cycloid such that the relationship k perpendicular to P is preserved.
Here, for example, ½11!1% and ½!1!1!1% polarized domains show equivalent k
axes along ½!110%.

As in the case of the as-deposited films, k remains parallel to the
surface of the film. If the polarization of a domain reorients from ½111%
to ½!111%, k selects the ½110% out of the three symmetry allowed axes. We
believe that this is due to the biaxial strain state imposed by the DSO
substrate, With this assumption, that k is confined to the in-plane
directions andwewill observe a 90° change in k under 71° ferroelectric
switching, wemeasure the change in k in situ at a single location under
electric field.

With an in-plane electric field, individual ferroelastic domain walls
tend to remain stationary and the polarization of individual domains
reorients by 71° (Fig. 4e, Supp. Fig. S7)4,11,30. The stray magnetic field
measured at a single location in situ and the corresponding ferro-
electric domains are shown (Fig. 4f–k) where, e.g., in the center
domain, the directionality of k changes from ½110% to ½!110% and back to
½110% under successive switching events. Again, after ferroelectric
switching, the relationship between k and P is conserved, with both
rotating 90° about the ½001%-axis. In the case of BFO, this observation is
not necessarily surprising. In previous works, electrical switching of
the polarization in BFO has been proposed to follow successive
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Fig. 3 | Resolution of MSDW from first principles. a Schematic showing the initi-
alization angle θ within the cycloid plane for the antiferromagnetically aligned Fe
spins.bComparisonof themagnetocrystalline anisotropyof thebulkunit cell when
the Fe spins are rotated in the ð111Þ and ð11!2Þ. This agrees with the expectation that
the cycloid rotates within ð11!2Þ, as the mean value of the energy is 2× higher when

moving the rotation to the ð111Þ plane. c Relative energy along the three possible k
directions when the unit cell is epitaxially strained to DSO. The mean energy is 2×
lowerwhen the cycloid propagates along the in-plane ½!110% direction, agreeing with
our experimental observation. The dotted lines show the mean energy values.
d Schematic of the three k directions in (c).
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Figure 3.7: Resolution of MSDW from first principles. a Schematic showing the initialization
angle θ within the cycloid plane for the antiferromagnetically aligned Fe spins. b Comparison
of the magnetocrystalline anisotropy of the bulk unit cell when the Fe spins are rotated in
the (1 1 1) and (1 1 2). This agrees with the expectation that the cycloid rotates within
(1 1 2), as the mean value of the energy is 2× higher when moving the rotation to the (1 1 1)
plane. c Relative energy along the three possible k directions when the unit cell is epitaxially
strained to DSO. The mean energy is 2× lower when the cycloid propagates along the in-
plane [1 1 0] direction, agreeing with our experimental observation. The dotted lines show the
mean energy values. d Schematic of the three k directions in c. Copyright (2024) Springer
Nature. Reproduced from Ref. [2] with permission.
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Figure 3.8: Modulation of MSDW due to the cycloid. a In the discretized DFT calculations,
when the Fe spins are rotated in the (1 1 2), we observe the emergence ofMSDW in the [1 1 2]
direction due to the interaction with the DMI caused by the antiferrodistortive rotations
of the FeO6 octahedra, pointing along the direction of P . From symmetry, HDM

ij = Dij ·(
Si × Sj

)
which, because Si and Sj are bound to the (1 1 2) plane and Dij∥P , the energy is

minimized when Si,j ∥ [1 1 0] ⊥ P , thus Si,j cants in the [1 1 2] direction. b We observe that
when we bind the spins to other crystallographic planes, here (1 1 1), this interaction does
not form a spin density wave and instead the resultant M forms a cycloid with the same
periodicity as the Fe spins. This unmodulated moment is thus compensated and would not
be seen with NV microscopy [158], implying that the case in a must be approximately true
in our samples. c As a further control, the same calculation is performed with an imposed
centrosymmetry on the BFO unit cell. In this case, there is no canted moment from the
simulations, confirming the mechanism of formation from Dij arising due to the ferroelectric
polarization. Copyright (2024) Springer Nature. Reproduced from Ref. [2] with permission.
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Figure 3.9: DFT methodology. a-d Visualized distortions induced from various origins, as
well as energy path comparisons over various DFT parameters. To provide a reference chiral-
ity of parent AFD distortions, a, arrows indicating the displacements of the cubic structure
relative to the distorted structure, as reported in Ref. [159]. The relaxed relative distortions
under strain is visualized in b. Additionally, c shows the reduction in antiferrodistortive
(AFD) rotations due to the addition of Hund J applied to Fe-d, and d, the further reduction
in AFD magnitude due to Hubbard corrections to the Bi-p and O-p manifolds. e Energies
versus rotation angle for k ∥ [1 1 0], with and without Ueff applied to the oxygen 2p states.
The input structure itself is relaxed with Fe-d: U , J = 5.2, 0.4 eV and O-p: U , J = 9.7,
1.9 eV Hubbard corrections. f Anisotropy energy for different energy cutoffs (ENCUT) and
k-point densities demonstrating that we have performed a proper convergence test versus
the resolution of DFT calculations. g,h Energy versus rotation angle for different on-site
corrections, compared for two different relaxed structures. The linear response Hubbard
corrections correspond to Fe-d: U , J = 5.2, 0.4 eV, Bi-p: U , J = 0.8, 0.8 eV, and O-p:
U , J = 9.7, 1.9 eV. The structure in g is relaxed with these Hubbard parameters, whereas
h is relaxed with Ueff = 4.0 eV applied to Fe-d sites. Copyright (2024) Springer Nature.
Reproduced from Ref. [2] with permission.
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Figure 3.10: Strain dependence of the cycloid propagation. Piecewise DFT calculations for
the cycloid in the relaxed supercell, showing the dependence of k. In the bulk crystal, the
three possible cycloid directions are energetically equivalent, which makes sense given the 3
-fold symmetry of the rhombohedral unit cell. In the epitaxially strained case, this 3-fold
symmetry is disrupted by the biaxial strain in the (0 0 1) due to epitaxy, inducing a preferred
direction within the (0 0 1). Data overlayed with fits to Equation 3.7 shown as dashed lines.
Copyright (2024) Springer Nature. Reproduced from Ref. [2] with permission.
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Figure 3.11: Olivine crystal structure of LiNiPO4 with magnetic atoms visible. Taken from
[166] via the Bilbao MAGNDATA database [166, 167]. The purple atoms correspond to
magnetic nickel atoms. The oxygen octahedra surrounding lithium atoms are indicated in
orange, where the grey oxygen octahedra surround nickel sites. Copyright (2024) by the
American Physical Society. Reproduced from Ref. [1] with permission.
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Figure 3.12: (a) Computed relative energy and (b) x-component of effective constraining
local magnetic field for various Hubbard and Hund on-site corrections applied to the Ni-d
and O-p manifolds. Copyright (2024) by the American Physical Society. Reproduced from
Ref. [1] with permission.
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Figure 3.13: Linear response results for Ni-d within LiNiPO4; Response data and linear
fit shown in magenta for self-consistent (SCF) and orange for non-self-consistent (NSCF)
results; χ↑↑, χ↑↓, χ↓↑, and χ↓↓ responses corresponding to elements of 2× 2 response matrix.
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Figure 3.14: Projected electronic density of states for LiNiPO4 (calculated using experimen-
tal unit cell [166]) without Hubbard or Hund corrections applied, as well as +U and +J
applied to Ni-d channels, and both Ni-d and O-p states, respectively. Copyright (2024) by
the American Physical Society. Reproduced from Ref. [1] with permission.

