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Abstract

Two zoonotic influenza A viruses (IAV) of global concern, H5N1 and H7N9, exhibit unexplained 

differences in age distribution of human cases. Using data from all known human cases of these 

viruses, we show that an individual’s first IAV infection confers lifelong protection against severe 

disease from novel hemagglutinin (HA) subtypes in the same phylogenetic group. Statistical 

modeling shows protective HA imprinting is the crucial explanatory factor, providing 75% 

protection against severe infection and 80% protection against death for both H5N1 and H7N9. 

Our results enable us to predict age distributions of severe disease for future pandemics and 

demonstrate that a novel strain’s pandemic potential increases yearly when a group-mismatched 

HA subtype dominates seasonal influenza circulation. These findings open new frontiers for 

rational pandemic risk assessment.

The spillover of novel influenza A viruses (IAV) is a persistent threat to global health. H5N1 

and H7N9 are particularly concerning avian-origin IAVs, each having caused hundreds of 

severe or fatal human cases (1). Despite commonalities in their reservoir hosts and 

epidemiology, these viruses show puzzling differences in age distribution of observed human 

cases (1,2). Existing explanations, including possible protection against H5N1 among older 

birth-year cohorts exposed to the neuraminidase of H1N1 as children (3,4) or age biases in 

exposure to infected poultry (5–7), cannot fully explain these opposing patterns of severe 

disease and mortality. Another idea is that severity of H5N1 and H7N9 differs by age, 

leading to case ascertainment biases (1), but no explanatory mechanism has been proposed.
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The key antigenic determinants for IAV susceptibility are the virus’s two surface 

glycoproteins, hemagglutinin (HA) and neuraminidase (NA), where different numbered 

subtypes canonically indicate no cross-immunity. However, recent experiments have 

revealed that broadly-protective immune responses can provide cross-immunity between 

different HA subtypes, particularly subtypes in the same phylogenetic group (8–14). (HA 

group 1 contains (human seasonal) subtypes H1, H2 and avian H5, while group 2 contains 

seasonal H3 and avian H7; Fig. 1A, Fig. S1). Combining these insights into heterosubtypic 

immunity with the concept of ‘original antigenic sin’ (15) or ‘antigenic seniority’ (16), we 

hypothesized that individuals imprint on the HA group of their first IAV exposure and 

thereby experience a reduced risk of severe disease from novel IAVs within that same 

phylogenetic group. This hypothesis predicts that the 1968 pandemic, which marked the 

transition from an era of group 1 HA circulation (1918–1968) to a group 2-dominated one 

(1968-present) (Fig. 1B), caused a major shift in population susceptibility that would explain 

why H5N1 cases are generally detected in younger people than H7N9 (2,17–19). Our 

analysis of human cases of H5N1 and H7N9 revealed strong evidence that childhood HA 

imprinting indeed provides profound, lifelong protection against severe infection and death 

from these viruses. These findings allowed us to develop new approaches for IAV pandemic 

risk assessment, preparedness and response, but also raise possible challenges for future 

vaccination strategies.

Reconstructing IAV exposure history by birth year

To investigate whether an individual’s initial childhood exposure to IAV influences later 

susceptibility to H5 and H7 viruses, we estimated the fraction of each birth-year cohort from 

1918 to 2015 with first exposure to H1, H2, or H3 – or the fraction still naïve – for each 

country in our study (China, Egypt, Cambodia, Indonesia, Thailand, Vietnam). We estimated 

the annual probability of IAV infection in children using published age-seroprevalence data 

(20,21) and then rescaled this baseline attack rate to account for year-to-year variability in 

IAV circulation intensity (Supplementary Text).

One resulting country-specific reconstruction of HA history is depicted in Fig. 1C. While 

H3N2 has dominated since 1968, a non-negligible fraction of many birth-year cohorts from 

the 1970s onwards was exposed first to H1N1 viruses, with notable peaks near the re-

emergence of H1N1 in 1977 and the 2009 pandemic.

