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ABSTRACT

Micro-Electro-Mechanical Systems (MEMS) are micro devices used as sensors
and actuators with structural dimensions of the order of a micron. The focus in
this dissertation is on MEMS made of planar, polycrystalline silicon and
fabricated through integrated circuit-based processes. The process conditions
often result in texture in the material that manifests as anisotropy in the
mechanical properties. Due to the random orientations and shapes of the crystal
grains, the constituent materials also exhibit inhomogeneity at the microscopic
level. These ‘material characteristics can have significant influences on the
mechanical response of MEMS devices. With the increasing push towards
miniaturization in MEMS, the potential for uncertainties in the mechanical
response of nominal}y identical devices has increased. Without knowledge of
these uncertainties, the successful implementation of production scale
manufacturing is hampered. '

Homogenization techniques such as the first order Voigt and Reuss bounds
are shown to be sufficiently close for MEMS made of polysilicon (containing
large number of crystals within smallest structural dimensions) and their

derivation for {100} and {110} textures are outlined. To account for the effects of




random crystal shape and orientation, detailed approaches to the probabilistic
modelling and analysis of the mechanical response of multicrystalline structural
elements and devices are presented using simulation, random fields and
stochastic finite element techniques. A mathematical model—the Voronoi
Tesselation—is used to simulate random multicrystalline geometries which are
then analyzed using finite elements. A more efficient continuous-parameter
random field characterization of the crystailine micro-structure is also employed.
Equivalent random field properties are defined and used in conjunction with
stochastic finite element methods to probabilistically compute the response of
MEMS components and devices. These analysis techniques enable a quantitative
estimation of response uncertainties for multicrystalline structural elements and
devices.

Typical results show coefficients of variation (C.0.V.) of approximately 3% in
the response of micro beams with grain sizes of the same order as their depths.
For a folded beam lateral micro resonator, the natural frequency is found to have
C.O.V.s that are lower than the C.O.V.s of the lateral stiffness of the constituent
beams. The uncertainty in the natural frequency, however, is dependent on the
length of the consituent beams and can reach as high as 6% for beams greater
than 40 ym in length.

This dissertation represnts a first attempt to analytically and numerically
characterize the uncertainty inherent in the properties and response of MEMS

that arises from the natural randomness in the contituent materials.
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Chapter 1
INTRODUCTION & SUMMARY

1.1 MOTIVATION

This report investigates the inherent uncertainties in the mechanical
response of Micro-Electro-Mechanical Systems {MEMS). These uncertainties
generally arise as a result of the combined effects of the material
microstructure and the small length scales associated with MEMS structural
components. The material microstructural characteristics, e.g sizes, shapes,
orientations, or arrangements of crystal grains in polycrystals, are generally
uncertain. For length scales of the same order of magnitude as the
microstructural variations, these uncertainties are reflected in the mechanjcal
responses of MEMS devices. As MEMS technology pushes the frontiers of
miniaturization, these microstructural effects on the performance of devices
become increasingly important. Thus knowledge about and control of these
effects become essential to the successful design and development of the next
generation of MEMS devices.

The field of MEMS encompasses devices—generally sensors or actuators—
that are fabricated on a micro scale, with structural dimensions as small as a
micron [1.4, 1.5]. Having first been developed as an offshoot of the integrated
circuit (IC) fabrication technology, MEMS devices are primarily made out of
silicon. Other materials, however, are increasingly being employed. The field

of MEMS has grown exponentially in recent years, with applications in areas as
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diverse as the automotive industry, the aerospace industry, and signal
processing. Biomedical applications and devices such as biofiltration [1.9] and
oncological microdevices [1.10], respectively have already been established.
New areas of application are being added at an increasing pace. Following the
developments of the IC and the microprocessor, MEMS promises to be the next
technological milestone in electronics.

Successful design of MEMS requires a knowledge about their mechanical
response in addition to their electrical performance. Just as this new field has
spurred basic studies of the physics and chemistry of materials and structures
in the micro-scale, it has also resulted in efforts to achieve an improved
understanding and control of the mechanical behavior of materials and
structural components at these scales [1.3, 1.7].

The majority of studies on the mechanical response of MEMS have been
experimental. Most of these have relied on basic linear elastic structural
theories and strength of materials principles to relate responses to excitations.
More recent studies have employed improved structural theories and finite
element methods to better capture the behavior of MEMS structures and
components [1.2, 1.8]. Various phenomena such as geometric non-linearities,
irregular boundary conditions, and residual stresses have been modeled. Most
of these studies, however, assume that the materials are isotropic, and they all
implicitly assume material homogeneity.

Contrary to many elasticity problems encountered by structural engineers,
homogeneity and isotropy may not be valid assumptions for the materials of
MEMS structures. A homogeneity assumption for structural materials such as
steel holds true so long as the geometric dimensions of a structrural

component under consideration are large in comparison with the
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dimensions of a single crystal (e.g. there are millions of crystals grains in one
cubic inch of steel). Isotropy only holds true if there are no preferred crystal or
other microstructural orientations. The polycrystalline structure of many of
the materials employed in the manufacture of MEMS, e.g. polycrystalline
silicon, and the associated fabrication processes often result in materials that
neither posses isotropy nor homogeneity at the length scales associated with
these microscopic devices. These microstructural effects preclude direct
application of classical theories for structural elements, thus necessitating the
development of novel analytical and numerical techniques for modelling the
material behavior and evaluating the structural responses of MEMS.
Furthermore, the variability inherent in the microstructure may require a
probabilistic description of the material behavior and structural response
evaluation aimed at assessing the performance reliability of MEMS, even if the
applied excitations are deterministic.

This study addresses the above needs using a combined deterministic-
probabilistic approach based on the principles of engineering mechanics and
employing both analytical and numerical techniques. The solution strategy is
based on a detailed stochastic idealization of material microstructure and its
incorporation in suitable structural component and device models. Real-
world applications of the models are proposed which can readily be
incorporated into existing analysis and design tools used by MEMS researchers
and developers. Sensitivity of response uncertainties to various design
parameters are easily computed, allowing the models to be used as tools for

achieving improved designs.
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1.2 SCOPE

The design, analysis, and manufacture of MEMS involves a very broad
multi-disciplinary field encompassing the areas of electrical, mechanical,
structural, chemical, and biomedical engineering, amongst others. That
which can be termed a “MEMS” device is very loosely defined, since several
distinct manufacturing techniques are used to produce a variety of different
classes of devices made from numerous different materials. This study does
not claim to be applicable to all areas of MEMS, and focuses instead on an
important body of MEMS, one that has evolved based on the advances in the
integrated circuit (IC) fabrication technology. This branch of MEMS represents
the leading-edge of MEMS development and future promise, producing the
majority of commercial devices in use today. The experimental expertise in
this area at the Berkeley Sensor and Actuator Center (BSAC) made this the
natural area of focus for this study.

Areas requiring further theoretical research in the field have been
identified as (i) homogenization, (ii} incorporation of microstructural
uncertainties in material models, (iii} development of structural elements for
analysis of multi-component MEMS, and (iv) residual stresses. In this study,
research is concentrated on the following three areas: material modelling,
principally microstructural uncertainties related to texture; geometric
uncertainties (limited to beam width variation), and development of
appropriate stochastic finite element models for the analysis of MEMS
structural components and devices. This research is confined to the linear
elastic range of response, and excludes residual stress effects and local

phenomena. The study represents a first attempt at incorporating the
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material and geometric uncertainties of MEMS in the assessment of their
behavior and response.

Models developed here are applicable to a variety of structural
components when incorporated in finite element analyses. Specific structural
elements developed are the probabilistic beam element and the uncertain
beam super-element. The examples considered are planar structures made of

polysilicon using deposition processes.

1.3 SUMMARY

The report is divided into three parts. Part I describes the motivation for
and the scope of the subject, outlines the contents of the report (Chapter 1),
and introduces the field of MEMS (Chapter 2). It then reviews current research
in the field, evaluating the merits and limitations of existing approaches, and
points to possible modelling developments and innovations (Chapter 3).
Readers familiar with the field of MEMS may wish to proceed directly to
Chapter 3. Part II (Chapters 4-6) focuses on material microstructural
modelling appropriate to MEMS, while Part IIl (Chapters 7 & 8) applies these
models to MEMS structural components and complete devices and concludes

the study.

1.3.1 Introduction and Background

The review of MEMS in Chapter 2 focuses on integrated circuit (IC) process-
based MEMS, or more specifically: integrated, microfabricated, surface-micro-

machined, thin-film based, sub-millimeter sized MEMS. Figure 1.1 shows the
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main categories of MEMS and expands on IC process-based MEMS which is one
of the most advanced categories.

The 1C-based process involves the deposition of thin films of materials
using deposition processes, e.g. low pressure chemical vapor deposition
(LpCVD} (Fig. 1.1(a)), combined with patterning, etching, and releasing (surface
micromachining) in order to produce the desired “structures” and devices.
Typically, as in IC manufacturing, silicon wafers are used as a substrate on
which the films are deposited (Fig. 1.1(b)). The wafers are also patterned in a
series of 1 ¢m square dies (Fig. 1.1(c})). Hundreds of MEMS devices can be fitted
onto one die.

A portion of an example device—a folded-beam lateral micro-resonator
(FBLMR)—with typical overall dimensions is shown in Fig 1.1(d). The eight
supporting “beams” in this device act as the resonator’s “springs,” therefore
knowledge regarding the force-deformation behavior of the beams is required
in order to predict the behavior of the device. A portion of the beam is shown
schematically in Fig. 1.1(e) in which the polycrystalline microstructure is
clearly visible. The material is typically polycrystalline silicon and the size of
the crystal grains is related to the process conditions (anneal time,
temperature, dopant concentration, etc.). The polycrystalline material is
typically textured, i.e. with a preferred orientation of the constituent grains.
This texture is typically oriented out of plane, resulting in transvesely
isotropic properties within the plane.

The determination of the force-deformation relationships of MEMS
structural components such as beams therefore involves the development of
appropriate models for the constituent materials. The main focus and

contribution of this study is the development of special probabilistic material



1.3 SUMMARY 8

response models appropriate for polycrystalline MEMS structural components
and devices. The structural analysis is, for the main part, based on existing
highly developed techniques used in various structural engineering and
engineering mechanics applications.

After a thorough study of the elastic response of polycrystalline materials,
a broad overview of the different possible modelling approaches is presented
in Chapter 3. These approaches are reviewed and evaluated in the context of
applicability to the MEMS mechanical response prediction.

The elastic response of polycrystalline silicon is closely dependent on that
of single-crystal silicon since the polycrystalline state is an aggregate of
individual crystal grains. Single-crystal silicon exhibits anisotropic elastic
properties due to its diamond cubic crystal structure (Fig. 1.2(a)). The material
stiffness matrix, C, in a global reference frame is therefore a function of the
orientation of the crystal with respect to that fixed frame. This concept is
illustrated schematically in Figs. 1.2 (d) and (e), where a pure tensile test on a
sample of single-crystal silicon results in a response from which the value for
the Young’s modulus in the direction of the applied forces can be deduced.
The plot shows this variation as a function of the in-plane orientation angle,
y, for {100} and {110} textures (see §3.2.2 and §4.3).

For a MEMS structural component made up of a relatively small number of
crystal grains (e.g. as shown in Fig. 1.1(e)), the problem may be neither
isotropic nor homogéneous. Each crystal grain is distinguished from its
neighbors by its distinct orientation angle. The shapes and crystallographic
orientations of these constituent crystal grains are, in general, random. This
results in a random variation of elastic properties within the structural

member: C(x).
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The uncertain spatial variation of elastic properties translates into an
uncertain response of the structural component. The degree of uncertainty in
the response depends on a number of factors, including the sensitivity of that
response to the microstructural variations. The chief factors, however, are the
relative grain size and the degree of anisotropy of the material.

The level of uncertainty in the response of a structural material
diminishes with decreasing anisotropy of the material (lower values of &),
and with a decreasing grain size relative to the global (structural) dimensions.
This concept is illustrated in Fig. 1.3, where the probability density function
(PDF) of the response, R, of a structural component, in this case the lateral
stiffness of a beam, is shown for different grain sizes, and for materials of
varying anisotropy. The schematic beam microstructures represent columnar
grains commonly found in phosphorous doped, annealed thin film
polycrystalline silicon. The width of the beams are each given by w, while the
parameter A defines the number of crystal grains per unit area of the beam
surface.

A clear distinction exists between the isotropic case (@ = 1} and anisotropic
cases (a # 1). There is also a distinction between homogeneous samples
(w?i —» =) and inhomogeneous samples (w’A finite). For samples with
relatively large grain sizes (i.e. w’A < 3), the response is random with a finite
standard deviation about the mean. The level of uncertaint& increases with
increased anisotropy for a given grain geometry.

For isotropic cases, “grain size” is a misnomer for anisotropic grains since
grains are only defineable when they can be distinguished from one another

based on their orientation differences. All responses are deterministic for
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consistently processed materials and therefore a deterministic isotropic elastic
model suffices.

Cases in which the response of interest shows a significant spread require
probabilistic approaches to the response estimation. These approaches
necessitate models that characterize the uncertainties associated with the
material microstructure in relation to the structural dimensions and
thatpredict statistical measures of response, e.g. mean, standard deviation, or
more generally, the PDF of response.

The remainder of Chapter 3 outlines current approaches to modelling
MEMS materials and structures, and points out improved approaches.
Reviewing previous work in the field of mechanical modelling of MEMS
response indicates that the area of material modelling has received little or no
attention. Material homogeneity is universally assumed, while a few studies
have recently looked at issues concerning texture and the resultant anisotropy

of the material.

