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Professor Matteo Pellegrini, Chair 

 

Genome-wide analysis of gene expression and regulation is important for elucidating basic 

principles of how cells function.  In addition to gene expression, this dissertation will also 

discuss two methods of RNA-mediated RNA regulation: mRNA splicing and microRNAs.  

Three projects investigating gene expression and regulation using the Illumina platform are 

discussed here.  The first project describes mRNA expression analysis of dozens of genes on the 

mating locus of the multicellular green alga, Volvox carteri in both the male and female mating 

types.  The analysis describes sex-specific genes for both male and female mating types, and 

reveals the evolutionary history of the locus.  The second project describes very low frequency 

splice products in a unicellular fungus with a fairly simple splicing landscape, Saccharomyces 

cerevisiae.  These extremely rare splice events shed light on the mechanism of selecting splice 

sites in eukaryotic organisms.  The third project describes an algorithm for predicting novel 

candidate microRNAs from small RNA sequence data.  We describe a Naïve Bayes Classifier to 

differentiate microRNAs from contaminants and provide experimental validation of top 

candidates. 
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Chapter 1: Introduction 

The ability to characterize and quantify transcripts provides insights that cannot be gained from 

genomic data alone.  Analyzing transcripts is vital for discovering the functional units of the 

genome and for gaining insights into development, disease, and cellular response to 

environmental stimuli.  Transcriptomics refers to the study of all RNA in the cell, including 

rRNAs, tRNAs, and small RNAs, although recent research has been primarily focused on the 

study of mRNA (1).  Nucleic acid sequencing technologies have advanced remarkably over the 

past few decades, but the availability of next generation sequencing (NGS) technologies has 

dramatically increased our ability to sequence RNA in just a few short years (2). 

RNA-Seq through NGS technologies has largely replaced older technologies in transcriptome 

analysis (3).  Microarrays, a powerful tool for estimating relative transcript abundance, have 

become outdated due to background and cross-hybridization problems, inability to detect small 

differences in gene expression, and relatively narrow applicability compared to modern RNA-

Seq (4).  Other transcriptomic methodologies, such as tag-based sequencing, Serial Analysis of 

Gene Expression (SAGE), Cap Analysis of Gene Expression (CAGE), and Polony Multiplex 

Analysis of Gene Expression (PMAGE) also only focus on gene expression estimation, and 

while they can determine novel sequences, they are too laborious to be efficiently applied to 

entire transcriptomes (4).  NGS RNA-Seq is efficient on a whole-transcriptome scale and allows 

for accurate estimation of gene expression and detection of novel genes and isoforms (4). 

An important method of increasing transcript diversity in eukaryotic cells is alternative mRNA 

splicing.  Alternative splicing allows a single gene to produce multiple transcripts by selecting 
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different coding regions, called exons, to incorporate into the mature mRNA sequence.  

Alternative splicing impacts ~95% of human genes with at least two exons (5), and it has been 

shown probabilistically that more than 60% of human disease-causing mutations affect splicing, 

as opposed to modifying the gene’s coding sequence (6).  The most dramatic currently known 

example of alternative splicing is Dscam gene in Drosophila melanogaster, which can create 

38,016 splice variants from a single gene (7).  Here, we will discuss alternative splicing in 

Saccharomyces cerevisiae, a unicellular fungi with a relatively simple splicing landscape.  Only 

~300 genes in Saccharomyces have been shown to be spliced with no examples of functional 

alternative splicing. 

Gene expression is regulated by many factors including chromatin state, DNA methylation, 

availability of activators and repressors, and many other factors.  An important method of gene 

expression regulation that was discovered recently is mRNA knockdown and silencing by 

microRNAs (miRNAs).  miRNAs are small, ~22 nucleotide non-coding RNAs that dramatically 

reduce expression in target mRNA genes by binding through the RNA-induced silencing 

complex (RISC).  Since being discovered in the nematode worm, Caenorhabditis elegans, in 

1993, miRNAs have been found to impact thousands of genes across eukaryotic organisms (8). 

In this dissertation, I describe my work on three applications of RNA-Seq using the Illumina 

platform: 1) Quantification of differential gene expression, 2) characterization of non-canonical 

splicing events, and 3) identification of novel microRNAs.  Although RNA-Seq research is 

advancing rapidly, there is still progress that can be made in these three fields to contribute to our 

understanding of gene expression and regulation.  To date there has been extensive use of RNA-

Seq to determine differential expression between many conditions in many organisms (9-19), but 

despite considerable research there is still no single, clear RNA-Seq-based differential expression 
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workflow (4).  Software exists to identify splice sites from RNA-Seq datasets given information 

about known splice junctions, but little effort has been made to identify non-canonical splice 

sites (10, 20).  While the importance of small RNAs in gene regulation is well documented (21), 

a recent review of RNA-Seq and its applications does not mention small RNAs as a “main goal” 

of RNA-Seq experiments (1). 
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Abstract 

Although dimorphic sexes have evolved repeatedly in multicellular eukaryotes, their 

origins are unknown. The mating locus (MT) of the sexually dimorphic multicellular green 

alga, Volvox carteri, specifies the production of eggs and sperm and has undergone a 

remarkable expansion and divergence relative to MT from Chlamydomonas reinhardtii, a 

closely related unicellular species that has equal-sized gametes. Transcriptome analysis 

revealed a rewired gametic expression program for Volvox MTgenes relative 

to Chlamydomonas, and identified multiple gender-specific and sex-regulated transcripts. 

The retinoblastoma tumor suppressor homolog MAT3 is a Volvox MT gene that displays 

sexually regulated alternative splicing and evidence of gender-specific selection, both 
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indicative of cooption into the sexual cycle. Thus, sex-determining loci impact the evolution 

of both sex-related and non-sex-related genes. 

Sexually dimorphic gametes have evolved in every major group of eukaryotes, and are thought 

to be selected when parents can differentially allocate resources to progeny (1). However, the 

origins of oogamy (large eggs and small sperm) and the contribution of sex determining loci to 

such evolution are largely unknown (2, 3). 

The Volvocine algae are a group of chlorophytes comprising unicellular species such as 

Chlamydomonas reinhardtii (hereafter Chlamydomonas) and a range of multicellular species of 

varying complexity such as Volvox carteri (hereafter Volvox). Volvox has a vegetative 

reproductive form containing 16 large germ cells (gonidia) and ~2000 terminally differentiated 

somatic cells (4, 5) (Figure 2-4). 

Chlamydomonas and other Volvocine algae also undergo a sexual cycle where a large, haploid 

mating locus (MT) controls sexual differentiation, mating compatibility, and zygote development 

(6). MT in Chlamydomonas is a 200–300 kb multigenic chromosomal region (Figure 2-4A) 

within which gene order is rearranged between the two sexes (MT+ and MT−) and meiotic 

recombination is suppressed, thus leading to its inheritance as a single Mendelian trait. Within 

each MT allele are gender-limited genes (allele present in only one of the two sexes) required for 

the sexual cycle as well as shared genes (alleles present in both sexes), most of which have no 

known function in sex or mating (7). The rearrangements that suppress recombination serve to 

maintain linkage of gender-limited genes, but they also reduce genetic exchange between shared 

genes leading to their meiotic isolation. Thus, Chlamydomonas MTbears similarity to sex 

chromosomes and to expanded mating type regions of some fungi and bryophytes (8–10). 
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While Chlamydomonas is isogamous (producing equal-sized gametes), Volvox and several other 

Volvocine genera have evolved oogamy that is under the control of female and male MT loci 

(11) (Figure 2-4). Moreover, the Volvox sexual cycle is characterized by a suite of other traits not 

found in Chlamydomonas—such as a diffusible sex-inducer protein rather than nitrogen 

deprivation (−N) as a trigger for gametogenesis (Table 2-1). A detailed characterization 

of MT in Volvox would be expected to shed light on the transition from isogamy to oogamy and 

on other properties of the sexual cycle that evolved in this multicellular species (Table 2-1). 

The MT+ allele of Chlamydomonas was previously sequenced and resides on chromosome 6 

(Figures 2-1A, 2-5) (12). To enable a comparison of mating loci evolution between two related 

species with markedly different sexual cycles, we sequenced Chlamydomonas MT− and both 

alleles of Volvox MT (Figure 2-1) (4). Volvox MT was previously assigned to Linkage Group I 

(LG I) (5) but the locus had not been further characterized. We mapped Volvox MT to the 

genome sequence and assembled most of LG I (Table 2-2) (4). Extensive synteny 

with Chlamydomonas chromosome 6 indicates that MT has remained on the same chromosome 

in both lineages for ~200 million years since their estimated divergence, despite numerous intra-

chromosomal rearrangements between the two (Figure 2-5) (13). 

While the haploid Volvox genome is ~17% larger than that of Chlamydomonas (138 Mb versus 

118 Mb) and the two have very similar predicted proteomes (12, 14), Volvox MT is ~500% larger 

than Chlamydomonas MT and contains over 70 protein coding genes in each allele (Figure 2-

1B). Compared to autosomes Volvox MT is unusually repeat-rich (>3X the genomic average), 

has lower gene density, and has genes with more intronic sequence (Table 2-3)—all properties 

that suggest an unusual evolutionary history and distinguish it from Chlamydomonas MT. 
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Only two gender-limited genes from Chlamydomonas MT− have recognizable homologs 

in Volvox—MID and MTD1—that are both in male MT (Figure 2-1). MID is a conserved RWP-

RK family transcription factor whose expression in other Volvocine algae is induced by −N (15–

17) as is also the case for MTD1 (18, 19). Surprisingly, both MTD1 and MID are expressed 

constitutively in Volvox, indicating that their transcription is uncoupled from sexual 

differentiation. This result suggests that additional MT genes might play a role in gametogenesis. 

We used differential deep transcriptome sequencing (4) to identify MT genes in Volvox, a 

method that helped to mitigate problems associated with automated gene prediction in atypical 

genomic regions such as MT. We identified transcripts for five new female-limited and eight new 

male-limited genes that do not have detectable homologs in Chlamydomonas, and found that 

most of these gender-limited genes are sex-regulated (expression induced or repressed during 

sexual differentiation) (Figure 2-1C) (4). HMG1 encodes a female-limited HMG domain protein 

that belongs to a family of DNA binding proteins whose members regulate mammalian and 

fungal sex determination (20, 21). However, HMG proteins had not been previously implicated 

in the sexual cycles of green algae or plants. A second novel female-limited gene, FSI1, is 

strongly induced during gametogenesis and encodes a small predicted transmembrane protein 

with no identifiable homologs (Figure 2-1C). 

Besides identification of new gender-limited genes, our transcriptome data provided empirical 

support for 51 of 52 single-copy shared genes in Volvox MT that previously had limited EST 

support for the female allele (33 of 52), and no EST support for the male allele. Moreover, some 

of these shared genes showed patterns of expression suggesting cooption into the Volvox sexual 

cycle. These patterns include gender-biased expression (male:female expression ratio ≠ 1) and 

sex-regulated expression (Figure 2-1C) (4). This set of genes encodes putative signaling, 
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extracellular matrix, and chromatin-associated proteins with known or potential roles in 

gametogenesis and fertilization, and are candidates for further investigation (Figure 2-6). 

In diploid species heterogametic sex chromosomes evolve rapidly (22) and lose genes that are 

not related to sex (23). Genes within large haploid mating loci are predicted to accumulate 

mutations more rapidly than genes in autosomal regions due to suppressed recombination, but 

they are continuously exposed to selection (24). Suppressed recombination also appears to have 

played a role in diversification of mating-locus linked genes in haploid fungi and bryophytes (8–

10). Our data allowed us to compare the evolutionary history of Volvox MT genes from this 

oogamous species to each other, and to genes fromMT of its isogamous 

relative Chlamydomonas. 

Divergence was measured from synonymous (dS) and non-synonymous (dN) substitutions 

(Figures 2-2A, 2-2B), and from total nucleotide distances for shared genes (4). Unexpectedly, 

divergence forVolvox MT allelic pairs is up to two orders of magnitude larger than for allelic 

pairs in Chlamydomonas MT, suggesting that Volvox MT alleles may have been subject to more 

intense and/or more prolonged recombinational suppression than Chlamydomonas MT alleles 

have been. In contrast, two internal syntenic blocks within Volvox MT are relatively similar 

(Figures 2-1B, 2-2A) suggesting that they were acquired more recently in an ongoing 

stratification process as first described for the human X chromosome (25).  Volvox MT genes 

also showed reduced codon usage bias relative to autosomal genes, most likely due to suppressed 

recombination (26). 

Three MT genes and a flanking gene, PRP4, were sequenced from a set of related Volvox species 

to determine the extent of MT gene isolation (4). Phylogenies revealed the expected pattern 

for PRP4 that grouped by species and geographical location (Figure 2-2C). In contrast, 
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the MT genes grouped by gender (Figure 2-2D). These data demonstrate that the shared genes 

in Volvox MT have essentially become gender specific and have remained genetically isolated 

during speciation. Thus, the MT locus in Volvoxhas become a repository of genetic diversity that 

is linked to the sexual cycle. 

In Chlamydomonas the retinoblastoma (RB) tumor suppressor pathway controls cell division in 

response to cell size (27), and the RB homolog encoded by MAT3 is adjacent to MT (28). Volvox 

MAT3, on the other hand, is within MT (Figure 2-1B) and we investigated its evolution and 

expression as a candidate regulator of sexually dimorphic cell divisions (Figure 2-4). 

The Volvox male and female MAT3 proteins are exceptionally diverged from each other (Figure 

2-7). Moreover male and femaleVolvox MAT3 have different structures: the female allele 

contains an intron that is absent from males while the male allele contains an unusually large 

fourth intron compared to females (Figure 2-3). AlthoughMAT3 shows signs of having 

undergone purifying selection (dN/dS=0.23), several short sequences in the male and female 

proteins are asymmetric in their conservation pattern, suggesting that the two alleles are under 

different selective constraints. We also found dozens of alternatively processed MAT3 mRNAs 

from both Volvox sexes, representing most types of alternative splicing (29) (Figure 2-3). In 

addition, sex-regulated pre-mRNA splicing of MAT3 was found for both genders, and might be 

controlled by the MT encoded splicing factor, SPL2, whose expression level is sex-regulated in 

males (Figure 2-1C). Intriguingly, the predominant MAT3 isoform in sexual males retains the 

first two introns, leading to inclusion of an early termination codon (Figure 2-3). mat3 mutants in 

Chlamydomonas produce tiny gametes (28), and down-regulation of MAT3 in Volvox males 

through alternative splicing may be linked to the production of small-celled sperm. 
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The accelerated divergence of sex chromosomes is usually associated with gene loss and 

degeneration (23), though adaptive evolution of sex chromosomes is an emerging theme (30). 

Our data suggest that expansion, loss of recombination, and rapid divergence can be mutually 

reinforcing properties of sex determining regions that facilitate cooption into the sexual cycle 

and provide novel sources of developmental innovation. 

Figures 

 

Figure 2-1. Expansion of Volvox MT and sex-regulated gene expression. (A) Schematic of Chlamydomonas mating locus with 

rearranged domains in light blue or pink. MT+ limited genes are shaded red if unique or orange if they have an autosomal 

copy. MT− limited genes are shaded blue. Flanking and shared genes are shaded black and gray respectively. Synteny is indicated 

by gray shading. (B) Schematic ofVolvox MT scaled as in (A). Boxed genes were used for mapping. The broken segment 

represents a transposon repeat region containing copies of VPS53. (C) Expression heat maps of Volvox MT genes. Left panel, 

female/male expression ratio; middle panel, total expression; right panel, sexual induction (Sex) or repression (Veg). Diagonal 

hatch, insufficient data. 
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Figure 2-2. Divergence of MT genes. (A,B) dN and dS for shared Volvox (A) or Chlamydomonas (B) genes within MT (orange 

shading) or flankingMT. Asterisks mark saturated dS values. (C,D) Maximum likelihood phylogenies for PRP4 (C) 

and MT gene PRX1 (D). Red/blue signify female/male strains and clades. 