Table 3.7: Ni-d Hubbard U scaled atom-wise (in eV).

Supercell PAW PBE 52 pseudopotential
Ni pv Ni Ni GW

1× 1× 1 6.10 ± 0.19 5.27 ± 0.12 1.50 ± 0.03
2× 1× 1 5.92 ± 0.17 5.21 ± 0.13 1.58 ± 0.03
2× 2× 1 6.04 ± 0.17 5.24 ± 0.15 1.57 ± 0.03
2× 2× 2 6.15 ± 0.18 5.19 ± 0.14 1.56 ± 0.03
4× 2× 2 6.09 ± 0.16 - -
4× 4× 4 6.02 ± 0.16 - -

Table 3.8: Ni-d Hund J scaled atom-wise (in eV).

Supercell PAW PBE 52 pseudopotential
Ni pv Ni Ni GW

1× 1× 1 0.846 ± 0.032 0.757 ± 0.023 0.315 ± 0.009
2× 1× 1 0.709 ± 0.030 0.668 ± 0.025 0.269 ± 0.008
2× 2× 1 0.733 ± 0.029 0.670 ± 0.025 0.267 ± 0.008
2× 2× 2 0.700 ± 0.029 0.662 ± 0.025 0.261 ± 0.009
4× 2× 2 0.710 ± 0.027 - -
4× 4× 4 0.707 ± 0.028 - -
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Table 3.9: O-p scaled atom-wise.

Supercell PAW PBE 52 pseudopotential
O O GW

U (eV) J (eV) U (eV) J (eV)
1× 1× 1 9.1868 ± 0.1812 1.2290 ± 0.0345 8.61 ± 0.04 1.133 ± 0.013
2× 1× 1 9.7752 ± 0.1838 1.2290 ± 0.0345 8.78 ± 0.04 1.215 ± 0.033
2× 2× 1 9.7364 ± 0.2848 1.3587 ± 0.0410 8.72 ± 0.06 1.321 ± 0.053
2× 2× 2 9.6771 ± 0.1854 1.2681 ± 0.0410 8.52 ± 0.07 1.424 ± 0.065

Table 3.10: Ni-d scaled full (Ni pv PAW PBE 52 pseudopotential)

Supercell U (eV) J (eV)
1× 1× 1 4.445 ± 0.134 1.0173 ± 0.0398
2× 1× 1 5.311 ± 0.095 0.9178 ± 0.0240

(a) All U, J = 0.0 eV (b) Ni-d: U, J = 6.3, 0.8 eV
O-p: U, J = 0.0 eV

(c) Ni-d: U, J = 6.3, 0.8 eV
O-p: U, J = 10.0, 1.5 eV

Figure 3.15: Visualization of electron localization function iso-surfaces in NiO cell (a) without
Hubbard or Hund corrections applied, as well as (b) +U and +J applied to Ni-d channels,
and (c) both Ni-d and O-p states, respectively. The two nickel atoms are located in the
center and corners of the unit cell. The isosurface levels are at 0.142 and 0.146.
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Chapter 4

Source-free exchange correlation
functional

You spin me right ’round, baby,
right ’round
Like a record, baby, right
’round, ’round, ’round

Dead or Alive

Building on the methods and theory introduced in Sections 2.2 and 1.2.1.9, in this chap-
ter we explore the improved convergence properties of the source-free exchange correlation
functional over a diverse set of crystalline material test cases [3]. In addition to the cor-
rect Hubbard U and Hund J values used [1, 2], we find that this functional correction [3,
37] improves the convergence to the correct symmetric magnetic ground-state. While Hub-
bard corrections tend to localize moments, the source-free correction tends to delocalize the
moments in comparison [37].

4.1 DFT specifications

In all magnetic systems and VASP calculation settings that we tested, we found improved
convergence of the SF XC functional using the blocked Davidson (BD) algorithm (ALGO =

Normal, IALGO = 38) compared with the preconditioned conjugated gradient (PCG) algo-
rithm (ALGO = All, IALGO = 58). Using the PCG algorithm, we found in most instances
that the energy decreased up to a threshold, and then increased up to a self-consistency
step, after which the absolute energy difference between self-consistency steps decreased
very slowly. By comparison, the BD algorithm often required an order of magnitude fewer
number of self-consistency steps to converge. Therefore, we strongly recommend that for the
SF XC implementation in VASP, users use the BD algorithm (ALGO = Normal, IALGO = 38).
In many instances the source-free constrained PBE calculations took significantly longer to
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converge than the conventional PBE counterparts. However, this is not entirely surprising
because one would expect the additional constraint on Bxc to require a longer convergence
trajectory. In a significant number of calculations, on the other hand, we found that the SF
calculations converged within a few iterations, similar to their non-SF equivalent. For small
enough perturbation from the ground-state, the PBESF calculations converged quicker than
conventional noncollinear PBE, such as in the case of Mn3As.

4.2 Results

(a) PBESF (b) PBE

Figure 4.1: PBESF versus PBE comparison plot of ground state magnetization density m(r)
(vector field) and Bxc(r) (streamlines) viewed along [111] direction for Mn3ZnN. Copyright
(2023) arXiv. Reproduced from Ref. [3] with permission.

