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A VARIABLE SENSITIVITY THEORY
OF SIGNAL DETECTION1

RICHARD C. ATKINSON

Stanford University

A 2-process model for signal detection is proposed that is applicable
to both yes-no and forced-choice experiments. One process describes
systematic changes that may occur in the S's sensitivity level to external
stimuli; the other process defines a learning mechanism that determines
trial-to-trial changes in the S's decision role as information accrues to
him. From the theory one can derive predictions for gross statistics
like receiver-operating-characteristic curves and also for detailed se-
quential effects such as autocorrelation functions defined over stimulus-
response runs. Predictions for sequential effects are particularly im-
portant in evaluating the theory and provide a valuable insight into the
character of the detection process. Application of the theory to various
special cases is considered; some predictions are derived and checked
against experimental data.

This paper deals with an analysis
of some simple detection experiments
in terms of a theory that incorporates
two separate but interdependent proc-
esses : an activation process and a
decision process. The activation proc-
ess specifies the relation between
external stimulus events and hy-
pothesized sensory states of the sub-
ject. The decision process specifies the
subject's observable response in terms
of his sensory state and information
acquired during the course of an
experiment. Both processes are dy-
namic. The activation process defines
the subject's level of sensitivity to
external stimuli, and we postulate that
sensitivity may fluctuate (within cer-
tain limits) from trial to trial as a
function of past events. The decision
process is similarly dynamic, for it
may change from trial to trial as
information accrues to the subject.
The processes interact in that the
momentary state of one process

1 The ideas presented in this paper have
been much influenced by discussions with R.
A. Kinchla of Ames Research Center. The
research was supported by the National Insti-
tute of Health under Contract M-5184.

operates in a reciprocal fashion to
determine the state of the other. As
will be indicated later, most theories
of signal detection view the subject's
sensitivity level as fixed (or at most
fluctuating in a strictly random fash-
ion over time) and account for
variations in his performance to a
fixed intensity signal by postulating
changes in the decision rule. In con-
trast, for the present theory changes
in performance to a fixed intensity
signal may arise in several ways:
manipulating aspects of the experi-
mental situation that affect the
subject's sensitivity level but leave
the decision process unchanged, ma-
nipulating variables that affect the
decision process but leave the sensi-
tivity level unchanged, or manipulat-
ing parameters that affect changes in
both processes.

The theory that we present gen-
erates predictions for all aspects of the
subject's response protocol (mean
response probabilities, associated vari-
ances, sequential statistics such as
autocorrelation functions on both
responses and stimuli, and so forth)
and thereby permits a detailed treat -
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92 RICHARD C. ATKINSON

ment of individual trial-by-trial data.
Some predictions are parameter free,
but by and large the predictions
depend on estimates of parameters
that describe the stimulus situation
and the hypothesized detection proc-
ess. Some readers may feel that we
have been too liberal in postulating
parameters; however, for most ap-
plications, restrictions are appropriate
that markedly reduce the number of
parameters that need to be estimated.
For example, predictions regarding re-
ceiver operating characteristic curves
and certain first order sequential
phenomena may require that only
two parameters be estimated. In con-
trast, autocorrelation predictions in
complex detection experiments may
require that as many as six parameters
be estimated.

The type of psychophysical study
to be considered is a choice experiment
for which the experimenter has es-
tablished, and explained to the subject
a one-to-one correspondence between
the response set (A\, A?.,- • • , Ar) and
the stimulus presentation set (Si,
St, • • • , Sr). On each trial a stimulus
is presented and the subject attempts
to identify the stimulus by making the
appropriate response. For excellent
reviews of research and theory in this
area see Green (1960), Licklider
(1959), or Swets (1961).

For purposes of this paper we shall
consider only experiments for which
r = 2. That is, on each trial either
S\ or St is presented and the subject
is required to make either response
AI or At. Also, the theoretical
development will be restricted to
procedures where the experimenter
informs the subject at the end of each
trial which response was correct.
These two restrictions are not funda-
mental to the theory, but greatly
simplify the presentation. Later it
will be apparent that the model can

be extended to multistimulus prob-
lems and to procedures in which in-
formation feedback is manipulated as
an experimental variable.

Two types of experimental pro-
cedures are to be distinguished in the
analysis. We define these in terms of
the following examples:

Yes-No procedure. The Si is a tone
burst in a background of white noise
and 52 is the white noise alone. On a
given trial either Si or Si is presented
and the subject answers yes (A i) or no
(At) regarding the presence of the
signal.

Forced-choice procedure. Two tem-
poral intervals are defined on each
trial, exactly one of which contains a
signal: i.e., in one interval a tone
burst in a background of white noise
is presented, while in the other
interval only the white noise is pre-
sented. On each trial, the subject
is required to identify the interval he
believes most likely to have contained
the signal. Thus, S,(i = 1, 2) denotes
a trial on which the signal occurred in
Time Interval i and A,(j = 1, 2) de-
notes the subject's selection of Interval
j as the one containing the signal.

