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ABSTRACT OF THE DISSERTATION

Laser-Foil Interactions with Space-Time Coupled Beams

By

Eric Carl Nelson

Doctor of Philosophy in Physics

University of California, Irvine, 2024

Professor Christopher P. J. Barty, Chair

This thesis presents a computational study on the propagation effects of space-time coupled

laser beams, their interaction with thin hydrogen foils, and the resulting effect on accelerated

protons. Laser-plasma simulations are typically done using particle-in-cell codes where an-

alytic descriptions of Gaussian beam propagation, that make assumptions on the frequency

dependent nature of ultrashort pulses, are used. A code was developed using Fourier propa-

gation techniques that accurately describes the diffractive effects of arbitrary focused fields

which was implemented into a particle-in-cell code. The accurate model shows varying laser-

matter interaction dynamics compared to the approximated fields. The Fourier propagation

code also enables the study of focused spatially chirped beams generated from the output of

a single-pass, two-grating compressor. These fields have a space-time coupling that exhibit

a pulse front tilt and pulse front curvature depending on the gratings used to generate them.

When focused onto a hydrogen target, enhanced collimation and increased proton energies

beyond that of a Gaussian beam are possible. Axisymmetric extensions of these space-time

fields enable the generation of highly collimated proton jets. The results of this thesis pro-

vide insight into the effects accurate laser modeling and space-time couplings have on laser

accelerated ions.
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Chapter 1

Introduction

1.1 Laser Based Ion Acceleration

The advent of Chirped Pulse Amplification [2] (CPA) has pushed ultrashort lasers into a

regime where peak intensities of > 1018 W/cm2 are readily achieved. With this advancement,

many application spaces have become available. The application that will be the focus of

this thesis is laser based ion acceleration, where an intense, petawatt (PW) laser pulse in

the near-infrared range (800 nm -1000 nm) that is on the order of 1018 W/cm2 or greater,

interacts with a foil and ionizes and subsequently accelerates electrons and ions [3]. The ions

that get accelerated currently have energies 10s of MeV to 100s of MeV depending on the

type of acceleration mechanism they undergo. There are two primary applications of high

energy protons that are of interest: proton therapy and fast ignition.
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1.1.1 Proton Therapy

When protons propagate through media, they deposit dose at a very particular depth that

depends on their energy. A dose-depth curve relates the energy to the depth and dose

deposited. The dose-depth curve for three electron energies (5 MeV, 15 MeV, and 150

MeV), one photon energy (2.5 MeV), one proton energy (150 MeV), and one carbon ion

energy (250 MeV) are visualized in Fig. 1.1. The proton and carbon ion beam have a

Figure 1.1: The dose-depth curve for a Gaussian distribution of an electron, photon, and ion
beam in a water phantom, courtesy of [4].

different profile than both the electrons and photons. They penetrate a significant distance

before depositing dose at a particular position (known as the Bragg peak). The electrons and

photon deposit a significant amount of dose throughout their path. This gives the protons

and ions an advantage in therapeutic settings. Dose can be isolated to a particular location

while minimizing dose deposited on the way. Very few proton facilities exist, and so if laser

technology advances enough to bring costs down, and protons or ions can be accelerated to

high enough energies, it could be a viable path towards treatment.
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1.1.2 Fast Ignition

The thought of using fusion based energy to power an electrical grid has been driving re-

search in the field for decades. Vast literature has been published on steps towards better

understanding and controlling fusion reactions. The first achievement of reaching a gain

greater than unity was accomplished by the National Ignition Facility in 2022 [5]. Laser

based fusion, or Inertial Confinement Fusion (ICF), is one route towards sustainable fusion

energy sources. There are two main ways lasers are used to initiate a fusion reaction: indirect

or direct drive (Fig. 1.2). Indirect drive involves a cryogenic deuterium-tritium (DT) fuel

Figure 1.2: The a) indirect and b) direct drive scheme of ICF, courtesy of [6].

pellet suspended in a gold cylinder, known as a hohlraum. Lasers are then focused on the

inside of the hohlraum, where x-rays are generated on the surface which are used to evenly

compress the fuel. The other method, direct drive, simply focuses the lasers directly on the

DT pellet to compress it. This technique for compression is referred to as the central hot

spot method. The process is similar to a diesel engine, where pure compression ignites and

starts the fusion burn reaction. An alternative method is to separate the compression from

the heating. This technique is referred to as fast ignition [7]. The proposed method is to

use lasers to compress the fuel (either in an indirect or direct fashion), and use a secondary

source of energetic protons or ions [8, 9, 10, 11, 12, 13] to act as a spark and ignite the fuel

once sufficient compression has been achieved. This is similar to a gasoline engine, which
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partially compresses the fuel and then a spark plug ignites it. Fast ignition requires the fuel

Figure 1.3: The a) central hotspot and b) fast ignition method, adapted from [6].

to be less symmetrically compressed, greatly reducing the effects that Rayleigh-Taylor-like

instabilities have on the interaction. The fast ignition scheme also has a higher gain for a

given laser energy. These advantages make fast ignition an attractive path towards fusion

energy.

1.2 Motivation

Work has been done considering different foil shapes, materials, and patterns [14, 15, 16, 17,

18, 19, 20, 21] to enhance characteristics of an accelerated ion distribution such as collimation

and peak ion energy. In this thesis, the ability to enhance ion acceleration through shaping

the spatial and temporal distribution of a laser pulse, as opposed to shaping the foil, is

explored. To do this, an accurate description of the propagation of arbitrary laser fields is

needed. The spatial profile influences the laser-matter interaction and approximations must

be avoided to ensure the fields used are correct. All the beam shapes considered are also

achievable on current petawatt laser systems. Many techniques used for shaping the laser foil

are only achievable in particle-in-cell simulations, and the practicality of the foil design, laser

energy, and pulse duration parameters are out-of-reach and not yet experimentally viable.
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1.3 Thesis Organization

This thesis describes simulation results modeling the propagation of different focused space-

time structures and their effect on laser-foil interactions. It will be shown that the space-time

couplings studied have impact on the energies and collimation of accelerated protons, and

these values can be tuned through changing the spatial distribution of the laser pulse. Chap-

ter 2 begins with a background on fundamental concepts relevant to the presented results.

Chapter 3 describes code that was developed to model beam propagation and validates it

against expected values from theory. This code is used for the results presented in the re-

maining chapters. Chapter 4 reveals the propagation effects of one particular space-time

coupling generated from the focused output of a single-pass grating pair, where Chapter 5

presents the focusing properties of an axisymmetric extension of this type of beam. The

characteristics of protons accelerated from a high-intensity laser pulse with the space-time

couplings explored in the previous chapters are presented in Chapter 6. The thesis con-

cludes with an outlook on high-intensity laser-foil interactions using lasers with space-time

couplings.
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Chapter 2

Background

2.1 Ultrafast Optics

2.1.1 Oscillators and Mode-locking

Mode-locked laser oscillators offer a robust method for generating ultrashort pulse trains,

where the pulse duration may range from a few femtoseconds (fs) to picoseconds (ps) in

duration. One of the most commonly used gain materials for mode-locked oscillators is

Titanium Sapphire (Ti:Sapphire), which is able to achieve sub-5 fs pulse durations. Petawatt

class Ti:Sapphire lasers operate around 30 J and 30 fs. Through careful design of a laser

cavity, different longitudinal frequency modes lock in phase with each other (hence the term

mode-locking). When multiple different frequencies align with each other, strong constructive

interference occurs at one position with destructive interference elsewhere, generating a short

pulse in the time domain. Keeping a fixed phase relationship between modes can be achieved

with active or passive mode-locking methods. Active mode-locking requires the use of a

device that modulates resonator losses to force the modes together. Passive mode-locking
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modulates the loss through some inherent property of the system and doesn’t require any

active electronics. This can be achieved through a saturable absorber or through Kerr-lens

mode-locking.

The Kerr effect is a nonlinear mechanism that uses the intensity-dependent index of refraction

to create an effective saturable absorber. The refractive index is defined as:

n(I) = n0 + n2I, (2.1)

where n0 is the linear refractive index, n2 is the nonlinear refractive index, and I is the

intensity of light. For Ti:Sapphire, n0 = 1.76 and n2 = 3 × 10−16 cm2/W . For a Gaussian

pulse in space, which is a solution to the wave equation and a common stable profile in a

laser cavity, the index of refraction is larger on-axis where the intensity is highest, and lower

on the outside edge of the beam. This gradient in index creates a phase distribution of the

form:

ϕ = kn(I)z, (2.2)

where k is the wavenumber of light, n(I) is the refractive index defined in Eq. 2.1, and z is

the length of the crystal. This phase distribution across the Gaussian beam profile is similar

to a lens and focuses the laser. This can act as loss element in the cavity that modulates

the amplitude and can force pulsed operation. Since the mode-locked operation requires all

the frequencies to be in phase with each other, care must be taken to compensate for the

dispersion the pulse experiences propagating through the cavity.
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Figure 2.1: A schematic of a Ti:Sapphire laser in a z-cavity configuration. Without prisms,
the cavity operates only in a continuous wave (CW) mode. With prisms inserted, the cavity
can be CW or mode-locked. OC is the output coupler, CM refers to a curved mirror, P1
and P2 are prisms, HR is a high reflectivity mirror, HR-fs is a high reflectivity fs optimized
mirror, and TS1 is the Ti:Sapphire crystal.

2.1.2 Dispersion

Dispersion is the phase delay experienced by different frequencies of light through taking

different optical path lengths (OPL). Different frequencies can experience different OPLs

based on a material property (index of refraction also depends on wavelength) or through

propagating different geometric path lengths.
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The wavelength dependent index of refraction is defined as:

n(λ) =

√
1 +

∑
i

Biλ2

λ2 − Ci

, (2.3)

and is known as the Sellmeier equation which relates the refractive index of a material, n(λ),

to the wavelength of light. The coefficients Bi and Ci are material dependent and are found

experimentally. For example, the Sellmeier coefficients for fused silica, a common optical

glass, are shown in Table. 2.1.

Coefficient Value
B1 0.6961663
B2 0.4079426
B3 0.8974794
C1 0.0046791
C2 0.0135121
C3 97.9340025

Table 2.1: The Sellmeier coefficients for fused silica

The group delay dispersion (GDD) for a pulse traveling through a material of length L is

defined as [22]:

d2ϕ

dω2
=

4π2cL

ω3

d2n(λ)

dλ2
. (2.4)

where ω is the frequency of light, c is the speed of light, and n(λ) is the refractive index

defined in Eq. 2.3. The sign of the GDD is positive for common materials and near infrared

wavelengths, which indicates that the red wavelengths travel faster in the material and lead

in time.

A prism utilizes the wavelength dependence of the index of refraction in conjunction with

Snell’s Law to generate angular dispersion. Angular dispersion originates from different

wavelengths of light traveling at different angles with respect to each other, forcing a different
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traveled path length. The GDD for a prism pair is defined as:

d2ϕ

dω2
=

4π2cL

ω3

d2P (λ)

dλ2
, (2.5)

where P (λ) is the optical path length each frequency travels inside each prism and in the

space between prisms (a more thorough visualization and definition can be found in Ref.

[23]).

The overall sign of the GDD for prism pair arranged at the angle of minimum deviation for

common materials is negative. This indicates that a prism pair may be used to compensate

for the positive dispersion of a material. Using a prism pair for dispersion compensation is

common in short pulse oscillators, and is depicted in Fig. 2.1 within the mode-locked cavity

path. A prism pair is used to compensate for the material dispersion of the crystal and

mirrors.

Angular dispersion can also originate from the frequency-dependent diffraction from a grating

(as opposed to the frequency-dependent refraction from a prism). The dispersion from a

grating pair is discussed in detail in the following section.

2.1.3 Pulse Stretchers and Compressors

A pulse stretcher is a device that applies a temporal chirp on a short pulse that stretches

the pulse in time and lowers the intensity. This is achieved by having different spectral

components delayed relative to each other. Any sort of dispersive or diffractive component

can cause a relative delay across a short pulse’s frequency content. Most commonly, a

prism pair or grating pair is used. There are many different types of stretchers, but one of

the most commonly used is the Martinez stretcher [24], shown in Fig. 2.2. This stretcher

works through having anti-parallel gratings placed a distance L apart, with a 2F telescope
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Figure 2.2: A schematic of a Martinez stretcher which introduces positive temporal chirp
and GDD.

in between. By varying the distance between the second lens and second grating, the blue

portion of the spectrum is forced to take a longer path than the red portion, causing the red

portion to lead in time. The first grating imparts angular dispersion which gets magnified

by the first lens and focused, causing the angular dispersion to get inverted and collimated

by the second grating. The path length between the two imaging lenses does not vary, and

so the length of the two focal lengths is subtracted from the total path length giving an

effective path length:

Leff = L− 2(f1 + f2) (2.6)

with f1 and f2 being the focal length of the two lenses. The GDD of this is given by [22]:

d2ϕ

dω2
= −λ3LeffM

2d2

πc2
[
1− (λd− sin θi)

2]3/2 , (2.7)

where λ is the wavelength, M is the magnification of the telescope, d is the groove density

of the gratings, θi is the angle on incidence on the gratings, and c is the speed of light. The

Martinez stretcher applies a positive temporal chirp, where the higher frequencies take a

longer path than the lower frequencies, so that the low frequencies lead in time.
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Figure 2.3: A 4-grating Treacy compressor. In this configuration, the red components of the
spectrum take a longer path than the blue, resulting in a negative temporal chirp and GDD.

A compressor works by applying the opposite sign of temporal chirp on a pulse. Typically,

this means a compressor applies a negative chirp to counter the positive chirp from the

stretcher. The most widely used compressor is the Treacy compressor [25], consisting of

either a double-passed grating pair, or a single pass, four grating arrangement (shown in

Fig. 2.3). The GDD introduced by this configuration is [22]:

d2ϕ

dω2
= −λ3Lgd

2

πc2
[
1− (λd− sin θi)

2]3/2 (2.8)

where Lg is the distance between gratings, normal to the grating surface. This equation has

the same form as the Martinez stretcher but with opposite sign and Lg = M2Leff , which

means there is a configuration that will perfectly compensate the stretch introduced by a

Martinez stretcher. In practice, PW lasers have an amplification setup after the stretcher

which introduces other sources of dispersion from optics and bulk materials. Generally, GDD

can be compensated, but there are residual higher order terms that remain after amplification
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that necessarily increase the pulse duration and shape after compression.

2.1.4 Simultaneous Spatial and Temporal Focusing

Figure 2.4: A two grating compressor oriented to create simultaneous spatial and temporal
focusing of a pulse.