1.3.2 Model Development

Part II (Chapters 4-6) concentrates on three specific modelling approaches
that address the shortcomings in this field. In Chapter 4, the method of
homogenization is reviewed, the limits within which this approach is
applicable are delineated, and specific methods applicable in the area of MEMS
are explored. Chapter 5 introduces a probabilistic approach using Monte Carlo
simulation of random crystal arrangements. Chapter 6 improves upon the
simulation model by approximating the mechanical properties of the
crystalline arrangements using random fields and employing structural

reliability concepts in deriving probabilistic estimates of structural response.
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Due to the columnar grains and out of plane texure of many MEMS, fine-
grained structural components tend to posess transverse isotropy in their
mechanical properties. The in-plane properties can easily be deduced both
theoretically and experimentally. Cut of plane properties, however, are
generally anisotropic and are more difficult to assess experimentally. For a
rigorous way of finding or predicting these properties, an analytic/theoretical
technique for establishing elastic properties is required. For polycrysialline
structures in which the response of interest can be approximated adequately
as a deterministic phenomenon, the methods of material homogenization
can be employed in modelling'the material behavior.

The methodology for homogenization is based on a statistical averaging of
material properties that takes into account varying levels of detail of the
microstructure. All homogenization models are based on variational
principles which establish bounds on the property of interest. “Exact”
homogenized properties are only obtained with complete statistical
information on the material microstructure.

Employing first-moment information, such as the volume fraction of
grains of different orientations (commonly refered to as the orientation
distribution function, or ODF), the resulting bounds on the elastic properties
are referred to as the Voigt and Reuss bounds. These bounds are generally too
wide for many materials, however, for silicon (with the degree of anisotropy,
a = 1.56) these bounds are deemed adequate for homogenizing the material
properties.

As shown in Fig. 1.3, certain problems require a probabilistic approach.
The statistical characteristics of the excitation-response relationship can be

established by deriving responses for an ensemble of observed or simulated
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sample structures. The response variation, e.g. measured by the C.0.V,, is
directly related to the inherent material uncertainties. The simulation model
presented in Chapter 5 establishes a relationship between the significant
microstructural characteristics and the response uncertainty of a structure or
device.

The proposed simulation model uses random crystal shapes and sizes that
are based on the Voronof diagram-—a mathematically derived geometric
construct {1.1, 1.6]. The methodology for the analysis, however, is such that
observed random crystal shapes and arrangements can be substituted for the
Vorono! polygons. The multicrystalline structure is shown in Fig. 1.4 with
the idealized convex polygons representing the individual crystal grains, each
with a distinct crystallographic orientation. The beam is therefore
inhomogeneous and each crystal grain needs to be discretized separately and
assigned different material properties associated with its particular
orientation angle y. For finite element analysis, a simple and consistent
discretization scheme is developed and is shown in Fig. 1.4 with a mesh
refinement step. Any convex n-sided polygon is thus discretized into n or 3n
quadrilateral elements. 9-noded isoparametric quadrilateral elements are used
for the finite-element modelling of beam flexural behavior.

By simulating random multicrystalline structures and assigning
orientations based on the specified material ODF, each structure can be
modelled and analyzed to evaluate the desired response. By simulating a
sufficiently large number of stuctures, an artificial sample of responses is
generated from which the desired statistics are computed.

One significant drawback of the simulation method is its inefficiency. For

example, hundereds of simulations may be required for even the simplest
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example structures. The same structure with a slightly different set of force or
displacement boundary conditions would require a new set of simulations in
order to find the response statistics. In Chapter 6, a random field model is
developed (based on the simulation model) that overcomes these problems.
A summary of the procedure is shown in Fig. 1.5.

The random field approach incorporates randomness (using random
variables) in one equation and also includes the length-scale effects (through
the autocorrelation function and correlation length) for fixed w’i. For any
displacement or force boundary condition or for any beam length, the same
random field model can be re-used with a regular finite element mesh to
obtain the response statistics, e.g. mean and standard deviation.

The “smoothed” random field cannot adequately describe certain localized
phenomena that are directly associated with the detailed microstructure, e.g.
maximum stresses. However, global effects are of most interest, e.g. lateral
stiffness of beams, and for those purposes the random field model is shown to
be accurate.

The beam random field model can be generalized to other structural
members. The significant material parameter for beams is the effective
Young's modulus. Additional parameters are needed for other structural
members, e.g. Poisson’s ratio, v, or shear modulus, G, for plane strain
behavior. Due to the presence of anisotropies, however, additional material
parameters may be necessary to capture the behavior of structural elements
such as plates or shells. The proposed solution to such problems would be a
general model describing the material stiffness matrix C as a function of the
location, i.e. C(x). This is acheived through a random field modelling of C(x).

The finite-element method can then be employed to model the particular



1.3 SUMMARY 18

structural member—plate elements, solid elements, etc.—and for each
element type, the desired material parameters can be derived from the
random field model of C(x). This approach enables a regular finite element
mesh to be used (with the necessary fineness to model the correlations related
to crystal sizes), as was the case for the beam problem, with a discretized

random field representing the material property variations, C{x}.
g prop

1.3.3 Applications

The third and final part of the report is devoted to the application of the
models developed in Part Il to MEMS structural components and complete
devices (Chapter 7) and a concluding Chapter, including recomendations for
further developments (Chapter 8).

The importance of employing appropriate models for the analysis of MEMS
structural members is established through the application of deterministic
and probabilistic models to an example problem. Rules are developed for
determining whether a given problem requires probabilistic analysis.
Applications of probabilistic models to MEMS devices (folded-beam lateral
micro resonator and in-situ micro strain gauge) are shown to be practicable.
The analysis points to parameters that govern the level of uncertainty in
device responses. Control of device response uncertainties can therefore be
achieved through appropriate adjustments in these parameters when the
underlying cause of the uncertainty—large grain size and texture—cannot be
further reduced. The analysis tools developed allow alternative designs to be
studied in order to reduce uncertainties in device responses. This procedure
would allow numerous design “tests” at a fraction of the cost of actual

fabrication of each design idea.
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Many of the ideas developed in this dissertation have clear extensions
which would enable their application to additional classes of MEMS structures.
Microstructural characteristics such as defects, residual stresses, and stress
concentrations may be captured using extensions of the existing models.
Additionally, some of the modelling ideas developed in Chapter 3 can be used
as the basis for new classes of models that may prove useful in areas other
than mechanical response prediction. The future extensions of this research
are discussed at the end of Chapter 8 and, together with section §3.4, should

prove a useful resource for further research in this field.
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Chapter 2
MEMS—A REVIEW

2.1 INTRODUCTION

Micro-Electro-Mechanical Systems (MEMS) {2.15] combine electronic and
mechanical components to make miniature devices such as sensors which
deploy automobile air bags in collisions, or monitor blood pressure inside the
human heart during operations, as well as valves and actuators, all with
structural dimensions as small as a micron (um). Based on processing
techniques borrowed from the semiconductor industry, these tiny devices are
inexpensively mass-produced, adding the benefit of low cost to their size and
weight advantages over conventional devices. In biomedical applications
(BioMEMS), the nanofilter and biocapsule have seen successfully
implementation [2.26], while the newly developing area of Oncological
microdevices (OncoMEMSTM) [2.27], intended for cancer therapeutics and
diagnostics, shows tremendous promise. Additionally, microdevices promise
new capabilities by taking advantage of the scaled physical laws in the micro
domain. Following the developments of the transistor, the integrated circuit
(IC), and the microprocessor, the development of MEMS promises to be the
next major milestone in electronics.

This chapter presents a review of MEMS intended for readers unfamiliar
with the field. It aims to establish the knowledge-base necessary for an

understanding and appreciation of the modeling and analyses presented in

21
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later chapters for predicting MEMS’ mechanical response. The vast breadth and
multidisciplinary nature of this field naturally limit the depth of coverage
possible in this introductory chapter. The approaches taken in later Chapters
(4-6) mainly concentrate on planar polycrystalline silicon structures, an
important body of MEMS with a plethora of applications and inherent
advantages over other classes of MEMS that are invaluable for future
developments in this field. Accordingly, the focus of this chapter also takes
such a slant. Nevertheless, other important areas of MEMS are briefly covered
for completeness. Readers interested in a more detailed coverage are guided
to pursue the subject through the selective list of references provided at the
end of the chapter.

The development of MEMS is an extension of the trend towards
miniaturization that has accelerated over the last two to three decades. To
begin with, some background to the developments of this trend is presented.
Next, it is shown how, through the use and adaptation of IC fabrication
techniques, this trend has led to the development of what we know today as
MEMS. A description of MEMS, the requirements which have led to their
development, the reasons they have achieved such prominence, and an
overview of some future trends are then presented. A representative set of
typical MEMS components and devices are then introduced with a description
of how they function. This is followed by a description of the materials and
fabrication techniques employed in the manufacture of MEMS. These have an
important bearing on the material modeling assumptions necessary for an
accurate prediction of MEMS’ mechanical response. The chapter concludes

with a summary of the main points.
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2.2 EVOLUTION OF MEMS

2.2.1 Background

Miniaturization has brought high performance coupled with low cost in
many fields. Taking microprocessors as an example, higher processing speeds
have been achieved through the reduced distances that signals travel in ICs,
while reduced costs are attained through the incorporation of larger numbers
of elements onto one chip. It seems that every year, advances are pushing the
boundaries of miniaturization lower and lower. How far can this trend go?
What, if any, are the boundaries?

As early as 1959, Richard P. Feynman, the Nobel Prize winning physicist,
discussed the concepts of manipulating and controlling things on a small
scale {2.2]. By relying on physical laws and principles, he defined the
boundaries of miniaturization through the micro (tm) and nano (nm) scales,
and down to the level of atoms and molecules. By drawing on examples from
nature, he also demonstrated the feasability of reaching these boundaries, e.g.
in data storage and in mechanical devices.

In the last decade alone desk-top computer data storage has increased
capacity over 500-fold. From single-sided 5% " floppy disks, able to hold
approximately 200KB of data, the storage capacity available on the desk-top has
today reached 120MB on the 3%” removable optical disk drives’ . The advent

of the CD ROM (Compact Disc Read-Only Memory), with a capacity of

T A byte is the amount of storage space necessary to hold one alphanumeric character. This is
equal to eight bits, the smallest unit of data recognizable by the computer. A kilobyte (KB}
equals 1,024 or 219 bytes; a megahyte (MB} equals 1,048 575 or 227 bytes; and a gigabviz (GB)
equals 1,073,741,824 or 2% bytes.
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approximately 700MB, has pushed data access to even higher levels, thus
openning new possibilities in areas such as the much-hyped world of
interactive multimedia. Has the lower limit of miniaturization been reached
yet? Observing nature provides some clues. For instance, biologists have long
known that enormous amounts of information can be carried in an exremely
small space, e.g. in the double-helixed DNA molecule (100,000 genes, 6 billion
“letters” of code) in which roughly 50 atoms are used for one bit of
information [2.2]. All of the information that man has accumulated in all the
books in the world (approx. 1015 bits, or over 100,000 GB) can be written in this
form in a cube of material merely 0.1 mm on each side [2.2]. Clearly there is
still a lot of room for advancement.

As for mechanical devices, miniaturization again has a long way to go.
Watch gears, and jeweler's lathes were once regarded as marvels of
miniaturization. These, however, do not even come close to their biological
equivalents. Living cells can be regarded as an organized system of various
kinds of molecular “machines” (of the order of 10 nm in size and composed
mainly of protein molecules) [2.16]. These “machines” function as parts of the
whole system, e.g. enabling bacterial cells to swim in water by rotating helical
shaped flagella by a motor connected to the base of each flagellum and buried
in the membrane [2.7]. Clearly, achieving greater miniaturization is physically
possible. The question is how does one get there?

Although exotic ideas are ever-present in the realm of science fiction, e.g.
the miniaturized submarine injected into the human bloodstream in the 1966
movie “Fantastic Voyage”, they only generate real interest when their
feasability is proven through actual developments that are of practical value.

For actual realization of such advances, the development of basic technology
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through research, and of commercial applications are of paramount
importance. A major technical breakthrough in a relevant technology often
provides the spur for new advancements. In other instances, a successful
transfer of technology from an already advanced field provides the necessary
impetus. Most importantly, however, there needs to be a pressing need for
such advances. The developments in miniaturization therefore take an
unpredictable path, one of least resistance, and not necessarily along clear
projected lines. The recent development of the biocapsule [2.26] and the new
area of OncoMEMSTM [2.27] are examples of practical application.

Less than a decade ago in the early 1980s, after the completion of two
decades of IC development, electronics had reached a high level of
sophistication. Microprocessors such as the Intel 80286 (introduced in 1984)
packed more than 134,000 transistors onto one chip. The advanced
photolithographic, thin-film deposition, and chemical and plasma etching
techniques of IC microfabrication had achieved a high dégree of
miniaturization. The interface of these circuits with the non-electrical world
was becoming the point of focus for engineering design [2.14]. The higher
performance and lower cost of the new generation of microprocessors created
a situation where devices such as sensors and their interfaces with circuitry
would often cost many times more than the microprocessor itself. There was
a pressing need for lower cost in both sensors and in their interface with the
MICIOProcessors.

Miniaturization can also satisfy some of the needs in the fields of
medicine and space exploration. In medicine, for example, the size of a
surgeon'’s incision is often more a function of the dimensions of the human

hand and of the cutting instruments than of what the ailment requires.
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Today, many medical procedures are handled without surgery, e.g. through
ultrasound treatment; however, there are limitations to such procedures and
actual physical intervention is often necessary. With miniaturized (and
possibly self-propelled) cutting machines, some of these procedures could
conceivably be achieved through a simple injection intc the bloodstream
[2.26]. In space exploration, payload limitations are of paramount importance.
The weight reductions offered by miniaturization can therefore be very
beneficial.

