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Kathleen Suzanne Johnson Preston1 and
Steven Paul Reise2

Abstract

The nominal response model (NRM), a much understudied polytomous item
response theory (IRT) model, provides researchers the unique opportunity to evalu-
ate within-item category distinctions. Polytomous IRT models, such as the NRM, are
frequently applied to psychological assessments representing constructs that are
unlikely to be normally distributed in the population. Unfortunately, models esti-
mated using estimation software with the MML/EM algorithm frequently employs a
set of normal quadrature points, effectively ignoring the true shape of the latent trait
distribution. To address this problem, the current research implements an alternative
estimation approach, Ramsay Curve Item Response Theory (RC-IRT), to provide
more accurate item parameter estimates modeled under the NRM under normal,
skewed, and bimodal latent trait distributions for ordered polytomous items. Based
on the results of improved item parameter recovery under RC-IRT, it is recom-
mended that RC-IRT estimation be implemented whenever a researcher considers
the construct being measured has the potential of being nonnormally distributed.

Keywords
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Unidimensional item response theory (IRT) models are most frequently fitted with

marginal maximum likelihood (MML; Bock & Lieberman, 1970) estimation, which
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assumes that (a) the examinees are independent; (b) item responses are independent,

conditional on the latent trait, u; and (c) the probability distribution of the population

of examinees must be specified prior to estimation of the item parameters (Bock &

Aitkin, 1981; Bock & Lieberman, 1970). For this third assumption, any shape of the

latent trait distribution can be specified; however, current computer software over-

whelmingly implements a normally distributed set of quadrature points, thus creating

a normal latent trait distribution. Unfortunately, the true latent trait distribution in the

population is unobservable, and frequently studied psychological constructs such as

depression and pain may be particularly unlikely to have a normal latent trait

distribution.

Furthermore, many psychological constructs fall along a continuum, which are

arguably better assessed by Likert-type response formats over dichotomous scoring,

with response options such as strongly disagree to strongly agree, not at all like me

to very much like me, or never occurs to always occurs. Polytomous IRT models

allow estimation of multipoint Likert-type response formats and allow scale con-

structors to conduct a more informed analysis of polytomous items. Additionally,

scale constructors have the opportunity to evaluate the functioning of each within-

item category distinction by using a largely understudied polytomous IRT model, the

nominal response model (NRM; Bock, 1972, 1997).

Fortunately, recent developments have been made in IRT estimation procedures,

such as Ramsay curve item response theory (RC-IRT; Woods & Thissen, 2006), pro-

mising accurate item parameter recovery. This estimation methodology is implemen-

ted in RCLOG (Woods & Thissen, 2006) and EQSIRT (Multivariate Software,

2010); however, only EQSIRT allows RC-IRT estimation under the NRM. Further

advancements in user-accessible IRT software, such as EQSIRT, permit easy and

accurate IRT model estimation of nonnormal data. However, it remains undeter-

mined whether analyzing nonnormal data under the NRM with EQSIRT using RC-

IRT estimation actually produces more accurate item parameter estimates. It is,

therefore, the purpose of this study to evaluate the recovery of category boundary

discrimination (CBD) parameters using RC-IRT as estimated using EQSIRT for

ordered categorical data under the NRM.

Effects of Nonnormality

Frequently, substantive researchers assessing psychological constructs fit IRT models

to data sets without assessing the shape of the latent trait distribution and posit the

parameter estimates produced will be unbiased (e.g., Cooper, Balsis, & Zimmerman,

2010; Kim, Kim, & Kamphaus, 2010; Meade, 2010; Purpura, Wilson, & Lonigan,

2010; Samuel, Simms, Clark, Livesley, & Wigider, 2010; Thomas & Locke, 2010).

Contrary to the beliefs held by many substantive researchers, simulation research

indicates that results from IRT models can be nontrivially biased when the true popu-

lation distribution is nonnormal (Abdel-fattah, 1994; Boulet, 1996; de Ayala & Sava-

Bolesta, 1999; DeMars, 2003; Kirisci, Hsu, & Yu, 2001; Seong, 1990 ; Stone, 1992;
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van den Oord, 2005; Zwinderman & van den Wollenberg, 1990). Specifically, MML

estimates of item parameters increase in bias as the distribution deviates further from

normality (Boulet, 1996; Stone, 1992; Woods, 2006, 2007a, 2007b, 2008; Woods &

Lin, 2009; Woods & Thissen, 2006).

Seong (1990) found parameter estimation accuracy can be improved by increasing

the test length, number of quadrature points, and specifying a prior distribution that

matches the true shape of the latent trait distribution. Unfortunately, the shape of the

latent trait distribution in the population is never known making the implementation

of these recommendations unrealistic. Additionally, most studies assessing item para-

meter accuracy are conducted on dichotomous IRT models, specifically the 2- or 3-

parameter logistic models (Abdel-fattah, 1994; Boulet, 1996; Kirisci et al., 2001;

Stone, 1992; van den Oord, 2005; Zwinderman & van den Wollenberg, 1990). In fact,

to our knowledge, the only research that has investigated item parameter recovery in

the NRM was conducted by de Ayala and Sava-Bolesta (1999) and DeMars (2003).

De Ayala and Sava-Bolesta (1999) manipulated a number of factors to investigate

the relationship between the ratio of the sample size to the number of parameters to

be estimated, latent trait distribution, maximum item information, and item para-

meter estimation with the NRM. Results of their simulations showed that manipulat-

ing the information and the sample size to parameter ratio had similar, but inverse,

effects on both the CBD and intersection parameter recovery. Specifically, bias in

item parameters increased as the maximum item information increased and as the

sample size to parameter ratio decreased. Manipulating the distribution of the latent

trait (i.e., skew and kurtosis) also affected the estimation accuracy of CBD para-

meters. They recommended increasing the sample size as one means of increasing

the number examinees responding to an unattractive option as determined by the

degree of nonnormality, and therefore increasing the accuracy of the item parameter

estimates.