H5N1 and H7N9 cases track HA imprinting patterns

Next, we compiled data on all known human cases of H5N1 and H7N9 with reported patient 

age (Fig. 2A,B). These data encompass mostly clinically severe and fatal cases; total 

incidence remains unknown. Thus, our analysis focused on the determinants of severe cases. 

The possible existence of many undetected mild cases, as hypothesized for H7N9 (1), is 

consistent with HA imprinting since broadly-protective immune responses are expected to 

provide partial protection (8,14), i.e., reduce severity without preventing infection altogether 

(4,12,22–25).
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The preponderance of observed H7N9 cases among older cohorts, and H5N1 cases among 

younger cohorts, is clear (Fig. 2A,B). These patterns reflect birth year, not age: H5N1 cases 

occurred over 19 years from 1997–2015, yet cases from all years exhibit similar dependence 

on birth year. Analysis of 361 H5N1 cases in Egypt, the one country with many cases across 

the last decade, shows no trend in case birth years through time, while case age increased 

steadily (p=0.0003, Spearman’s correlation; Fig. S2). So, on average, the same birth cohorts 

remained at high risk of severe infection, even as members grew ten years older.

Fig. 2C and D depict the case data normalized to demographic age distributions in affected 

countries. (If all birth cohorts had equal risk of severe infection, case incidence would be 

proportional to age distribution.) Bars above the midline thus represent birth years showing 

excess risk, while bars below indicate a shortfall. This normalization highlights two points: 

first, excess incidence and mortality data for H5N1 and H7N9 are near-mirror images of 

each other. Second, the group 1 to group 2 HA transition in 1968 is the key inflection point, 

with those born before the emergence of H3N2 showing protection against severe cases of 

H5N1 but not H7N9, and those born after 1968 showing the opposite pattern. For H7N9 

severe case incidence also spikes in birth years around 1977 and 2009, when resurgent 

H1N1 circulation would have caused considerable mismatched imprinting. One-sided 

binomial exact tests showed excess H5N1 incidence had a lower probability of occurring in 

cohorts born before 1968 (p<1e−10), while excess H7N9 incidence was more probable in 

these same cohorts (p<1e−9). The same pattern held for excess mortality (Supplementary 

Text). These patterns suggest that the immune system imprints on conserved HA epitopes 

from the first-ever exposure to IAV, resulting in heterosubtypic (but within-group) protection 

against severe infection.

Even more striking is the tight correspondence of observed H5N1 and H7N9 incidence and 

mortality with a priori predictions based on HA imprinting patterns and demographic age 

distributions (Fig. 2). We emphasize that the black lines in Fig. 2 are not fitted to the case 

data, but are independent predictions (Fig. 1C). Differences between the predictions and data 

are remarkably small—some noise arises from generalization across time and countries (e.g. 

attack rates for the reconstruction came from German data, but focal populations are largely 

Asian), and from small case numbers. Incorporating additional epidemiological factors and 

estimating the protective efficacy of imprinting further improved correspondence between 

predictions and data (Fig. S3). In contrast, NA imprinting patterns (which fully capture 

patterns of childhood exposure to N1) are a poor fit to H5N1 and H7N9 data from 1957–

1968 cohorts (Fig. S4), and NA-mediated protection is not supported by statistical modeling.

HA imprinting explains age distributions

To formally assess the HA imprinting hypothesis alongside previous explanations (1,3–7) 

for observed H5N1 and H7N9 age distributions, we developed a set of multinomial models. 

These models related the probability that a case occurred in a given birth cohort to country- 

and year-specific demography, and risk factors including age-based risk of exposure to 

poultry, age-based risk of severe disease or case ascertainment, and reconstructed patterns of 

first exposure (and hence potential immunological imprinting) to HA or NA subtypes (Table 

S1). Model comparison showed HA imprinting was the dominant explanatory factor for 
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observed incidence and mortality patterns for both H5N1 and H7N9. It was the only tested 

factor included in all plausible models for both viruses (i.e. all models with Akaike weights 

greater than 4e−5).