These magnetic structures were obtained from the Bilbao MAGNDATA database [174].
All structures in this study contained less than sixteen atoms in their unit cell. The materials
contained in this data set include metallic systems, i.e. Mn3Pt [176], as well as insulators, i.e.
MnF2 [177]. We take an in-depth focus of Mn3ZnN [178], because its non-collinear ground
state is accomodated by a relatively small unit cell comprised of only three symmetrically
disctinct magnetic Mn ions.
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Figure 4.2: Isosurface VESTA plot of PBE ground state ∇ · Bxc(r) viewed along [111]
direction for Mn3ZnN. Positive isosurface is indicated in violet, and negative counterpart in
orange, at a fixed isosurface level. Manganense, zinc, and nitrogen atoms are color-coded
in magenta, grey, and light blue, respectively. Copyright (2023) arXiv. Reproduced from
Ref. [3] with permission.

Furthermore, for Mn3ZnN (Figure 4.6) it is clear that the curl of the magnetization,
∇×m, varies by a much larger relative magnitude than that of Mn3Pt (Figure 4.7). This
can be ascertained by the circulation of spins around the [1 1 1] direction in Mn3ZnN, which
can be seen in Figure 4.1 and Figure 4.6 [178]. We care about a large variance in the spin
current for multiple reasons. The first reason has to do with the gauge symmetries of SDFT
and CDFT, as explored in Ref. [38]. After all, our goal in this study is to computationally
explore these degeneracies. The second reason is that the curl of the magnetization enters
into the expression for the net XC torque, as stated in Equation (2.76). Hence, we surmise
that the magnetic structure of Mn3ZnN will test the limits of the ZTT, and to what degree
it is, or isn’t upheld at the point of self-consistency.

4.2.1 Quantifying the effects of monopoles

We found that for the Mn3ZnN calculations, the PBE+U+J calculation yielded |∇·Bxc(r)|∞ ≈
104 eV/(µB Å4), and for the source-free PBE+U+J counterpart, |∇ · Bxc(r)|∞ < 10−13

eV/(µB Å4), where |∇ ·Bxc(r)|∞ = maxr∈R3

∣∣∇ ·Bxc(r)
∣∣. This numerical comparison con-

firms that the source-free constraint is working as expected, and draws attention to the large
density of magnetic monopoles that form in conventional non-collinear PBE+U+J. A visu-
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(a) PBESF (b) PBE

Figure 4.3: PBESF versus PBE comparison plot of ground state magnetic torque vector field
τxc = m(r)×Bxc(r) (vector field) viewed along [111] direction for Mn3ZnN. The units are
in (µB eV)/(µB Å3). Copyright (2023) arXiv. Reproduced from Ref. [3] with permission.

alization of the monopole density in the Mn3ZnN test case is provided in Figure 4.2. We
hone in on this material for reasons of computational cost and clear visualization. Namely,
Mn3ZnN exhibits a highly non-collinear spin texture, describable with a commensurate unit
cell of only three magnetic atoms. Furthermore, this magnetic antiperovskite is known to
exhibit exceptionally large and exotic magnetostriction effects [179], which is relevant to
magnetostructural phase transitions and therefore magnetocalorics [180].

4.2.2 Local convergence test

In order to compare the convergence of GGA-PBESF to conventional non-collinear GGA-
PBE, we performed tests on the set of commensurate magnetic structures containing tran-
sition metal elements. To test the convergence of all structures, we apply a random per-
turbation from the experimental structure to all magnetic moments. The rotations of local
moments are performed by an implementation of the Rodrigues’ rotation formula within a
cone angle of 45°.

To compare the performance of the source-free functional versus its SDFT counterpart,
we provide a magnetic moment comparison (in Figure 4.4) as well as a symmetry comparison
(in Figure 4.5). For the magnetic moment comparison, we plot the mean difference across
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−0.5

0

0.5

1

Source-free PBE
PBE

Figure 4.4: Comparison plot of magnetic moment differences with experiment for PBE+U+J
and PBESF+U+J for a selected number of experimental structures from the MAGNDATA
Bilbao Crystallographic Server [174]. The y-axis is the difference metric (1/N)

∑
i(m

i
DFT −

mi
exp), where m

i
DFT and mi

exp are the magnetic moment magnitudes for site “i” from the
DFT-computed and experimental magnetic structures, respectfully. Copyright (2023) arXiv.
Reproduced from Ref. [3] with permission.

magnetic moments computed using GGA-PBESF+U+J versus GGA-PBE+U+J . We ob-
serve that for all of these magnetic systems, the source-free functional predicts a moment
that is slightly smaller than its source-free counterpart, bringing it in closer agreement with
experiment, for most systems.

In order to probe the comparison between non-collinear ground states themselves, we
show a symmetry metric comparison between converged structures from GGA-PBESF+U+J
and GGA-PBE+U+J in Figure 4.5. For this study, we used the findsym program from the
ISOTROPY software suite developed by Stokes et al. [175]. We define this symmetry metric
to be the minimum tolerance (in µB), normalized by the absolute maximum magnitude of
the individual magnetic moments within the structures, and scaled as a percentage value.
Therefore, 0% implies perfect agreement with experimentally resolved magnetic space-group,
whereas 100% implies poor agreement. We emphasize that for this study, we use mean U
and J values taken from Ref. [1]. In principle, one should calculate these U and J values for
each structure, as U and J are very sensitive to local chemical environment, and therefore
oxidation and spin states [1]. However, to reduce immediate computational cost, we save
this exploration for future studies.

Figures 4.6 and 4.8 show improved agreement with experimentally measured magnetic
ground states using PBESF+U+J compared to PBE+U+J , as well as better consistency of
the output computed spin configuration. Improved performance of the SF functional is also
achieved in Figures 4.8 and 4.11. In the case of MnF2 and Mn3As, we performed structural
relaxations, with the spins initialized in the symmetric and/or experimental configuration.
We explored the effect of structural optimization in these two materials, because without
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0

50

100

Source-free PBE
PBE

Figure 4.5: Comparison plot of minimum symmetry tolerance agreement with experimen-
tally resolved magnetic space-group PBE+U+J and PBESF+U+J for a selected number of
experimental structures from the MAGNDATA Bilbao Crystallographic Server [174]. The
y-axis is the minimum symmetry tolerance (in µB) at which the experimental magnetic space-
group is identified, normalized by maxi{mi

exp}. We use ISOTROPY’s findsym to identify
the magnetic space-group [175]. Copyright (2023) arXiv. Reproduced from Ref. [3] with
permission.

allowing for spin-lattice relaxation, a ground state with a strong ferromagnetic component
was stabilized, as was the case for MnF2, which is shown in Figure 4.8.