DeMars (2003) expanded on the research conducted de Ayala and Sava-Bolesta

(1999) by evaluating item parameter recovery in the NRM under variations in ratio

of total number of item parameters to sample size as determined by test length, num-

ber of response options, and sample size. They also manipulated the shape of the

latent trait distribution and average within-item category boundary discrimination.

Error variance of the item parameter estimates increased with increases in the number

of response options and average within-item category discrimination. Additionally,

biases in item parameters were identified when the shape of the latent trait distribu-

tion was skewed. DeMars (2003) suggests that the ratio of sample size to the number

of response categories, as opposed to the ratio of sample size to total number of item

parameters, is the greatest determinant of item parameter estimation accuracy.

Nominal Response Model

The NRM has the unique ability to evaluate the functioning of each within-item cate-

gory distinction, termed CBD parameters. The size of a CBD indicates the amount
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of relative information provided by adjacent response categories (e.g., the degree to

which a response in Category 3 vs. Category 2 differentiates among people on the

latent trait). Also estimated under the NRM are intersection parameters, which iden-

tify the point on the latent trait where an individual is likely to respond in adjacent

categories. It follows that the NRM is considered the most general divide-by-total

polytomous model, because this model allows for the most flexibility in parameter

estimation, and all other divide-by-total models are constrained versions of the NRM

(de Ayala, 2009; Ostini & Nering, 2006; Thissen & Steinberg, 1986). Preston and

Reise (2013) illustrate several potentially useful applications of the NRM including

exploring whether (a) CBD parameters vary within an item, (b) an item contains too

many response options, and (c) response options are ordered.

The NRM can be used to model completely nominal items, multiple choice items,

partially ordered items, and completely ordered items. In the NRM, the conditional

probability of an individual with trait level u responding in category x (x = 0, . . . , mi)

on item i can be written as

Pix(u) =
exp (aixu + cix)

Pm
x = 1 exp (aixu + cix)

, ð1Þ

where, for identification, Saix = Scix = 0 (or, in some cases, that the parameters for

the lowest response category ai1 = ci1 = 0). This constraint forces one response option

to have a monotonically increasing CRC (the one with the most positive a), and one

response option to have a monotonically decreasing CRC (the one with the lowest a).

The category slope, aiz, should not be confused with the CBD parameter, a*ix, which

determines the amount of relative information provided by a response in category x

versus responding in adjacent category x2 1. The category intercept parameters, cix,

in Equation 1 are not intersection parameters,

c�j =
c(x�1) � cx

ax � a(x�1)

; ð2Þ

rather, they reflect the relative popularity of the response option. Specifically, the

intersection parameters, c*j, identify the point on the latent trait where an individual

is equally likely to respond in adjacent categories.

Ramsay Curve IRT

RC-IRT (Woods & Thissen, 2006) is a new method for fitting IRT models for which

the latent trait distribution is assumed differentiable and strictly positive, but not

necessarily normal. This approach combines MML/EM item parameter estimation

(Bock & Aitkin, 1981; Bock & Lieberman, 1970) with a spline-based density approx-

imation procedure described by Ramsay (2000). Specifically, in RC-IRT the distribu-

tion of the latent trait is estimated, instead of the default normal distribution as in

traditional in MML. In the E step of the EM algorithm (Bock & Aitkin, 1981), the
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total number of people at each quadrature point is estimated using the current charac-

terization of the latent trait distribution. The normal distribution is used to start. In

the M step, after the likelihoods for each item are maximized, the likelihood of the

current characterization of latent trait distribution is maximized as approximated as a

Ramsay curve using basis spline (B-spline) functions (de Boor, 2001). The shape of

the Ramsay curve is determined by a combination of B-splines through the specifica-

tion of the order of each B-spline polynomial function joined together at a specified

number of knots. As implemented in EQSIRT, the order of the polynomial, termed

degree, and the number of knots must be chosen by the computer user, and they

determine the number of B-splines, m, used during latent trait estimation

m = d + 1ð Þ+ number of knots� 2, ð3Þ

where d is the degree of the polynomial function producing each spline (e.g., d = 2

produces splines with one bend; d = 3 produces splines with two bends; and d = 4

produces splines with three bends), and a knot is the point on the latent trait where

separate B-splines are joined together. Woods and Thissen (2006) determined that

larger order and/or more than two knots produce increasingly nonnormal Ramsay

curves.

Demonstration

Here, a brief example is provided to demonstrate the severity of NRM parameter esti-

mation bias caused by nonnormality when analyzed with MML, implementing a nor-

mal prior distribution, and the improvement in item parameter recovery when RC-

IRT is implemented. For this demonstration, responses to ten 4-category items were

simulated for 1,000 simulees. The CBD parameters were simulated as highly discri-

minating, 1.5, or moderately discriminating, 0.75, and were constrained to equality

within an item. The intersection parameters were simulated as symmetric and fixed to

21.0, 0, and 1.0 across conditions. Figure 1 displays the true shape of the latent trait

distribution that was simulated as normal, skewed (skew = 1.75, kurtosis = 6.75), and

bimodal (described in detail below). Each of the six conditions was replicated 1,000

times. As seen in Table 1, the CBD parameters, highly discriminating and moderately

discriminating, are recovered with excellent accuracy when the true shape of the

latent trait distribution is normal. However, as the shape of the distribution deviates

further from normality, the CBD parameter estimates become increasingly down-

wardly biased. This bias is more pronounced in items with more highly discriminat-

ing CBD parameters.

