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Using imputation to provide 
harmonized longitudinal measures 
of cognition across AIBL and ADNI
Rosita Shishegar1,2*, Timothy Cox1, David Rolls1, Pierrick Bourgeat1, Vincent Doré1,3, 
Fiona Lamb3, Joanne Robertson4, Simon M. Laws5,6,7, Tenielle Porter5,6,7, Jurgen Fripp1, 
Duygu Tosun8, Paul Maruff9, Greg Savage10, Christopher C. Rowe3,11, Colin L. Masters4, 
Michael W. Weiner8, Victor L. Villemagne3,12 & Samantha C. Burnham1

To improve understanding of Alzheimer’s disease, large observational studies are needed to increase 
power for more nuanced analyses. Combining data across existing observational studies represents 
one solution. However, the disparity of such datasets makes this a non-trivial task. Here, a machine 
learning approach was applied to impute longitudinal neuropsychological test scores across two 
observational studies, namely the Australian Imaging, Biomarkers and Lifestyle Study (AIBL) and 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) providing an overall harmonised dataset. 
MissForest, a machine learning algorithm, capitalises on the underlying structure and relationships 
of data to impute test scores not measured in one study aligning it to the other study. Results 
demonstrated that simulated missing values from one dataset could be accurately imputed, and 
that imputation of actual missing data in one dataset showed comparable discrimination (p < 0.001) 
for clinical classification to measured data in the other dataset. Further, the increased power of the 
overall harmonised dataset was demonstrated by observing a significant association between CVLT-II 
test scores (imputed for ADNI) with PET Amyloid-β in MCI APOE-ε4 homozygotes in the imputed 
data (N = 65) but not for the original AIBL dataset (N = 11). These results suggest that MissForest can 
provide a practical solution for data harmonization using imputation across studies to improve power 
for more nuanced analyses.

Aging populations are increasing the incidence of Alzheimer’s disease (AD) meaning that current health and 
economic frameworks will be overwhelmed without a cure or delay to the onset of disease. Thus, there exists an 
unprecedented challenge for understanding and preventing this disease. Alzheimer’s disease is a progressive, 
neurodegenerative disease characterized by neurodegeneration, synaptic loss, the accumulation of extracellular 
amyloid plaques and intracellular tau neurofibrillary  tangles1,2. The major genetic risk factor for AD is the ε4 
allele of apolipoprotein E (APOE)3, which has been consistently associated with cortical and subcortical grey 
matter atrophy and episodic memory  decline4.

To increase understanding of the relationships between AD biomarkers and clinical disease progression, as 
well as the extent to which these relationships may be influenced by demographic, clinical or genetic factors, 
studies will require very large samples. This need will be increased if these factors are only present in small pro-
portions of the population or if the magnitude of first or second interactions are small. One way to achieve addi-
tional power from existing data would be to combine data from existing studies such as the Australian Imaging, 
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Biomarkers and Lifestyle (AIBL) Study of Ageing and Alzheimer’s Disease Neuroimaging Initiative (ADNI). In 
addition to increased statistical power, combining data across studies should also decrease bias due to sampling 
error, and improve the external validity of  findings5,6. Harmonisation would further extend the utility of existing 
 datasets7 and increase opportunities for multi-centre research  collaborations8–11.

Despite these advantages, combining multiple existing datasets is not a common practice or trivial task due 
to differences in the study protocols. For example, different neuropsychological test batteries are administered 
for monitoring cognitive performance, measuring clinical disease progression and informing classification of 
clinical status (i.e., mild cognitive impairment (MCI) or dementia)12,13. While the different prospective AD 
studies largely converge in their neuropsychological test batteries on detailed measurement of memory, they 
differ in a number of ways including: (1) the number of other domains assessed, (2) the test paradigms used to 
measure specific domains (e.g. measurement of verbal or visual memory), (3) where the same test paradigm is 
used by both studies (e.g. list learning) it can be operationalized using different standardized tests (e.g. 15-word 
unstructured Rey Auditory Verbal Learning Test (RAVLT)14 in ADNI and the 16-word 5 trial T implicitly struc-
tured California Verbal Learning Test-Second edition (CVLT-II)15 in AIBL), (4) the number of scores derived 
from the different standardized tests and (5) their naming conventions.