4.2.3 Convergence case study: YMnO3

To examine whether a tighter energy convergence threshold improves the converged structure
for GGA, we imposed a 10−8 eV energy cut off to YMnO3, comparing the convergence
behavior between GGA and it source-free counterpart. The convergence behavior of GGA
compared to GGASF is shown in Figure 4.13. In this plot, the absolute relative energy
between subsequent self-consistency steps is plotted on a logarithmic scale. For the source-
free functional, it is interesting to note that there appears to be a slight energy barrier that
the algorithm climbs, only to descend to the symmetric experimentally reported ground state
[181], just before 200 self-consistency steps.

To the reader, this may seem to be a long convergence time, however, we direct the
attention to the conventional GGA counterpart. While convergence to 1 µeV is achieved
rather rapidly, we see that the magnetic spins move very little in the convergence process.
Furthermore, with the tighter energy cut off, the DFT calculation does not converge within
the 600 electronic self-consistency step limit. At one point, the energy does dip below
the tolerance energy threshold, but this is not simultaneously true for the band-structure
convergence metric, which stays above the 0.01 µeV energy cut off.

It is worth noting that to improve convergence for this particular calculation, we used
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a “sigma” value smearing of 0.2 near to the Fermi level. This is standard practice, and a
different smearing can be used by continuing the DFT calculation with a smaller “sigma”
value, and a different smearing method. Additionally, we used Gaussian smearing, which is
known to be more robust across different material chemistries, such as between insulators
and conductors, according to VASP documentation.

4.2.4 Augmented orbital moments in UO2

Thus far, we have focused on the spin component of the magnetic moment. However, in
reality, there is an orbital component to the magnetic moment that supplements the spin
contribution [182, 183], especially in materials with strong spin-orbit coupling (SOC). In
many 3d transition metal oxides, it can be theoretically and experimentally shown that the
orbital moment is “quenched” [84, 184], in which case it is fair to neglect the orbital contri-
butions. However, in f -block species, SOC can become much more prevalent. Additionally,
we have explored the connections between the orbital moment and the paramagnetic cur-
rent density, jp in 2.2.2.8. Therefore, it would behoove us to explore how the source-free
functional affects the orbital magnetic moments.

UO2 has become the archetype of correlated oxides with strong spin-orbit coupling, which
gives rise to the strongly non-collinear ground state of UO2 [185]. Therefore, we apply the
source-free functional towards UO2, which we found to exhibit exceptionally large orbital
magnetic moments. Specifically, we report the computed spin and orbital magnetic moments
in Table 4.1 using GGA+U+J and GGASF+U+J . Due to the connection between orbital
moments and jp in Equation (2.72), we plot jp(r) in Figure 4.14. We see that in this
visualization, there is strong circulation of jp around the uranium atoms, shown in grey. It
is interesting to note that we achieve this improved agreement with experiment, even without
the direct coupling to Axc in the form of Equation (2.50).

4.2.5 Local and global torques arising from the source-free
constraint

In Figure 4.3a we observe that it is indeed not the case that τ ′
xc = 0 ∀ r ∈ Ω. However, for

the systems we tested, we found the net (integrated) torque, as stated in Equation (2.76),

to be orders of magnitude smaller than the largest local torque, i.e. maxr∈Ω

{∣∣τ ′
xc(r)

∣∣}. We

found that for our Mn3ZnN test case, the self-consistent τxc obeyed the following inequality∫
Ω
τxc dr < 5× 10−5 eV, even though maxΩ {τxc} ≈ 5 eV. The energy convergence tolerance

for this calculation was 1 × 10−6 eV. Therefore, the net torque could simply be an artifact
of numerical convergence.

Despite the “small” net torque relative to the energy convergence tolerance, it is nontrivial
to determine whether the right-hand side of Equation (2.76) will be “small enough” in
general. Additionally, further investigation should examine the effects of enforcing the ZTT
at every self-consistency step. In Appendix 2.2.3.1, we propose possible approaches to ensure
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that the ZTT is upheld at every self-consistency step. The method in Appendix 2.2.3.1 should
be the most general and robust, with added computational cost. We have not implemented
these ZTT corrections at this time. However, we imagine that a careful adherence to the
ZTT will be important for the calculation of magnetocrystalline anisotropy energy (MAE),
which is on the order of µeV, and therefore this additional physical constraint should be
considered.

4.2.6 Importance of the constant, q = 0, component of B′
xc

In Figure 4.9, it is clear that when applying the B′
xc = 0 constraint for MnF2, the SF func-

tional converges to the correct collinear AFM ground state [177]. For B′
xc = Bxc, the canted

FM configuration is erroneously stabilized, which is remedied by structural relaxations, as
shown in Figure 4.8. On the other hand, for MnPtGa, if one applies the additional B′

xc = 0
constraint, we see that the ground state is a structure with much stronger AFM charac-
ter. This differs significantly from the canted ferromagnetic configuration obtained using
B′

xc = Bxc. This canted FM spin configuration is much closer to the magnetic ordering
resolved using neutron diffraction [186].

To generalize this behavior, B′
xc = Bxc erroneously stabilizes ferromagnetism in antifer-

romagnetics, and B′
xc = 0 stabilizes antiferromagnetism in ferromagnets, which is equally

problematic. Due to the obvious importance of carefully considering B′
xc, we plan to address

this in the future. For all other test cases in this study, we simply set B′
xc = Bxc, in order

to maintain consistency with Ref.’s [37] & [76]. As we mention in the introduction, it would
be possible to solve for B′

xc that mitigates the net XC torque, while preserving the XC
spin-splitting energy from SDFT, in accordance with Equation (1.24). We plan to explore
this rigorously in a follow-up study.
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Trial I

Converged structure:
PBE

(a) PBE, trial I

Converged structure:
Source-free PBE

(b) PBESF, trial I

Trial II

Converged structure:
PBE

(c) PBE, trial II

Converged structure:
Source-free PBE

(d) PBESF, trial II

Figure 4.6: Computed ground state magnetic configurations for two input structures (trials
A and B) randomly perturbed from the experimentally measured magnetic structure for
Mn3ZnN; Comparisons are provided for the computed structures for PBESF versus PBE.
Copyright (2023) arXiv. Reproduced from Ref. [3] with permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I

Converged structure:
Source-free PBE

(b) PBESF, trial I

Trial II

Converged structure:
PBE

(c) PBE, trial II

Converged structure:
Source-free PBE

(d) PBESF, trial II

Figure 4.7: Computed ground state magnetic configurations for two input structures (trials A
and B) randomly perturbed from the experimentally measured magnetic structure for Mn3Pt;
Comparisons are provided for the computed structures for PBESF versus PBE. Copyright
(2023) arXiv. Reproduced from Ref. [3] with permission.