The best models also included age-based risk of severe disease, echoing patterns known 

from seasonal influenza epidemiology. Age-based poultry exposure risk (estimated based on 

contact data from China (6, 7)) was included for H7N9 but not H5N1, perhaps reflecting that 

age-specific poultry exposures vary across the multiple countries affected by H5N1 or that 

humans interact differently with ill (H5N1-infected) versus asymptomatic (H7N9-infected) 

poultry. In models including HA imprinting, NA imprinting never showed any significant 

effect (Table S2). Remarkably, despite differences between the viruses and age cohorts 

involved, the estimated protective effects of HA imprinting were nearly identical for H7N9 

and H5N1. In all models, protective HA imprinting reduced the risk of severe infection with 

H5N1 or H7N9 by ~75%, and the risk of death by ~80% (Table 1, Figs. S5–S7, Table S2).

Antigenic seniority across influenza subtypes

Most individuals born before the emergence of H3N2 in 1968, and exposed first to group 1 

HA antigens (Fig. 1), have also been exposed to H3N2 after 1968—probably multiple times. 

Yet these seasonal group 2 exposures later in life evidently fail to override group 1 HA 

imprinting from childhood (Fig. 2). The birth-year specific protection seen for human H5N1 

and H7N9 thus clearly indicates that clinically relevant antigenic seniority— preferential 

recall of immunological reactivities to antigens encountered earlier in life upon later 

exposure to cross-reactive antigens (16)—can act across HA subtypes of the same HA 

group, not just within subtypes as often assumed.

While the precise mechanism underlying antigenic seniority in this context remains to be 

determined, antibodies directed against conserved HA epitopes provide a plausible 

explanation for protection at the level of HA groups. For example, research following the 

2009 H1N1 pandemic drew attention to the fact that primary exposure to a novel IAV can 

preferentially boost broadly-protective antibodies that bind conserved HA head or stem 

epitopes shared by different HA subtypes (8–14), even though immune memory against 

more variable epitopes on the novel HA head may be absent. This absence may in fact 

enable robust expression of otherwise subdominant, broadly-protective responses to 

conserved epitopes such as those on the HA stem (8). In particular, primary exposure to 

H5N1 or H7N9 can activate HA stem-specific reactivities induced by previous infection by 

H1 or H3, respectively (12,13,26). Indeed, others have suggested that heterosubtypic 

antibodies might attenuate disease from other IAV strains and may be imprinted to some 

degree by childhood exposure, though their serological assays provided no ability to detect 

or predict actual patterns of protection relevant to H5N1 and H7N9 in human populations 

(27).

Given the immunodominant nature of HA head reactivities (13,14,26,28), conserved HA 

head epitopes shared within, but not between, HA groups (29) may play a role in these 

patterns of protection. Cross-reactive HA-specific CD4+ or CD8+ T cell responses should 

also be investigated, since they too are likely to be disproportionately shared within HA 
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groups (given the sequence similarities within each clade) and might be especially capable 

of facilitating the sort of long-term immunity indicated by the data.

Nevertheless, current data, including the high degree of sequence conservation of stem 

domains within each HA group (Fig. 1A, Fig. S1), seem most consistent with a stem-

directed mechanism for the antigenic seniority acting at the HA-group level (13). Divergence 

in HA stem amino acid sequences within each phylogenetic group is comparable to 

divergence in globular head sequences within a single HA subtype (i.e. the scale at which 

antigenic seniority is already known to act (16); Fig. S1), but stem divergences between the 

two HA groups are markedly higher. Notably, H3 and H7 are as divergent as any pair of 

group 2 HAs; since H3 childhood exposure provides protection against H7 it may thus 

protect as well or better against the other group 2 HAs (H4, H10, H14, H15), but perhaps not 

at all against more divergent group 1 HAs (Fig. S1C). Similarly, the joint consideration of 

protein sequence conservation patterns (Fig. 1A, Fig. S1) along with immunological and 

epidemiological data suggests that H1 or H2 childhood exposure may protect generally 

against zoonotic group 1—but not group 2—HAs.