In addition to variation in test scores, the design of AD prospective longitudinal studies is also different. For 
example, AIBL and ADNI use different retest intervals, have existed for different time periods and are composed 
of participants who have been evaluated from study inception as well as others that have joined later as part of 
multiple enrichment strategies.

In the context of data aggregation the term harmonization is defined as the process of transforming data 
from related outcomes to have similar response or scaling and thereby allow data from multiple studies to be 
 integrated16,17. Statistical harmonization can be predominantly classified into three general  methodologies18. First, 
different but related test scores can be combined across datasets by using a simple linear or z-transformation16,19,20. 
This approach of standardizing or normalizing scores generates data distributions that are unit-free thereby 
allowing outcomes from theoretically similar tests in different studies to be combined. Such methods require 
that the same underlying information is collected by similar tests and the strategy is not suitable for harmonising 
data with discrete  values21–24, non-normal distributions or ceiling/floor  effects18. Second, latent variable models 
can be utilised to determine underlying latent factors from a set of multiple test  scores21. These models require 
common ‘anchor’ variables and assume that the measured test scores provide the same underlying information 
across studies that is captured by the latent  construct21. Thirdly, imputation or maximum likelihood estimation 
can be used to impute values for a test not administered in one dataset that is administered in another. In this 
methodology test scores for the dataset that did not administer the test are considered missing in the joined 
 dataset25–27 and imputation strategies are employed to impute the missing test  scores25–27.

The present study proposes a new approach which uses a machine learning algorithm to impute and har-
monize cognitive test scores across studies, as an extension to existing imputation methods of harmonization. 
The underlying structures and relationships of the measured  data21 are exploited to impute cognitive test scores 
in one dataset where the test was not administered. This aligns that dataset to another dataset in which the 
test was measured, resulting in harmonized data across the two datasets. The estimation of the unmeasured 
test scores using an iterative imputation method based on Random  forest28, called “MissForest”29 is proposed. 
Random forest is an advanced non-parametric machine learning algorithm which is able to handle mixed-type 
data (discrete, continuous and categorical variables) as well as data with a non-linear structure or that is non-
normally  distributed30. This investigation validates the proposed harmonization through imputation method 
using simulated missing values from two tests administered in both AIBL and ADNI datasets. Also, the extent 
to which the validity of the imputation holds is tested using different percentages of missing data. Further, the 
effectiveness of the method is demonstrated by imputing actual missing data for test scores only measured in 
one dataset. Finally, the utility of harmonised data to increase power in nuanced analyses is demonstrated by 
evaluating the relationship between cognition and PET Amyloid-β in APOE ε4-homozygotes with mild cognitive 
impairment (a small, very specific, sample of participants).

Materials and methods
Datasets. This study utilized neuropsychological, clinical, demographic and neuroimaging data collected as 
part of the AIBL and ADNI studies. The process of recruitment and enrolment in each of these studies has been 
described in detail elsewhere  (ADNI31 and  AIBL32,33 http:// www. adni- info. org/ index) and in the “Supplemen-
tary materials”.

Briefly, in AIBL, individuals classified clinically with mild cognitive impairment (MCI) or Alzheimer’s dis-
ease (AD) dementia were recruited from primary-care physicians or tertiary Memory Disorders Clinics at two 
study centres in Melbourne, Victoria and Perth, Western Australia. Cognitively normal (CN) older adults were 
recruited through advertisement or from spouses of participants in the study, at the same centres. The dataset 
contains data about neuroimaging, biomarkers, lifestyle, clinical information, and neuropsychological assess-
ments. The follow-up data were collected every 18 months (18, 36, 54, 72 and 90 months)31. Note not all partici-
pants completed all the evaluations. Written informed consent was obtained from all participants. Approval for 
the study was obtained from the human research ethics committees of Austin Health, St Vincent’s Hospital, Edith 
Cowan University, and Hollywood Private Hospital. All methods were carried out in accordance with relevant 
guidelines and regulations and all participants or legal guardian(s)/legally authorized representatives gave their 
informed consent (for more details, see Ellis et al.31, https:// aibl. csiro. au).