The breakthrough in sub-millimeter sized miniaturization of mechanical
devices was achieved through the adaptation of the refined techniques used
in electronics. A better understanding of the mechanical properties of silicon
[2.17] coupled with the adaptation of IC microfabrication techniques led to
initial use of silicon as a miniaturized mechanical component [2.5]. This
demonstrated the practicality of what is now known as surface
micromachining. The application of bulk- and surface-micromachining
techniques greatly stimulated research in micromechanical structures and
devices. By relying on an already developed body of technology, great
advancements were made in a very short period of time. Just as valves were
first replaced by transistors and then by integrated circuits, ultimately leading
to the development of the microprocessor, mechanical devices interfaced
with electronics, such as sensors, have, in recent years been shrunk down in
size. This has been accompanied by the ensuing benefits of lower device costs
(through mass production), lower interface costs (through on-chip
integration), smaller size, and lower weight. It has been predicted that MEMS is
a technology that could be to the beginning of the 21st century what the

integrated circuit was to the end of the 20th century.
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Feynman’s conjectures in 1959, as he himself pointed out, were only
limited by the level of technological advancement of that day. Today, many of
these technological boundaries have been crossed and some have been
extended several orders of magnitude, e.g. in the fields of IC fabrication,
magnetic and optical data storage, atomic force microscopy, etc. We are now at
a point where many of Feynman’s conjectures are approaching reality, if not

alread; achieved in one form or another.

2.2.2 MEMS Today

Today, silicon-micromachining based devices have found many
commercial applications. Completely assembled mechanisms and motors,
fractions of a millimeter in size, are being made in labs around the world. Yet,
although tiny motors made micromechanics famous (beginning in 1988 with
the 60 pm diameter micromotor developed at the Berkeley Sensor and
Actuator Center), it is sensors that currently dominate the commercial sector.
Thus far, the silicon diaphragm pressure sensor has been the primary
commercial success, with its main uses being in the automotive and medical
fields (see Fig. 2.1). For instance, General Motors (GM) currently produces
750,000 air pressure sensors per month for use in engine intake manifolds. In
medicine, approximately 10 million disposable blood-pressure sensors are
used each year [2.18]. Sensors used for measuring gas concentrations have also
been developed. Filters for the removal of viruses from plasma derivatives
and biological fluids are scheduled for commercial production in the first

quarter of 1997.
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Currently, silicon accelerometers are being developed for active
suspension and air-bag deployment in the automotive industry. Companies
such as IC Sensors, NovaSensor, and Analog Devices already have such
products on the market, whilst many others (HP, Motorolla) anticipate
introducing products to the market in the very near future, Micromachines,
however, are still largely research curiosities due to an array of difficulties
such as suppressing friction, connecting wires, etc.

The field of MEMS is multi-disciplinary, encompassing electrical,
mechanical, and chemical engineering in addition to material science and
engineering. The field has also spurred basic studies of the physics and
chemistry of the materials and structures in the micro-scale.

The MEMS “community” is suitably structured to conduct R&D and
promote the fast transfer of research developments into commercial products.
In many countries, a co-operative gevernment-university-industry structure

has been established. In the US this takes a decentralized form with centers
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built around different universities (e.g. the Berkeley Sensor and Actuator
Center—BSAC, and the Biomedical Microdevices Workshop at Berkeley),.
Government agencies such as the National Science Foundation (NSF), ARPA
(defense related) and NASA are actively supporting research at universities.
Private companies noted above, as well as Microfab Biosystems and IRIS
Micromedical are also actively involved in R&D.

The major forums of discussion and presentation of new developments in
the field of MEMS are the conferences and symposia that have been organized
in recent years. The most important are the Intfernational Conference on
Solid-State Sensors and Actuators—Transducers (held in June of odd-
numbered years since 1981), regional conferences, e.g. the IEEE Solid-State
Sensor and Actuator Workshop held in June of even-numbered years since
1984 in Hilton Head Island, S.C. in the US, and the annual IEEE Mircro Electro
Mechanical Systems Workshops, held since 1989 in different US locations,
and internationally since 1991. Additionally, there are the Materials Research
Society {MRS) (Fall and Spring), the American Society of Mechanical Engineers
(AsME) (Winter and Summer) twice-annual meetings, and the Cambridge
Healthtech meatings at which specific symposia are often devoted to MEMS
topics. Up-to-date reviews of research progress in the field can be found in the
respective technical digests.

For archival publications, a number of journals catering specifically to the
MEMS community have also been established, most notably the fournal of
Microelectromechanical Systems, IEEE Transactions on Electron Devices,
Sensors & Actuators, and the Journal of Micromechanics and Micro-
engineering. Additionally, useful material can be found in related technical

journals, notably the Journal of Applied FPhysics .
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Despite the rapid pace of development, the field of MEMS has not yet
reached maturity [2.4]. There is an exponential growth in new devices and
gadgets. Although some developments have reached commercial application,
most are at the prototype or developmental stages, especially in the case of
micromotors. Strong efforts are underway to advance basic material research,
process refinement, and material and structural modeling which are the basis
upon which new developments can be built.

The schematic diagram of the “MEMS Technology Tree” in Fig. 2.2 {2.23],
appropriately divides the on-going activities in the field into four categories:
(i) the roots, consisting of the basic MEMS technologies; (ii) the lower trunk,
consisting of functional elements; (iii) the upper trunk, where system
integration and hybridization is achieved; and (iv) the “fruits” of MEMS,
namely the successful commercial applications.

Thus, the current state-of-the-art in MEMS is a staggered patchwork of
advancements and expertise spanning the four levels shown in Fig. 2.1. As is
to be expected in any newly-developing field, the main advances have been in
the lower or more basic levels, with only a few “fruits” having been picked to
date. The future of the field, however, is very promising. Most immediately,
for example, inexpensive yet highly reliable accelerometers and other sensors
could revolutionize the design of suspension, braking, and steering systems
in the automotive industry. This has prompted industry and government
agencies around the world to pour millions of dollars of researéh money into
MEMS research and development. In 1991, for instance, research spending in
the US on MEMS amounted to $15 million, whilst it was $75 and $30 million in

Germany and Japan, respectively.
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2.2.3 Challenges and Opportunities

Despite the many successes, there are numerous challenges that have had
to be overcome in the field of MEMS, many of which still loom as barriers to
development. Feynman {[2.2] had foreseen some of the potential difficulties
that are now faced such as the scaling of forces, resulting problems related to
friction and lubrication, and material inhomogeneity resulting from the
finite grain structure of polycrystalline materials.

The scaling of forces in the micro domain poses challenges and opens new
opportunities for alternative device designs. For exampe, mass, and therefore
inertia forces, scale as I’, whereas magnetic forces scale as L* [2.21], i.e. when a
system scales down a factor of ten in size, magnetic forces scale down by a
factor of ten relative to the inertia forces (L'/L’). Conventional electric motors
are typically magnetic motors. These clearly cannot perform in the micro
domain where they may have to perform at sizes as low as one thousand
times smaller than the smallest functioning magnetic motors— of the order
of 1 mm in size [2.21]. Electrostatic forces on the other hand scale
advantageously in the micro domain. Depending on the design of the
micromachine, electrostatic forces scale as L’ or L' [2.21]; thus when a system
scales down in size by a factor of ten, electrostatic forces scale up by a factor of
either ten or one hundred relative to the inertia forces (L'/[* or L*/L'). The
negligible electrostatic forces at the scales of conventional motors, for
example, become a viable driving force with motors of appropriately small
scale. Similarly, hydraulic forces (already useful in conventional macro
applications), being caused by pressure (L*), and surface tension (L), prove

advantageous in the micro domain.
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Material inhomogeneity at the micro-scale is another potential problem.
Polycrystalline materials, be they metals, ceramics, or semiconductors have a
microstucture of finite size. When the smallest dimensions of a device made
of these materials is of the order of the microstructural dimensions (often
grain size), the concept of material homogeneity no longer applies. For these
cases, conventional mechanical models would not predict the structural
responses, thus hampering the design and development of such devices.
Furthermore, statistical uncertainty may become important, thus requiring
probabilistic analysis of the structural response. In §2.4, the fabrication
methods are shown to play a major role in determining the material
microstructures. Chapter 3, where approaches to modeling the mechanical
pehavior of MEMS materials are discussed, further expands on these issues as
well as exploring the existing work in the field. In Chapters 4, 5, and 6, models
are presented that attempt to take into account the material inhomogeneity

and statistical uncertainty described above.

2.2.4 Future Direction

Achieving successful commercial applications for micromachines
represents the next anticipated milepost in MEMS. The basic technology in this
area is reaching critical mass and is anticipated to produce numerous
applications in the next decade. The feasibility to use expensive high
performance materials (since only small amounts are required) is another
source of promise. With the development of non-silicon fabrication
techniques (see §2.4), further advancements along this line can be expected in

the near future.
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Beyond that which we can envisage today, however, there are doubtless
other opportunities for fruitful advances. The continued advancement of
basic technologies will in the future produce the hoped-for resuits. New
technologies can radically alter an evolving field in unforeseable ways. The
evolution of mechanized writing serves as a simple example of this trend.
The typewriter pérforms by imprinting individual letters, numbers, and
symbols on a piece of paper by depressing a pre-moulded metalic protrusion
over an ink ribbon. The progress of the typewriter from the earliest manual
“hammer” style models, through to electric machines (faster) and electric
“golf-ball” machines and eventually daisywheel-based machines (changeable
letter styles) only represented incremental improvements over the original
typewriter. New technologies were being utilized to incrementally refine and
improve upon the original concept. Even the advent of the “dot-matrix”
printer—enabling the reproduction of a variety of symbols and graphics—still
used the same concept of impact printing. Ultimately, however, speed and
quality limitations were reached that could only be overcome by abandoning
impact printing and coming up with a new concept. The advent of the laser
printer represented such a breakthrough.

Technological breakthroughs, therefore, open up new possibilities for
improving existing functions by quantum leaps rather than by incremental
steps. They often lead to areas of applications that we are simply incapable of
envisaging today. The ingenuity of designers in incorporating new
advancements in novel ways coupled with the utilization of the new
possibilities opened up in the micro domain promise to produce many years

of innovative designs in the field of MEMS.
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Perhaps the most exciting prospect for micromechanics is as a prelude to
nanomechanics. Some believe that for micromechanics to succeed, it must
keep pace with advances in electronics in the sub-micron domain (e.g. size of
some circuit elements are in the sub-micron category). Nano-technology
represents a thousand-fold reduction in length scales as compared with
current MEMS. It represents the final frontier of miniaturization, at the scale of
atoms and molecules, that Feynman had alluded to [2.2]. Developments in
this field, however, are at an even earlier stage than those in the micro-
domain. Nevertheless, commercial nanomachines once thought to be

perhaps decades away are now in development stage [2.26].

2.3 EXAMPLE DEVICES

The folded beam lateral micro resonator (FBLMR) has been used extensively in
many applications in the field of MEMS. For example, FBLMRs have been used
as accelerometers for active-suspension systems and for air-bag deployment in
the automotive industry, as gas concentraion sensors, and in
micromechanical filters used in signal processing. The original design is
attributed to W. C.-K. Tang [2.19] who developed the device at the Berkeley
Sensor and Actuator Center (BSAC). The device is shown schematically in Fig.
2.3 and consists of folded beams acting as springs, anchored to the plane, and
attached to a central mass which expands into a comb structure. This
arrangement is either driven electrostatically from one side and sensed
capacitively at the other side with the comb structures or, alternatively, a
push-pull drive using the two combs 180° out of phase is used to drive the

structure.
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Constant in-plane electrostatic excitation is achieved using the lateral-
mode comb drive [2.20]. The electrostatic field distributions shown in Fig. 2.4
schematically demonstrate how the lateral electrostatic force is independent

of the lateral movement Ax.

Shuttle mass

Fig. 2.5 Fixed-Fixed Beam (Crab-Leg) Lateral Resonator

The folded beam design is an elegant solution to some of the problems
inherent in structures produced using thin-film deposition. Residual stresses
resulting from the fabrication process (see §2.4) are minimized since the
structure is free to expand out along the length of the beams, away from the
anchor points. Additonally, unlike a fixed-fixed vibrating beam systemn (Fig.
2.5), extensional axial stresses do not dominate during large-amplitude
vibrations, thus simplifying the structural analysis and resulting in a linear

spring model for the dynamic analysis.
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The folded-beam lateral resonator also has promising applications in
micromotors. The comb-drive-based microengine shown in Fig. 2.6 [2.3] is
such an example. The drive motions need to be 90° out of phase in order to

achieve rotary motion in the output gear.

Fig. 2.6 Comb-Drive-Based Microengine

2.4 FABRICATION TECHNIQUES

As has been pointed out, silicon fabrication techniques have been the
cradle of micromechanics. Research efforts in all parts of the world are
accelerating these developments. The basic processes involved are those of
deposition, patterning, and selective etching of various layers of material
which are typically on the order of 0.02 pm to 8 um thick. The resulting
structures are mostly planar. Many other techniques, however, are
developing such as LIGA (an abbreviation of the german term Llthographie
Galvanoformung Abformung-—lithography, electroforming, and plastic
molding), HEXSIL [2.24], EDM machining, and single-point diamond
machining, molding, and plating, that can augment the silicon fabrication

process [2.22]. LIGA, for instance, combines lithography, electroforming and
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microinjection moulding and can realize any cross-section shape and work
with a wide variety of materials. A good review of the above is presented by
Delapierre [2.1].

The sacrificial layer method is the most commonly used technique of
fabricating micro-structures. In one version of this process, a thin film of
polycrystalline silicon (polysilicon), typically around 2 pm thick, is deposited
by low pressure chemical vapor deposition (LPCVD) at a temperature of
approximately 600°C on a continuous layer of phosphosilicate glass (PSG)—see
Fig. 2.7. This is followed by a second PSG layer. Next, the wafer is subjected to
an anneal period (ranging from 20 minutes up to 4 hours) at temperatures in
the 900-1100°C range, where phosphorous doping is achieved by diffusion
from two layers of PSG which sandwich the structural layer. The upper PSG is
then stripped, the structural silicon layer is patterned and etched and then the
sacrificial PSG under the structure is removed by a timed etch using
hydrofluric acid (HF). Fig. 2.8 shows the plan view of a silicon wafer and a
typical arrangement of the individual, replicated dies and Fig. 2.9 shows the
steps in the process sequence outlined above [2.20].

