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Retardation effects in the Holstein-Hubbard chain at half-filling

Ka-Ming Tam,' S.-W. Tsai,>2 D. K. Campbell,! and A. H. Castro Neto!

! Department of Physics, Boston University, 590 Commonwealth Ave., Boston, MA 02215
? Department of Physics, University of California, Riverside, CA 92508
(Dated: 6th February 2008)

The ground state phase diagram of the half-filled one-dimensional Holstein-Hubbard model con-
tains a charge-density-wave (CDW) phase, driven by the electron-phonon (e-ph) coupling, and a
spin-density-wave (SDW) phase, driven by the on-site electron-electron (e-e) repulsion. Recently,
the existence of a third phase, which is metallic and lies in a finite region of parameter space
between these two gapped phases, has been claimed. We study this claim using a renormalization-
group method for interacting electrons that has been extended to include also e-ph couplings. Our
method ﬂ] treats e-e and e-ph interactions on an equal footing and takes retardation effects fully
into account. We find a direct transition between the spin- and charge-density wave states. We
study the effects of retardation, which are particularly important near the transition, and find that
Umklapp processes at finite frequencies drive the CDW instability close to the transition. We also
perform determinantal quantum Monte Carlo calculations of correlation functions to confirm our

results for the phase diagram.

PACS numbers: 71.10.Fd, 71.30.+h, 71.45.Lr

The interplay between electron-electron (e-e) and
electron-phonon (e-ph) interactions leads to important
effects in low-dimensional materials such as molecular
crystals, charge transfer solids E], conducting polymers
4], and fullerenes [4]. In narrow band electronic materi-
als, perhaps the simplest model capturing this interplay
is the Holstein-Hubbard model (HHM), where the e-e in-
teractions are described by a on-site repulsive Coulomb
term, and the electrons are coupled to dispersionless op-
tical phonons in localized vibrational modes [].

In the one-dimensional HHM (1DHHM) at half-filling,
early quantum Monte Carlo (QMC) calculations E] sug-
gested that there are only two phases: the Peierls charge-
density-wave (CDW) and the Mott spin-density-wave
(SDW) state. The boundary between these two phases
was predicted to lie along the line in parameter space
where an “effective” e-e interaction vanishes: U.g =
U —2g2,/wo ~ 0, where U is the Hubbard on-site e-e re-
pulsion, gep, is the electron-phonon coupling, and wy is the
phonon frequency. More recently, several authors have
proposed that a third phase might exist near Ueg ~ 0: a
metallic, Luttinger liquid, phase [, |, E], or an off-site
pairing superconducting phase [L0]. Large scale QMC
studies [[11] have indicated that there is a metallic region
with dominant superconducting (SC) pairing correlations
between the CDW and SDW regions. DMRG studies m]
suggest that SC does not exist but instead that both the
spin and charge gaps vanish only for Ueg ~ 0, suggest-
ing that a metallic phase (with no dominant SC correla-
tions) may exist only exactly on the boundary between
the CDW and SDW phases. This is also the conclusion of
two-step renormalization-group studies M] and Lanczos
diagonalization m] To attempt to determine which of
these scenarios is correct, we study the problem here us-
ing a recently developed extended renormalization group

approach ﬂ]
At half-filling, Umklapp scattering creates a strong

tendency to open a charge gap. From the perspective of
weak-coupling approaches, it is highly non-trivial to have
a finite metallic, or SC, region. If such a phase is to ex-
ist, it must be that the dynamical nature of the phonons
effectively suppresses Umklapp scattering. Therefore, re-
tardation effects must be taken into account in order to
investigate this issue. For this purpose, we use a multi-
scale functional renormalization-group (MFRG) method
ﬂ] Our MFRG is an extension of the RG for interact-
ing fermions [[15] that are also coupled to bosonic modes
and applies to both weak (A <« 1) and strong (A > 1)
electron-phonon coupling limit (A = 2N (0)g2,/wo, N(0)
is the electron density of states at the Fermi level). For
a spherical Fermi surface, the MFRG reproduces Eliash-
berg’s theory at the SC instability ﬂ], and it has also
been applied in the study of effects of phonons in ladder
systems m]
The 1DHHM is given by the Hamiltonian

H = —t Z(CL_LUCZ',U + H.C.) + UZni)Tniﬁl
i,0 A
+9ep Z(al +ai)nie +wo Z ala;, (1)
i,0 A

where cl-:g (¢i,o) is an electron creation (annihilation) op-
erators at site ¢ with spin o, n;, is the electron number
operator, a;‘ (a;) is a creation (annihilation) operator for
an optical phonon at site ¢, ¢ is the nearest-neighbor elec-
tron hopping integral. We use units such that { =1 = A.

