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Abstract   41 
Delivery of suspended particles, referred hereafter also to as suspended sediment, to coastal zones 42 
plays a first order control on the development and maintenance of muddy geomorphic features like 43 
river deltas, mudflats, and tidal wetlands. While sediment delivery from rivers is relatively 44 
straightforward to monitor and has been well studied, suspended sediment derived from erosion of 45 
coastal bluffs and resuspension of shallow subtidal sediments remains poorly constrained. 46 
Estimates of the concentration of suspended particulate matter (SPM) provide one of the best 47 
remotely sensed metrics for suspended sediment supply to the coast. Spaceborne ocean color 48 
sensors with coarse spatial resolution (~1 km pixel size at nadir) are generally inadequate to resolve 49 
smaller-scale sediment dynamics in coastal waters and additionally there is a limitation associated 50 
with adjacency effect of 1-km land pixels on near-shore water pixels. In contrast, satellites 51 
dedicated primarily to land observations with a smaller pixel size (~30 m) provide more adequate 52 
spatial resolution for observations of coastal waters. This paper presents a particle composition 53 
adaptive algorithm for retrieving SPM from ocean remote-sensing reflectance, Rrs(λ), in coastal 54 
waters which is applicable to most land observation satellites. For the algorithm development, we 55 
compiled more than 800 paired in situ spectral reflectance and SPM measurements from 12 marine 56 
sites worldwide, representing a wide range of suspended particle concentration and composition. 57 
We first classify the satellite image data into three water types: organic-rich, mineral-rich, or 58 
extremely mineral-rich based on the POC/SPM ratio that is derived from Rrs(λ). The ratio of 59 
particulate organic carbon (POC) to SPM serves as a particle composition metric. Then, SPM is 60 
estimated from Rrs(λ) using a particle composition-specific algorithm which employs the 61 
reflectance at red band for organic-rich waters and near-infrared (NIR) for mineral-rich waters. 62 
We compared the performance of this algorithm with eight previously published SPM algorithms, 63 
including empirical, semi-analytical, and machine learning approaches. Results show that our 64 
algorithm produces reliable SPM estimation with coefficient of determination (R2), root mean 65 
square error (RMSE in log space), and median absolute percent error (MAPE) of 0.91, 0.20, and 66 
30.5%, respectively. To examine the capability of our algorithm to study the long-term variability 67 
in coastal SPM at high spatial resolution, we implemented the algorithm to the 40-year Landsat 68 
data archive in Google Earth Engine (GEE). The Landsat mapping results of SPM were validated 69 
using both the satellite-in situ matchups of SPM data as well as in situ water turbidity 70 
measurements. Finally, we demonstrate a few scenarios of fine-scale SPM patterns as well as 71 
seasonal and long-term variability across different marine coastal environments using the satellite 72 
high spatial resolution SPM mapping. These results collectively demonstrate the promise of this 73 
new SPM retrieval algorithm for mapping and monitoring global coastal suspended sediment 74 
dynamics. 75 
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1. Introduction 83 
Coastal landscapes, such as beaches, tidal wetlands, and mudflats, provide essential ecosystem 84 
services, including supporting biodiversity, storing blue carbon, and offering natural defenses 85 
against storm surges (Barbier et al. 2011; Hopkinson et al. 2019; Windham-Myers et al. 2018). 86 
These landscapes depend on a continuous supply of sediment from various sources, such as rivers 87 
and coastal erosion, to maintain accretion rates and protect the integrity of these landscapes in the 88 
face of different pressures, such as sea level rise (SLR) and the increased intensity and frequency 89 
of coastal flood events (Coleman et al. 2022; Fagherazzi et al. 2013; Kirwan and Megonigal 2013; 90 
Ladd et al. 2019). For example, adequate sediment supply allows tidal wetlands to continuously 91 
sequester carbon in their sediments through vertical accretion, allowing them to keep up with 92 
gradual SLR and auto-compaction. (Allen 2000; Cahoon et al. 2019; Fagherazzi et al. 2020; 93 
Kirwan and Guntenspergen 2012; Mudd et al. 2004). Numerous studies have shown that a 94 
sediment deficit leads to marsh degradation under current rates of SLR (Ganju et al. 2017; Peteet 95 
et al. 2018; Weston 2013). Understanding coastal sediment dynamics is vital for managing these 96 
landscapes and maintaining their ecosystem services, particularly carbon sequestration. 97 
Coastal landscapes that rely heavily on river sediment supplies are increasingly threatened by 98 
reduced riverine sediment due to upstream damming and channelization, compounded by rising 99 
sea levels (Meade and Moody 2009; Syvitski and Kettner 2011; Walling 2008; Weston 2013). A 100 
recent study evaluating the contribution of river sediment to the maintenance of coastal wetlands 101 
found that nearly half of the tidal wetlands in the conterminous US would require ten times more 102 
sediment than rivers currently supply in order to keep pace with sea level rise (Ensign et al. 2023). 103 
This suggests that watershed-derived sediment is relatively minor for many coastal systems 104 
compared to marine sources, with coastal erosion likely serving as a key sourcing mechanism and 105 
major contributor to tidal wetland accretion. This is particularly true in areas with low river 106 
sediment supply; for instance, in the Northeast US, where the absence of major deltaic systems 107 
means that salt marshes predominantly rely on the erosion of nearshore glacial sediment deposits 108 
by storms and high wave activity offshore (Baranes et al. 2022; Hopkinson et al. 2018; Yellen et 109 
al. 2023).  110 
Despite the recognized importance of sediment supply from coastal erosion (Ensign et al. 2023; 111 
O’Connell 2010), research in this area remains disproportionately understudied compared to the 112 
extensive research conducted on river sediments (Fagherazzi et al. 2020). The magnitude of fluvial 113 
sediment supply and changes in flux have been extensively studied and have long been the focus 114 
of Earth science research (Milliman and Syvitski 1992). Rivers are easier to monitor because they 115 
have abundant bridge crossings on which to mount in situ sediment monitoring equipment. 116 
Furthermore, upstream of tides, mass fluxes in rivers (water and sediment) tend to be 117 
unidirectional, simplifying flux estimates. This research gap is mainly due to the difficulty of 118 
instrumenting coastal zones, where high wave and tide energy make measurements challenging 119 
(Fagherazzi et al. 2020). As a result, there are few large-scale studies estimating the magnitude of 120 
sediment supply to the coastal zone from non-fluvial sources, or assessing temporal changes due 121 
to human modifications of the coastline. The lack of coastal sediment observations hamper 122 
comprehensive understanding for the importance of marine-derived sediment to coastal systems 123 
(particularly fine-grained sediments to back barrier tidal wetlands), as well as the impact of human 124 
structures and climate induced changes that might govern this delivery. 125 
Satellite ocean color remote sensing can help overcome some of the challenges associated with 126 
assessing coastal suspended sediment using more direct but logistically challenging field 127 
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measurements (Volpe et al. 2011; Zhang et al. 2020) (Fig. 1). There are two main types of satellite 128 
sensors commonly used to map the concentration of suspended particulate matter (SPM): ocean 129 
color sensors and land observation sensors. Ocean color sensors, such as MODIS, typically offer 130 
optical measurements at multiple spectral bands in the visible and near-infrared (NIR) spectral 131 
regions, allowing to capture main spectral features of ocean reflectance associated with SPM and 132 
other water constituents (Fig. S1a). However, the coarse spatial resolution (e.g., ~1 km) of these 133 
sensors limits their effectiveness in mapping sediment dynamics in littoral zones where spatial 134 
scales of variability are often smaller than 1 km and the adjancency effect of land and mixed 135 
land/ocean pixels impose further limations on the imaged data (Fig. 2). In contrast, land 136 
observation sensors, like those in the Landsat series operational since 1984, provide higher spatial 137 
resolution (30 m), which is more adequate for resolving the smaller-scale variability of coastal 138 
suspended sediment and minimizing the land adjancency effects (Fig. 2). However, these sensors 139 
have lower spectral resolution, for instance, Landsat has fewer bands and broader bandwidths in 140 
the visible and NIR regions (Fig. S1a) compared to MODIS. This limitation raises questions about 141 
their ability to accurately estimate SPM concentration, especially in view of variability in the 142 
optical properties of SPM associated with variable composition of suspended particulate matter. 143 
The complexity of coastal SPM composition poses challenges for remote sensing monitoring. SPM 144 
includes inorganic particles (e.g., clay and silt), as well as living and non-living particulate organic 145 
matter (e.g., phytoplankton and detritus). These components originate from various sources, 146 
including fluvial discharge, shoreline soil erosion, tidal wetland degradation, local bottom 147 
resuspension, and phytoplankton production (Boss et al. 2001; Ganju et al. 2017; Milliman 1997; 148 
Sweet et al. 2022) (Fig. 1). The contributions of these sources vary with tidal dynamics, seasonal 149 
changes, and episodic events like cyclonic storms (Cortese et al. 2024; Walker 2001). 150 
Consequently, the water column often contains a dynamic mix of organic and inorganic particles 151 
with notable variations in concentration, chemical composition, and size (Bianchi 2011; Miller 152 
and McKee 2004; Stramski et al. 2004). All these factors influence the light absorption and 153 
scattering properties of SPM, and hence the ocean spectral remote-sensing reflectance, Rrs(λ) 154 
where λ is light wavelength in vacuum (Gordon 2019; Kirk 1994; Mobley 2022), making it 155 
challenging to accurately estimate SPM from Rrs(λ) in optically complex coastal waters. 156 
Over the last few decades, several algorithms have been developed to retrieve SPM from remote-157 
sensing reflectance, including empirical, semi-analytical, and machine learning algorithms 158 
(Balasubramanian et al. 2020; Doxaran et al. 2002; Han et al. 2016; Jiang et al. 2021). These 159 
algorithms are designed either for specific sites or applications on regional and global scales. Site-160 
specific studies often use single-band or simple reflectance band-ratio algorithms, which provide 161 
reasonably accurate estimates within limited SPM ranges. For example, Miller and McKee (2004) 162 
used linear regression with MODIS-Terra red band to map SPM in the Mississippi River Delta, 163 
and Doxaran et al. (2002) used visible and NIR band ratios to map SPM in turbid waters of the 164 
Gironde estuary. While potentially effective for specific sites, these algorithms are unlikely to 165 
perform well across diverse aquatic environments due to the optical complexity and variability of 166 
water constituents, especially the suspended particulate matter (Stramski et al. 2023).  167 
To address these challenges, adaptive optical water type (OWT) classification approaches have 168 
emerged as a promising framework for developing generalized algorithms that can be applied 169 
across various aquatic environments, from open oceans and coastal areas to inland waters 170 
(Balasubramanian et al. 2020; Bi and Hieronymi 2024; Jiang et al. 2021; Mélin and Vantrepotte 171 
2015; Moore et al. 2001). These adaptive classification approaches, which utilize spectral shape 172 
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or magnitude of reflectance to distinguish water types, have significant potential to improve the 173 
overall retrieval accuracy of optically-significant constituents across a wide range of water bodies 174 
and to advance a unified approach for global applications. For example, Balasubramanian et al. 175 
(2020) classified water into three classes including blue-green water, green water, and brown water 176 
across diverse samples from rivers, lakes, estuaries, and coastal waters, and then estimated SPM 177 
using semi-analytical, machine-learning, and empirical algorithms. Jiang et al. (2021) classified 178 
waters into four water turbidity types and then estimated SPM separately using semi-analytical 179 
algorithms with both inland and coastal waters data. However, the spectral bands of Rrs(620) and 180 
Rrs(754) used in their study are not available on most land observation satellites, such as Landsat. 181 
Dethier et al. (2020) used unsupervised K-means clustering to account for river-to-river variability 182 
and enhance SPM prediction accuracy. However, their approach was designed specifically for 183 
rivers and calibrated for Landsat using field-measured SPM data, which limits its applicability to 184 
other water types and satellites. 185 
In contrast to classifications based on ocean reflectance spectra, Stramski et al. (2023) proposed a 186 
novel adaptive approach for ocean color algorithms which accounts for variations in composition 187 
of suspended particulate matter. Specifically, the ratio of particulate organic carbon POC to SPM 188 
(POC/SPM) concentrations has been used as a measure of composition of particulate matter to 189 
characterize the varying proportion of organic and inorganic particles. The optical reflectance-190 
based algorithms were formulated to estimate POC/SPM using field data collected in Arctic 191 
waters. The optically-derived POC/SPM then served as a basis of adaptive ocean color algorithms 192 
for estimating POC across a broad range of varying particle concentration and composition within 193 
the Arctic marine environments. The methodology of this adaptive framework, formulation of 194 
algorithms, and example application were demonstrated for several past and presently operating 195 
satellite multispectral ocean color sensors which provide data at a nominal ~1 km spatial 196 
resolution. 197 
Despite advancements in SPM retrieval algorithms, most existing algorithms are tailored to ocean 198 
color satellites and are not directly applicable to land observation satellites which have 199 
significantly higher spatial resolution that is required to capture coastal sediment dynamics but are 200 
more limited in terms of spectral measurement characteristics. Additionally, many existing SPM 201 
algorithms are not specifically designed for coastal waters that exhibit diverse and variable organic 202 
and inorganic compositions from various sources and processes, making accurate SPM mapping 203 
challenging. In this study, we developed a new SPM algorithm intended for improved estimation 204 
of SPM across global coastal waters. This algorithm is designed for use with land observation 205 
satellites to enable long-term high spatial resolution mapping of SPM and provide a better 206 
understanding of sediment dynamics in coastal environments. 207 
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 208 
Figure 1. The interaction of light with suspended sediments, phytoplankton, organic detritus, 209 
colored dissolved organic matter, and water molecules plays a crucial role in determining 210 
remotely sensed ocean color. This diagram illustrates how light interacts with suspended 211 
particles originating from various sources, including riverine sediment (1), marsh edge erosion 212 
and local resuspension (2), marine sediment from coastal erosion (3), and phytoplankton (4). 213 