The putative generality in HA imprinting protection patterns for novel HA subtypes other 

than H5N1 or H7N9 is tentatively supported by the preponderance of HA group-mismatched 

childhood exposures among the small number of clinically significant human cases detected 

to date: pooling data from 28 human cases of H5N6, H6N1, H7N7, H9N2, H10N7 and 

H10N8, age patterns are consistent with HA imprinting (p=0.019; see Supplementary Text), 

but case numbers are insufficient to investigate particular subtypes. Immunological 

experiments (e.g. using chimeric HA proteins (12)) are needed to systematically map HA 

cross-protection patterns across all HA subtypes, both within and between HA groups.

Rational projections of future pandemic risk

For any new pandemic IAV strain capable of efficient human-to-human transmission, HA 

imprinting patterns would combine with age-based mixing patterns (30–32) to determine the 

epidemiological impacts of the first pandemic wave. We created projections for a putative 

pandemic-capable strain of subtype H5 or H7—such as a gain-of-function strain or a natural 

variant with mutations increasing human-to-human transmissibility. The data on observed 

H7N9 and H5N1 cases enabled us to quantify how matched HA imprinting reduces the 

probability of developing a severe infection, but not how matched imprinting affects an 

individual’s probability of acquiring a milder infection or the infectivity of such mild 

infections. People who become infected despite prior immunity likely transmit influenza at 

reduced rates owing to diminished viral titers and viral shedding, as observed in humans and 

in animal models (4,12,22–25). We thus assumed, conservatively, that imprinting does not 

change the probability of acquiring infection upon exposure, but can reduce severity and 

infectivity in individuals with protective HA imprinting.

Fig. 3A illustrates the projected age-structured attack rate of severe cases for hypothetical 

pandemics of H5 or H7 IAV occurring in 2015 in the United Kingdom. The projected risk 

profiles for severe infection are shaped strongly by HA imprinting, including the prediction 

that individuals above 50 years of age (i.e. born well before 1968 and first exposed to a 
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group 1 HA) would experience much lower morbidity than younger age groups in an H5 

pandemic. Similar projections for China and Vietnam reveal the influence of demographic 

differences between countries (Fig. S8). The qualitative patterns in projected age impacts are 

robust to a wide range of assumptions about how seasonal influenza vaccination might affect 

imprinting (Fig. 3A), and to the assumed infectivity of mild cases arising in individuals with 

protective HA imprinting (Fig. S8A).

Projections for pandemics occurring a decade from now highlight predictable shifts in severe 

disease risk patterns as the imprinted population ages, with the key pivot point around birth 

years near 1968 shifted to older ages (Fig. S8). Impacts in the youngest age groups would 

depend on patterns of IAV circulation in the coming decade. All pandemic projections that 

account for HA imprinting exhibit markedly lower severe attack rates than projections 

assuming no imprinting protection (Fig. 3A, Fig. S8). Total attack rates (including mild and 

subclinical cases) would be higher and more evenly distributed across age groups than the 

severe attack rates shown here.

Over any prolonged period when IAV circulation is dominated by one HA group, imprinting 

generates growing herd immunity against zoonotic IAV strains from that group. Conversely, 

zoonotic strains from the mismatched HA group benefit from the rising proportion of 

humans without protection. So long as mild cases arising in people with group-matched 

imprinting contribute any less to transmission than unprotected cases, or if some fraction of 

infection events is prevented by imprinting-derived immunity, imprinting will alter the 

transmissibility of zoonotic IAV strains in the human population. This is summarized by the 

effective reproductive number, Reff, which quantifies transmission in a partially immune 

population (Fig. 3B). Crucially, a zoonotic strain that is initially subcritical (i.e. with Reff < 1 

and therefore unable to spread sustainably) could—due solely to susceptibility changes in 

the human population— emerge as supercritical, and hence as a pandemic threat, if the 

mismatched HA group dominates IAV circulation for a sufficient period (Fig. 3B).

Our work implies that we have never seen a true ‘virgin soil’ influenza pandemic, and that 

all prior estimates of R0 for pandemic IAVs are systematic underestimates since they do not 

account for protection induced by HA imprinting. Conversely, we see that imprinting raises 

the threshold R0 necessary for a novel subtype to invade. Interestingly, the co-circulation of 

group 1 and 2 HAs since 1977 has balanced herd immunity in a way that increases the 

inherent transmissibility needed for a novel subtype from either HA group to invade. As a 

generality, Reff for zoonotic influenza strains will change through time depending on 

seasonal influenza patterns and demographic background, and the magnitude of change will 

depend on the infectivity of imprinting-protected cases (Fig. S9).