In this paper we shall use the
identifications given in these examples.
That is, for the yes-no procedure Si
will always denote signal plus noise,
whereas £2 will denote noise alone;
for the forced-choice procedure Si will
denote signal plus noise in the first
interval followed by noise alone in the
second interval, and £2 indicates noise
alone in the first interval and signal
plus noise in the second interval. In
addition, the following notation will
be used:

£;,„ = The presentation of Stim-
ulus Si on Trial n of the
experiment.

Aj,n = The occurrence of Response
Aj on Trial « of the experi-
ment.
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Ei,n = The occurrence of an in-
formation event at the end
of Trial n that indicates that
Stimulus Si was presented.

A theoretical result of particular
interest in analyzing detection data
deals with the relation of Pr (A i,»| Si, n)
to Pr(Ai,n\Sz,n)- For simplicity we
write

= Pr(Ai,n Si.n)
[1]

and when the appropriate limit exists

lim pi,n = pi
n-*°o

For the yes-no procedure pi is the
asymptotic probability of a yes report
when the signal is presented (the like-
lihood of a "hit") and pi is the
probability of a yes report when noise
alone is presented (the likelihood of a
"false alarm"). In the literature,
plots of the relation of p% to pi are
commonly called ROC curves, which
stands for receiver operating character-
istic curves. It is important to note
that we use the term ROC curve in
reference to both the yes-no and
forced-choice method. When one
deals with n interval forced-choice
problems, then the ROC curve is a
surface in n space and predictable from
the theory.

This paper treats the effects of three
classes of variables: the physical pa-
rameters of the stimulus presentation
set; the trial-to-trial schedule for
presenting stimuli; and, the class of
variables such as monetary payoffs
and instructions that are viewed as
influencing the motivation and set of
the subject. To simplify the discus-
sion, we shall consider only a simple
probabilistic scheme for presenting
stimuli; namely,

Pr(Sl,n) = 7 [2]

where 7 is constant over trials. More
complex stimulus schedules can be
analyzed; e.g., the stimulus presenta-
tion on Trial n might depend on the
response on Trial n — k, or on the
stimulus on Trial n — k', or both.
However, an analysis of this simpler
schedule will be sufficient to illustrate
the basic concepts and encompasses
most of the experimental literature.

A xioms and, Rules of Identification

The hypothesized sensory state of
the subject that results from the
presentation of an external stimulus is
specified in terms of two sensory
patterns s\ and ^2 and a set S* of
stimulus patterns associated with
background stimulation. These stim-
ulus patterns are theoretical con-
structs to which we will assign certain
properties. They are not the receptor
neurons of neurophysiology but a
schematic representation of the phys-
ical stimulus, having certain simple
and uniform properties.

On every trial a single pattern is
sampled from the background set S*
and simultaneously one of the sensory
patterns may or may not be activated.
If the s-i sensory pattern is activated,
an A\ response will occur; if 52 is
activated, an A 2 will occur. If neither
sensory pattern is activated, the
subject makes the response to which
the background pattern is condi-
tioned. Conditioning of elements in
S* may change from trial to trial via a
simple learning process.

The likelihood of activating Sensory
Pattern s» given Stimulus Event 5< on
Trial n (and thereby insuring a correct
response) is denoted as rm,n. The
parameter m,-,n is a measure of the
subject's momentary sensitivity level
and may fluctuate from trial to trial.
However, the momentary sensitivity
level is bounded between zero and Mi,
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and the parameter Mi represents the
subject's maximum level of sensitivity
to a fixed signal. The parameters
Mi and Mz are to be interpreted as
measures of the physical character-
istics of Si and 52 and are monotonic
with signal strength. Further, we
assume that variables such as stimulus
presentation schedule, instructions,
monetary payoffs, and experimental
design have no effect on Mi and M^.

Changes in sensitivity level occur
from trial to trial and depend on
previous events. Specifically, if the
subject tends to do well (i.e., emit
correct responses) by ignoring the
sensory patterns when they are acti-
vated and responding in terms of the
background stimuli alone, then he will
tend to lower his level of sensitivity.
If, however, he tends to do poorly by
basing his response solely on the back-
ground cues, then he will tend to raise
the value of w<,B. Roughly speaking,
we assume that there is a certain cost
associated with maintaining a high
level of sensitivity and view the sub-
ject as being predisposed to reduce his
sensitivity level whenever possible.
However, the subject's tendency to
lower his sensitivity level is counter-
acted if the reduction gives rise to a
significant decrement in his ability to
perform effectively. Thus the activa-
tion process can be described as a
negative feedback system in which the
cost associated with maintaining a
high level of sensitivity interacts with
the cost associated with a decrement
in performance so as to determine a
momentary level of sensitivity. The
parameters that specify the incre-
ments and decrements in sensitivity
are p and S, and we assume that their
values may change if the subject's
motivation or set changes. We return
to this point later. The concept of a
variable level of sensitivity is not new
and there is considerable experimental

evidence at both the behavioral and
physiological level to support the idea
(e.g., Blackwell, 1953; Guilford, 1927;
Howarth & Bulmer, 1956; Oldfield,
1955; Verplank, Collier, & Cotton,
1952; Wertheimer, 1953). In addition
notions of this sort have played a role
in the speculations of Gestalt psy-
chologists (e.g., Kohler, 1947) and
more recently, in theoretical develop-
ments regarding the interplay between
the reticular system and the associa-
tion cortex (Lindsley, 1958). The
important feature of the present
theory is the relation postulated
between variations in the sensi-
tivity level and past stimulus-response
events.