 

Figure 2-3. Gender-specific divergence and splicing of MAT3. Schematic of MAT3 from Chlamydomonas (top), Volvox female 

(middle) and Volvoxmale (bottom). Volvox exons are numbered. 
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Figure 2-4.  Sexual development in Volvox.  Schematic of vegetative (asexual) and sexual development in Volvox carteri with 

photographs of each type of spheroid. Adapted from (28). The left panel with green shading shows male and female asexual 

development that have the same embryonic cleavage pattern for both sexes. Each mature gonidium cleaves a total of 11 or 12 

times to make a new spheroid. Asymmetric division of 16 anterior cells at cycle 6 (32!64 cells) generates 16 gonidial precursors 

that form the asexual germ cells for the next generation. The middle panel (pink shading) shows the modified developmental 

pattern of females whose gonidia were exposed to sex inducer prior to cleavage. The pattern is similar to asexuals except that the 

asymmetric division occurs one cycle later (64128 cells) in up to 48 anterior cells (typically in 32 cells as shown here) resulting 

in the production of eggs that are smaller than asexual gonidia and that can be fertilized by sperm. The right panel (blue shading) 

shows male sexual development where asymmetric cell division occurs in all cells two cycles later than in asexual (128256 

cells) to produce 128 small sexual somatic cells and 128 large androgonidia. The large androgonidia undergo a second set of 

cleavage divisions the following day (blue shaded box) to produce sperm packets containing 64 or 128 sperm cells. After their 

release individual sperm packets swim as a unit until they reach a female spheroid where they dissociate prior to entry and 

fertilization of eggs (29). 
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Figure 2-5.  Synteny between C. reinhardtii Chromosome 6 and V. carteri Linkage Group I.  Positions of orthologous genes 

from Chlamydomonas Chromosome 6 (MT+) and Volvox Linkage Group I (female) are depicted by connecting gray lines. The 

mating locus is shaded red. Molecular markers and their genetic distances from MT are indicated for Volvox. The distal portion of 

Chromosome 6 maps to Volvox carteri Version 2 Scaffold 2. 
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Figure 2-6. Domain structures and expression patterns of sex regulated Volvox MT genes.  The left side shows domain 

structures of predicted proteins (31). LRR—leucine rich repeat (32). ARP4—nuclear actin related protein involved in chromatin 

formation(33).TM—transmembrane domain. Adaptin binding protein domain (34) involved in membrane trafficking (35). PP 

II—polyproline II helix (36) involved in sexual signaling (37). PAS-kinase domain involved in signal transduction (38). HMG—

high mobility group protein some of which are involved in sex determination (39). The table to the right summarizes expression 

patterns from selected genes in Fig. 1C. Gender bias indicates greater total expression in females (F) or males (M). (-) indicates 

no overall expression bias. F*—female limited gene. Sex regulation is indicated by colored dots that represent higher expression 

in sexual (red) or vegetative (green) samples from within each sex as indicated in the column header, with F for female and M for 

male. 
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Figure 2-7.  Gender-based phylogenies of genes residing in Volvox MT.  (A) Maximum Likelihood tree of the coding sequence of 

MTF1733/MTM1058 (unknown conserved gene). Species names and abbreviations are in Table S13. Female isolates and clades 

are colored blue. Male isolates and clades are colored red. Scale bars denote substitution rate. Numbers next to branch points 

indicate Likelihood Ratio Test values that are analogous to bootstrap values. (B) Maximum Likelihood tree of MAT3 deduced 

partial protein sequence. Labels and color coding are the same as in (A). Genbank IDs: C. reinhardtii MTF1733/MTM1058, 

GI:159477131; C. reinhardtii MAT3, GI:14573436; C. incerta MAT3, GI:55140503. 

Tables 

 

Table 2-1.  Comparison of Chlamydomonas reinhardtii and Volvox carteri sexual cycles. 
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Table 2-2. Genetic mapping data for Volvox carteri MT.  The Volvox protein IDs are from JGI http://genome.jgi-

psf.org/Volca1/Volca1.home.html.  nd, not determined. na, not applicable for genes within MT.  Physical distances between 

PRP4 or PAP1 and MT border could not be determined because the size of intervening VPS53 repeat region is unknown. 

 
Table 2-3. Gene content, repeats and statistics for Volvox carteri MT.  The Volvox genome data is based on http://genome.jgi-

psf.org/Volca1/Volca1.home.html. 
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Abstract 

Saccharomyces cerevisiae has been used as a model system to investigate the mechanisms of 

pre-mRNA splicing but only a few examples of alternative splice site usage have been described 

in this organism. Using RNA-Seq analysis of nonsense-mediated mRNA decay (NMD) mutant 

strains, we show that many S. cerevisiae intron-containing genes exhibit usage of alternative 

splice sites, but many transcripts generated by splicing at these sites are non-functional because 

they introduce premature termination codons, leading to degradation by NMD. Analysis of 

splicing mutants combined with NMD inactivation revealed the role of specific splicing factors 

in governing the use of these alternative splice sites and identified novel functions for Prp17p in 

enhancing the use of branchpoint-proximal upstream 3′ splice sites and for Prp18p in suppressing 

the usage of a non-canonical AUG 3′-splice site in GCR1. The use of non-productive alternative 
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splice sites can be increased in stress conditions in a promoter-dependent manner, contributing to 

the down-regulation of genes during stress. These results show that alternative splicing is 

frequent in S. cerevisiae but masked by RNA degradation and that the use of alternative splice 

sites in this organism is mostly aimed at controlling transcript levels rather than increasing 

proteome diversity. 

Introduction 

Nonsense-mediated mRNA decay (NMD) is an RNA degradation system that degrades RNAs 

containing premature termination codons (1, 2). In mammalian cells and higher eukaryotes, 

NMD can be used to regulate gene expression, for instance by reducing the level of alternatively 

spliced isoforms containing premature termination codons (3-8). This interplay between 

alternative splicing and NMD is involved in the autoregulation of SR proteins (3-5). In addition 

to its function in regulating non-productively spliced isoforms, NMD is also used in a variety of 

eukaryotes to degrade unspliced pre-mRNAs that have escaped the splicing machinery (9-13). 

Thus, NMD is widely involved in the proofreading of splicing efficiency and accuracy. 

The yeast Saccharomyces cerevisiae has long been used as a model system to investigate the 

mechanisms of pre-mRNA splicing, as many components of the splicing machinery were 

identified through genetic screens in S. cerevisiae  (14), and most splicing factors are highly 

conserved from yeast to mammalian cells (15). Despite the presence of c.a. 330 intron-

containing genes in S. cerevisiae, the prevalence of alternative splicing in this organism remains 

largely unexplored, as only a few examples of alternative splice site selection have been 

documented. The SRC1 gene encodes an integral transmembrane protein, for which the use of an 

alternative 5′-splice site changes the number of passes through the membrane and ultimately the 

location of the C-terminal end of Src1p (16, 17). Alternative 3′-splice site selection has been 
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shown to regulate expression of the APE2 gene according to a temperature-dependent secondary 

structure in the transcript (18). A few other alternative 3′-splice sites have been described, and 

the use of some of these sites produces transcripts that are degraded by NMD (19). Recent work 

analyzing alternative splicing across fungal species has shown that S. cerevisiae has lost some of 

the alternative splicing events through gene duplication and sub-functionalization of the 

duplicated genes, which are otherwise produced by alternative splicing in other species (20). 

Using RNA-Seq analysis of strains mutated for NMD factors, we identify here a large number of 

alternative splice sites in S. cerevisiae. However, we show that splicing at these sites is generally 

non-productive because it introduces premature termination codons (PTC), leading to 

degradation of the transcripts by NMD. Non-productive splicing can be increased during 

environmental stress to contribute to a global regulatory mechanism that down-regulates 

transcripts levels in response to environmental cues. These results show that non-productive 

splice sites are widely used in S.cerevisiae, but that transcripts spliced at these sites are 

eliminated by RNA quality control mechanisms. Thus, while alternative splicing is frequently 

utilized in higher eukaryotes to generate proteome diversity, it is mainly used in S.cerevisiae as a 

means to regulate transcript levels. 

Results 

RNA-Seq reveals the accumulation of a large number of non-productive splice variants in 

NMD mutants 

We previously showed that NMD degrades unspliced transcripts arising from a large fraction of 

intron-containing genes in S. cerevisiae, due to suboptimal splice sites (12, 13), or upon splicing 

factor inactivation (21). In addition, recent data showed that transcripts generated by the use of 
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alternative 3′-splice sites can be degraded by NMD (19). To gain further insights into the 

function of NMD in the proofreading of spliced isoforms, we performed RNA sequencing of 

mRNAs from wild-type and isogenicupf1Δ, upf2Δ and upf3Δ strains defective for NMD. To 

identify transcripts spliced at alternative splice sites, we performed gapped alignment analysis of 

the RNA sequences (Table 3-1) using BLAT (22). This analysis revealed numerous occurrences 

of spliced transcripts arising from previously unknown splice sites, in both WT and the NMD 

mutants. We will refer to these new splicing events as alternative splicing events, even if these 

are found in wild-type cells, and to the annotated splicing events as the normal or canonical 

splicing events. Alternative splicing events were detected more frequently in RNA samples 

obtained from the NMD mutants (Figures 3-1A, 3-1B; Table 3-2), consistent with the fact that 

most of these alternative splicing events result in the introduction of a PTC, either by inducing a 

translational frameshift or by inserting an intronic PTC-containing sequence (Table 3-2). After 

adjusting for sequencing depth, upf1Δ, upf2Δ and upf3Δ showed a 1.67, 1.72, and 1.90-fold 

enrichment in alternative splicing events and 1.59, 1.70, and 1.79-fold enrichment in PTC-

generating alternative splicing events, respectively, versus wild-type (Table 3-2). NMD mutants 

showed an approximately 1.7-fold increase in unspliced mRNAs compared to the wild-type 

(Table 3-3) when considering reads that map to intronic and exon-intron regions, confirming our 

previous results from tiling arrays showing the involvement of NMD in eliminating unspliced 

transcripts genome-wide (12). This enrichment for unspliced RNAs in NMD mutants is probably 

underestimated. Although there were 4-fold more reads that mapped only to intronic regions in 

NMD mutants compared to wild-type (Table 3-3), we observed an unanticipated high number of 

reads that mapped to exon-intron junctions in the wild-type strain (Table 3-3), which lowered the 

overall enrichment for unspliced RNAs in NMD mutants. 
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There was limited overlap in the alternative splicing events identified in the three UPF mutants 

(Figure 3-1C), suggesting that the depth of our sequencing analysis was not sufficient to saturate 

identification of all alternative splicing events, particularly those occurring at low frequencies. 

The list of intron containing genes (ICG) for which we did not find the use of alternative splice 

sites is provided in Table 3-4. 97 out of 304 intron containing genes analyzed did not exhibit 

alternative splicing (Table 3-4). Whether this reflects the absence of competing alternative sites 

or the lack of depth of our sequencing analysis remains to be determined. 

To investigate if alternative splicing events are due to rare events or to splicing errors that occur 

randomly during transcript expression, we examined the abundance of ICG mRNAs that 

exhibited alternative splicing events and that of ICG mRNAs for which no alternative splicing 

events were detected (Figure 3-1D). This analysis showed that some low abundance transcripts 

exhibited alternative splicing, while some high abundance transcripts did not (Figure 3-1D). In 

addition, the median abundance of genes that showed alternative splicing was 117 RPKM, while 

the median abundance for genes with no alternative splicing events detected was 136 RPKM. 

Thus, even if the most highly expressed ICG (>2200 RPKM) all exhibited alternative splicing 

(Figure 3-1D), genes with no alternative splicing were in general expressed at higher level than 

genes for which alternative splicing events were detected, showing no clear correlation between 

transcript abundance and the detection of alternative splicing events. We conclude that the 

detection of alternative splicing events in our RNA-Seq analysis is not an indirect consequence 

of the higher number of reads for highly-expressed transcripts. 

The consensus sequences derived from the alternative splicing events identified in wild-type and 

all three mutants exhibited differences from the consensus sequences derived from the canonical 

(normal) splicing events (Figure 3-1E). Alternative 5′-splice sites showed a relaxation of the 
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conserved sequences, especially at positions 4 and 6 compared to the consensus obtained from 

the canonical splicing events. The 3′-splice sites used in alternative splicing events also showed a 

decrease in conservation of the polypyrimidine sequence preceding the conserved YAG, as well 

as a weaker conservation of the pyrimidine preceding the conserved AG dinucleotide (Figure 3-

1E). Thus, alternative splice sites identified by RNA sequencing showed a relaxed conservation, 

suggesting that these might correspond to lower efficiency splice sites, and possibly to regulated 

splicing events. Finally, we identified a number of alternative splicing events in either wild-type 

or NMD mutants that do not introduce a PTC and would potentially result in the production of 

proteins that differ from the SGD annotations. However, we did not investigate these alternative 

protein forms further because most of the RNAs that would result in the production of these 

proteins were found in low abundance compared to those resulting in the production of the 

annotated proteins. 

Strategy for validation of alternative splicing events 

The previous RNA-Seq analysis revealed the potential widespread usage of alternative splice 

sites (SS). Figure 3-2 depicts specific mRNAs that were chosen for validation and further 

characterization. These transcripts were classified into three classes: those with 1) alternative 5′-

SS; 2) alternative 3′-SS; and 3) a combination of both. Transcripts from class 1 

included RPL22B as well as the previously reportedSRC1 (16). Class 2 transcripts included genes 

encoding the RNA Polymerase III transcription factorTFC3 with a downstream alternative 3′-SS, 

and the adenosine deaminase TAN1 with two alternative 3′-SS flanking the normal 3′-SS. For the 

third class, we examined genes encoding the glycosylphosphatidylinositol biosynthetic 

enzyme GPI15 and the transcriptional regulator GCR1. GPI15exhibited the use of an alternative 

5′-SS with the normal 3′-SS, as well as the normal 5′-SS with an alternative 3′-SS (Figure 3-
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2). GCR1 showed a more complex splicing pattern with multiple combinations of 5′ and 3′-SS 

(Figure 3-2). 

We analyzed alternative splicing events by RT-PCR using Cy3-end labeled primers, which 

allowed for relative comparison of the abundance of spliced and unspliced species, regardless of 

their size. Because we lacked an adequate size marker for Cy3 detection, the same RT-PCR 

analyses were initially performed with 
32

P-end labeling with an appropriate 
32

P-labelled ladder 

(data not shown) to confirm the sizes of all RT-PCR products and correlate the data back to gels 

obtained with Cy3-labeled primers. In addition to the wild-type and NMD-

deficient upf1Δ strains, we analyzed the phenotypes of a number of S. cerevisiae splicing 

mutants. Knockout mutants of genes encoding Mud1p and Nam8p were chosen for their 

association with the U1 snRNP and role in 5′-SS selection (23-26). The HUB1knockout was also 

included, as Hub1p was recently implicated in 5′-SS selection for SRC1  (17). Prp17p and 

Prp18p were selected for their involvement in the second step of splicing and potential effects on 

3′-SS selection (27, 28). Finally, Isy1p was also included as a potential splicing fidelity factor 

(29). The splicing profiles were analyzed for each of the genes mentioned above in each of these 

mutant strains by fractionation of the RT-PCR products on polyacrylamide gels (Figure 3-3). For 

the splicing mutants for which the splicing pattern differed from the wild-type, additional RT-

PCR experiments were performed in triplicate from three independent cultures and quantitated, 

as shown in Figures 3-4, 3-5, 3-6, 3-7 and 3-8. 

RT-PCR analysis confirms the involvement of Prp17p and Hub1p in SRC1 alternative 

splicing 

As a first step in validating our RT-PCR strategy, we focused on SRC1, which exhibits two 

possible 5′-SS (Figure 3-2) and for which previous studies have demonstrated the roles of 
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various splicing factors (16, 17, 30). RT-PCR analysis of SRC1 splice variants confirmed the use 

of these two alternative 5′-SS (Figure 3-3). Wild-type samples showed a 60/40 ratio of SRC1-

S/SRC1-L (Figure 3-4), consistent with previous reports (16, 17, 30). Samples from 

the upf1Δ mutant showed a pattern similar to wild-type (Figures 3-3 and 3-4), indicating that 

both variants are stable and not targeted by NMD. This result is consistent with our RNA-Seq 

analysis, which showed high sequence counts for both forms in all strains. Samples from 

thenam8Δ strain showed a slight increase in the level of unspliced transcripts (Figure 3-3) due to 

reduced splicing efficiency (31). The prp17Δ and prp18Δ mutants both showed a slight increase 

in the usage ofSRC1-L 5′-splice site relative to the SRC-S 5′-splice site (1.4 and 1.3 fold, 

respectively), as suggested previously for the prp17Δ mutant at the protein level (17), and 

the prp18Δ mutant also exhibited an increase in unspliced precursors accumulation, consistent 

with previous results for other transcripts (21). The isy1Δ mutant strain exhibited a clear 

accumulation of unspliced pre-mRNAs (Figure 3-3), in agreement with the documented role of 

Isy1p in maintaining the proper conformation needed for the 1
st
 step of splicing (29). Hub1p 

inactivation resulted in a 3-fold reduction in the amount of SRC1-S, coinciding with an increase 

in SRC1-L (Figures 3-3 and 3-4), consistent with previous reports (17, 30). This reduction was 

also observed in the context of the upf1Δ mutant (Figures 3-3 and 3-4). Thus, the results 

described above confirmed the previously described effects of various splicing mutants 

on SRC1 splicing patterns and showed that our RT-PCR strategy is effective in analyzing the 

impact of specific splicing factors on splice site usage. 