Discussion

Our findings show that major patterns in zoonotic IAV epidemiology, previously attributed 

to patient age, are in fact driven by birth year. IAV strains circulating during an individual’s 

childhood confer long-term protection against novel HA subtypes from the same 

phylogenetic group. Hence, antigenic seniority extends across IAV subtypes, introducing 

previously unrecognized generational structure to influenza epidemiology. These immune 
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imprinting effects have implications for public health and highlight that influenza virulence 

represents a joint phenotype between virus and host—even for strains not yet adapted to the 

human population.

These findings support the hypothesis that the unusually high mortality in young adults 

during the 1918 H1N1 (group 1) pandemic may have arisen primarily from mismatched H3 

(group 2) imprinting in the cohort born between ~1880 and 1900 (19). This same cohort was 

strongly affected during the (group 1) 1957 pandemic (33); yet they suffered no excess 

mortality when they were even older, during the (group 2) 1968 pandemic (34). The 

possibility that mismatched HA imprinting currently contributes to the greater health 

impacts of seasonal H3N2 (relative to H1N1) in today’s older age classes is worth 

investigating. And a diagnostic assay to determine whether an individual was imprinted on a 

group 1 or group 2 HA may be useful for individualized clinical care and vaccine design 

strategies, both for pandemic and seasonal IAVs.

Our findings raise questions about whether seasonal influenza vaccination might boost 

broadly-protective anti-HA responses (27) or alter imprinting from natural infection in IAV-

naïve children. By exposing IAV-naïve children simultaneously to group 1 (H1N1) and 

group 2 (H3N2) antigens, vaccination might confer dual imprinting to both HA groups, or 

prevent strong imprinting against either HA group—or it could have no effect beyond 

delaying the age of imprinting via the first natural infection. Our sensitivity analyses 

demonstrated that, given the low IAV vaccination coverage in H5N1- and H7N9-affected 

countries, none of these effects would change our study’s conclusions (Fig. S7). However, to 

properly inform early childhood vaccine policy, future research must determine which, if 

any, of these effects occur.

HA group imprinting also might complicate ‘universal’ vaccination approaches targeting 

conserved HA epitopes. Our findings indicate potent, long-lasting cross-protection between 

subtypes, putatively based on such responses. However, universal vaccination may have to 

outperform natural infection in its ability to induce broad immunity in the face of previous 

imprinting. The persistence of group 1 imprinting in older adults, despite decades of natural 

exposure to H3N2 after 1968 (Fig. 2), and the relative weakness of group 2 anti-HA stem 

reactivities in these older cohorts (11), suggest HA exposures later in life do not readily alter 

broadly-protective responses in individuals already imprinted to a particular HA group. To 

be effective, would bivalent (group 1 and group 2 HA stem) universal vaccines need to be 

delivered to infants prior to natural IAV infection? Or, might universal vaccines even impair 

natural, long-term protection of the sort we have detected against H5N1/H7N9 if received 

prior to an individual’s first natural IAV infection?

Our findings are consistent with the known potential for repeated infection by seasonal IAV 

subtypes. Group-matched imprinting, like other broadly-protective IAV immune responses, 

is expected to protect against severe disease but not necessarily against infection (8,12,14). 

This parallels the reduced severity observed for repeat infections with seasonal strains 

(22,23,25). Furthermore, re-exposure to a seasonal subtype typically elicits memory 

responses against the immunodominant HA head, which mask subdominant broadly-

protective responses involved in group-level imprinting (26).
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For any country with suitable contact and demographic data, the methods shown here can 

provide rolling estimates of which age groups would be at highest risk for severe disease, 

should particular novel HA subtypes emerge. Such projections could guide cohort- or 

region-specific prevention, preparation, or control. Quantitative projections of changes in 

Reff, and hence pandemic risk, will require further research into the protection arising from 

matched imprinting: is some fraction of cases prevented entirely, and by what factor is 

infectivity reduced in mild cases arising in protected individuals?