CHAPTER 4. SOURCE-FREE EXCHANGE CORRELATION FUNCTIONAL 90

D
F

T-
co

m
pu

te
d 

gr
ou

nd
-s

ta
te

 

(g
eo

m
et

ry
-o

pt
im

iz
ed

 s
tr

uc
tu

re
) 

 
D

F
T-

co
m

pu
te

d 
gr

ou
nd

-s
ta

te
 

(e
xp

er
im

en
ta

l s
tr

uc
tu

re
) 

 

PBE+U+J
Source-free
PBE+U+J

One of five trials to ensure consistent results....

Input structure generatred 
using perturbation of 

collinear experimental 
magnetic structure using 

Rodrigues' rotation 
formula

a: 4.87 Å b: 4.87 Å c: 3.30 Å
α: 90.0° β: 90.0° γ: 90.0°

a: 4.87 Å b: 4.87 Å c: 3.30 Å
α: 90.0° β: 90.0° γ: 90.0°

a: 5.04 Å b: 5.04 Å c: 3.13 Å
α: 90.0° β: 90.0° γ: 90.0°

a: 4.96 Å b: 4.96 Å c: 3.35 Å
α: 90.0° β: 90.0° γ: 90.0°

Figure 4.8: Computed ground state magnetic configurations for randomly perturbed input
structure from the experimentally measured magnetic structure for MnF2; Comparisons
are provided for the computed structures for PBESF versus PBE. Copyright (2023) arXiv.
Reproduced from Ref. [3] with permission.
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Source-free
PBE+U+J

Source-free
PBE+U+J

Figure 4.9: Comparison between the different choices of B′
xc for antiferromagnetic MnF2

(top) and canted ferromagnetic MnPtGa (bottom). Treatment of B′
xc alone can dictate the

FM or AFM character of spin-polarized systems. As the inclusion of a q = 0 component
changes the Kohn-Sham effective potential, the absolute energies computed with or without
Bxc are not directly comparable. Copyright (2023) arXiv. Reproduced from Ref. [3] with
permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I

Converged structure:
Source-free PBE

(b) PBESF, trial I

Trial II

Converged structure:
PBE

(c) PBE, trial II

Converged structure:
Source-free PBE

(d) PBESF, trial II

Figure 4.10: Computed ground state magnetic configurations for two input structures (trials
A and B) randomly perturbed from the experimentally measured magnetic structure for
MnPtGa; Comparisons are provided for the computed structures for PBESF versus PBE.
Copyright (2023) arXiv. Reproduced from Ref. [3] with permission.
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Trial I

Random
perturbation from
experimental
magnetic
structure:

(a) Initial
perturbed

structure, trial I

Converged structure:
PBE

(b) PBE, trial I
viewed along [001]

(c) PBE, trial I
viewed along [100]

Converged structure:
Source-free PBE

(d) PBESF, trial I
viewed along [001]

(e) PBESF, trial I
viewed along [100]

Trial II

Random
perturbation from
experimental
magnetic
structure:

(f) Initial
perturbed

structure, trial II

Converged structure:
PBE

(g) PBE, trial II
viewed along [001]

(h) PBE, trial II
viewed along [100]

Converged structure:
Source-free PBE

(i) PBESF, trial II
viewed along [001]

(j) PBESF, trial II
viewed along [100]

Figure 4.11: Computed ground state magnetic configurations for two input structures (trials
A and B) randomly perturbed from the experimentally measured magnetic structure for
Mn3As; Comparisons are provided for the computed structures for PBESF versus PBE;
For PBESF and PBE runs, input atomic positions and cell shape were first determined by
performing structural relaxations, with moments initialized in the symmetric orientation.
Copyright (2023) arXiv. Reproduced from Ref. [3] with permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I
viewed along [001]

(b) PBE, trial I
viewed along [010]

Converged structure:
Source-free PBE

(c) PBESF, trial I
viewed along [001]

(d) PBESF, trial I
viewed along [010]

Trial II

Converged structure:
PBE

(e) PBE, trial I
viewed along [001]

(f) PBE, trial I
viewed along [010]

Converged structure:
Source-free PBE

(g) PBESF, trial I
viewed along [001]

(h) PBESF, trial I
viewed along [010]

Figure 4.12: Computed ground state magnetic configurations for two input structures (trials
A and B) randomly perturbed from the experimentally measured magnetic structure for
YMnO3; Comparisons are provided for the computed structures for PBESF versus PBE;
For PBESF and PBE runs, input atomic positions and cell shape were first determined by
performing structural relaxations, with moments initialized in the symmetric orientation.
Copyright (2023) arXiv. Reproduced from Ref. [3] with permission.
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Figure 4.13: Convergence of GGASF compared against GGA for YMnO3, with moments
randomly perturbed from the symmetric ground state structure. Snapshots of the magnetic
configuration at each self-consistency step are shown to convey the improved convergence
characteristics of the source-free functional. The y-axis is the absolute energy difference
between subsequent self-consistency iterations, plotted on a logarithmic scale. Copyright
(2023) arXiv. Reproduced from Ref. [3] with permission.
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Figure 4.14: Vector field visualization of the probability current density, jp, within UO2.
Strong circulation of jp is observed surrounding the uranium atoms, in grey. Copyright
(2023) arXiv. Reproduced from Ref. [3] with permission.
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Chapter 5

SpinPSO: Identifying noncollinear
magnetic ground-states

From the 31st floor of the
simulation swarm
With the drone of fluorescence
Flicker, fever, fill the form
...

Big Thief

This chapter begins from our physics-informed optimization algorithm, SpinPSO, that
unifies both the theory of atomistic spin dynamics (ASD) and particle swarm optimiza-
tion (PSO), which we covered in Sections 2.3 and 1.2.2. From this foundation, we have
implemented SpinPSO as an automated computational workflow in the atomate code frame-
work [46]. The workflow evaluates energies and local fields from DFT, and therefore the
DFT+U+J and source-free corrections covered in the previous two chapters provide es-
sential inputs for the optimization workflow, and strongly influence the resulting magnetic
ground-state, as we highlight in this chapter.

5.1 Results

In order to test the effectiveness of the SpinPSO noncollinear ground state optimizer, we
first consider the convergence performance of SpinPSO to a Heisenberg model Hamiltonian
(Sec. 5.1.1) as well as a representative set of magnetic materials with exotically textured mag-
netic orderings from the Bilbao MAGNDATA database (Sec. 5.1.2) [167]. These materials
are MnPtGa, YMnO3, FeF3, Mn3Pt, Mn3Sn, Fe3PO3O4 and Mn2SiO4, chosen to exemplify
the diverse noncollinear magnetic structures over varying chemistries. This diverse set of
materials allows us to test the robustness of the SpinPSO optimization algorithm, and the
underlying XC functional [3].
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Figure 5.1: The convergence path for one of four agent’s trajectory randomly initialized
within a single SpinPSO optimization, with calls to PBESF+U+J . The algorithm converges
within fifteen iterations to the experimentally resolved magnetic ground-state [186]. The
position along the trajectory is indicated by the length and color of the arrows within the
“inferno” color scheme. Copyright (2023) arXiv. Reproduced from Ref. [4] with permission.