Efficient use of the non-productive 5′-splice site of RPL22B is strongly dependent on the U1 

snRNP components Nam8p and Mud1p 
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RPL22B showed the presence of an alternative 5′-SS in the intronic sequence, which 

unlike SRC1, yields a PTC-containing transcript potentially targeted to NMD (Figure 3-2). This 

alternatively spliced transcript was almost 10-fold more abundant in the upf1Δ mutant (Figures 

3-3 and 3-5), further suggesting that it is targeted by NMD. We also detected a large 

accumulation of unspliced species in the upf1Δ mutant, indicating inefficient recognition of this 

splicing substrate. This may be the result of both the normal (GUACGU) and alternative 

(GUUUGU) 5′-SS having non-consensus sequences (see below). Interestingly, the abundance of 

the alternatively spliced product was found to decrease by two to three folds when Nam8p or 

Mud1p were inactivated in the context of the upf1Δ deletion (Figures 3-3 and 3-5). The deletion 

of either one of these two factors might hinder the ability of the U1 snRNP to bind to the 

alternative suboptimal 5′ GUUUGU splice site of RPL22B, resulting in decreased usage. This is 

consistent with the known roles of Mud1p and Nam8p in the first step of splicing (25), and 

suggest their direct involvement in modulating 5′-SS selection of RPL22B. By contrast, no major 

changes were observed in the prp17Δ, prp18Δ, isy1Δ, hub1Δ mutants, either alone or in 

combination with the upf1Δdeletion (Figure 3-3), showing the specificity of the effects detected 

with Nam8p and Mud1p. Thus, RPL22Bexhibits two competing suboptimal 5′-SS, one of which 

is highly sensitive to perturbations in the U1 snRNP. The functional significance of the 

alternative 5′-SS of RPL22B in regulating transcript levels is investigated further below. 

A novel role for Prp17p in promoting the use of branchpoint proximal alternative 3′-splice 

sites 

Gapped sequence alignment showed that TFC3 exhibits an alternative CAG 3′-SS 17 nt 

downstream of the annotated AAG (Figure 3-2). This product can be detected in samples from 

the wild-type and splicing mutants, but is 4.5-fold more abundant in the context of 
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the upf1Δ deletion, showing that a large fraction of this product is degraded by NMD (Figures 3-

3 and 3-6). This non-productive isoform amounts to 27% of all spliced products (Figure 3-6), 

showing that a significant fraction of splicing generates NMD-targeted, non-productive 

transcripts. We observed a slight accumulation (1.7 fold) of the downstream alternative 3′-splice 

product in the prp17Δ mutant (Figures 3-3 and 3-6), showing that this second step splicing factor 

contributes to reducing the use of this alternative 3′-SS. As expected, inactivation of the first step 

splicing factors Mud1p or Nam8p had no effect on the pattern of 3′-SS selected (Figure 3-3). 

TAN1 exhibits a more complex alternative 3′-SS pattern, where a canonical UAG 3′-SS is 

flanked by two alternative 3′ AAG sequences (Figure 3-2). The use of either of these sites would 

generate PTC-containing transcripts. The upstream AAG (AS 3′ #1) is only 6 nt away from the 

canonical 3′-SS. The retention of 6 nt of intronic sequence would maintain the proper reading 

frame but would result in a PTC because the UAG sequence of the normal 3′-splice site 

corresponds to an in-frame stop codon (32). The downstream AAG (AS 3′ #2) is 7 nt 

downstream of the normal 3′-SS, resulting in a frameshift-induced PTC. RT-PCR analysis of the 

wild-type and upf1Δ strains confirmed the RNA-Seq data by showing that these two alternative 

splice products are detected at extremely low levels, unless NMD is inhibited (Figures 3-3 and 3-

7). In samples from the upf1Δ strain, the two alternatively spliced products accumulate to similar 

amounts, and both species are detected at lower levels than the normal spliced product (20% of 

all spliced products; Figure 3-7), possibly because these two suboptimal AAG sites do not 

compete well with the consensus canonical UAG site. Strikingly, the usage of these alternative 3′ 

splice sites was dramatically altered when Prp17p or Prp18p were inactivated. Inactivating 

Prp17p resulted in an increase in the use of the downstream alternative 3′-SS (AS 3′#2), while 

the upstream alternative 3′-SS (AS 3′#1) was no longer used (Figures 3-3 and 3-7), showing a 
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role of Prp17p in enhancing the use of upstream, branchpoint proximal 3′-SS. By contrast, 

Prp18p inactivation resulted in increased usage of the alternative 3′-SS most proximal to the 

branch point sequence (AS 3′ #1; Figures 3-3 and 3-7). This product is barely detectable in the 

wild-type strain but can be observed in the prp18Δ strain (Figure 3-3), and inactivation of 

Prp18p in the context of the upf1Δ deletion resulted in a 3-fold increase in the abundance of this 

species (Figure 3-7). The effect of Prp18p on this 3′-SS might be due to the identity of the 

sequences immediately following the 3′-SS, which have been shown to influence 3′-SS selection 

in the absence of a functional Prp18p (33). Isy1p inactivation resulted in an increase of unspliced 

species in a similar fashion to SRC1discussed above; however there was no effect of Isy1p, 

Hub1p, Mud1p and Nam8p on alternative 3′-SS selection of TAN1 (Figure 3-3), showing the 

specificity of the effects observed with Prp17p and Prp18p. Finally, unspliced TAN1 transcripts 

were generally not affected by NMD, except in the context of amud1Δ mutant strain (Figure 3-

3). This observation is consistent with a recent report showing that TAN1unspliced transcripts are 

retained in the nucleus by the RES complex, and are subject to NMD only when the RES 

complex is inactivated (34). Overall, analysis of TFC3 and TAN1 alternative 3′-SS patterns show 

that Prp17p and Prp18p have antagonistic roles in the selection of upstream and downstream 3′-

SS of TAN1, and highlight the importance of Prp17p in enhancing the use of 3′-SS located closer 

to the branchpoint. 

Alternative splicing patterns of GPI15 and GCR1 reveal the production of alternative non-

functional protein products and the use of a non-canonical AUG 3′-splice site repressed by 

Prp18p 

GPI15 in an interesting case where the two alternatively spliced products identified by our RNA-

Seq analysis are not targeted by NMD. The use of an alternative GUACGU 5′-splice site results 
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in the deletion of 30 nucleotides from the 3′ end of exon 1 (Figure 3-2), which maintains the 

open-reading frame but generates a truncated protein. However, the protein product resulting 

from translation of this alternatively spliced product is likely to be non-functional, as this 

truncation removes a stretch of 10 amino acids at positions 187–197 in the most highly 

conserved region of this protein (35). This transcript can be detected in samples from the wild-

type and the splicing factor mutants, and does not vary in intensity in the context of upf1Δ, 

indicating that it is not targeted by NMD (AS 5′, Figure 3-3). In contrast, the alternatively spliced 

transcript generated by use of a downstream CAG 3′-SS results in a PTC. However, this PTC-

containing transcript would exhibit a short 85 nt 3′-UTR, which might render it insensitive to 

NMD as suggested by the faux 3′ UTR model (36, 37). Indeed, the abundance of this transcript 

was not increased in the upf1Δ mutant (Figure 3-3). In addition, this transcript is expected to 

yield a non-functional protein due to C-terminal truncation and deletion of amino acids within 

the most conserved region of the protein (35). Analysis of the pattern of selection of these two 

alternatively spliced transcripts in the various splicing mutants did not reveal any major effect of 

these mutants (Figure 3-3) in contrast to the effects described above for RPL22B, TAN1 or TFC3. 

However, there was a slight increase in the use of the downstream alternative 3′-SS in 

the prp17Δupf1Δ strain, consistent with the role of Prp17p in favoring the upstream 3′-SS, as 

described above for TAN1 and TFC3. 

GCR1 showed the most complex splicing pattern of all transcripts analyzed. Gapped alignments 

identified an intronic GUAUGG alternative 5′-SS as well as an upstream CAG alternative 3′-SS 

(Figure 3-2). In addition to these alternative splice sites identified by RNA-Seq, RT-PCR 

revealed the use of an additional GUAUGG alternative 5′-SS staggered 5-nt upstream of the 

normal 5′-SS and of a non-canonical AUG alternative 3′-SS 23 nt upstream of the other 
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alternative 3′-SS (Figure 3-2). The use of all of these sites was confirmed by RT-PCR, cloning 

and Sanger sequencing (Figure 3-9). The fact that some alternative splice sites escaped 

identification by mRNA sequencing indicates that a greater depth of coverage has the potential to 

identify even more alternative splice sites. 

Based on GCR1 annotation, the canonical spliced mRNA would use the GUAUGA 5′-SS along 

with the most downstream UAG 3′-SS (Figure 3-2). This product (labeled as S
(annot.)

 in Figures 3-

2 and and 3-3), however was detected at very low levels (Figure 3-3). The major spliced product 

observed resulted from the use of the most upstream GUAUGG 5′-SS and of an upstream CAG 

3′-SS (labeled “S” in Figures 3-2 and 3-3). This splicing event does not introduce a PTC and 

results in a protein that is very similar to the translation product of the annotated spliced 

transcript S
(annot.)

. The annotated amino acid sequence of GCR1 from position 2 to 4 is VCT. In 

the major spliced product S, this sequence is replaced by QTSVDST. Thus, most of the protein is 

identical, except for a few N-terminal amino acids which are not expected to affect Gcr1p 

function, as all GCR1 mutations with phenotypic effects have been mapped to a region 

downstream of this short sequence stretch (38-40). Based on the relative abundances of S and 

S
(annot.)

, it is clear that S, and not S
(annot.)

 is the main spliced product for the GCR1 gene. 

In addition to this major spliced product, we also detected a series of alternatively spliced 

products degraded by NMD (as denoted by asterisks in Figures 3-2 and 3-3). Splicing from the 

annotated GUAUGA 5′ splice site combined with the upstream CAG 3′ splice site resulted in a 

PTC-containing transcript labeled as *A in Figures 3-2 and 3-3. This transcript is degraded by 

NMD, as higher amounts are observed in all the strains containing a upf1Δ deletion, and it is the 

most abundant of all GCR1 alternatively spliced products subject to NMD (Figures 3-3 and 3-8). 

Another product is generated from combining the upstream GUAUGG 5′-SS with the most 
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downstream UAG 3′-SS (*C in Figure 3-2). This splicing event results in a PTC, as it introduces 

a translational frameshift, which is not detected until the 43rd amino acid is translated. The 

corresponding transcript accumulates at low abundance in all samples and appears to be targeted 

by NMD, as its abundance increases slightly in all upf1Δ strains. In addition, the use of this most 

downstream 3′-SS increases almost 4-fold in the prp17Δupf1Δ strain when compared to 

the upf1Δcontrol (Figures 3-3 and 3-8). Because the 3′-SS used to generate this transcript 

corresponds to the most downstream one, this observation provides another example of the 

importance of Prp17p in favoring the selection of upstream 3′-SS, as shown above 

for TFC3, TAN1 and to a lesser extent GPI15. 

Another PTC-containing transcript that is degraded by NMD results from splicing of the 

downstream intronic GUAUGG 5′-SS with the CAG 3′-SS, (labeled *B in Figures 3-2 and 3-3). 

This product is faint, but detectable in all cases of NMD deactivation, except in combination 

with nam8Δ or mud1Δ, most likely because this 5′-SS has a higher sensitivity to U1 snRNP 

perturbations, as described above for RPL22B. Analysis of other mutants did not reveal any 

major influence on the pattern of 5′- or 3′-SS selection. Like SRC1, GCR1 exhibits two staggered 

5′ splice sites. However, unlike for SRC1, Hub1p has no influence on their selection (Figure 3-3). 

A final set of NMD targets are produced by the use of the two most upstream 5′-SS with a highly 

unusual alternative AUG 3′-SS in the intronic sequence (labeled *D and *E in Figures 3-2 and 3-

3). Interestingly, these products were only detected in the absence of Prp18p, suggesting that this 

factor is essential in preventing the use of this non-canonical 3′-SS. The use of this highly 

unusual AUG 3′ splice site was unambiguously confirmed through sequencing and RT-PCR 

analysis of RNAs derived fromprp18Δupf1Δ samples (Figure 3-9). The ATPase Prp22p has been 

implicated in the fidelity of 3′-SS selection (41). Because Prp18p functions upstream from 
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Prp22p during the late stages of splicing (42), it is possible that the absence of Prp18p might 

indirectly hinder the function of Prp22p in proofreading 3′-SS selection, and that the use of this 

unusual 3′-SS might be the consequence of a reduced Prp22p function in the absence of Prp18p. 

To test this hypothesis, we analyzed GCR1 splicing in a prp22-1 mutant. RT-PCR analysis 

showed that the spliced product generated from the use of the AUG 3′-SS did not accumulate in 

a prp22-1 splicing mutant (Figure 3-10). Thus, the accumulation of species resulting from the 

use of this unusual 3′-SS in the prp18Δupf1Δ samples is not an indirect consequence of hindered 

Prp22p function. The discovery of the splicing at this unusual 3′-SS sequence reveals the 

importance of Prp18p in ensuring proper 3′-SS selection for GCR1 and in repressing the use of 

non-canonical 3′-SS sequences. 

Alternatively spliced species of RPL22B and GCR1 increase during stress conditions 

The previous results validated our prediction that transcripts generated from the use of 

alternative non-productive splice sites are degraded by NMD and revealed the role of specific 

splicing factors in governing the choice between alternative sites. Strikingly, the sequence of 

some of these non-productive splice sites was found to be conserved across closely related yeast 

species. Because the level of sequence conservation in intronic sequences is usually very low, 

these peaks in sequence conservations for intronic alternative splice sites might reflect their 

functional importance. We hypothesized that the use of some of these alternative splice sites 

which lead to degradation by NMD might be favored under certain conditions to down-regulate 

gene expression. To test this hypothesis, we monitored changes in the splicing patterns 

of RPL22B, TAN1, and TFC3 under stress conditions such as amino acid starvation, heat shock, 

LiCl-mediated hyperosmotic stress, and rapamycin treatment, as these have been reported to 

elicit diverse responses in the expression of intron containing genes (43, 44). In addition, various 
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stresses cause down-regulation in ribosomal protein gene expression (many of which contain 

introns), presumably to relieve the cell of massive energy requirements of ribosome biogenesis 

and focus those resources into regulations that are the most appropriate in response to the current 

stress condition (45-47). After 10 minutes of amino acid depletion, RPL22B showed an increase 

in unspliced species as well as well as a 4.5-fold increase in the level of the alternatively spliced 

product when compared to the SDC or YPD media controls (Figure 3-4A). In the upf1Δ strain 

shifted to amino acid starvation conditions, the levels of the alternatively spliced product 

increased compared to the wild-type strain grown in the same conditions, as would be expected 

when NMD transcripts are no longer degraded (Figure 3-11A lanes 2 and 4). The fact that the 

level of the alternatively spliced transcript is 2.5-fold higher in the upf1Δ sample than in the 

wild-type sample under amino acid starvation conditions argues that the increase in the 

abundance of these species in the wild-type strain in these conditions is not due to NMD 

inhibition in these conditions, but that a change in splice site selection occurs that favors the use 

of the alternative splice site. Significantly, amino acid starvation did not change the levels of the 

alternatively spliced species of TAN1 and TFC3 that are normally subject to NMD. This 

observation provides further evidence that the increase in the amount of alternatively 

spliced RPL22B transcript observed during amino acid starvation is due to a switch in splice site 

selection and not to an inhibition in NMD, since the level of alternatively spliced species 

of TAN1 and TFC3 that are normally degraded by NMD is unaffected in the same conditions. 

We next investigated the effect of a 20 minute heat shock at 42°C on splicing patterns. Under 

these conditions and in the wild-type strain, RPL22B showed an increase in unspliced as well as 

a decrease in the relative amount of the normal spliced product (Figure 3-11A lane 5 vs. 7). More 

importantly, the NMD defective strain upf1Δ showed an even larger increase in unspliced pre-
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mRNAs, as well a large accumulation of the alternatively spliced product that coincides with a 

decreased amount of canonical spliced product (Figure 3-11A lane 6 vs. 8). In these conditions, 

the alternatively spliced product now corresponds to more than half of all spliced species. Under 

heat shock, this alternatively spliced product is 4-fold more abundant in the upf1Δ strain than in 

the wild-type strain. These higher levels upon NMD inactivation show that the increased 

accumulation of these species under heat shock is not due to a decrease in NMD efficiency. 