Our findings show that emergence risk cannot be considered in isolation, even for ‘novel’ 

pathogens that have not circulated in humans before. These pathogens are commonly 

assumed to have a blank slate of immunologically naïve humans to infect, but cross-

protection from related pathogens can generate substantial population immunity. When this 

community of related pathogens undergoes major shifts, as during influenza pandemics, the 

landscape of population immunity changes accordingly. Thus emergence of novel pathogens 

can be governed by bottom-up control, with population immunity acting in an important and 

predictable manner to modulate the widely-recognized effects of virological and ecological 

risk factors. This perspective opens new frontiers for quantitative and mechanistic analysis 

of emergence risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
HA groups and reconstruction of 20th century HA imprinting. (A) HA groups 1 and 2, and 

pairwise amino acid similarities in the HA stem region. Darker colored cells indicate higher 

similarity (see Fig. S1). Each within-group subtype pair is more similar (83.2%–97.8%) than 

any between-group pair (75.9%–81.7%). (B) History of seasonal IAV circulation, and (C) 

estimated fraction of each birth cohort in China with initial exposure to each subtype. 

Estimated patterns in other countries (not shown) are identical up to 1977, and very similar 

thereafter. Pandemic years are marked on the horizontal axis. Blue represents group 1 HA 

viruses, red represents group 2, and grey represents naïve children who have not yet 

experienced an IAV infection.
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Fig. 2. 
H7N9 and H5N1 observed cases and deaths by birth year (bars). Black lines show a priori 
prediction based on demographic age distribution and reconstructed patterns of HA 

imprinting. (A) 680 H7N9 cases, from China, 2013–2015. (B) 835 H5N1 cases, from 

Cambodia, China, Egypt, Indonesia, Thailand and Vietnam, 1997–2015. (C, D) Case data 

normalized to demographic age distribution from appropriate countries and case observation 

years.
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Fig. 3. 
Projected effects of HA imprinting on future pandemics. (A) Attack rate of severe cases, by 

age group, for hypothetical H5 (blue) and H7 (red) IAV pandemics in 2015 (R0=2.5, relative 

infectiousness of imprinting-protected individuals (α)=0.5), assuming UK demography and 

age-structured mixing (Supplementary Text). Lines show the average of 100 simulated 

outcomes, and shaded regions show the central 95%. Three vaccination scenarios explored: 

vaccination of IAV-naïve children could cause dual imprinting to both HA groups (dashed 

lines), prevent imprinting to both groups (dotted lines), or have no effect on imprinting (solid 

lines). (B) Projected change in Reff, for hypothetical H5 (blue) or H7 (red) IAV with R0=1.2 

and α=0.5, if group 1 IAVs make up 100% or 75% of seasonal circulation after 2015.

Gostic et al. Page 15

Science. Author manuscript; available in PMC 2017 May 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gostic et al. Page 16

Table 1

Estimated protection from HA imprinting.

Factors in model HA imprinting protection
(95% CI) ΔAIC Akaike weight

H5N1

DAH 0.75 (0.65–0.82) 0.00 0.9994

DEAH 0.83 (0.76–0.88) 15.35 4.65E-4

DEANH 0.83 (0.73–0.88) 17.32 1.74E-4

DH 0.80 (0.71–0.85) 69.18 9.50E-16

DEH 0.87 (0.80–0.90) 103.31 3.69E-23

DENH 0.86 (0.78–0.90) 105.29 1.37E-23

H7N9

DEAH 0.76 (0.67–0.82) 0.00 1.00

DAH 0.81 (0.74–0.87) 42.87 4.09E-10

DEH 0.84 (0.78–0.88) 61.59 4.23E-14

DENH 0.83 (0.75–0.88) 62.26 3.02E-14

DH 0.88 (0.84–0.92) 138.40 8.83E-31

D=Demography, E=Exposure to poultry, A=High-risk age groups, H=HA imprinting, N=NA imprinting (see Methods, Table S1).
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