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Retardation e�e
ts in the Holstein-Hubbard 
hain at half-�llingKa-Ming Tam,1 S.-W. Tsai,2 D. K. Campbell,1 and A. H. Castro Neto11Department of Physi
s, Boston University, 590 Commonwealth Ave., Boston, MA 022152Department of Physi
s, University of California, Riverside, CA 92508(Dated: 6th February 2008)The ground state phase diagram of the half-�lled one-dimensional Holstein-Hubbard model 
on-tains a 
harge-density-wave (CDW) phase, driven by the ele
tron-phonon (e-ph) 
oupling, and aspin-density-wave (SDW) phase, driven by the on-site ele
tron-ele
tron (e-e) repulsion. Re
ently,the existen
e of a third phase, whi
h is metalli
 and lies in a �nite region of parameter spa
ebetween these two gapped phases, has been 
laimed. We study this 
laim using a renormalization-group method for intera
ting ele
trons that has been extended to in
lude also e-ph 
ouplings. Ourmethod [1℄ treats e-e and e-ph intera
tions on an equal footing and takes retardation e�e
ts fullyinto a

ount. We �nd a dire
t transition between the spin- and 
harge-density wave states. Westudy the e�e
ts of retardation, whi
h are parti
ularly important near the transition, and �nd thatUmklapp pro
esses at �nite frequen
ies drive the CDW instability 
lose to the transition. We alsoperform determinantal quantum Monte Carlo 
al
ulations of 
orrelation fun
tions to 
on�rm ourresults for the phase diagram.PACS numbers: 71.10.Fd, 71.30.+h, 71.45.LrThe interplay between ele
tron-ele
tron (e-e) andele
tron-phonon (e-ph) intera
tions leads to importante�e
ts in low-dimensional materials su
h as mole
ular
rystals, 
harge transfer solids [2℄, 
ondu
ting polymers[3℄, and fullerenes [4℄. In narrow band ele
troni
 materi-als, perhaps the simplest model 
apturing this interplayis the Holstein-Hubbard model (HHM), where the e-e in-tera
tions are des
ribed by a on-site repulsive Coulombterm, and the ele
trons are 
oupled to dispersionless op-ti
al phonons in lo
alized vibrational modes [5℄.In the one-dimensional HHM (1DHHM) at half-�lling,early quantum Monte Carlo (QMC) 
al
ulations [6℄ sug-gested that there are only two phases: the Peierls 
harge-density-wave (CDW) and the Mott spin-density-wave(SDW) state. The boundary between these two phaseswas predi
ted to lie along the line in parameter spa
ewhere an �e�e
tive� e-e intera
tion vanishes: Ueff =
U − 2g2

ep/ω0 ≃ 0, where U is the Hubbard on-site e-e re-pulsion, gep is the ele
tron-phonon 
oupling, and ω0 is thephonon frequen
y. More re
ently, several authors haveproposed that a third phase might exist near Ueff ≃ 0: ametalli
, Luttinger liquid, phase [7, 8, 9℄, or an o�-sitepairing super
ondu
ting phase [10℄. Large s
ale QMCstudies [11℄ have indi
ated that there is a metalli
 regionwith dominant super
ondu
ting (SC) pairing 
orrelationsbetween the CDW and SDW regions. DMRG studies [12℄suggest that SC does not exist but instead that both thespin and 
harge gaps vanish only for Ueff ≃ 0, suggest-ing that a metalli
 phase (with no dominant SC 
orrela-tions) may exist only exa
tly on the boundary betweenthe CDW and SDW phases. This is also the 
on
lusion oftwo-step renormalization-group studies [14℄ and Lan
zosdiagonalization [13℄. To attempt to determine whi
h ofthese s
enarios is 
orre
t, we study the problem here us-ing a re
ently developed extended renormalization group