If the first two gratings from compressor from the CPA scheme are arranged in a single-pass

two-grating arrangement, and the separation is doubled from the four-grating compressor,

the resulting pulse after the the second grating will have no temporal dispersion, but will

remain spatially chirped. The amount of spatial chirp is quantified by:

βBAR =
Dchirp

Din

(2.9)

the ratio of the effective beam diameter of the chirped dimension to the diameter of the

input beam to the compressor. If this field is focused, the individual frequency components

gradually overlap and spatially focus. At the focal plane, the pulse reaches both its transform

13



limited pulse duration and the diffraction limited spot size. This technique is known as

Simultaneous Spatial and Temporal Focusing (SSTF). The focused spatial chirp results in a

pulse front tilt (PFT) at the focus.

Figure 2.5: A representative schematic of the transverse components of a spatially chirped
beam a) before focusing and b) at the focal plane. The color represents the frequency content,
where the beam is spatially chirped in the y-dimension. Grey represents full overlap of all
frequency content.

2.2 Fourier Propagation

Fourier optics is a technique for propagating fields of light, involving spatial Fourier trans-

forms that treat light as a superposition of plane waves. The field of Fourier optics lends

itself to computational techniques from being able to numerically solve analytic forms using

Fast Fourier Transforms (FFT). The theory is derived for monochromatic light [26, 27], but

in the case of short pulse lasers, each wavelength in the spectrum can be calculated and

propagated separately and combined. It is useful to define the Fourier transform as

g(x, y) =

∫∫ ∞

−∞
G(fx, fy) exp [j2π(fxx+ fyy)]dfxdfy, (2.10)
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which can be written as

F−1 [g(x, y)] = G(fx, fy), (2.11)

where G(fx, fy) is the Fourier transform result and fx and fy are the spatial frequencies

corresponding to the x and y coordinates.

2.2.1 Rayleigh-Sommerfeld Propagation

The Rayleigh-Sommerfeld diffraction integral gives the most general solution to calculate the

propagation of a field from one plane to another. The propagation scheme modeled is shown

in Fig. 2.6, where the field U1 is propagated a distance z away and evolves into field U2. U1

is defined with coordinate variables x1 and y1 at a particular z-position, z1. Additionally,

it is a function of frequency as well and will be written as U1(x1, y1, z1, ω). U2 is defined

on a grid with variables x2 and y2 at a particular z-position, z2, and is also a function of

frequency which will be written as U2(x2, y2, z2, ω). The variable, z, is set as z = z2 − z1.

The Rayleigh-Sommerfeld diffraction integral is then defined as:

U2(x2, y2, z2, ω) =
1

iλ

∫ ∫
U1(x1, y1, z1, ω)

zeikr

r2
dx1dy1, (2.12)

with r2 = (x2 − x1)
2 + (y2 − y1)

2 + z2. This equation can be solved with numeric integration

techniques, but requires significant computation time due to the double integral over the

transverse dimensions, in addition to all the frequency components that are found in a short

pulse. Conveniently, this integral can be defined as a convolution:

U2(x2, y2, z2, ω) = U1(x1, y1, z1, ω) ∗ h(x1, y1, z1, ω), (2.13)
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Figure 2.6: The Fourier propagation scheme of a source between two planes. Source U1 is
propagated to a plane z away and is defined as U2

with h(x1, y1, z1) = − 1
2π

z
r

(
ik − 1

r

)
eikr

r
being the propagation kernel. Even more conveniently,

this form can now be numerically solved using a Fourier transform using the property

U2(x2, y2, z2, ω) = F−1 [F [U1(x1, y1, z1, ω)]F [h(x1, y1, z1, ω)]] , (2.14)

The Rayleigh-Sommerfeld propagation technique has no physical approximations and the

only sources of error are numerical in nature. One drawback to the technique is that the two

planes of propagation have to be the same dimensions and same sampling, which for fields

that are being focused can result in large errors. For a small, focused spot (on the order of

microns, for example) the step size of the numerical grid the field is defined on will typically

be one order of magnitude less than the diameter to be properly sampled. Often, even better

resolution is preferred for better resolved fields. For the input plane before focusing, the size

of the beam can be quite large (especially for PW class beams on the order of 10 cm),
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requiring the dimension of the numerical grid to be quite large, typically 3 times larger than

the beam diameter for a Gaussian beam to be properly resolved when doing the FFTs. If a

large aperture laser system with a 1/e2 beam diameter of 15 cm is focused down to a 5 µm

spot, this would require a grid with dimensions 45 cm x 45 cm with a maximum step size of

0.5 µm. This results in a numerical grid defined by 220 x 220 points which is computationally

difficult to compute in terms of memory (and this is not considering the extra dimension of

the frequency/temporal information for the laser pulse!)

2.2.2 Fresnel Propagation

Two simple approximations can be made on the Rayleigh-Sommerfeld propagator that sim-

plify the expression and calculation. First, it is assumed that z is large (which is true in a

paraxial approximation) so that, in the denominator of equation 2.12, r ≈ z. In the phase

term of 2.12, k cannot be assumed small and so a Taylor expansion is done. First, r is

rewritten as:

r =
√
(x2 − x1)2 + (y2 − y1)2 + z2 = z

√
(x2 − x1)2 + (y2 − y1)2

z2
+ 1, (2.15)

which can be simplified using the binomial expansion
√
1 + b ≈ 1 + b/2 for small b. This

results in

r ≈ z

(
1 +

(x2 − x1)
2 + (y2 − y1)

2

2z

)
. (2.16)

Plugging these approximations back into Eq. 2.12 and rearranging terms we arrive at the

Fresnel diffraction integral:

U2(x2, y2, z2, ω) =
eikz

iλz

∫ ∫
U1(x1, y1, z1, ω)e

ik
2z [(x2−x1)2+(y2−y1)2]dx1dy1 (2.17)
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This essentially is a parabolic approximation on the phase term in the exponential. This

equation can also be written as a convolution and solved with Fourier transforms using Eq.

2.14 with h(x1, y1, z1) = eikz

iλz
exp

[
ik
2z
(x2

1 + y21)
]
. The Fresnel propagation is also sometimes

written in another form by expanding and grouping terms in the exponential:

U2(x2, y2, z2, ω) =
eikze

ik(x22+y22)

2z

iλz

∫ ∫
U1(x1, y1, z1, ω)e

ik
2z (x2

1+y21)e
−ik
z

(x1x2+y1y2)dx1dy1 (2.18)

Then, using the definition of the Fourier transform from Eq. 2.14 and the property that:

fx1 =
x2

λz
, fy1 =

y2
λz

(2.19)

the final form can be expressed as:

U2(x2, y2, z2, ω) =
eikze

ik(x22+y22)

2z

iλz
F
[
U1(x1, y1, z1, ω)e

ik
2z (x2

1+y21)
] (x2

λz
,
y2
λz

)
(2.20)

2.2.3 Fraunhofer Propagation

An additional approximation can be made on the Fresnel propagation, where it is assumed

that the source dimensions are small where x2
1 + y21 are omitted from the phase term in Eq.

2.20, resulting in:

U2(x2, y2, z2, ω) =
eikze

ik(x22+y22)

2z

iλz
F [U1(x1, y1, z1, ω)]

(x2

λz
,
y2
λz

)
(2.21)

This approximation is valid for large propagation distances, where x2 and y2 are much larger

than x1 and y1. For this reason, the Fraunhofer approximation is valid for the far field only.

This is a nice solution stating that the far field of a source, U1(x1, y1, z1, ω) is the Fourier

transfrom multiplied by the phase factor eikze
ik(x22+y22)

2z

iλz
.
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2.2.4 Bluestein Method and the Chirped Z-Transform

The Bluestein method, also known as the chirped z-transform (CZT) [28, 29, 30] is a more

general solution to the Discrete Fourier Transform (DFT) that is the common method used

when numerically calculating Fourier transforms. The transform of interest is defined as:

Xk =
N−1∑
n=0

xnz
−nk k = 0, . . . , N − 1, (2.22)

with z = exp(i2π/N). For a typical DFT, the magnitude of z is confined to the unit circle

such that |z| = 1. In the chirped z-transform, there is no such constraint on the magnitude,

which enables the ability to arbitrarily sample the output plane after propagation. This

difference is shown in Fig. 2.7. The Bluestein method breaks up the complex component

Figure 2.7: The chirped z-transform complex amplitude compared to the unit circle.

through writing Xk using the substitution:

nk =
n2 + k2 − (k − n)2

2
(2.23)
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as:

Xk = z−
1
2
k2

N−1∑
n=0

xnz
− 1

2
n2

z
1
2
(k−n)2 = z−

1
2
k2(an ∗ bn) (2.24)

which is a convolution between

an = xnz
− 1

2
n2

k = 0, . . . , N − 1

bn = z
1
2
n2

k = −N + 1, . . . , 0, . . . , N − 1,

(2.25)

This convolution can be numerically calculated with Fourier transforms, enabling a compu-

tationally efficient implementation of the chirped z-transform.

2.2.5 Focusing

The beam may then be propagated or focused with a real lens of a particular radius of

curvature, made of a certain material, defined by the Sellmeier equation or an ideal lens that

can be hyperbolic, parabolic, or spherical.

The phase accumulation from a real lens of a certain material is given by [26]:

ϕlens(x1, y1, λ) = k(n(λ)−1)

[
R2

(
1−

√
1− x2

1 + y21
R2

2

)
−R1

(
1−

√
1− x2

1 + y21
R2

1

)]
, (2.26)

R1 and R2 are the radius of curvature for the input and exit face of the lens, respectively.

The phase accumulation from ideal focusing (hyperbolic phase) is given by:

ϕlens(x1, y1, λ) = −k
√
f 2 + x2 + y2, (2.27)
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The phase from a parabolic lens is given by:

ϕlens(x1, y1, λ) = − k

2f

(
x2 + y2

)
, (2.28)

and the phase from a spherical lens is given by:

ϕlens(x1, y1, λ) = k
√

f 2 − x2 − y2. (2.29)

The phase profiles are plotted in Fig. 2.8 for an F/1 focusing optic.

Figure 2.8: The phase profiles for an ideal hyperbolic, parabolic, and spherical lens

2.3 Particle in Cell Modeling using Smilei

The particle-in-cell (PIC) code Smilei [31] was used for simulating laser-plasma interactions.

PIC codes are commonly used to describe the evolution of a plasma by approximating a

plasma with a collection of macroparticles, where each macroparticle represents a certain
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number of ions or electrons that has a larger charge and mass, but maintains the same charge

to mass ratio. Smilei is a kinetic PIC code, which uses a macroparticle’s position, velocity,

and current to model the evolution of the plasma by calculating and solving Maxwell’s

equations and the Lorentz force, satisfying Vlasov’s equation. Mawell’s equations and the

Lorentz force are solved on a discrete numerical grid composed of spatial cells.

Each species in the plasma is described by a distribution function, fs(t, x, p). Each species

consists of particles that have a certain charge (qs), mass (ms), position (x), and momentum

(p). The distribution function is defined as:

fs(t, x, p) =
N∑
p=1

wp S(x− xp(t)) δ(p− pp(t)), (2.30)

where δ is the Dirac distribution, S is the shape function which describes a macroparticle, wp

is the macroparticle weight, Vc is the volume of a single cell, Ns is the number of macropar-

ticles, and the subscript p denotes a particular macroparticle. Solving the Vlasov equation

with this distribution function results in two equations of motion to describe the motion of

marcroparticles:

dpp
dt

= qs

(
Ep +

pp
γpms

×Bp

)
(2.31)

dxp

dt
=

pp
γpms

(2.32)

where γp =

√
1 +

(
pp
ms

)2
Maxwell’s equations are solved using the Finite Difference Time Domain method [32]. The

fields are solved on the Yee grid [33], which staggers the electric field and magnetic fields

in time. The electric fields are defined on integer times steps, and the magnetic fields on
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half-integer steps.

The PIC simulation starts by loading the initial conditions of the plasma, including the den-

sity, temperature, and shape. The initial electric field is computed using Poisson’s equation.

After this, the PIC loop commences. The PIC loop is an algorithm used to calculate the

fields on the grid and advance the particles. The steps of the PIC loop are shown in Fig.

2.9. It starts with pushing the particles using the kinetic equations of motion. The weights

of the particles are then deposited onto the grid. If the particles don’t fall directly on a

node, the position is interpolated onto the grid points. Maxwell’s equations are then used

to solve the electric and magnetic fields. These fields are then applied again to the particles.

Once this is done, the particles are pushed and the loop cycles until the simulation is ended.

The simulation domain in Smilei is defined such that the x-dimension is the longitudinal

direction and axis of laser propagation, and the y-dimension and z-dimension are transverse

coordinates.

Figure 2.9: A representative model of the PIC loop, showing the algorithm used to model
the evolution of a plasma.
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2.4 Basics of Laser-Plasma Interactions

The laser-plasma interactions considered involve sufficiently high intensity pulsed lasers in-

teracting with a high density foil, modeled as a plasma. The intensity of the laser field can

be described by the normalized vector potential:

a0 =
eE

meωLc
, (2.33)

where e is the charge of an electron, me is the mass of an electron, E is the amplitude of the

electric field of the laser, ωL is the central frequency of the laser, and c is the speed of light.

a0 is related to the intensity through:

a0 =

√
Iλ2

0

1.37× 1018
, (2.34)

where I is the intensity of the laser in [W/cm2], and λ0 is the center wavelength of the laser

in units [µm]. A plasma consists of a species of ions and neutralizing electrons. Typically,

the ultrahigh intensity lasers have a pedestal on the pulse structure, whose peak intensity

can be several orders of magnitude less intense than the main pulse. The pedestal that leads

ahead of the pulse interacts with the solid density foil first. If the main peak is assumed

to be 1018 W/cm2, a pedestal with an intensity 105 orders of magnitude less will start to

ionize the foil, stripping electrons of the surface before the main pulse arrives. This forms a

preplasma of electrons on the front side of the foil that the main pulse interacts with. This

preplasma expands and is usually modeled with an exponential profile [34] given by:

ne = n0 exp(−x/l), (2.35)

where ne is the electron density of the plasma, n0 is the original, unperturbed electron density

of the solid foil, x is the longitudinal coordinate before the foil, and l is the characteristic
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length of the preplasma. l is determined based on the shape of the pre-pulse.

Once the laser interacts with the plasma, it will displace electrons whose motion will be

described by the Lorentz force:

F = −e(E +
v

c
×B), (2.36)

If we consider a field that has a spatial profile, such as a focused Gaussian beam, an electron

interacting with the field will move from a region of high intensity towards a region of lower

intensity based on the ponderomotive force:

Fp = − e2

4meω2
0

∇E2 (2.37)

where the electron feels a force that is proportional to the gradient of the electric field.