Rather, this result shows that the use of the alternative splice site is being favored in heat shock 

conditions. By contrast, TFC3 and TAN1 exhibited an accumulation of unspliced species, but 

decreased levels of both the canonical and alternatively spliced species consistent with a general 

inhibition of pre-mRNA splicing under heat shock (48, 49). Thus the pattern of alternatively 

spliced species of TFC3 and TAN1 that are subject to NMD is very different from that 

ofRPL22B, further proving that the accumulation of the alternatively spliced RPL22B transcript 

under heat shock conditions described above is not due to a general stabilization of spliced forms 

degraded by NMD. 

Like heat shock, rapamycin treatment was shown to result in an inhibition of ribosomal proteins 

mRNA splicing based on microarray experiments (43). Within 20 minutes of rapamycin 

treatment, RPL22Bindeed showed trends similar to those observed in heat shock, but to a lesser 

degree, with an increase of unspliced species and of alternatively spliced RPL22B species 

(Figure 3-11A), but no effect on the alternatively spliced TAN1 and TFC3 transcripts. 

Hyperosmotic shock (300 mM LiCl exposure for 10 min) only resulted in minimal effects; there 

were no changes observed for TFC3 and TAN1 targets under these stress conditions, 

and RPL22B showed only a slight increase in unspliced but the levels of spliced transcripts 

remained similar. Thus, RPL22B exhibits regulated use of its alternative 5′-splice site, mostly 
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under amino acid starvation and heat shock conditions, while other transcripts such 

asTFC3 and TAN1 did not exhibit any change in their alternative splicing profiles. 

Because GCR1 exhibited a very complex splicing pattern, especially in the absence of Prp18p, 

and because heat shock conditions resulted in the most dramatic changes in splicing for RPL22B, 

we next investigated the effect of heat shock on GCR1 splicing in the wild-

type, upf1Δ, prp18Δ and prp18Δupf1Δmutants (Figure 3-11B). Under heat-shock, we detected a 

general inhibition of splicing, consistent with the data described above. However, we also 

observed an increase of the abundance of the A* form relative to the normal spliced product S, 

indicative of a switch from the normal GUAUGG site to the GUAUGA site. The absence of 

Prp18p resulted in an increase of the use of the non-canonical AUG site (*D species) in heat 

shock conditions, and this product now constituted one third of all spliced species. Thus we 

conclude that GCR1, like RPL22B, exhibits a switch in splice site selection during heat shock, 

and that Prp18p limits splicing at this non-canonical AUG site under stress conditions. 

The alternative, suboptimal 5′-splice site of RPL22B contributes to the global down-

regulation ofRPL22B in stress conditions 

To further analyze the importance of the alternative 5′-splice site of RPL22B on its splicing 

patterns and expression during normal and stress conditions, we investigated the effect of 

mutations of this alternative 5′-SS. The suboptimal GUUUGU alternative 5′-splice site was 

either deleted or mutated to the consensus GUAUGU sequence at the endogenous chromosomal 

locus (CS, consensus mutation andΔ, deletion, Figure 3-12A). Changing the alternative 5′-SS to 

the consensus GUAUGU sequence resulted in detectable amounts of alternatively spliced 

products at 25°C, even in a functional NMD background (Figure 3-12B), suggesting that the 

suboptimal GUUUGU sequence contributes to the low usage of this alternative site in normal 
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conditions. Inactivation of Upf1p in this context showed that 70% of all spliced species were 

now being produced by splicing from the alternative consensus site (Figure 3-12B, lane 5), and 

that splicing efficiency was improved, as shown by a decrease in unspliced species. By contrast, 

deleting the alternative splice site resulted in higher amount of unspliced transcripts, especially in 

the upf1Δ background. Thus, deleting the alternative 5′-splice site of RPL22B is not sufficient to 

improve splicing at the normal splice site, possibly because of the suboptimal sequence of the 

normal RPL22B 5′-splice site. In addition to RT-PCR, the same strains were analyzed by 

northern blot (Figure 3-12B, bottom panel), which yielded results similar to those obtained by 

RT-PCR. These results show that increasing the strength of the alternative 5′-SS of RPL22B is 

sufficient to enhance the overall splicing efficiency of this transcript, while deleting this site 

results in an overall increase of unspliced RNAs. Under heat shock and NMD inactivation, this 

effect was even more prominent, as mutation of the alternative splice site to the consensus 

resulted in the alternatively spliced product being the major spliced species (Figure 3-12B, lane 

11). Thus, under heat shock conditions, RPL22B transcripts bearing the consensus alternative 

splice site mutation are now spliced almost exclusively at this site. Analysis of the mutant with a 

deletion of the alternative 5′-SS under heat shock conditions showed that the use of the normal 

5′-SS is not increased at elevated temperatures when the competing alternative 5′-SS has been 

eliminated (Figures 3-12A and 3-12B lane 12). This mutant shows a larger accumulation of 

unspliced RPL22Btranscript, hinting that the normal process of spliceosome assembly is 

perturbed on this transcript during heat shock, possibly due to the suboptimal 5′-SS. To obtain a 

more quantitative assessment of transcript levels, rather than just assessing the ratio between the 

different spliced forms, we analyzed the same samples by northern blot. This analysis showed 

that cells treated in heat shock conditions resulted in much weaker signal than in the samples 

obtained from cells grown at 25°C, consistent with a general down-regulation of ribosomal 
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protein genes under stress (43-47). Upon NMD inactivation, we observed a rescue of transcript 

levels, which mostly corresponded to unspliced RNAs and to some alternatively spliced 

transcripts (Figure 3-12B). However, changing the alternative 5′-SS to a consensus sequence in 

the context of NMD inactivation was sufficient to recover a large amount of spliced transcripts 

(Figure 3-12B, lane 11, lower panel). To investigate if this effect was specific to heat shock or is 

also observed during other stresses, we analyzed the expression of wild-type and mutated forms 

ofRPL22B during amino acid starvation (Figure 3-12C). The results observed during amino acid 

starvation were similar to those described during heat shock, with a large increase in the level of 

spliced transcripts upon changing the alternative 5′-splice site to the consensus sequence. We 

also observed an increase in the use of the alternative 5′-SS under amino acid starvation (Figure 

3-13). Interestingly, shifting the Upf1p-inactivated strain with the alternative 5′-splice site 

consensus sequence from SDC to amino acid starvation conditions resulted in only a minor 

increase of the use of the alternative 5′-SS, possibly because the level of transcripts spliced at 

that site is already very high in the upf1Δ strain in normal conditions (75%; Figure 3-13). In 

conclusion, these results show that low splicing efficiency due to the suboptimal normal and 

alternative 5′ splice sites of RPL22B, combined with NMD degradation of the unspliced and 

alternatively spliced forms contribute to the general decrease in RPL22B levels as a means to 

rapidly halt production of this ribosomal protein under various stress conditions. 

Usage of the alternative 5′-splice site of RPL22B is influenced by promoter identity 

Ribosomal protein genes are known to be transcriptionally regulated in stress conditions. To 

investigate the use of RPL22B 5′-SS selection independently from transcriptional inhibition 

under heat shock, we replaced the natural RPL22B promoter with a galactose-inducible 

promoter. The wild-type and upf1Δstrains containing the natural RPL22B promoter showed no 
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detectable difference in RPL22B splicing patterns or expression when grown in galactose 

containing medium (YPGal) compared to glucose-containing medium (YPD) at 25°C (Figure 3-

14 lanes 1–4), either by RT-PCR (top panel) or northern blot (bottom panel). Strikingly, 

replacement of the normal RPL22B promoter by the GAL promoter resulted in an increase in 

overall RPL22B transcript levels, but also in a decrease in the use of the alternative 5′-SS (Figure 

3-14). The fact that the usage of the alternative splice site of RPL22B is reduced in this strain 

while transcript levels are higher overall argues against the hypothesis that alternative splice site 

usage is the result of splicing errors occurring at low frequencies, as if this were the case, one 

would expect higher levels of alternatively spliced RPL22B transcripts upon its overexpression in 

the strain in which the natural RPL22B promoter was swapped for the GAL promoter. Under heat 

shock conditions, the use of the alternative splice site was reduced 8.1 fold in the upf1Δ strain 

expressing RPL22B under the control of the GAL promoter compared to the upf1Δ strain 

expressing RPL22B from its natural promoter and grown in galactose medium (Figure 3-14, 

lanes 10 and 12). Thus, alternative splicing regulation of RPL22Bupon heat shock is tightly 

linked to the identity of the RPL22B promoter, as switching the identity of the promoter is 

sufficient to favor the use of the normal 5′-splice site. The mechanism by which the identity of 

the promoter influences alternative splice site selection is unclear, but could be linked to the 

influence of the promoter on the speed of transcription. Nevertheless, we can conclude from 

these results that transcriptional down-regulation and the increased use of the alternative 5′-SS 

provide synergistic mechanisms to limit the expression of RPL22B during stress, consistent with 

the global down-regulation of ribosome biogenesis during stress conditions. 
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Discussion 

A significant fraction of splicing events in S. cerevisiae generates non-functional RNA or 

protein products 

In this study we show that the ensemble of transcripts generated by splicing from the S. 

cerevisiaegenome is highly complex. Most of the splicing events that we have characterized in 

this study are non-productive, either because they result in transcripts that are targeted by NMD, 

or because the protein products generated from these transcripts are predicted to be non-

functional (e.g. GPI15). The large number of additional splice sites identified, and their relaxed 

conservation (Figure 3-1D) imply that the rules governing splice selection are intrinsically more 

flexible than previously thought. This is further illustrated by the finding that a non-canonical 

AUG sequence in GCR1 can be used as a 3′-SS in the absence of Prp18p (Figure 3-3). In some 

cases, non-productive alternatively spliced transcripts accumulate only at low levels 

(e.g. GCR1, GPI15, Figure 3-3). However, for other genes such as TFC3, the alternatively 

spliced non-productive transcripts represent a significant fraction (close to 30%) of all RNAs 

generated from this locus. Thus, non-productive splicing can significantly limit the expression of 

these genes. This was further demonstrated by mutagenesis of the non-productive splice site 

of RPL22B, as changing this site to a consensus sequence was sufficient to increase the splicing 

efficiency and the expression of this gene (Figure 3-12B). Thus, the presence of alternative and 

sometimes sub-optimal splice sites that compete with the normal splice site contributes to an 

overall decrease in the amount of productively-spliced transcripts. Because the overlap in the 

alternative splicing events detected in all three NMD-deficient strains was limited (Figure 3-1C), 

and because we detected by RT-PCR some alternative splicing events that escaped detection by 

RNA-Seq (e.g. GCR1), it is likely that we have not exhaustively identified the ensemble of splice 
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sites that can be used by S. cerevisiae, and that additional splice sites will be identified by deeper 

sequencing or systematic RT-PCR analysis. 

Contribution of splicing factors to alternative splice site selection and splice site fidelity 

The analysis of double mutants in which splicing factor mutations were combined with NMD 

inactivation revealed some important and unexpected functions for these factors on alternative 

splice site selection. We found that the Nam8p and Mud1p components are important for the 

selection of some, but not all of the alternative 5′-splice sites described here. In the case 

of RPL22B, this requirement was likely due to the fact that the alternative 5′-SS possesses a 

suboptimal splicing sequence, and therefore exhibits a weaker affinity for U1 binding, and a 

stronger requirement for Mud1p and Nam8p that impact the efficiency of U1 snRNP assembly 

on the alternative splice site. Strikingly, we identified a new role for Prp17p in favoring the use 

of upstream, branchpoint-proximal 3′-SS. In all cases that we have analyzed, Prp17p inactivation 

resulted in an increase in the use of the downstream 3′-SS. The mechanistic basis for this novel 

function that we describe here for Prp17p in promoting branchpoint proximal 3′-SS is not fully 

understood. Because 3′-SS close to the branchpoint are often the first ones that are being used, 

this novel function for Prp17p could be linked to promoting the ability of the spliceosome to scan 

and recognize 3′-SS close to the branchpoint, or to unwind secondary structures that mask 

branchpoint-proximal 3′-SS. The absence of Prp17p would result in a higher rate of 

misrecognition of 3′-SS and in the use of more distal 3′-SS. In addition, we found that the 

absence of Prp18p resulted in the selection of a non-canonical AUG 3′-SS in GCR1, and that this 

atypical 3′-SS was utilized to a greater extent during heat-shock, revealing a unique function for 

Prp18p in suppressing usage of a non-canonical 3′-SS. This function for Prp18p is independent 

from Prp22p's function in proofreading 3′-SS (41), but might complement its role to ensure the 
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overall proper fidelity of 3′-SS selection. While we have demonstrated this function 

for GCR1 only, a full genomic analysis of 3′-SS usage in the absence of Prp18p might reveal 

further examples of non-canonical 3′-SS being used. 

Spliceosome errors or bona-fide regulations? 

The widespread occurrence of non-productive splice site usage described in this study begs the 

question of whether the use of these splice sites is the result of mistakes by the spliceosome, 

which occur at low frequency (as one might suggest based on their weaker consensus sequences) 

or whether they correspond to sites that have been selected throughout evolution for regulatory 

purposes. The sequence of some of these intronic, non-productive splice sites is conserved across 

closely related yeast species, which, given the low conservation of intronic sequences in general, 

argues that this might reflect some degree of functional relevance. In addition, there is no 

obvious correlation between transcript levels and the occurrence of alternative splicing events 

(Figure 3-1D), which argues against the suggestion that most of the alternative splicing events 

that we have mapped arise from low fidelity splicing events or errors that occur randomly, and 

which would be expected to be more frequently detected in highly abundant transcripts. Also, 

replacement of the RPL22B gene promoter results in higher transcript levels but reduces the 

usage of the alternative 5′-splice site of RPL22B (Figure 3-14), providing another independent 

argument to suggest that the level of usage of alternative splice sites is not solely a reflection of 

overall transcript abundance. Finally, we show that the use of some of these alternative splice 

sites can be up-regulated during stress conditions (RPL22B, GCR1), and that this increased use 

participates in the down-regulation of RPL22B in stress conditions. Thus, this phylogenetically 

conserved, alternative, non-productive 5′-SS of RPL22B is functionally important because it 

contributes to the down-regulation of RPL22B during stress. This is shown by the fact that 
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changing this sequence to a consensus sequence results in a significant increase in transcript 

levels upon NMD inactivation during stress (Figure 3-12). The transcriptional down-regulation 

of ribosomal proteins during stress has been documented previously (45). We show here that the 

promoter of the RPL22Bgene is essential not only because it drives transcriptional repression 

during stress, but also because it controls the switch in 5′-SS selection that contributes to the 

overall repression of RPL22B during heat-shock. Thus, a combination of transcriptional and 

post-transcriptional regulations, through splicing inhibition (43, 44), degradation of unspliced 

RNAs by NMD (12, 47) and use of non-productive splice sites (this study) contributes to the 

repression of ribosomal protein production during stress. While several non-RPG transcripts 

analyzed in these stress conditions did not shown any changes, GCR1 did exhibit a change in the 

use of alternative splice sites during stress (Figure 3-11B). This result raises the possibility that 

other intron-containing genes may be regulated similarly by alternative splicing as a function of 

different environmental growth conditions. Overall our study has revealed that the pattern of 

splicing events in the model eukaryote S. cerevisiae is highly complex, but masked by NMD-

mediated degradation. Given the recent report that another single cell eukaryote, S.pombe shows 

alternative splicing patterns conserved in higher eukaryotes (50), these observations suggest that 

alternative splicing provides an important contribution to genetic regulations and adaptations to 

environmental changes in unicellular eukaryotes. However, in the case of S.cerevisiae, the use of 

alternative splice sites have evolved towards fine tuning transcript levels, rather than generating 

proteome diversity as shown in higher eukaryotes. 
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Methods 

Yeast culture and RNA analysis 

Yeast strains were grown at 25°C in YPD medium, unless indicated otherwise in the figures. For 

heat shock treatment, strains were pre-grown in YPD at 25°C, spun down in 50 mL Falcon tubes, 

resuspended in pre-warmed YPD medium and heat shocked for 20 min before harvesting. For 

LiCl treatment, yeast strains were grown to mid-log phase in YPD rich media at 30°C, harvested 

by centrifugation in 50 mL Falcon tubes, washed once with pre-warmed 50 mL of YPD+300 

mM LiCl before being resuspended in pre-warmed YPD with 300 mM LiCl for 10 minutes. For 

Rapamycin treatment, cells were grown to mid-log phase in rich media (at 30°C), and rapamycin 

from a stock solution of 1 mg/mL in 90% ethanol, 10% Tween-20 was added to a final 

concentration of 200 ng/mL and cells were incubated for 20 minutes. The same volume of 90% 

ethanol, 10% Tween-20 solution used for the rapamycin treatment was added to the negative 

control. Sample preparation and RNA sequencing was performed by Illumina. RT-PCR analysis 

and northern blot was performed as described (21). 