The process outlined above involves a number of variable parameters,
each of which can have an important influence on the microstructure of
thin-film polysilicon, the resulting structural material. The annealling and
doping are performed in order to achieve two main objectives: (i) reducing
residual stresses, and (ii) achieving desired electrical properties. The anneal
temperature and time, and the dopant concentration all influence important
features of the material microstructure such as average grain size, texture (see
§3.3), and residual stresses. The most detailed study of residual stresses in thin

films and their relation to texture and process conditions is found in the
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series of papers by Krulevich et al. [2.6, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13]. Knowing
the process conditions, the grain morphology and the crystallographic texture
can be predicted. These can then be used in the mechanical modeling of the
material (see Chapters 4, 5, and 6). Simultaneous determination of texture,
residual stresses, and crystallographic parameters may be achieved with the

diffraction method of Ferrari et al. [2.25].

2.5 SUMMARY

This chapter gives an introduction to the field of MEMS for readers
unfamiliar with the field. Background is provided by outlining the trend
towards miniaturization. The evolution of MEMS is seen as a natural
extension of this trend. The most promising developments in MEMS have
been both inspired and nurtured by the advanced field of IC fabrication. After
achieving a better understanding of the mechanical properties of silicon,
these advanced IC fabrication techniques were used to develop early MEMS.
The current state-of-the-art in MEMS is then reviewed. The scaling effects in
the micro-domain present both challenges and opportunities for device
development. Pointers are outlined for the future direction of this field as a
precursor to nanomechanics. Example devices are described, most notably the
folded-beam linear lateral resonator, followed by a brief description of the

fabrication process as it relates to the microstructure of materials.
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Chapter 3
MECHANICAL MODELING OF MEMS

3.1 INTRODUCTION

Existing approaches to the modeling and analysis of MEMS materials and
structures have performed adequately in many applications. However, the
underlying assumptions regarding material properties limit these approaches.
Although increasingly sophisticated structural models are being employed in
analyzing the mechanical behavior of MEMS [3.2, 3.12, 3.21], the material is
typically assumed to be homogeneous and isotropic. Certain processes in
MEMS fabrication (§2.4), coupled with the length scales associated with the new
frontiers of MEMS technology, however, result in structures for which these
simplifying material assumptions are inappropriate. More realistic material
models which adequately describe the mechanical behavior of such structures
are therefore needed. This chapter serves to demonstrate this need and
presents an overview of improved modeling approaches.

The structure of silicon, ranging from the atomic to macroscopic scales, is
first introduced for the single crystal and polycrystalline states, including a
description of the grain boundary phase. This is followed by a description of
texture in polycrystalline silicon. Next, the elastic stress-strain relations for
crystalline silicon are described. Current approaches to modeling and
analyzing MEMS materials and structures are then reviewed. Shortcomings of

these approaches with regard to polycrystalline MEMS structures are discussed

47
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in the context of the developments of the earlier sections. Finally, an
overview of improved modelling techniques and approaches is presented.
These techniques are drawn from numerous fields including
homogenization, computational materials science, and rock mechanics, and
employ deterministic and stochastic finite element methods, Monte Carlo
simulations, and random field theories.

As in Chapter 2, the emphasis is primarily on planar or thin-film
polycrystalline silicon. Nevertheless, with minor modifications, the
developments presented here are applicable to other materials and

geometries.

3.2 STRUCTURE OF SILICON
3.2.1 Crystalline and Polycrystalline States

The various processing techniques for silicon govern the different final
states of the material. At one extreme the material can be “grown” as a single
crystal, while at the other extreme a structureless and disordered amorphous
state can be achieved. The state in between is called the polycrystalline state.
The LPCVD method of material processing, used extensively in MEMS
fabrication (see §2.4), with the subsequent annealing step to relieve residual
stresses, generally results in polycrystalline thin films. We shall therefore
concentrate on this state of silicon. However, knowledge about the single
crystal structure and its properties is important since the polycrystal is
composed of individual crystal grains.

The most typical form in which inorganic non-metallic materials occur is

crystalline. This phenomenon is related to the tendency of particles—atoms,
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ions, or molecules—to adopt a spatial arrangement in equilibrium with the
forces of their interaction. This results in a state of minimum energy. There
are seven classes of crystalline structure, each with its distinct spatial
arrangement of particles in a lattice: cubic, tetragonal, rhombohedral,
hexagonal, orthorhombic, monoclinic, and triclinic [3.18]. Single crystal
silicon has a diamond cubic structure shown in Fig. 3.1, where the atoms at
vertices or at the center of outside faces are shown in black while the atoms

inside the cube are shown in white.

Fig. 3.1 Diamond Cubic Structure of Silicon Crystals

Properties of crystals are directional and vary with the orientation of the
crystal latice. A common method of describing orientations is using Miller
indices [3.18] which define different lattice planes. These indices are
represented as three numbers enclosed in parentheses, (k,m,l). By
convention, k, m, and I represent the reciprocals of the intercepts of a given
plane with the crystal axes. For cubic crystal structure, the crystal axes coincide

with cartesian coordiante axes as shown in Fig. 3.2. To illustrate this concept,
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six different lattice planes are shown in the figure, where, by convention, a
bar over an index indicates a negative number. When only the orientation of
a plane needs to be indicated, all three numbers are divided by the greatest
common factor, and the positive values are taken. For example, the orien-
tation of planes (110) and (330) are identical and are defined simply as (110).
The cubic crystal structure of silicon results in crystals that have identical
configurations in certain non-parallel planes. Crystallographically equivalent
planes are represented by the Miller indices of one of the planes but are
enclosed in braces instead of parentheses, e.g. {100} describes the equivalent

planes oriented parallel to any side of the cube.

5 ooy b @o 20
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Fig. 3.2 Miller Indices of Lattice Planes

Imperfections such as voids, inclusions, impurities (e.g. dopants), and line
and point defects can also be found in crystals. Lattice defects normally result
in a 0.1% deviation of elastic moduli [3.18]. Dislocations typically contribute to
approximately 1% error—an apparent lowering of elastic moduli of the
dislocated crystallite compared to defect-free ones [3.18]. For a linear-elastic
material model, these flaws are small and can generally be neglected. These
imperfections do, however, play an important role in the inelastic behavior

of the material, e.g. brittle fracture, plastic slips, etc.
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Polycrystalline silicon is a one-phase aggregate of crystal grains, with
individual grains distinguished from adjacent neighbors according to their
distinct crystallographic orientations with respect to a global-fixed frame. Sep-
arating neighboring grains, there exists a grain boundary region, usually on
the order of a few inter-atomic spacings, the properties of which are generally
different from the crystalline state. Adjacent crystal grains are by definition
differently oriented, thus resulting in a discontinuous variation of material
properties from point to point within a sample. This variation is generally
random in nature and its characteristics are defined by the sample texture [3.3]
and are related to the processing conditions for the polycrystal (see §3.2.2).

Grain boundaries (GBs) in a polycrystal are generally considered as a
disordered phase between misoriented adjacent crystal grains. In many
polycrystals the thicknesses of these GBs are extremely small, on the order of
one atomic distance. In order to better visualize GBs the concept of a
coincidence site lattice is introduced. There are a number of mutual
arrangements of grains with a misorientation angle of 6 at which a certain
number of lattice points of the structure of grains in contact coincide. It is
assumed that the mutual orientation of the structures of the neighboring
grains at which the most coincidences of lattice points occur is energetically
preferred (minimizing the grain boundary energy). This principle is
illustrated in Fig. 3.3 [3.18], where two crystal grains of identical structure are
mutually disoriented at an angel 8. Also shown is the extent of the GB region
(shown shaded) where the arrangement of atoms is different from the crystal
lattice structure. This GB region may be wider for non-coinciding lattices.

As seen in Fig. 3.3, ihe distances between atoms in the GB region (shaded)

deviate from those in the interior of the grains and thus cohesive forces
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Fig. 3.3 Grain Boundary Angle and Region

between the atoms are also different. The magnitude and resultant directions
of these cohesive forces translate into macroscopic material properties such as
elastic moduli. As a result, therefore, the GB volume behaves as a separate
phase different from the bulk crystals. For linear elastic behavior, this
influence can be neglected for most purposes since the volume fraction of GBs
is generally negligible compared to the grains. However, due to their effects
on propagating slip systems, and their role in phenomena such as fracture,
the influence of the GBs on inelastic properties is significant [3.18].

The structure of polycrystals indicates that it is inhomogeneous in the
microscopic scale. However, as is the case for many structural materials such
as steel (also a polycrystal), the inhomogeneities are at a scale that is several
orders of magnitude smaller than the smallest dimension of structural
members. For example, a cubic inch of steel contains millions of crystal
grains. This disparity in scales allows statistical averaging to be valid and a
homogeneity assumption can be made for the material. For polysilicon too,

these same assumptions can hold. Indeed, these assumptions have been the
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basis for most material models in the field of MEMS. Due to the small scales
associated with MEMS, however, the validity of this assumption cannot be
guaranteed for all cases. Certain process conditons coupled with small
dimensions of structural members can result in cases where the homogeneity
assumption is no longer valid. In such cases, other approaches that take into
account the inhomogeneity of the material must be pursued. Examples are

provided in Chapters 5 and 7 that clearly demonstrate this problem.

3.2.2 Texture in Polysilicon

The crystal grains in a polycrystal often have non-random crystallographic
orientations. The polycrystal is then said to be textured [3.3]. Others associate
the term texture to the “preferred orientation of the grains within the
polycrystalline aggregate” [3.25].

Texture may arise in a material due to the action of anisotropic solid state
processes, such as crystallization, plastic deformation, recrystallization and
grain growth, phase transformations, etc. [3.3]. In the context of MEMS and
surface machining technology, the LPCVD process and the associated
temperature, pressure, anneal time, and dopant concentration are the factors
which act to affect the texture (see Fig. 5.1 for a TEM of polysilicon).

In the case of a uniformly random orientation of grains, the polycrystal
behaves isotropically on the macroscopic scale and is referred to as a
macroisotropic material. However, for textured material samples, the overall
macroscopic behavior is anisotropic. Techniques exist, such as homog-
enization (see Chapter 4) through which the macroscopic properties may be
estimated based on the single-crystal properties and the material texture.

Essentially, a weighted averaging is made over the range of grain
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orientations. This averaging, however, typically results in bounds on material
properties such as elastic moduli. The material texture descriptor most used
for this averaging is the orientation distribution function (ODF). The ODF is
analogous to a probability density function (PDF) and essentially defines the
distribution of the volume fraction of crystallites in the orientation space.
Higher-order textural descriptors have been developed, such as the n-
point correlation functions, or orientaion coherency functions (OCFs), or the
misorientation distribution function (MDF) [3.19]. These descriptors are useful
in describing information beyond what the ODF provides and lead to closer
bounds in the homogenization of material properties. A more detailed

discussion of this topic can be found in §4.2.2.

3.3 ELASTIC STRESS-STRAIN RELATIONS FOR CRYSTALLINE
SILICON

The mechanical behavior of single crystals forms the basis for modeling
the mechanical behavior of polycrystals. The following subsections describe in
detail the stress-strain relations for crystalline silicon, with an extensive
description of coordinate transformations. These tranformations are relevant

in predicting the behavior of polycrystals.

3.3.1 Stress and Strain

The symmetric second-ranked Green-St. Venant strain tensor is defined by

Ez’j = %(u;,z + ut,j + uk,iuk,j) (31)
where u, is the displacement in direction i, u,; denotes the partial derivative
du,/dx, with respect to the spatial coordinate x,, and where the usual indicial

“implied summation” notation is used [3.11]. Defining the tensors ¢, and o,
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g, =4u, +u, ) (3.2)

o, =y, -u,) (3.3)

and noting that u, , = £, + @, we can rewrite Eq. 3.1 as

Egj = 5;} + '21'(3[}5,} - E‘-ka)ﬂr - miksjk + m&mik) (34)
For small strains, i.e. I‘Ei:l <<land [mi}_i <<1, one can ignore the product

terms in Eq. 3.4 and approximate E, with ¢, the infinitesimal strain tensor

i
defined in Eq. 3.2.

Taking stress to imply the force per unit area inside the structure of the
material, for an infinitessimal cube of material, oriented in the direction of
the coordinate axes, o, is the stress acting in the jth direction on the face

perpendicular to the ith axis.

The stress and strain tensors are both symmetric [3.11], i.e.

G =0 (3.5)
and

E, =€ (3.6}

Therefore, there are only six independent components for each tensor.
It is convenient to use the “contracted” or matrix notation to represent the
six independent components of stress and strain. The following column

matrices thus represent stress and strain vectors, respectively,

012 811
O €x
o=1720 e={ ™| (3.7)
Lo 2¢e,,
Gy 28y,
Oy L2512
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where the factors 2" appear so that the 4th, 5th, and 6th components of the
strain vector represent conventional shear strains, as well as allowing the

following expression to hold true

c'e=0,8, (3.8)

3.3.2 Generalized Hooke’s Law

For a linear elastic material, the components of stress are linear functions
of the components of strain and this is expressed through the generalized

Hooke's Law defined as

g, =Cuty (3.9)
where C,, is the stiffness tensor. The inverse of this relation is written as
EH - Sé;kigzj } (310)
where S, is the compliance tensor. Matrix representations of Egg 39& 310 are
o=Cse (3.11)
and
e=5Sc (3.12)

where C and S are the 6x6 stiffness and compliance matrices, respectively.
These matrices each contain 36 coefficients. However, if an elastic
potential exists, C and § are symmetric and therefore the number of indepen-
dent coefficients for the most general case of anisotropy is reduced to 21 [3.10}.
This symmetry would not exist if the column matrix definition of € did not

contain the factors 2'.