approa
h [1℄.At half-�lling, Umklapp s
attering 
reates a strongtenden
y to open a 
harge gap. From the perspe
tive ofweak-
oupling approa
hes, it is highly non-trivial to havea �nite metalli
, or SC, region. If su
h a phase is to ex-ist, it must be that the dynami
al nature of the phononse�e
tively suppresses Umklapp s
attering. Therefore, re-tardation e�e
ts must be taken into a

ount in order toinvestigate this issue. For this purpose, we use a multi-s
ale fun
tional renormalization-group (MFRG) method[1℄. Our MFRG is an extension of the RG for intera
t-ing fermions [15℄ that are also 
oupled to bosoni
 modesand applies to both weak (λ ≪ 1) and strong (λ ≫ 1)ele
tron-phonon 
oupling limit (λ = 2N(0)g2
ep/ω0, N(0)is the ele
tron density of states at the Fermi level). Fora spheri
al Fermi surfa
e, the MFRG reprodu
es Eliash-berg's theory at the SC instability [1℄, and it has alsobeen applied in the study of e�e
ts of phonons in laddersystems [16℄.The 1DHHM is given by the Hamiltonian

H = −t
∑
i,σ

(c†i+1,σci,σ + H.c.) + U
∑

i

ni,↑ni,↓

+gep

∑
i,σ

(a†
i + ai)ni,σ + ω0

∑
i

a†
iai, (1)where c†i,σ (ci,σ) is an ele
tron 
reation (annihilation) op-erators at site i with spin σ, niσ is the ele
tron numberoperator, a†

i (ai) is a 
reation (annihilation) operator foran opti
al phonon at site i, t is the nearest-neighbor ele
-tron hopping integral. We use units su
h that t = 1 = ~.Using a path integral formulation and integrating outthe phonon �elds exa
tly, we �nd that the e�e
tive (re-tarded) e-e intera
tion be
omes [1℄:
g(k1, k2, k3, k4) = U −

2g2
epω0

[ω2
0 + (ω1 − ω4)2]

, (2)
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2where k = (k, ω). We use a notation in whi
h, after s
at-tering, an in
oming ele
tron with momentum and fre-quen
y k1 (k2) goes out with k4 (k3), so that k1 + k2 =
k3 + k4. In the anti-adiabati
 limit, where ω0 → ∞, allthe ele
troni
 frequen
y dependen
es are suppressed, andthe HHM maps onto the standard Hubbard model witha renormalized Ueff . At half-�lling, its ground state is
harge-gapped SDW for repulsive intera
tions and spin-gapped degenerate CDW/SC for attra
tive intera
tions.The transition between SDW and degenerate CDW/SCo

urs when the bare 
oupling 
hanges sign, that is when
Ueff = 0.In the MFRG approa
h at the one-loop level, the RG�ow equations for the 
oupling fun
tions, g(k1, k2, k3, k4)with initial 
onditions given by (2), are given by [1℄:

dg(k1, k2, k3)

dΛ
=

−

∫
dp

d

dΛ
[GΛ(p)GΛ(k)]g(k1, k2, k)g(p, k, k3)

−

∫
dp

d

dΛ
[GΛ(p)GΛ(q

1
)]g(p, k2, q1

)g(k1, q1
, k3)

−

∫
dp

d

dΛ
[GΛ(p)GΛ(q

2
)][−2g(k1, p, q

2
)g(q

2
, k2, k3)

+ g(p, k1, q2
)g(q

2
, k2, k3)+g(k1, p, q

2
)g(k2, q2

, k3)],(3)where k = k1 + k2 − p, q
1

= p + k3 − k1, q
2

= p +

k3 − k2, ∫
dp =

∫
dp

∑
ω 1/(2πβ), and GΛ is the self-energy 
orre
ted propagator at energy 
ut-o� Λ. Sin
ethe intera
tion verti
es are frequen
y dependent, thereare also self-energy 
orre
tions. At the one-loop level,the self-energy MFRG equation is:

dΣ(k)