ADNI is a multi-centre longitudinal neuroimaging study, launched by the National Institute on Aging, the 
National Institute of Biomedical Imaging and Bioengineering, the Food and Drug Administration, private phar-
maceutical companies and non-profit organizations in 2004. The dataset includes data from neuroimaging, 
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biomarkers, clinical information, and neuropsychological assessments, as previously  described32,33. The ADNI 
participants were followed prospectively, with follow-up time points at 3 months, 6 months, then every 6 months 
until up to 156 months. Note not all participants completed all the evaluations. A committee on human research 
at each participating institution approved the study protocol, and all participants or legal guardian(s)/legally 
authorized representatives gave their informed consent. All methods were carried out in accordance with relevant 
guidelines and regulations.

Inclusion and exclusion criteria. In this study, clinical measures and neuropsychological tests that were 
common across AIBL and ADNI and that had less than 50% missing data in each of the respective datasets were 
included. For example, whilst Digit Span and Digit Symbol-Coding were measured in both datasets, more than 
50% of the observations were missing in one of the original datasets, therefore they were excluded. To demon-
strate the utility of the method, two tests not common across the datasets were also included, namely: the RAVLT 
from ADNI and the CVLT-II from AIBL. All included clinical and cognitive test scores, alongside their variable 
names in ADNI and AIBL datasets and their percentage of missingness are listed in Table S1.

We excluded a participant’s measurements at a specific time point if the clinical classification was missing 
and the classification could not be determined using the clinical classification of the participant at an adjacent 
timepoint. Further, a participant’s measurements at a specific time point were excluded if there were less than 
three completed neuropsychological test measurements for that time point.

This study included 1805 AIBL participants (CN = 1180, MCI = 297 and AD = 328), aged 72.42 ± 7.64 years 
with 777 males at baseline, and 2122 ADNI participants (CN = 791, MCI = 962, AD = 369), aged 73.32 ± 7.21 years 
with 1129 males at baseline.

Joined dataset. A joined dataset was formed combining the AIBL and ADNI datasets in long format, where 
each row represented a single time point per subject. All missing data were coded as “NA”, this including data 
missing at random as well as systematically missing data (e.g. from the CVLT-II and RAVLT)18.

Cognitive tests used to provide a joined dataset across AIBL and ADNI included subtests from: California 
Verbal Learning Test-Second edition (CVLT-II)15, Rey Auditory Verbal Learning Test (RAVLT)14, and Logical 
Memory (LM) I and II (WMS; Story A only), 30-item Boston Naming Test (BNT)34, Digit Span and Digit Symbol-
Coding subtests of the Wechsler Adult Intelligence Scale-Third edition (WAIS-III)35.

Time-dependent variables were defined as rate of change for each of the clinical and cognitive tests, calculated 
as the difference in test scores between the current and previous time point divided by the time elapsed between 
those two time points. Given that in the long format longitudinal data at each row is a single time point per sub-
ject, the time-dependent variables represent a longitudinal feature of each test score for a specific subject. These 
variables were included as predictors in the models. Time was calculated as the number of months since baseline.

The final joined dataset included 39 columns. Variables incorporated in the joined dataset included: (a) 
identifiers: participant ID and dataset ID; (b) demographic measurements: age, sex, years of education, clinical 
classification (CN, MCI and AD), and a genetic risk factor (carriage of the APOE-ɛ4  allele3); (c) clinical tests: 
Clinical Dementia Rating (CDR), and Mini-Mental State Examination (MMSE)36; (d) 14 cognitive test scores; 
and (e) time-dependent variables calculated for clinical tests and cognitive scores.

Data preparation. Due to differences in naming conventions between ADNI and AIBL it was necessary to 
adopt a single variable name for the joined dataset. Table S1 lists the original name of the study variables from 
AIBL and ADNI, the description of the test scores and the names used for the variables in the joined dataset.

Further, data included in the joined dataset were modified to ensure the same representation and data type 
across the studies; this included: (1) converting the continuous values of the years of education in ADNI to 
ordinal values with four intervals (< 9, 9–12, 13–15, 15+) as in AIBL, (2) converting genetic risk factors data 
which are presented with characters in AIBL into categorical values as in ADNI, (3) converting gender in AIBL 
from data type characters to categorical values. The age for AIBL dataset was also calculated using date of birth 
and the date cognitive tests were administered.