Using a path integral formulation and integrating out
the phonon fields exactly, we find that the effective (re-
tarded) e-e interaction becomes [1l]:
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where k = (k,w). We use a notation in which, after scat-
tering, an incoming electron with momentum and fre-
quency k, (ko) goes out with k, (k3), so that ky + ky =
ks + k4. In the anti-adiabatic limit, where wy — o0, all
the electronic frequency dependences are suppressed, and
the HHM maps onto the standard Hubbard model with
a renormalized Usg. At half-filling, its ground state is
charge-gapped SDW for repulsive interactions and spin-
gapped degenerate CDW /SC for attractive interactions.
The transition between SDW and degenerate CDW /SC
occurs when the bare coupling changes sign, that is when
Uegr = 0.

In the MFRG approach at the one-loop level, the RG
flow equations for the coupling functions, g(kq, ks, ks, ky)
with initial conditions given by @), are given by [1]:

dQ(EbEwEs) _
dA

~ [ a7 (Gap)Ga gy by, Bl b )
/dpdcjx[GA( )Ga(g

dA[GA( P)GA(g,)][29(ky,p, 4,)9(a, ks ks)

+ 9(p, k1, 4,)9(4y, ko, ks) +9(Ey, p, 4,)9(Ka, 4, k3)1(3)

where k = k) +ky —p, ¢ = p+ks—k, ¢ =p+
ks —ky, [dp = [dp>_1/(273), and G, is the self-
energy corrected propagator at energy cut-off A. Since
the interaction vertices are frequency dependent, there
are also self-energy corrections. At the one-loop level,
the self-energy MFRG equation is:

o) / Ay (G20 (p. . 1)

We have solved the coupled integral-differential equa-
tions, @) and @), numerically with two Fermi points
(N = 2) and by dividing the frequency axis into fifteen
segments (N, = 15). Fig. [ shows the discretization
scheme for N, =2 and N, = 15.

We next calculate within our MFRG approach the RG
flow of susceptibilities in the static (zero frequency) and
long-wavelength limit In particular the SC susceptibil-

ity is given by: x3°(0,0)=[ D(1, Cphlc—pl,TCin,TCLg,DB
and the SDW and CDW susceptlbilities can be writ-

ten as: X4 (m,0) = D(1,2)(ch, 5, Corimor Choim o Conon)s
where p; is the momentum at energy &, [D(1,2) =
«ﬁ£1|>A dglJ(gl) f‘gsz d§2’](£2) 201102 So1802), and J(f)
is the Jacobian for the coordinate transformation from &
to &. For 6 = SDW: sy =1,s; = —1, and for § = CDW:
st = 1,5; = 1. The dominant instability is determined
by the most divergent susceptibility as the cut-off A is
lowered. The RG flow for the SC susceptibility is given
by:

dx310,0) _
dA dA

)] (Qakmﬂl)g(klaﬂl,ﬁ)

—9(k,p.k)].(4)
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Figure 1: Discretization of the momenta in the Brillouin zone
and frequencies in the frequencies axis. This figure shows the
case N =2, Ny, = 15.
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where ¢5©(p’,p) = g(p,—p’,—p), and MFRG flows for
the SDW and ‘CDW susceptibilities are,
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where Q = (m,0). For § = SDW: ¢°(p/,p) = —g(p +

Q,p',p), and for 6 = CDW : 96(71/773) =2g9(p',p+Q,p) —
9(p+ Q,p',p). The function Z°(p) is the effective vertex

in the definition of the susceptibility x°. Its initial RG
value is 1. The MFRG equations for susceptibilities are
solved with initial condition x4 _ Ay = 0.

In g-ology |11, 18, [19] there are only four couplings,
corresponding to forward (gs,g4), backward (g1), and
Umklapp (gs), scattering. The charge and the spin
parts are governed by gs and g;, respectively. Under
the MFRG, each one of these couplings carries frequency
dependence, g;(w1,w2,ws). In the weak e-ph coupling
limit (A < 1), the two-step RG is a good approximation,
and the couplings are separated into two types: high
frequency transfer, |w; — w4| > wp, and low frequency
transfer, |w; — w4| < wy. However, our MFRG analysis
reveals that the couplings develop additional non-trivial
frequency dependence, particularly when the e-ph cou-
pling is comparable to the e-e coupling and Ueg ~ 0.
As we shall see, understanding this frequency structure
is critical to resolving the current controversy about the
behavior in the region near the CDW-SDW transition.