3.3.3 Elastic Symmetry

If an anisotropic body possesses elastic symmetry, then C can be further
simplified. For example, if there exists one plane of elastic symmetry, the

number of independent constants in C reduces to 13; with three orthogonal
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planes of elastic symmetry, the number reduces further to 9, as shown in Eq.
3.13. In the latter case, the material would be called orthogonally-anisotropic,
or orthotropic for short. Complete symmetry, where any plane is a plane of

elastic symmetry, results in an isotropic body and the number of elastic

constants reduces to 2 (Eq. 3.14 with C,, =(C,, -C,,)/2).

Gy G2 Gy 0O 0 O
Cy Cup Cu 0 0 0
Css Cs Cyiy O 0 O
= 3.13
“=lo o o Ca 0 O (3.13)
0 0 0 0 Cy O
(0 0 0 0 0 Cyl

3.3.4 Symmetry of Crystals

Lekhnitskii [3.10] refers to F. Neumann who set forth a principle for
crystals which established the connection between symmetry of construction
and elastic symmetry. According to this principle, a material’s physical prop-
erties have at least the same kind of symmetry as its crystallographic form.

There exist 32 forms of geometric symmetry of crystals which are divided
into 7 crystal systems, e.g. cubic, hexagonal, and tetragonal. For each crystal
system, a corresponding set of symmetries applies which simplify C in
various ways. Materials with a cubic crystal structure, e.g. sodium chloride,
magnesium oxide, iron, and silicon, have only 3 independent elastic

constants and their stiffness matrix is expressed as

Cll CIZ C12 0 0
Cl? Cil C12 0 0
€2 G2 & 0 O
0 0 0 Cy O
0 0 0 0 C,
0 0 0 0 0 Cyl

(3.14)

[ R o B s B o T i

in the crystal-fixed frame aligned with (100), (010}, and (001).
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The values for these coefficients are readily available in the literature for
various materials and, for some cases, can be precisely determined to three
significant figures. For silicon, they are reported as shown in Table 3.1. The
small discrepancy between the two sets of values is a result of improved

measuring techniques employed by Pampuch’s more recent work {3.18].

Table 3.1 C, Values Reported for Silicon

o Pampuch {3.18] Burns [3.4]
W
Cy 165.6 GPa 165.7 GPa
C,, 63.8 GPa 63.9 GPa
C, 79.5GPa 79.6 GPa

The components of the stiffness and compliance matrices, Cj and §;;, are
directly related to the structure of crystals; however, their direct experimental
determination is associated with considerable difficulties. For example, a
direct determination of C,, for a material of cubic structure requires all strains
g, but & to be kept constant since C,, =(90,/0¢€,),, ,,- cns- Readers more
familiar with the “technical” or “engineering” material constants such as
Young's modulus, E, Poisson'’s ratio, v, shear modulus, G, or bulk modulus,
K, will note that these constants are readily determinable through simple
experiments on materials. E, G, v, and K are easily related to elastic
compliances, S;;, e.g. E=1/S,,. Since C = s (as a result of Egs. 3.11 and 3.12),

C,; are therefore easily determined.

3.3.5 Coordinate Transformation

The stress-strain relation of Eq. 3.11, with C given by Egs. 3.13 or 3.14 holds

when the cartesian coordinate axes coincide with the principal directions of
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the crystal. It is only in the case of an isotropic body that the elastic constants
are invariant in any orthogonal coordinate system. In order to express the
stress-strain relations in any orthogonal coordinate system we need to make
the necessary transformations.

Lekhnitskii [3.10] describes the earlier methods for making such
transformations. Here, however, we present the more modern matrix
approach of Ting {3.23].

Let the coordinate system x; represent the crystal-fixed frame for which

Egs. 3.11 and 3.12 hold. In the new coordinate system x°; , where

X, =a,x, (3.15)
we have

¢ =C¢ (3.16)
and

£ =S0o (3.17)

We can relate o with ¢ as follows
6" =Qo (3.18)

where Q is the 6x6 transformation matrix given by

o- K M 319
“IN L (3.19)
and K, M, N, and L are 3x3 submatrices defined in terms of a;j
a, a, ay;
K={a}, a, d} (3.20)

2 2 2
A3 4y a5,

Ayayy  Aypdy, Ayfg
M=laya, a,48, a,a, (3.21)
Apfyy A3y A58y
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Ay Oyly Ay
N=14a,a, a8, a0, (3.22)
Ay Gply iy
Qpplyy + Ay, Apaly + 8585 Apfy + Ayl

L={a,,8,+a5,8, 0,8, d;8; a4t a0, (3.23)

Bypfyy + g3y Aypfy Tyl Ay + 0y
The matrix Q cannot be used directly for the strain transformations as in

Eq. 3.18 because of the presence of the factors ‘2’ in the definition of e. Instead
we define ¢’ = [eﬂ,en,833,823,531,532]2 and write

g =Re’ (3.24)

where R is the 6x6 matrix given by

R-IG 3.25
“lo 2t (3.25)

where 1 is the 3x3 identity matrix. Q can now be used to relate £ and € as

follows
£ =Qe {3.26)

Using Egs. 3.24, 3.26, and the inverse of Eq. 3.24, respectively, we can write

the following series of expressions relating ¢” to €

e =Re” =RQe’=(RQR e (3.27)
A simple expansion will show that (RQR?}= (Q")T. Hence Eq. 3.27 simplifies

to

e =(Q") e (3.28)

or the inverse, expressed as

e=(Q)¢ (3.29)
Finally, we can derive the expression relating C’ to C. Using Egs. 3.24, 3.26,
and the inverse of Eq. 3.24, respectively, we can write the following series of

expressions relating ¢ and ¢’
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6" =Qo=QCs=(QCQ" )¢’ =C'¢’ (3.30)

and therefore
C =QCQ’ (3.31)

We can similarly derive an expression relating 8" to 8. This is shown

below in two alternative forms
s'=(Q")'sQ" (3.32)

or

(R'S'R")=Q(R'SR")Q" (3.33)
Thus for any orientation of the crystal, we can define coefficients a;
through the coordinate transformation defined in Eq. 3.15. Then Q is defined
using Eqs. 3.19-3.23 and used in Eq. 3.31 to define the transformed stiffness
matrix, C°, in terms of the crystal-fixed stiffness matrix, C, as defined in Eq.
3.14 for silicon. If the compliance matrix, S, is known, Eq. 3.32 can be used to

determine §".

3.4 CURRENT APPROACHES TO MODELING MEMS MATERIALS AND
STRUCTURES

In all known theoretical studies on the modeling and analysis of MEMS
which precede this dissertation (e.g. Pourahmadi et al. [3.20], Mullen et al.
[3.13}]), classical theories of engineering mechanics and structures based on
assumptions of homogeneity and isotropy are employed. This is true from
the simplest cases, where classical Euler-Bernoulli beam theory and
Timoshenko’s membrane theory are employed, to the application of more
elaborate structural theories, e.g. to account for stiffness non-linearities in
vibrating beams and the use of Duffing’s equation [3.21], large deflection

theories for beams [3.2], and residual stresses in membranes [3.12]
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Furthermore, although “numerical modeling of the mechanical behavior of
sensors and microstructures has gradually been developed as an integral part
of the microsensor design process” [3.20], the underlying material property
assumptions are still those of homogeneity. It appears, therefore, that
increasingly advanced analytical and numerical structural analysis techniques
are being employed in achieving improved models of MEMS, without a
proportionate effort at improving material models.

Many leaders in the field of MEMS have long recognized the need for
improved material models. For example, Senturia [3.22] has stated that “for
many of the materials used in microfabricated structures, basic data on
mechanical properties and their control through process variables is lacking.”
Yet he goes on to add that “in addition to the normal mechanical properties
of the materials, such as Young’'s modulus and Poisson’s ratio, the designer
must be able to predict residual stresses.” By referring to a unique “Young's
modulus” and a “Poisson’s ratio” for a material, Senturia is assuming the
material to be both homogeneous and isotropic, before the “basic data” is
even examined. Clearly the problems associated with material inho-
mogeneities and anisotropies are not recognized. This is generally evident in
the MEMS field by the lack of attention paid to the modelling of material
inhomogeneities and anisotropies.

As is clear from §3.2, isotropy and homogeneity cannot generally be
assumed for materials such as polysilicon. For cases where these assumptions
are inappropriate, no level of sophisticated structural analysis can closely and
consistently predict the mechanical behavior of these structures.
Furthermore, the inclusion of better material models may preclude direct

application of classical theories for structural elements (such as beam theory,
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standard plate bending theory, etc.), thus necessitating the development of
novel ways to evaluate the structural responses of MEMS. Finally, the
variability inherent in the microstructure, may require a probabilistic
description of the material behavior and structural response evaluation

aimed at assessing the performance reliability of MEMS.

3.5 OVERVIEW OF IMPROVED MODELING APPROACHES

Modelling approaches are needed that can overcome the shortcomings of
current approaches which tend to neglect anisotropy and inhomogeneity as
well as associated uncertainties in structural response. Generally speaking,
these approaches can be grouped in two categories: (i) ones which address the
anisotropies for homogeneous cases—these generally tend not to require
probabilistic descriptions; and (ii) where inhomogeneities are incorporated
into the material models—these cases generally tend to require a probabilistic
description. Particular cases of approaches (i) and (ii) are developed in
subsequent chapters, however, an review of many of the various possible
approaches is desirable. An overveiw is presented here, serving the dual
purpose of highlighting the reasons for the choice of each particular approach
in Chapters 4, 5, and 6, and outlining a spectrum of alternative approaches
that future work in the area can focus upon.

The use of effective properties results in acceptable results for
heterogeneous materials for which the microstructure is very fine in
comparison with the dimensions of the engineering structural elements.
Evaluation of “effective properties” of heterogeneous materials has been

extensively covered in the classical literature. Chapter 4 concentrates on
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homogenization of material properties and is valid for the correct modelling
of fine-grained polysilicon thin films.

The modelling of materials which takes into account inhomogeneities
and the associated uncertainties, however, is not so straight forward. Directly
applicable approaches do not exist in the literature. However, a number of
approaches developed for problems in other fields may be adapted for use in
the field of MEMS.

It is useful to look at possible components of the modeling that may be
necessary for taking into account material inhomogeneities and the associated
uncertainties in MEMS mechanical response. Fig. 3.4 outlines a possible
modelling approach and indicates how each component could contribute to
the final structural model. A distinct division is shown between experimental
and theoretical work. In this study, models shown in gray are the main area
of focus in modelling inhomogeneous MEMS structural components and
complete structures.

A number of promising models which may be adapted for successful
application in the area of MEMS include: (i) probabilistic mechanics of discrete
media [3.5]; (ii) random field models based on geometric networks [3.14]; (iii)
grain-growth models developed in the field of computational materials
science; (iv) Torquato’s “unified methodology” [3.24]; (v) models based on
atomistic simulation [3.1]; and (vi) the emerging field of nanomechanics.

Haddad [3.5], presents a “new” micromechanical approach which, in this
context, would model the material as a two-dimensional, randomly arranged
layer of elastic-plastic crystals that are bonded together at crystal boundaries.
He uses random variables and functions of random variables to characterize

the physical and geometric properties of the microstructure.
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Approaches similar to the work presented by Ostoja-Starzewski et al. [3.14,
3.15, 3.16, 3.17] are also applicable for solving inhomogeneous problems in
MEMS. Ostoja-Starzewski has established a framework for (i) determining
linear elastic random field characteristics of planar Delaunay Networks
{which can be thought of as a truss system where each truss member
represents the contact between adjacent granular particles); (ii) establishing
bounds on effective properties of such networks; and (iii) determination of
scaling parameters for use in finite element approximations.

The field of computational material science has advanced to a point where
today it is possible to make micro-scale evaluations of material behavior.
Applications range from detailed granular modelling of portland cement to
the texture development models in metallurgy. These tools can be used to
generate MEMS material microstructures and serve as numerical experiments

_validating some of the simpler models that will be developed such as
simulation of crystal grain geometries. Additionally, these tools enable the
numerical evaluation of many material properties, including mechanical and
electrical properties and are becoming invaluable in designing materials with
improved performance levels.

Recent research in the area of atomistic simulation of material
microstructure has advanced to a level that can be useful for certain MEMS
applications. Currently, for example, knowledge about grain boundaries and
their mechanical properties is limited. Atomistic simulation provides a
framework for the prediction of grain boundary properties {3.1]. This area
stretches the physical study of materials down to the nanometer scale. The
new field of nanomechanics also offers opportunities for improved

modelling of the grain boundary phase. Indeed, as the dimensions of MEMS
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structures are reduced and finer grained materials are employed, these effects
gain increasing importance and a better understanding can only be attained by
employing the findings in the field of nanomechanics.

On a more practical level, Krulevitch et al. [3.9] and Huang et al. [3.6] have
studied the texture-stress relationship in doped and undoped polysilicon
films, showing a direct correlation between certain textures and states of
residual stress in the films. Krulevitch et al. {3.8] have also shown how grain
sizes are dependent on process conditions. This knowledge is invaluable in
modelling the shapes and sizes of crystallites in polysilicon as well as for

realistic modelling of residual stresses (see §3.5).

3.6 SUMMARY

This chapter considered approaches to the modeling of MEMS materials
and structures. The emphasis being on polycrystalline silicon thin film
applications, the structure and properties of single-crystal silicon were first
reviewed, followed by a description of the polycrystalline state. A review of
existing methodologies for analyzing MEMS structures reveals that although
sophisticated structural analysis techniques are often employed, isotropy and
homogeneity are both assumed for the material properties. In view of the
properties of the polycrystalline state, it is clear that these assumptions can
only hold for untextured fine-grained polysilicon. Modelling approaches are
therefore sought for cases where this assumption does not hold.