PET Aβ-amyloid for the case study. A subset of AIBL subjects (N = 1042) underwent Aβ-amyloid posi-
tron emission tomography (PET) imaging using either 11C-Pittsburgh compound-B (11C-PiB), 18F-NAV4694 
(NAV), 18F-florbetaben (FBB), 18F-florbetapir (FBP) or 18F-flutemetamol (FLUTE). A subset of ADNI subjects 
(N = 1565) underwent Aβ-amyloid PET studies with either FBP or FBB. The AIBL PET images were smoothed 
to a uniform 8 mm full width half-maximum point spread function to match the PET pre-processing done in 
 ADNI37. All PET images were spatially normalized with SPM8, using the prescribed Centiloid  pipeline38. Then a 
tissue ratio, termed SUV ratio (SUVR), was computed using the ratio of the PET retention computed inside the 
neocortical Centiloid mask and the whole cerebellum. The SUVR was then transformed into Centiloids using 
each tracer’s respective linear  transform39. Smaller subsets of the data from AIBL (33 observations from N = 11 
subjects) and ADNI (108 observations from N = 54 subjects) including APOE-ε4/ε4 individuals with MCI were 
used to investigate the influence of the levels of Aβ-amyloid on memory performance.

Statistical analysis and process of imputation. Baseline differences in demographic variables and 
months of follow-up between AIBL and ADNI datasets were analysed using a t-test for continuous variables 
with normal distribution, Mann–Whitney U-test for continuous variables with non-normal distribution, and 
χ2 for categorical variables.

After joining the AIBL and ADNI datasets together, all missing data coded as ‘NA’, which included test scores 
not measured for one dataset (systematic missing) and data missing at random, were imputed using  MissForest40, 
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a non-parametric, iterative imputation method based on Random  forests28. For further details on the MissForest 
approach are provided by Stekhoven et al.40. Our model parameters included the 39 variables described in the 
previous section except for the participant ID and dataset ID (AIBL, ADNI). Note that the dataset ID was used 
later in validation steps but was not shown to the prediction models.

Using notation similar to Stekhoven et al.40, let X = (X1, X2, …, Xp) to be a r × p-dimensional joint AIBL-ADNI 
dataset. For each outcome variable  Xk,  iobs indicates the indices of the subjects with observed values and  imis 
indicates the indices of the subjects with missing values.  yobs are the observed values of  Xk, and  ymis are the miss-
ing values of variable  Xk.  Xobs indicates a data matrix including the subjects with  iobs indices and all the variables 
except for  Xk.  Xmis is a data matrix including the subjects with  imis indices and all the variables except for  Xk.

For instance, to estimate CVLT-II test scores,  yobs represent the observed values of a CVLT-II score from AIBL, 
and  ymis represents values that are randomly missing from AIBL as well as the completely missing values from 
ADNI. MissForest required an initial value for missing data, here the median of the measured data in the joined 
dataset was used for continuous as well as discrete variables and for categorical variables the category with the 
highest frequency was used. MissForest then fit the random forest model with response  yobs and predictors  Xobs 
(including the rest of neuropsychological test scores as well as clinical and demographic measures) to extract the 
underlying relationships between CVLT-II and the other observed data in  Xobs. Using this final, trained MissFor-
est model and the other observed data in  Xmis, the missing values of CVLT  (ymis) were imputed. The imputed 
data were then defined as the initial estimates and the procedure was repeated until the difference between the 
input and output estimates was sufficiently small (stopping  criterion40).

We used the  MissForest40 package in  R29, which is an implementation of the Random Forest  algorithm28 
that iteratively creates non-parametric imputations of each variable. To have high precision the number of trees 
was set to the default value of 100. The number of iterations was chosen to be 10 if the stopping criterion was 
not already met. However, it has been shown that the algorithm normally reaches the stopping criterion in five 
 iterations40. Since the neuropsychological test scores LMII and CVLT-II are integer values, after the imputation 
the estimated scores were rounded to the nearest integer.