The axioms will be formulated ver-
bally; it is not difficult to state them
in a mathematically exact form, but
for our purposes this will not be
necessary. The axioms fall into three
groups: the first group deals with the
activation process; the second, with
the decision process; and the last
group with variations in sensitivity.

Activation axioms. Al, If Si occurs
on Trial n, then Sensory Pattern Si will
be activated with probability >»,•,».

A2. Exactly one pattern is sampled
from set S* on every trial. Given the
set 5* of N patterns, the probability
of sampling a particular element is
1/jV, independent of trial number and
preceding events.

Response axioms. Rl. If Sensory
Pattern Si is activated, then the At
response will occur. If neither sensory
pattern is activated, then the response
to which the sampled pattern from 5*
is conditioned will occur.

R2. On every trial each pattern in
S* is conditioned to either A i or A 2.
If a pattern from S* is sampled on a
trial, it becomes conditioned with
probability 0* to the At response if £,•
occurs on that trial; if it is already
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conditioned to that response, it re-
mains so.

Sensitivity level axioms. LI. The
parameter Af» specifies the maximum
value of Wi,n. Further

L2. The weighting function wn
changes from trial to trial as follows:

The function An
(® denotes the pro-

portion of trials from Trial n — % + 1
to Trial n on which the information
event £,• agreed with the response
conditioned to the pattern sampled
from S*.

The distinction between yes-no and
forced-choice methods is specified in
terms of the parameters Mi and Mi.
To explicate the distinction between
these two experimental procedures we
redefine Mi and MZ in terms of the
more molecular parameters a- and rj.
Consider a limiting condition in which
the subject is performing at his highest
level of sensitivity (i.e., w — 1).
Under these conditions, if a signal is
presented in noise we assume that the
subject either detects the signal (with
probability <r) or is uncertain whether
the signal occurred. Similarly, when
noise alone is presented we assume
that the subject either detects the
absence of a signal (with probability
97) or is uncertain whether or not the
signal occurred. The three events
will be denoted as follows: 5 = de-
tected signal ; $ = detected omission
of signal ; and u — uncertain. For the
yes-no method the occurrence of s is
identified with the activation of
Sensory Pattern si and therefore a
"yes" response; S with the activation
of 52 and the occurrence of a "no"
response; and the event u with the
activation of neither si nor s$ and

consequently the occurrence of the
response conditioned to the element
sampled from S*. Hence for the
yes-no procedure

Mi = a
M 2 = i\ [3]

For the forced-choice procedure the
analysis is similar. Consider an S\
trial—signal plus noise in the first
interval followed by noise alone in the
second interval. One of the following
event sequences can occur:

1. Event s occurs in the first inter-
val and is followed by Event 8
in the second interval—with
probability 0-77

2. s followed by u—with prob-
ability <r(l — i?)

3. u followed by s—with prob-
ability (1 — o-)r?

4. u followed by u—with prob-
ability (1 — <r)(l - 57).

Information transmitted by either
Outcome 1, 2, or 3 suffices to identify
the trial, and therefore the occurrence
of any one of these outcomes is asso-
ciated with the activation of Sensory
Pattern si and the occurrence of the
A i response. If the fourth outcome
occurs, we assume that neither sen-
sory pattern is sampled.2 Therefore,
MI = ai\ + a-(I —•>;) + (1 — <r)t] and
by a similar argument it can be shown
that Mi = MI. Hence for the forced-

3 In formulating a model that also treated
choice time and confidence ratings it would
be natural to distinguish among Outcomes
1 to 3. However, for an analysis of response
selection, such a distinction is not necessary.
Also, note that the assignment of probabilities
to the four outcomes assumes no time-order
effect; i.e., no interaction between events in
one temporal interval and the next. For a
given experimental situation, the precision
of the comparison between the forced-choice
and the yes-no method will depend on the
accuracy of this assumption.
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choice method

Mi = Ms = <r + ?j — fftj [4]

In theory, once <r and 17 have been
estimated, say, for the yes-no method,
they can be used to predict in the
forced-choice procedure. In this re-
gard note that (for fixed values of <r
and»?) the parameter Mi — M2 for the
forced-choice method is always greater
than or equal to Mi and M2 for the
yes-no method.