For the case of fine-grained samples—the “polycrystalline” case—the
existence of preferred orientations as a result of the specific processing
conditions (e.g. LPCVD technique, doping, annealing) results in anisotropic

bulk properties. Although homogeneity can be assumed, appropriate
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anisotropic elastic properties need to be determined. Appropriate
homogenization approaches for the above determination are presented in
Chapter 4. These employ the single-crystal elastic stress-strain and coordinate
transformation relations developed in this chapter.

For coarse-grained samples—the “multicrystalline” case—the hetero-
geneity is such that a representative volume element does not exist, i.e.
statistical averaging cannot be performed, and therefore homogeneity cannot
be assumed. This requires the development of models that take into account
the heterogeneities. Additionally, these heterogeneities introduce
uncertainties in the behavior of the material which need to be taken into
account in a probabilistic manner.

Approaches to modelling inhomogeneities abound in the literature and
can be found in the areas of computational materials science, rock mechanics,
metallurgy, etc. Approaches based on simulation of grains appear to be the
most appropriate in capturing the inhomogeneities and taking into account
the probabilistic nature of the problem. A model for generating random grain
arrangements in space is chosen for a simulation model and developments
on this are presented in Chapter 5. Again, these models rely on the basic
single-crystal stress-strain and coordinate transformation relations presented
in this chapter. A more efficient probabilistic approach using random fields is

presented in Chapter 6.
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Chapter 4

HOMOGENIZATION OF
MATERIAL PROPERTIES

4.1 INTRODUCTION

A monophase polycrystalline material is an aggregate of crystal grains,
with individual grains distinguished from adjacent neighbors according to
their distinct crystallographic orientations with respect to a global-fixed frame.
Separating neighboring grains, there exists a grain boundary region, usually
on the order of a few inter-atomic spacings, the properties of which may be
different from the crystalline state. The crystalline state has anisotropic
material properties and individual crystal grains are generally differently
oriented, thus resulting in a variation of material properties from point to
point within a sample. This variation is generally random in nature and its
characteristics are related to the processing conditions for the polycrystal (see §3.2.1).

Despite these heterogeneities in polycrystals, the bulk material, e.g. a 1 cm?
sample consisting of approximately 10'2 crystals, may be more conveniently
treated as a homogeneous continuum at the macro scale. This is achieved by
evaluating approximate “effective” properties—usually refered to as
“homogenization.” With this approach, the detailed micro-scale variations of
displacement, stress, and strain fields are not identified.

Homogenization methods, however, are not generally applicable to all

MEMS materials. As pointed out in Chapter 3, the assumption for the validity
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of homogenization may not hold true for some classes of MEMS structures and
their constituent materials. These are structures where the microstructural
scales, e.g. grain sizes, are of the same order of magnitude as the smallest
structural dimensions, e.g. beam depth, thus violating the existence of a
representative volume element assumption of homogenization (see §4.2.1).
Nevertheless, these techniques are both applicable and desirable in correctly
predicting the mechanical behavior of components made up of fine-grained,
textured thin films. Homogeneity being valid in these cases, however, still
does not allow the blind application of classical structural theories, many of
which assume isotropic material behavior. The texture present in many thin
films (§2.4) results in anisotropic bulk properties that need to be incorporated
in the mechanical models. The methods introduced in this chapter address
this need where the homogenized material properties of interest are the

elastic moduli.

4.2 HOMOGENIZATION APPROACHES
4.2.1 Basic Concepts

Homogenization of elastic moduli for a heterogeneous material involves
finding a homogeneous material that performs similarly to the het-
erogeneous material subjected to any macro-scale stress or strain field. This
may be achieved by ensuring identical energies in the two systems.

If all details of the distribution of the material properties, e.g. the elastic
moduli, over a sample of a random elastic medium were known, it would be
possible, in principle, to precisely predict the effective elastic moduli.

However, such exact, detailed sample information is rarely available, nor is it
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very desirable when the ultimate aim is to predict the expected behavior of a
sample randomly chosen from a set of similarly processed samples. For this,
statistical information is needed for predicting the expected effective elastic
moduli (EEEM) of the sample. EEEM is defined as the expected value of the
homogenized elastic modulus.

With complete statistical information regarding the details of the spatial
variations of the microstructure, it is in principle possible to predict exact
expected values for the effective elastic moduli . The statistical information,
however, is rarely complete and therefore does not allow an exact derivation
of the expected effective values. With partial statistical information, it is only
possible to determine bounds on the EEEM [4.14].

The most commonly employed statistical information in this context is
obtained through texture analysis (§3.2.2) and is normally given as the
orientation distribution function (ODF) for the polycrystalline samples [4.2].
Employing appropriate forms of variational principles, bounds are derived on
the EEEM using the incomplete statistical information. The principles of
minimum potential energy and minimum complementary energy are the
most commonly used variational principles. The resulting bounds become
narrower when additional statistical information regarding the spatial
distribution of the material microstructure is employed, or when assump-
tions are made regarding the mathematical form of higher-order correlation
functions. This issue is further discusset in the following subsection.

Central to all homogenization concepts is the requirement for the

existence of a representative volume element (RVE)—a region small enough

tEven when complete statistical information is available, for general non-linear forms of
expectation, extensive integrations would be required, thus rendering the problem practically
unfeasible.
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with respect to specimen dimensions to approach an infinitesimal cube in
continuum assumptions, while at the same time containing a sufficient
number of crystal grains so that it is statistically representative of the body as a
whole. When this criterion is met, the material properties may be
homogenized by finding the mean values of the required parameters. This is
valid since, according to the law of large numbers, the coefficients of variation
of the effective moduli are negligibly small when the RVE contains a large
number of grains, i.e. the problem is then quasi-deterministic.

In the above approaches, the contribution of the grain boundary region
(GBR) to the effective bulk properties is neglected. For grain sizes that are
orders of magnitude larger than interatomic spacings, this is generally a valid
assumption. However, the GBR properties need to be incorporated in the
evaluation of the effective properties for cases where the GBR represents a
significant volume fraction of the sample, or when the GBR properties are

significantly different than the bulk crystal properties.

4.2.2 Microstructural Statistics

A convenient way of representing the statistical variations in the material
microstructure is through n-point probability densities of the material
parameters, e.g. the elastic moduli, or the crystal orientations [4.14]. The one-
point probability density p,(c}, ¢ =c(x) is defined such that p,(c)dc is the
probability to find at point x the parameter in the range [c, ¢ + dc]. The two-
point probability density p,(c,,c,) is defined such that p,{c,,c,)dcdc, is the
probability to find at point x, a parameter c, in the range [c,, ¢, + dr;] and at
point x, a parameter ¢, in the range [c,, ¢, + dc,]. Probability densities of

higher order are defined in a similar fashion. One should note that lower



4.2 HOMOGENIZATION APPROACHES 77

order probability densities are derivable from higher order densities by
integrating out the higher order components, e.g. p, = [ p,dc,.

Ensemble averages, or expected values are computed by performing the
familiar integral

Elg]={q)= jcﬂ’l(f: )dc, 4.1)
where the () notation, common in the homogenization literature, is
introduced. This is generalized to two or more points as shown below:

{e,y) = H ¢,C,p,(cy, ¢, )dedc,
{c,6y65) = Hj €,6,64P5 (¢, €5, ¢ )de deydce,
M
{eic,6L €)= HJL jc}c2c3L c,p,(cy,C;,0,L ¢ e de,de L de,
For n>1, these averages are called n-point correlation functions.

These n-point correlation functions have direct physical meanings. As an
example, consider a polycrystalline sample, shown in Fig. 4.1, with crystal
grains that are elongated in the x, axis direction. Assume crystal properties
are mutually statistically independent. Taking two points, “1” and “2” that lie
on a line perpendicular to the x, axis with a separation smaller than the
mean grain length in the x, direction, we can see that (c,c,) is almost equal to
(c])2 since the probability that the two points fall in the same grain is close to
zero. Rotating by 90°, the same two points result in a value very close to
( ¢ ) for {c,c,) since the probability that the two points fall in the same grain
is close to 1. Thus, {(c,c,) reflects the geometric anisotropy of grains. Similarly,
higher order correlation functions represent information regarding grain
shapes (n = 3), boundary curvatures (n = 4), etc. [4.14].

The n-point correlation functions can completely describe the statistical

properties of polycrystals. There are, however, other forms of higher order
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Fig. 4.1 Cross-Section of Polycrystal with Elongated Grains
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statistical descriptors of the material microstructure. One that is often used is
the misorientation distribution function (MDF), developed by Pospiech et al.
[4.18], which describes the distribution of orientation differences between
adjacent crystals. Since the properties of grain boundaries are dependent on
the misorientation of adjacent grains (see §3.2.1), the MDF is most useful in
describing the grain boundary properties in a polycrystal {4.6]. The MDF can be
related to the 2-point correlation function using relationships developed by
Morawiec and Pospiech [4.16].

Finally, it should be clear that we are still estimating expected values.
Therefore the use of nth-order statistical information should not be confused
with efforts at estimating the uncertainty in the effective elastic moduli. The
problem here is essentially treated deterministically since the RVEs involved

contain, by definition, very large numbers of grains. The problems of
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uncertainly arise in cases where small numbers of grains are involved and

homogenization cannot be employed {(see Chapter 5).

4.2.3 Bounding Techniques

Without any statistical information about the polycrystalline material
microstructure, only the crystal-fixed stiffness or compliance properties are
known. Taking the minimum and maximum values among all possible
orientations for the different elastic moduli, the so called 0th order bounds
{C™® and C™”) are obtained. These bounds, however, tend to be very wide
even for moderately anisotropic materials and have limited use in
homogenization. Bounds that are acceptably close are obtained using
statistical information regarding the microstructure.

As early as 1889, Voigt [4.21] studied the problem of calculating the
effective 4th rank stiffness tensor of elasticity of a polycrystalline aggregate,
C?, from the corresponding tensor of the constituent crystallites. Voigt's
proposal was to use the crystal orientational average (Ist-order statistic) as an
approximation, C”, to C¥ . Reuss [4.19] used the inverse of Voigt's approach
in 1929, averaging the compliance tensor, the inverse of which, C*, is the
Reuss approximation. In 1952, using two basic variational principles of
elasticity theory, Hill [4.9] proved that the Voigt and Reuss averages are upper
and lower bounds for the true effective stiffness tensor such that the
following relation always holds for elastic moduli derived from C® and C',

e.g. the shear modulus G:
Gt <GT <G (4.3)

As shown later, bounds based on C* and C* are much narrower than

those based on C'™ and C™”. Bounds based onC” and C® have also been
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referred to as 1st-order bounds since they use the 1-point statistical
information previously discussed and are therefore also denoted as C*" and
C'"™", respectively. Higher-order bounds, based on C*", n>2, use additional
statistical information and, as pointed out earlier, can reflect some of the
geometrical aspects of the microstructure.

The use of higher-order statistical information results in successively

closer bounds on effective elastic moduli, e.g. G¥, such that

G<G<GP<sk <GF< kR GGG (4.4)

The bounds of Voigt and Reuss (VRH bounds) are the best possible if only
volume fraction information (i.e. 1st-order statistics) regarding the various
orientations are known for the polycrystal. As an example, VRH bounds are
now calculated for the averaged elastic moduli of textured polycrystals with
cubic crystal symmetry, as is the case for silicon.

The Voigt approximation takes the texture-weighted orientational average
of the stiffness matrix, with components expressed in a crystal-fixed frame,
and is symbolically expressed as

2xinnm

€V =(C)= & | [[ )18, v, 9)sin(oXbdydy (45)
00

0

where f(.) is the orientation distribution function (ODF), 6,y,¢ are the Euler
angles [4.3], and 1(.), introduced by Ferrari [4.4], is the frame-change operator
defined in terms of sines and cosines of the Euler angles. This yields a
rigorous upper bound on the effective polycrystalline elastic moduli.
Averaging of the crystal compliance matrix, § = C'1, performed via Eq. 4.5,
yields a rigorous lower bound (the Reuss bound) on the effective polycrystal

elastic moduli. The arithmetic average of thebounds is called Hill’s estimate [4.9].
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Noted examples of higher-order bounds include those by Hashin and
Shtrikman [4.8] (2nd-order bounds) as well as the self-consistent estimates
[4.14]. It will be shown later, however, that for the homogenization of
polycrystalline silicon, the Voigt and Reuss bounds are sufficiently narrow
and the Hill estimate is very close to the value to which higher-order bounds
converge. The more costly higher-order bounds are therefore not used here.
The interested reader is referred to comprehensive reviews of these methods
by Hirsekorn [4.10] and by Kroner [4.14].