Deep inside the CDW and SDW regions, we fix wg =
1.0 and U = 0.5, and show results of the RG flows for the
susceptibilities and couplings for different values of gep.
For small e-ph coupling (gep = 0.2, and Ueg > 0), the
SDW susceptibility exhibits a strong divergence, while
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Figure 2: Left: flows of SC, SDW, and CDW susceptibilities
for U = 0.5 and wo = 1.0. Right: flows of Umklapp g3 and
back-scattering g1, at zero frequencies. Top: gep = 0.2 (Uesr >
0). Bottom: gep = 0.8 (Uegt < 0).

both CDW and SC susceptibilities are suppressed (Figl,
top). This is expected, since the on-site repulsion dom-
inates over the retarded attractive interaction mediated
by the phonons. A charge gap develops, with no spin
gap, which can be inferred from the flow of the couplings:
Umklapp (gs3) diverges, whereas back-scattering (g1) does
not. For large e-ph coupling (gep = 0.8, and Ueg < 0),
the CDW susceptibility diverges (Fig. B, bottom). Now
there are both spin and charge gaps, and, correspond-
ingly, both Umklapp (g3) and back-scattering (g1) are
divergent.
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Figure 3: Left: flow of susceptibilities for U = 0.5, wo = 1.0,
gep = 0.55 (Uegt < 0). Right: flows of the Umklapp scattering
gs and back-scattering g1 at zero frequency.

We next consider the region close to the CDW-SDW
transition where Ueg ~ 0. For Ueg slightly below zero
(gep = 0.48), the behavior of susceptibilities and cou-

plings is qualitatively the same as in the rest of the
SDW phase (Fig. B top). The only difference is that
the gap decreases and eventually goes to zero at the
transition. Fig. Bl shows the flows for ge, = 0.55 (Uesr
slightly above zero). The SC susceptibility becomes en-
hanced, but the CDW susceptibility still dominates. In-
terestingly, g1(0, 0, 0) diverges but g3(0,0,0) does not. In
1D problems without retardation, the usual interpreta-
tion is that the CDW instability occurs when gy — —o0
and g3 — —oo m, E, @] In the present case, since
93(0,0,0) — 0, we need to look at the frequency depen-
dence of the couplings in order to understand what is
driving the CDW instability.

In the MFRG approach, we obtain the RG flow of all
the g;(w1,ws,ws) couplings and self-energies, and there-
fore can analyze how this frequency dependence evolves
with the RG flow. Consider first the cases deep in the
SDW and CDW phases. Fig. B shows contour plots of
93(w1, w2, ws, w1) which corresponds to an Umklapp pro-
cess with zero-frequency transfer, |w; — w4| = 0. We plot
the value of the coupling at an RG scale ¢ right before
the critical scale /. when the instability occurs. For the
SDW phase (Fig. H left), the existence of a charge gap is
signaled by divergence in the Umklapp channel, and the
most divergent g3 couplings are the ones close to zero
frequency. Deep inside the CDW phase, g3(0, 0,0, 0) also
diverges, as we have seen before from Fig. Bl However,
the most divergent couplings are for large values of w
and wy (see Fig. H).

Figure 4: Plots of the Umklapp scattering g3 (w1, w2, w2, w1)
for U = 0.5, and wo = 1.0. Left: gop = 0.2. Right: gep = 0.8.

The situation for ge, = 0.55, shown in Fig. B, is more
intriguing. Umklapp scattering is renormalized to large
values in most part of the frequency space. However, for
frequencies near zero Umklapp scattering flows to very
small values. From the RG flow of the susceptibilities
(Figs. Bland B, it is clear that there is CDW instability
for Ueg > 0 and a direct transition from CDW to SDW.
From the frequency dependence of g3 we conclude that
close to the transition to the SDW, the CDW instability
is being driven by Umklapp processes at high frequencies.
These are processes at small frequency transfer, |wq —
wy4| ~ 0 < wp but that nevertheless involve electrons with
high frequencies (w1 and ws). In a two-step RG analysis,
the couplings gs(w1,ws,ws, w1 ), with different wy and wo
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Figure 5: Plot of the Umklapp scattering g3(wi,wsz, w2, w1)
for U = 0.5, wo = 1.0, and g3 = 0.55. Note that ¢3(0,0,0) is
flowing towards zero.

are all indistinguishable since |w; — wy| = 0 for all of
them. Clearly, the two-step RG fails in this region.