 214 
Figure 2. Comparison between an ocean color sensor (MODIS) and a land observation sensor 215 
(Landsat). (a) MODIS-Terra Surface Reflectance on Google Earth Engine (GEE) (b) Landsat 8 216 
Surface Reflectance on GEE. Both images are displayed in true color. 217 



 

7 
 

2. Data and Methods 218 
2.1 Study area and datasets 219 
2.1.1 In situ ocean reflectance spectra, SPM, and POC data 220 
To develop a global SPM retrieval algorithm, we compiled a high-quality in situ dataset to capture 221 
the variability of optical water types in coastal waters. Several datasets, including GLORIA 222 
(Lehmann et al. 2023), Delta-X (Fichot and Harringmeyer 2023), Belgian coastal zone (Castagna 223 
et al. 2022), and Arctic dataset (Stramski et al. 2023), provided in situ spectral reflectance paired 224 
with measurements of SPM and POC on surface water samples. In this paper, we use the term 225 
“suspended particulate matter” (SPM) instead of “total suspended solids” or “total suspended 226 
sediment” (TSS) to maintain scientific accuracy and avoid misleading terminology. The standard 227 
gravimetric method involves filtering water through a pre-weighed filter (e.g., GF/F glass-fiber), 228 
then drying and reweighing to determine particle mass. This method does not capture all particles, 229 
as submicron particles can pass through the filter. Thus, “total” can be misleading because not all 230 
particles are included in the measurement of particle mass. Using “SPM” provides a more 231 
reasonable representation of the measurement methodology and avoids potentially misleading 232 
interpretation of the word “total”. 233 
Our data compilation encompassed 12 research sites worldwide, representing a diverse array of 234 
marine coastal settings (see Fig. 3 and Table 1). Of these, four sites are located near river outlets 235 
and as such, predominantly affected by riverine sediment export. Six sites are located further 236 
offshore, or along coasts devoid of major rivers or wetland complexes where suspended particles 237 
are largely derived from coastal erosion or phytoplankton growth. Two sites are influenced by tidal 238 
marshes, located either in tidal marsh-influenced estuaries or near marsh platforms, with sediments 239 
primarily sourced from marsh and estuary/coastal exchanges. The classification of coastal settings 240 
only indicates the sources of SPM and is not used for water type classification. In situ Rrs(λ) was 241 
measured within the 350 to 900 nm wavelength range, although due to instrumental and processing 242 
constraints some spectra were limited to the 400 to 750 nm range. Water samples for SPM and 243 
POC determinations were collected at near-surface depths (0–5 m), primarily near the coast where 244 
a mix of organic and inorganic sediments from river, marsh, or marine sources are present. The 245 
final dataset in this study includes over 800 in situ spectral reflectance observations paired with 246 
SPM measurements. 247 
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 248 
Figure 3. The geographical distributions of the compiled in situ datasets. Each panel shows the 249 
locations of in situ measurements in yellow dots for different study sites. The number of samples 250 
(n) is indicated for each site, along with the sediment source type (river-influenced, marsh-251 
influenced, or marine-influenced). (a) Atchafalaya River, (b) Terrebonne Basin, (c) Arctic 252 
Ocean, (d) Red River, (e) Mekong River, (f) Gironde River, (g) Gulf of Mexico, (h) Yellow Sea, 253 
(i) Seto-Inland Sea, (j) Hawke Bay, (k) English Channel, and (l) Plum Island. 254 
 255 
Table 1. Range and median (in parentheses) of field SPM and POC measurements (in units of 256 
g/m3) for each site with information on the sediment source, the total number of in situ samples 257 
collected, the number of samples used for SPM algorithm development, the number of samples 258 
matched with satellite image data, and the sources of the data. 259 

Location SPM 
[g/m3] 

POC 
[g/m3] 

POC/SPM 
[%] 

Sediment 
source 

n 
(total) 

n 
(algorithm 
calibration) 

n 
(matched 

with 
image) 

Source 

Atchafalaya 
River, LA 

6.58-
154.50 
(33.17) 

0.53-
4.57 

(1.45) 

0.014-
0.159 

(0.030) 

River-
influenced 78 39 - 

Fichot & 
Harringmeyer, 

2023 

Mekong 
River 

0.47-
10.69 
(1.83) 

- - River-
influenced 44 - - Lehmann et al., 

2023 

Red River 
1.09-

147.69 
(10.39) 

- - River-
influenced 99 - - Lehmann et al., 

2023 

Gironde 
River 

44.51-
1815.35 
(229.59) 

- - River-
influenced 37 19 - Lehmann et al., 

2023 
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Terrebonne 
Basin, LA 

2.20-
90.10 

(28.50) 

0.31-
4.87 

(2.18) 

0.018-
0.232 

(0.058) 

Marsh-
influenced 82 41 9 

Fichot & 
Harringmeyer, 

2023 

Plum 
Island, MA 

1.02-
21.71 
(7.65) 

- - Marsh-
influenced 23 - 9 Lehmann et al., 

2023 

Arctic 
Ocean 

0.044-
20.62 
(0.37) 

0.02-
1.02 

(0.13) 

0.015-
0.583 

(0.322) 

Marine-
influenced 95 47 2 Stramski et al., 

2023 

English 
Channel 

0.333-
118.33 
(4.73) 

- - Marine-
influenced 118 - - 

Castagna et al., 
2022; Lehmann et 

al., 2023 

Yellow Sea 
0.26-

110.24 
(5.08) 

- - Marine-
influenced 38 - - Lehmann et al., 

2023 

Seto-Inland 
Sea 

0.25-
6.40 

(0.98) 
- - Marine-

influenced 51 - 2 Lehmann et al., 
2023 

Gulf of 
Mexico, 

LA 

0.087-
8.63 

(0.82) 
- - Marine-

influenced 65 - - Lehmann et al., 
2023 

Hawke Bay 
1.53-
77.92 

(16.28) 
- - Marine-

influenced 40 - - Lehmann et al., 
2023 

The spectral curves of Rrs(λ) exhibit diverse shapes and magnitudes (see §3.2.1 for details). The 260 
SPM data we compiled range from very clear waters with SPM = 0.04 g/m3 to highly turbid waters 261 
with SPM = 1815 g/m3, spanning more than five orders of magnitude. The POC/SPM ratio varied 262 
significantly across sites from 0.01 to 0.6, covering approximately the full range that can be 263 
expected for this particulate compositional metric in natural waters (Stramski et al. 2023). Particle 264 
assemblages ranged from being dominated by mineral particles (like Atchafalaya, with a median 265 
POC/SPM of 0.03), to a mix of mineral and organic particles (like Terrebonne, with a median 266 
POC/SPM of 0.058), and organic-dominated (like Arctic Ocean data, with a median POC/SPM of 267 
0.322). Across different environments, the river- and marsh-influenced sites exhibit higher levels 268 
of SPM compared to marine-influenced environments (Fig. 4). The POC levels increase 269 
progressively from marine-influenced to river-influenced, and finally to marsh-influenced 270 
environments. The POC/SPM ratio increases from river-influenced to marsh-influenced, and then 271 
to marine-influenced environments. 272 
 273 

 274 
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Figure 4. Probability distribution of (a) SPM, (b) POC and (c) POC/SPM in marine-influenced, 275 
marsh-influenced, and river-influenced waters.  276 
Overall, the extensive variability of geographical locations (Fig. 3), spectral characteristics (see 277 
Fig. 7 in §3.2.1), SPM concentration, and particle composition (Table 1 and Fig. 4) illustrates the 278 
diverse scenarios represented by our compiled datasets. These scenarios range from very clear to 279 
extremely turbid waters, featuring highly variable particle compositions influenced by different 280 
sources such as rivers, marshes, and marine systems. 281 
2.1.2 Landsat imagery and atmospheric correction 282 
To apply our newly developed SPM algorithm to satellite data for demonstration purposes and for 283 
future studies of coastal suspended sediment, we used the Landsat historical catalog that dates back 284 
to 1984. Landsat’s 30-m spatial resolution data make it generally adequate for mapping fine-scale 285 
spatial patterns of coastal sediment transport and the Landsat long history allow for detecting long-286 
term temporal trends in coastal SPM patterns. We used the Google Earth Engine (GEE) cloud 287 
platform to access Level-2 Collection 2 Surface Reflectance Science Product imagery from the 288 
U.S. Geological Survey. Our dataset includes Landsat 5 (1984–2012), Landsat 7 (1999–2022), 289 
Landsat 8 (2013–present), and Landsat 9 (2021–present) (Fig. S1b). These four sensors have 290 
provided Earth observation data since 1984 with a 30-m spatial resolution and 16-day temporal 291 
repeat cycle. The overlapping operational periods of these satellites have decreased the effective 292 
revisit time to 8 days since 1999.  293 
To minimize the impact of cloud contamination on satellite imagery, we excluded images with 294 
cloud cover exceeding 30% as indicated by the Quality Assessment (QA) band. Additionally, we 295 
applied a bitmask to the 'QA_PIXEL' band to isolate high-quality pixels, effectively excluding 296 
those compromised by fill, dilated clouds, clouds including cirrus, and cloud shadows. In order to 297 
mask out land pixels and those with a mixture of land and water, we used the JRC Global Surface 298 
Water dataset (Pekel et al. 2016) with the following thresholds: water occurrence greater than 90%, 299 
transition less than 2, water seasonality greater than 11, and water recurrence greater than 90%. 300 
Additionally, we masked out pixels with a normalized difference water index (NDWI) (McFeeters 301 
1996) of less than 0.5 to further refine the delineation of water extent in each image.  302 
The Landsat Level-2 Surface Reflectance (SR) was atmospherically corrected using the Landsat 303 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm (version 3.4.0) for 304 
Landsat 5 and Landsat 7, and the Land Surface Reflectance Code (LaSRC) algorithm (version 305 
1.5.0) for Landsat 8 and Landsat 9 (Skakun et al. 2019; Wolfe et al. 2004). Both algorithms 306 
effectively correct for atmospheric contributions to top-of-atmosphere radiance measured by the 307 
satellite sensor, such as aerosols and water vapor, across different times, locations, and spectral 308 
ranges. However, it is important to note that these atmospheric correction methods are designed 309 
for terrestrial applications and do not correct for skylight reflection at the air-water interface, 310 
potentially introducing an error in estimates of remote-sensing reflectance Rrs(λ), which must be 311 
addressed before the application of SPM retrieval algorithm. 312 
Empirical line method was used to correct for light reflected at the air-water interface. We first 313 
paired concurrent field-measured Rrs(λ) with Landsat SR data from our compiled datasets (Table 314 
1). Given the dynamic nature of coastal waters, strict criteria were applied to the dataset pairing: 315 
(i) Landsat SR was centered on a single pixel (30m x 30m) at the in situ sampling location; (ii) the 316 
field Rrs(λ) was measured within ±2 hours of the Landsat overpass between 8:00 AM and 12:00 317 
PM local time; (iii) pixels affected by cloud/haze, shadows, or snow/ice were excluded; and (iv) 318 
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to avoid contamination from land adjacency effects and bottom reflectance, pixels along the edges 319 
of the main channel or in narrow channels (less than 100 m), close to land (< 20 m), or in shallow 320 
waters (< 0.5 m) were also removed. Using these criteria, we obtained high-quality field-measured 321 
Rrs(λ) and Landsat SR matchups from our compiled dataset of 22 matchups (see Table 1), resulting 322 
in 14 matched data pairs. We used these data to build a relationship between field-measured Rrs(λ) 323 
and Landsat SR, which was then used to correct the Landsat SR to obtain Rrs(λ) in GEE. 324 
2.2 SPM retrieval algorithms  325 