dΛ
= −

∫
dp

d

dΛ
[GΛ(p)][2g(p, k, k) − g(k, p, k)].(4)We have solved the 
oupled integral-di�erential equa-tions, (3) and (4), numeri
ally with two Fermi points(Nk = 2) and by dividing the frequen
y axis into �fteensegments (Nω = 15). Fig. 1 shows the dis
retizations
heme for Nk = 2 and Nω = 15.We next 
al
ulate within our MFRG approa
h the RG�ow of sus
eptibilities in the stati
 (zero frequen
y) andlong-wavelength limit. In parti
ular, the SC sus
eptibil-ity is given by: χSC

Λ (0, 0)=
∫

D(1, 2)〈cp1,↓c−p1,↑c
†
−p2,↑c

†
p2,↓〉;and the SDW and CDW sus
eptibilities 
an be writ-ten as: χδ

Λ(π, 0) =
∫

D(1, 2)〈c†p1,σ1
cp1+π,σ1

c†p2+π,σ2
cp2,σ2

〉,where pi is the momentum at energy ξi, ∫
D(1, 2) ≡∫

|ξ1|>Λ
dξ1J(ξ1)

∫
|ξ2|>Λ

dξ2J(ξ2)
∑

σ1,σ2
sσ1

sσ2
, and J(ξ)is the Ja
obian for the 
oordinate transformation from kto ξk. For δ = SDW: s↑ = 1, s↓ = −1, and for δ = CDW:

s↑ = 1, s↓ = 1. The dominant instability is determinedby the most divergent sus
eptibility as the 
ut-o� Λ islowered. The RG �ow for the SC sus
eptibility is givenby:
dχSC

Λ (0,0)

dΛ
=

∫
dp

d

dΛ
[GΛ(p)GΛ(−p)](ZSC

Λ (p))2, (5)

Figure 1: Dis
retization of the momenta in the Brillouin zoneand frequen
ies in the frequen
ies axis. This �gure shows the
ase Nk = 2, Nw = 15.
dZSC

Λ (p)

dΛ
=−

∫
dp′

d

dΛ
[GΛ(p′)GΛ(−p′)]ZSC

Λ (p′)gSC(p′, p),(6)where gSC(p′, p) = g(p′,−p′,−p), and MFRG �ows forthe SDW and CDW sus
eptibilities are,
dχδ

Λ(π, 0)

dΛ
= −

∫
dp

d

dΛ
[GΛ(p)GΛ(p+Q)](Zδ

Λ(p))2, (7)
dZδ

Λ(p)

dΛ
=

∫
dp′

d

dΛ
[GΛ(p′)GΛ(p′+Q)]Zδ

Λ(p
′)gδ(p′, p), (8)where Q = (π, 0). For δ = SDW: gδ(p′, p) = −g(p +

Q, p′, p), and for δ = CDW : gδ(p′, p) = 2g(p′, p+Q, p)−

g(p + Q, p′, p). The fun
tion Zδ(p) is the e�e
tive vertexin the de�nition of the sus
eptibility χδ. Its initial RGvalue is 1. The MFRG equations for sus
eptibilities aresolved with initial 
ondition χδ
Λ=Λ0