Method validation by simulating missing data. To evaluate the efficacy of the method and validate its 
utility, LMII and MMSE tests measured across both AIBL and ADNI were selected as outcome variables where 
a proportion of the data was simulated as missing. Here, let n and m be number of subjects with an observed 
outcome variable (e.g. LMII) in AIBL and ADNI datasets, respectively. Given the larger size of observations in 
ADNI compared to AIBL (m ~ 1.7*n), a subsample of ADNI with the same size as AIBL, herein called  ADNIsub, 
was used for the validation steps to ensure comparable results across the evaluations. Also, in order to simplify 
the validation, the CVLT-II and RAVLT scores, only observed in one dataset, were excluded from these valida-
tion steps. The following two validation approaches were undertaken:

First validation approach: to provide an understanding of the impact of the different underlying structures and 
relationships in AIBL and ADNI, the differences between estimating missing data using observed data from the 
same dataset (i.e. ADNI data predicting missing ADNI data) as well as a different dataset (i.e. AIBL data predict-
ing missing ADNI data), which represents the proposed harmonization approach were evaluated. The LMII  (Xk, 
k = LMII) test score was chosen as the outcome variable and missing values for this test score were simulated. 
The accuracy of two models was compared: model 1 estimated the missing data based on the observed part of 
the same dataset; model 2 estimated the missing data using a secondary dataset which was joined with the first 
dataset. This validation step was also repeated where MMSE represented the outcome variable  (Xk, k = MMSE).

In this validation approach the test dataset was selected from ADNI sub, which was randomly split into a 
25% test (missing data) and 75% training (observed data) set used for model 1 (iobs1 ⊆ ADNI ). A second train-
ing dataset representing a randomly assigned 75% subsample of the AIBL dataset was generated for model 2 
(iobs2 ⊆ AIBL ). As mentioned above, the size of training and test datasets across models 1 and 2 were the same 
to ensure fair comparisons between the models. The outcome variable (LMII or MMSE) in the test dataset 
(imis ⊆ ADNI ) was simulated as missing; note the same test samples were used for both models. MissForest was 
applied to derive estimates of the missing values. The performance of the data imputation was examined on the 
test dataset using the mean absolute error (MAE) and the Pearson correlations between the estimated and the 
actual scores.

The performance metric, MAE, was calculated as:

where N is the number observation in the test dataset, ximp
i  shows the imputed values, and xactuali  the actual value 

of the score measured for an observation point i in the test dataset. To measure the variability the analyses were 
replicated 100 times. For each replication new  ADNIsub test and training data sets were randomly generated.

In order to determine if AIBL and ADNI had comparable accuracy at imputing missing data in each other, 
the validation was repeated with the test dataset and model 1 training data drawn from AIBL, and with model 
2 training data drawn from ADNI.

Second validation approach: to test the limit of efficacy of the proposed method, the impact of varying degrees 
of missingness in the test dataset and different sizes of training datasets were evaluated.  ADNIsub was used as 
the training dataset and the test dataset was set as a randomly selected subset of AIBL equal to 10%, 20%, 30%, 
40%, 50%, 60%, 70%, 80%, 90%, and 100% of the AIBL dataset and the outcome variable (LMII or MMSE) was 
simulated as missing. To provide variance estimates, this process was replicated 100 times. These analyses were 
also repeated for smaller training sets equal to 10% and 50% of participants in  ADNIsub (randomly selected).
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N
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Data harmonization application. Unmeasured test scores (CVLT-II in ADNI and RAVLT in AIBL) were 
imputed using MissForest. The utility of the resulting imputed data was examined by comparing the distribu-
tion of the imputed and actual test scores through boxplots stratified by clinical classification (CN, MCI, AD). 
Further, the difference between the clinical classifications of both imputed and actual data was evaluated using 
Student’s t-tests and Cohen’s d effect sizes. Here, imputed ADNI CVLT-II scores were compared to the observed 
AIBL CVLT-II scores and imputed AIBL RAVLT scores were compared to the observed ADNI RAVLT scores. 
We also performed sensitivity analysis on CVLT-II and RAVLT scores using their original values in AIBL and 
ADNI (Details of this sensitivity analysis are given in the “Supplementary materials”).