5.1.1 Model Hamiltonian

To test the convergence performance of the SpinPSO algorithm, we employ the use of the
Heisenberg model Hamiltonian in order to robustly quantify the statistics of the stochastic
agent-based optimization scheme. We use a model classical Heisenberg Hamiltonian of the
form

H = −
∑
i,j

Jij si · sj, where si ∈ S2 (5.1)

to evaluate the sensitivity of the SpinPSO algorithm to the input random configurations,
number of agents, and other hyper-parameters. The improved convergence speed with the
inclusion of gradient information is shown in Figure 5.2. Perhaps most importantly, we
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Figure 5.2: The convergence of SpinPSO with and without gradient information, as stated
in Section 2.3.1.2. For the sake of computational efficiency, energies and local effective
fields are evaluated using Equation (5.1) for a Heusler ferrimagnet. Additionally, to explore
the sensitivity of each setting to hyperparameters, we compare convergence with 4 versus
24 agents, and averaged over 10 randomly initialized swarms. Copyright (2023) arXiv.
Reproduced from Ref. [4] with permission.

quantify the increased local convergence by including gradient contributions to the GCPSO
algorithm in Figure 5.2. In this plot, we compare averaged trajectories over 10 swarms ini-
tialized with initial spin configurations sampled uniformly over the surface of a unit sphere,
with a comparison between 4 and 24 agents. In Figure 5.2 we show the mean and stan-
dard deviation of these trajectories visualized using error bars. By incorporating gradient
information, the algorithm converges much more rapidly to the expected ferromagnetic or
antiferromagnetic ground state compared to the conventional randomly sampled best-agent
perturbations used in GCPSO. The latter does not even converge within the limit of thirty
iterations.
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5.1.2 Material test cases

5.1.2.1 MnPtGa

Hexagonal MnPtGa (P63/mmc) has been explored as a promising magnetocaloric material
as well as a skyrmion host in Cooley et al., Ref. [186]. In addition to resolving the noncollinear
magnetic ground-state of MnPtGa using neutron diffraction, the authors of Ref. [186] also
performed DFT energy comparisons of different magnetic configurations, confirming that,
indeed, the canted ferromagnetic structure was lower in energy compared to the collinear fer-
romagnetic and antiferromagnetic orderings. We note that, in a similar fashion to Ref. [186],
in our calculations we will only consider the q = 0 component of the spin-density wave
(SDW) identified in the experimental component of Ref. [186]. We will leave a computa-
tional investigation of the full spin-spiral incommensurate structure for a future study. Using
the SpinPSO optimization scheme and a source-free noncollinear exchange correlation func-
tional [3] implemented in VASP [29], we observe rapid convergence to the experimentally
resolved magnetic ordering [186]; a symmetric experimentally resolved canted ferromagnetic
ordering. Visualizing the global convergence to the ground state, in Figure 5.1, we super-
impose the convergence path of one agent in the particle swarm optimization PSO swarm,
where the color and magnitude are scaled according to the position along the convergence
trajectory [189].

5.1.2.2 YMnO3 and FeF3

Hexagonal YMnO3 and FeF3 were chosen as test cases because of their complex magnetic
ground-state with a relatively small unit cell. In both cases of YMnO3 and FeF3, it was
observed that the source-free functional, in combination with the SpinPSO optimization
scheme, resulted in a minimum energy configuration with ferromagnetic orderings of the
spins in ab planes, as shown in Figure 5.7a, compared to the experimental ground-state
Figure 5.7b. This magnetic ordering has supposedly been experimentally resolved, but only
at temperatures above 75 Kelvin in ScMnO3 [181].

Under these assumptions, we observe very good convergence to the experimental ground
state. A majority of the runs for YMnO3 converge to the correct state, as shown in Figure 5.6,
where the initial states on the left are the SpinPSO+GGA converged structures, used as
input to GGASF, which converges to the corresponding orderings on the right hand side.
This improved local convergence using the source-free functional is not surprising, based on
the analysis and results of past studies [3, 37, 75].

5.1.2.3 Mn3Pt and Mn3Sn

Mn3Pt and Mn3Sn are also studied using SpinPSO, followed by calls to GGASF. The resulting
ground-states are reported in Figure 5.8 and Figure 5.9. We see that compared to the
experimentally R3m experimentally resolved structure [176], the algorithm SpinPSO finds
a configuration with circulating spins to be more favorable. This is possibly due to the
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fact that the source-free functional imposes a strict dependence on the spin current, which is
proportional to the curl of the magnetization∇×m [3, 37]. The role of additional corrections
to the source-free functional are explored in Section 5.1.3.

A similar circulation of spins are observed in the case of Mn3Sn, shown in Figure 5.9.
However, it may not be as fair a comparison to experiment, as the neutron diffraction in
Ref. [190] was performed around 200 K, and it is ambiguous whether the Cmc′m′ or Cm′cm′

structures is the preferred ground-state [190].

5.1.2.4 Fe3PO3O4 and Mn2SiO4

Lastly, trigonal Fe3PO3O4 (R3m) is explored as a particularly challenging case for its mag-
netic configuration corresponding to a rich spin spiral ground-state, incommensurate with
the underlying lattice, as elucidated by neutron diffraction [9, 188]. Here, we limit the study
to the corresponding commensurate ground-state as additional functionality is required to
incorporate spin-spiral boundary conditions with the source-free constraint [3]. However, in
future studies, we plan to use this material as a test case for optimizing a q-spiral ordering
over the configuration space of the q wave vector, by incorporating this degree of freedom
into the SpinPSO framework. The commensurate ordering is of iron arranged within triads,
which are antiferromagnetically ordered with respect to one another. We observe that the
SpinPSO+GGA computed ground-state agrees with the experimentally characterized struc-
ture. We also optimized this structure using SpinPSO+GGASF, and found that a slight
canting of the triad resulted, which does not agree with the experimentally measured struc-
ture.