= 0.In g-ology [17, 18, 19℄ there are only four 
ouplings,
orresponding to forward (g2, g4), ba
kward (g1), andUmklapp (g3), s
attering. The 
harge and the spinparts are governed by g3 and g1, respe
tively. Underthe MFRG, ea
h one of these 
ouplings 
arries frequen
ydependen
e, gi(ω1, ω2, ω3). In the weak e-ph 
ouplinglimit (λ ≪ 1), the two-step RG is a good approximation,and the 
ouplings are separated into two types: highfrequen
y transfer, |ω1 − ω4| > ω0, and low frequen
ytransfer, |ω1 − ω4| < ω0. However, our MFRG analysisreveals that the 
ouplings develop additional non-trivialfrequen
y dependen
e, parti
ularly when the e-ph 
ou-pling is 
omparable to the e-e 
oupling and Ueff ≈ 0.As we shall see, understanding this frequen
y stru
tureis 
riti
al to resolving the 
urrent 
ontroversy about thebehavior in the region near the CDW-SDW transition.Deep inside the CDW and SDW regions, we �x ω0 =
1.0 and U = 0.5, and show results of the RG �ows for thesus
eptibilities and 
ouplings for di�erent values of gep.For small e-ph 
oupling (gep = 0.2, and Ueff > 0), theSDW sus
eptibility exhibits a strong divergen
e, while
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Figure 2: Left: �ows of SC, SDW, and CDW sus
eptibilitiesfor U = 0.5 and ω0 = 1.0. Right: �ows of Umklapp g3 andba
k-s
attering g1, at zero frequen
ies. Top: gep = 0.2 (Ueff >

0). Bottom: gep = 0.8 (Ueff < 0).both CDW and SC sus
eptibilities are suppressed (Fig.2,top). This is expe
ted, sin
e the on-site repulsion dom-inates over the retarded attra
tive intera
tion mediatedby the phonons. A 
harge gap develops, with no spingap, whi
h 
an be inferred from the �ow of the 
ouplings:Umklapp (g3) diverges, whereas ba
k-s
attering (g1) doesnot. For large e-ph 
oupling (gep = 0.8, and Ueff < 0),the CDW sus
eptibility diverges (Fig. 2, bottom). Nowthere are both spin and 
harge gaps, and, 
orrespond-ingly, both Umklapp (g3) and ba
k-s
attering (g1) aredivergent.

Figure 3: Left: �ow of sus
eptibilities for U = 0.5, ω0 = 1.0,
gep = 0.55 (Ueff < 0). Right: �ows of the Umklapp s
attering
g3 and ba
k-s
attering g1 at zero frequen
y.We next 
onsider the region 
lose to the CDW-SDWtransition where Ueff ≃ 0. For Ueff slightly below zero(gep = 0.48), the behavior of sus
eptibilities and 
ou-

plings is qualitatively the same as in the rest of theSDW phase (Fig. 2, top). The only di�eren
e is thatthe gap de
reases and eventually goes to zero at thetransition. Fig. 3 shows the �ows for gep = 0.55 (Ueffslightly above zero). The SC sus
eptibility be
omes en-han
ed, but the CDW sus
eptibility still dominates. In-terestingly, g1(0, 0, 0) diverges but g3(0, 0, 0) does not. In1D problems without retardation, the usual interpreta-tion is that the CDW instability o

urs when g1 → −∞and g3 → −∞ [17, 19, 20℄. In the present 
ase, sin
e
g3(0, 0, 0) → 0, we need to look at the frequen
y depen-den
e of the 
ouplings in order to understand what isdriving the CDW instability.In the MFRG approa
h, we obtain the RG �ow of allthe gi(ω1, ω2, ω3) 
ouplings and self-energies, and there-fore 
an analyze how this frequen
y dependen
e evolveswith the RG �ow. Consider �rst the 
ases deep in theSDW and CDW phases. Fig. 4 shows 
ontour plots of
g3(ω1, ω2, ω2, ω1) whi
h 
orresponds to an Umklapp pro-
ess with zero-frequen
y transfer, |ω1 −ω4| = 0. We plotthe value of the 
oupling at an RG s
ale ℓ right beforethe 
riti
al s
ale ℓc when the instability o