A displaced electron is subsequently restored due to a charge separation in the plasma and

will oscillate at a frequency known as the plasma frequency:

ωp =

√
nee2

γLmeϵ0
, (2.38)

with ϵ0 being the permittivity of free space and γL =
√
1 + a20/2, which takes into account

a corrective factor for strong, relativistic fields (a0 > 1).

The Debye length is the distance of one plasma period (1/ωp) and is defined as:

λD =

√
ϵ0kbTe

nee2
, (2.39)

where kb is the Boltzman constant and Te is the thermal temperature of the electron. The

Debye length is an important parameter which describes the distance over which a charged
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particle feels the charge of surrounding particles. Another parameter commonly used in

laser-plasma interactions is the critical density of the plasma:

nc =
γLmeϵ0ωL

e2
. (2.40)

The critical density is the point where ωL = ωp. If the plasma density is above this value,

incident laser light is reflected. If the density is lower, laser light will penetrate the plasma.

For 1 µm light, the critical density is 1.1× 1021 cm−3. Solid density is on the order of 100nc.

In a plasma that is above the critical density, an evanescent component of the incoming wave

will penetrate into the plasma a distance known as the skin depth:

ls = c/ωp. (2.41)

When conducting numerical simulations, it is usually a good idea to resolve the Debye length

and skin depth to properly model the laser-plasma interaction and avoid any numerical errors

or artifacts. In practice, this can be quite difficult, especially in 3-dimensional simulations,

due to the computational resources needed to resolve distances that are typically small.

2.5 Mechanisms of Ion Acceleration

There are many ion acceleration mechanisms including Target Normal Sheath Acceleration

[35] (TNSA), Coulomb Explosion [36], Radiation Pressure Acceleration [37], Hole-Boring

Acceleration [38], Light-Sail Acceleration [39, 40], and Break-out Afterburner [41]. Target

Normal Sheath Acceleration is one of the most commonly studied and observed ion acceler-

ation mechanisms. This is mainly in part that the TNSA mechanism occurs at intensities

as low as 1018 W/cm2 for 800 nm to 1000 nm lasers, and so is present in many laser-foil

interactions at early times. A schematic of the acceleration is depicted in Fig. 2.10. An
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Figure 2.10: A schematic of the Target Normal Sheath Acceleration mechanism.

intense laser irradiates the front surface of a foil, forming a plasma. The pulse accelerates

electrons in the forward direction which propagate through the target. They will scatter

within the material, and the electrons with sufficient energy will manage to escape through

the other side. This generates a sheath on the back surface, which generates a strong electric

field due to the charge separation. This charge separation will accelerate the lightest ions

present in the material (protons) followed by heavier ions.

A laser with sufficiently high intensity can penetrate a solid density target. At high a0

values, the corrective γL term becomes large. This results in the plasma frequency in Eq.

2.38 decreasing, which increases the skin depth. Additionally, the critical density in Eq. 2.40

increases. The combination of these effects enable the laser to partially transmit through the

foil in a process known as Relativistic Induced Transparency [42, 43] (RIT), heating electrons

deeper into the foil. This changes the interaction dynamics and acceleration of electrons and

protons though a stronger longitudinal field.
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Chapter 3

Fourier Propagation Code

3.1 Introduction

An open-source, vectorized Fourier propagation code was developed in Python3 to enable

the exploration of arbitrary laser pulses propagating in vacuum, and later interfaced with

the particle-in-cell code, Smilei. The code takes in a user-defined field, that can either

be defined as an analytic functional form, or passed as an array of measured data. The

coordinate system of the code defines x and y as transverse coordinates and z as the axis of

propagation.

For example, a Gaussian beam may be defined with the form:

E(x, y) = exp

(
− (x− x0)

2 + (y − y0)
2

w2
in

)
, (3.1)

where win is the 1/e2 beam radius of the intensity, x and y are spatial coordinates, and x0

and y0 are the center coordinates of the Gaussian distribution. The spectrum can also be
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defined analytically, and a Gaussian spectrum in frequency can be defined as:

E(ω) = exp

[
− (ω − ω0)

2

∆ω2

]
, (3.2)

where ω is the frequency coordinate, ω0 is the central carrier frequency, and ∆ω is the 1/e2

half-width of the spectral intensity. Multiplying these two distributions together gives the

full field to be used in the code. This field is shown in Fig. 3.1, modeled as a Gaussian laser

with a center wavelength, λ0 = 800 nm, win = 0.5 mm, ∆ω = 0.25 Prad/s, which translates

to a FWHM pulse duration ∆t = 9.42 fs. The transverse field is depicted in Fig. 3.1a, the

spatial-frequency representation in Fig. 3.1b, and the spatio-temporal field in Fig. 3.1c.

Figure 3.1: An example Gaussian pulse passed as input to the Fourier propagation code. The
a) transverse distribution of the field, b) spatio-spectral distribution, and c) spatio-temporal
distribution are shown.

The field is then propagated using the Rayleigh-Sommerfeld propagator for its accuracy,

along with the Bluestein chirped-z transform for the ability to scale the input plane and

propagation plane. The field can be visualized in the space-frequency, or space-time domain

at any z-position along its propagation. The example Gaussian is focused with an ideal

lens of focal length, f = 10 cm and shown in Fig. 3.2. With post-processing, the field can

be visualized in a purely spatial representation, but the natural output from the Fourier

propagation technique is inherently in the frequency domain (or temporal with a Fourier

transform) at a given z-position. The code can also handle measured data, such as a beam

29



Figure 3.2: An example of a focused Gaussian pulse with an ideal lens of focal length
f = 10 cm. The a) transverse distribution of the field, b) spatio-spectral distribution, and
c) spatio-temporal distribution are shown.

profile and spectrum.

3.2 Code Validation

The output of the Fourier propagation code is compared to theory to show its accuracy

in calculating the correct fields during propagation. The theoretical Gaussian propagation

expression is [44]:

E(x, y, z) = exp

(
−x2 + y2

w2(z)
+ iφ(z)− i

ω0(x
2 + y2)

2cR(z)

)
, (3.3)

with w(z) = w0

√
1 +

(
z
zR

)2
being the 1/e2 beam radius as a function of distance, R(z) =

z+
z2R
z
the radius of curvature, φ = tan−1

(
z
zR

)
the Gouy phase, and w0 the 1/e

2 beam radius

at the focus. zR is the Rayleigh length of the center wavelength, zR =
πw2

0

λ0
. The expression

used for the temporal envelope is:

E(t) = exp (−iω0t) exp

(
−4 ln 2

(
t

∆t

)2
)

(3.4)
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A 1 µm, 25 fs pulse is focused down to a 4 µm spot using the Fourier propagation code

and compared to the theoretical propagation of Eq. 3.3, using two spatial dimensions and

a temporal dimension. Equations 3.3 and 3.4 assume a monochromatic propagation, and

so for a proper comparison, approximations are forced in the Fourier code, where all k, ω,

and λ values are set to the carrier frequency value (k0, ω0, λ0, respectively). Upon doing

this, the analytic and Fourier propagated fields are compared at z = f − zR, z = f , and

z = f + zR in Fig. 3.3, where zR = 50.26 µm. The spatial resolution for this comparison

Figure 3.3: The absolute difference in fields between the analytic formalism and the Fourier
propagated Gaussian pulses. The two field amplitudes are normalized to |E| = 1. The
difference in fields are calculated at z-positions a) one Rayleigh range before the focus, b) at
the focus, and c) one Rayleigh range after the focus.

was 0.117 µm, and the temporal resolution was 0.146 fs. Within the confocal parameter,

there is at maximum an absolute difference between the two fields of 0.0035. This error is

improved if the spatial and temporal resolution of the simulations is increased. The on-axis

longitudinal intensity, I(z, x = 0, y = 0) can also be compared between the two propagation

methods. The on-axis intensity profile follows the form [44]:

I(x = 0, y = 0, z) =
1

1 +
(

z
zR

)2 (3.5)

The propagated field is compared to theory in Fig. 3.4 where the two intensity profiles

match. Additionally, the Fourier propagated field properly accounts for the diffractive effect

of focusing light and results in a focal spot shift of ∆f ≈ z2R/f [44]. For the case simulated,
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Figure 3.4: The on-axis intensity of a propagated field is compared to the expected value
from Eq. 3.5

the focal shift results in a value of ≈ 26 nm, which is negligible on the scale shown and not

visible.

3.3 Conclusion

The Fourier code is validated against the known theoretical propagation of a Gaussian beam.

The model accurately describes the field as it propagates, capturing the full diffractive effects

including the diffraction limited spot size, curved phase fronts, and field amplitude.
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Chapter 4

1-Dimensional Spatially Chirped

Beams

4.1 Introduction

The use and focusing of chirped beams was first proposed in 2004 as a route to produce

ultra-high peak power laser pulses in a technique known as chirped beam amplification

[45]. This concept, which is the spatial analog to chirped pulse amplification [2] (CPA),

involves dispersing the spectral content of a pulse in a transverse spatial dimension to reduce

its local intensity and thus avoid damage in amplifiers and final optics [46, 47]. Focusing

a chirped beam simultaneously reduces the spatial and temporal extent of the pulse in

a technique that is commonly referred to as simultaneous spatial and temporal focusing

(SSTF) [48, 49]. The most frequently employed approach to SSTF is through the one-

dimensional spatial chirp of a Gaussian beam profile generated with a grating pair with an

appropriately pre-chirped pulse. As an ultrashort pulse travels through the grating pair,

its spectral components are spatially separated in one dimension, necessarily reducing the
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pulse’s local spectral content and increasing the pulse’s local pulse duration. As the beam

focuses, the spectral components gradually spatially overlap until the pulse reaches both its

minimum spatial width and its transform limited pulse duration at the focus. This leads

to a pulse front tilt (PFT) whose orientation is a function of the magnitude of beam chirp

and the f-number of the focusing system. SSTF has been used in multiphoton microscopy

[50, 51, 52], micromachining, [53, 54, 55] and structured 3D printing [56].

Recently, focal spots with PFT have been studied in high intensity laser plasma experiments

for electron acceleration where tuning the angle of the PFT enables electron steering [57, 58]

and target normal sheath acceleration (TNSA) schemes for improved maximum electron

energies in TNSA target interactions [59]. Next-generation high-intensity lasers are poten-

tially reaching the ultra-broadband spectral regime, with temporal pulse widths near 10 fs

[60, 61, 62], where the study of space-time couplings, such as PFT, are relevant [63]. These

lasers could be used for advanced acceleration schemes based on chirped beams and SSTF

interactions for studying novel laser-matter interactions, including traveling wave excitation

for soft x-ray amplification [64, 65]. Additionally, SSTF systems can be used as part of a

post-amplification pulse compression scheme [66].

Generating a high-peak-intensity PFT focal spot with the SSTF technique requires the use

of a grating pair to spatially chirp the beam. Gratings impart a nonlinear spatial chirp across

the bandwidth of the pulse, especially at near-infrared frequencies. In this work, we argue

that for large-bandwidth pulses this grating-induced nonlinearity needs to be considered,

as the linear approximation typically used in studying spatial chirp becomes significantly

inaccurate. Careful choice of the gratings used to generate the spatial chirp is important

because groove density and angle of incidence (AOI) affect the degree of nonlinearity, which

in turn changes the space-time structure as the pulse propagates through the focus. The

nonlinearity also imparts a pulse front curvature (PFC) and varies the intensity localization,

necessarily changing the fundamental interaction of the focusing laser pulse with matter. The
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characteristics of a chirped beam from spatial chirp configurations generated using different

grating pairs are simulated and described.

4.2 Methods

4.2.1 System Design

A typical SSTF system consists of a grating pair that spreads the frequency components of

a laser pulse in 1D, shown in Fig. 2.4. To have a transform limited pulse at the focus, a

positive temporal pre-chirp must be imparted on the pulse to compensate for the temporal

group delay dispersion from the grating pair. This is readily achieved, as the two gratings in

Fig. 2.4 act as half of a Treacy compressor [25], whose induced temporal chirp on the incident

laser pulse can be perfectly compensated with an upstream Martinez stretcher [24, 67]. To

have temporal compensation with only half of a compressor, the separation between the

gratings must be doubled from the values defined for a 4-grating or double-pass 2-grating

arrangement. The amount of chirp in this system can be defined by the beam aspect ratio

(Eq. 2.9) which can be tuned by varying the grating separation and changing the temporal

pre-compensation.

4.2.2 Simulation Model

An open source linear Fourier optics code in Python3 was developed to simulate a user-

defined electric field propagating through a lens and free space. The electric field can be

visualized at any position throughout the focal volume to observe the effects different system

parameters have on the pulse profile at and near the focus. Any spatial profile and spectrum

can be modeled and propagated. A Gaussian beam in space and frequency is modeled for
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its simplicity and ease of interpolating results. An initial electric field that is Gaussian in

space and spectrum is defined before the focusing optic using Eqs. 3.1 and 3.2 to get:

E(x1, y1, z = 0, ω) = E0E(ω)E(x1, y1) = E0 exp

[
− (ω − ω0)

2

∆ω2

]
exp

(
− x2

1 + y21
w2

in

)
, (4.1)

where ∆ω is the 1/e2 half-width bandwidth of the spectrum, ω0 is the center frequency, and

win = Din/2 is the 1/e2 beam radius of the field intensity. The simulations presented here

are based on a typical Ti:Sapphire laser system with a center wavelength of 800 nm, a beam

radius of 0.5 mm, a focal spot size radius of 50.5 µm, and a full width at half max bandwidth

of 100 nm, resulting in a transform-limited pulse width of ∼ 9.4 fs. In the simulations, the

initial electric field is defined on a square numeric grid with spatial lengths L1,x × L1,y and

spacing ∆x1 and ∆y1, whose values depend on the initial conditions of the model, such as

beam diameter, chirped beam diameter, and focal length.

The initial spatial electric field used to describe a linearly polarized beam with 1D linear
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Figure 4.1: Normalized spatial chirp as a function of frequency is shown for three cases of
AOI, θi, for a 1480 lines/mm grating pair used in a Ti:Sapphire CPA system [68, 69, 70, 71,
72]. The spectrum of the 9.4 fs, 800 nm Ti:Sapphire laser used in this paper is shown as a
dashed line.
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spatial chirp in the x-direction is typically expressed as [49, 51, 73, 74, 75]:

E(x1, y1) = exp

{
− [x1 ± α(ω − ω0)]

2 + y21
w2

in

}
, (4.2)

The chirp rate, α, which is the amount that each frequency component is separated from

the previous, is assumed constant, resulting in a linear separation between frequency compo-

nents. This approximation is valid only for pulses with small bandwidths based on a Taylor

expansion analysis [74].