In the present formalization of the
theory only Events s and u can occur
given signal plus noise and only Events
8 and u, given noise alone. When the
model was first developed, we per-
mitted s, s, and u to occur (with
different probability distributions)
given either signal plus noise or noise
alone. However, in the analysis of
several sets of data (Atkinson & Cart-
erette, in preparation3; Carterette &
Wyman, 1962; Kinchla, 1962) esti-
mates of the probability of Event s
given noise and the probability of S
given signal plus noise were consis-
tently equal to zero. Hence for the
present discussion we have chosen to
let Pr (s | noise alone) = Pr(&\ signal
plus noise) = 0 and thereby simplify
the presentation. It also is interesting
that in the analysis of the above data
the estimate of 17 was very close to
zero. In fact, by setting i\ = 0 the
correspondence between theoretical
and observed values was not much
different than when a separate esti-
mate of the parameter was made.
However, even for small values of rj
the S event plays an important role in
accounting for second choice data in
multiinterval forced-choice experi-
ments and for this reason the sim-

3 Atkinson, R. C., & Carterette, E. C.
Signal detection as a. function of the stimulus
presentation schedule: A comparison of
forced-choice and yes-no procedures (in
preparation).

plifying assumption of 17 = 0 was not
made.

Asymptotic Response Probabilities and
ROC Curves

If we let \l/n denote the proportion
of elements in S* conditioned to an
A i response at the start of Trial n, then
(by Axioms A2 and R2) we may write
the following difference equation:

This recursion can be solved by stand-
ard methods (see Atkinson & Estes,
1963) to yield the explicit formula

X 1 -T7

where

, I i-e-i
* y + (1 - y)0 L^J

02
and the response bias parameter ft = —.

The quantity \j/ denotes the lim \j/n and
»—*<*>

is the asymptotic probability of an A i
response given that an element from
S* determines the subject's response.
For most analyses we shall be con-
cerned with response protocols that
may be viewed as asymptotic data.
Hence, in general, theoretical results
are presented only for the case in
which n is large.

Using techniques similar to those
employed in Equation 5 and applying
Axiom T2 yields an expression for
lim wn = w; namely,

- A
1 - A + AOL [6]

where the activation parameter a — —
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and A = y$ + (1 - 7)(1 - ^). In
the statement of Axiom T2 we assume
that the amount wn increases or
decreases on a trial depends on A re

(f) ;
the value of this function being the
proportion of times on the last £ trials
on which the subject would have been
correct by ignoring the sensory pat-
tern and responding solely in terms
of the background cue. It is interest-
ing that the asymptotic expression
for wn in Equation 6 is not a function
of £; i.e., independent of the number
of trials the subject scans over, the
value of w depends only on a, 0, and
7. To be more exact, at asymptote
the random variable associated with
the weighting function has an ex-
pectation of w independent of £;
however, the variance of the dis-
tribution does depend on £, being
maximum when £ = 1 and approach-
ing zero as £ becomes large. Analyses
of data reported by Carterette and
Wyman (1963), and Atkinson and
Carterette3 yielded estimates of £ that
were quite large. In view of these
empirical results and for reasons of
mathematical simplicity we will, in
general, assume that £ — -> =°. Later
the effect of £ on sequential predic-
tions will be discussed but, otherwise,
the mathematical results presented in
this paper will be for the case where
the scan range is large.

Employing our previous results,
and using Axioms Al and A2 we
obtain :

Pi = mi + (1

pi = (1

where m^ — Km w,-|7l, and

[7a]

[7b]

[8]

An inspection of Equations 7 and 8
indicates that pi and pi are functions
of MI, Mt, a, ft, and 7. Of course 7 is

specified by the experimenter and
therefore, to fit any ROC curve, four
parameters need to be estimated.
However, for most applications re-
strictions are appropriate that reduce
this number. For example, in a
forced-choice experiment the sym-
metry between Si and Si stimuli is
such to require that 6\ — 0j (unless
the subject has a bias extraneous to
the experiment that favors one re-
sponse over the other) and hence
/? = 1. Further, by an earlier argu-
ment (see Equation 4) we require that
Mi — Mz. Therefore, in a forced-
choice procedure the ROC curve
depends only on M and a.

ROC curves. We now examine two
methods for experimentally generat-
ing ROC curves. One procedure is to
vary the schedule for presenting Si
and 52; for purposes of the present
paper this involves varying 7 from
session to session while holding all
other factors constant (Tanner, Swets,
& Green, 1956). Another method for
generating ROC curves is to manipu-
late instructional variables and/or
payoffs from one experimental ses-
sion to another while using the same
stimuli and holding 7 fixed (Swets,
Tanner, & Birdsall, 1955). The pre-
dictions for each of these cases will be
examined separately.

Consider first the case in which 7 is
permitted to vary while all other
factors remain unchanged. Under
these conditions it is assumed that the
instructions and payoffs specify fixed
values of the response bias parameter
ft and the activation parameter a.
Also Mi and Ma are not affected by
the value of 7 for, in theory, they
depend only on the physical character-
istics of the stimulus presentation set.
Therefore, for a given experimental
situation MI, Mn, a, and ft are fixed,
and variations in pi and pz induced by
manipulating the schedule for pre-
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.2 .4 .6 .8 1.0
Pr(AilS2)

.2 .4 .6 .8 1.0

.2 .4 .6 .8 1.0

FIG. 1. ROC curves generated by manipulating the presentation schedule of stimulus events.

seating Si and Sz must be accounted
for strictly by variations in y.