urs. For theSDW phase (Fig. 4, left), the existen
e of a 
harge gap issignaled by divergen
e in the Umklapp 
hannel, and themost divergent g3 
ouplings are the ones 
lose to zerofrequen
y. Deep inside the CDW phase, g3(0, 0, 0, 0) alsodiverges, as we have seen before from Fig. 2. However,the most divergent 
ouplings are for large values of ω1and ω2 (see Fig. 4).
Figure 4: Plots of the Umklapp s
attering g3(ω1, ω2, ω2, ω1)for U = 0.5, and ω0 = 1.0. Left: gep = 0.2. Right: gep = 0.8.The situation for gep = 0.55, shown in Fig. 5, is moreintriguing. Umklapp s
attering is renormalized to largevalues in most part of the frequen
y spa
e. However, forfrequen
ies near zero Umklapp s
attering �ows to verysmall values. From the RG �ow of the sus
eptibilities(Figs. 2 and 3), it is 
lear that there is CDW instabilityfor Ueff > 0 and a dire
t transition from CDW to SDW.From the frequen
y dependen
e of g3 we 
on
lude that
lose to the transition to the SDW, the CDW instabilityis being driven by Umklapp pro
esses at high frequen
ies.These are pro
esses at small frequen
y transfer, |ω1 −
ω4| ∼ 0 < ω0 but that nevertheless involve ele
trons withhigh frequen
ies (ω1 and ω2). In a two-step RG analysis,the 
ouplings g3(ω1, ω2, ω2, ω1), with di�erent ω1 and ω2
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Figure 5: Plot of the Umklapp s
attering g3(ω1, ω2, ω2, ω1)for U = 0.5, ω0 = 1.0, and g3 = 0.55. Note that g3(0, 0, 0) is�owing towards zero.are all indistinguishable sin
e |ω1 − ω4| = 0 for all ofthem. Clearly, the two-step RG fails in this region.As an independent (partial) 
on�rmation of our MFRGresults, we have also performed determinantal QMC [22℄
al
ulations for the Holstein model (U = 0). For the
harge exponent, KCDW = limq→0 πSρ(q)/q, we obtainthat KCDW > 1 when gep is smaller than some valuethat depends on ω0. This result agrees with that ob-tained in [11℄, using sto
hasti
 series expansion QMC[23℄. For a Luttinger liquid, the s
alings of ground state
orrelation fun
tions are determined solely by the 
harge(Kρ) and spin (Kσ) exponents. For example, in the spin-gapped regime, where Kσ = 0, CDW and SC 
orrela-tion fun
tions s
ale as OCDW(x) ∝ x−αKρ ≡ x−KCDW ,and OSC(x) ∝ x−β/Kρ ≡ x−KSC , with α = β = 1[17, 18, 19℄. The dominant 
orrelation is of CDW (SC)type for Kρ < 1 (Kρ > 1). This relation is not guaran-teed to hold in the presen
e of phonons and retardatione�e
ts [21℄.

Figure 6: SC and CDW 
orrelations for 38-sites Holsteinmodel (ω0 = 1.0, gep = 0.5), with KCDW = 1.032 ± 0.005.Using the determinantal QMC allows us to 
al
ulatethe pairing and 
harge 
orrelations dire
tly (Fig. 6).We �nd that the 
harge 
orrelation fun
tion de
ays more

slowly. This provides, at least for the 
ase U = 0, 
on�r-mation of our MFRG results and strongly suggests thatthere is no region of dominant SC 
orrelations in the half-�lled 1DHHM, even though the s
aling exponent of the
harge 
orrelation fun
tion 
an be larger than 1.In 
on
lusion, we have studied the ground state of1DHHM at half-�lling using the MFRG method. Thiste
hnique enables us to treat retardation e�e
ts from thephonons in a systemati
 way. We �nd SDW and CDWphases, and a dire
t transition between them. Analysisof the frequen
y dependen
e of the g3 shows a shift inspe
tral weight indi
ating that the CDW instability nearthe transition is driven by dynami
al Umklapp pro
esses.Our determinantal QMC results for the 
harge exponentand 
orrelation fun
tions for the Holstein model 
on�rmour MFRG predi
tions and suggest that having a 
hargeexponent larger than one for �nite size system does notmean dominant SC 
orrelations be
ause of breakdown ofTLL relations due to retardation.We thank Torsten Clay for instru
tive dis
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