The estimated highly discriminating CBD parameters under the normal, skew,

and bimodal conditions are also depicted graphically in Figure 2A, B, and C, respec-

tively. Each plot in Figure 2 displays the 95% confidence interval around the CBD

estimates for each estimated CBD parameter per item. Specifically, three CBD para-

meters were estimated for each 4-category item, so each item is represented by three

tick-marks along the x-axis. A horizontal line is drawn across each plot to represent
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Figure 1. True shape of the latent trait: (A) standard normal distribution, (B) skewed
distribution, and (C) bimodal distribution.

Table 1. Demonstrating Effects of Nonnormality Under the NRM for a 10-Item Test With 4
Response Options (1,000 replications).

Latent trait distribution

Demonstration results

a* a* (SE) Bias RMSE

Normal 1.50 1.512 (0.187) 0.012 0.188
Normal 0.75 0.755 (0.138) 0.005 0.138
Skew 1.50 1.322 (0.187) 20.178 0.595
Skew 0.75 0.679 (0.140) 0.071 0.281
Bimodal 1.50 1.465 (0.192) 0.121 0.260
Bimodal 0.75 0.755 (0.138) 0.050 0.112
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the true CBD parameter. Within each plot, the sampling distribution of the estimated

CBD parameters for each item is displayed as a vertical 95% confidence band with

the average estimated CBD parameter for the item plotted as a dot along the confi-

dence bar. Visual inspection of this plot makes it obvious that nonnormality greatly

affects item parameter recovery under the NRM.

In Figure 2A, the average estimated CBD parameters are plotted very close to the

true CBD parameter and the sampling distribution is quite narrow. However, as the

distribution of the latent trait increases in skew and kurtosis, the sampling distribu-

tion of the recovered CBD parameters become more variable and the average esti-

mated CBD parameters drift further from the simulated value. Specifically, a pattern

manifested under both the skew and bimodal distribution conditions such that the

first CBD parameter for each item is underestimated, the second CBD parameter is

fairly accurately estimated, and the third CBD parameter is consistently

Figure 2. Average CBD parameter estimates and 95% confidence bands under (A) normal,
(B) skewed, and (C) bimodal distributions. (D) The average CBD parameter estimates and
95% confidence bands under the high skew distribution estimated with RC-IRT (1,000
replications).
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overestimated. Unfortunately, since the CBD parameters were constrained to equality

within the item, when averaged the estimates were averaged; the parameters appear

as though they are accurately estimated. This pattern, which was more pronounced in

the skewed distribution condition, is expected considering that when the distribution

of the latent trait is incorrect, the expectation of the probability distribution for each

of these categories is wrong.

In an effort to estimate CBD parameters more accurately, the high skew condition

with highly discriminating CBD parameters was estimated under the NRM again,

but using the RC-IRT estimation algorithm with the EQSIRT program defaults, order

of 3 and 4 knots. The recovered CBD parameters and 95% confidence band, dis-

played in Figure 2D, are more accurately estimated with the average estimated CBD

parameter of 1.373 (.209), average bias of the CBD parameters only 2.127, and

RMSE = .273. Using RC-IRT to account for and model the nonnormality of the dis-

tribution provides a marked improvement over imposing a normal prior distribution

with MML estimation. Specifically, the overestimation of the third CBD parameter

is greatly reduced, but the first CBD parameter is still considerably underestimated.

The results of this demonstration support the importance of evaluating the recovery

of CBD parameters using RC-IRT as estimated using EQSIRT for ordered categori-

cal data under the NRM.

Method

Design

Manipulated variables were determined by prior research suggesting factors that

influence item parameter recovery, producing 144 simulation conditions, which

include the following: (a) within-item CBD variation; (b) sample size; (c) distribu-

tion of the latent trait, u; (d) order of the polynomial; and (e) number of knots. All

conditions were simulated with 10 items containing 4 response options each, and

CBD parameters were manipulated consistently across all conditions. The distances

between intersection parameters were manipulated according to the distribution of u,

as described below. The conditions with a normally distributed latent trait, u, esti-

mated with order of 2 and 2 knots (Woods, 2006) are considered the null conditions

because it is the same as assuming a normal distribution and all results will be com-

pared with those conditions.

Factors Influencing Item Parameter Recovery
CBD Parameters. Adapting Preston and Reise (2013), the average size of the CBD

parameter was set to 1.00, indicating moderate discrimination. To create items with

variation in the CBD parameters, values were drawn randomly from a uniform distri-

bution. The minimum and maximum values of the distribution originated at 1.00, a

moderate discrimination, which constrained the within-item CBD parameters to

equality creating data under the generalized partial credit model. The maximum
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value of the distribution increased by .25 and the minimum values of the distribution

decreased by .25, creating variation in within item CBD parameter that increased in

increments of .5 for each condition. The range of the distribution increased by incre-

ments of .5 until the minimum value of the distribution reached .25.

Intersection parameters. DeMars (2003) showed the distance between the intersection

parameters influences item parameter recovery under the NRM. Taking into consid-

eration how the shape of the latent trait distribution partly determines the response

distribution, the category intersection parameters were generated based on the shape

of the latent trait. Specifically, under the normal and bimodal distributions intersec-

tions were determined by the 20th, 50th, and 70th percentiles of the simulated distri-

bution. However, it is reasonable to assume that, under a skewed distribution, the

responses would follow the nonnormality of the latent trait distribution. Therefore,

for the skewed distribution conditions, the intersections were determined by the 50th,

80th, and 95th percentiles of the simulated distribution.

Sample size. De Ayala and Sava-Bolesta (1999) and DeMars (2003) consistently

found that the sample size to response option ratio is an important factor in the accu-

racy of item parameter recovery in the nominal response model. Therefore, two sam-

ple size conditions, N = 500 and N = 2,000, were considered, because sample size is

well known to affect the accuracy of but not necessarily bias item parameter estima-

tion (de Ayala & Sava-Bolesta, 1999; DeMars, 2003). The smaller sample size (N =

500) represents the general number of participants frequently included in a psycholo-

gical study, and the larger sample size (N = 2,000) is representative of larger sets of

individuals responding to educational tests.