In practice, the spatial chirp from a grating pair is nonlinear in frequency and is derived

from the grating equation, where the spatial dependence on frequency is:

xchirp(ω) = L tan

[
sin−1

(
−2πmcd

ω
− sin θi

)]
, (4.3)

and the new chirp rate becomes:

α(ω) =
dxchirp(ω)

dω
, (4.4)

where L is the separation between the gratings (normal to the grating surface), d is the

groove density, m is the diffraction order, c is the speed of light, and θAOI is the angle of

incidence on the grating.

Seen in Fig. 4.1, the spatial chirp generated by a grating pair is increasingly nonlinear for

lower frequencies, so the linear chirp approximation breaks down and the full calculation

must be considered. As smaller angles of incidence are used, the nonlinearity increases. This

kind of chirp is referred to as nonlinear chirp. The definition of the electric field now has the

form:

E(x1, y1, ω) = exp

(
− [x1 − xchirp(ω)]

2 + y21
w2

in

)
. (4.5)
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From here, the pulse can then be propagated through an ideal lens and to the focal plane of

the system.

The temporal distribution can be calculated at any position by taking a Fourier transform

with respect to time of this field.

4.3 Results

Figure 4.2: Comparison of the initial transverse fields for both linear and nonlinear spatial
chirps. The chirp is shown in the space-frequency domain and also as a lineout of the
intensity along the x-dimension. The colored components show the spatial chirp in the
space-frequency domain, where the longer wavelengths have been diffracted more than the
shorter. The solid black line shows the spatial chirp after a Fourier transform into the space-
time domain. Shows a (a) linear chirp and (b)-(d) nonlinear chirp generated with angles of
incidence: 52.8°, 36.3°, and 22.8°, respectively.

For all the simulations, ideal optics are assumed so that there is 100% efficiency into the

m = −1 diffraction order of the gratings and the f-number of the system is set so there

is paraxial focusing. Additionally, only the chirped spatial dimension (x) was simulated

to enable increased resolution and reduce computational cost. Excluding the unchirped
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spatial dimension (y) from the simulations is valid when considering large amounts of spatial

chirp due to a significantly reduced contribution to intensity localization at the focus. For

each grating arrangement simulated, perfect temporal chirp compensation is assumed. This

enables a clearer interpretation of the influence of nonlinear spatial chirp.

The initial chirp can be represented in (x, ω) space shown in Fig. 4.2. Fig. 4.2a represents

a linear chirp along the x-dimension, where a linear dependence can be seen in the spatial

position of the frequency content. The higher frequencies are chirped in the positive x-

direction and the lower frequencies in the negative x-direction. The frequencies are chirped

symmetrically about the center frequency, ω0. Figs. 4.2b-d show an equivalent chirp modeled

with the grating equation (Eq. 4.5) for a 1480 lines/mm grating pair with varying angles

of incidence. The spatial extent of the nonlinear chirps was chosen so that the angle the

PFT makes with respect to the propagation axis at the focus is same for all cases. This

was achieved by varying the grating separation. Each configuration was set so that the PFT

angle (θPFT) was 45°. For the linear chirp, this corresponds to a βBAR ≈ 21, calculated from

the relationship [76]:

tan (θPFT) =
winω0

√
β2
BAR − 1

f∆ω
, (4.6)

with θPFT set to 45°. Due to the higher diffraction angle of the lower frequencies, there is

more spectral content around the higher frequencies. This results in an asymmetry in the

spatial extent of the beam. Even though the PFT at the focus was kept constant, the spatial

and temporal representations of the field at the input plane of the simulations are different.

The grating pair introduces the same directional dependence of chirp along the x-dimension,

but the lower frequencies experience a large nonlinearity in the chirp rate, shown in Fig. 4.1.

Depending on the the incidence angle used, the nonlinear dependence of the spatial chirp

can be minimized. As AOI is increased, the spatial chirp becomes more linear.
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Figure 4.3: Propagation of a focused spatially chirped beam with a PFT of 45◦ for a linear
frequency chirp and nonlinear chirp represented in (x, t) space. The temporal representations
of the propagation of a (a) linear chirp and (b)-(d) nonlinear chirps generated with 1480
lines/mm gratings and incidence angles of 22.8°, 36.3°, and 52.8°, respectively, are shown.

To highlight the importance of considering the realistic chirp from a grating pair of an ultra-

short pulse, the propagation of a linear chirp and equivalent nonlinear chirps are shown in

Figs. 4.3 and 4.4. A grating pair with 1480 lines/mm at three typical incidence angles, 22.8°,

36.3°, and 52.8°, are simulated. These gratings and angles are used as common configurations

(high dispersion, Littrow, and low dispersion, respectively) for Ti:Sapphire compressors with
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Figure 4.4: Propagation of a focused spatially chirped beam with a PFT of 45◦ for a linear
frequency chirp and nonlinear chirp represented in (x, z) space. The spatial representation
of the propagation of a (a) linear chirp and (b)-(d) nonlinear chirps generated with 1480
lines/mm gratings and incidence angles of 22.8°, 36°, and 52.8°, respectively, are shown.

high efficiency and high damage thresholds [68, 69, 70, 71]. Recent work is being conducted

for this groove density on increasing supported bandwidths up to 400 nm [77]. Fig. 4.3

shows four different pulses propagating in (x, t) space at various z-positions and Fig. 4.4

shows the same pulses propagating in (x, z) space at various times, highlighting the PFC

differences. Both frames of reference are important for visualization. To see how the pulse
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interacts with a planar surface, in traveling wave excitation or dielectric laser acceleration for

example, the (x, t) space at a z-position provides this information. The spatial dependence

of the (x, z) space is relevant in electron acceleration where the gradient is proportional to

the ponderomotive force. Figs. 4.3a and 4.4a illustrate the space-time and spatial focusing,

respectively, of a beam chirped linearly in frequency. The PFT in this type of pulse has been

shown to accelerate electrons normal to the tilted pulse front and focus an electron bunch

due to the concave PFC [57, 58, 76]. Figs. 4.3b-d and 4.4b-d show the nonlinear spatial

chirps.

Comparing the focal position (t = 0 fs and z = 0 µm) of both the linear and nonlinear chirps,

the outside edges of the pulse structures are different, leading to various amounts of concave

PFC across the cases. The chirp generated with the lower AOI has more noticeable curvature,

whereas larger AOI chirps minimized the amount of variation in the pulse front. The chirp

generated with the largest incidence angle had the biggest reduction in PFC at the focus,

even less than the linear frequency approximation. Within the focal volume, as the pulse

propagates to the focal plane, there are also significant differences in the pulse structure. In

the leading frames, the curvature of the pulse front is flipped between the linear frequency

approximation and the nonlinear chirp cases.

While the orientation of arrival time in the transverse extent of the pulse is the same across all

cases (namely, the part of the beam in the positive x-direction leads in time), the sweeping of

the smallest spatial extent across the transverse chirped dimension varies between the linear

and nonlinear chirped cases. In the linear frequency approximation, the pulse sweeps from

positive to negative x, whereas this direction is inverted in the realistic simulation of the

grating pair. This property results in the peak intensity of the beam deviating from on-axis.

Fig. 4.5 shows the location of the peak transverse intensity along with the peak intensity.

The propagation effects for the linear approximation, 22.8°, 36.3°, and 52.8°cases are shown

in Visualization 1, Visualization 2, Visualization 3, and Visualization 4, respectively.
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Figure 4.5: Transverse peak intensity position (red) and longitudinal intensity profile (blue)
for the linear and nonlinear chirps. The (a) linear chirp and (b)-(d) nonlinear chirps for
AOIs of 22.8°, 36.3°, and 52.8°, respectively, are shown.

The simulations were limited to a 1-µm resolution along the transverse dimension to reduce

computation time. In all the cases, the peak intensity as the beam focuses is not on-axis

(x = 0, y = 0) but varies with the propagation. This is contrary to the focusing of an

unchirped beam where the peak intensity stays on-axis while propagating through a focus

[44]. The peak intensity is more localized both longitudinally and transversely in the high

AOI grating configuration (Fig. 4.5d), and progressively increases in transverse deviation

for smaller angles of incidence. The linear frequency chirp approximation in Fig. 4.5a, has

the largest translation in the transverse dimension, and the lowest incidence angle of 22.8◦

(Fig. 4.5b) has the largest longitudinal extent.
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Figure 4.6: Spatial chirp as defined by Eq. 4.5 for a PFT of 45◦ with varying angles of
incidence. The dotted line overlays the spectrum for the simulated Gaussian pulse. The
spatial chirp as a function of (a) frequency and as a function of (b) wavelength.

Fig. 4.6 compares the dependence of the spatial chirp as a function of frequency and wave-

length for different angles of incidence for a PFT of 45◦. iconIn Fig. 4.6a, as the angle

increases, the nonlinearity is reduced but never approaches linear. Converting from fre-

quency to wavelength (Fig. 4.6b) illuminates the difference in pulse front structure of the

cases shown in Figs. 4.3 and 4.4. In this representation, as the angle decreases, the spatial

chirp approaches a linear trend across the bandwidth, whereas the linear frequency chirp

approximation has a nonlinear trend with the opposite concavity than that from the grating

pair. The grating cases are concave down, and the linear chirp is concave up. These lead to

different pulse front orientations and pulse front curvatures seen in Figs. 4.3 and 4.4.

4.4 Conclusion

With the increased interest in spatio-temporal control of ultrashort pulses for high intensity

laser applications, such as SSTF, it is important to understand how these pulses evolve as

they propagate through the focus. For large bandwidth pulses, the linear approximation of

spatial chirp from a grating pair breaks down and provides an unrealistic model for focused
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spatially chirped beams. The effect of the spatial chirp nonlinearity introduced by the grating

pair can change the orientation and severity of the pulse front curvature within the focal

volume and, therefore, change its interaction with matter. By choosing an appropriate angle

of incidence, the characteristics of the focal volume can be tuned for a given PFT. The code

developed enables the ability to propagate an arbitrarily defined electric field through a focus

which enables the study of higher order chirp or more complex pulse structures.
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Chapter 5

2-Dimensional Spatially Chirped

Beams

5.1 Introduction

Controlling the space-time structure of ultrashort pulses has become an active area of inter-

est for generating exotic structures of focused light [78, 79, 80]. The space-time couplings

required for SSTF can be fabricated through spatial light modulators [81, 82] and with

dispersive or diffractive optics [83, 84]. Typically, a single pass, two grating compressor is

used to generate a spatially chirped beam in one dimension that is subsequently focused,

generating the SSTF space-time structure. An axisymmetric extension of 1D spatial chirp

is evaluated, referred to as radial spatial chirp. The axisymmetric extension uses concentric

ring, circular gratings in a similar single pass, two grating configuration. This results in a

radially dependent spatial chirp from the diffraction, shown in Fig. 5.1. The radial spatial

chirp maintains many of the qualities of SSTF pulses with the added symmetrization of the

pulse front and the enabled capacity for vector polarization states to be studied. Fig. 5.1
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shows all the possible variations of radial chirp and polarization configurations compared to

1D spatial chirp.

A path is provided for generating approximate forms of a radial spatial chirp that are highly

efficient and enable easier tuning through a coherent beam combining approach of several

1D spatially chirped beams. This enables the use of current grating technology to generate

beams comparable to radial spatial chirp with high damage threshold optics that have been

optimized for high power lasers to enable the use of vector beams in intense laser-matter

interactions, where high fluence values limit the use of transmissive optics and polarizers.

Radially chirped beams have been preliminarily studied to various extents. The focus of a

radial spatial chirp generated with an axicon pair, which provides a negative spatial chirp, has

been studied for its bessel-like space-time structure [85]. Radially chirped picosecond pulses

have been examined for the generation of non-differentiable angular dispersion [82] to aid

in propagation invariant space-time pulses with variable group velocity tuning [86, 87]. The

nonlinear intra-material effects of a focused radially chirped beam have been numerically

studied by varying the initial temporal group delay dispersion of the chirped pulse [88].

Additionally, focused linearly chirped, radially polarized beams have been examined [89] as

a unique form of vector beams with spatio-temporal couplings. A full characterization of the

properties of radial, spatially chirped beams is provided.

5.2 Methods

A pair of concentric ring gratings [90] (Fig. 5.2) can be used to generate a positive radial

spatial chirp pattern, where the longer wavelengths are diffracted more such that the redder

portion of the beam is farther from the propagation axis, shown in Fig. 5.1d. The amount

of spatial chirp is quantified by the beam aspect ratio defined in Eq. 2.9. The distance of
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Figure 5.1: The various spatial chirp patterns and polarization orientations for a,b) 1D chirp
and c,d) 2D chirp. Negative spatial chirp is shown in c) and positive spatial chirp is shown
in d). The color represents the spatial dependence of the spectrum at the output of a single-
pass, two grating compressor.

the center carrier frequency of the pulse from the propagation axis is defined as δr. In this

configuration, Dchirp and δr are coupled based on the grating equation, where increasing

the grating separation increases both Dchirp and δr. Negative spatial chirp can be achieved

by using a reflective axicon pair on the output of this scheme to invert the orientation so

that the longer wavelengths are closer to the propagation axis (Fig. 5.1c). The axicons

can also be oriented to tune δr independently. A transmissive, refractive axicon pair can
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Figure 5.2: A single pass, concentric ring grating pair used to generate radial spatial chirp.
The insets show the transverse profile of a concentric ring grating and the annular beam
profile after the second grating.

also be used to generate negative spatial chirp [85], where shorter wavelengths refract more

through the axicon material which places them on the outside edge of the beam. In order to

achieve large amounts of spatial chirp over reasonable propagation distances, axicons with

apex angles near the critical, total internal reflection angle must be used in order to increase

the angular dispersion from the refraction. Additionally, by utilizing ring lenses [91] the

spatial chirp from a grating pair can be relay imaged to flip the sign of spatial chirp.