The spectral remote-sensing reflectance Rrs(λ) at wavelengths λ where particulate absorption is 326 
negligible or sufficiently weak is expected to increase with an increase in particle concentration in 327 
the water; however, this positive relationship is often influenced by particle composition (Jerlov 328 
1976; Jonasz and Fournier 2007). Fig. 5 illustrates the Rrs(λ) changes under constant SPM 329 
concentration while varying the POC/SPM ratio. At a given SPM concentration, particularly at 330 
longer wavelengths (e.g., 670 nm) where absorption by colored dissolved organic matter is 331 
minimal, Rrs(λ) values tend to increase as the POC/SPM ratio decreases. This suggests that 332 
mineral-rich waters, which have a low POC/SPM ratio, exhibit higher Rrs(λ). Consequently, a 333 
single predictive relationship cannot be universally applied across different particle composition 334 
categories to reliably estimate SPM from Rrs(λ). 335 

  336 
Figure 5. In situ spectral curve for constant SPM and varied POC/SPM ratio as labeled. (a) SPM 337 
= 6 g/m3. (b) SPM = 10 g/m3. (c) SPM = 20 g/m3. (d) SPM = 40 g/m3. 338 
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To improve SPM predictions, the proposed SPM algorithm is designed to account for the impact 339 
of varying POC/SPM ratios on spectral Rrs(λ). Our approach involves two main steps: first, 340 
classifying water types based on POC/SPM ratios estimated from Rrs(λ), and second, applying the 341 
particle composition-specific (i.e., POC/SPM-specific) algorithms to estimate SPM within each 342 
compositional class from Rrs(λ). 343 

We examined the estimation of POC/SPM using Rrs(λ) (units of sr-1) at one or multiple bands 344 
which is an adaptation of previous approach by Stramski et al. (2023): 345 
   

POC
SPM

= 10(𝑎𝑎  𝐵𝐵+ 𝑏𝑏)                  (1) 

 346 
   

POC
SPM

= 10(𝑎𝑎  𝐺𝐺 + 𝑏𝑏)                  (2) 

 347 
   

POC
SPM

= 10(𝑎𝑎  𝑅𝑅 + 𝑏𝑏)                  (3) 

 348 
  

POC
SPM

= 10(𝑎𝑎1  𝐵𝐵 + 𝑎𝑎2 𝐺𝐺 + 𝑎𝑎3  𝑅𝑅 + 𝑏𝑏)                  (4) 

where 𝐵𝐵 is log[𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝐵𝐵)], 𝐺𝐺 is log[𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝐺𝐺)], and 𝑅𝑅 is log[𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑅𝑅)] with 𝜆𝜆𝐵𝐵 = 490 nm, 𝜆𝜆𝐺𝐺  = 555 349 
nm, and 𝜆𝜆𝑅𝑅 = 670 nm. The 𝑎𝑎 and 𝑏𝑏 are the best-fit coefficients of the single band regression model 350 
(Eq. 1-3). The 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4, and 𝑏𝑏 are the best-fit coefficients of the multiple band regression 351 
models (Eq. 4). 352 
We chose the green band algorithm to estimate POC/SPM and classify water types because it 353 
provides the same overall water type classification accuracy as the three-bands algorithm (see §3.1 354 
for details) while being simpler and more practical to implement. Based on the green band 355 
algorithm (Eq. 2), POC/SPM ratio is classified into three categories: organic-rich, mineral-rich, 356 
and extremely mineral-rich (E) as shown in Table 2. We optimized the boundary values for these 357 
classifications through a detailed correlation analysis between Rrs(λ) and SPM, refining POC/SPM 358 
increments. The process for determining these boundary values is further detailed in §3.1. 359 

Table 2. Classification rules for water type determination. 360 
Water type class Rule 

Organic-rich POC/SPM > 0.12 or Rrs(670) < 0.01 sr-1 
Mineral-rich 0.02 < POC/SPM < 0.12 
Extremely mineral-rich (E) POC/SPM < 0.02 

 361 
After classifying the water types based on particle composition, the next step is to estimate SPM 362 
from Rrs(λ) using particle composition-specific algorithms for each compositional class. To 363 
determine which wavelength can serve as the best predictor of SPM for different water types, we 364 
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fitted a linear regression between field-measured SPM and Rrs at many wavelengths within the 365 
range 400–890 nm. We found that the prediction accuracy varied significantly across wavelengths 366 
and displayed unique trends for each water type (see §3.2.2 for details). The red band provides 367 
better estimates for organic-rich particles, while the NIR band is more effective for mineral-rich 368 
and extremely mineral-rich particles. Therefore, we use these advantageous bands to retrieve SPM 369 
(units of g/m3)for the three water types as follows: 370 
 371 
   SPMorg = 𝑎𝑎 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅) 𝑏𝑏                  (5) 

 372 
   SPMmin = 𝑎𝑎 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑁𝑁𝑁𝑁𝑅𝑅)𝑏𝑏                  (6) 

 373 
   SPMmin(E) = 𝑎𝑎 𝑅𝑅𝑟𝑟𝑟𝑟(𝜆𝜆𝑁𝑁𝑁𝑁𝑅𝑅)𝑏𝑏                  (7) 

where the subscripts “org”, “min”, and “min (E)” indicate organic-rich, mineral-rich, and 374 
extremely mineral-rich water types, respectively. The 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅 is 670 nm and 𝜆𝜆𝑁𝑁𝑁𝑁𝑅𝑅 is 810 nm. The 𝑎𝑎, 375 
and 𝑏𝑏 are the best-fit regression model coefficients obtained with field data for respective water 376 
types.  377 
 378 
2.3 SPM algorithm and satellite-derived SPM validation 379 
We used 50% of the in situ samples (n=153) from our assembled dataset from the Arctic Ocean, 380 
Terrebonne Bay, Atchafalaya Delta, and Gironde Estuary to develop the SPM algorithms (Table 381 
1). The remaining 50% of the in situ samples from this dataset, along with all samples from other 382 
datasets that were independent of the algorithm development dataset, were used for the SPM 383 
algorithm validation. We also compared the performance of the proposed SPM algorithm with 384 
eight previous algorithms, including empirical, semi-analytical, and machine learning algorithms, 385 
which were proposed by Balasubramanian et al. (2020); Doxaran et al. (2002); Jiang et al. (2021); 386 
Miller and McKee (2004); Nechad et al. (2010); Novoa et al. (2017); Petus et al. (2010); Yu et al. 387 
(2019). 388 
For satellite-derived SPM validation, we validated our SPM estimates from satellite observations 389 
using a satellite-in situ matchup dataset. First, we paired Landsat-derived SPM with concurrent 390 
field measurements of SPM and then compared these matchups. Specifically, we extracted the 391 
satellite-derived SPM from a precise 30m x 30m pixel that overlapped with the exact location of 392 
the in situ SPM water sample, ensuring accurate spatial alignment. We only used water samples 393 
within a ± 2 hour window of the satellite overpass (between 8:00 AM and 12:00 PM local time for 394 
Landsat). Large rivers have discharge patterns that vary over seasonal timescale with sediment 395 
concentration closely linked to discharge, which allows for matchup flexibility in timing of 396 
satellite-field observation matchups. In contrast, the highly dynamic nature of coastal sediments—397 
affected by wind waves, runoff, tides, fluctuating water levels, and river discharge—requires 398 
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precise timing for data collection to ensure accurate matchups. Additionally, pixels affected by 399 
cloud/haze, shadows, snow/ice, adjacency effects or bottom reflectance were also excluded from 400 
matchups. In total, we compiled 22 matchups of field SPM measurements with concurrent Landsat 401 
imagery to validate our SPM retrieval algorithm. The SPM ranged from 0.1 to 77 g/m3 with 402 
POC/SPM of 0.02-0.2, covering a range from organic to mineral rich particle assemblages. 403 
Due to the limitations of validating satellite-derived SPM with a small sample size of satellite-in 404 
situ matchups, we also used continuous time-series of in situ measurements of water turbidity to 405 
complement the SPM validation analysis. While the determination of in situ SPM requires 406 
collection of discrete water samples and subsequent laboratory measurements, in situ turbidity 407 
measurements are often available at high temporal resolution for many major river deltas through 408 
USGS field gauge stations. Turbidity is an optical property of water, and therefore not a perfect 409 
approximation of SPM, but the two parameters are generally well correlated for a given river 410 
system (McKeon et al. 2022; Minella et al. 2007). Specifically, we used a 90 m buffer zone to 411 
extract satellite-derived SPM from the location of the turbidity sensor, and we extracted concurrent 412 
turbidity measurements within ±5 minutes of the Landsat overpass (between 9:55 AM and 10:05 413 
AM local time). We employed two methods to validate our results. First, we compared the seasonal 414 
trends between satellite-derived SPM and in situ turbidity measurements. Second, we compared 415 
satellite-derived SPM with concurrent turbidity measurements.  416 
The coefficient of determination (R2), root mean square error in log space (RMSE), and the median 417 
absolute percent error (MAPE) were used to assess the algorithm performance defined as: 418 
 

  𝑅𝑅2 = 1 −
∑  𝑛𝑛
𝑖𝑖=1  (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2

∑  𝑛𝑛
𝑖𝑖=1  (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2  

                 (8) 

 419 
 

  RMSE = �∑  𝑛𝑛
𝑖𝑖=1 �log (𝑦𝑦�𝑖𝑖 + 1) − log (𝑦𝑦𝑖𝑖 + 1)�

2

𝑛𝑛
 

                 (9) 

 420 
 

  MAPE = median ��
𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖
𝑦𝑦𝑖𝑖

�� × 100% 
                 (10) 

where 𝑦𝑦�𝑖𝑖 is the predicted value, 𝑦𝑦𝑖𝑖 is the measured value, 𝑦𝑦� is the mean of the measured values, 𝑛𝑛 421 
is the number of samples.  422 