Latent trait distribution. Three latent trait distributions were considered because the

focus of the present research is to determine the degree to which the latent trait distri-

bution affects item parameter recovery in the NRM (see Figure 1). The shape of the

normal and skewed distributions was determined by Fleishman’s (1978) power

method weights. In this article, Fleishman presents a table of power method weights,

(a, b, c, and d) that can correspond to particular skew and kurtosis of the desired dis-

tribution to be used in simulating nonnormal distributions. These values are applied

to the polynomial transformation equation Y = a + bX + cX2 + dX3. Figure 1A and B

displays the shape of the true latent trait distribution, u, as standard normal (skew =

0.0, kurtosis = 3.0, a = 0.0, b = 1.0, c = 0.0, d = 0.0), and skewed (skew = 1.75, kurto-

sis = 6.75, a = 20.39949667453766, b = 0.92966052480111, c = 0.39949667453766,

d = 20.03646699281275). The highly skewed condition uses coefficients that are

within the range of the latent distribution estimated by Woods and Thissen (2006) for

dichotomous items related to panic disorder with skew of 1.04 and kurtosis of 6.53.

Fleishman’s (1978) power method weights does not address bimodal distributions,

so the bimodal distribution was determined by a mixture of normal distributions

(where m = mean, s = standard deviation, and mp = mixing proportion). Figure 1C
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displays the shape of the true latent trait distribution, u, as bimodal (m1 = 21.5, m2 =

3.0, s1 = 0.7, s2 = 1.5, mp1 = 1.0, mp2 = 0.7). The bimodal latent trait distribution

represents a scenario typically seen in health outcomes research (e.g., Hanger,

Fogarty, Wilkinson, & Sainsbury, 2000 ), where there is a large group of individuals

who are considered ‘‘normal’’ and score low, and there is a small group of ‘‘patients’’

who score high on the latent trait but are normally distributed within that group. The

distribution was standardized (m = 0.0, s = 1.0) prior to data simulation per direction

from Sam He (personal communication, November 17, 2010).

Order of the polynomial and knots. Since the implementation of the NRM with

EQSIRT using RC-IRT has never been evaluated, this research will manipulate pre-

determined combinations of polynomial order and knots to evaluate the consistency

and accuracy of the CBD parameter estimates. In EQSIRT, RC-IRT is adapted as a

type of MML/EM parameter estimation method. This implementation borrows the

idea of de Boor’s B-spline curve fitting algorithm, which requires two pieces of

information to normalize the curve to the population density: (a) order of the polyno-

mial and (b) number of knots. The degree, as termed in EQSIRT, is the order of the

polynomial of the B-splines curve that is computed during the parameter estimation.

The knots are the number of joints of the B-splines curve. These joints are presented

in the form of parameters that are estimated simultaneously during parameter estima-

tion. As implemented in EQSIRT, the user may choose either order 2 or 3 for the

order of the polynomial and between 2 and 10 knots. Because the order of the poly-

nomial and knots are related to the shape of the latent trait distribution, which influ-

ences the recovery of item parameters, data were estimated with order 2 and 3,

exhausting all EQSIRT implemented options. Data were further estimated with 2,

the minimum option in EQSIRT; 4, the default option in EQSIRT; or 10 knots, the

maximum option in EQSIRT.

Data Generation

For each condition, 1,000 data sets were generated. All data sets were generated

under the NRM and item parameters were estimated under the NRM via RC-IRT as

implemented in EQSIRT (Multivariate Software, 2010).

Model Fitting

The newly developed EQSIRT (Multivariate Software, 2010) was used for all condi-

tions estimated under RC-IRT. Each data set was fitted with the NRM using mostly

the program defaults, except the maximum number of EM cycles was set to 999. The

output of EQSIRT contains a and c parameters as calculated in Equation 1; therefore,

the a and c parameters are converted into the CBD parameters and category intersec-

tions using the formulas described above. As mentioned previously, estimation of

RC-IRT in EQSIRT requires the user to specify the order of the polynomial and the
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number of knots or joints for the b-splines curve. The default number of order = 3

(range = 2-3), and knots = 4 (range = 2-10).

Outcome Measure

This study focuses exclusively on the evaluation of CBD parameter recovery, which

is considered the more useful parameter. Additionally, the intersection parameters

are a function of the CBD parameters, so the recovery of the intersections was not

explicitly evaluated. CBD parameter recovery was evaluated in several ways (de

Ayala & Sava-Bolesta, 1999; Woods, 2006): (a) mean and standard deviation of the

recovered parameters, (b) average absolute bias, and (c) a computed index of the

absolute difference between the true and estimated test characteristic curves (TCCs).

First, each item’s characteristic curve (ICC) was computed based on CRC and ICC

relationships discussed in Embretson and Reise (2000), the CRC computed for each

of the four categories per item for Equation 1 is multiplied by 0, 1, 2, and 3, respec-

tively, creating an ICC. Finally, the ICCs within a test were summed over to create a

TCC for each test. The expected value of the true and estimated TCC was evaluated

at 60 points evenly spaced between 23 and 3. The difference index was computed

by averaging over the sum of the absolute differences between the true and estimated

expected values at each of the 60 points.

Results

The results of the simulation study are presented in Tables 2 through 6, where each

table is devoted to presenting results for all conditions as summarized by one of the

outcome measures. The first three columns of each of these tables list order of the

polynomial, number of knots, and range of CBD, respectively. The remaining col-

umns list the outcome measure under the normal distribution, skewed distribution,

and bimodal distribution for each sample size condition (500, 2,000), respectively.