Alternatively, approximate forms of the radial spatial chirp can be achieved through a multi-

beam superposition of properly oriented 1D spatial chirps. Conventional optics can be used

to generate the spatial chirp using highly efficient grating groove densities and angles of inci-

dence. This configuration also simplifies modification of the orientation of each independent

beam for control over the sign of spatial chirp, δr, and polarization.
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The spatial chirp in the following simulations are derived from the grating equation to

ensure accurate space-time profiles when propagated [1], and δr will be assumed to be a

tunable variable through the methodologies described above. The initial spatial chirp can

be quantified in the spatial-spectral domain shown in Fig. 5.3. The spatially chirped beams

are simulated and propagated using the Bluestein method [30] and the Rayleigh-Sommerfeld

propagator, which enables an arbitrarily sampled input plane and propagation plane. The

laser simulated is based off a typical Ti:Sapphire oscillator, with a pulse centered at 800 nm

with 100 nm full-width-at-half-maximum Gaussian bandwidth and a 1/e2 intensity beam

radius 0.5 mm. Various configurations of spatial chirp, δr, and polarizations are modeled

and propagated through a focal volume. The fields are propagated in the spatial-spectral

domain to any longitudinal position within the focus, and can be Fourier transformed to

visualize the space-time structure. For all simulations, ideal optics and paraxial focusing are

assumed to enable an easier interpretation of the results directly related to the varied beam

parameters.

5.3 Results

Figure 5.3: The spatio-spectral representation of an a) unchirped annular beam, b) positive
radial spatial chirp, and c) negative radial spatial chirp.

Figure. 5.3 illustrates the spatio-spectral field at the input plane of the simulation for three

cases: a) an unchirped annular beam that is Gaussian across its transverse profile, b) the

50



output of a concentric ring grating pair, and c) the grating pair output inverted around the

central frequency to achieve a negative spatial chirp. The nonlinear dependence of the spatial

chirp from the gratings can be seen in the lower frequencies which get diffracted at a higher

rate. Radially chirping a beam results in a tunable, conical pulse front as it approaches the

focus.

5.3.1 Linear Polarization

Fig. 5.4 shows the propagation of three configurations of a linearly polarized, radially chirped

beam focused with an ideal lens with f = 10 cm. Fig. 5.4a shows the focusing properties

Figure 5.4: The propagation for a) an unchirped annular beam, b) a positive radially chirped
beam, and c) a negative radially chirped beam. The radial chirp was generated with a grating
pair of 500 lines/mm at 0o, a δr = 0.5 cm, and βBAR = 5

of an annular ring beam. The apparent conical structure is from the off-axis focusing which

results in tilted phase fronts with respect to the propagation axis. Fig. 5.4b,c show the

focal volume structures of a positive and negative radial spatial chirp. The orientation of the

conical pulse front flips between the two cases and the pulse structure along the propagation

axis is varied. Both the PFT angle and the angle of the tilted phase fronts contribute to
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Figure 5.5: (x,t) and (x,y) representations of the focus (f = 10 cm) for a linearly polarized
pulse with δr = 0.5 cm and βBAR of a,d) 1, b,e) 2, c,f) 5 generated with a 500 lines/mm
grating pair.

the shape of the focal structure and are two parameters that can be controlled through the

amount of spatial chirp (βBAR) and the distance of the central frequency from the propagation

axis (δr).

These values are varied independently to highlight the effect of each, and the resulting fields

at the focal plane are compared in Figs. 5.5 and 5.6. In Fig. 5.5, βBAR is varied for a

constant δr = 0.5 cm. As βBAR increases, the PFT angle increases. Increasing βBAR also

has the advantage of decreasing the local bandwidth, thus increasing the local pulse duration

away from the focus. This effect has been shown to enable intra-material writing due to a

decrease in the onset of nonlinear, power related effects such as self-focusing [73, 92]. In Fig.

5.6, δr is modified while keeping βBAR fixed. As δr increases, the frequency of the transverse

interference modulation increases and the central spot diameter decreases.
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Figure 5.6: (x,t) and (x,y) representations of the focus (f = 10 cm) for a linearly polarized
pulse with βBAR = 5 generated with a 500 lines/mm grating pair and δr of a,d) 0.25 cm,
b,e) 0.5 cm, c,f) 1 cm.

5.3.2 Radial Polarization

Similar trends are observed when considering radial polarization. The primary difference is

that there is no transverse electric field on axis due to the spatially dependent orientation of

the polarization. The envelope of the off-axis structure is comparable to linear polarization,

but near the focus, the intensity localization of the transverse fields are different. With radial

polarization, the peak transverse intensity is less localized around the propagation axis due

to the reduced constructive interference from the spatially dependent polarization state.

As the radially polarized fields come to a focus, the on-axis component of the transverse

field evolves into a longitudinal field along the propagation direction. The longitudinal

field can become quite significant for low f-number systems and can achieve sub-diffraction

limited spot sizes [93, 94]. Additionally, these strong longitudinal fields have been shown to

effectively accelerate electrons [95].

βBAR and δr are also varied independently in Figs. 5.7 and 5.8. The trend of increasing

53



Figure 5.7: (x,t) and (x,y) representation of the focus (f = 10 cm) for a radially polarized
pulse with δr = 0.5 cm and βBAR of a,d) 1, b,e) 2, c,f) 5 generated with a 500 lines/mm
grating pair.

Figure 5.8: (x,t) and (x,y) representations of the focus (f = 10 cm) for a radially polarized
pulse with βBAR = 5 generated with a 500 lines/mm grating pair and δr of a,d) 0.25 cm,
b,e) 0.5 cm, c,f) 1 cm.

the PFT angle with increasing βBAR, and increasing intensity modulations with δr are also

present for radial polarization. The primary difference is the lack of transverse field intensity

on-axis.
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The electric field at the focus can also be visualized to confirm the polarization structure

of the pulses. In Fig. 5.9, the transverse electric field is shown at the focus for t = 0 for a

radially chirped beam with δr = 0.5 cm and a βBAR = 5

Figure 5.9: The (x,y) representation for a radially polarized pulse at the focus (f = 10 cm)
for a βBAR = 5 and δr = 0.5 cm are shown for a) Ex and b) Ey.

5.3.3 Azimuthal Polarization

Azimuthal polarization is another spatially dependent polarization state, visualized in Fig.

5.1. The polarization is not defined on axis at x = 0, y = 0, so the field amplitude must

reach zero as in the case of the radial polarization. The intensity profile of the azimuthal

polarization looks identical to the radial polarization, but the electric field structure differs.

The electric field at the focus for the azimuthally polarized beam is shown in Fig. 5.10. The

annular nature of the radially chirped beams naturally leads to the use of the radial and

azimuthal vector polarization states.
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Figure 5.10: The (x,y) representation for an azimuthally polarized pulse at the focus (f =
10 cm) for a βBAR = 5 and δr = 0.5 cm are shown for a) Ex and b) Ey.

5.3.4 Circular Polarization

Circular polarization is a variation of a linear polarization state, where two orthogonal field

components are 90o out-of-phase with each other.

Figure 5.11: The (x,y) representation for a circularly polarized pulse at the focus for a
βBAR = 5 and δr = 0.5 cm are shown for a) Ex and b) Ey
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Circular polarization is commonly seen in high-intensity laser accelerated ion simulations

and experiments because of its unique structure that minimizes J × B heating of electrons

from an intense laser [96]. The J ×B term seen in the Lorentz force equation becomes zero,

which drastically reduces electron heating and gives rise to different acceleration dynamics.

Circularly polarized light is typically sought after when studying the RPA mechanism due

to the reduction in electron heating. The electric field at the focus for a circularly polarized

beam is shown in Fig. 5.11.

5.3.5 Tunable Longitudinal Group Velocity

Additionally, the tunability of the pulse front angle of the radial chirp enables much more

drastic control of the on-axis group velocity compared to that of an annular beam focused

through an axicon [97]. By tuning the grating separation or groove density to give varying

values of PFT and δr, in conjunction with different focusing conditions, the group velocity

can be tuned from superluminal to subluminal, and to even negative values.

The on-axis group velocity for these radial spatially chirped beams is not constant throughout

propagation. Fig. 5.12 shows how the group velocity changes during propagation near the

focus for different values of spatial chirp. The variable group velocity is due to two primary

effects. First, the PFT angle of a focused, spatially chirped beam does not remain constant

throughout propagation and gradually increases to a maximum at the focus, following the

form [76]:

θPFT = tan−1

[
win

√
βBAR

∆ωf

(
1

1 + z2/z2R

)]
(5.1)

where z is the propagation distance from the focus. For positive PFT, the increase in PFT

angle during propagation towards the focus increases group velocity. Similarly, the decrease

in PFT angle during propagation away from the focus decreases group velocity. The opposite
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Figure 5.12: The group velocity as a function of position from the focus of a (a) negative
spatial chirp, (b) no spatial chirp, and a (c) positive spatial chirp. The simulation parameters
were: βBAR = 20, f = 5 cm, 500 lines/mm groove density gratings.

is true for negative PFT. The second effect is that the centroids of a focused spatially chirped

beam do not propagate in a straight line from the lens to the focus, but rather translate

across the transverse dimension, shown in Fig. 4.5. This shift causes the group velocity to

rapidly slow near the focus for both negative and positive spatial chirps. The combination

of these effects results in the opposite concavity of group velocity for negative and positive

spatial chirp but with similar dips near the focus.

The longitudinal group velocity at the focus (z = 0) (assuming a linear chirp approximation)

follows the form:
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vg,z =
c

n cos θf (ω0)

[
1− tan θf (ω0)

win

√
β2
BAR − 1

∆ωf
(
1 + (θf (ω0))

2)
]−1

(5.2)

where ω0 is the carrier frequency of the pulse, θf (ω0) = δr/f and n is the material in-

dex of refraction (n=1 in the following simulations for vacuum propagation). Fig. 5.13a

shows how the on-axis group velocity varies for three different f-number systems. The on-

axis group velocities reach an asymptote in both the positive and negative group velocity

regimes, meaning that the value can be varied from extremely negative to extremely positive

values with careful tuning of the PFT angle for a given focusing system. These regimes

are explicitly illustrated in Fig. 5.14, where the three cases of group velocity are portrayed

with a representative model of a radially chirped beam in the x-z plane. With a sufficiently

negative PFT with respect to the propagation direction (positive spatial chirp depicted in

5.1d) in Fig. 5.14a, the longitudinal group velocity will result in a value less than the speed

of light as the beams cross the z-axis. With positive PFT (negative spatial chirp depicted

in 5.1c), the value can be either greater than c or negative. For relatively small angles of

PFT and shallow focusing, the value will be greater than c, as in Fig. 5.14b. As the pulse

front increases or F/# decreases, the pulse front can be tilted so strongly that it becomes an

extremely negative tilt with respect to the z-axis, resulting in a strong negative longitudinal

group velocity effect, illustrated in Fig. 5.14c. Smaller f-numbers require smaller values of

PFT to achieve drastically large positive or negative group velocities due to the stronger

focus decreasing the angle the phase fronts make with respect to the z-axis. Fig. 5.14a, and

5.14c illustrate two chirps of equal PFT angle but opposite signs relative to the phase fronts.

But, due to the focusing effects, they cross over the z-axis with different relative orienta-

tions. A larger PFT angle will result in a more noticeable difference between a positive and

negative chirp, as will stronger focusing. Fig. 5.14d shows an unchirped beam, where there

is no tilt of the pulse front relative to the phase fronts.
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Figure 5.13: Group velocity as a function of PFT angle for a) different f-number focusing
systems by varying focal length and for an F/1 system varying groove density and AOI.

Figure 5.14: The four different regimes of focusing possible with symmetrically chirped
beams. The pulse front tilt angle, θPFT is defined with respect to the phase fronts which are
shown as solid lines. (a) negative PFT, (b) positive PFT, (c) positive PFT and θPFT + θf >
90o, (d) no PFT.

Fig. 5.13b shows the group velocity trend for different groove density gratings at various

orientations. Due the nonlinear nature of the spatial chirp from the grating pair, using

different angles of incidence and grating periods can have varying effects on the pulse front

structure. As the nonlinearity from the spatial chirp generated from a grating pair increases,

the group velocity starts to diverge from the expected value. The largest nonlinearity occurs

for high groove density gratings at low angles of incidence, which is the only configuration

that results in the asymptote shifting to the left towards lower values of pulse front tilt.

Thus, using high groove density gratings at a shallow AOI requires less drastic pulse front

tilt to achieve a certain group velocity compared to using lower groove densities or higher
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angles on incidence.

5.3.6 Multi-Beam Approach

Generating a radial chirp with a concentric ring grating pair is a simple method, but has lim-

ited tunability, requiring off axis reflective axicons or other specialty optics to independently

control βBAR, δr, and chirp orientation. An alternative approach of approximating a radial

Figure 5.15: The transverse intensity before focusing for a radially polarized a) radially
chirped beam and b)-f) 4, 6, 8, 10, and 12 1D spatially chirped beam approximations.

chirp is shown using multiple beam lines that are coherently combined, which offers the ben-

efit of using conventional optics and increasing the ease of tunability, offering highly efficient,

arbitrary control over the pulse structure. Fig. 5.15 shows the transverse profile at the input

plane before a focusing optic for a positive radially chirped beam with radial polarization,

along with various numbers of 1D spatially chirped beams. The 1D spatially chirped beams

are arranged such that they have the same orientation, spatial chirp, δr, and polarization as

the radially chirped beam. This arrangement is a discrete approximation to the radial chirp,
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Figure 5.16: The transverse intensity at the focus for a radially polarized a) radially chirped
beam and b)-f) 4, 6, 8, 10, and 12 1D spatially chirped beam approximations.

and the more beams that are added, the closer it models the full spatio-temporal structure

of the radially chirped input beam.

The focal plane becomes more closely approximated to the focus of the radially chirped

beam as number of beams increases, depicted in Fig. 5.16. The primary central peak starts

to form for 6 beams, but additional high intensity lobes remain on the outside edge of the

beam. The relative, radially integrated intensity can be seen in Fig. 5.17. Once 10 beams

are used, the peak intensity of the outside edge drops to less than 10 percent. The central

lobe becomes more prominent relative to the wings as the number of beams increases. The

ability to arbitrarily control the orientation and polarization of each beam line enables the

ability to create any polarization structure with typical half- or quarter-waveplates.
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Figure 5.17: The radially integrated intensity profile at the focus for 4, 6, 8, 10, and 12 beam
approximations to the radial chirp.