Mapping reads 

High throughput sequencing data have been deposited in the GEO database 

(accession GSE55213). All sequence files were aligned against the 2008 SGD assembly of 

the Saccharomyces cerevisiae genome. The novoalign software package (www.novocraft.com) 

and the BLAT alignment tool (22) were used to align 75 base pair reads in two steps. In the first 

step, sequences were aligned with novoalign allowing for up to four mismatches and no gaps. In 

the second step, sequences that failed to align in the first step were aligned with BLAT allowing 

three mismatches and gaps up to 20000 nucleotides in length. A sequence was kept for further 
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analysis if it mapped with equal score to at most two genomic locations and did not contain a gap 

smaller than ten nucleotides. 

Intronic sequences counts 

Intronic sequence expression representative of unspliced RNAs was quantified for each ICG by 

summing reads that aligned to introns and exon-intron boundaries. Values between samples were 

normalized by total mapped reads to account for lane effects. p-values were computed by 

modeling each ICG wild-type count as a poisson random variable and calculating the probability 

of observing each mutant count if it were drawn from the same distribution. 

Quantification of alternative splicing events 

Alternative splicing events were defined as splicing events that are within ICGs and are 

supported by sequencing but that are not annotated in the Saccharomyces Genome Database 

(SGD). Counts of total alternative splicing events and PTC-generating alternative splicing events 

were quantified by summing all unique alternative splicing events in each sample. To determine 

if an alternative splicing event is PTC-generating we constructed the splice product's sequence 

using the novel splicing event in the otherwise canonical transcript sequence. Counts between 

samples were normalized by sequencing depth. p-values were calculated by modeling the wild-

type count as a poisson random variable and calculating the probability of observing each 

mutant's count for both total alternative splicing events and PTC-generating alternative splicing 

events. Venn diagrams of agreement between samples were generated using BioVenn (51). 

Splice site consensus sequence 
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Consensus sequences for 5′ and 3′ ends of both canonical splice sites and alternative splice sites 

were represented as sequence logos. Sequence logos were constructed using the MATLAB 

(MathWorks) seqlogo function. 
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Figures 

 

Figure 3-1. Bioinformatics analysis of alternative splice site usage in wild-type and NMD mutants.  A. Venn diagram 

showing the overlap of alternative splice site usage between the wild-type and three NMD mutants pooled for all unique non-

canonical splicing events (both PTC-generating and non-PTC-generating). B. Venn diagram showing the overlap of alternative 

splicing events between the wild-type and three NMD mutants pooled for all unique non-canonical splicing events resulting in a 

potential PTC. C. Venn diagram showing the overlap of alternative splicing events between the upf1Δ, upf2Δ, and upf3Δ strains 

for PTC-generating splicing events. D. Distributions of intron-containing gene transcripts showing alternative splicing events 

(red) or no alternative splicing events (blue) according to their overall abundance in RPKM. Transcripts for which the abundance 

was higher than 2,300 RPKM were grouped in the final bin. E. Sequence logo analysis of 5′- and 3′- splice sites for all normal 

and alternative splicing events detected by RNA-Seq in wild-type and NMD mutant strains. 
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Figure 3-2.  Spliced species produced from the SRC1, RPL22B, TAN1, TFC3, GPI15 and GCR1 genes.  Species labeled with 

an asterisk are subject to NMD. Species labeled with two asterisks are predicted to be subject to NMD but were not observed to 

do so in subsequent experiments. The alternative 3′-SS of SRC1 is located 4 nt upstream from the annotated 3′-SS. The 

alternative 3′-SS of RPL22B is located 64 nt downstream from the annotated 3′-SS. The alternative 3′-SS of TAN1 are located 6 

nt upstream and 7 nt downstream from the annotated 3′-SS. The alternative 3′-SS of TFC3 is located 17 nt downstream from the 

annotated 3′-SS. The alternative 5′ and 3′-SS of GPI15 are located 36 nt downstream and 14 nt upstream, respectively, from the 

annotated 5′ and 3′-SS. The alternative 3′-SS of GCR1 are located 5 nt upstream (GUAUGG); 51 nt downstream (GUAUGG) and 

627 nt downstream from the annotated 5′SS. The alternative 3′-SS of GCR1 are located 40 nt upstream (AUG) and 17 nt 

downstream (CAG) from the annotated 3′-SS. 
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Figure 3-3.  RT-PCR analysis of alternatively spliced products for SRC1, RPL22B, TAN1, TFC3, GPI15 and GCR1 in wild-

type, NMD and various splicing mutants.  The unspliced (US) species is also shown on top. The middle portions of the gel 

where no species were visible have been removed. In all cases, RT-PCR was performed with a Cy3-labeled primer. The labeling 

of the different alternatively spliced forms is according to the nomenclature shown in Figure 2. 
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Figure 3-4.  Quantification of the SRC1-L and SRC1-S isoforms in wild-type, upf1Δ and splicing mutants. Shown is the 

percentage of the SRC1-L and SRC1-S transcripts in various strains. Values shown are the average and standard deviations 

obtained from RT-PCR experiments of three independent cultures for each strain. 
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Figure 3-5.  Quantification of the usage of the normal and alternative 5′-splice sites of RPL22B in wild-type,upf1Δ and splicing 

mutants. Shown is the percentage of transcripts spliced at the normal 5′-splice site (red) and at the alternative 5′-splice site (blue). 

Values shown are the average and standard deviations obtained from RT-PCR experiments of three independent cultures for each 

strain. 
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Figure 3-6.  Quantification of the usage of the normal and alternative 3′-splice sites of TFC3 in wild-type, upf1Δand splicing 

mutants. Shown is the percentage of transcripts spliced at the normal 3′-splice site (blue) and at the alternative 5′-splice site (red). 

Values shown are the average and standard deviations obtained from RT-PCR experiments of three independent cultures for each 

strain. 
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Figure 3-7.  Quantification of the usage of the two alternative 3′-splice sites of TAN1 in wild-type, upf1Δ and splicing mutants. 

Shown is the percentage of transcripts spliced at the alternative 3′-splice site #1 (blue) or #2 (red) compared to all the spliced 

transcripts. Values shown are the average and standard deviations obtained from RT-PCR experiments of three independent 

cultures for each strain. 
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Figure 3-8.  Quantification of the abundance of the major alternatively spliced forms of GCR1 in wild-type,upf1Δ and splicing 

mutants. Shown is the percentage of the *D (blue), *A (red) or *C (green) spliced forms. Values shown are the average and 

standard deviations obtained from RT-PCR experiments of three independent cultures for each strain. 
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Figure 3-9.  Validation of the use of the AUG alternative 3′ splice site of GCR1 by RT-PCR. Sequencing of the cloned *D and *E 

cDNAs determined the location of the splice junction, while sequencing of unspliced cDNAs was used to confirm that this 

unusual alternative 3′-SS was indeed AUG, and not a SNP or other mutation of the GCR1 gene that would have converted it into 

an AAG. RT-PCR confirmation of the use of this AUG 3′-SS was performed using reverse primers spanning the splice junction 

to specifically amplify distinct splicing events; either associated with *D, *E, or unspliced. The use of the AUG 3′ SS was also 

confirmed using an intronic reverse primer just downstream of the AUG sequence and detected *D, *E, and unspliced products, 

as predicted (Figure 4). A. RT-PCR strategy. All PCR include the same forward primer For, and various reverse primers that 

hybridize to the indicated regions of GCR1. B. RT-PCR data. Shown are the PCR products obtained from the different reverse 

primers shown in A. 
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Figure 3-10.  RT-PCR analysis of GCR1 splicing in the prp18 and prp22-1 mutant strains. The identity of the different spliced 

products is labeled according to Figure 2. 
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Figure 3-11.  RT-PCR analysis of alternatively spliced products under stress conditions.  A. Analysis of RPL22B in various 

stress conditions. Shown are the RT-PCR products obtained from the wild-type or upf1Δ mutant strain after growth in the 

following conditions: SDC, synthetic define complete medium at 30°C; -AA, 10 minutes in SDC medium at 30°C lacking amino 

acid (-AA); 25°C, log phase at 25°C in YPD; H.S, 20 minutes at 42°C in YPD; YPD: log phase at 30°C in YPD; LiCl, incubation 

with 300 mM LiCl in YPD at 30°C for 10 minutes; RAP control, see Methods; RAP, treatment with Rapamycin for 20 minutes. 

B. RT-PCR analysis of GCR1 alternative splicing in heat-shock conditions. Labeling of the different species is similar to that 

of Figures 2 and 3. 
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Figure 3-12.  Effects of mutations of the RPL22B alternative 5′ splice site on RPL22B splicing and expression in normal 

and stress conditions.  A. Organization of the RPL22B precursor, with the normal and alternative 5′-splice sites. Shown are the 

mutations to the consensus sequence (CS) GUAUGU or the deletion that entirely removes the GUUUGU sequence. B. Analysis 

of the effect of these mutations onRPL22B splicing and expression at normal temperatures (25°C) or after a 20 min heat shock at 

42°C. N, natural 5′-splice site (GUUUGU); CS, consensus sequence (GUAUGU); Δ = deletion of the alternative 5′-splice site. 

Top panel: RT-PCR analysis. Bottom panel: northern blot analysis. US, *AS-5′, and S indicate the location of the products 

corresponding to the unspliced, alternatively spliced and normal spliced products, respectively. For the northern blot, SCR1 was 

used as a loading control. C. Analysis of the effect of theRPL22B alternative splice site consensus mutation 

on RPL22B expression during amino acid starvation. Shown is a northern blot of RNA samples extracted from the indicated 

strains grown at 30°C in normal synthetic define complete (SDC) medium with amino acid (+) or in SDC medium lacking amino 

acid (−) for 10 minutes. Strains contained either the natural GUUUGU sequence at the alternative 5′-splice site of RPL22B, or the 

consensus GUaUGU sequence. The nucleotide mutated is highlighted in lower case. Labeling of the different species is similar to 

that of panel B. SCR1 was used as a loading control. 
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Figure 3-13.  Quantitation of the use of the normal and alternative 5′-splice site of RPL22B under normal growth conditions in 

minimal medium (SDC) and after amino acid starvation (-AA) for the strains expressing the natural (N) GUUUGU sequence at 

the alternative 5′ splice site of RPL22B, or the consensus (CS) GUAUGU sequence in the context of wild-type UPF1 (WT) or 

when UPF1 has been deleted (Δ). Plotted are the amount of transcript spliced at the normal and alternative splice sites divided by 

the values obtained for all spliced species. Shown are the average of 3 independent experiments with the standard deviations. 



60 
 

 

Figure 3-14.  Replacement of RPL22B promoter by the GAL promoter results in a decrease in alternative 5′-splice site 

usage.  Shown are the products generated when growing the indicated strains (wild-type or upf1Δ that contained the 

natural RPL22B promoter or the GAL promoter upstream RPL22B) in glucose (YPD) or galactose (YPGal)-containing media. 

Top panel, RT-PCR analysis. US, *AS 5′, and S indicate the location of the products corresponding to the unspliced, alternatively 

spliced and normal spliced products, respectively. Bottom Panel, Northern blot analysis. The labeling of the different species is 

similar to that of the top panel. SCR1 was used as a loading control. 

Tables 

  WT upf1 upf2 upf3Δ 

Total Sequences 17169945 14803384 15256510 14447952 

Mapped 10530129 11782000 12245672 11476145 

Low Quality 414 8226 8550 4941 

Mapped to 2 
positions 40566 41883 43421 41154 

Repetitive 1759898 1633780 1782780 1636319 

Did not match 4838938 1337495 1176087 1289393 

       WT upf1 upf2 upf3Δ 

Total Sequences 100% 100% 100% 100% 
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Mapped 61.33% 79.59% 80.27% 79.43% 

Low Quality 0.00% 0.06% 0.06% 0.03% 

Mapped to 2 
positions 0.24% 0.28% 0.28% 0.28% 

Repetitive 10.25% 11.04% 11.69% 11.33% 

Did not match 28.18% 9.04% 7.71% 8.92% 
Table 3-1.  Statistics of RNA-Seq analysis sequence alignments. 

 
Table 3-2.  Number of alternative splicing events detected in wild-type and NMD-deficient strains. 

  WT upf1 upf2 upf3Δ 

Total Mapped 10530129 11782000 12245672 11476145 

Mapped to intronless genes 8934033 9813692 10225911 9579339 

Mapped outside of genes 516683 767386 759116 739233 

Mapped only to exon of ICGs 1042627 1131395 1189492 1090340 

Mapped to exon-intron junction of 
ICG 28972 36055 37142 34861 

Mapped to only intron of ICG 7814 33472 34011 32372 

     

       WT upf1 upf2 upf3Δ 

Total Mapped 100% 100% 100% 100% 

Mapped to intronless genes 85.32% 83.29% 83.51% 83.47% 

Mapped outside of genes 4.91% 6.51% 6.20% 6.44% 

Mapped only to exon of ICGs 9.90% 9.60% 9.71% 9.50% 

Mapped to exon-intron junction of 
ICG 0.28% 0.31% 0.30% 0.30% 

Mapped to only intron of ICG 0.07% 0.28% 0.28% 0.28% 
Table 3-3.  Mapping of RNA-Seq reads in wild-type and NMD-deficient strains in various genomic elements and in intron-

containing genes. 

Alternative Splicing PTC-generating non-PTC-generating

Wildtype 253 206 47

upf1D 422 328 94

upf2D 436 350 86

upf3D 480 368 112

Alternative Splicing PTC-generating non-PTC-generating

upf1D <1.0E-308 1.89E-15 5.15E-10

upf2D <1.0E-308 <1.0E-308 1.16E-07

upf3D <1.0E-308 <1.0E-308 2.22E-16

Normalized Counts

p-values (vs wildtype)
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Gene wild-type 

RPKM 

upf1D 

RPKM 

upf2D 

RPKM 

upf3D 

RPKM 

5' SS 3'SS 

YBL091C-A 43.1662 42.7591 44.2333 42.5784 GTATGT CAG 

YBL059W 15.0117 18.5209 20.7662 17.9664 GTATGC TAG 

YBR090C 56.6191 66.9341 69.2684 61.6337 GTATGT TAG 

YBR186W 2.3531 12.5685 11.5627 11.5155 GTATGT TAG 

YBR219C 44.2678 39.7853 43.3827 43.7956 GTACGT TAG 

YBR230C 157.1036 150.8893 119.3669 138.3439 GTATGT CAG 

YCL005W-

A_1 

139.4621 112.6332 127.885 117.0051 GTATGT TAG 

YCL005W-

A_2 

238.208 190.4725 195.2775 193.2174 GTATGT CAG 

YCR028C-A 192.026 174.5351 183.9385 175.3424 GTATGT CAG 

YCR097W_2 32.5284 28.8771 22.5273 24.6388 GTATGT TAG 

YDL219W 37.525 59.7687 54.8015 54.6291 GTATGT CAG 

YDL189W 48.8606 48.2341 44.674 49.5196 GTATGT AAG 

YDL137W 325.318 311.9346 286.3038 284.9463 GTATGT TAG 

YDL125C 345.2209 438.611 440.1504 437.5132 GTATGT CAG 

YDL082W 784.0993 750.4385 772.5178 725.9987 GTATGT CAG 

YDL079C 7.3778 31.8987 33.0225 32.0545 GTATGT TAG 

YDL064W 78.537 79.3243 78.0436 74.0851 GTAAGT CAG 

YDR059C 27.4062 30.1905 22.2879 25.9268 GTATGT AAG 

YDR099W 306.0935 301.987 281.078 287.3123 GTATGT CAG 

YDR305C 22.5071 29.9789 28.4691 27.9799 GTATGC CAG 

YDR318W 12.0959 33.5054 32.6056 30.0691 GTATGT CAG 

YDR367W 55.1827 56.5835 55.7898 55.9981 GTATGT TAG 

YDR381W 250.3131 205.6448 227.7169 212.0212 GTATGT TAG 

YDR381C-A 28.0768 33.4581 27.2205 28.5406 GTATGT CAG 

YDR535C 2.6537 8.3012 6.1939 6.7831 GTACGT CAG 

YER003C 165.4168 136.6557 134.8364 134.9615 GTATGT TAG 

YER007C-A 104.3578 108.3481 117.108 115.2255 GTATGT TAG 

YER014C-A 32.0663 26.6383 27.0437 25.8394 GTCAGT CAG 

YER044C-A 1.8575 4.8421 5.1912 4.332 GTACGT CAG 

YER131W 1425.2754 1438.6352 1436.562 1392.5021 GTATGT TAG 

YER179W 4.6302 9.3743 10.3194 8.5837 GTATGT TAG 

YFL039C 1542.3491 1273.0533 1311.2173 1227.6468 GTATGT TAG 

YFL034C-B 40.1186 37.6241 38.4679 39.7362 GTATGT CAG 

YFL031W 309.0024 263.2671 317.4207 300.9092 CCGTGA CCG 

YFR045W 21.0354 19.9867 17.5616 19.5825 GTAAGT CAG 

YGL251C 4.0235 16.8369 15.787 17.7991 GTAGTA TAG 

YGL187C 126.423 96.0151 96.1224 85.1404 GTATGT TAG 

YGL183C 0.71944 1.5432 1.2373 1.0562 GTATGT TAG 

YGL033W 0.86727 0.51674 0.74577 0.39789 GTTAAG CAG 

YGR029W 59.3118 75.4943 81.6615 80.5638 GTATGT TAG 

YGR183C 119.5338 149.0595 128.3833 127.4545 GTATGT TAG 

YGR225W 1.3856 2.0481 2.4288 2.1026 GTACGT CAG 

YHR012W 170.9157 150.3561 150.6265 154.8765 GTATGT TAG 

YHR039C-A 497.1243 464.7227 399.3129 423.0578 GTATGT TAG 

YHR041C 73.6621 68.3829 71.857 78.0519 GTATGT TAG 
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YHR079C-A 3.4408 4.6128 0.59175 5.6829 GTATGT AAG 