3. Results 423 
3.1 POC/SPM estimation and water type classification using in situ dataset 424 
To assess the classification of water types based on particle composition, we first demonstrate the 425 
estimation of POC/SPM from in situ measurements of Rrs(λ) using the concurrent data for all 426 
samples with paired POC and SPM measurements. The best-fit algorithm coefficients for the 427 
POC/SPM estimation (Eq. 1-4) are shown in Table 3. 428 

Table 3. Coefficients and performance metrics for POC/SPM algorithms and water type 429 
classification based on the analysis of in situ dataset 430 
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Algorithm a  b POC/SPM algorithm 
performance 

Water type classification 
performance 

  R2 RMSE Overall accuracy (%) 
Eq. 1, f(B) -1.280 -4.012 0.82 0.04 90.3 
Eq. 2, f(G) -0.973 -3.213 0.86 0.03 92.2 
Eq. 3, f(R) -0.516 -2.431 0.86 0.03 91.9 

Eq. 4, f(B,G,R) 
a1=-0.727,  
a2=0.398,  
a3=-0.509 

-3.147 0.91 0.02 92.2 

Fig. 6 shows the predicted POC/SPM versus measured POC/SPM for four different algorithms. 431 
Overall, all algorithms provide a good estimation of POC/SPM. The one-band algorithm can 432 
produce reasonably good estimates of POC/SPM, for example R2=0.86, RMSE=0.04, and MAPE= 433 
29.1% for the green band algorithm. The three-bands algorithm provides the best estimation of 434 
POC/SPM with R2=0.91, RMSE=0.02, and MAPE= 24.70%. We chose the green band algorithm 435 
to estimate POC/SPM and classify water types because it provides the highest overall classification 436 
accuracy (92.2%), similar to the three-bands algorithm (92.2%) while slightly outperforming the 437 
red band algorithm (91.9%), and the blue band algorithm (90.3%) (n = 259). This demonstrates 438 
that the green band algorithm is as effective as the multiband approach for water type classification 439 
while being simpler and more practical to implement.  440 

  441 
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Figure 6. Algorithm-derived versus measured values of POC/SPM using different algorithms 442 
applied to the in situ dataset. (a) Blue band algorithm. (b) Green band algorithm. (c) Red band 443 
algorithm. (d) Three-bands algorithm. 444 
In Stramski et al. (2023), water types were classified into three categories: the mineral-dominated 445 
class defined as having POC/SPM ≤ 0.12; the mixed class with POC/SPM between 0.12 and 0.28; 446 
and the organic-dominated class with POC/SPM ≥ 0.28. We adopted similar thresholds to Stramski 447 
et al. (2023). In our classification, water is categorized as extremely mineral-rich when POC/SPM 448 
< 0.02, mineral-rich when POC/SPM is between 0.02 and 0.12, and organic-rich when POC/SPM 449 
> 0.12 or Rrs(670) < 0.01 sr⁻¹. There are two main differences between these classification schemes: 450 
(i) we extended the previous classification of Stramski et al. (2023) by introducing an extremely 451 
mineral-rich category to account for very turbid and mineral-rich waters, such as those with SPM 452 
exceeding 1000 g/m3 and the POC/SPM ratio below 0.02; (ii) we merged the mixed and organic-453 
dominated categories from Stramski et al. (2023) into one organic-rich category. This adjustment 454 
was based on findings by Stramski et al. (2023) which showed no significant difference in the 455 
average spectral shape of Rrs(λ) between the mixed and organic-dominated categories. For the 456 
organic-rich class, we used an additional criterion of Rrs(670) < 0.01 sr⁻¹, along with POC/SPM > 457 
0.12, to better distinguish organic-rich particulate assemblages. This adjustment accounts for cases 458 
where POC/SPM is slightly below 0.12, but the lower Rrs(670) suggests reduced scattering from 459 
mineral particles or increased phytoplankton absorption. Such cases were therefore grouped into 460 
the organic-rich water type. 461 
3.2 SPM estimation for different water types using in situ dataset 462 
3.2.1 Spectral characteristics of reflectance of organic and mineral-rich particulate matter 463 

Fig. 7 shows example of in situ measurements of spectral Rrs(λ) for organic-rich, mineral-rich, and 464 
extremely mineral-rich particle classes, exhibiting diverse shapes and magnitudes of Rrs(λ) within 465 
and across particle composition classes. For the organic-rich class in Fig. 7a and 7b, the spectra 466 
typically show peaks in the blue or green regions. The contrast between Rrs(670) and Rrs(700) in 467 
Fig. 7b indicates a higher presence of phytoplankton in the water (Xue et al. 2015). For the mineral-468 
rich class in Fig. 7c and 7d, the spectra generally peak in the green or red regions, showing overall 469 
higher levels of Rrs(λ) due to increased backscattering by mineral particles. For the extremely 470 
mineral-rich particle class in Fig. 7e and 7f, the spectra typically peak in the green, red, or NIR 471 
regions. 472 
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 473 

  474 
Figure 7. Example spectra of Rrs(λ) from in situ observations for different particle composition 475 
classes where each spectral curve represents a single hyperspectral measurement. (a) Organic-rich 476 
particle class from Mekong River. (b) Organic-rich particle class from Terrebonne. (c) Mineral-477 
rich particle class from English Channel and Hawke Bay. (d) Mineral-rich particle class from 478 
Terrebonne. (e) Extremely mineral-rich (E) particle class from Gironde River. (f) Extremely 479 
mineral-rich (E) particle class from English Channel. The vertical dashed lines correspond to 480 
wavelengths of 490 nm, 555 nm, 670 nm, and 810 nm. 481 

Fig. 8a shows example Rrs(λ) spectra for the three water types from in situ measurements. The 482 
reflectance characteristics of these water types exhibit distinct spectral trends and magnitudes. As 483 
the mineral fraction increases from the organic-rich to mineral-rich and extremely mineral-rich 484 
particle composition class, the dominant reflectance peak shifts to longer wavelengths. For the 485 
organic-rich class, the peak occurs in the green spectral region (~570 nm), while the mineral-rich 486 
and extremely mineral-rich classes show a peak at longer wavelengths (~700 nm). Additionally, 487 
the magnitude of Rrs(λ) increases as the mineral fraction in SPM increases. 488 
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 489 

  490 

Figure 8. (a) Example Rrs(λ) spectra for the three water types from in situ measurements. The 491 
shaded regions represent the interquartile range (IQR, 25th–75th percentile), while the solid line 492 
with circular markers indicates the median Rrs at each wavelength. Wavelengths are shown at 10 493 
nm intervals from 400 nm to 890 nm for illustrative purposes. (b) The R² values of linear regression 494 
between log-transformed SPM and Rrs(λ) from 400 to 890 nm for three particle composition classes. 495 
The blue and red stars mark the optimal wavelengths for organic-rich waters (∼670 nm) and 496 
mineral-rich and extremely mineral-rich (E) waters (∼810 nm), respectively. 497 
3.2.2 Optimal wavelength for SPM estimation  498 

To determine which wavelength of Rrs(λ) can serve as the best predictor of SPM for different water 499 
types, we fitted a linear regression between log-transformed values of field measurements of SPM 500 
and Rrs(λ) in the spectral range 400–890 nm. Fig. 8b shows the determination coefficient, R2, for 501 
estimating SPM from Rrs(λ), across different wavelengths for the three water types. The coefficient 502 
R² exhibits significant variation across the spectral range and displays unique spectral behavior for 503 
each water type. For the organic-rich particle class, R² was highest in the red region with a peak 504 
around Rrs(670). For both the mineral-rich and extremely mineral-rich particle classes, R² was 505 
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highest in the near-infrared (NIR) region with a peak around Rrs(810). Although Rrs(730) also 506 
shows high R² values for the mineral-rich and extremely mineral-rich classes, this band is 507 
unavailable on most land observation satellites. Overall, Rrs at visible bands can predict SPM for 508 
organic-rich particle assemblages well, whereas the NIR bands can predict mineral-rich particle 509 
assemblages well. Fig. 9 shows the relationships between SPM and optimized Rrs(670) or Rrs(810) 510 
for the three water types. It is clear that Rrs(670) can better predict SPM for organic-rich class, 511 
whereas Rrs(810) can better predict SPM for mineral-rich and extremely mineral-rich classes.  512 
 513 

 514 
Figure 9. Measured SPM versus in situ Rrs (Red = 670 nm and NIR = 810 nm) for the three 515 
particle composition classes. (a) SPM vs. Rrs(670) for organic-rich particle class. (b) SPM vs. 516 
Rrs(670) for mineral-rich class. (c) SPM vs. Rrs(670) for extremely mineral-rich class. (d) SPM 517 
vs. Rrs(810) for organic-rich class. (e) SPM vs. Rrs(810) for mineral-rich class. (f) SPM vs. 518 
Rrs(810) for extremely mineral-rich class. 519 
3.2.3 Particle composition-specific SPM algorithms  520 
Based on the variability of the algorithm performance using different wavelengths for different 521 
water types illustrated in Fig. 8 and 9, we selected the most appropriate spectral band to predict 522 
SPM from Rrs(λ) for each water type. Accordingly, we derived the following best-fit algorithmic 523 
formulas for each water type (Eq. 5-7) using in situ spectral measurements (see Table 1 foir 524 
summary of data). The coefficients for particle composition-specific SPM algorithms are presented 525 
in Table 4 and the corresponding plots are shown in Fig. S2. The organic-rich specific algorithm 526 
uses the red band and shows a near linear relationship between the red band reflectance and SPM 527 
with a relatively small slope (a=1992.2, b=1.027). In contrast, the mineral-rich specific algorithms, 528 
both using the near-infrared (NIR) band, exhibit stronger non-linear relationships. The mineral-529 
rich specific algorithm has a steeper increase in SPM as a function of NIR reflectance (a=12662.7, 530 
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b=1.157) than the organic-rich specific algorithm. The extremely mineral-rich (E) specific 531 
algorithm shows the most rapid increase in SPM (a=50556.7, b=1.371). 532 

Table 4. Coefficients of particle composition-specific SPM algorithms (Eq. 5-7) 533 
Algorithm a   b 

Organic-rich 1992.2 1.027 
Mineral-rich 12662.7 1.157 

Mineral-rich (E) 50556.7 1.371 

3.3 Validation of SPM algorithm 534 
3.3.1 SPM algorithm validation using in situ reflectance spectra and SPM 535 
Fig. 10 shows the algorithm-derived versus measured values of SPM for all 12 field experimental 536 
sites (Table 1) using particle composition-specific algorithms described by Eq. 5-7. All samples 537 
included in this illustration are independent from the algorithm development dataset. The 538 
algorithms produce reasonably good estimates of SPM across diverse coastal environments, with 539 
the mean values of R² of 0.77, MAPE of 32.9%, and RMSE of 0.16. The performance of the 540 
algorithms varied slightly between sites, which may reflect regional differences in particle 541 
composition, particle size distribution, absorption by colored dissolved organic matter, and 542 
environmental factors, such as sky conditions and sea surface boundary conditions. 543 
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 544 