Data harmonization utility case study. The utility of harmonised data to increase power in nuanced 
analyses was evaluated by considering the influence of Aβ-amyloid levels on memory performance in APOE 
ε4-homozygotes with mild cognitive impairment (a small, specific sample of participants). The associations 
between Aβ-amyloid levels and the CVLT-II and RAVLT total immediate recall memory scores in the sample 
were evaluated for both the actual and the harmonized datasets using regression analyses.

Results
Significant differences in distribution of clinical classification, sex, APOE ε4 status, level of education as well 
as age between AIBL and ADNI were observed, Table 1. Note that due to participant drop-out and enrichment 
strategies different participants completed different numbers of  evaluations31–33.

Validation results. The mean absolute errors (MAE; mean ± standard error) of the first validation approach 
indicated that the imputed ADNI LMII (range 0–25) and ADNI MMSE (range 0–30) scores estimated using the 
observed part of the ADNI dataset were 1.95 ± 0.00 and 1.60 ± 0.00, respectively. The correlation (mean ± stand-
ard error) between the imputed values for ADNI LMII and ADNI MMSE scores estimated using the observed 
part of the ADNI dataset were 0.91 ± 0.00 and 0.81 ± 0.00, respectively. The MAE (mean ± standard error) for the 
imputed ADNI LMII and ADNI MMSE scores estimated using the AIBL dataset were 2.40 ± 0.00 and 2.19 ± 0.00, 
respectively. Also, the correlation between ADNI LMII and ADNI MMSE scores estimated using the AIBL data-
set were 0.88 ± 0.00 and 0.76 ± 0.00, respectively.

Further, MAE (mean ± standard error) for the imputed AIBL LMII and AIBL MMSE scores using the observed 
part of the AIBL dataset, were 1.64 ± 0.00 and 1.31 ± 0.00, respectively. The correlation (mean ± standard error) 
between the imputed AIBL LMII and AIBL MMSE scores using the observed part of the AIBL dataset were 
0.92 ± 0.00 and 0.88 ± 0.00. The MAE (mean ± standard error) for the estimated AIBL LMII and AIBL MMSE 
scores using the ADNI dataset, were 1.65 ± 0.00 and 1.44 ± 0.01, respectively. The correlation (mean ± standard 
error) between the imputed AIBL LMII and AIBL MMSE scores using the ADNI dataset, were 0.92 ± 0.00 and 
0.86 ± 0.00.

The accuracy of the imputation method was very stable for different sizes of test and training data with the 
MAE only varying between 1.62 and 1.73 for LMII and between 1.44 and 1.58 for MMSE (Figs. 1 and 2). Further, 
accurate results were still obtained when the training (measured data) set was only 10% of the size of the test 
dataset (missing data) with MAEs of 1.73 and 2.52 for LMII and MMSE, respectively. The correlation between 
the actual and predicted values for the estimated LMII and MMSE scores showed similar accuracy for the dif-
ferent sizes of test and training datasets, varying between 0.91 and 0.92 for LMII and between 0.84 and 0.87 for 
MMSE (Figs. 3 and 4).

Evaluation of imputed unmeasured data. A similarly high level of significant discrimination (p < 0.001) 
and large effect sizes (d > 1) between clinical classification was observed for the actual and the imputed scores 
of the CVLT-II and RAVLT (Fig. 5). The variance of the imputed variable in each group were comparable to the 
observed dataset (Fig. 5). The p-values and effect sizes are reported in Supplementary Tables S2 and S3.

Table 1.  Demographics table for AIBL, ADNI and the joined dataset. p-values present statistical differences 
between AIBL and ADNI participants calculate with two-sample t-test for continuous data with normal 
distribution, Mann–Whitney U test for continuous data with non-normal distribution, and χ2 testing for 
categorical variables).