YHR123W 60.3225 68.2755 71.801 78.468 GTATGT TAG 

YHR141C 1449.3348 1309.6169 1292.3378 1288.0572 GTATGT CAG 

YHR218W 42.1895 43.2339 41.687 49.0508 GCATGT CAG 

YIL148W 2068.8759 1794.6616 1853.3152 1870.4117 GTATGC CAG 

YIL111W 108.0858 103.3021 96.7044 84.8442 GCATGT CAG 

YIL073C 5.7732 17.1606 16.8176 16.5168 GTATAT AAG 

YIL004C 75.0427 70.2348 74.8088 64.5913 GTATGA TAG 

YJL189W 3289.097 3190.9823 3107.3249 3230.782 GTATGT TAG 

YJL041W 64.8471 63.3474 60.4533 60.9467 GTATGT TAG 

YJL031C 29.725 38.6424 34.6066 34.4476 GTATGT CAG 

YJL024C 34.0902 57.3089 61.6998 54.0698 GTATGT TAG 

YJR079W 23.3097 20.833 20.2916 24.0288 GCATGT TAG 

YJR094W-A 1057.2156 1008.1596 1000.4266 1063.7619 GTATGC CAG 

YJR112W-A 71.0803 107.7658 117.7905 116.9752 GTATGT AGG 

YKL006C-A 172.8115 201.5065 188.0437 208.9516 GTATGT CAG 

YKR005C 4.333 6.6158 7.2968 8.0621 GTATGT AAG 

YLL050C 539.2375 548.742 507.738 523.0254 GTATGC TAG 

YLR054C 44.9286 50.0276 38.334 42.6272 GTATGG CAG 

YLR078C 80.6239 87.0693 99.6604 99.1112 GTATGT TAG 

YLR128W 21.4552 29.9683 27.6238 27.7548 GTATGT TAG 

YLR199C 68.5672 61.7924 62.106 57.1478 GTATGT AAG 

YLR202C 20.6194 22.5815 18.7297 21.8509 GTATGA CAG 

YLR211C 7.9487 16.327 17.5075 18.6814 GTAAGT TAG 

YLR275W 15.3998 21.9197 26.2396 22.7656 GTATGT CAG 

YLR333C 712.8006 647.0488 703.2497 661.2181 GTATGT CAG 

YLR445W 2.1773 1.4969 1.7283 1.6905 GTAAGT CAG 

YML085C 192.7576 143.9216 152.3254 147.887 GTATGT CAG 

YML067C 104.6505 110.442 113.7401 115.8539 GTATGT CAG 

YML036W 53.0485 74.6156 64.4617 66.3903 GTATGT TAG 

YML025C 194.1225 143.036 202.2094 161.9276 GTACGT TAG 

YML024W 1570.0517 1247.5214 1282.94 1275.0452 GTATGT TAG 

YML017W 45.6709 43.3902 41.0141 46.6492 GTATGT CAG 

YMR194C-B 53.0438 55.0542 72.8332 60.8391 GTTTGT TAG 

YMR242C 1521.6453 1459.2326 1486.1135 1382.108 GTGAGT CAG 

YMR292W 51.9236 44.7783 44.062 42.4193 GTATGT TAG 

YNL312W 67.0074 56.377 62.3886 61.5897 GTATGT CAG 

YNL138W-A 57.4211 88.165 84.8267 80.7202 GTATGT CAG 

YNL130C 98.9828 103.9039 100.5224 103.7243 GTATGT TAG 

YNL066W 222.4057 204.2997 221.0305 208.446 GTATGT TAG 

YNL050C 130.0083 116.0901 108.5807 107.2871 GTATGC CAG 

YNL044W 131.6284 127.5526 135.7949 136.8597 GTAAGT TAG 

YNR053C 61.1654 76.5097 75.5131 62.684 GTATGT TAG 

YOL047C 257.7638 240.2025 278.8386 246.6855 GTATGT AAG 

snR17A 7.9851 6.1171 9.0735 7.5885 GTATGT CAG 

YOR318C 609.8281 488.726 437.9298 479.5398 GTATGA CAG 

YPL241C 13.2975 31.1314 27.3217 29.1537 GTATGT TAG 

YPL230W 39.6883 33.2677 29.0671 36.9275 GTATGT AAG 

snR17B 13.4439 19.9406 21.1533 19.6846 GTATGT CAG 
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YPR010C-A 355.1453 194.5542 387.426 222.021 GTATGT TAG 

YPR153W 48.0441 82.4674 81.4685 70.4514 GTATGT CAG 
Table 3-4.  List of intron-containing genes for which no alternative splicing events were detected. Shown is the list of intron-

containing genes for which no alternative splicing junctions were detected in any of the strains sequenced. The adjusted number 

of reads obtained from each strain (RPKM) and the sequence of the 5′- and 3′-splice sites is shown for each of these genes. 
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Abstract 

microRNAs (miRNAs) are important regulatory molecules in eukaryotic organisms.  Existing 

methods for identification of mature miRNA sequences in plants rely extensively on the search 

for stem loop structures, leading to high false negative rates.  Here, we describe a probabilistic 

method for ranking putative novel plant miRNAs using a naïve Bayes classifier.  We use a 

number of properties to construct the classifier, including sequence length, number of 

observations, existence of detectable predicted miRNA* sequences, the distribution of nearby 

reads, and mapping multiplicity.  We apply the methodology to small RNA data from soybean, 

peach, Arabidopsis, and rice and provide experimental validation of several predictions in 

soybean.  The approach performs well overall and strongly enriches for known miRNAs over 

other types of sequences.  By utilizing a Bayesian approach to rank putative miRNAs, our 

method is able to score miRNAs that would be eliminated by other methods, such as those that 

are lowly expressed or lack detectable miRNA* sequences. As a result, we are able to detect 
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several novel miRNA candidates in soybean, including some that are 24 nucleotides long, a class 

that is almost universally eliminated by other methods. 

Introduction 

MicroRNAs (miRNAs) are small, approximately 18-24 nucleotide long single-stranded, non-

coding RNAs that function in eukaryotic gene regulation.  miRNAs induce post-transcriptional 

gene silencing by base pairing with target mRNAs.  miRNA-mediated gene silencing results 

from either mRNA cleavage or translational repression (1, 2).  Longer, partially double-stranded 

RNAs called primary miRNAs (pri-miRNAs) are typically transcribed by RNA polymerase II 

and cleaved by the RNAse III Dicer-like1 (DCL1) into approximately 70 nucleotide long 

precursor miRNAs (pre-miRNAs) (3-5).  Pre-miRNAs are then cleaved by DCL1 into 

approximately 22 nucleotide miRNA:miRNA* duplexes, in which miRNA* is partially 

complementary to the miRNA (6).  The miRNA:miRNA* duplex is unwound, and the miRNA* 

is degraded while the miRNA is loaded into the RNA-induced silencing complex (RISC) to 

induce gene silencing (7). 

Several computational methods have been developed to identify novel miRNAs.  These include 

both ab initio methods that require only the genome sequence as input as well as methods that 

attempt to identify miRNAs within reads from small RNA libraries.  To discover miRNAs, most 

computational approaches rely on finding stereotypical hairpin structures (8, 9, 10, 11), finding 

conserved sequences in related organisms (12, 13), or through a combination of these properties 

(14-18).  The limitation of conservation-based approaches is that they require genome sequences 

from related species and cannot identify non-conserved species-specific miRNAs.  Structure-

based approaches tend to have high false negative rates, as they require that predicted miRNAs 

have hairpins, which are often difficult to detect computationally.  As a result, methods have 
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been developed to separate miRNAs from non-miRNAs assuming both classes form hairpin 

structures using nearby sequence information such as promoters and splice sites (8). 

While the core machinery of the miRNA biogenesis pathway is conserved between plant and 

animal lineages, other aspects, such as targeting mechanisms, diverge between the kingdoms 

(19).  For example, animal miRNAs tend to target 3’ UTRs while plant miRNA target sequences 

are more uniformly distributed along transcripts.  As a result of these and other differences, the 

criteria for annotating miRNAs are usually distinct for plants and animals (20, 21).  To date, 

most of the software available for miRNA prediction is animal-specific (13), mammal-specific 

(15), or specific to certain animal species (12, 16, 17, 22).  The miRNA prediction tools that do 

not describe themselves as animal-specific or plant-specific are generally validated using 

exclusively animal genomes and datasets (8, 9, 14, 18, 23, 24).  Thus, to date there have been 

only limited resources for identifying miRNAs in plants. 

To overcome these limitations, here we describe a machine learning approach using a Naïve 

Bayes Classifier to identify plant miRNAs.  The approach combines small RNA deep sequencing 

data and genomic features to determine the probability that a specific read is a miRNA.  We have 

applied this methodology to datasets from soybean, peach, rice and Arabidopsis.  We find that 

the overall accuracy of the method is high as it strongly enriches for known miRNAs among its 

top predictions.  We also experimentally validate newly predicted miRNAs in soybean. 

Results 

We identify putative novel miRNAs from small RNA sequence data in four model plants, 

Arabidopsis Thaliana, Glycine max, Oryza sativa, and Prunus persica (hereafter Arabidopsis, 

soybean, rice, and peach, respectively) using a naïve Bayes classifier approach.  We present 
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results of our miRNA prediction and bioinformatic validation in each of the four organisms and 

experimental validation in soybean. 

Read Processing 

Known miRNA sequences and small RNA sequence reads were processed in parallel in the four 

model plants.  Known miRNAs were downloaded from miRBase (http://www.mirbase.org/).  We 

kept only the known miRNAs with at least two independent lines of experimental evidence in 

Arabidopsis due to its relatively large number of available sequences.  In contrast, for the other 

plant species we only required one line of evidence.  It is likely that some of the annotated 

sequences with only a single line of evidence are not true miRNAs, but to be more stringent 

would dramatically reduce our statistical power.  Many miRNAs exist as members of gene 

families in which multiple primary miRNAs give rise to identical mature miRNA sequences.  

For all downstream analyses we consider only unique mature miRNAs in each organism. 

Small RNA-Seq Samples 

Arabidopsis small RNA-seq data was gathered from two independent experiments, one from 

whole flowers (26) and the other from unopened flower buds (27).  Reads from both samples 

were merged to form a single library.  Rice small RNA-seq data was derived from leaf tissue 

(28).  Peach small RNAs were generated from flower buds chilled to induce dormancy (29).  

Soybean small RNAs were isolated from soybean seeds during the early maturation stage of 

development.  All samples were from untreated, wild-type organisms.  The number of unique 

sequence reads in the soybean, Arabidopsis, rice, and peach datasets are 852982, 977497, 

771765, and 17407051 respectively.  It is unclear why peach has roughly 20X as many unique 

reads as the other organisms.  The peach genome is an average size among the organisms 
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examined, so it appears that a much larger portion of the peach genome is expressed as small 

RNAs. 

Construction of the Naïve Bayes Classifier 

To differentiate mature miRNA sequences from contaminants, such as siRNAs and degraded 

larger RNAs in small RNA sequence data, we constructed a naïve Bayes classifier (NBC) using 

five parameters (Figure 4-1).  Each unique read in a small RNA sequence library and each 

known miRNA were evaluated based on length, the number of times the read is found in the 

library, the distribution of mapped reads around the genomic location of the read (using entropy), 

the number of locations the read maps to in the genome, and the presence of a detectable 

miRNA* sequence. 

The NBC was trained on each variable using known miRNAs as true positives and all reads in 

the small RNA-Seq library as true negatives.  While there are undoubtedly some true miRNAs in 

the small RNA-Seq data, they are likely significantly outnumbered by non-miRNA sequences, so 

it is appropriate to use this set as our true negatives.  Training and prediction of the NBC were 

done separately for each organism, and the distributions for these variables are shown in Figure 

4-2 for soybean, Figure 4-3 for Arabidopsis, Figure 4-4 for rice, and Figure 4-5 for peach. 

The number of times a read is observed in a library is a common criterion for miRNA annotation 

in smRNA-Seq based approaches.  Sequences observed few times are more likely to be degraded 

larger RNAs, such as rRNAs or mRNAs.  In soybean, for example, different values of read 

counts (Figure 4-2A) have differing power to discriminate miRNAs from other small RNAs.  

Sequences with a single read count are much less likely to be known miRNAs, and those 

observed twice are slightly depleted for known miRNAs.  In contrast, sequences observed six or 
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more times are far more likely to be known miRNAs than other small RNAs, and this is 

especially true for those observed more than twenty times.  Sequences with read counts between 

three and five, however, are relatively uninformative in determining if a sequence is likely a 

miRNA. 

The entropy metric measures the distribution of reads within a window.  If the reads are 

uniformly distributed across the window, then the entropy is high.  In contrast, if all the reads 

within the window map to a single base, then the entropy is zero.  The rational for using entropy 

to discriminate miRNAs from other types of small RNAs is that we expect miRNAs to originate 

from a single location within a window, and thus have low entropy.  In contrast, siRNAs usually 

occur in clusters [28], and thus have high entropy.  Therefore the entropy metric should 

discriminate miRNAs from siRNAs.  In fact, we find that entropy values in soybean (Figure 4-

2B) are the most effective variable for distinguishing true miRNAs.  An entropy of zero 

corresponds to a sequence having a roughly 2-fold increased chance to be a known miRNA, 

while the next bin, with an entropy between zero and 0.005, is ~60X more likely to be associated 

with known miRNAs versus other small RNAs.  In contrast, an entropy value between 0.005 and 

0.01 is associated with a depletion of known miRNAs, with a stronger depletion for entropy 

values greater than 0.01.  

Sequence length is a common criterion for miRNA annotation.  miRNAs tend to be 18-24 

nucleotides long, with the majority of annotated plant miRNAs having a length of 21 nucleotides 

(Figure 4-2C).  A common contaminant in miRNA analysis are siRNAs, and their most common 

length is 24 nucleotides.  As a result, many methods filter out potential miRNAs if they are 24 

nucleotides long, even though there are many examples of 24 nucleotide miRNAs.  To overcome 

this limitation, the naïve Bayes classifier calculates the relative frequency of any read length in 



74 
 

the known miRNA population, versus the whole population, to compute weights.  For example, 

the soybean sequence length distributions reflect these trends (Figure 4-2C).  The most dramatic 

effects of sequence length are a strong positive weight for being classified a miRNA for reads of 

length 21, and a strong penalty for those of length 24.  Thus while 24 nucleotide sequences are 

penalized, if other properties of the read indicate that it is likely a miRNA, the read may still be 

given a high miRNA score.  Sequences of length 18 and 23 are roughly even (receive no 

significant bonus or penalty), and sequences of length 19, 20, and 22 receive more modest 

positive weights for being classified as miRNAs. 

We chose the multiplicity of reads as another criterion.  Multiplicity involves the computation of 

the number of places a mature miRNA sequence or putative mature miRNA map to the genome.  