Each outcome measure is discussed separately. The first four rows of each table pro-

vide results for conditions estimated using order 2 and 2 knots, specifying a normal

distribution under RC-IRT estimation, which produces results equivalent to those

obtained without implementing RC-IRT estimation. Therefore, under the normal dis-

tribution conditions, these first four rows provide information about the accuracy of

item parameter recovery when the estimated latent trait distribution matches the true

latent trait distribution, the null condition, producing ideal outcome measures. The

remaining rows of each table under the normal distribution demonstrate the conse-

quence to CBD parameter estimation when using RC-IRT estimation unnecessarily.

However, under the skewed and bimodal distributions, these first four rows produce

results when the shape of the latent trait distribution is assumed normal, demonstrat-

ing the effect of ignoring nonnormality on the outcome measures. The remaining

rows of each table under the skewed and bimodal latent trait distributions
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demonstrate the improvement in CBD parameter and u score recovery when the

shape of the latent trait distribution is estimated using RC-IRT.

Descriptive Statistics

Table 2 contains the means and standard deviations of the recovered CBD para-

meters. As expected, the standard deviations of the CBD parameters increased as the

range of the CBD parameters increased. Specifically, when CBD parameters were all

constrained to 1.0, producing the generalized partial credit model (Muraki, 1992),

the standard deviation averaged over all distribution, sample size, order of the poly-

nomial, and number of knots conditions was 0.170, which increased as the CBD

parameter variation increased to SD = 0.231 with CBD parameters ranging from 0.75

to 1.25, to SD = 0.360 with CBD parameters ranging from 0.50 to 1.50, and to SD =

0.539 with CBD parameters ranging from 0.25 to 1.75. The standard deviations of

Table 3. Average Proportion of Converged Replications.

Proportion converged

Normal distribution Skewed distribution Bimodal distribution

Order Knots CBD range N = 500 2,000 500 2,000 500 2,000

2 2 1.00-1.00 1.000 1.000 0.996 1.000 1.000 1.000
2 2 0.75-1.25 1.000 1.000 1.000 1.000 1.000 1.000
2 2 0.50-1.50 1.000 1.000 0.996 1.000 0.992 1.000
2 2 0.25-1.75 0.980 1.000 0.988 1.000 0.992 1.000
2 4 1.00-1.00 1.000 1.000 1.000 1.000 1.000 1.000
2 4 0.75-1.25 1.000 1.000 1.000 1.000 1.000 1.000
2 4 0.50-1.50 1.000 1.000 1.000 1.000 0.996 1.000
2 4 0.25-1.75 0.992 0.990 0.988 1.000 0.980 1.000
2 10 1.00-1.00 0.980 1.000 0.944 0.940 1.000 1.000
2 10 0.75-1.25 0.992 0.990 0.980 0.920 1.000 0.980
2 10 0.50-1.50 0.988 1.000 0.952 0.900 0.984 0.980
2 10 0.25-1.75 0.988 1.000 0.988 0.970 0.980 0.990
3 2 1.00-1.00 1.000 1.000 1.000 1.000 1.000 1.000
3 2 0.75-1.25 1.000 1.000 1.000 1.000 1.000 1.000
3 2 0.50-1.50 1.000 1.000 1.000 1.000 1.000 1.000
3 2 0.25-1.75 0.976 1.000 0.976 1.000 0.988 1.000
3 4 1.00-1.00 1.000 1.000 1.000 1.000 1.000 1.000
3 4 0.75-1.25 1.000 1.000 1.000 1.000 1.000 1.000
3 4 0.50-1.50 1.000 1.000 1.000 1.000 0.992 1.000
3 4 0.25-1.75 0.992 1.000 0.980 1.000 0.988 0.990
3 10 1.00-1.00 0.996 0.990 0.952 0.980 0.996 0.980
3 10 0.75-1.25 0.996 1.000 0.968 0.960 0.992 1.000
3 10 0.50-1.50 0.988 1.000 0.952 0.940 0.988 1.000
3 10 0.25-1.75 0.964 0.990 0.956 0.940 0.984 1.000
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the CBD parameters remained fairly consistent under the large sample size condition

(N = 2,000) regardless of distribution condition (Mean SD = 0.268 under normal dis-

tribution; Mean SD = 0.272 under skewed distribution; Mean SD = 0.293 under

bimodal distribution), whereas the standard deviation of the CBD parameters were

considerably more variable under the small sample size condition (N = 500; Mean

SD = 0.278 under normal distribution; Mean SD = 0.483 under skewed distribution;

Mean SD = 0.516 under bimodal distribution). The standard deviations of the CBD

parameters remained consistent for all order of the polynomial and knots.

Table 3 displays the proportion of converged replications for each condition,

which were generally excellent. Proportion of replications converged was high over

all conditions with 0.90 being the minimum number of converged replications occur-

ring under the skewed distribution estimated using order of 2 and 10 knots with

CBD parameters varying from 0.50 to 1.50. Overall, the conditions estimated with

10 knots consistently resulted in the lowest proportion converged, which was magni-

fied under the small sample size condition (N = 500).

Table 4. CBD Absolute Bias.