If we hold Mi, Mt, a, and /? constant
and vary 7 between 0 and 1 (the
permissible range), then the ROC
curve defined by Equation 7 is in
general, a monotone increasing func-
tion that originates at point (0, 0) and
terminates at point (1, 1). However,
it is necessary to be more precise and
distinguish three cases:

1. If 8 = 0 and ju > 0, then asymp-
totically the subject performs at his
maximum level of sensitivity inde-
pendent of other factors, and the ROC

curve is given by the linear function

1 - Mi
+ [9]

2. If 5 > 0 and /u = 0, then asymp-
totically the subject performs at his
minimum level of sensitivity, and the
ROC curve is simply

Pi = [10]

3. For the general case where ju and
5 are both greater than zero, the ROC
curve is a nonlinear monotone in-
creasing function bounded between
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Equation 9 and Equation 10 that
originates at (0, 0) and terminates at
(1, I)-

Figure 1 gives several ROC curves
for both yes-no and forced-choice
procedures when ft = 1, <r = .7, and
1] = .5 or .1. The parameter on each
set of curves is the value of a. Suc-
cessive points on an individual curve
were swept out by letting 7 vary from
0 to 1. For the general case, a is a
ratio of two nonzero probabilities and
hence takes any value greater than
zero. For a close to zero (low sensi-
tivity level) the ROC curve tends
toward the line pi = p%; as a becomes
large the curve approaches the line
given by Equation 9. Further, as
indicated in Figure 1, when a and ft
are the same in both the yes-no and
the forced-choice procedure, then (by
the conditions of Equations 3 and 4)
the theory predicts that the ROC
curve generated by the forced-choice
group will be above the ROC curve
for the yes-no group.

It also can be shown that the ROC
curve defined by varying 7 is either
symmetric about the main diagonal
from point (0, 1) to (1, 0), skewed
right, or skewed left. For symmetry
we require Mi = Mt and /9 = 1;
otherwise the curve may be skewed
right or left. Note that the condi-
tions that specify a symmetric ROC
curve hold in the forced-choice experi-
ment; they may or may not hold for
different yes-no experiments.

Another method for generating
ROC curves is to fix both y and the
signal intensity, and manipulate in-
structions and/or payoffs from one
experimental session to another.
Under these conditions MI and Mt
would be constant over sessions but
we might assume that the response
parameter and the activation pa-
rameter vary. Thus the ROC curve
produced by changing instructions or

payoffs would theoretically be ex-
plained by variations in a and/or ft
given fixed values of Mi, Mt, and 7.
In the discussion of this method we
let 7 = 1/2; this condition simplifies
the mathematics and includes most of
the experimental work. We examine
first the cases in which only a or ft
is permitted to vary and then the case
in which they vary concomitantly.

If we hold the bias parameter ft
constant and let a vary from 0 to oo
then the ROC curve is a straight line
segment between the point

Pi = Mi +
1 - Mi
1 + ft

Pi =
1 -

and the point

1
Pi = 1 + 1 +

That is, as the activation parameter
varies (and all other parameters are
fixed) we move along the function

Mi 1

X [11]

Such a prediction readily can be
realized experimentally. For the
forced-choice method ft is fixed and we
could manipulate a by varying the
amount of payoff for a correct re-
sponse from one experimental session
to another. Then, the ROC curve
generated over experimental sessions
would be specified by Equation 11.
Such an experiment has been con-
ducted by Blackwell (1953) and this
is precisely the type of effect observed.

To be sure, the ROC function given
by Equation 11 is rather different
from the typical curve that one thinks
of with regard to signal detection.
However, there is no doubt that such
functions can be generated experi-
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mentally by symmetrically manip-
ulating motivation variables in the
forced-choice problem. In this re-
gard, it should be noted that the ROC
curve has been referred to in the
literature as an equisensitivity curve
(Luce, 1961). For theories of signal
detection that have static concepts of
the activation process, such a term is
appropriate because all points on the
function represent equally sensitive
activation levels. However, from our
viewpoint the term equisensitive
does not connote the correct meaning,
for we admit the possibility of gen-
erating an ROC curve via variations
in sensitivity. Specifically, in terms
of the present theory, ROC curves
may arise in the following ways:
experimentally manipulating parame-
ters that affect the activation process
but leave the decision process un-
changed (e.g., Equation 11); manip-
ulating parameters that affect the
decision process but leave the activa-
tion process unchanged (e.g., Equa-
tion 12); or manipulating parameters
that affect changes in both the
activation and decision processes (e.g.,
the case in which 7 varies while all
other parameters are fixed).

If we hold a fixed and let /? vary
(for Mi fixed and 7 = 1/2), then the
ROC curve is given by the function

a — Mi Mi
1 +«

[12]

We know of no experimental results
that relate to this prediction.