An example cited by Kréner is now outlined which elegantly illustrates
the concepts of converging higher-order bounds. This example also shows
how the Voigt and Reuss bounds for polycrystalline silicon compare to the
higher-order bounds. For a perfectly disordered (and thus with a fully
assigned set of statistical properties) macroisotropic aggregates of cubic
crystallites the expected effective shear modulus, G =G7, is shown to be the

solution to the following cubic equation:

G’ +{a,— )G +(B, - B,)G-y=0 (4.6)

where

a, = 5(8u +12v+15x)

o, =33 +2v)

B =35 k(2 +3v) 4.7)

B, = & (6xv+9xu +20uv)

Y=3Kkuv
and

K= %(C“ +2C;)
u=C, (4.8)
v= ‘%‘(Cu -Cy)
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where C, are the stiffness coefficients for the cubic crystalline material, as
defined in §3.3.4. Since full statistical information is available (assumed in
this case) the exact value of G can be found by solving the cubic equation.
Note that for this material, the bulk modulus, x, is precisely known regardless
of the order of bounds (i.e. bounds on x coincide for all orders > 1). Equation

{4.6) is equivalent to

_ oG +BGry (4.9)
G +a,G+ B,
which forms the basis for an iterative solution to G as shown below:
G(H—Z) _ az(Gfr‘l)Z +ﬁlc([) + y (410)

G +aGU B
Kroner [4.14] has shown that by using ith-order bounds in the right-hand side,
the left-hand side would yield (i+2)th-order bounds on G. Starting with the
following values for the initial solutions of G*® and G'*", all other solutions,

G, can be found:
G(*ﬂ) - G(max} — C44
G =G = ‘%‘(Cn -Cp)
GV =G" =aq,
G=G" = /h

(4.11)

Since this is a macroisotropic material, only two independent constants
define the effective elastic properties. Often, the Young’'s modulus and
Poisson’s ratio, v, are chosen. Here we will use G and E. Use can be made of

the following relations
E

G=
2(1+v)
E
K2 e
3(1-2v)

(4.12)

to express E in terms of G and x as shown below
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F-_ 9K (4.13)

3(56)+1
By substituting values for G*" and «x in this expression, bounds on E,
expressed as E*™, are also found for n > 1. The Oth-order bounds on E cannot
be obtained using Eq. 4.13 since the notion of macroisotropy does not hold in
the derivation of these bounds. E*” are the maximum and minimum values

E can take over all orientations and these are as follows

E{—U) - ch-ch
{4.14)

E{i—D) _ 4{C,, +Cy2 )Cyy
T 4020,

Bounds on G and E, up to the 3rd-order, are shown in Fig. 4.2 for
macroisotropic polycrystalline silicon, where the respective Hill averages—
the arithmetic mean of the 1st-order Voigt and Reuss bounds——are shown as

horizontal straight lines.
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Fig. 4.2 Oth-, 1st-, 2nd-, and 3rd-Order Bounds on Young’s and Shear Moduli
for Untextured Polysilicon & Comparison with Hill Averages
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Clearly, the first-order Voigt and Reuss bounds are narrow for
polycrystalline silicon. Furthermore, the Hill average is in close agreement
with the value to which the higher order bounds are converging. We can
therefore conclude that the use of Voigt and Reuss bounds and the Hill
average is appropriate in the homogenization of the elastic properties of

polycrystalline silicon.

4.3 TEXTURED THIN-FILM POLYCRYSTALLINE SILICON
4.3.1 0th-Order Bounds for {100} and {110} Textures

{100} and {110} textures, i.e. with the {100} and {110} planes lying in the
plane of the film, are common in polysilicon thin films as grown in the
manufacture and processing of MEMS (see §3.2.2). Results for the variations of
Young’'s modulus are presented for these textures. The 0-th order bounds, i.e.
E™Y, define the range of possible values over all in-plane orientations, y. For
grains randomly oriented in the plane, this is a measure of the uncertainty in-
volved. Figs. 4.3 (a) and (b) show schematic representations of these textures.

It is clear from Fig. 4.3 (a) that properties repeat after every 90° of in-plane
rotation, while from Fig. 4.3 (b) it can be inferred that repetition occurs only
after 180° of in-plane rotations.

The transformed stiffness matrix, C, previously defined in §3.3.5 (Eq. 3.31)
in terms of the crystal-fixed stiffness matrix, C, and the 6x6 transformation

matrix Q (Egs. 3.19-23) is shown again below

cC=0cCcQ" (4.15)
For the case of {100} texture, C takes the following form when defined in

terms of the in-plane rotation angle y-
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[4C;, +[1-cos(4y)jU 4C;, -[1-cos(4y)lU 4C, O 0 Usin(4y)
4C,; ~[1-cos(4y U 4C; +{1-cos(4y)}U 4C;, O 0 ~U sin(4y)
ol 4Cy, 4C,, 4C,, O 0 0
T4 0 0 0 4C, O 0
0 0 0 0 4C, 0
U sin(4 ) - sin{4 y) 0 0 0 [1+cos(dy)lU +2V |
(4.16)
where
U=-C,+C,; +2C, (4.17)

V=0 -Gy
The in-plane angle, y, appears with the coefficient 4, thus verifying the fact

that properties repeat every 90°.

{100} {100} {100}

{110} {110} {110}

Fig. 4.3 Schematic Diagram for Crystal Orientations in (a): { 100}, and (b): {110}
Thin-Film Textures, Showing In-Plane Rotations, y

For {110} texture, two rotational transformations, Q, and Q,, are evaluated

using Egs. 3.19-23 for the 45° rotation about the x; axis (achieving {110
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texture) and the in-plane variable rotation y, respectively. The derivation of

C then takes the following form:

C=9,(Q,CQ)Q (4.18)

The non-zero elements in C are shown below:

('“)
I~ 'c‘»‘l'-

[16C,, ~ 3U cos(4y)+ 7U + 4U cos(2y)]
L116C,, — 32C,, + 13U + 3U cos{4 )]

4C,, —Ucos(2y)-U]

= [2Usin(2y) - 3U sin(4 )]

ﬁ[}ﬁ
i
=

o
>

Cu=GC,

Cl, = 3[Ucos(2y)~U +4C,,]

C., = 2[2U sin(2y) + 3Usin(4 y)]

Caa E(ZCN +U)

Coe = - 1Usin(2y)]

Ca =32V +U + Ucos(2y)]

C;s = C;e

Cys =1[2V + U - Ucos(2y)]

C,, = %[8V +5U +3U cos(4 y)] (4.19)

where U and V are as defined in Eq. 4.17. Note that in both cases C'is a
symmetric stiffness matrix. The in-plane angle, y, appears above with
coefficients 2 and 4, thus verifying the fact that properties repeat every 180°.
The Young’s modulus in the x; direction, E,,, is derived for {100} texture
in terms of the in-plane orientation angle v, using the relation E,; =1/5;,
where 8§ =[C']’. This results in a simple analytic expression for the Young's

modulus in the x, direction, EL}*'(y), given by
1

Eumi :
(¥)= acosdy +b (4.20)

where g and b are constants related to C,;, C,,, and aas follows:
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o (a-1)
4(C, ~Cla (4.21)

_Ba+1C, +(1-a)C,,

b
4(CL -Ch)a

(4.22)

and ¢, the “degree of anisotropy,” is defined as
o= 2C,
(Cn - Clz) (4,23)
An analytic expression is similarly derived for the {110} case; however, it is
too lengthy to express conveniently (it takes up more than ninety lines of
FORTRAN code). The above derivations were performed using the symbolic

manipulation code MACSYMA [4.25].
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In-Plane Orientation Angle, v

Fig. 4.4 Variations of E,,(y) for {100} and {110} Textures

For comparison purposes, plots of E (¥) vs. y are shown for both {100}

and {110} textures in Fig. 4.4. The range of values that E,(y) takes is of
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particular importance in cases where homogenizaticn techniques cannot be
applied. Due to the small number of crystal grains contributing to the overall
structural behavior in these cases, the uncertainty in the response is
proportional to the range which the elastic moduli (e.g. E,,(y)) take. This

issue is explored in Chapter 5.

4.3.2 VRH Bounds for {160} Texture

Analytical expressions are derived for the Voigt and Reuss estimates of the
stiffness matrix using Eq. 4.5 and the symbolic manipulation code MACSYMA
[4.25]. For transverse isotropy, with uniform ODF in the y direction and with
6= ¢ = 0 (i.e. {100} texture), the problem may be treated as a plane problem,
thus only a 3 by 3 submatrix (the planar components from the C matrix

definition in §3.3) needs to be examined. The following is assigned for ODF:
(6. v,0)= 5(6 =0)8(¢ = 0)1 (4.24)

resulting in the following Voigt and Reuss estimates

(a+3)C,,+(1-a)C,, (ax+3)C,+(1-a)C, 0
Ci‘”mGE = 2 (a+3)C,, +(1-a)C,, (x+3)C,,+(1-a)C, 0 (4.25)
0 0 (Cn - Cn)(a +1)
and
) Ba+1)C,+(1-a)C,, (Ba+1)C,+(1-a)C, 0
C{Rm, = m Ba+1)C,+1-a)C,;, Ba+1)C,+(1-a)C, 0 (4.26)
0 0 2a(C,, - C,,)

respectively, with the degree of anisotropy, «, defined in Eq. 4.23. These
results concur with earlier work [4.11].
Transverse isotropy implies that the in-plane elastic properties are fully

described by two independent parameters. Here, G and E are chosen. The
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Voigt and Reuss bounds on the shear modulus, G” and G*, respectively, are

as follows:
Gl (@)= 2> 1)((;“ ~Ca)
(4.27)
Gl (o) = Hen=C)
(x+1)

These are normalized by dividing by the value of G for the transversely
isotropic case (@ = 1), resulting in

Gli(@) _ (a+1)

Giiany 2 (4.28)
Gioo(@) _ 2«

Gaa?* (a+1)
where |
Gl =Gl (@ =) =Gl (@ =1}=3(C,, - C;;) (4.29)
Similarly, the Voigt and Reuss bounds on Young’s modulus, E' and EF,

respectively, are as follows:

2(a +1)(C - CL)
(a+3)C,, + (1~ a)Cy,
— 4(1((',}23 "’Clzz)

T (Ba+1)C, +(1-a)C,,

Ejoo () =
{4.30)

R
Elo ()

These are normalized by dividing by the value of E for the transversely

isotropic case (a = 1), resulting in

Ejype)(@) _ 2a+1)C,
E?%‘Z"’” (@+3)C,; +(1-a)C, @sn
Etl_w](a) = 4‘!(:11
Esa?  Ba+1)C,+(1-a)C,
where
) . CZ
E{*mm = Eﬁmu(“ =1)= Eﬁom(a =1)=C, -=1& (4.32)

C]l
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Normalized values of the Voigt and Reuss bounds and the Hill average
for G and E are plotted against the anisotropy parameter, ¢, in Figs. 4.5 and
4.6, respectively.

These results indicate that, in contrast with materials with much higher
degrees of anisotropy, the Voigt and Reuss bounds for polysilicon {(a = 1.562)
are relatively narrow and the Hill estimate is a sufficiently close
approximation to the elastic moduli. There is therefore no pressing need for
obtaining higher-order statistics on the material microstructure in order to
achieve narrower bounds. For materials with high degrees of anisotropy, the
use of higher order homogenization schemes is required for an accurate

estimation of the effective elastic properties.

7

G
GO

Fig. 4.5 VRH Averages for Normalized Shear Modulus vs. Degree of
Anisotropy, @, for {100} Texture
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E(o)
E(D)

0 2 4 6 8 10

Fig. 4.6 VRH Averages for Normalized Young’s Modulus vs. Degree of
Anisotropy, a, for {100} Texture

4.4 SUMMARY

Polysilicon, like all polycrystalline materials, is a heterogenous material.
This heterogeneity, however, becomes insignificant as the macroscopic scales
become increasingly large. Problems in which a RVE can be shown to exist for
the polycrystalline material, i.e. where statistical averaging can take place, can
be approximated as a homogeneous continuum. This approximation is
termed homogenization. The expected effective elastic moduli are predicted
using bounding techniques relying on energy principles. These bounds
become narrower with increased statistical knowledge about the
microstructure of the material. The first-order Voigt and Reuss bounds or the
narrower second-order Hashin-Strikman bounds are normally adequate in

bounding the elastic moduli for a polycrystal of moderate anisotropy. The
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results presented in this chapter indicate that the Voigt and Reuss bounds on
the elastic moduli of polysilicon are sufficiently close for use in the material
modelling of textured fine-grained samples.

While for polysilicon the Voigt and Reuss bounds are narrow, for the
multicrystalline case the uncertainty in the effective elastic properties would
be significant as evidenced by the significant fange in the Oth order bounds
shown in Figs. 4.2 and 4.4. Homogenization techniques generally apply for
cases where a very large number of crystals are averaged. The importance of
grain size in relation to the smallest dimension of the structure, would
therefore increase for multicrystalline structures where there are only a few
grains, i.e. a RVE does not exist, and statistical averaging cannot be performed.
These are examined in Chapter 5 where a new modeling approach is taken in

predicting their behavior.
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Chapter 5

MULTICRYSTALLINE
SIMULATION MODEL

5.1 INTRODUCTION

This chapter presents a discrete geometric model of multicrystalline
structures. A continuous parameter random field is defined which models
multicrystalline material structures’” mechanical behavior. Advanced image
analysis techniques for obtaining the geometrical details of the
mictrostructure of materials are discussed. Various mathematical models of
the geometry of the multicrystalline structure are then outlined, followed by a
detailed study of the most realistic and applicable of these models, the Poisson
Voronoi diagram (PVD) [5.3]. After outlining algorithms for the construction
of PVDs, relevant statistical and geometrical properties of this model are
presented. This is followed by a description of how PVDs can be applied in the
analysis of MEMS, including pointers to how calibration of the mathematical
models can be achieved. Finally, details of the finite element implementation
are delineated, including a discussion of element characteristics, mesh
generation, mesh refinement, and error analysis for two-dimensional

problems.

5.2 IMAGE ANALYSIS OF MATERIAL MICROSTRUCTURE

Recent advances in image analysis, especially as applied to the field of

computational materials science, have provided tools that can be used in
95
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studying the microstructure of semiconductors, the primary materials used in
MEMS. As indicated in §3.5, digital-image-based microstructures are now
routinely retrieved from scanning electron micrographs (SEMs) and trans-
mission electron micrographs (TEMs). These images can be stored for later use
in the study of the material properties using computer simulations. This is
true not only for advanced composites and ceramics, but also for more
traditional materials such as portland cement [5.9].

The geometric microstructural characteristics of a polycrystalline material
sample is fully described when the shape, size, and location of each
individual crystal grain and its associated boundary region is defined. For the
process conditions and structural dimensions currently typical in MEMS
fabrication that result in ‘multicrystalline’ bodies, it is valid to assume that
the grain boundaries are infinitesimally thin compared to the grain sizes. The
grain boundaries can therefore be represented in terms of a set of lines in two-
dimensions {2-D), or surfaces in three-dimensions (3-D). These lines and
surfaces divide the region of interest into a space-filling mosaic of distinct,
enclosed cells which represent the crystal grains. The main aim in image
analysis for our purposes is, therefore, to extract the complete and correct set
of grain boundaries associated with a particular sample.