AIBL dataset (N = 1791) ADNI dataset (N = 2122)
Joined harmonised dataset 
(N = 3913) Statistic (df) p-value

Clinical Classification CN/MCI/AD 
[N (%)] 1179 (65.83)/296 (16.53)/316 (17.64) 791 (36.95)/962 (41.38)/369 (21.68) 1970 (50.35)/1258 (32.15)/685 

(17.51) χ2(2) = 408.03 < 0.001

Sex:female [N (%)] 1015 (56.67) 993 (46.80) 2008 (51.32) χ2(1) = 37.53 < 0.001

Years of age at baseline [mean (sd)] 72.42 (7.64) 74.10 (7.26) 72.91 (7.42) t(3719) = − 3.75 < 0.001

APOE-ε4 allele
0/1/2 [N (%)] 935 (52.21)/449 (25.07)/90 (5.030) 1114 (52.50)/739 (34.83)/194 (9.14) 2049 (52.36)/1188 (30.36)/284 (7.26) χ2(2) = 32.11 < 0.001

Months of follow-up [mean (sd)] 39.98 (35.77) 37.54 (35.72) 38.66 (35.76) W = 1,961,934 0.077

Years of education < 9/9–12/13–
15/15+ [N (%)]

185 (10.33)/656 (36.63)/345 
(19.26)/549 (30.65)

23 (1.08)/288 (13.57)/401 
(18.90)/1410 (66.45)

208 (5.32)/944 (24.12)/746 
(19.06)/1959 (50.06) χ2(3) = 619.66 < 0.001
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Data harmonisation utility case study. For the harmonized data, a significant negative correlation 
between CVLT-II scores and Aβ level in MCI who are APOE-ε4 homozygotes was observed (r = − 0.32, p < 0.001). 
No significant correlation was observed in actual AIBL data with the smaller sample size. A significant negative 
correlation was observed between RAVLT Total Immediate Recall scores and Aβ level in both the harmonized 
and actual ADNI data (r = − 0.32, p < 0.001; r = − 0.30, p < 0.001), refer to Fig. 6.

Discussion
In this study, we have adapted a machine learning method, MissForest, for the harmonization of cognitive test 
scores. The method capitalises on the underlying structure and relationships of the datasets provided. Data across 
two separate datasets were used to impute data for a test not measured in one of the datasets to align it to a test 
measured in the other dataset. Results indicated that the method was successful at imputing data across datasets 
that could be combined to provide an overall harmonised dataset.

Figure 1.  Performance of imputed simulated missing AIBL LMII scores with different sizes of training and 
missing data: the performance is calculated using the mean absolute error (MAE) of imputed and actual data. 
Different size of training data samples of the ADNI dataset (equal to the size of 10%, 50%, and 100% of the 
AIBL dataset) and different sizes of simulated missing data samples of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 
80%, 90%, and 100% of the AIBL dataset were used. The results show high prediction accuracy even for training 
(reference) dataset with ten times smaller sample size compared to the size of the joining dataset.

Figure 2.  Performance of imputed simulated missing AIBL MMSE scores with different sizes of training and 
missing data: the performance is calculated using the mean absolute error (MAE) of imputed and actual data. 
Different size of training data samples of the ADNI dataset (equal to the size of 10%, 50%, and 100% of the AIBL 
dataset) and different sizes of simulated missing data samples of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 
90%, and 100% of the AIBL dataset were used. The results show high prediction accuracy even for a training 
dataset with ten times smaller sample size compared to the size of the joining data.
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Treating unmeasured test scores as missing values and imputing missing scores using values from another 
dataset had comparable accuracy when imputing missing data within the same dataset, although accuracy was 
slightly higher when imputing using the same dataset. Further, increased accuracy was observed when AIBL 
was set as the test dataset in comparison to when ADNI was set as the test dataset. This could be explained by 
ADNI having more variability in the data due to a multi-centre collection strategy in comparison to two collec-
tion centres run under a central umbrella for AIBL. This may result in a lower ability to extract the underlying 
structure and relationships used for driving the imputation method in ADNI. Interestingly, it was shown that the 
range of accuracy does not change with different sample sizes for the test datasets, however using a bigger train-
ing dataset reflects a slightly improved performance. This is a promising result showing that even small datasets 
can be harmonized with larger publicly available datasets such as AIBL and ADNI. Further, it should be noted 
that these accurate results were obtained even though there were significant demographic differences between 
the AIBL and ADNI datasets, again suggesting that datasets with varying testing protocols can be effectively 
harmonised using this strategy.