CBD absolute bias

Normal distribution Skewed distribution Bimodal distribution

Order Knots CBD range N = 500 2,000 500 2,000 500 2,000

2 2 1.00-1.00 0.022 0.008 0.127 0.100 0.076 0.060
2 2 0.75-1.25 0.019 0.007 0.123 0.092 0.077 0.060
2 2 0.50-1.50 0.021 0.001 0.119 0.107 0.068 0.056
2 2 0.25-1.75 0.021 0.008 0.129 0.118 0.069 0.047
2 4 1.00-1.00 0.025 0.001 0.011 20.003 0.083 0.018
2 4 0.75-1.25 0.023 0.000 0.013 20.008 0.085 0.021
2 4 0.50-1.50 0.024 0.000 0.025 20.004 0.116 0.035
2 4 0.25-1.75 0.034 0.004 0.031 20.013 0.123 0.041
2 10 1.00-1.00 20.030 20.061 20.026 20.081 0.055 0.003
2 10 0.75-1.25 20.031 20.060 20.023 20.072 0.048 0.005
2 10 0.50-1.50 20.026 20.052 20.016 20.070 0.059 0.006
2 10 0.25-1.75 20.020 20.062 0.030 20.078 0.082 0.016
3 2 1.00-1.00 0.023 20.004 0.022 0.000 0.088 0.018
3 2 0.75-1.25 0.009 20.006 0.015 20.006 0.076 0.025
3 2 0.50-1.50 0.012 20.002 0.019 20.012 0.090 0.037
3 2 0.25-1.75 0.017 20.003 0.034 20.009 0.117 0.054
3 4 1.00-1.00 0.023 0.002 0.018 20.007 0.076 0.028
3 4 0.75-1.25 0.032 0.003 0.010 20.014 0.077 0.027
3 4 0.50-1.50 0.037 0.002 0.021 20.002 0.085 0.036
3 4 0.25-1.75 0.041 0.002 0.039 20.008 0.123 0.040
3 10 1.00-1.00 20.030 20.070 20.021 20.081 0.044 0.002
3 10 0.75-1.25 20.036 20.061 20.029 20.077 0.047 0.005
3 10 0.50-1.50 20.033 20.058 20.005 20.073 0.063 0.001
3 10 0.25-1.75 20.018 20.058 0.031 20.076 0.101 0.005
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CBD Parameter Recovery
Absolute bias. Table 4 displays the absolute bias in CBD parameter recovery for each

condition, with values near zero indicating no bias. As expected, parameters are less

biased under the larger sample size condition (mean bias = 20.001) than the small

sample size condition (mean bias = 0.039). The CBD parameters were recovered

accurately under the normal distribution, the null condition, with order of 2 and 2

knots with an average bias of 0.013; however, the bias is reduced even further to

0.006 when estimated with order of 3 and 2 knots. Ignoring nonnormality under the

bimodal distribution produces considerable positive bias in the CBD estimates (mean

bias = 0.064), which is even more pronounced under the skewed distribution (mean

bias = 0.114).

Focusing on the skewed distribution, the average bias in CBD parameter estimates

is greatly reduced to 0.007 when estimated using order of 3 and 4 knots, and even

further reduced to 0.006 with order of 2 and 4 knots averaging over sample size and

CBD variation. RC-IRT estimation using order of 2 and 3 with 10 knots reduced the

bias to 2.042 and 2.041, respectively, but the parameter estimates became down-

wardly biased. The bias in the CBD parameter estimates is smallest for the bimodal

distribution condition when estimated using order of 2 and 4 knots. RC-IRT estima-

tion using order of 2 and 3 with 10 knots reduced the bias when compared with

Table 5. CBD Absolute Bias for Low, Moderate, and High CBD Parameters.

Absolute bias

Normal distribution Skewed distribution Bimodal distribution

CBD range N = 500 2,000 500 2,000 500 2,000

0.25-0.75 0.009 0.002 0.051 0.042 0.046 0.034
0.75-1.25 0.013 0.010 0.119 0.123 0.077 0.041
1.25-1.75 0.041 0.011 0.217 0.191 0.085 0.065
0.25-0.75 0.012 0.000 0.010 20.005 0.024 0.010
0.75-1.25 0.031 20.002 0.007 20.014 0.081 0.025
1.25-1.75 0.058 0.014 0.077 20.022 0.027 0.089
0.25-0.75 20.010 20.023 20.022 20.031 0.011 0.005
0.75-1.25 20.028 20.059 20.010 20.077 0.053 0.003
1.25-1.75 20.023 20.100 0.120 20.126 0.182 0.039
0.25-0.75 0.007 20.010 20.002 20.002 0.015 0.004
0.75-1.25 0.014 0.000 0.013 20.015 0.088 0.040
1.25-1.75 0.029 0.003 0.092 20.011 0.248 0.116
0.25-0.75 0.012 0.000 0.006 20.001 0.026 0.008
0.75-1.25 0.028 0.000 0.012 20.015 0.084 0.038
1.25-1.75 0.082 0.008 0.096 20.007 0.260 0.076
0.25-0.75 20.021 20.019 20.021 20.034 0.019 20.003
0.75-1.25 20.019 20.052 20.026 20.075 0.073 0.004
1.25-1.75 20.013 20.100 0.135 20.121 0.214 0.014
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ignoring the shape of the distribution to 20.042 and 20.041, but as with the normal

distribution, the parameter estimates became downwardly biased.

Across nonnormal distribution conditions, RC-IRT estimation with order of 2 or 3

and 4 knots produced the most accurate CBD parameter estimates in terms of abso-

lute bias. Overall, estimation with either order of 2 or 3 and 10 knots produced CBD

parameter estimates that were slightly downwardly biased (overall mean bias =

20.018), indicating that estimating distributions with 10 knots may overcharacterize

the distribution, focusing on unimportant nuances, when the distributions are a more

conventional, yet nonnormal, shape. The size of the absolute bias did not change as a

function of CBD range.

In evaluating the absolute bias values averaged over all CBD values, some misesti-

mation may be missed for the most extreme CBD values. Therefore, to further exam-

ine potential misestimation in extreme CBD values, the true CBD parameters and the

corresponding estimates from the condition with the most widely varying CBD values

Table 6. Difference Index of True and Estimated TCCs.