A significant fraction of miRNAs map to a number of locations in the genome because many 

miRNAs exist as members of families.  These miRNA families have different primary miRNA 

transcript sequences but identical mature miRNA sequences (30).  In soybean, sequences that 

map to a single location, that is those with a multiplicity of 1, receive a strong positive weight for 

being a miRNA (Figure 4-2D).  Those that map to two locations receive a strong penalty, and 

those that map to more than two locations do not receive significant bonuses or penalties.  

Finally, the presence of a detectable miRNA* sequence is a criterion used in many methods, and 

it is often required to annotate miRNAs.  Here, we search for a miRNA* sequence without 

requiring that the predicted pri-miRNA sequences form a perfect hairpin between the putative 

miRNA and miRNA*.  In contrast, the use of RNA folding software to predict stereotypical 

miRNA hairpin structures can lead other approaches to generate high false negative rates (31). In 

soybean, roughly half of the annotated miRNAs contain miRNA* sequences that meet these 
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criteria, compared to ~20% of all sequence reads (figure 4-2E). Details on the calculation of the 

variables can be found in the methods section. 

While the examples we presented are from soybean, most of the corresponding distributions 

show similar trends in Arabidopsis, rice, and peach.  In general, read counts have positive 

weights for reads observed more than 6 times and a penalty for those observed once or twice, but 

in the three other organisms the weights for those observed more than 100 times is far greater 

than in soybean (figures 4-3A, 4-4A, 4-5A).  The entropy distributions in these organisms are 

also similar, but in peach (figure 4-5B), and particularly Arabidopsis (figure 4-3B), the 

separation of miRNAs and non-miRNAs is even more dramatic than in soybean (figure 4-2B) 

and rice (figure 4-4B).  The read length distributions in all three organisms (figures 4-3C, 4-4C, 

4-5C) show an even stronger bias for 21 nucleotide miRNAs and a weaker preference for 24 

nucleotide non-miRNAs than in soybean (figure 4-2C).  Here, rice and Arabidopsis seem more 

similar to one another than to soybean and peach.  The multiplicity distribution in Arabidopsis 

(figure 4-3D) is similar to that of soybean (figure 4-2D) but is less informative in rice (figure 4-

4D) and peach (figure 4-5D), with almost no distinction between miRNA and non-miRNA for 

any multiplicity value.  This is an interesting finding because we suspected that multiplicity 

would be most informative for distinguishing true miRNAs in organisms with large, repetitive 

genomes, however Arabidopsis has the smallest genome of the four species, while soybean has 

the largest.  Unsurprisingly, there are more detectable miRNA* sequences among known 

miRNAs than small RNA-seq reads in the other three organisms (figures 4-3E, 4-4E, 4-5E).  

What is surprising is that the differentiating power is strongest in soybean, with both the highest 

fraction of known miRNAs and lowest fraction of small RNA-seq reads with a detectable 

miRNA*.  Arabidopsis showed the weakest signal with the highest fraction of small RNA-seq 
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reads with a detectable miRNA* of all four organisms.  This is unexpected, as we suspected that 

Arabidopsis would have the strongest signal since it has the most high-confidence annotated 

miRNAs, and most of the work investigating the parameters for plant miRNA* detection was 

done in Araibdopsis.  The lack of miRNA* sequences in many Arabidopsis miRNAs further 

argues against the use of stringent filters for identifying true miRNAs. 

Bioinformatic Validation of Classifier 

Each unique small RNA-seq read and known miRNA was scored by our classifier based on the 

criteria described above.  Table 4-1 shows the enrichment of previously known miRNAs among 

our top predictions.  In all four organisms, the top 100 candidates capture a significantly larger 

fraction of known miRNAs than the top 250, 500, and 1000 candidates.  Performance of the 

classifier for each organism is shown as a ROC curve in Figure 4-6.  In this figure we rank the 

small RNAs by their likelihood of being known miRNAs, based on our classifier, and then 

compute the relative fraction of known (y axis) and total (x-axis) unique reads.  We score the 

classifier performance by computing the area under the curve (AUC) for each organism.  A 

prefect classifier would predict all the knowns before capturing any of the other reads (upper left 

corner of the plot, AUC=1), while a random classifier would appear as a diagonal line from the 

lower left to the upper right (AUC=0.5).  We find that Arabidopsis shows the strongest 

performance of the four species (AUC=0.9998), coming very close to the upper left corner, 

likely due to the availability of a relatively large number of high quality known miRNAs for 

training.  Soybean had the weakest AUC value of 0.9948 with intermediate values of 0.9996 and 

0.9988 for peach and rice respectively. 

It is difficult to compare our method to other methods for identifying novel miRNAs because our 

method is a statistical approach that assigns likelihoods to individual reads, while most other 
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methods are based on filters.  In addition, many annotated miRNAs that we use were discovered 

by these or similar methods, so test sets tend to be biased for miRNAs that meet these criteria. 

Conservation of predicted miRNAs 

To further characterize high scoring miRNAs, we tested the homology of our top candidates 

among the four plants.  We performed all pairwise alignments of the annotated miRNAs and top 

100 novel miRNA candidates from each organism.  We then visualized the alignments in a 

network using Cytoscape, showing interactions of perfect homology and single base pair 

mismatches or indels (Figure 4-7, examples shown in Figure 4-8A and 4-8B).  Many top 

candidates and known miRNAs are homologous to each other.  Of the top 100 novel soybean 

candidates, 21 were homologous to novel and known miRNA sequences found in at least one of 

the four plants (Figure 4-8C).  In contrast, the bottom 100 soybean candidates, that is, those 

predicted to not be miRNAs, have no homology to any known miRNAs or top scoring 

candidates. 

Experimental Validation of Predicted Soybean miRNAs 

To validate our classifier experimentally, we selected the top 13 predicted candidate miRNAs, 

and as a control, 14 with average prediction strength.  We chose 14 average strength candidates 

that had read counts similar to those of the putative miRNAs to avoid expression biases leading 

to faulty confirmation of non-miRNAs.  Results of experimental validation are shown in Table 4-

2.  Candidates are assigned a score from zero to one, with zero being least likely to be a true 

miRNA and one being most likely.  This score corresponds to the classifier’s predicted 

probability of being a miRNA using a uniform prior (Table 4-2, column 3).  The choice of prior 

is unimportant since the scores are used to rank candidates, not to assign strict probabilities.  
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Using a different prior would preserve candidate rankings, and simply shift all scores up or 

down. 

Candidate miRNAs were validated based on a number of criteria, including predicted stem-loop 

structure based on mfold secondary structure prediction, detection of putative miRNA and star 

strand sequences by stem-loop RT-PCR, detection of star strand sequence in small RNA 

sequence libraries, prediction of target mRNAs by SeqTar, anti-correlation between the 

abundance of a miRNA and the abundance of its target mRNA, and whether there is an 

annotated ortholog to the putative miRNA in other plant species. 

None of these criteria alone is sufficient to conclusively determine if a sequence is or is not a 

miRNA. However, many of the results in our high scoring candidate miRNAs are distinct from 

those of our lower scoring miRNAs, suggesting that our method is successfully identifying true 

miRNAs.   

We first sought to confirm whether the reads were detectable by an independent method that 

only tends to amplify short reads, even though this does not tell us whether the read is a miRNA 

or not.  To accomplish this we used stem-loop RT-PCR (Table 4-2, column 7).  Stem-loop RT-

PCR allows for specific detection of short RNA sequences by using an oligo that forms a stem 

loop on one end of the amplification reaction.  We found that 8/13 of our candidate high 

probability miRNAs and 10/14 of our lower probability miRNAs were detectable by stem-loop 

RT-PCR.  This suggests, that as one might expect from the small RNA-seq data, both classes can 

be detected with nearly equal probability.  The fact that we do not detect some of the sequences 

suggests that RNA-seq may have higher resolution the stem-loop RT-PCR. 
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We next asked whether sequences in the two groups contained stem loops, as predicted by 

mfold.  We found that 7/13 of our putative miRNAs were predicted to form a stem-loop structure 

by mfold, compared to just 3/14 for the putative non-miRNAs (Table 4-2, column 6).  It is not 

surprising that many of our putative miRNAs fail or that some of the putative non-miRNAs pass 

this test given the difficulty in accurately predicting RNA secondary structure, but the 2.5-fold 

enrichment in the putative miRNAs in encouraging.   

Subsequently, we performed stem-loop RT-PCR on candidate miRNA* that had stem-loop 

structures predicted by mfold (Table 4-2, column 8). Of the candidates with predicted stem-loop 

structures, 4/7 of the high probability candidates and 2/3 of our lower probability candidates 

contained detectable miRNA*.  The lack of detection of some start strands by RT-PCR could 

result from the fact that they are typically degraded far more rapidly than the mRNA itself.  We 

also investigated whether the star strand sequence could be detected in small RNA sequencing 

libraries and found that all sequences detected by stem-loop RT-PCR were also in the sequencing 

library.  In addition, one sequence from each group that was not detected by stem-loop RT-PCR 

was detected in the sequencing library (Table 4-2, column 9).  

We next performed target prediction using the SeqTar software and a publicly available 

degradome library.  Degradome libraries are generated by deep sequencing RNA fragments from 

the 5’ end.  This marks the location of miRNA binding due to the 5’-phosphate generated by 

miRNA target cleavage.  This criterion performs the best at differentiating high scoring and low 

scoring miRNA candidates, with 7/13 of our high scoring miRNAs and 0/14 of our low scoring 

miRNAs having predicted mRNA targets (Table 4-2, column 10).  For those with predicted 

targets, we performed RLM 5’-RACE to confirm degradation of the target, and found that 5/9 of 

the predicted targets showed degradation (Table 4-2, column 11). 



80 
 

Of the candidate miRNAs with low scores, miRC14, miRC15, and miRC16 had predicted stem-

loop structures, detectable mature miRNA sequences, and detectable star strands by at least one 

method, with two of the three having star strands detected both by stem-loop RT-PCR and small 

RNA-seq.  These represent three of the five 24 nucleotide putative non-miRNAs tested, which 

received low prediction scores primarily because of their length.  We believe that these may be 

true miRNAs but were penalized strongly due to the bias against 24 nucleotide annotated 

miRNAs in the literature.  As more 24 nucleotide miRNAs are discovered, the classifier will be 

better able to find this class of miRNAs. 

Discussion 

In this work we predicted putative novel miRNAs in several plant species using a Naïve Bayes 

classifier and characterized several candidates in soybean.  Our experimental validation results 

show that our method is capable of detecting small RNAs that are likely to be true miRNAs.  The 

results also suggest that our approach detects three 24 nucleotide small RNAs, a class that would 

be omitted by nearly all other methods for detecting miRNAs. 

Traditional approaches to miRNA discovery are biased toward miRNAs with stereotypical 21 

nucleotide length and predicted stem-loop structures.  Computational approaches are explicit in 

disregarding potential miRNAs that lack these features, but many experimentalists use a similar 

process when deciding which potential miRNAs to confirm experimentally.  Our approach 

instead uses a number of criteria that show distinctive distributions between known miRNAs and 

all other reads.  These properties include the length of the read, the presence of a miRNA* 

sequence nearby, the distribution of additional reads around the putative miRNA, and the 

number of observations of each read and its mapping multiplicity.  Using the known miRNAs 

from miRBase we have been able to train a naïve Bayes classifier to distinguish true miRNAs 
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from other types of reads that may represent degraded mRNAs or siRNAs, among other types.  

As a result, our approach is susceptible to the biases that have been used to identify known 

miRNAs in mirBase, but as each feature is used to assign weights, our approach does not 

eliminate any small RNAs from a small RNA sequence library that does not have the 

stereotypical length or stem loop structure, but rather assigns reads that deviate from this lower 

scores.  This weighting allows these potential miRNAs to be retained for further analysis, such as 

mRNA target prediction.  Thus, a miRNA that would be eliminated by most computational 

methods can be selected for validation based on a combination of prediction score and other 

metrics.  For example, an experimentalist can choose to only validate putative miRNAs that 

target genes in a particular biological pathway.  Very conservative approaches are unlikely to 

find any putative miRNAs that target mRNAs in such an instance, but our method will retain all 

small RNA sequences, so one can decide based on the candidate’s score whether it is worth 

investigating further.  Thus our classifier can be used as a hypothesis-generating method that 

allows users to determine whether or not to pursue potential candidates based on the candidate’s 

score and the individual questions that the user wants to address.  For example, a user might 

choose to only study candidates that are not found in other plant species or those not predicted to 

form stem-loop structures in order to better determine how these sequences hybridize with their 

miRNA*’s. 

The criteria for annotation of plant miRNAs are not well defined, but predicted stem-loop 

structure and presence in a small RNA-Seq dataset have in the past been sufficient to annotate a 

read as a miRNA.  Among our candidates, we find that those with predicted stem-loop structures 

are not more likely to have predicted targets (using SeqTar), but they are more likely to have 

detectable star strands by both stem-loop RT-PCR and small RNA sequencing.  While this 
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indicates that predicted stem-loop structure is a powerful criterion for detecting miRNAs, there 

are several exceptions to this trend.  For example, we find two candidates that have predicted 

stem-loop structures but cannot be found by stem-loop RT-PCR and lack detectable star strands.  

In our validation dataset, we find only a single sequence, miRC11, which passes all of our 

experimental tests.  Of the sequences with lower prediction values, we find only three (miRC14, 

miRC15, and miRC16) that pass more than a single test and each of these has a predicted stem-

loop structure, is found by stem-loop RT-PCR, and has a detectable star strand by at least one 

method.  It is interesting to note that all three of the lower scoring candidates that pass multiple 

validation tests are 24 nucleotides.  This suggests that 24 nucleotide miRNAs may be penalized 

too strongly by our method, suggesting that annotated miRNAs are not a representative sampling 

of the true miRNA population of this sequence length.  We believe that this finding indicates that 

more effort should be placed into the discovery of 24 nucleotide miRNAs. 

The homology among plant miRNAs and highly predicted candidates further indicates that there 

is strong enrichment for true miRNAs among our high probability candidates.  It is worth noting, 

however, that while many miRNAs exist as members of large families conserved across species, 

most are found only in a single organism.  This could be either because of a relatively high 

number of species-specific miRNAs or that many conserved miRNAs have not yet been 

annotated across plants.  Similarly, most top soybean candidates had no homologous sequences 

in the plant species studied; however, most sequences with homology to at least one plant species 

had homology to all of them.  It is also interesting that peach miRNAs seem to be members of 

very large families, which is true for both known miRNAs and the top predicted candidates.  

This is particularly surprising as peach has a relatively small genome compared to rice and 
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soybean, which lead us to speculate that it would have fewer identical mature miRNA sequences 

encoded in its genome. 

In conclusion, we describe a method for ranking putative plant miRNAs from small RNA 

sequence datasets and provide experimental tests for validation of high and medium ranked 

soybean candidates.  This study reveals some of the shortcomings of using stringent filter-based 

approaches to eliminate potentially interesting candidates and provides some examples of likely 

miRNAs that would typically be ignored by filter-based approaches.  We also show potential 

pitfalls of using predicted stem-loop structures as the sole criteria for miRNA annotation, as 

candidates with stem-loop structures sometimes fail all or most other validation tests. 

Methods 

Datasets 

Arabidopsis, rice, and peach small RNA sequencing datasets were downloaded from the Gene 

Expression Omnibus (GEO).  The Arabidopsis sequence dataset was a combination of two 

experiments, one of whole flower tissue sequenced by 454 (GSM118372), and one from 

immature floral tissue sequenced by Illumina (GSM284747).  The rice dataset is small RNA-seq 

from untreated Nipponbare leaves (GSE38480), and the peach data are time course small RNA-

seq of flower buds after chilling to induce dormancy (GSE38535). 

The soybean small RNA sequencing dataset was generated from early maturation stage soybean 

seeds (cv. Williams 82). Seeds were fixed, embedded in paraffin, sectioned, and placed on 

polyethylene napthalate (PEN)-membrane slides (Leica Microsystems). Several sections of 

whole seeds were scraped from slides, and RNA was isolated using the RNAqueous®-Micro 

Total RNA Isolation Kit (Ambion). A small RNA library was constructed according to the 
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procedures of the TruSeq Small RNA Preparation Kit (Illumina). RNA sequencing was 

performed with Illumina sequencing technology. 

Known miRNA datasets for all four organisms were downloaded from miRBase 

(http://www.mirbase.org/).  All known miRNAs from soybean, rice, and peach were used.  Due 

to the greater available number of Arabidopsis miRNAs, these miRNAs were filtered to only 

keep miRNAs with two independent lines of experimental evidence (cloned, Northern blot, 454, 

Solexa, etc). 