Figure 3.  Performance of imputed simulated missing AIBL LMII scores with different sizes of training and 
missing data: the performance is calculated using the correlation between the imputed and actual data. Different 
size of training data samples of the ADNI dataset (equal to the size of 10%, 50%, and 100% of the AIBL dataset) 
and different sizes of simulated missing data samples of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 
100% of the AIBL dataset were used. The results show high prediction accuracy even for training (reference) 
dataset with 10 times smaller sample size compared to the size of the joining dataset.

Figure 4.  Performance of imputed simulated missing AIBL MMSE scores with different sizes of training 
and missing data: The performance is calculated using the correlation between the imputed and actual data. 
Different size of training data samples of the ADNI dataset (equal to the size of 10%, 50%, and 100% of the AIBL 
dataset) and different sizes of simulated missing data samples of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 
90%, and 100% of the AIBL dataset were used. The results show high prediction accuracy even for a training 
dataset with ten times smaller sample size compared to the size of the joining data.
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Application of the method to actual missing data was able to show that imputed missing test scores (RAVLT 
in AIBL and CVLT-II in ADNI) and measured test data hold similar significant discrimination between clinical 
classifications. Note that clinical classifications of the subjects were not included in the test or training datasets. 
The case study also showed that in a very nuanced analysis (of MCI APOE-ε4 homozygotes), a correlation 
between Aβ levels and CVLT-II scores, which was not significant for the AIBL study prior to harmonization, 
was significant for the joined dataset after harmonisation. This result agrees with previous studies showing an 
association between cognitive performance and Aβ levels in MCI  individuals41–44.

Strengths of the study. One important strength of the proposed method is the capability of random for-
est based approaches to handle high dimensional mixed-type  data28. Given that data from studies researching 
Alzheimer’s disease include continuous (e.g. age), discrete (e.g. MMSE) and categorical (e.g. gender) random 
variables, such a capability is essential for a harmonization method in this field. Secondly, the proposed method 
includes the rate of change for each of the clinical and cognitive tests as an input to the MissForest imputation 
model. This is important for health care data (e.g. Alzheimer’s data) to capture the temporal patient characteris-
tics inherent in longitudinal measurements for each individual. Another crucial strength of the proposed proce-
dure is that, unlike linear models such as multiple imputation by chained equations  (MICE45), random forest is 
a non-parametric method and can handle nonlinearity within the data.

Further, in contrast to latent variable  approaches21,24 that also use underlying information across  datasets26,27,46, 
an additional ‘anchor’ dataset(s) that includes both of the unmeasured tests is not required for the method pre-
sented here.

Limitations and future directions. The main limitation of the proposed approach is the need for a rela-
tively rich dataset that includes both demographics and cognitive scores meaning that studies would need com-

Figure 5.  ADNI data imputed: distribution of the actual AIBL CVLT-II Total Immediate Recall scores and 
the imputed ADNI CVLT-II Total Immediate Recall scores for each clinical classification. AIBL data imputed: 
distribution of the actual ADNI RAVLT Total Immediate Recall score and the imputed AIBL RAVLT Total 
Immediate Recall score for each clinical classification.
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parable data across these domains to undertake the harmonisation strategy. However, most cohort studies in 
Alzheimer’s disease research have both demographics and thorough neuropsychological test batteries.

There are two opportunities for improving the proposed method. Firstly, MissForest treats all data as indi-
vidual data points and does not exploit the inherent structure of longitudinal data within subjects. In the future, 
extensions to MissForest (e.g. using mixed-effects random  forest47 for missing data imputation) could be con-
sidered to provide improved imputation estimations as well as prognostic estimations into the future. Secondly, 
future work should consider the challenges presented by harmonizing more than two datasets, for example the 
number of tests to be imputed will exponentially increase with an increasing number of datasets and it will be 
necessary to ensure the method is robust in such scenarios.

Summary
In summary, our results suggest using MissForest for data imputation can provide a practical solution for data 
harmonization across Alzheimer’s disease cohort studies, specifically AIBL and ADNI. Such harmonized datasets 
provide larger sample sizes and increased study power, in turn allowing more nuanced analyses to be undertaken 
and leading to improvements in the generalisability of findings.
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