 545 
Figure 10. Algorithm-derived versus measured values of SPM using our particle composition-546 
specific SPM retrieval algorithm with data points color coded according to the predicted POC/SPM 547 
values obtained from our green band POC/SPM algorithm. The SPM values were estimated from 548 
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in situ Rrs measurements at a single band for different sites according to the water type 549 
classification in terms of particle composition parameter POC/SPM. (a) Gulf of Mexico, (b) 550 
Yellow Sea, (c) Arctic Ocean, (d) Hawke Bay, (e) Seto-Inland Sea, (f) English Channel, (g) 551 
Terrebonne, (h) Plum Island, (i) Mekong River, (j) Atchafalaya, (k) Red River, and (l) Gironde 552 
River. The sample size is slightly different from that in Table 1 because the mineral-rich samples 553 
at some sites lack in situ measurement of Rrs(810).  554 
3.3.2 Comparison with previous SPM algorithms 555 
We assessed the performance of the proposed SPM retrieval algorithm in comparison to eight 556 
previously published algorithms (Table 5). These previous publications include empirical, semi-557 
analytical, and machine learning algorithms as outlined in Table S1. The primary goal of this 558 
comparison is to provide insights into the performance of different algorithms across various water 559 
types and to highlight the development of SPM algorithms over the past two decades. Rather than 560 
determining which algorithm is the best, this comparison aims to present the range of algorithm 561 
performance. An attempt to identify the best algorithm would be challenging and likely difficult 562 
to justify mainly for two reasons: (i) each algorithm is designed with specific objectives utilizing 563 
different spectral bands and calibrated with different datasets; (ii) the availability of validation data 564 
varies for each algorithmic method depending on the spectral bands required in the method. For 565 
instance, some algorithms including Doxaran et al. (2002), Novoa et al. (2017), Yu et al. (2019), 566 
Balasubramanian et al. (2020), and Jiang et al. (2021) require Rrs in the NIR region, which is not 567 
always available for in situ Rrs measurement due to instrumental and processing constraints. In 568 
addition, the removal of negative values of SPM predictions also affects the number of validation 569 
data. For instance, 258 out of 816 samples were predicted to have negative SPM values in the 570 
study of Miller and McKee (2004). This could also occur when calculating the absorption 571 
coefficient and backscattering coefficient using semi-analytical algorithms, such as those by Jiang 572 
et al. (2021) and Balasubramanian et al. (2020). 573 
Table 5. Comparison of algorithm performance metrics for the proposed SPM algorithm with 574 
those from the literature. 575 

Algorithm R2 RMSE MAPE n 
Doxaran et al., 2002 0.61 0.52 89.5 456 
Miller and McKee, 

2004 0.53 0.43 63.0 540 

Nechad et al., 2010 0.82 0.36 54.4 718 
Petus  et al., 2010 0.81 0.33 53.0 718 
Novoa et al., 2017 0.83 0.26 40.4 716 

Yu et al., 2019 0.76 0.30 41.6 459 
Balasubramanian et 

al., 2020 0.86 0.27 39.6 718 

Jiang et al., 2021 0.76 0.28 35.0 595 
This study 0.91 0.20 30.5 770 

The performance of each algorithm is shown in scatter plots of algorithm-derived versus measured 576 
values of SPM (Fig. 11). Each algorithm exhibits some limitations. For example, Doxaran et al. 577 
(2002) cannot reliably estimate relatively low values of SPM as their algorithm is designed 578 
primarily for highly turbid waters. The algorithms of Miller and McKee (2004), Nechad et al. 579 
(2010), and Petus et al. (2010) have difficulty with the estimation of both low and high SPM levels. 580 
The errors in low SPM waters were likely due to the low signal-to-noise ratio of red reflectance in 581 
clear waters and inadequate algorithm calibration for clear waters, while the errors in high SPM 582 
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waters were primarily caused by the saturation of red reflectance. This highlights a fundamental 583 
limitation of SPM retrieval algorithms that are based solely on visible spectral bands. The 584 
algorithms developed by Novoa et al. (2017) and Yu et al. (2019) perform well in predicting 585 
intermediate to high SPM but have difficulty with low SPM, likely due to the lack of organic-rich 586 
water samples (such as those from the Arctic Ocean) in the dataset used to calibrate the algorithm. 587 
The SOLID algorithm by Balasubramanian et al. (2020) perform well in predicting low SPM but 588 
displays larger errors at intermediate and high SPM. The Jiang et al. (2021) algorithm shows strong 589 
performance in predicting intermediate values of SPM but is less effective at low and high particle 590 
concentrations. These two algorithms were designed for diverse aquatic environments ranging 591 
from open coastal areas to inland waters, making them more suitable for global SPM estimation. 592 
However, it appears they are unlikely to effectively capture the variability in particulate 593 
composition within coastal waters. Our proposed algorithm produces reasonably accurate 594 
estimates across the very wide range of SPM typically observed in coastal waters. Notably, our 595 
algorithm achieved the highest R2=0.91 among the compared algorithms (0.53-0.86 range), the 596 
smallest RMSE value of 0.20 (0.26-0.52 range for other algorithms), and smallest MAPE value of 597 
30.5% (35.0%–89.5% for other algorithms). Moreover, our approach utilizes only three spectral 598 
bands for water type classification and SPM estimation, which are available on most land 599 
observation satellites, enhancing its applicability with this type of satellite sensors. 600 
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  601 

 602 
Figure 11. Comparison of algorithm-derived SPM with in situ measurements of SPM. The 603 
estimated SPM values were obtained from in situ-measured Rrs(λ) using different SPM 604 
algorithms. (a) Doxaran et al. (2002). (b) Miller and McKee (2004). (c) Nechad et al. (2010). (d) 605 
Petus et al. (2010). (e) Novoa et al. (2017). (f) Yu et al. (2019). (g) Balasubramanian et al. 606 
(2020). (h) Jiang et al. (2021). (i) This study. All points are color coded according to the 607 
predicted POC/SPM from our green band POC/SPM algorithm. 608 
3.4 Validation of satellite-derived SPM 609 
3.4.1 Landsat radiometric correction 610 
To apply the proposed particle composition-specific SPM algorithms to Landsat images, we used 611 
empirical line method to correct the Landsat Surface Reflectance (SR) image by removing the 612 
reflection of skylight at the air-water interface to align the SR values with in situ-measured remote-613 
sensing reflectance Rrs(λ). We plotted the in situ-measured Rrs(λ) versus Landsat SR for four major 614 
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spectral bands of Landsat (Fig. S3). Overall, there was good agreement between the measured 615 
Rrs(λ) and the Landsat SR, indicating that the Landsat Level-2 Surface Reflectance Science 616 
Product is retrieved relatively well from the applied atmospheric correction procedure. This is also 617 
supported by the study of Page et al. (2019), which shows that the spectral shape and magnitude 618 
of SR product are very similar to those produced by other atmospheric correction methods 619 
designed for ocean color remote sensing. However, residuals still exist due to skylight reflection 620 
at the water surface and other errors. We applied the empirical line method to directly correct the 621 
Landsat SR to align with Rrs(λ) measured in situ at the specific wavelengths, including Rrs(490), 622 
Rrs(555), Rrs(670), and Rrs(810).  623 
3.4.2 Validation of SPM retrievals using satellite-in situ matchups 624 
Fig. 12 shows the comparison between Landsat-derived SPM and in situ-measured SPM using the 625 
proposed SPM algorithms. When applied to Landsat imagery, the proposed algorithm produces 626 
SPM that agrees reasonably well with match-up measurements of SPM across diverse water bodies 627 
ranging from organic-rich to mineral-rich water types with R2 of 0.93, MAPE of 22%, RMSE of 628 
7.8 g/m3. However, validating SPM using satellite-in situ matchups presents challenges, primarily 629 
due to the small sample size. The highly dynamic nature of coastal sediments—impacted by wind 630 
waves, runoff, tides, fluctuating water levels, and river discharge—requires precise timing for data 631 
collection to secure accurate matchups. To address these limitations, we also used time-series data 632 
of in situ measurements of water turbidity to enhance our SPM validation analysis, as detailed 633 
below in §3.4.3. 634 

  635 
Figure 12. Comparison of Landsat-derived SPM and in situ measured SPM using the proposed 636 
SPM algorithm. The RMSE value was calculated using the original data, i.e., not in the log 637 
space. 638 
3.4.3 Validation using water turbidity measurements 639 
The US Geological Survey (USGS) maintains a network of stream gauges providing continuous 640 
water turbidity measurements for many major US estuaries, allowing for an alternative assessment 641 
of the satellite SPM retrievals from the proposed SPM algorithm. Fig. 13 shows the comparison 642 
of in situ-measured turbidity and satellite-derived SPM for selected sites including East Coast, 643 
USA: Connecticut River, Gulf of Mexico, USA: Atchafalaya, West Coast, USA: San Francisco 644 
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Bay, Pacific Northwest, Canada: Taku River, and East Coast, USA: Back River. The left panel of 645 
Fig. 13 shows the time series of in situ turbidity measurement and satellite estimate of SPM. The 646 
right panel of Fig. 13 depicts a scatter plot comparing satellite-derived SPM matched with in situ 647 
turbidity measurements. The first three sites illustrate the seasonal variability of SPM and turbidity, 648 
while the last two sites illustrate the annual variability.  649 
Satellite retrievals of SPM effectively capture the seasonal variations in the Connecticut River 650 
Mouth and Atchafalaya but provide less comprehensive data for San Francisco Bay. More 651 
specifically, in the Connecticut River Mouth, the satellite data capture three major turbidity peaks 652 
in March, July, and December. The estimated SPM strongly correlates with observed turbidity (R² 653 
= 0.81, p < 0.001). At the Atchafalaya site, satellite observations reflect the seasonal turbidity 654 
pattern with high SPM in spring and low SPM in summer, and the estimated SPM also shows a 655 
strong correlation with observed turbidity (R² = 0.74, p < 0.001). In San Francisco Bay, although 656 
there are fewer observations throughout the year and seasonal variability is not well captured, the 657 
estimated SPM still correlates significantly with observed turbidity (R² = 0.76, p < 0.001). 658 
In the Taku River, satellite observations capture the annual turbidity changes with estimated SPM 659 
showing a strong correlation with observed turbidity (R² = 0.65, p < 0.001). In Back River, there 660 
is no distinct annual turbidity pattern, but a general declining trend from 2000 to 2005 is apparent 661 
in both in situ and satellite observations. The correlation between estimated SPM and observed 662 
turbidity is relatively weaker compared to other sites but remains significant (R² = 0.45, p < 0.001). 663 
The satellite-derived SPM does not directly represent turbidity measurements due to site-specific 664 
variations in the relationship between these two variables and the discrepancies are influenced by 665 
factors such as particle composition and size distribution driven by different sediment sources and 666 
processes over various time scales. Nonetheless, all validation sites exhibit a positive and 667 
significant correlation between satellite-derived SPM and in situ turbidity measurements. 668 



 

27 
 

 669 



 

28 
 

Figure 13. Comparison of in situ-measured water turbidity (Formazin Nephelometric Units, FNU) 670 
and satellite-derived SPM in several selected sites: (a) East Coast, USA: Connecticut River, (b) 671 
Gulf of Mexico, USA: Atchafalaya, (c) West Coast, USA: San Francisco Bay, (d) Pacific 672 
Northwest, Canada: Taku River, and (e) East Coast, USA: Back River. The left panel shows the 673 
time series of in situ turbidity measurement (secondary y axis) and satellite estimated SPM from 674 
matchup (primary y axis). The right panel shows scatter plot of these matchup data of satellite 675 
estimated SPM and in situ turbidity measurement with data points color-coded according to the 676 
satellite-derived POC/SPM ratio using our green band POC/SPM algorithm. The LC09, LC08, and 677 
LE07 represent Landsat 9, 8 and 7, respectively.  678 
3.5 SPM mapping products 679 
To enhance the exploration and visualization of coastal SPM dynamics, we developed an 680 
interactive web tool that provides high-spatial resolution satellite-based mapping of SPM globally. 681 
The tool allows users to create their own maps of SPM in coastal waters and explore both seasonal 682 
variations and long-term changes in SPM. It is publicly available and can be accessed at 683 
https://tssmapping.projects.earthengine.app/view/sscmap. 684 
3.5.1 High spatial resolution patterns of satellite-derived SPM 685 
To demonstrate the proposed algorithm for satellite-based mapping of spatial distributions of SPM, 686 
we selected two representative Landsat images, one from the northeast US, a high wave energy, 687 
organic-rich coastal marine environment, and the other from Louisiana (USA), a mineral-rich, low 688 
wave energy near-shore environment (Fig. 14). The high-spatial resolution SPM map in Fig. 14a 689 
clearly illustrates sediment plumes along the northeast coast. In this region, SPM is generally low 690 
due to the absence of major river mouths, which results in a limited riverine sediment supply. 691 
Instead, coastal geomorphic features, such as tidal marshes, primarily rely on nearshore glacial 692 
sediments that are mobilized by storms and high wave activity offshore (Baranes et al. 2022; 693 
Yellen et al. 2023). In contrast, the Mississippi River coast, as shown in Fig. 14b, exhibits higher 694 
SPM. In this region, SPM is largely associated with sediment discharge from the Atchafalaya 695 
River, one of the Mississippi River’s main distributary branches. The high spatial-resolution SPM 696 
map in Fig. 14b also captures streaklines which are formed by a series of fluid parcels originating 697 
at the outlet of the Atchafalaya River (Salter et al. 2022). 698 

https://tssmapping.projects.earthengine.app/view/sscmap
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 699 