5.1.3 Discussion on challenges with source-free functional and
SpinPSO

We found that larger U and J values resulted in stronger ferromagnetic exchange, partic-
ularly in the case of in-plane spins in YMnO3. Therefore, for these structures, we ran the
SpinPSO algorithm with no Hubbard U and Hund J values applied to the transition metal d
states. Therefore, it would be worthwhile to assess the effect of these inter-site V values, i.e.
DFT+U+J+V , which necessarily affect magnetic exchange the resulting ground state [191–
194]. Whether or not these inter-site V values promote FM or AFM exchange is dependent
upon the underlying character of the correlated insulator, e.g. whether or not the TMO is a
Mott versus charge transfer insulator [193, 194], and warrants further investigation.

However, what’s possibly more of note in the context of this study are possible issues with
the global energy curvature using the source-free functional. In reference [3], some of the
current authors explored the local convergence of the YMnO3 magnetic state starting from
random perturbations around the experimentally resolved ground state, and found robust
conversions to this experimentally accepted configuration over several sample trials.

Another potential shortcoming of the source-free constrained functional is the neglection
of explicit coupling between the probability current and XC magnetic vector potential, which
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will arise in spin polarized systems [3, 38]. The question is whether or not these probability
(paramagnetic) currents will have a significant effect in the case of quenched orbital moments.
The authors also explore the importance of the choice of Bxc, the integral of the source-free
XC magnetic field. This will likely have a strong effect on the global energy landscape, based
on the results from Ref. [3].

In addition, different couplings could be important to consider. It might be necessary
in future studies for us to incorporate optimization over both structure and degrees of free-
dom using the SpinPSO formalism. In reference [3], a stronger dependence of the com-
puted ground-state on structural geometry relaxations were observed for the GGASF+U+J .
This more holistic approach may help to resolve some of the issues in the agreement or
disagreement between experiment and computed magnetic orderings using SpinPSO with
DFTSF+U+J .
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(a) Convergence with 6 agents

(b) Convergence with 12 agents

Figure 5.3: The robust convergence for two randomly initialized SpinPSO trajectories for
the FeF3 magnetic ground-state. This figure provides a convergence comparison for swarm
sizes of (a) six agents versus (b) twelve. Figure 5.2 provides a statistically averaged compar-
ison over agent sizes, which is only computationally practical using the model Hamiltonian,
Equation (5.1). Copyright (2023) arXiv. Reproduced from Ref. [4] with permission.
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Figure 5.4: The energy landscape for FeF3 spin configurations, visualized using a t-
distributed stochastic neighbor embedding (acronymed TSNE or t-SNE) [187] implemented
in sklearn. The energy values and positions (spin configurations) are amalgamated from
each agent’s trajectory within the swarm. Copyright (2023) arXiv. Reproduced from Ref. [4]
with permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I
viewed along [001]

(b) PBE, trial I
viewed along [100]

Converged structure:
Source-free PBE

(c) PBESF, trial I
viewed along [001]

(d) PBESF, trial I
viewed along [100]

Trial II

Converged structure:
PBE

(e) PBE, trial II
viewed along [001]

(f) PBE, trial II
viewed along [100]

Converged structure:
Source-free PBE

(g) PBESF, trial II
viewed along [001]

(h) PBESF, trial II
viewed along [100]

Figure 5.5: Computed ground-state magnetic configurations for FeF3 obtained from SpinPSO

with PBE for multiple randomly initialized SpinPSO trajectories. On the left are the min-
imum energy configurations computed from SpinPSO with PBE, which are used as input
structures for PBESF, with ground-state structures shown on the right. Copyright (2023)
arXiv. Reproduced from Ref. [4] with permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I
viewed along [001]

(b) PBE, trial I
viewed along

[100]

Converged structure:
Source-free PBE

(c) PBESF, trial I
viewed along [001]

(d) PBESF, trial
I

viewed along
[100]

Trial II

Converged structure:
PBE

(e) PBE, trial II
viewed along [001]

(f) PBE, trial II
viewed along

[100]

Converged structure:
Source-free PBE

(g) PBESF, trial II
viewed along [001]

(h) PBESF, trial
II

viewed along
[100]

Figure 5.6: Computed ground-state magnetic configurations for YMnO3 obtained from
SpinPSO with PBE for multiple randomly initialized SpinPSO trajectories. On the left are
the minimum energy configurations computed from SpinPSO with PBE, which are used as
input structures for PBESF, with ground-state structures shown on the right. Copyright
(2023) arXiv. Reproduced from Ref. [4] with permission.
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(a) PBESF+U+J (b) PBESF

Figure 5.7: (a) The YMnO3 ground state calculated using SpinPSO with PBE+U+J , followed
by PBE+U+J average Mn-d Hubbard U and Hund J parameters obtained from Ref. [1]. The
calculated ground-state in this case contains ferromagnetic ab planes, antiferromagnetically
coupled. This structure differs from (b) the experimental structure [181], as well as the
ordering obtained from the procedure without U/J parameters, using parameters consistent
with Figure 5.6. Copyright (2023) arXiv. Reproduced from Ref. [4] with permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I

Converged structure:
Source-free PBE

(b) PBESF, trial I

Trial II

Converged structure:
PBE

(c) PBE, trial II

Converged structure:
Source-free PBE

(d) PBESF, trial II

Figure 5.8: Computed ground-state magnetic configurations for Mn3Pt obtained from
SpinPSO with PBE for multiple randomly initialized SpinPSO trajectories. On the left are
the minimum energy configurations computed from SpinPSO with PBE, which are used as
input structures for PBESF, with ground-state structures shown on the right. Copyright
(2023) arXiv. Reproduced from Ref. [4] with permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I
viewed along [001]

(b) PBE, trial I
viewed along

[010]

Converged structure:
Source-free PBE

(c) PBESF, trial I
viewed along [001]

(d) PBESF, trial
I

viewed along
[010]

Trial II

Converged structure:
PBE

(e) PBE, trial I
viewed along [001]

(f) PBE, trial I
viewed along

[010]

Converged structure:
Source-free PBE

(g) PBESF, trial I
viewed along [001]

(h) PBESF, trial
I

viewed along
[010]

Figure 5.9: Computed ground-state magnetic configurations for Mn3Sn obtained from
SpinPSO with PBE for multiple randomly initialized SpinPSO trajectories. On the left are
the minimum energy configurations computed from SpinPSO with PBE, which are used as
input structures for PBESF, with ground-state structures shown on the right. Copyright
(2023) arXiv. Reproduced from Ref. [4] with permission.
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Trial I

Converged structure:
PBE

(a) PBE, trial I

Converged structure:
Source-free PBE

(b) PBESF, trial I

Trial II

Converged structure:
PBE

(c) PBE, trial II

Converged structure:
Source-free PBE

(d) PBESF, trial II

Figure 5.10: Computed ground-state magnetic configurations for Mn2SiO4 obtained from
SpinPSO with PBE for multiple randomly initialized SpinPSO trajectories. On the left are
the minimum energy configurations computed from SpinPSO with PBE, which are used as
input structures for PBESF, with ground-state structures shown on the right. Copyright
(2023) arXiv. Reproduced from Ref. [4] with permission.
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Figure 5.11: Commensurate (q = 0) magnetic ground state of Fe3PO3O4, obtained using
SpinPSO with PBE. This magnetic structure agrees with the experimental magnetic ground
state obtained from neutron diffraction [9, 188]. Copyright (2023) arXiv. Reproduced from
Ref. [4] with permission.