As an independent (partial) confirmation of our MFRG
results, we have also performed determinantal QMC m]
calculations for the Holstein model (U = 0). For the
charge exponent, Kcpw = limg_0 75”(¢)/q, we obtain
that Kcpw > 1 when gep is smaller than some value
that depends on wg. This result agrees with that ob-
tained in M], using stochastic series expansion QMC
m] For a Luttinger liquid, the scalings of ground state
correlation functions are determined solely by the charge
(K,) and spin (K, ) exponents. For example, in the spin-
gapped regime, where K, = 0, CDW and SC correla-
tion functions scale as O°PW(z) o z7K» = p~Kopw,
and OSC(z) o z /% = g Kso with a = 3 = 1
[17, i, [19). The dominant correlation is of CDW (SC)
type for K, < 1 (K, > 1). This relation is not guaran-
teed to hold in the presence of phonons and retardation
effects M]

—e— SC correlation
—o— CDW correlation

0.1 1

|correlations|

0.01 4

0.001 T T T T |
1 3 7 11 15 19
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Figure 6: SC and CDW correlations for 38-sites Holstein
model (wg = 1.0, gep = 0.5), with Kcpw = 1.032 £ 0.005.

Using the determinantal QMC allows us to calculate
the pairing and charge correlations directly (Fig. [6).
We find that the charge correlation function decays more

slowly. This provides, at least for the case U = 0, confir-
mation of our MFRG results and strongly suggests that
there is no region of dominant SC correlations in the half-
filled 1IDHHM, even though the scaling exponent of the
charge correlation function can be larger than 1.

In conclusion, we have studied the ground state of
1DHHM at half-filling using the MFRG method. This
technique enables us to treat retardation effects from the
phonons in a systematic way. We find SDW and CDW
phases, and a direct transition between them. Analysis
of the frequency dependence of the g3 shows a shift in
spectral weight indicating that the CDW instability near
the transition is driven by dynamical Umklapp processes.
Our determinantal QMC results for the charge exponent
and correlation functions for the Holstein model confirm
our MFRG predictions and suggest that having a charge
exponent larger than one for finite size system does not
mean dominant SC correlations because of breakdown of
TLL relations due to retardation.

We thank Torsten Clay for instructive discussions.
A.H.C.N. was supported through NSF DMR-0343790.

[1] S.-W. Tsai, A. H. Castro Neto, R. Shankar, D. K. Camp-
bell, Phys. Rev. B 72, 054531 (2005), Phil. Mag. 86, 2631
(2006).

[2] T. Ishiguro and K. Yamaji, Organic Superconductors
(Springer-Verlag, Berlin, 1990).

[3] Conjugated Conducting Polymers, edited by H. G. Weiss
(Springer-Verlag, Berlin, 1992).

[4] O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).

[5] T. Holstein, Ann. Phys. 8, 325 (1959).

[6] J. E. Hirsch and E. Fradkin, Phys. Rev. B 27, 4302
(1983); J. E. Hirsch, Phys. Rev. B 31, 6022 (1985).

[7] C. Wu, et al., Phys. Rev. B 52, R15683 (1995).

[8] E. Jeckelmann, C. Zhang, and S. White, Phys. Rev. B
60, 7950 (1999).

[9] Y. Takada and A. Chatterjee, Phys. Rev. B 67, 081102
(2003).

[10] Y. Takada, J. Phys. Soc. Jpn. 65, 1544 (1996).

[11] R. T. Clay, R. P. Hardikar, Phys. Rev. Lett. 95, 096401
(2005).

[12] M. Tezuka, R. Arita, H. Aoki, Physica B 359, 708 (2005),
Phys. Rev. Lett. 95, 226401 (2005).

[13] H. Feshke, et al., Phys Rev. B 69, 165115 (2004).

[14] I. P. Bindloss, Phys. Rev. B 71, 205113 (2005).

[15] R. Shankar, Rev. Mod. Phys. 66, 129 (1994).

[16] K.-M. Tam, et al., cond-mat/0603055.

[17] V. J. Emery, in Highly Conducting One-Dimensional
Solids, p. 327, edited by J. T. Devreese, et al. (Plenum,
New York, 1979).

[18] J. Solyom, Adv. Phys. 28, 201 (1979).

[19] J. Voit, Rep. Prog. Phys. 58, 977 (1995).

[20] M. Nakamura, Phys. Rev. B 61, 16377 (2000).

[21] D. Loss and T. Martin, Phys. Rev. B 50, 12160 (1994).

[22] R. Blankenbecler, et al., Phys. Rev. D 24, 2278 (1981).

[23] O. F. Syljuasen and A. W. Sandvik, Phys. Rev. E 66,
046701 (2002).


http://arXiv.org/abs/cond-mat/0603055