 700 
Figure 14. Spatial pattern of Landsat 8-derived SPM. (a) Northeast US coast (March 21, 2021). 701 
(b) Mississippi River Delta (March 18, 2021). The insets on right hand side provide zoomed-in 702 
views of specific areas, illustrating finer details of the SPM pattern. 703 
3.5.2 Seasonal variations of satellite-derived SPM 704 
We used the entire Landsat 5-9 catalog (1984-2024) to examine how seasonal  trends of SPM vary 705 
between three representative coastal areas in the US. In San Francisco Bay (Fig. 15a), SPM shows 706 
notable seasonal variations with elevated SPM during spring and summer, contrasting sharply with 707 
lower values in autumn and winter. In the northeastern US (Fig. 15b), SPM levels increase during 708 
winter and spring, and decrease during summer and autumn. In the Atchafalaya Delta (Fig. 15c), 709 
SPM is lower in autumn but higher during winter, spring, and summer, peaking in May, consistent 710 
with the timing of monthly peak discharge from the Mississippi River (Androulidakis and 711 
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Kourafalou 2013). These results together demonstrate that this new Landsat-derived SPM product 712 
is capable of capturing the seasonal variability of SPM in diverse coastal marine environments. 713 

 714 
Figure 15. Seasonal variability of SPM over past 4 decades derived from Landsat 5, 7, 8, 9 over 715 
the period 1984-2024 for several coastal regions. The solid centerline refers to the median SPM. 716 
(a) San Francisco Bay. (b) North South River in northeastern US. (c) Atchafalaya Delta.  717 
 718 
3.5.3 Satellite-derived SPM variability over decadal scales 719 
To demonstrate SPM dynamics over the past four decades, we calculated Sen’s slope (Sen 1968) 720 
using five-year binned SPM data derived from Landsat observations between 1984 and 2023 for 721 
two selected coastal sites (Fig. 16). The rationale of using five-year binned SPM is further detailed 722 
in §4.3. Fig. 16a shows a contrasting increase in SPM in Lake Pontchartrain and a decrease in the 723 
Atchafalaya River and its delta. In Fig. 16c, a contrasting result is also visible with an increase in 724 
SPM in the upper region of Blackwater and a decrease in Fishing Bay and the areas in Blackwater 725 
that receive sediment from Fishing Bay via connected channels. Fig. 16b and d show two 726 
contrasting SPM time series, one with a decrease and one with an increase. These results 727 
demonstrate the ability of the new Landsat-derived SPM product to capture SPM dynamics in 728 
coastal marine environments over a long multidecadal period. 729 
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 730 
Figure 16. Sen’s slope (g/m3/year) of Landsat-derived SPM over the past four decades (1984 to 731 
2023) (a) Atchafalaya River and Lake Pontchartrain. (c) Blackwater and Fishing Bay. Panels (b) 732 
and (d) display box plots of SPM at five-year intervals, illustrating temporal trends in SPM levels. 733 
The location of (b) and (d) are marked in the map (a). 734 

4 Discussion 735 
4.1 The rationale of particle composition-specific SPM algorithms 736 
The classification of water types based on particle composition significantly enhances the accuracy 737 
of SPM estimation. By categorizing water bodies into distinct water type classes, such as organic-738 
rich, mineral-rich, and extremely mineral-rich composition of suspended particulate matter, and 739 
using different particle composition-specific algorithmic formulas for SPM estimation from 740 
remote-sensing reflectance at different spectral bands, Rrs(λ), the proposed algorithm effectively 741 
accounts for varying optical properties across diverse water types in optically-complex coastal 742 
environments.  743 
This particle composition-based classification of water types is especially useful because the 744 
optical properties of natural waters are influenced not only by the concentration of suspended 745 
particles (i.e., SPM) but also by the composition and size distribution of particulate matter (Jerlov 746 
1976; Jonasz and Fournier 2007). Specifically, for a given SPM, Rrs(λ) tends to increase across the 747 
major portion of the visible spectrum as the POC/SPM ratio decreases, and this trend is clearly 748 
observed within the range of relatively high SPM typical of many coastal environments (Fig. 5). 749 
This result indicates that mineral-rich waters, which have a low POC/SPM ratio potentially 750 
accompanied by a higher proportion of smaller-sized particles, tend to exhibit higher Rrs(λ) 751 
(Stramski et al. 2023). This is because an increased proportion of inorganic particles in SPM raises 752 
the average index of refraction of bulk particulate matter and a greater proportion of smaller 753 
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particles increases the slope of particle size distribution (PSD), both of which either enhance the 754 
magnitude of backscattering or a proportion of backscattering in the total particulate scattering, 755 
which generally act to increase Rrs(λ) (Bhargava and Mariam 1991; Boss et al. 2004; Reynolds et 756 
al. 2016; Twardowski et al. 2001). The effects of particle composition on Rrs(λ) suggest that a 757 
single predictive model generally cannot reliably estimate SPM across different particle 758 
composition categories. Therefore, accounting for particle composition can improve SPM 759 
estimates from optical observations, at least in some near-shore environments, such as those 760 
examined in this study. Additionally, the potential covariation between POC/SPM and the 761 
contributions of differently-sized particles to PSD reinforces the effectiveness of using POC/SPM 762 
as a proxy to classify coastal water types (Reynolds et al. 2016; Woźniak et al. 2010). Our particle 763 
composition-based classification approach improves SPM estimation across diverse coastal waters 764 
by capturing the variability of water types within these dynamic environments. Unlike other 765 
Optical Water Type (OWT) classification methods (Balasubramanian et al. 2020; Jiang et al. 2021) 766 
which are designed for a wide range of aquatic environments—rivers, lakes, estuaries, and coastal 767 
waters—our approach specifically accounts for varying particle composition across such diverse 768 
coastal environments. This approach allows for more accurate satellite-based mapping of SPM 769 
across diverse environments where sediment types and composition vary significantly. It is, 770 
however, also noteworthy that the importance of varying particle composition for estimating SPM 771 
may not be critical for all optically-complex marine environmental scenarios. For example, the 772 
study of a comprehensive field dataset from the Arctic environment by Stramski et al. (2023), 773 
which covered a very broad range of POC/SPM and SPM extending up to 20 g/m3, indicated a 774 
robust capability to estimate SPM from optically-based algorithms without accounting for 775 
variations in POC/SPM. 776 
For SPM estimation in different water types, we found that the prediction accuracy varies 777 
significantly across the spectrum of light wavelengths and exhibits unique trends for each water 778 
class (Fig. 8b). The red band provides better estimation for organic-rich particulate assemblages, 779 
while the NIR band is more effective for mineral-rich and extremely mineral-rich particulate 780 
assemblages. As the mineral fraction of SPM increases, the spectral peak of reflectance shifts 781 
gradually from blue to green, then to red, and finally to NIR (Fig. 8a). Therefore, while the red 782 
band reflectance is effective for predicting SPM in organic-rich water types, it becomes ineffective 783 
for mineral-rich water types, making the NIR band more suitable for these types. This explains 784 
why the single-band reflectance algorithms have difficulty estimating low SPM values, such as the 785 
algorithm of Doxaran et al. (2002) designed for highly turbid waters. Similarly, the algorithms by 786 
Miller and McKee (2004), Nechad et al. (2010), and Petus et al. (2010) face difficulties with both 787 
low and high SPM estimations due to the effect of reflectance saturation in the red band. Our 788 
proposed algorithms address this issue by switching the reflectance used in the algorithms to the 789 
appropriate spectral band for different water types, resulting in more accurate SPM estimation 790 
across a very wide range of SPM observed in diverse coastal waters. 791 
4.2 Advancements and limitations of the new SPM retrieval algorithm  792 
The presented SPM retrieval algorithm offers significant advancements in satellite-based mapping 793 
of sediment dynamics across various coastal environments. This algorithm improves the accuracy 794 
of SPM in different water types including organic-rich, mineral-rich, and extremely mineral-rich 795 
waters influenced by rivers, marshes, and marine environments. The algorithm is applicable to 796 
high spatial resolution land observation satellites (e.g., Landsat 5-9, Sentinel-2A/B, and 797 
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PlanetScope), enabling long-term, high spatial resolution mapping of SPM, and thus providing a 798 
tool for better understanding of sediment patterns and processes in coastal areas. 799 
One of the key strengths of this algorithm is its applicability to most high spatial resolution land 800 
observation satellites, allowing it to capture fine-scale sediment patterns that cannot be detected 801 
by coarser-resolution ocean color satellites. For example, the SPM map obtained from Landsat 802 
imagery in Fig. 14a clearly shows sediment plumes along the coast and near river outlets along the 803 
northeast coast of the US. These detailed patterns reveal the sources of sediment and their transport 804 
trajectories, indicating that both coastal erosion and river discharge are crucial in supplying 805 
sediment to coastal environments such as marshes and beaches. Similarly, the SPM map in Fig. 806 
14b captures fine-scale streaklines at the outlet of the Atchafalaya River. These filament-like, flow-807 
parallel patterns provide insights into subsurface bathymetry and flow direction (Ayoub et al. 808 
2018), demonstrating the algorithm ability to detect subtle changes in sediment dynamics that 809 
coarser sensors might miss. 810 
The proposed algorithm also captures seasonal variability in SPM. For instance, in San Francisco 811 
Bay (Fig. 15a), SPM shows significant seasonal fluctuations with higher SPM levels during spring 812 
and summer and lower values in autumn and winter. These changes are likely driven by seasonal 813 
variations in wind speed, which enhance sediment resuspension and transport (Schoellhamer et al. 814 
2007). In the northeastern US (Fig. 15b), SPM levels rise during winter and spring due to storms 815 
and increased offshore wave activity, which are key drivers of sediment dynamics in this region 816 
(Baranes et al. 2022; Yellen et al. 2023). In contrast, SPM in the Atchafalaya River Delta peaks in 817 
May and is lower in autumn (Fig. 15c), reflecting the seasonal patterns of river discharge which is 818 
the primary source of sediment for the delta (Rosen and Xu 2013). These examples highlight the 819 
algorithm capability to adequately capture seasonal changes in SPM across different coastal 820 
environments. 821 
In addition to seasonal variability, the algorithm provides valuable insights into long-term SPM 822 
dynamics. Fig. 16a illustrates a contrasting increase in SPM in Lake Pontchartrain and a decrease 823 
in the Atchafalaya River and its delta. The increase in SPM in Lake Pontchartrain is likely due to 824 
more frequent use of the Bonne Carre Spillway, which diverts Mississippi River water into the 825 
lake during high flows. The use of Spillway has increased dramatically in recent years, introducing 826 
more sediment from the Mississippi River into the lake (Allison et al. 2013). On the other hand, 827 
the decrease in SPM in the Atchafalaya River and delta can be attributed to the impact of damming 828 
and river management (Meade and Moody 2009). Similarly, Fig. 16b shows an increase in SPM 829 
in the upper region of Blackwater and a decrease in Fishing Bay. The increased SPM in the 830 
Blackwater National Wildlife Refuge is possibly due to the degradation of tidal marshes which 831 
release sediment into the water column (Ganju et al. 2015; Hopkinson et al. 2018), while the 832 
reduced levels of SPM in Fishing Bay are likely due to a decreased sediment supply from various 833 
sources (Turner et al. 2021). These results demonstrate the algorithm effectiveness in capturing 834 
long-term trends in SPM, allowing for a better understanding of how natural and anthropogenic 835 
factors influence sediment dynamics over time. 836 
Overall, the new SPM retrieval algorithm significantly improves our ability to monitor and 837 
understand coastal sediment dynamics both at fine spatial scales and over extended temporal 838 
periods. Its adaptability to different water types and high spatial resolution capabilities of satellites 839 
makes it an effective tool for studying coastal environments and understanding the processes that 840 
influence them. 841 
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Even though the new algorithm has been validated using both SPM and water turbidity 842 
measurements across several sites, demonstrating its capability to detect spatial and temporal 843 
changes, it still has limitations. The empirical approach presented in this paper was calibrated using 844 
field data compiled from a limited number of sites. Consequently, it may not perform well for 845 
water types that are not well represented in the calibration dataset. More field data are necessary 846 
for further evaluation of the algorithm, especially for site-specific research. The algorithm 847 
parameters may need to be adjusted based on local conditions. Beyond the algorithm itself, the 848 
satellite mapping of SPM product developed in this study also has some limitations and should be 849 
used with caution. Various factors, including atmospheric correction, bottom reflectance, 850 
adjacency effects, will contribute to the uncertainty of satellite-derived SPM. In this study, we 851 
used an empirical line method based on 14 matchups to correct Landsat Surface Reflectance (SR) 852 
images to removing the contributions of light reflected at the air-water interface and better align 853 
the SR values with field-measured spectral remote-sensing reflectance, Rrs(λ). The results show 854 
good agreement with field-measured Rrs(λ) and are supported by findings from Page et al. (2019). 855 
Their study demonstrated that atmospherically corrected Landsat SR shapes and magnitudes are 856 
comparable to those produced by other ocean color-specific atmospheric correction methods (e.g., 857 
ACOLITE and MAIN). However, the simple empirical atmospheric correction method used in this 858 
study may involve significant uncertainties when applied globally to coastal waters. For global 859 
SPM studies, more robust atmospheric correction algorithms are still needed. Furthermore, this 860 
study did not account for the effects of bottom reflectance or land adjacency effects on satellite-861 
based estimation of SPM. As a result, the algorithm may be less reliable in optically shallow waters 862 
or areas very close to the coast where these effects are significant. Addressing these factors will 863 
be essential for improving SPM estimation in such regions. 864 
4.3 Landsat temporal coverage for capturing coastal sediment dynamics 865 
High-intensity and lower-frequency tidal and wave activities, as well as storm events, play a 866 
significant role in remobilizing coastal suspended sediment (Cortese et al. 2024; Traykovski et al. 867 
2004). While it is not feasible for Landsat to consistently capture short-lived events and extreme 868 
values (the revisit time of a single Landsat mission is 16 days), we postulate that Landsat can 869 
capture the distribution and variability patterns of SPM at a given coastal location with a sufficient 870 
number of repeated satellite observations. To test this, we compared histograms of the continuous 871 
turbidity measurements with a subset of turbidity data during satellite overpasses over one-year 872 
and five-year periods for the Atchafalaya River (LA) (station ID: 07381600) (Fig. 17). 873 
The one-year satellite observations (Fig. 17a) suggest a larger discrepancy between in situ turbidity 874 
measurements and in situ turbidity measurements that correspond to satellite overpass, particularly 875 
in the higher percentiles (top 2%, top 5%, and top 10%). However, none of these differences were 876 
statistically significant at the 0.05 level. For instance, the independent t-test comparing the means 877 
yielded a p-value of 0.0855, indicating the means are not significantly different. The Mann-878 
Whitney U test for examining the medians yielded p = 0.2138, indicating no significant difference 879 
in this central tendency. The Kolmogorov-Smirnov test which compares the overall distribution 880 
showed p = 0.1349, suggesting more divergence in the distributions although still not statistically 881 
significant. For the one-year observations, wider confidence intervals (CIs) were found in the top 882 
percentiles. For example, the 98th percentile CI was [0.0, 71.51] which indicates substantial 883 
uncertainty in the estimate of the difference. The wide CIs reflect that the difference between in 884 
situ turbidity measurements and in situ turbidity measurements coincident with satellite overpass 885 
could vary more widely. Although the differences were not statistically significant, the higher 886 
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percentiles suggest that turbidity measured at satellite overpass consistently reported lower 887 
turbidity than the continuously measured turbidity due to missing extreme events. 888 
In contrast, the five-year satellite observations (Fig. 17b) captured a more representative range of 889 
turbidity conditions including higher turbidity events. The independent t-test on the five-year data 890 
showed the p-value of 0.9897, suggesting no significant difference in the means between the two 891 
datasets. The Mann-Whitney U test for medians (p = 0.8021) and the Kolmogorov-Smirnov test 892 
(p = 0.3636) further confirm that there was no significant difference between the distributions of 893 
turbidity in this period. The narrower CIs in the five-year dataset (e.g., 98th percentile CI = [-17.0, 894 
26.0]) indicate less variability and higher confidence in the ability of the satellite observation to 895 
capture representative turbidity events. This result suggests that a longer time frame, such as five 896 
years, is essential for capturing episodic events and the full variability of sediment dynamics in 897 
coastal areas. The consistency between the two groups over five years demonstrates that extended 898 
datasets significantly reduce the differences observed over shorter time frames. 899 
In conclusion, while one-year data may provide insights into general trends, the observed 900 
difference in the higher percentiles and the wider confidence intervals highlight the limitations of 901 
short-term observations. For a robust analysis of sediment dynamics, particularly during episodic 902 
high-turbidity events, at least five years of Landsat data are required to obtain a representative and 903 
statistically comparable observation. However, to study short-term events such as storms, the 904 
application of this algorithm to high spatial and temporal resolution satellites (e.g., Sentinel-2, 905 
PlanetScope) will provide a significant advantage by enhancing the temporal frequency of SPM 906 
observations in coastal regions. 907 