Finally, in a yes-no experiment it
seems reasonable to assume that both
a and /3 may vary simultaneously as
instructions and/or payoff change.
To illustrate the type of effect that
can be obtained consider the case in
which a = /(/3) such that the function
/ is strictly monotone increasing and
/(O) = 0. Under these conditions if /?

varies between 0 and », then a con vex
ROC curve is traced out from point
(pi = 1, pi = 1 — Mt) to point
(pi = 0, pz = 0) that is bounded be-
tween Equations 9 and 10. The
degree of convexity and the symmetry
of the ROC curve will depend on the
function /. In this regard, it is
interesting to view the estimate of /
for a given set of data as a device for
scaling the effects of instructions and
payoffs.

In terms of the above discussion,
it should be obvious that virtually any
ROC curve can be fitted by selecting
appropriate parameter values. Thus,
within the framework of the present
theory, the ability of the model to fit
ROC data is a rather trivial test. It is
for this reason that we now turn to
more detailed predictions regarding
the fine structure of signal detection
data.

Sequential Predictions
It has long been recognized that

rather complex trial-to-trial depend-
encies are involved in most psycho-
physical data. Some particularly
striking effects have been reported by
Carterette and Wyman (1963), Ho-
warth and Bulmer (1956), and Ver-
plank, Collier, and Cotton (1952);
these experimenters have demon-
strated that detection rates (even for
sophisticated subjects) may increase
or decrease depending on the im-
mediately prior sequence of stimulus-
response events. In this section we
present some sequential predictions
for signal detection studies, having
selected those quantities that are
particularly useful in making esti-
mates of parameters. The reader is
referred to Suppes and Atkinson
(1960, Ch. 2) for a discussion of ap-
propriate estimation procedures.

We shall examine predictions re-
garding the influence of stimulus and
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response events on Trial n as They
affect the response on Trial n + 1.
Specifically

Pr(Ai,n+i\Si,n+iAjinSk,n)

where i, j, k = 1, 2. Explicit expres-
sions for these quantities can be
derived from the axioms. The actual
derivations are quite lengthy and will
not be presented here ; the reader
interested in the mathematical tech-

niques involved should consult Atkin-
son and Estes (1963). Also, for
purposes of this paper, the analysis of
sequential effects will be confined to
asymptotic statistics. To simplify
notation the quantity

lim Pr(Ai,n+i\Si,n+iA,->nSk,n)
n~*°°

will be written as Pr(Ai\SiAjSk).
The expressions for these probabilities
are as follows :

(N ~
-

(N ~
- —

[13b]

r[_13cJ

4.h

.i

,
1

_ ,

-00(1 -

To obtain ^(^4215^4,5*) one need
only note that

Pr(Ai\ Si A jSk) + Pr (A 2 1 S>A jSh) = 1 .

The expressions in Equation 13 are
rather formidable looking but mi-
mencal predictions can be easily
calculated once values for the pa-
rameters have been obtained. Fur-
thermore, independently of the
parameter values, certain relations
among the sequential probabilities can

be specified. For example, it can be
easily shown that

Pr(Ai StA iS() > Pr(A 1 1 SiA aSi)
or that

pr(Ai\ S.A .Si} > Pr(Al SiA A)

for * = 1, 1 and for any values of
7, M\, and Afj.

To indicate the nature of these
predictions we shall examine some
data from two subjects run in a
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forced-choice auditory experiment.
Two temporal intervals were defined
on each trial by the onset and offset of
two lights, A band-limited Gaussian
noise (the masking stimulus) was
present continuously throughout the
experimental session and on every
trial one of the two temporal intervals
contained a fixed intensity, 1,000 cps
tone. The subject pressed one button
if he believed the signal was in the
first interval or pressed a second
button if he believed the signal was in
the second interval. The experi-
mental procedure is described in
detail in Atkinson and Carterette3;
that paper deals with an analysis of
forced-choice and yes-no data from
12 subjects, each run for 350 trials
per day for 30 days.

The data we present here is not to
be regarded as a test of the theory,
but only to illustrate some of the
predictions. Table 1 presents the
observed values for pi, pz, and
Pr(Ai\SiAjSk). The value of 7 was
set at 1/2 in the experiment and, since
a forced-choice method was .used, we
assume that 0 = 1 (i.e., 0i = 02 = 8).
Given that /3 = 1 and y = 1/2 we
have, via Equation 5, that \f> = 1/2.
Knowing ^ and the observed value
of pi, Equation 7a may be used
to obtain an estimate of mi; namely,
mi + (1 - Wi)/2 = .73 or mi = .46.
Further, for the forced-choice pro-
cedure Mi = Mt and therefore, by
Equation 8, it follows that m\ = m<t
= m. Using the above estimate of m
we predict by Equation 7b that
pz = .27 which is quite close to the
observed value of .28.