5.4 Conclusion

With the increased interest in spatio-temporal control of ultrashort pulses and the study of

vector beams, it is important to study how these complex pulses evolve as they propagate

through their foci. The radially chirped beams presented have many tunable properties

and focusing effects, such as a symmetrized pulse front, variable longitudinal group velocity,

and polarization. The ability to approximate the radially chirped beam using 1D spatially

chirped beams enables the use of high efficiency optical components for the generation of

the pulse structure.
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Chapter 6

Laser-Foil Interactions with Focused

Spatially Chirped Beams

6.1 Introduction

The spatial intensity profile and PFT of the focused spatially chirped beams offers potentially

interesting interaction dynamics with a foil beyond that of the typically studied Gaussian

beam. Much of the electron and proton acceleration relates to the orientation of the electric

field oscillations when interacting with the foil and also the gradient of the intensity of the

pulse resulting in the direction of the ponderomotive force. For focused spatially chirped

beams, the pulse front curvature directly affects the intensity gradient, and the pulse front tilt

decouples the electric field oscillation from the plane of constant intensity. The particle-in-

cell code, Smilei, was used to model the laser-foil interaction. Smilei, like many PIC codes,

offers the ability to model several spatial and temporal laser pulse profiles, such as Gaussian,

trapezoidal, polynomial, along with the ability for custom profiles that are defined within

the PIC simulation window. For complex space-time coupled beams, the analytic expression
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for the field at a plane within the simulation may not be known, making it impossible to

model within Smilei. To solve this issue, enabling the study of focused spatially chirped

beam laser-foil interactions, the Fourier propagation code was implemented as a front-end to

Smilei. The field is known before focusing, which is then propagated to the edge of the PIC

simulation window. The field is then passed into Smilei with a hand off technique, where

the PIC loop then takes over the propagation and interaction dynamics. This feature enables

the study of not only focused spatially chirped beams, but any arbitrary field (as long as the

field is known at any point along its propagation path). Even measured experimental pulse

information can be imported into the front-end and propagated through the PIC simulation,

using a measured spatial profile, pulse characterization, and phase information.

6.2 Fourier Propagation Implementation

The implementation starts with a user-supplied input field defined in either position-frequency

space or position-temporal space. If the input is in temporal space, the field is first Fourier

transformed into frequency space which is required for the Fourier propagation. The field

is then focused by applying the phase of an ideal focusing optic. The field is propagated

in vacuum using Rayleigh-Sommerfeld propagation from the focusing optic to the edge of

the PIC simulation window. Additionally, the Bluestein technique is used to enable the

input plane field and focal plane field to have different sampling requirements. Typically,

the spatial scale of PW lasers before focusing are 10s of cm in diameter and are focused

down to around 10 µm in diameter. The ability to scale the two planes relative to the size

of the beam drastically reduces the computational time and memory resources needed for

the Fourier propagation. Once the field is propagated and defined at the PIC simulation

window, it is Fourier transformed to retrieve the space-time field, which is the required input

into Smilei. The field at this plane is interpolated to have the same resolution as the desired
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PIC simulation and then passed as a laser field into Smilei. At this point, Smilei fully takes

over and the simulation is initialized and the PIC loop commences.

6.2.1 Code Validation

The Fourier front-end hand-off technique is validated to give accurate fields within Smilei.

The built-in Gaussian laser in Smilei is compared to the approximated Fourier propagated

pulse (the monochromatic assumption discussed in Section 3.2), in order to match the model

used in Smilei. The parameters used in the PIC simulation and Fourier propagation are

shown in Table. 6.1. The spatial window dimensions are defined by the x, y, and z dimension

parameters. The step size of the grid resolution is defined by dx, dy, and dz, respectively.

The time duration is the extent of the temporal window, with step size dt. The Fourier code

is defined for two transverse spatial coordinates and a temporal coordinate, while the PIC

simulation has three spatial coordinates and a temporal coordinate. The input plane of the

Fourier code is defined in Table. 6.1 as the Fourier Input Grid. The plane after focusing and

propagating to the PIC simulation window is referred to as the Fourier Output Grid. PIC

Grid are the parameters for the PIC simulation.

The propagation of the two methods is compared in Fig. 6.1 for a 25 fs, 1 µm pulse focused

to a 4 µm, 1/e2 radius spot size. In both cases, the laser of focused at x = 50 µm. The

Parameters Fourier Input Grid Fourier Output Grid PIC Grid
dy 0.5882cm 0.117µm 0.0625µm
dz 0.5882cm 0.117µm 0.0625µm
dx N/A N/A 0.0625µm
dt 0.146fs 0.146fs 0.114fs

y-dimension 150cm 60µm 28µm
z-dimension 150cm 60µm 28µm
x-dimension N/A N/A 100µm

time duration 300fs 300fs 600fs

Table 6.1: Grid parameters for the laser input, laser output, and PIC grids.
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Figure 6.1: The absolute difference in electric field between the approximate form of a
Gaussian using Fourier propagation and the built-in analytic Gaussian beam, both with the
peak electric field normalized to 1. The fields are shown at three time steps throughout the
simulation, 116.7 fs, 250.13 fs, and 366.9 fs

absolute difference between the two fields at three different locations, x = 14µm, x = 50µm,

and x = 86µm are shown. The maximum absolute difference between the two cases is

less than 0.0035. The fields are not exactly symmetric about the focus due to errors that

accumulate during the propagation in the PIC simulation.

The absolute error between the full, non-approximated Fourier propagated pulse, which

captures the polychromatic nature of the pulse, is also evaluated in Fig. 6.2. There is a

Figure 6.2: The absolute difference in electric field between the non-approximate form of a
Gaussian using Fourier propagation and the built-in analytic Gaussian beam, both with the
peak electric field normalized to 1. The fields are shown at three time steps throughout the
simulation, 116.7 fs, 250.13 fs, and 366.9 fs

much more significant difference between the two pulses, as the full calculation starts to
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deviate from the approximation that is natively used in Smilei. The absolute difference

between the two fields is 0.06, an order of magnitude increase from the previously modeled

Fourier propagated pulse. This begins to illuminate that the approximate field is not quite

accurate when ultrashort pulses are considered. One of the primary differences is that the

non-approximate field focuses each frequency component to a different spot size. Typically,

the Rayleigh range and spot size are treated as a constant value with the analytic formalism.

In reality, both of these terms depend on the wavelength of light that is being focused.

One outcome of this is that there is a radially dependent frequency chirp at the focus of a

realistically focused laser pulse, where the focal spot becomes red-shifted further from the

propagation axis. This effect is shown in Fig. 6.3, where the instantaneous frequency is plot-

Figure 6.3: The normalized electric fields are shown at the focus for the a) approximate form
of Gaussian beam propagation used in Smilei, and the b) full-calculation using the Fourier
code. The instantaneous frequency is overlaid illustrating the shift in center frequency across
the transverse dimension for the non-approximate propagation.

ted over the electric field at the focus for pulses focused with and without the monochromatic

assumption. In both cases, the electric field profiles look identical, but the spectrum across

the transverse dimension significantly varies for the non-approximate field propagation. In

Fig. 6.3a, the center frequency across the transverse (y) dimension remains constant. In Fig.
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6.3b, the center frequency on-axis (at y = 0) is slightly blue-shifted, and becomes increas-

ingly red-shifted radially away from the center axis. This effect originates from the smaller

focal spot sizes of lower wavelengths at the focus and their relative intensity compared to

the larger, higher wavelength spot sizes.

To further validate the accurate propagation of the Gaussian profile, a comparison of the

laser-matter interaction of the two pulses with a hydrogen foil are simulated. Using the same

PIC parameters in Table. 6.1, both beams are focused onto a 800 nm thick hydrogen foil that

is placed 8.5 µm from the left simulation window. The lasers were modeled as 25 J, 25 fs PW

laser pulse, focused down to a 4 µm, 1/e2 spot radius on the foil. The foil had a proton and

electron density of 30nc, modeled with 16 particles per cell. The PIC simulation was done in

3D. The interaction geometry is shown in Fig. 6.4, where the simulation snapshot is shown

at 66.75 fs, right before the pulse interacts with the foil. To compare the results of the PIC

Figure 6.4: The PIC simulation window showing the foil orientation and Gaussian pulse
incident from the left window.

simulation, the energy density from both cases is shown in Fig. 6.5. The energy density is

taken at t = 383.64 fs. The analytic pulse has a peak proton energy of 173.94 MeV and

the monochromatic pulse has a peak proton energy of 174.05 MeV , which is a percent error

of 0.063% compared to the built-in Gaussian. This again is in quite good agreement, giving
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confidence in the Fourier propagation technique accurately modeling the pulse propagation

from the lens to the PIC simulation window. From these simulations, the Fourier propagated

Figure 6.5: The energy spectrum of the Fourier propagated Gaussian with monochromatic
approximations compared to the analytic Gaussian pulse. The peak energy for the monochro-
matic pulse is 174.05 MeV , and 173.94 MeV for the analytic pulse.

pulse matches the built-in analytic Gaussian beam, as long as the same assumptions are made

on the field in the Fourier propagation portion. Once those assumptions are taken out, the

field starts to diverge from the analytic expression. This is not from any introduced error,

but due to being a more accurate model of the diffractive propagation effects of a short pulse.

By using this front-end, the laser field evolves differently during propagation, and the field is

different than what is normally assumed in Smilei. These properties necessarily change the

dynamics of a laser-matter interaction, so having a more accurate description of the field is

crucial for modeling.
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6.3 PIC simulations

6.3.1 Accurate Modeling of Gaussian Beams

With the ability to accurately model the Gaussian beam in a PIC simulation, the first order-

of-matter is to look at how this description of a Gaussian beam changes the laser-matter

interaction. To look at this, the same interaction geometry and simulation parameters of

Fig. 6.5 are used. The same pulse is modeled, but the monochromatic approximations are

removed from the code. The energy density of the full diffractive propagation is compared

to the analytic solution in Fig. 6.6. The polychromatic pulse interacting with the foil

Figure 6.6: The energy spectrum of the Fourier propagated Gaussian with no approximations
compared to the analytic Gaussian pulse. The peak energy for the non-approximated pulse
is 184.37 MeV , and 173.94 MeV for the analytic pulse.

results in a peak proton energy of 184.37 MeV , a 6% increase over the analytic propagation.

This difference, while seemingly small, is indicative that accurate modeling of the laser

propagation results in a difference in proton acceleration. Only one particular case is looked
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at here, and the effect on different foil thicknesses, varying angles, different foil materials,

among other parameters was not studied.

6.3.2 1D Spatially Chirped Beams

Next are simulations detailing how SSTF beams interact with with a foil and how the PFT

affects the proton acceleration. To do this, simulations were run with laser parameters

summarized in Table 6.2 and PIC simulation parameters summarized in Table 6.3.

Laser Parameters Values
Energy 50 J

Spot Size 6 µm
Pulse Duration 25 fs

Center Wavelength 1 µm
Polarization s-polarization

Table 6.2: Laser parameters for the 1D focused spatial chirp simulations.

Simulation Parameters Values
Foil Thickness 800 nm
Time Duration 700 fs

Simulation Window (x x y) 72 µm× 56 µm
Simulation Resolution (dx x dy x dt) 20 nm× 20 nm× 0.045 fs

Particles per Cell (PPC) 128

Table 6.3: PIC parameters for the 1D focused spatial chirp simulations.

2D simulations were carried out, with the polarization of the pulse out of the plane of the

simulation (s-polarization). This is done to more accurately model the electron heating

with the reduced spatial dimensionality [98]. First simulated was how changing the PFT

effects the distribution of accelerated protons. In the following simulations, the PFT is varied

through changing the amount of spatial chirp from the modeled grating pair. The interaction

geometry for various PFTs is shown in Fig. 6.7a-c for 0o, 45o, and 60o, respectively. The

spatial chirp is modified through changing the grating separation, and gratings of 1480

lines/mm at an angle of incidence, θAOI = 52.8o were used to generate the spatial chirp. One
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Figure 6.7: PIC simulation results three different values of PFT: 0o, 45o, and 60o. The
interaction geometry at t = 236.8 fs is shown for a)-c) 0o, 45o, and 60o, respectively. The
energy divergence plots are shown for d)-f) 0o, 45o, and 60o, respectively

of the properties of the PFT interacting with the hydrogen foil is that there is a steering effect,

where the protons get preferentially accelerated towards the perpendicular direction of the

PFT. This can be seen in Fig. 6.7 for three different PFT angles of 0o, 45o, and 60o, where

0o chirp is a regular Gaussian. As the PFT angle increases, the protons get accelerated

further away from the propagation axis. An off-axis Gaussian beam also steers protons

preferentially towards the normal of the pulse front (which is along the propagation direction,

in this case). The main difference is that the off-axis Gaussian has a larger projected spot
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Figure 6.8: The energy density of four different PFT angles: Gaussian (0◦), 45◦, 55◦, 60◦.

size that is proportional to w0/ cos θ, where w0 is the focused spot size, and θ is the tilt

angle of the Gaussian. This projection lowers the peak intensity on the foil, while the SSTF

focus maintains its diffraction limited spot size and peak intensity. Another property of the

SSTF pulse interacting with a foil, is that the energy density of the accelerated protons can

be varied. In Fig. 6.8, the energy spectra for four different values of PFT are shown, 0o

(Gaussian), 45o, 55o, and 60o. The 60◦ PFT results in a larger peak proton energy than the

other PFT angles.

Next, the effects from properly modeling the spatial chirp from the single-pass grating pair

geometry are explored through the differences in the energy density of the accelerated pro-

tons. It was shown in Chapter 4 that there is a strong relationship between the pulse front

curvature and the grating arrangement used to generate the chirp, along with a different

trend altogether from the widely used linear approximation of spatial chirp. For the sim-

ulations, a linear approximation to the spatial chirp from a grating pair that results in a

PFT angle of 60o is compared to two grating arrangements with different AOIs modeled.
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Figure 6.9: The energy density of three focused spatially chirped beams with the same βBAR

before focusing. A case of an approximated linear chirp, and spatial chirp generated with a
grating pair of θAOI = 52.8o and θAOI = 32.8o are shown.

The same βBAR is generated using a grating pair oriented at 32.8o and 52.8o, resulting in

different amounts of nonlinearity. These three arrangements are modeled and propagated

through the PIC simulation. When considering the accurate spatial chirp distribution from

the grating pair, a different proton energy spectrum is observed in Fig. 6.9. The maximum

peak energy for the linear chirp approximation was 237.8 MeV . Depending on the AOI used

to generate the equivalent chirp, drastically different peak proton energies are observed. The

peak proton energies for the θAOI = 52.8o and θAOI = 32.8o are 242.3 MeV and 192.5 MeV ,

respectively. As a result of properly modeling the spatial chirp from the pulse, there was

a significant variation in the peak energy of the accelerated protons depending on grating

AOI chosen. The effects of the grating AOI on the divergence of the protons immediately

after the foil (at x = 35 µm) are shown in Fig. 6.10a. The pulse front curvature from the

low AOI grating arrangement deviates the initial distribution of the protons farther from

the propagation axis. Additionally, the FWHM of the proton divergence varies depending
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Figure 6.10: The divergence of the 60/circ PFT generated with a linear approximation and
grating arrangements using θAOI = 32.8◦, and θAOI = 52.8◦. The a) divergence at a screen
set at x = 35 µm and b) number density at a screen at x = 45 µm are shown.

on AOI. The high AOI and linear approximations have a divergence that is 1.58 times larger

compared to the low AOI grating arrangement. Fig. 6.10b shows the spatial distribution

at x = 45 µm. The protons accelerated with the PFT generated from the low AOI grating

pair manage to propagate to this position while maintaining a more narrow spread compared

to the other two cases. These results show that, with careful consideration of the grating

orientation used, different properties of the accelerated ions can be tuned. With a lower AOI

(more nonlinearity), the protons maintained a lower divergence angle at the cost of a lower

peak proton energy.