  908 
Figure 17. Histograms of all turbidity measurements compared to those taken during Landsat 909 
satellite overpasses over one-year (a) and five-year (b) periods for the Atchafalaya River (LA). 910 
The inset plot shows continuous turbidity measurements alongside turbidity data obtained during 911 
satellite overpasses. 912 

5. Summary and Conclusions 913 
In this paper, we present a new SPM retrieval algorithm for application of satellite remote sensing 914 
with land observation sensors in optically-complex coastal waters with varied sources of 915 
suspended particles. The major contributions of this work include: (i) we compiled a dataset of in 916 
situ spectral reflectance and SPM measurements covering a wide range of particulate 917 
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concentrations and chemical compositions from river-, marsh-, and marine-influenced coastal 918 
waters; (ii) we developed an algorithm for remote sensing applications which includes the 919 
classification of water types into organic-rich, mineral-rich, and extremely mineral-rich particle 920 
composition types using POC/SPM derived from remote-sensing reflectance Rrs(λ) and a 921 
subsequent use of particle composition-specific algorithms to estimate SPM from Rrs(λ) in 922 
different water types; (iii) we compared the performance of the proposed SPM retrieval algorithm 923 
with eight previously published SPM algorithms including empirical, semi-analytical, and 924 
machine learning models, which showed reliable and generally improved SPM estimations from 925 
our algorithm; (iv) we developed an empirical method to correct Landsat radiometry in the GEE 926 
environment to improve the satellite estimation of remote-sensing reflectance and applied our 927 
particle composition-specific SPM retrieval algorithm to Landsat images from the past four 928 
decades (1984–2023); (v) we validated our SPM satellite mapping results using satellite-in situ 929 
matchup dataset and in situ water turbidity measurements across different coastal environments, 930 
and (vi) we demonstrated the ability of the proposed remote sensing algorithms to study long-term 931 
coastal SPM at high spatial resolution from land observation satellites, in particular the Landsat 932 
satellite mission. The high resolution of the SPM mapping can capture fine-scale SPM patterns 933 
along the coast and also capture seasonal and long-term variability in different coastal 934 
environments. Our results collectively demonstrate the promise of this new SPM retrieval 935 
algorithm for studying the coastal suspended sediment dynamics from satellite observations at 936 
local, regional, and global scales. 937 
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 1283 
List of Figure Captions: 1284 
Figure 1. The interaction of light with suspended sediments, phytoplankton, organic detritus, 1285 
colored dissolved organic matter, and water molecules plays a crucial role in determining 1286 
remotely sensed ocean color. This diagram illustrates how light interacts with suspended 1287 
particles originating from various sources, including riverine sediment (1), marsh edge erosion 1288 
and local resuspension (2), marine sediment from coastal erosion (3), and phytoplankton. 1289 
Figure 2. Comparison between an ocean color sensor (MODIS) and a land observation sensor 1290 
(Landsat). (a) MODIS-Terra Surface Reflectance on Google Earth Engine (GEE) (b) Landsat 8 1291 
Surface Reflectance on GEE. Both images are displayed in true color. 1292 
Figure 3. The geographical distributions of the compiled in situ datasets. Each panel shows the 1293 
locations of in situ measurements in yellow dots for different study sites. The number of samples 1294 
(n) is indicated for each site, along with the sediment source type (river-influenced, marsh-1295 
influenced, or marine-influenced). (a) Atchafalaya River, (b) Terrebonne Basin, (c) Arctic Ocean, 1296 
(d) Red River, (e) Mekong River, (f) Gironde River, (g) Gulf of Mexico, (h) Yellow Sea, (i) Seto-1297 
Inland Sea, (j) Hawke Bay, (k) English Channel, and (l) Plum Island. 1298 
Figure 4. Probability distribution of SPM (a), POC (b) and POC/SPM (c) in marine-influenced, 1299 
marsh-influenced, and river-influenced waters.  1300 
Figure 5. In situ spectral curve for constant SPM and varied POC/SPM ratio as labeled. (a) SPM 1301 
= 6 g/m3. (b) SPM = 10 g/m3. (c) SPM = 20 g/m3. (d) SPM = 40 g/m3. 1302 
Figure 6. Algorithm-derived versus measured values of POC/SPM using different algorithms 1303 
applied to the in situ dataset. (a) Blue band algorithm. (b) Green band algorithm. (c) Red band 1304 
algorithm. (d) Three-bands algorithm. 1305 
Figure 7. Example spectra of Rrs(λ) from in situ observations for different particle composition 1306 
classes where each spectral curve represents a single hyperspectral measurement. (a) Organic-1307 
rich particle class from Mekong River. (b) Organic-rich particle class from Terrebonne. (c) 1308 
Mineral-rich particle class from English Channel and Hawke Bay. (d) Mineral-rich particle class 1309 
from Terrebonne. (e) Extremely mineral-rich (E) particle class from Gironde River. (f) 1310 
Extremely mineral-rich (E) particle class from English Channel. The vertical dashed lines 1311 
correspond to wavelengths of 490 nm, 555 nm, 670 nm, and 810 nm. 1312 
Figure 8. (a) Example Rrs(λ) spectra for the three water types from in situ measurements. The 1313 
shaded regions represent the interquartile range (IQR, 25th–75th percentile), while the solid line 1314 
with circular markers indicates the median Rrs at each wavelength. Wavelengths are shown at 10 1315 
nm intervals from 400 nm to 890 nm for illustrative purposes. (b) The R² values of linear 1316 
regression between log-transformed SPM and Rrs(λ) from 400 to 890 nm for three particle 1317 
composition classes. 1318 
Figure 9. Measured SPM versus in situ Rrs (Red = 670 nm and NIR = 810 nm) for the three 1319 
particle composition classes. (a) SPM vs. Rrs(670) for organic-rich particle class. (b) SPM vs. 1320 
Rrs(670) for mineral-rich class. (c) SPM vs. Rrs(670) for extremely mineral-rich class. (d) SPM 1321 
vs. Rrs(810) for organic-rich class. (e) SPM vs. Rrs(810) for mineral-rich class. (f) SPM vs. 1322 
Rrs(810) for extremely mineral-rich class. 1323 