113

Chapter 6

Conclusions

6.1 Overall Summary

This dissertation presents a comprehensive computational framework for determining and
optimizing the magnetic properties of transition metal oxides (TMOs). By sequentially ad-
dressing the calculation of Hubbard U and Hund J values, the implementation of a source-
free exchange-correlation (XC) functional, and the development of a novel optimization al-
gorithm, we have significantly advanced the methods for identifying noncollinear magnetic
ground states. Each section of this dissertation builds upon the previous work, culminating
in a robust and unified approach for studying complex magnetic systems.

6.2 High-throughput determination of Hubbard U

and Hund J values for transition metal oxides via

the linear response formalism

This study provides a high-throughput atomate framework for calculating Hubbard U and
Hund J values. Using the spin-polarized linear-response methodology [17], we generated
a database of U and J values for over one thousand transition-metal-containing materials.
This enabled the creation of a “periodic table” of U and J distributions, where for each
element we observe a range of Hubbard U and Hund J values. These distributions exhibited
clustering depending on the corresponding ml and nl values, but these quantities alone do
not prove sufficient to predict the Hubbard and Hund parameters.

To investigate inter-site screening effects on the resulting U/J values, we performed a
small supercell scaling study for the full screening linear response analysis for NiO, in addition
to the conventional, atom-wise, screening. This exploration revealed that the full matrix
inversion is much more sensitive to the size of the unit cell compared to the conventional,
atom-wise screening. Understanding the theoretical reasons for this phenomenon will be an
interesting pursuit for future studies.
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To test the validity of the linear response implementation, we explored the spin-canting
non-collinear magnetic structure and unit cell shape of LiNiPO4, comparing the results
with previous experimental [166] and computational [23, 63] studies. We found that the
computed stable canting angle was less than 50% of the experimentally measured canting
angle of nickel magnetic moments in olivine LiNiPO4 for all Ni-d Hund J values tested, and
that the canting angle was very sensitive to the Hund’s J values. Additionally, applying
an on-site Hubbard/Hund correction to O-p occupancies greatly improved the agreement
of unit cell shape with experiment [166], highlighting the importance of including a +U+J
correction to oxygen sites.

6.3 Realistic non-collinear ground states of solids

with source-free exchange correlation functional

Significantly improved convergence to the non-collinear magnetic structure has been achieved
with the application of the source-free constraint to Bxc [37] within the PAW DFT formu-
lation implemented in VASP. Utilizing parallel three-dimensional FFTs for the fast Poisson
solver allows this constraint to be applied with minimal additional computational cost and
no reduction in the parallel scalability of the DFT code. While this study focused on GGA-
PBESF+U+J , the constraint is generalizable to other SDFT functionals in non-collinear
implementations, such as meta-GGA.

Future studies will aim to combine the improved local convergence of DFTSF with global
optimization algorithms to achieve a robust determination of non-collinear ground states
without prior experimental knowledge. The augmented magnetoelectric coupling predicted
using the source-free functional lays the groundwork for future investigations into magne-
toelectric figures of merit, calculated using this modified functional. The unified theory
provides a solid theoretical description of the orbital magnetic moment [182], extending the
semiclassical theory discussed in Section 2.2.2.8. Further studies should examine the role of
spin and orbital currents in magnetoelectric coupling.

6.4 SpinPSO: A computational optimization workflow

for identifying noncollinear magnetic

ground-states from first-principles

In this study, we developed and implemented a SpinPSO workflow within the atomate soft-
ware framework. The improved convergence capabilities were demonstrated by including
gradient information in the form of local fields from constrained DFT calculations. For
several material systems with varying chemistries, we obtained the correct magnetic ground-
state based on neutron diffraction studies. The best results were achieved using SpinPSO
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with calls to GGA during global convergence, followed by GGASF calculations to enhance
local convergence behavior.

The underlying issues with GGASF in global convergence remain unclear. Further im-
provements to the new XC functional, as proposed in Ref. [3], are likely to address these
challenges. This work can be extended to optimize over spin-spiral degrees of freedom,
including a q-spiral vector and a spin-quantization axis. These boundary conditions are nec-
essary to describe magnetic systems with incommensurate magnetic ground-states and to
reduce computational costs. Achieving this will require accurately and efficiently computing
the corresponding gradients associated with the q-vector, potentially leveraging the Fourier
scaling property.

6.5 Recommended & proposed future work

The identification and study of noncollinear magnetic ground states open up several promis-
ing avenues for future research. One critical area is the development and application of
mesoscale models of magnetism, particularly using magnetic lattice Hamiltonians and Monte
Carlo methods. After obtaining the magnetic ground-state, by the magnetic force theorem,
one can derive magnetic exchange constants from tight-binding Hamiltonians based on max-
imally localized Wannier functions (MLWFs) [195]. These effective magnetic Hamiltonians,
which require significantly lower computational cost than DFT, enable the quantification of
temperature-dependent material properties.

Another area for future research is the incorporation of magnetostructural coupling in
magnetic models. Future work will focus on coupling spin degrees of freedom to structural
distortions, further exploring the interaction between magnetic and structural properties.
Magnetic exchange constants vary with inter-site spacing, necessitating a description of the
coupling between spin and atomic displacements, especially in materials with strong magne-
tostructural interactions. Various compressible spin models, such as the Bean-Rodbell model
and the Baker-Essam model, have been proposed to capture these effects. By investigating
these models, we aim to understand and predict metamagnetic phase transitions induced
by significant magnetostructural coupling. Building upon the work of this study, it would
be worthwhile to examine the role that DFT+U+J and the source-free XC functional have
on influencing the calculated exchange and spin-lattice constants. This would include the
sensitivity of the requisite perturbation theory to the noncollinear ground-state identified
using SpinPSO, by the magnetic force theorem [195].
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