TCC difference index

Normal distribution Skewed distribution Bimodal distribution

Order Knots CBD range N = 500 2,000 500 2,000 500 2,000

2 2 1.00-1.00 0.286 0.152 1.034 0.989 0.469 0.437
2 2 0.75-1.25 0.307 0.141 1.003 0.978 0.474 0.444
2 2 0.50-1.50 0.300 0.145 1.005 0.965 0.476 0.429
2 2 0.25-1.75 0.299 0.139 0.993 0.950 0.492 0.419
2 4 1.00-1.00 0.342 0.170 0.464 0.281 0.336 0.167
2 4 0.75-1.25 0.328 0.164 0.440 0.270 0.346 0.141
2 4 0.50-1.50 0.322 0.152 0.412 0.278 0.337 0.193
2 4 0.25-1.75 0.360 0.168 0.427 0.292 0.336 0.196
2 10 1.00-1.00 0.400 0.338 0.532 0.469 0.311 0.160
2 10 0.75-1.25 0.409 0.339 0.525 0.430 0.332 0.169
2 10 0.50-1.50 0.387 0.312 0.540 0.440 0.319 0.154
2 10 0.25-1.75 0.388 0.321 0.545 0.451 0.320 0.160
3 2 1.00-1.00 0.287 0.162 0.401 0.197 0.352 0.160
3 2 0.75-1.25 0.299 0.155 0.390 0.213 0.326 0.166
3 2 0.50-1.50 0.303 0.162 0.388 0.227 0.342 0.189
3 2 0.25-1.75 0.304 0.153 0.433 0.223 0.325 0.191
3 4 1.00-1.00 0.338 0.163 0.400 0.257 0.343 0.181
3 4 0.75-1.25 0.333 0.165 0.420 0.270 0.326 0.171
3 4 0.50-1.50 0.346 0.157 0.400 0.255 0.331 0.192
3 4 0.25-1.75 0.349 0.176 0.429 0.245 0.344 0.186
3 10 1.00-1.00 0.397 0.369 0.542 0.468 0.322 0.160
3 10 0.75-1.25 0.407 0.336 0.528 0.447 0.321 0.166
3 10 0.50-1.50 0.402 0.317 0.531 0.437 0.319 0.180
3 10 0.25-1.75 0.385 0.317 0.561 0.450 0.327 0.171
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were divided into low, moderate, and high at CBD values ranging from 0.25 to 0.75,

0.75 to 1.25, and 1.25 to 1.75, respectively. Table 5 presents these low, moderate, and

high absolute bias values. Overall, the estimation of the CBD parameters is best for

the low range at 0.004, and worsens as the category becomes more discriminating to

0.016 for moderate, and 0.050 for high CBD parameters. These findings are consis-

tent with those from the demonstration study, which compared moderate CBD values

of 0.75 to high CBD values of 1.5, and found inaccuracies in estimation were more

pronounced for the high CBD values. As mentioned above, RC-IRT estimation using

order of 2 and 4 knots produced the most accurate estimates as measured by absolute

bias for the skewed. The optimal RC-IRT combination of polynomial order and knots

appears to be mainly determined by the accuracy of the estimation of the high CBD

values because the corresponding absolute bias value was at the minimum of 0.077

the small sample size condition, and 20.022 for the large sample size condition.

These findings suggest that the more highly discriminating category distinctions are

more important in determining optimal RC-IRT polynomial order and knots combi-

nation for estimation.

TCC difference index. Table 6 presents the absolute difference between the true and

estimated TCCs. For this difference index, values close to zero indicate the estimated

and true TCCs overlap entirely.

Overall, CBD variation did not affect the magnitude of the difference index.

However, the differences in sample size condition were quite pronounced, with the

small sample size condition producing an average difference index value of .0419

and the large sample size condition producing a value of 0.289.

Figure3A, 3B, and 3C shows the true TCC for the normal, skewed, and bimodal

distribution conditions, respectively, and the TCC estimated under RC-IRT using

order of 2 and 2 knots, effectively ignoring the true shape of the latent trait distribu-

tion. Figure 3B and C also displays the TCC estimated under RC-IRT using the opti-

mal order and knots as determined by the TCC difference index, which is order of 3

and 2 knots for Figure 3B and order of 3 and 10 knots for Figure 3C. The solid line

represents the true TCC, the dashed line represents the estimated TCC under order of

2 and 2 knots, and the dotted line represents the estimated TCC under the optimal

order and knots. As can be seen in Figure 3A, the true and estimated TCCs overlap

almost entirely, which indicates excellent parameter recovery at the test level.

Consequently, under the normal distribution condition, the TCC difference index

was at the minimum value for all conditions of 0.221 averaged over sample size con-

ditions, indicating that true item parameters and estimated item parameters did not

differ in difficulty when estimated using a normal distribution. The TCC difference

index remained consistently small, but inflated slightly when estimated using any

other combination of order and knots, indicating that overparameterizing the distribu-

tion worsens the accuracy of the model at the test level.

As mentioned above, Figure 3B displays the true, estimated ignoring nonnormal-

ity, and optimal RC-IRT recovered TCCs under the skewed distribution. As can be
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seen, the TCC was underestimated at the negative extreme end of u and was overesti-

mated at the positive extreme end of u. Accordingly, the TCC difference index was

extremely large at 0.990, averaged over sample size and CBD variation conditions.

Using RC-IRT with any combination of order and knots to account for the nonnorm-

ality of the distribution improved the accuracy of the estimated TCC, but RC-IRT

estimation with order of 3 and 2 knots reduced the TCC difference index the most to

0.309. Visual inspection of the Figure 3B shows that the true TCC and the TCC esti-

mated under RC-IRT using order of 3 and 2 knots are nearly indistinguishable.

Figure 3C displays the true, estimated ignoring nonnormality, and optimal RC-

IRT recovered TCCs under the bimodal distribution. Similar to the skewed

Figure 3. True, estimated, and recovered test characteristic curves (TCCs) averaged over
sample size and CBD variation conditions under the (A) normal distribution condition, (B)
skewed distribution condition, and (C) bimodal distribution condition. True TCC is
represented by the solid line, the estimated TCC using order of 2 and 2 knots is represented
by the dashed line, and the optimum polynomial order and knot combination recovered TCC
is represented by the dotted line.
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distribution condition, the TCC was underestimated at the negative extreme end of u

and was overestimated at the positive extreme end of u. However, in the bimodal dis-

tribution condition, the over- and underestimation was noticeably smaller, resulting

in moderate TCC difference index values of 0.455. As in the skewed distribution con-

dition, estimation with any combination of order and knots under RC-IRT reduced

the TCC difference index, but estimation with order of 2 and 4 knots produced the

most accurate TCCs with a TCC difference index value of 0.241.