 

45 
 

Figure 10. Algorithm-derived versus measured values of SPM using our particle composition-1324 
specific SPM retrieval algorithm with data points color coded according to the predicted POC/SPM 1325 
values obtained from our green band POC/SPM algorithm. The SPM values were estimated from 1326 
in situ Rrs measurements at a single band for different sites according to the water type 1327 
classification in terms of particle composition parameter POC/SPM. (a) Gulf of Mexico, (b) 1328 
Yellow Sea, (c) Arctic Ocean, (d) Hawke Bay, (e) Seto-Inland Sea, (f) English Channel, (g) 1329 
Terrebonne, (h) Plum Island, (i) Mekong River, (j) Atchafalaya, (k) Red River, and (l) Gironde 1330 
River. The sample size is slightly different from that in Table 1 because the mineral-rich samples 1331 
at some sites lack in situ measurement of Rrs(810).  1332 
Figure 11. Comparison of algorithm-derived SPM with in situ measurements of SPM. The 1333 
estimated SPM values were obtained from in situ-measured Rrs(λ) using different SPM 1334 
algorithms. (a) Doxaran (2002). (b) Miller and McKee (2004). (c) Nechad (2010). (d) Petus 1335 
(2010). (e) Novoa (2017). (f) Yu (2019). (g) Balasubramanian et al. (2020). (h) Jiang (2021). (i) 1336 
This study. All points are color coded according to the predicted POC/SPM from our green band 1337 
POC/SPM algorithm. 1338 
Figure 12. Comparison of Landsat-derived SPM and in situ measured SPM using the proposed 1339 
SPM algorithm. The RMSE value was calculated using the original data, i.e., not in the log 1340 
space. 1341 
Figure 13. Comparison of in situ-measured water turbidity and satellite-derived SPM in several 1342 
selected sites. (a) East Coast, USA: Connecticut River. (b) Gulf of Mexico, USA: Atchafalaya. 1343 
(c) West Coast, USA: San Francisco Bay. (d) Pacific Northwest, Canada: Taku River. (e) East 1344 
Coast, USA: Back River. The left panel shows the time series of in situ turbidity measurement 1345 
and satellite estimate of SPM, the right panel shows scatter plot of matchup data of in situ 1346 
turbidity measurement and satellite estimate of SPM with data points color coded according to 1347 
the satellite-derived POC/SPM using our green band POC/SPM algorithm. The LC09, LC08, and 1348 
LE07 represent Landsat 9, 8 and 7, respectively. 1349 
Figure 14. Spatial pattern of Landsat 8-derived SPM. (a) Northeast US coast (March 21, 2021). 1350 
(b) Mississippi River Delta (March 18, 2021). The insets on right hand side provide zoomed-in 1351 
views of specific areas, illustrating finer details of the SPM pattern. 1352 
Figure 15. Seasonal variability of SPM over past 4 decades derived from Landsat 5, 7, 8, 9 over 1353 
the period 1984-2024 for several coastal regions. The solid centerline refers to the median SPM. 1354 
(a) San Francisco Bay. (b) North South River in northeastern US. (c) Atchafalaya Delta.  1355 
Figure 16. Sen’s slope (g/m3/year) of Landsat-derived SPM over the past four decades (1984 to 1356 
2023) (a) Atchafalaya River and Lake Pontchartrain. (c) Blackwater and Fishing Bay. Panels (b) 1357 
and (d) display box plots of SPM at five-year intervals, illustrating temporal trends in SPM levels. 1358 
The location of (b) and (d) are marked in the map (a). 1359 
Supplementary Figure S1. Comparison of satellite mission and sensor characteristics for the 1360 
ocean color sensor (MODIS) on satellite Terra and Aqua missions and the land observation 1361 
sensor on satellite Landsat missions. (a) Spectral coverage and resolution. (b) Operational period. 1362 
Supplementary Figure S2. Comparison of particle composition-specific algorithms for 1363 
estimating SPM from remote-sensing reflectance Rrs for the organic-rich, mineral-rich, and 1364 
extremely mineral-rich (E) particle composition classes. The left y-axis represents the reflectance 1365 
at the red band used in the algorithm for the organic-rich class. The right y-axis represents 1366 
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reflectance at the NIR band used in the algorithms for the mineral-rich and extremely mineral-rich 1367 
(E) classes. 1368 
Supplementary Figure S3. In situ measured Rrs vs. Landsat SR. (a) Rrs(490) and SR Blue. (b) 1369 
Rrs(555) and SR Green. (c) Rrs(670) and SR Red. (d) Rrs(810) and SR NIR. 1370 
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Supplementary Figure S1. Comparison of satellite mission and sensor characteristics for the 3 
ocean color sensor (MODIS) on satellite Terra and Aqua missions and the land observation 4 
sensor on satellite Landsat missions. (a) Spectral coverage and resolution. (b) Operational period. 5 
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Supplementary Figure S2. Comparison of particle composition-specific algorithms for 20 
estimating SPM from remote-sensing reflectance Rrs for the organic-rich, mineral-rich, and 21 
extremely mineral-rich (E) particle composition classes. The left y-axis represents the reflectance 22 
at the red band used in the algorithm for the organic-rich class. The right y-axis represents 23 
reflectance at the NIR band used in the algorithms for the mineral-rich and extremely mineral-rich 24 
(E) classes. 25 
 26 
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Supplementary Figure S3. In situ measured Rrs vs. Landsat SR. (a) Rrs(490) and SR Blue. (b) 28 
Rrs(555) and SR Green. (c) Rrs(670) and SR Red. (d) Rrs(810) and SR NIR. 29 
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Supplementary Table S1. Summary of optical wavelengths, water type classification criteria, 45 
algorithm type, and main equations for the algorithm proposed in this study and other previously 46 
published algorithms. Wavelengths marked with an asterisk (*) are not available on Landsat 47 
sensors. 48 

Wavelengths Water type classification 
criteria 

Algorithm 
type Main equations Reference 

551,862 - Empirical TSM = exp �3.132 ⋅
𝑅𝑅rs(862)
𝑅𝑅rs(551)

+ 3.01� Doxaran et 
al., 2002 

668 - Empirical TSM = 1140.25 ⋅ 𝑅𝑅rs(668) − 1.91 Miller and 
McKee, 2004 

665 - Empirical TSM = 1.74 +
355.85 ⋅ 𝜋𝜋 ⋅ 𝑅𝑅rs(665)

1 − 𝜋𝜋 ⋅ 𝑅𝑅rs(665)
1728

 Nechad et al., 
2010 

668 - Empirical TSM = 12450 ⋅ 𝑅𝑅rs(668)2 + 666.1 ⋅ 𝑅𝑅rs(668)
+ 0.48 

Petus et al., 
2010 

561, 665 865 

Green: ρw(665) < 0.007 
Green_Red: 0.007 ≤ ρw (665) ≤ 

0.016 
Red: 0.016 < ρw(665) < 0.08 
Red_NIR: 0.08 ≤ ρw(665) ≤ 

0.12 
NIR: ρw(665) > 0.12 
ρw(λ) is water-leaving 

reflectance 

Empirical 

𝐶𝐶SPM_Green =  96.6 ⋅ 𝜌𝜌𝑤𝑤(561) 
𝐶𝐶SPM_Green-Red  = 𝛼𝛼1 ⋅ 𝐶𝐶SPM_Green + 𝛽𝛽1 ⋅ 𝐶𝐶SPM_Red  

𝐶𝐶SPM_Red = 575.8 ⋅ 𝜌𝜌𝑤𝑤(665) 
𝐶𝐶SPM_Red-NIR = 𝛼𝛼2 ⋅ 𝐶𝐶SPM_Red + 𝛽𝛽2 ⋅ 𝐶𝐶SPM_NIR  

𝐶𝐶SPM NIR  = 32110 ⋅ 𝜌𝜌𝑤𝑤(865)2
+ 2204 ⋅ 𝜌𝜌𝑤𝑤(865)  

Novoa et al., 
2017 

486, 551, 671, 
745*, 862 - Empirical 

𝐺𝐺𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑐𝑐0 ⋅
𝑅𝑅rs(551)
𝑅𝑅rs(486)

+ � 
3

𝑖𝑖=1

𝑐𝑐𝑖𝑖 ⋅ 𝑊𝑊𝑖𝑖 ⋅
𝑅𝑅rs(𝜆𝜆𝑖𝑖)
𝑅𝑅rs(551)

 

𝑊𝑊𝑖𝑖 =
𝑅𝑅rs(𝜆𝜆𝑖𝑖)

𝑅𝑅rs(𝜆𝜆1) + 𝑅𝑅rs(𝜆𝜆2) + 𝑅𝑅rs(𝜆𝜆3) , 𝑖𝑖 = 1,2,3 

𝐶𝐶SPM = 𝑎𝑎1 ⋅ [𝐺𝐺𝐼𝐼SPM ]𝑎𝑎2  

Yu et al., 
2019 

443, 482, 561, 
655, 865 

Type II: 𝑅𝑅rs(665) < 𝑅𝑅rs(560) & 
𝑅𝑅rs(665)> 𝑅𝑅rs(492) 

Type III: 𝑅𝑅rs(665) > 𝑅𝑅rs(560) & 
𝑅𝑅rs(740) < 0.01 sr⁻¹ 

Type I: 𝑅𝑅rs(560) < 𝑅𝑅rs(492)  
Type II: 𝑅𝑅rs(560) ≥ 𝑅𝑅rs(492) 

semi-
analytical, 
machine 

learning, and 
empirical 
models 

 TSS Type I = 53.736 ⋅ 𝑏𝑏bp(665)0.8559 
 TSS Type II = 53.736 ⋅ 𝑏𝑏bp(665)0.8559 

 TSS Type III = (207.57 ⋅ 𝑏𝑏bp(740)) − 46.78 

Balasubraman
ian et al., 

2020 

443, 490, 560, 
620*, 665, 
754*, 865 

Type I: 𝑅𝑅rs(490) > 𝑅𝑅rs(560) 
Type II: 𝑅𝑅rs(490) > 𝑅𝑅rs(620) 

Type IV: 𝑅𝑅rs(754) > 𝑅𝑅rs(490) & 
𝑅𝑅rs(754) > 0.01 sr⁻¹ 

Type III: Other 

semi-
analytical 

 TSS Type I = 94.607 ⋅ 𝑏𝑏bp(560)
 TSS Type II = 114.012 ⋅ 𝑏𝑏bp(665)
 TSS Type III = 137.665 ⋅ 𝑏𝑏bp(754)
 TSS Type IV = 166.168 ⋅ 𝑏𝑏bp(865)

 Jiang et al., 
2021 

555, 670, 810 

Organic-rich: POC/SPM > 0.12 
or 𝑅𝑅rs(670) < 0.01 sr-1 

Mineral-rich: 0.02 < POC/SPM 
< 0.12 

Mineral-rich (E): POC/SPM < 
0.02 

Empirical 

POC
SPM

= 10(−0.973 ∗ 𝐺𝐺 −3.323) 
SPMorg = 1992.2 ⋅ 𝑅𝑅rs(𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅) 1.027 

SPMmin = 12662.7 ⋅ 𝑅𝑅rs(𝜆𝜆𝑁𝑁𝑁𝑁𝑅𝑅)1.157 
SPMmin(E) = 50556.7 ⋅ 𝑅𝑅rs(𝜆𝜆𝑁𝑁𝑁𝑁𝑅𝑅)1.371 

This study 
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