Other common spatial distributions, such as a super-Gaussian distribution, commonly seen

in PW lasers, can also be propagated. These fields are hard to describe analytically, as the

Fourier transform does not have an analytic solution. In the case of an ideal flat top beam,

the Fourier transform is a Sinc function, but typically, flat top beams follow the form of

a high-order super-gaussian distribution. An 8th order super-gaussian with the same input

spot size and normalized to the same parameters as Table 6.2 is considered. Upon interacting

with the foil, the energy density (Fig. 6.11) is quite different than that of a Gaussian pulse

(Fig. 6.6), due to a lower intensity and the introduction of side lobes at the focus.

76



Figure 6.11: The energy density of a Fourier propagated 8th order super-gaussian with a
60o PFT, normalized to the same parameters in Table 6.2. The spatial chirp was generated
with a grating AOI of 52.8◦ and 1480 lines/mm.

Figure 6.12: The energy-position phase space diagrams for a) a Gaussian pulse and b) a 60o

PFT spatially chirped pulse using parameters from Table 6.2. The color bar scale indicates
the normalized longitudinal electric field the macroparticles experience in a particular posi-
tion in the phase space.
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Another way to visualize the difference in proton acceleration for the SSTF beams is with

energy-position phase space diagrams. The phase space plots for PFT angles of 0o and 60o

generated with θAOI = 52.8o are shown in Fig. 6.12. In the 60o PFT case, the phase space

starts to expand upwards, indicating that the protons are reaching higher energies for a given

longitudinal position.

6.3.3 2D Spatially Chirped Beams

The ability of the PFT to steer the protons enables the ability to have a symmetric variation

that steers the protons towards the propagation axis, enhancing collimation and propagation

distance.

6.3.4 Radial Chirp

First, the symmetric, radial chirp generated from the output the the single-pass concentric

ring grating pair in Chapter 5 is studied. The case of symmetric chirp of Fig. 5.1c is con-

sidered, where the blue portion of the beam is on the outside edge. In this arrangement, the

pulse front structure as the beam focuses is an open cone, which gives the proper orientation

so that the PFT steers the accelerated protons towards the propagation axis. In the opposite

orientation, with red on the outside, the PFT is oriented in such a way that it would force

the protons away from the propagation axis. The PFT needs to be correctly chosen so that

enough of the protons get propelled on-axis. Too little of a PFT, and they will have too much

forward momentum, too much PFT and they will have too much transverse momentum and

pass through the propagation axis. Additionally, if the pulse is focused directly on the foil,

the pulse front doesn’t maintain a large conical structure, and not enough protons will get

accelerated. The symmetric chirp has many parameters that tune the effective PFT seen by

the foil: δr, βBAR, and the distance from the focus.
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A Bayesian optimization routine is used in order to approach a set of parameters that gives a

good confinement of protons on axis. 3D PIC simulations are used to capture the full shape

of the axisymmetric beam profile. The 3D PIC simulations used are extremely resource

hungry and doing a grid search of parameters is a time-consuming endeavor. The Bayesian

routine was used as it gives a fairly good result, relatively quickly. The laser parameters

used in the Bayesian scan that are held constant are shown in Table 6.4. The parameters

that are allowed to vary in the Bayesian scan and example values are shown in Table 6.5.

Parameters Values
Energy 25 J

Input Beam Size (win) 7.5 cm
Spot Size 4 µm

Pulse Duration 25 fs
Center Wavelength 1 µm

Polarization Radial

Table 6.4: Laser and simulation parameters for the 3D simulation of radial chirp.

Laser Parameters Values
δr 3win

Distance from Focus 36 µm
Grating Separation (60◦ PFT) 42.5 cm

Table 6.5: Laser parameters for the the 3D simulations that are varied during Bayesian
optimization and example values.

The interaction geometry for the following simulations is shown in Fig. 6.13, where the

beam comes in from the left side of the PIC simulation and interacts with the hydrogen foil

placed 8.5 µm from the left side of the simulation. The simulations were initially run at low

resolution (dx x dy x dz x dt = 62.5 nm x 62.5 nm x 62.5 nm x 0.045 fs and 16 PPC) to

help reduce computational resources while doing the Bayesian scan. The main parameter of

interest was minimizing the divergence of protons, which enables a high number of protons

to propagate to the edge of the PIC simulation window. To achieve this, the metric that

was tracked during the Bayesian scan was the energy density that made it through a probe
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Figure 6.13: The interaction geometry for the 3D radial chirp simulations shown in the y-x
plane at z=0. The laser comes in from the left boundary and interacts with a hydrogen
foil at 8.5 µm. The color map density corresponds to the density of the protons at a given
position.

in the PIC simulation at 40 µm. For the case of comparison, the proton acceleration from a

Gaussian beam interacting with the foil in this arrangement is shown in Figs. 6.14 and 6.15.

The values of number density that are presented in the following sections are normalized to

the values obtained from the Gaussian beam simulation.

The proton jet formation, divergence, and energy density for a variety of varied parameters

are shown in shown in Figs. 6.16-6.23. The density plots are shown at t = 800 fs. The side

profile of the 3D PIC simulation window at z = 0 in the y-x plane, along with a transverse

cross-section at x = 40 µm in the y-z plane are depicted for several cases of parameters that

were varied. The energy densities are shown at the time that results in the peak recorded

proton energy, and the divergence is calculated across the full transverse plane over the entire

duration of the simulation. Single parameters were varied while keeping the remaining laser

parameters fixed from Table 6.5 to isolate the effect each have on the proton acceleration.
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Figure 6.14: The accelerated protons for a Gaussian beam interacting with a hydrogen foil
at t = 800 fs. The a) longitudinal profile of the accelerated proton density in the y-x plane
at z=0 along with the b) transverse y-z plane at x = 40 µm are visualized.

Figure 6.15: The a) maximum energy spectrum at t = 583.8 fs and the b) divergence angle
are shown for the Gaussian beam.

PFT

First, all values in Table 6.5 are kept fixed expect for grating separation which varies the

PFT. PFT values of 0o, 40o, 60o, and 70o were simulated, and the collimated jets are shown

in Fig. 6.16. For the case of 70o PFT, there is an increase in number density along the

propagation axis due to the angle of the pulse front maximizing the confinement of particles.

The energy density (Fig. 6.17a) did not vary significantly when PFT was changed, in contrast

to the results from the previous section where different parameters were used. In this case,
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since the pulse hits before the focus, the spot size of the interacting field on the foil is larger

and the energy simulated was 25 J. The peak proton energy stays roughly the same across all

cases, but the divergence and number density increase with increased PFT. The increasing

PFT results in higher density in a smaller transverse spot along the propagation direction,

which increases the number density passing 40 µm. The values of collimation and number

density that propagates beyond 40 µm is compared in Fig. 6.17c,d. As PFT angle increases

the collimation trends towards getting slightly worse while the number density increases.

Foil Thickness

The foil thickness is varied while the rest of the laser parameters from Table 6.5 are kept

fixed. Hydrogen foils formed through liquid hydrogen jets have been generated [99, 100] with

thicknesses of 1 µm-5 µm, and may be pushed towards smaller thicknesses as the technology

develops. The jet formation of the thinnest foil (400 nm) in Fig. 6.18a results in a proton

jet that is much faster moving than the other cases. At the same time step, the jet is mostly

out of the PIC simulation window and many particles have left the simulation. As the foil

thickness is increased, the proton jet slows down. This trend can also be seen in Fig. 6.19a,

where the energy density for the thinner foil has a much higher peak energy compared to the

thicker foils. The three foil thicknesses all maintain a similar divergence angle. The number

density that passes 40 µm varies between the three cases, and is a balance between number

of particles in the foil and the speed the protons are accelerated to. The 400 nm foil has half

as many particles as the 800 nm foil and so there are less particles to accelerate, lowering

the value of the metric shown in Fig. 6.19d. The 800 nm foil has the largest number of

protons, but they are accelerated to the slowest speeds. There is a balance between these two

competing effects, and the case in between (600 nm) results in the largest number density

reaching 40 µm.
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Foil Position

Simulations where the foil position is varied are examined, where the varied distance indicates

how far the foil is set before the geometric focal length of the lens. All three cases show

jet-like structures in Fig. 6.20, with the case of a 31 µm offset (Fig. 6.20c) having a fast

moving jet, where a majority of protons have already left the simulation window after 800 fs.

Again, this is related to the much higher energy density compared to the other cases in Fig.

6.21a. As the foil gets closer to the focus, the peak intensity that the foil experiences starts

to grow, and there is a correlation of higher peak energies for higher a0 values. Collimation

gets slightly better for the foil that is closer to the focus, with the number density metric

varying in a similar manner to the previous case of varied foil thickness. The foil distance

closer to the focus (31 µm), results in much higher energies, but overall has a lower number

of protons that get accelerated. Since it hits closer to the focus, the projected spot size on

the foil is smaller, and so a reduced area of protons experience the accelerating effects of

the electric field. This can be seen in Fig. 6.20a-c, where Fig. 6.20c has a larger quantity

of protons left at the original foil position of 8.5 µm. The foil position set 41 µm away

experiences the inverse effect, where the intensity is lower from being farther away from the

geometric focus (thus lower peak proton energy) but has a larger spot on the foil. The case

in the middle at 31 µm is again a sweet spot, where there is a balance between the two

effects of peak a0 and total number of protons accelerated.

Radius of Radial Chirp (δr)

Varying δr changes the angle of the phase fronts with respect to the propagation axis.

Changing this angle changes the size of the radially chirped beam as it propagates towards

the focus, and changes the spot size at the focus through increased frequency of interference

patterns (see Fig. 5.7). Again, there is a trend that for one particular case, the peak proton
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energy is much larger than the others. Fig. 6.22a has much higher energy protons than the

other cases simulated, and so the protons have already left the simulation window at this

time step. The energy density shown in Fig. 6.23a indicates a drastic increase in proton

energy for the δr = 2win case. Since the spacing between the the optical axis and the center

wavelength in the radial chirp is smaller, the beam actually propagates with its intensity

profile closer to the axis, resulting in a smaller spot and higher intensity as it hits the foil

before its focus, leading to higher peak proton energies. The collimation across the cases is

relatively constant, with the larger values of δr leading to slightly worse collimation. The

number density in Fig. 6.23d shows the highest peak energy resulting in the lowest number

density propagating. Again, this is due to the fact that the spot size was smaller on the

foil, resulting in a smaller areal density of protons being accelerated, but accelerated more

quickly. The other values of δr, 2.75win and 2.9win, give similar spot sizes (and intensities),

and so do not vary much in energy density or number density.
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Figure 6.16: The accelerated protons for various radially chirped beams interacting with a
hydrogen foil at t = 800 fs. a)-d) are y-x plots at z = 0 from PIC simulations where the
PFT of the beam is set to 0o, 40o, 60o, and 70o, respectively. e)-h) are y-z plots of the
transverse cross section of the simulation at x = 40 µm.
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Figure 6.17: The a) energy spectrum at the time of maximum proton energy, b) divergence
over the simulation window, c) variation of the FWHM of divergence, and d) total number
density of protons at 40µm is compared for four different angles of PFT: 0o, 40o, 60o, and
70o.
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Figure 6.18: The accelerated protons for various radially chirped beams interacting with a
hydrogen foil at t = 800 fs. a)-c) are y-x plots at z = 0 from PIC simulations where the
foil thickness is varied from 400 nm, 600 nm, and 800 nm, respectively. d)-f) are y-z plots
of the transverse cross section of the simulation at x = 40 µm.
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Figure 6.19: The a) energy spectrum at the time of maximum proton energy, b) divergence
over the simulation window, c) variation of the FWHM of divergence , and d) total number
density of protons at 40µm is compared for three different foil thicknesses: 400 nm, 600 nm,
and 800 nm.
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Figure 6.20: The accelerated protons for various radially chirped beams interacting with a
hydrogen foil at t = 800 fs. a)-c) are y-x plots at z = 0 from PIC simulations where the foil
position in front of the focus is varied from 41 µm, 36 µm, and 31 µm, respectively. e)-h)
are y-z plots of the transverse cross section of the simulation at x = 40 µm.
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Figure 6.21: The a) energy spectrum at the time of maximum proton energy, b) divergence
over the simulation window, c) variation of the FWHM of divergence , and d) total number
density of protons at 40µm is compared for three different foil positions from the focus:
41 µm, 36 µm, and 31 µm.
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Figure 6.22: The accelerated protons for various radially chirped beams interacting with a
hydrogen foil at t = 800 fs. a)-c) are y-x plots at z = 0 from PIC simulations where the
distance of the center frequency to the propagation axis, δr, is varied from 2win, 2.75win,
and 2.9win, respectively. e)-h) are y-z plots of the transverse cross section of the simulation
at x = 40 µm.
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Figure 6.23: The a) energy spectrum at the time of maximum proton energy, b) divergence
over the simulation window, c) variation of the FWHM of divergence , and d) total number
density of protons at 40µm is compared for three different values of δr: 2win, 2.75win, and
2.9win.
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The collimating effect originates from the initial acceleration of the protons from the beam

steering effects of the PFT when interacting with the foil. At a later time, once a sufficient

number density of electrons and protons are along the axis, a collimating magnetic field

forms. This field originates from a slight charge separation along the jet, where electrons

lead in time after accelerating first from the foil due to their much smaller mass compared

to the protons. The magnetic field at t = 800 fs is shown in Fig. 6.24a. This creates a force

Figure 6.24: The a) collimating magnetic field shown at t = 800 fs. The trajectory for
two protons at multiple time steps is shown in b), with arrows showing the direction and
magnitude of the v ×B force they experience.

on the protons, which is plotted in Fig. 6.24b for two proton macroparticles that are tracked

through the simulation at various time steps. The force is calculated as v × B to highlight

the inward force the magnetic field has on the protons, directing them towards the axis. The

length of arrow correlates to the magnitude of the force, and a longer arrow corresponds to a

larger force. Once they are on axis, the amplitude of the transverse magnetic field diminishes.