In order to compute predictions for
the sequential statistics in Table 1
values for 0 and N are required in
addition to the estimate of m. Several
methods may be used to estimate 6
and N but, for simplicity, we apply a
least squares technique. Specifically,

TABLE 1

PREDICTED AND OBSERVED RESPONSE
PROBABILITIES AT ASYMPTOTE

Pr(A1\S1)
Pr(Ai\S,)

Pr(A1\SlA1Si)
Pr(Al\S1A2Sl)
Pr(Al\SlAlSl)
Pr(Al\SlA1S,)
Pr(A1\S,AlSl)
PriA^SzAA)
Pr(Al\S,A1Si)
Pr(Al\S,AA}

Observed

.73

.28

.80

.76

.73

.67

.30

.32

.26

.22

Predicted

.73

.27

.78

.75

.71

.68

.32

.29

.25
.22

for m — .46, the following function
is defined :

S(6,N) = £ \Pr(Ai StAjSi,)

where P r ( - ) denotes the observed
values given in Table 1. Applying
the method of least squares, estimates
of 6 and N are obtained by selecting
values for these parameters that
minimize the function S(6, N).

Using appropriate numerical tech-
niques, the following estimates were
obtained : 6 = .62, N = 3.83. The
predictions corresponding to these
parameter values are presented in
Table 1. When one considers that
only three of the possible eight degrees
of freedom represented in the table
have been utilized in estimating pa-
rameters, the correspondence between
theoretical and observed quantities is
quite good. The fact that our
estimation procedure yields a non-
integral value of N may suggest that
N varies somewhat from time to time,
or it may reflect some contamination
of the data by sources of experimental
error not represented in the model.
The reader interested in other applica-
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tions of this model to sequential data
should see Atkinson (1963).

DISCUSSION

In some respects the theory pro-
posed in this paper is similar to vari-
ous applications of statistical decision
theory to psychophysical phenomena
(Swets, Tanner, & Birdsall, 1961;
Tanner & Swets, 1954). The decision
theory approach rejects the conven-
tional notion of a threshold and argues
for the concept of a criterion range of
acceptance. They assume that on
each trial the reaction of the sensory
system to an external stimulus can be
characterized by a number (a likeli-
hood ratio) and the subject's response
depends on whether or not the number
falls in the criterion range. The
process is not deterministic, for re-
peated presentations of a stimulus
do not generate the same number but
rather a distribution of numbers (i.e.,
to a single presentation of the stimulus
a number is randomly drawn from the
distribution). The position of the
criterion (the operating level) is
assumed to be under the control of
the observer and to vary as a function
of psychological variables that in-
fluence motivation and set. Specif-
ically, the subject fixes the operating
level in terms of a priori probabilities
of stimuli and the costs associated
with the various choices in such a way
as to maximize his expected utility.
Translated into the language used in
this paper, the activation process is
represented by the random sampling
of a number from a distribution
associated with the stimulus; and the
decision process refers to the selection,
by the subject, of an operating level or
criterion.

A principal distinction between our
approach and signal detection theory
is with regard to the activation

process. In our theory the sensitivity
level of the activation process may
vary (within a given range) from trial
to trial as a function of the preceding
events. In contrast, signal detection
theory conceptualizes the activation
process as static, for the parameters
that describe the response of the
sensory system to an external stimulus
are constant and do not depend on
instructions, stimulus schedules, pay-
offs, or other variables that might
influence set or motivation.

Another distinction between our
approach and signal detectability
theory is with regard to the decision
process. Both theories permit varia-
tions in the decision rule as a function
of various independent variables but
in quite different ways. For signal
detection theory the subject selects a
criterion in terms of certain game-
theoretic considerations that take into
account a priori probabilities of stim-
uli and the costs associated with the
various choices. Once the criterion
has been selected for a given ex-
perimental condition it is assumed to
be relatively fixed, and consequently
there is no possibility for predicting
trial-by-trial sequential effects. In
contrast, for the present theory, the
decision process changes from trial to
trial as a function of the type of in-
formation that accrues to the subject.

In discussing the decision rule it is
important to realize that we have
placed a heavy emphasis on a learning
process associated with stimuli ex-
traneous to the signal source (i.e.,
background cues). This learning
process plays a central role in deter-
mining the values of pi and pi as a
function of various independent vari-
ables and provides one means of
accounting for sequential effects in
psychophysical data. It should be
emphasized that the sequential results
predicted by Equation 13 are due
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entirely to trial-to-trial changes in the
conditioning of stimuli in the back-
ground set S*, Another source of
sequential variability can arise from
trial-to-trial fluctuations in nn,n.
When the scan range, £, is large these
effects are negligible at asymptote;
however, for small values of £ they
can be quite important. As indicated
earlier, we have obtained good ac-
counts of sequential effects for several
sets of data by assuming that the
scan range is large. Further, when
£ —* co the mathematical analysis is
simplified. It is for these reasons that
we have been willing to begin by
making this assumption.