Arabidopsis thaliana complete genome sequence was downloaded from The Arabidopsis 

Information Resource (http://www.arabidopsis.org/).  Glycine max complete genome sequence 

was downloaded from SoyBase (http://soybase.org/).  Oryza sativa and Prunus persica complete 

genome sequences were both downloaded from the Plant Genome Database 

(http://www.plantgdb.org/).  

Read Mapping 

Small RNA sequence reads and known miRNAs were aligned to their respective genomes using 

the Bowtie software package (32).  All known miRNAs and small sequence reads in 

Arabidopsis, rice, and peach were allowed a maximum of two mismatches to their respective 

genomes.  Only the alignments with the fewest mismatches for each sequence were kept, 

allowing ties.  We required zero mismatches in soybean sequence alignments to facilitate easier 

validation. 

Entropy Calculation 

Shannon entropy was computed for each mapped position of each sequence read in all datasets 

using the following formula: 
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Here, k is the number of positions in the genome interrogated in each test.  In all of our datasets, 

k=101, and encompasses the position the read aligns to, 50 nucleotides upstream, and 50 

nucleotides downstream.  pi is the fraction of observed counts at position i over the total counts 

in the 101 base pair region.  We assigned a single read in a region an undetermined entropy value 

because entropy measures the spread of aligned reads across a genomic region, and a single read 

in a window cannot have variable entropy.  Therefore, we excluded entropy values from the 

posterior probability calculation of these candidates. 

miRNA* Detection 

Presence or absence of miRNA* was determined based on parameters from the literature (20) 

using in-house scripts.  Briefly, a sequence at least 10 nucleotides and no more than 100 

nucleotides away from the candidate miRNA must be able to base pair with at most 4 

mismatches and at most 1 bulge of length at most 2, with no penalty for G-U base pairs.  Ability 

to base pair was computed using MATLAB’s (Mathworks®) “nwalign” function. 

Naïve Bayes Classifier 

The Naïve Bayes Classifier is a probabilistic model that classifies based on Bayes Theorem, 

assuming independence between all variables.  The Naïve Bayes probability is computed using 

the formula: 
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Here, p(C|F1,…,Fn) is the probability that a given miRNA candidate belongs to class C (either 

“miRNA” or “not miRNA”) given its values for each classification variable.  p(C) is the prior 

probability of a candidate belonging to a given class in the absence of any evidence.  We used a 

uniform prior (p(miRNA)=p(not miRNA)=0.5) because we used the classifier to rank candidates, 

not to compute absolute probabilities. 

The classifier was trained independently for each organism using previously described miRNAs 

downloaded from miRBase as true positives and small RNA-Seq reads as true negatives.  

Variables were computed for each putative and known miRNA and distributions for true positive 

and negatives were generated.  Counts and entropy values were discretized into bins as shown in 

Figures 4-2, 4-3, 4-4, and 4-5 to more accurately reflect underlying distributions. 

Homology 

Homology between sequence datasets was computed by aligning the top candidate miRNAs and 

known miRNAs from each organism against one another using MATLAB’s (Mathworks®) 

“nwalign” function.  Sequences were counted as being perfectly homologous if they were 

identical and imperfectly homologous if they had a single mismatch or single indel of length one.  

Networks of homology were visualized using Cytoscape (33). 

miRNA and Star Strand RNA Detection 

miRNAs and their star strands were detected by stem-loop reverse transcriptase- polymerase 

chain reaction (RT-PCR) (34). Total RNA was isolated from soybean seeds using Plant RNA 

Purification Reagent (Invitrogen). Stem-loop RT primers were designed with six-nucleotide 

extensions at their 3’-ends that were specific to the six nucleotides at the 3’-end of the miRNA or 

star strand. Reverse transcription was performed for 30 minutes at 16◦C followed by 60 cycles of 
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30◦C for 30 seconds, 42◦C for 30 seconds, and 50◦C for 1 seconds, and the reaction was 

inactivated at 85◦C for 5 minutes. PCR was then performed using miRNA or star strand-specific 

primers, excluding the last six nucleotides at the 3’-end of the miRNA or star strand, and 

universal reverse primers. Reactions were analyzed by gel electrophoresis on 3% agarose. 

Stem-loop structure prediction 

The stem-loop structure of each primary miRNA was predicted using the mfold web server 

(http://mfold.rna.albany.edu/?q=mfold) using default parameters.  A candidate was determined to 

contain a stem-loop structure if any of the structures predicted by mfold contained a stem-loop 

that contained base pairing between the putative mature miRNA and its star strand. 

mRNA target prediction 

Potential mRNA targets of candidate miRNAs were predicted using the SeqTar program (35) 

and a public degradome library (GEO accession number GSM848963) for cotyledons of soybean 

seed at the early maturation stage. Target mRNA detected in the degradome analysis were tested 

experimentally by RNA ligase-modified 5’ RNA amplification of cDNA ends (RLM 5’-RACE) 

(36). Total RNA was ligated to a 5’-RACE adaptor, and a poly (dT) oligonucleotide was used for 

cDNA synthesis. The first round of PCR was carried out using a primer corresponding to the 5’-

RACE adaptor and a gene-specific primer. Nested PCR was performed using 1/25 of the first 

PCR reaction, a nested 5’-RACE primer, and a nested gene-specific primer. The PCR product 

was gel-eluted and sequenced. 
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Figures 

 

Figure 4-1.  Workflow of the Naïve Bayes Classifier.  The Naïve Bayes Classifier draws its information for each putative mature 

miRNA sequence from five criteria: length, read counts in sequencing library, entropy, the number of locations the sequence 

maps to in its respective genome (multiplicity), and presence of a detectable miRNA* sequence.  A small RNA sequence library, 

but not a genome sequence, is needed In order to determine a putative miRNA’s length and read counts, a genome sequence, but 

no small RNA sequence data, is needed to determine multiplicity and miRNA* presence, while both a small RNA sequence 

library and genome sequence are required to compute entropy. 
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Figure 4-2.  Distributions of NBC variables in soybean.  All small RNA-Seq reads (blue) are taken to be true negatives, known 

miRNAs (green) as true positives.  (A) Sequence counts for both groups, (B) Entropy, (C) miRNA length, (D) multiplicity, and 

(E) presence of miRNA*. 
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Figure 4-3.  Distributions of NBC variables in Arabidopsis.  All small RNA-Seq reads (blue) are taken to be true negatives, 

known miRNAs (green) as true positives.  (A) Sequence counts for both groups, (B) Entropy, (C) miRNA length, (D) 

multiplicity, and (E) presence of miRNA*. 
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Figure 4-4.  Distributions of NBC variables in rice.  All small RNA-Seq reads (blue) are taken to be true negatives, known 

miRNAs (green) as true positives.  (A) Sequence counts for both groups, (B) Entropy, (C) miRNA length, (D) multiplicity, and 

(E) presence of miRNA*. 
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Figure 4-5.  Distributions of NBC variables in peach.  All small RNA-Seq reads (blue) are taken to be 

true negatives, known miRNAs (green) as true positives.  (A) Sequence counts for both groups, (B) 

Entropy, (C) miRNA length, (D) multiplicity, and (E) presence of miRNA*. 
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Figure 4-6.  ROC curves of NBC.  (A) Sensitivity vs specificity in four tested organisms.  Sensitivity refers to the fraction of true 

positives (previously described known miRNAs) that are called as miRNAs by our classifier.  Specificity refers to the fraction of 

true negatives (approximated by all small RNA-Seq reads) that are called as “not miRNAs” by our classifier.  (B) Curves from 

Part A zoom in to show detail. 
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Figure 4-7.  Network of homologous known and putative novel miRNAs in plants.  Black lines indicate identical known or 

candidate miRNAs, grey lines indicate homology with at most 1 mismatch or indel. 
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Figure 4-8.  Homology of known and predicted miRNAs.  (A & B) Example sub-networks of homologous known and putative 

novel miRNAs.  (C) Distribution of homology of top 100 novel soybean candidates.  21 of 100 showed homology to at least one 

tested organism, the remainder are not shown. 

Tables 

miRNA miRNA 

candidate 

sequence 

miRNA 

score 

Length miRNA 

Reads  

(CPM) 

Stem-loop 

Prediction 

miRNA 

detection 

(Stem-

loop RT-

PCR) 

Star 

strand 

detection 

(Stem-

loop RT-

PCR) 

Star 

strand in 

libraries 

Potential 

target 

(Reads in 

degradome 

library) 

Target 

detection 

(RLM 5'-

RACE) 

miRC1 GGAATG

GGCTGA

TTGGGA

AG 

1 20 1989 ＋ ＋ ＋ ＋ － ND
a
 

miRC2 GATGGG

GAAGGG

GGGCAC

ATG 

1 21 297 ＋ － － － － ND 

miRC3 GGCATTC

AGAATG

AGTAGG

A 

1 20 738 － － --- --- Glyma10g3

9150 

(9333) 

－ 
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miRC4 GGTGGC

TGTAGTT

TAGTGGT 

1 20 580 － ＋ --- --- Glyma04g0

8700 (17) 
－ 

Glyma08g4

1630 (44) 
＋ 

miRC5 GGGGGT

GTAGCTC

ATATGGT

A 

1 21 99 － ＋ --- --- Glyma20g2

9820 (8) 
－ 

Glyma10g3

7980 (8) 

miRC6 GGGAAT

GAAGCC

TGGTCCG

AA 

1 21 2340 － － --- --- － ND 

miRC7 GGCATTC

AGAATG

AGTAGG

AG 

1 21 524 － － --- --- － ND 

miRC8 GGGGAT

GTAGCTC

AAATGG

T 

1 21 725 － ＋ --- --- － ND 

miRC9 CCCGCCT

TGCATCA

ACTGAA

T 

1 21 135 ＋ ＋ ＋ ＋ Glyma01g2

4670 (47) 
＋ 

miRC10 GAGGAA

TGAAGC

CTGGTCC

GA 

1 21 1861 ＋ － － － Glyma18g0

1860 (41) 
＋ 

miRC11 TGGGAA

TGGGCT

GATTGG

GA 

1 20 488 ＋ ＋ ＋ ＋ Glyma08g2

3050 (49) 
＋ 

miRC12 TTTCGGT

GTCGGT

GAATTG

CC 

1 21 28 ＋ ＋ － ＋ Glyma20g3

5990 (47) 
－ 

Glyma12g1

4000 (21) 
＋ 

miRC13 CCTAGCT

CCTGAA

CCATCAC

TTT 

0.9 23 50 ＋ ＋ ＋ ＋ － ND 

                      

miRC14 AGATGG

TTGAGG

AGCGTG

AGAAGG 

0.5 24 1123 ＋ ＋ － ＋ － ND 

miRC15 TGGTTGA

GGAGCG

TGAGAA

GGATT 

0.5 24 241 ＋ ＋ ＋ ＋ － ND 
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miRC16 CGAAGA

TGAGGT

CGACCA

TGTGAC 

0.3 24 117 ＋ ＋ ＋ ＋ － ND 

miRC17 TGCTGTT

GGCCTC

AATGAT

CAGT 

0.7 23 52 － ＋ --- --- － ND 

miRC18 ATGAAT

GAACAT

GTTTCTG

AGCTCT 

0.7 25 2521 － ＋ --- --- － ND 

miRC19 CCTAGCT

CCTGAA

CCATCAC

TTTTT 

0.7 25 463 － ＋ --- --- － ND 

miRC20 TATTCTG

GTGTCCT

AGGCGT

AGAGG 

0.7 25 233 － － --- --- － ND 

miRC21 GCGAAT

TTGTTGT

TGGGCT

ACAATT 

0.7 25 135 － ＋ --- --- － ND 

miRC22 TTTGTAT

TAGCTCT

ATCTGAT

CATT 

0.7 25 107 － ＋ --- --- － ND 

miRC23 AAGGAG

GGACTA

GTGCTAT

GGCT 

0.6 23 30 － － --- --- － ND 

miRC24 TATCAA

GCTCCTG

AACCAT

CATTTT 

0.6 25 161 － ＋ --- --- － ND 

miRC25 TGGTCGC

ACGGTT

GTCTGAC

AGACC 

0.6 25 106 － ＋ --- --- － ND 

miRC26 TAGTACT

AGGATG

GGTGAT

CTCCT 

0.4 24 237 － － --- --- － ND 

miRC27 AATATA

ACGCGT

CGCCACT

GGTGA 

0.4 24 105 － － --- --- － ND 

Table 4-1.  Summary of validation results.  Potential target was predicted from a public degradome library 

(GSM848963) using SeqTar. Anti-correlation (Pearson's) between miRNA and its target was carried out 
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using the CPM of miRNA and target in different compartments of soybean seed at early maturation stage 

and a home made script. 
a
Not determined. 

 
Table 4-2.  Known miRNAs found in top predictions of the NBC.  The top candidates from each organism show strong 

enrichment for known miRNAs.  This enrichment is stronger as the number of top candidates decreases. 
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Chapter 5: Concluding Remarks 

This dissertation explored gene expression and some of the many mechanisms of gene 

regulation.  It showed the power of next-generation sequencing for determining differential gene 

expression between cell types and conditions, for uncovering very low frequency alternative 

splice products, and for discovering novel microRNAs.  Together, these results show the 

complexity of gene expression and regulation, and how modern technologies can help elucidate 

fundamental processes required for eukaryotic life. 

The first part of this dissertation focused on gene expression in the mating loci of Volvox carteri.  

It described the evolutionary event that differentiated it from the closely related unicellular green 

alga Chlamydomonas reinhardtii with two mating types to the multicelluar alga with sexually 

dimorphic gametes.  It also showed several sex-regulated and gender-specific transcripts, 

although like the human X chromosome, most were neither sex related nor gender-specific.  We 

also demonstrate that while most of the alga’s genome diverges based on geographic distance 

between individuals over gender, within the mating loci, male algae are genetically more similar 

to male algae and female algae more similar to female algae.  We also show gender-specific 

splicing of MAT3, an important gene conserved tumor suppressor homolog. 

Since the completion of this project, MAT3 has been shown to have quickly diverged from 

closely related colonial volvocine algae as well as the unicellular Chlamydomonas reinhardtii.  

The work indicates that the gender-specific divergence of MAT3 occurred after the ancestors of 

Volvox split off from the other volvocine algae. 

The second part of this dissertation showed alternative splicing in the yeast Saccharomyces 

cerevisiae.  It was previously thought that Saccharomyces did not alternatively splice its intron-
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containing genes, but we showed that rare events occur in which the splicing machinery picks a 

sequence similar to the canonical splice site and creates a different splice product.  Many of these 

products contain premature termination codons, and are degraded by the nonsense-mediated 

decay pathway, but our findings give insight into how alternative splicing may have evolved.  

We also found that stress conditions such as high temperature or nutrient starvation can induce 

higher rates of these alternative splice products and disabling the decay machinery can lead to a 

higher proportion of these events compared to the canonical splicing event.  Together, our results 

show that alternative splicing is frequency in Saccharomyces cerevisise, but many of these 

transcripts are rapidly degraded and that alternative splicing is used for control transcript levels, 

not increasing the number of peptides produced by a single gene. 

Since this project was completed, there has been increased interest in alternative splicing in 

Saccharomyces cerevisiae.  Presently, there is a study looking at if defects in histone modifying 

enzymes cause an increase in alternative splicing.  Saccharomyces cerevisiae is also a model 

organism for studying basic splicing mechanisms since the rate of alternative splicing is so low, 

it allows splicing to be studied in a relatively simple splicing landscape.  If research into 

Saccharomyces alternative splicing continues, it would allow Saccharomyces to be used for basic 

alternative splicing research as well. 

The third part of this dissertation focused on identifying novel miRNAs in plants.  We showed 

the shortcomings of existing techniques for combining computational and experimental 

approaches for discovering new miRNAs, and applied our method to four plants.  We showed 

experimental validation of soybean candidates.  We found that our Bayesian approach 

successfully discriminated true miRNAs from contaminants, and we found several putative novel 

miRNAs, including three 24 nucleotide candidates, which is a class that is almost universally 
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eliminated by other methods.  We also show how high quality annotated miRNAs increase the 

performance of the classifier, showing the importance of not mis-annotating miRNAs in the 

literature. 

Together, these projects show the power and diverse applications of next-generation sequencing 

technology when applied to transcriptomics.  We showed transcriptional regulation from 

organisms ranging from algae to fungi and plants.  We showed how gene expression can change 

in the relatively small mating loci of Volvox, how alternative splicing may have evolved using 

Saccharomyces cerevisiae as a model, and how additional miRNAs can be discovered in plants.  

It is exciting to see how the field of transcriptional regulation will continue to evolve in the 

future. 