Figure 4A to F displays the true versus recovered TCCs as estimated under RC-

IRT using all combinations of order and knots for the skewed distribution condition.

The true TCC is represented by the solid line and the recovered TCC is represented

by the dashed line. Comparing Figure 4A to Figure 4B through F illustrates that

merely estimating under RC-IRT is more critical to accurate item parameters than

determining the appropriate number of order and knots. As can be seen in Figure 4A,

estimation of a test, while ignoring the nonnormality, results in under- and overesti-

mation of the item parameters, especially at the extremes of the trait level. In Figure

4B through F, the TCCs overlap almost entirely, regardless of combination of order

and knots, showing how important it is to use RC-IRT estimation when the measured

construct is nonnormally distributed in the population. However, careful visual

inspection of Figure 4E and F supports the general finding that estimation using 10

knots decreases the accuracy of the item parameters slightly, but are still consider-

ably more accurate than ignoring that nonnormality in the distribution.

Discussion

Polytomous IRT models are becoming increasing popular as a method of construct-

ing and evaluating educational and psychological measurement instruments. In its

increasing popularity, polytomous IRT models are being used to study psychological

and educational constructs that are likely not normally distributed in the population.

Moreover, these assessments are being used to make high-stakes decisions about

individuals, such as a clinical diagnosis or whether or not a child qualifies for special

education. Unfortunately, the inherent nonnormality of these constructs is frequently

ignored during estimation using the MML/EM estimation algorithm, potentially lead-

ing to an incorrect diagnosis or incorrectly placing a child in a special education

classroom.

This research provided a comprehensive demonstration of the effects of ignoring

nonnormality in the distribution of the latent trait under the NRM. The NRM was

chosen for this demonstration because it has the unique ability to evaluate response

category functioning, allowing researchers to conduct in-depth item analyses to iden-

tify items containing too many response options, unordered response options, or

poorly functioning categories that do not provide useful psychometric information.

To determine the effects of nonnormality on CBD parameter estimation and latent

trait distribution recovery, data were generated under normal, skewed, and bimodal

distributions. These data were estimated under RC-IRT in EQSIRT using order of 2
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and 2 knots, effectively ignoring the shape of the true latent trait distribution. Results

showed that CBD parameters were grossly inaccurate and upwardly biased leading

Figure 4. True versus estimated TCCs under the skewed condition for all combinations of
polynomial order and knots: (A) 2–2, (B) 3–2, (C) 2–4, (D) 3–4, (E) 2–10, and (F) 3–10. True
TCC is represented by the solid line and the estimated TCC by the dashed line.
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to large differences between estimated and true item parameters. Generally, conse-

quences of ignoring the nonnormality of the latent trait distribution were greater

under a skewed distribution, and slightly less so under a bimodal distribution.

Inaccuracies of CBD parameter estimates were magnified under a small sample size.

Overall, the consequences of ignoring nonnormality in the CBD parameter estimates

were severe.

Fortunately, recent developments in IRT estimation procedures, such as RC-IRT

(Woods & Thissen, 2006), and user-friendly software, such as EQSIRT (Multivariate

Software, 2010), improves the estimation of CBD parameters. The primary focus of

this research was to conduct an extensive evaluation of item parameter recovery

using EQSIRT’s implementation of RC-IRT for ordered categorical data under the

NRM. To study the improvement of estimation when accounting for the shape of the

latent trait distribution, the normal, skewed, and bimodal distributions were estimated

using a variety of combinations of polynomials order and knots. Generally, CBD

parameter recovery was greatly improved when the nonnormality of the distributions

was estimated using any of the studied combinations of order and knots. Specifically,

using either 2 or 4 knots improved CBD recovery the most when compared with esti-

mation using 10 knots. These results indicate that, under RC-IRT, estimating more

parameters than necessary to account for the nonnormality in the latent trait distribu-

tion actually worsens the accuracy of the estimation. Under a skewed distribution,

generally the most accurate CBD parameter estimates were obtained using order of 2

and 4 knots, whereas CBD parameters under the bimodal distribution were most

accurately recovered when estimated using order of 3 and 4 knots. These findings are

consistent with Woods (2006), that knowledge about the shape of the distribution can

enhance estimation precision in the recovery of the CBD parameter estimates. The

current results demonstrate consistently improved CBD parameter accuracy under

the NRM while using predetermined combinations of polynomial order and knots;

therefore, future research will use a model selection algorithm to determine the opti-

mal combination of polynomial order and knots for each generated dataset and to

improve the external validity of the research. Additionally, future research will evalu-

ate the influence of complimentary factors known to affect the accuracy of item para-

meter recovery such as the number of items, the number of response options, and

additional nonnormal latent trait distributions.

Based on these results, it is recommended that RC-IRT estimation be implemented

whenever a researcher considers the construct being measured has the potential of

being nonnormally distributed in the studied population. As demonstrated, ignoring

the true shape of the latent trait distribution creates gross inaccuracies in the estima-

tion of the item parameters. Moreover, the benefits to implementing RC-IRT estima-

tion in the accuracy of item parameters are great, and there is very little consequence

to implementing RC-IRT estimation when the latent trait is actually normally distrib-

uted. Finally, it is recommended that unless theory suggests otherwise, researchers

should use combinations of order of 2 or 3 and 2 or 4 knots in applications because

these combinations resulted in the most consistently accurate estimates.
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