Without actually estimating the
value of £ one can obtain various
crude, but easily calculated, measures
of trial-to-trial fluctuations in sensi-
tivity (as opposed to the long term
changes in sensitivity level described
by Equation 6). As an example,
let Cn and Cn denote correct (Si — A i
or £•! — ,4 2) and incorrect (Si — A%
or 52 — A i) responses on Trial n, re-
spectively. Then in a forced-choice
experiment in which 7 = 1/2, the
theory in general predicts that

Pr (Cn+11 Cn) * Pr(Cn+l | Cn) [14]

except when £ —> «>,4 If over an ex-
tended series of trials estimates of
these two probabilities are signifi-
cantly different, then it will be neces-
sary to take into account not only
long-term changes in sensitivity level
but also the more local effects. In
this regard, it should be pointed out
that any theory of signal detection
that postulates a static activation
process has as a consequence the
prediction that

Pr(Cn+i\Cn) = Pr(Cn+l\Cn)
4 It should be emphasized that the predic-

tion in Equation 14 does not depend on the
value of (3 but only on the fact that MI = Af2
and T - 1/2.

in a forced-choice experiment with
7 = 1/2; this result holds for both a
correct information procedure and a
no information procedure.

Our presentation of the theory has
dealt with experimental situations in
which the subject is given correct
information on each trial regarding
the appropriate response; i.e.,

Pr(fi l lB |Si.») =Pr(£,.»|5,.») = 1

It is obvious that the axioms, as
stated, are directly applicable to
problems in which the experimenter
may give false information on some
trials. We shall not go into the
predictions for this type of experiment
except to say that the theory gives a
good account, at least at the qualita-
tive level, of the findings reported by
Carterette and Wyman (1963) and
Suppes and Krasne (1961) on detec-
tion problems in which incorrect in-
formation was manipulated as an
experimental variable.

Throughout this paper, we have con-
sidered psychophysical methods in
which the subject is given information
on each trial and have not dealt with
the no information case. Under con-
ditions of no information certain
changes need to be made in Axioms
A3 and L2. A discussion of this ver-
sion of the theory is given in Atkinson
(1963) and Atkinson and Estes (1963)
and applied to some forced-choice
visual detection data involving no
information feedback; the detailed
predictions for both asymptotic re-
sponse proportions and first-order
sequential statistics are excellent.
However, the major difficulty with
the no information condition is that it
makes the mathematical predictions
less manageable and increases the
sampling error associated with pa-
rameter estimates. Thus, within the
present theoretical framework, the
study of the no information case
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warrants only limited investigation
until the less complicated cases have
been adequately explored.

There are a number of special topics
that have not been discussed. The
following are of particular interest:
the effect of blank trials in a forced-
choice procedure; extension of the
model to account for choice-time
measures; and extension of the model
to multiinterval forced-choice experi-
ments where second choices are per-
mitted. These problems can be
formulated in a natural way within
the framework of the theory and will
be treated in later papers.

SUMMARY

In this paper we present an analysis
of both yes-no and forced-choice ex-
periments in terms of a two-process
model. One process describes sys-
tematic changes that may occur over
time in the subject's sensitivity level
to external stimuli; the other process
specifies changes in the subject's
decision rule as information accrues
to him. From the theory one can
derive predictions regarding both
gross statistics like receiver-operating-
characteristic curves and detailed
sequential statistics like autocorrela-
tions based on previous stimulus-
response events.

Most theories of signal detection
assume that the subject's decision
rule changes as a function of in-
structions, payoffs, stimulus presenta-
tion schedules, and other experimental
variables, but to our knowledge the
present paper is the first to examine
the implications of postulating sys-
tematic nonrandom changes in sensi-
tivity. Undoubtedly the detailed
features of the axioms describing
changes in sensitivity are going to
need much revision to provide a broad

base for interpreting psychophysical
phenomena. Nevertheless, it seems
clear that by assuming a variable
sensitivity level one can provide a
highly parsimonious account of a
wide array of phenomena. No sug-
gestions have been offered regarding
the mechanism that might account
for changes in sensitivity (e.g., orient-
ing responses, peripheral changes
within the sensory system, or events
presumed to occur at higher centers)
and future exploration of the concept
may require such specificity.

Another unique aspect of the pres-
ent development is its emphasis on
sequential phenomena. These effects
can be easily estimated in most
experiments and represent a source of
information about detection behavior
that cannot be duplicated by an
analysis of gross statistics like the
proportion of hits or false alarms.
Within the present theory, sequential
effects are accounted for in terms of
trial-by-trial fluctuations in both the
decision rule and the sensitivity level.
Predictions regarding sequential phe-
nomena play a crucial role in evaluat-
ing the theory. In the past, most
investigators either have ignored these
sequential effects or treated them as
experimental artifacts to be minimized
by counterbalancing, trial spacing, or
by the use of trained subjects.

Much research is needed to test the
general class of models suggested by
the theory. However, in our opinion,
there is enough evidence already
available to suggest that the concept
of a variable sensitivity level will be a
necessary ingredient of a compre-
hensive theory of detection behavior.
Also, it is hoped that the present
paper has emphasized the importance
of examining trial-by-trial sequential
phenomena as a source of information
about the perceptual process.
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