Additionally, the jet consists of a quasi-neutral collection of protons and electrons, which

helps reduce any repulsive coulomb forces, enabling the jet to stay collimated for longer.
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6.3.5 Radial Chirp Approximations

The radial chirp is the most straight-forward version of symmetric chirp, but has limitations

in practice. Petawatt lasers reach large intensities, even when not focused, and special care

must be taken in order to not damage optics. If concentric ring gratings are to be considered,

it must be mentioned that there are several practical limitations that result in the scheme

not being currently achievable in practice. First, the natural output of the grating pair

results in the low frequency being diffracted at larger angles, resulting in the redder portion

of the beam on the outside, and blue on the inside. To have the proper orientation of PFT

that was simulated in the previous section, it would require the orientation of the spatial

chirp to be inverted. This could be achieved with a pair of reflective axicons with high

damage thresholds and large enough apertures to fully reflect the unfocused PW beam,

which currently have never been manufactured. The pair of reflective axicons would also be

needed to tune δr. Additionally, the concentric ring gratings that are manufactured currently

are meant for low intensity applications and, as a result, are transmission gratings and

small aperture. PW beamlines require reflective optics which have high damage thresholds

and do not have B-integral accumulation issues like transmissive optics. Finally, there are

polarization inefficiencies from the concentric ring structure that would require radial or

azimuthal polarizations as input to the compressor. To avoid all of these issues and also

reduce the complexity of the system needed for tuning parameters and inefficiencies, the

radial chirp can be approximated as a superposition of properly arranged 1D spatially chirped

beams as discussed in Section 5.3.6.

Simulations were run using 2, 4, 6, and 8 beam approximations of the 60o PFT radially

chirped case and oriented to have a radial polarization. Each beam is modeled as the output

of a cascading beam splitter arrangement, with a schematic similar to that shown in Fig.

6.25. In this type of system, the goal is to split the original beam into N identical copies,

each with 1/N the total energy of the original pulse. To achieve this, the beam splitters must
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Figure 6.25: An example of a cascading beam splitter arrangement that could be used to
generate identical copies of a pulse.

have a beam splitting ratio appropriately set. To make four copies, the first beam splitter

needs a beam splitting ratio of reflection to transmission of 3:1. This causes 75% of the

energy to reflect, and 25% to transmit. The next encountered beam splitter needs a ratio of

1:2, where 33% of the new beam is reflected (which is 25% of the original beam energy) and

66% transmitted. The last split requires a 1:1 beam splitter, resulting in 50% of the beam

being transmitted and reflected (or 25% each of the original beam energy). This creates

four beam copies, each with 1/4 of the original beam energy. This similar procedure would

need to be followed for any arbitrary number of copies. The beam steering optics needed for

this would require reflective optics to properly orient the spatially chirped beam (from Fig.

5.15, for example). Half-waveplates would also be needed to achieve proper orientation of

the polarization.

The simulation results for the various beam approximations are visualized in Fig. 6.26 using

the parameters from Table 6.5. As the number of beams increases, the axial confinement

of the proton jet increases. For the 2 beam arrangement in Fig. 6.26a,e, there is very little
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jet formation. As the number of beams increases to 4, a jet starts to appear. In Fig. 6.26f,

there is an apparent leakage of protons along the axis where there is no beam on the foil.

This leakage diminishes as the number of beams increases in Figs. 6.26e-h, and explains

the decreasing divergence angle of Figs. 6.27b,c and the increasing number density of Fig.

6.27d. The more leakage of protons due to worse confinement, the worse the collimation and

number density. The central core of the 4, 6, and 8 beam remains relatively confined and low

divergence, but the metric for collimation is over the entire simulation window to account

for the stray protons that diverge. The decrease in energy density as more beam copies are

focused on the foil originates from the energy per beam. In the 2 beam case, each beam

has half the initial energy from an even 50:50 beam split (12.5 J each) and so has a larger

intensity and, as a result, higher peak proton energies. As the beam number increases, the

energy per beam decreases, and so does peak proton energy.
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Figure 6.26: The accelerated protons for various radially chirped beams interacting with a
hydrogen foil at t = 800 fs. a)-d) are y-x plots at z = 0 from PIC simulations where the
PFT of the beam is set to 60o, and 2, 4, 6, and 8 beam approximations of the radial chirp
are modeled, respectively. e)-h) are y-z plots of the transverse cross section of the simulation
at x = 40 µm.
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Figure 6.27: The a) energy spectrum at the time of maximum proton energy, b) divergence
over the simulation window, c) variation of the FWHM of divergence , and d) total number
density of protons at 40 µm is compared for four different beam numbers: 2, 4, 6, and 8.
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6.3.6 Comments on Resolution and Assumptions

Throughout the presented work, several assumptions have been made. First, a perfect tem-

poral and spatial Gaussian distribution for the laser pulse was assumed. The temporal

profile of a realistic PW laser pulse typically has a temporal pedestal that leads and trails

the primary peak. The leading edge will interact with the foil first, causing an expansion

of the foil with an exponential profile. This preplasma was not modeled, and the hydro-

gen foil considered was treated as a step function in its spatial distribution. A preplasma

is expected to change the interaction dynamics of the pulse interacting with the foil. The

goal of the presented work was to preliminarily study the potential efficacy of the proposed

space-time coupled laser interactions, and show the potential benefit on the accelerated pro-

tons in an idealistic setting. The hydrogen foil was also treated as an initially fully ionized

species, which, for the intensities considered, is a good approximation. Hydrogen requires

around 1016 W/cm2 to become fully ionized, and the intensities considered were in excess of

1021 W/cm2.

Additionally, the groove densities of the gratings are not the most efficient selection for

the laser light simulated. For Ti:Sapphire centered at a wavelength λ0 = 800 nm, groove

densities of 1480 lines/mm are optimal. For large aperture Nd:glass systems, the wavelength

is centered near λ0 = 1057 nm and utilize gratings around 1700 lines/mm. The gratings

used change the spatio-temporal profile of the focused beam, and so different parameters

would need to be varied and simulations conducted for a given arrangement to optimize the

accelerated protons.

All of the 3D simulations shown were at very coarse resolution. This was necessary, as

the computational resources needed to run every case at a sufficiently high resolution were

beyond what was available for the duration of this work. Three cases were looked at with

an improved grid resolution, dx × dy × dz, of 20 nm × 41.67 nm × 41.6 nm. Fig. 6.28a,b
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show the low resolution results for a 0o and 60o PFT radial chirp. Fig. 6.28c,d show the high

resolution results for the same cases. A collimated proton jet still forms in the high resolution

simulations, with a different density profile compared to the low resolution counterparts. The

energy densities vary slightly (Fig. 6.29a), achieving slightly higher peak proton energies in

the high resolution simulations. Figs. 6.29b,c show that both simulations maintain low

divergence, with a slight increase in collimation seen for the higher resolution. A similar

increase in proton number density is observed from 0o to 60o in both resolution cases, with

there being a more significant difference between PFT angles when using a smaller spatial

step size, where the 0o case is worse overall, and the 60o chirp is better.

It was also validated that doing a multi-beam approximation holds when using a finer grid

mesh. Fig. 6.30 shows the low resolution, 4 beam jet compared to the high resolution 4

beam jet. As the resolution was increased, a jet was still formed but with more spatial inho-

mogeneities. The high resolution simulation had a similar peak energy as the low resolution

(Fig. 6.31(a)) and had a similar trend in collimation. The number densities were also quite

similar in the 4 beams in Fig. 6.31(d). The overall trend between the radial simulation and

the 4 beam approximation varied slightly with the increase in resolution, but the primary

result of interest is that the proton jet still forms when considering a finer spatial resolution.
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Figure 6.28: The accelerated protons for various radially chirped beams interacting with a
hydrogen foil at t = 800 fs. a),b) are y-x plots at z = 0 from PIC simulations where the
PFT of the beam is set to 0◦ and 60◦, respectively, for the low resolution 3D simulation
parameters. c),d) are the same parameters for the high resolution simulations. e)-h) are y-z
plots of the transverse cross section of the simulations at x = 40 µm
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Figure 6.29: The a) energy density at the time of maximum proton energy, b) divergence
over the simulation window, c) variation of the FWHM of divergence , and d) total number
density of protons at 40 µm is compared for two different PFT angles (0◦ and 60◦ for both
low and high resolution simulations.
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Figure 6.30: The accelerated protons for various radially chirped beams interacting with a
hydrogen foil at t = 800 fs. (a),(b) are y-x plots at z = 0 from PIC simulations of a 4 beam
approximation of the radial chirp with parameters defined in Table 6.4 for the low and high
resolution simulations, respectively. (c),(d) are y-z plots of the transverse cross section of
the simulations at x = 40 µm
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Figure 6.31: The a) energy density at the time of maximum proton energy, b) divergence
over the simulation window, c) variation of the FWHM of divergence , and d) total number
density of protons at 40 µm is compared for the radial chirp and the 4 beam approximation,
for both low and high resolution simulations.
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6.3.7 Conclusion

There are many ion acceleration schemes that rely on shaped targets to increase the max-

imum energy and enhance the axial confinement of accelerated protons. Specially tailored

targets are difficult to manufacture and require shot-to-shot alignment. As petawatt lasers

push towards multi-hertz operation, flat targets and hydrogen targets enable ion acceleration

schemes operating at multiple shots per second. Instead of tailoring the target geometry,

shaping of the laser pulse is an alternative method for increasing collimation of laser ac-

celerated protons from a target. Focusing a spatially chirped beam, whether is a 1D chirp

or 2D axisymmetric chirp, results in enhancements to accelerated protons from a hydrogen

foil. The focal volume structures generated from a 1D spatial chirp results in proton beam

steering and different maximum proton energies. Variation in the spatial distribution and

collimation of accelerated protons was observed depending on the grating pair used to gen-

erate the spatial chirp, indicating the need for accurate modeling of the spatial chirp from a

grating pair.

Axisymmetric spatial chirp utilizes the beam steering effects from the PFT to accelerate

protons on-axis to generate a jet of protons. The accelerated protons and electrons introduce

a self-generated magnetic field that creates an additional source of collimation through a

J × B force that points toward the propagation axis. Varying any of the many parameters

of the 2D chirp results in a tuning of the energy density, divergence angle, and number

density, but in all cases a jet was still formed. A highly collimated jet of protons may be

generated with only four 1D spatially chirped beams with proper orientation. Once the laser

parameters are within a regime where collimation occurs, it is a relatively robust method for

generating a proton jet.
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Chapter 7

Conclusions and Future Outlook

In this thesis, it was shown that pulse front tilt, a simple space-time coupling generated

from a focused spatially chirped beam, resulted in favorable and tunable characteristics of

accelerated protons. The PFT generated from this focused pulse structure enabled proton

beam steering and improved collimation. Highly collimated proton jets were formed that

were able to propagate and maintain densities above nc by arranging just four 1D spatially

chirped beams in a particular orientation. Only one spatio-temporal coupling was studied

and was shown to have significant effects on the proton beam structure. The study of other

space-time couplings, such as spatial chirp and angular dispersion, and beam profiles beyond

that of an ordinary Gaussian beam may lead to interesting laser-matter interactions. More

complex beam shapes, higher order spatial modes, complicated phase profiles, and different

polarization states could result in different interaction dynamics that may lead to useful ion

beam properties.

Additionally, the thesis maintained an emphasis on accurate descriptions of laser pulse prop-

agation. Assuming a particular analytic beam profile, which is a common assumption when

modeling a laser-plasma interaction, leads to an idealized interaction geometry. The resulting
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accelerated ions from such an interaction may not align with observations from experiments.

In reality, the spatial and temporal distributions of a PW laser pulse are not described by

simple analytic expressions, and making approximations on these profiles could influence

accelerated ion characteristics. The code developed provides the capability of modeling any

arbitrary beam and pulse profile, whether it is described analytically or with measured val-

ues, and propagates the pulse throughout a system with a high degree of accuracy. Through

improved models of the propagation, more realistic profiles may be used in PIC simulations

to enable a closer match of simulation to experiment.
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Appendix A

Time Evolution of Proton Jets

The proton jets for all cases shown are displayed at various time slices (t = 350.2 fs,

t = 500.4 fs, and t = 650.4 fs) to present the evolution of the jet.
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Figure A.1: The accelerated protons for a PFT of 0◦ shown at a) t = 350.2 fs, b) t =
500.4 fs, and c) t = 650.4 fs
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Figure A.2: The accelerated protons for a PFT of 40◦ shown at a) t = 350.2 fs, b) t =
500.4 fs, and c) t = 650.4 fs
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Figure A.3: The accelerated protons for a PFT of 60◦ shown at a) t = 350.2 fs, b) t =
500.4 fs, and c) t = 650.4 fs
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Figure A.4: The accelerated protons for a PFT of 70◦ shown at a) t = 350.2 fs, b) t =
500.4 fs, and c) t = 650.4 fs

125



Figure A.5: The accelerated protons for a foil thickness of 400 nm shown at a) t = 350.2 fs,
b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.6: The accelerated protons for a foil thickness of 800 nm shown at a) t = 350.2 fs,
b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.7: The accelerated protons for a foil position of 31 µm before the laser focus shown
at a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.8: The accelerated protons for a foil position of 41 µm before the laser focus shown
at a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.9: The accelerated protons for a δr = 2win shown at a) t = 350.2 fs, b) t =
500.4 fs, and c) t = 650.4 fs
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Figure A.10: The accelerated protons for a δr = 2.75win shown at a) t = 350.2 fs, b)
t = 500.4 fs, and c) t = 650.4 fs
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Figure A.11: The accelerated protons for a δr = 2.9win shown at a) t = 350.2 fs, b)
t = 500.4 fs, and c) t = 650.4 fs
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Figure A.12: The accelerated protons for a 2 beam approximation of a PFT 60◦ shown at
a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.13: The accelerated protons for a 4 beam approximation of a PFT 60◦ shown at
a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.14: The accelerated protons for a 6 beam approximation of a PFT 60◦ shown at
a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.15: The accelerated protons for a 8 beam approximation of a PFT 60◦ shown at
a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.16: The accelerated protons of the high resolution simulation for a PFT of 60◦

shown at a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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Figure A.17: The accelerated protons of the high resolution simulation for a 4 beam approx-
imation of a PFT 60◦ shown at a) t = 350.2 fs, b) t = 500.4 fs, and c) t = 650.4 fs
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