The inputs for the image analysis are TEMs of the typical material used in
MEMS, i.e. polycrystalline silicon (polysilicon). An example of this is shown in
Fig. 5.1. These images are 2-D representations of polysilicon’s 3-D
microstructure. Generally, the full 3-D microstructure would be of interest.
However, for thin film polysilicon with columnar grains (a common
phenomenon in MEMS) the grain boundaries are perpendicular to the plane of

the film. Therefore, a 2-D representation is sufficient. Thus, a plan-view TEM
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gives complete information about the geometrical characteristics of the
microstructure. Numerous stereological techniques are available for the
correct interpretation of 2-D representations of general 3-D microstructures

[5.2,5.19, 5.26, 5.31]. An approach based on PVDs is presented in §5.4.3.

Fig. 5.1 TEM of the Microstructure of Polycrystalline Silicon

Russ [5.20] outlines systematic approaches to the image analysis of the
microstructure of materials. He discusses methods that extract the
microstructure of polycrystalline samples using gradient operators to locate
boundaries between crystal grains, e.g. of the typé shown in Fig. 5.1. In two
recent papers, Sakaue [5.21] and Takeuchi [5.28] outline state-of-the-art
techniques used respectively to extract grain boundary information from
sample images and to repair any defects in the images. These techniques,
applicable to polycrystalline samples, produce an output that is a space-filling

mosaic representing the real microstructural geometric structure.
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Using the above methodology, a set of sample TEMs of the material
microstructure, corresponding to a particular process condition, can be ana-
lyzed, and a representative set of geometric data obtained (TEM in Fig. 5.1 kindly
provided by Peter A. Krulevitch). This data can then be used to calibrate

theoretical geometric models. These are discussed in the following section.

5.3 THEORETICAL MODELS

If we have a single sample of material which we wish to analyze, we
would not need to consider the problem from a statistical point of view; we
could formulate the problem simply based on the single-sample information
obtained by image analysis of the TEM. However, we are not concerned here
with the detailed variation of a single sample. Rather, we wish to be able to
predict the behavior of a large class of samples prepared using the same
process conditions. Short of the direct use of a large representative database of
empirical information (with the associated costs of manufacturing,
experimental data acquisition, storage, and processing) we are forced to use
mathematical models that idealize the actual geometric structures found by
image analysis. Some applicable models are discussed in this section.

In §3.3, various grain growth simulation models were discussed in which
the process kinetics is modeled, ultimately producing a final crystal grain
structure for the material under study. Srolovitz, et al. [5.22] are the main
proponents of these approaches, which model physical phenomena at the
various micro- and macro- scales involved in the processing and subsequent
annealing of materials. These simulation models, however, have been
mainly restricted to metallic materials, and may not be directly applicable to

the materials used in MEMS, e.g. polycrystalline silicon. Moreover, the models
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used by Srolovitz et al. do not model the relevant processing methods used in
MEMS technology, e.g. low pressure chemical vapor deposition (LPCVD) (see
§2.1). While, in their present form, these models are not readily applicable to
MEMS material microstructures, with appropriate adaptations, they may have
future applications in modelling process-sensitive phenomena such as spatial
residual stress variations, spatial correlation of grain orientations, etc.

A class of geometric models for the random subdivision of space into cells,
or ‘crystals,” is now considered. These models are based on a concept
analogous to the physical process of crystal growth. One starts with an
arrangement of points in space, representing the ‘seeds’ or nuclei of the crystal
grains. The simplifying assumption is that the seeds grow at the same rate in
all directions, i.e. as spheres, staying fixed in space without pushing apart as
they grow into contact [5.10]. These models provide a flexibility that allows
their use in modelling a wide range of polycrystalline microstructures. The
mode] parameters can be identified by employing empirical data obtained
through the image analysis techniques outlined in §5.2.

Depending on the initial conditions, two different sub-classes of these
models arise. If all the seeds start to grow at the same time, the resulting
model will have cells with either straight edges (in 2-D) or planes (in 3-D)
delineating their boundaries. This model is called the Voronoi diagram [5.3].
However, if the nuclei are allowed to start growing at different times (but
neglected if they fall within an already growing cell), the resulting model
would generally have cells with curved boundary lines or surfaces. This is
calied the Johnson-Mehl model [5.10]. Figs. 5.2 and 5.3a show planar examples

of these two models.
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These models have a high degree of flexibility in their final form. Firstly,
differing initial seed arrangements result in qualitatively different final
outcomes. Secondly, the tessellations can be transformed through stretching.
An example of this is shown in Fig. 5.3b, where the Voronoi diagram of Fig.
5.2 has been thus transformed.

More involved techniques of transforming tessellations of the type shown
in Figs. 5.2 and 5.3a also exist. Kawasaki et al. [5.13] present vertex models for
2-D grain growth. Starting from a generated Voronoi diagram, various geo-
metric rules analogous to annealing mechanisms are used in determining
time-dependent evolutionary changes in the topology, such as grain
recombination and annihilation. The resulting tessellations have larger
average grain sizes than the initial tessellations. Vaz et al. [5.32] show a
similar approach, but start with a stretched Voronoi diagram prior to the

simulated grain growth phase.

Fig. 5.2 Vorono{ Diagram in 2-D
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Fig. 5.3b Transformed Voronoi Diagram

These techniques open new possibilities in modelling some of the physical
phenomena that lead to the final material microstructure in MEMS. However,
in order to have realistic models, significant studies must first be made of the
relevant physical processes involved in the material processing and
annealing. These additional studies would have to include the estimation of
temperature- and pressure-dependent parameters and the exploration of
complications created by the addition of impurities such as dopants. In their
present form, however, these vertex models are not readily applicable to

problems in MEMS.
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Clearly, a large array\of geometric models exist that could be tailored for
appropriate use in modelling MEMS material microstructures. In this study,
the Voronoi diagram is used due to its flexibility and simplicity, its well
understood properties, and the availability of robust algorithms for its

construction.

5.4 VORONOI DIAGRAMS

Voronoi diagrams are one of the most fundamental data structures in
computational geometry [5.3]. In this section, the various forms and basic
properties of these diagrams are introduced and their use in modelling
multicrystalline microstructures is discussed. A detailed description of
Voronoi diagrams is presented, including outlines of the various alternative
algorithms used for their construction. Their application to the modelling of
the mechanics of random non-homogeneous discrete systems such as

multicrystalline and polycrystalline structures in MEMS is then discussed.

5.4.1 Review

Voronoi diagram is the term used to describe a particular geometric
structure that subdivides n-dimensional Euclidean space into disjoint regions
based on a set of generating points in that space [5.3].

The simplicity and intuitive appeal of this concept has meant that
Voronoi diagrams have been ‘discovered’ on numerous occasions and
studied fairly independently in different fields. In the applied natural
sciences, Voronoi diagrams are used in modelling natural phenomena in
diverse fields such as astronomy [5.12], crystallography [5.27], ecology [5.5], and

meteorology [5.29]. In mathematics, they are used as auxiliary structures for
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investigating and calculating related mathematical objects. In computer
science, they serve as a data structure for algorithmic problems that are
inherently geometric. This diversity of application and ‘discovery’ has
resulted in a plethora of names describing the same geometric structure, e.g.
Dirichlet tessellation, area of influence polygons, Thiessen polygons, Wigner-
Seitz regions.

The Voronoi diagram has a dual tessellation called the Delaunay
tessellation [5.18]. For each Voronoi edge (2-D) or face (3-D) that connects two
Voronoi cells, one can connect the seeds of those cells with a straight line.
This construction of lines would result in the Delaunay triangulation of the
seeds (Fig. 5.4). This tessellation has also found widespread use, e.g. for

automatic mesh generation in finite element applications [5.18].

Fig. 5.4 Delaunay Triangulation Over Voronoi Cell Seeds

Only in the last two years have unifying approaches to the exposition of

the mathematical and algorithmic properties and application areas of
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Voronoi diagrams and Delaunay tessellations appeared in the scientific
literature. The survey paper by Aurenhammer [5.3] and the book by Okabe et
al. [5.18] are the best examples of such approaches to date.

5.4.2 Construction of Planar Voronoi Tesselations

Given some number of generated points in the plane, the Voronol
diagram, or tessellation, associated with those points divides the plane accord-
ing to the nearest-neighbor rule: each generated point is associated with the
region of the plane closest to it. The generated regions in the plane, called
Voronoi cells, are convex polyhedra, bounded by straight lines which are the
perpendicular bisectors of the lines joining adjacent nuclei (Fig. 5.2).

This concept can be extended to three dimensions, with similar results,
except bisecting planes replace the bisecting lines and each region or cell
becomes a convex polyhedron.

The construction algorithm used here is an extension of the method
developed by Tipper for the construction of a single planar Voronof cell [5.30].
Perpendicular bisectors of lines that connect a particular seed, denoted by s”,
and all the other points are first identified. Next, the intersections of the per-
pendicular bisectors with each other are found. The intersection point closest
to s* is clearly one of the vertices of the Voronoi cell associated with s”.
Starting from this point, the perimeter of the Voronoi cell is defined by going
along successive intersecting bisectors until the cell is closed. This is shown in
Fig. 5.5, where s is the central seed. The single-cell method is then repeated

for all other cells.
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e Central Cell
= Central Seed, s°

———  Surrounding Cells
= Surrounding Seeds

----- Closest Bisecting Lines
. Other Seeds

......... Other Bisecting Lines

Fig. 5.5 Construction of One Voronoi Cell

5.4.3 Basic Properties

The properties of the Voronoi diagram depend on the generating set of
points. Different models for planar or spatial point arrangements produce
different Voronoi diagrams. These generating points may be either

deterministic or probabilistic. The latter is often referred to as a point process.
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An interesting and useful point process is the Poisson point process [5.7,
5.18, 5.24]. Voronoi diagrams based on this process, commonly referred to as
Poisson-Voronoi Diagrams (PvDs), have widely studied properties. Statistics
have been either analytically derived or numerically generated, describing the
properties of cell areas, cell side lengths, number of vertices per cell and
internal angles of cell vertices. PVDs are also representative of many naturally
occurring phenomena, including the structure of poly- and multi-crystalline
arrangements in metallic materials [5.3, 5.18]. Some authors have pointed out
some of the shortfalls of PVvDs. For example, Weaire and Rivier [5.33] indicate
that PvDs have different appearances from space-filling natural structures.
Rivier [5.14] has suggested that PVDs represent ‘young’ structures which are
not fully equilibrated under the influence of constraints. This concept is
analogous to polycrystalline sample microstructures prior to annealing.

Another interesting and potentially useful Voronoi diagram is one where
the seed locations are associated with the eigenvalues of complex random
matrices. This Voronoi diagram is sometimes referred to as the Random
Matrix Vorono! Froth (RMVF) [5.15]. RMVFs are more regular than PVDs, and
are claimed to model certain natural phenomena better than PvDs [5.15].

Although RMVFs overcome some of the shortfalls of PVDs, RMVFs are
purely limited to planar applications since the real and imaginary parts of the
eigenvalues of complex matrices are used to define the two coordinates of the
seeds in the plane. Furthermore, studies of statistical properties of RMVF cells
have been limited to a few simulation studies. Due to these limitations, PVDs
are chosen over RMVFs for further study and application to modelling MEMS
material microstructures. The following section describes in detail the

properties of PVDs.
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5.4.4 Poisson-Voronoi Diagrams

5.4.4.1 Definition

When the generating set of points for a Voronoi diagram are located in
the plane or in 3-D space according to the homogeneous Poisson point
process, the resulting tessellation is referred to as the Poisson Voronoi
diagram (PVD) [5.18]. According to this process, the probability that N(A)=x
points are located in any subset A in R” is given by

(M)xe-kﬂ
f

P(N(A)=x)= ,x=0,1,2,... (5.1)

where the intensity of the process, A, is a constant that equals the mean
density of points in a unit volume, when n = 3, or unit area, when n = 2 [5.18].
This definition can be generalized by relaxing the homogeneity, and defining
the point process by

[m(A)] e ™

P(N(A)=x)= o

L x=0,1,2,... (5.2)
where
amAh{guuA (5.3)

This point process is called the general Poisson point process, with the
intensity function A(x), where x denotes the spatial coordinate. Here,

however, we restrict our study to the homogeneous Poisson point process.

5.4.4.2 Properties and Uses
Due to the widespread use of PVDs, there has been great interest in
obtaining information about them. This information includes moments,

distributions, and correlations of various characteristics such as cell areas or
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volumes, number of sides or faces, perimeter lengths (in 2-D), and side or
edge lengths. Analytical first-order moments of a variety of these
characteristics have been successfully derived [5.18]. Although there have
been some analytical derivations of higher moments and distributions [5.17],
many researchers have resorted to Monte Carlo simulation approaches for
estimating many of these properties [5.14, 5.18, 5.23].

The individual cell areas of planar PVDs have been shown to be
generalized gamma distributed [5.18]. Another property of particular interest
is the chord length. Linear probes in 2-D or 3-D PVDs intersect the cells, with
the distance between successive intersections being called the chord length.
The distribution of chord lengths for both 2-D and 3-D PvDs have been
derived [5.16] and can be approximately modeled using sums of truncated
normal distributions. These distributions prove useful in a random field
modelling approach described in §6.2.

PVDs can either model a given empirical structure or be used as a
normative model against which other tessellations can be evaluated. Their
use as applied to modelling MEMS multicrystalline microstructures are

outlined in the following section.

5.4.5 Application to MEMS

Calibrating theoretical models, such as PVDs, such that they better
represent the real material microstructure would result in varying levels of
closeness of fit depending on the complexity of the real problem. Stoyan and
Stoyan [5.25] describe methods that can quantify how closely a PVD models an
observed tessellation. Criteria can thereby be developed that result in the

acceptance or rejection of a PVD as a model. For rejected examples,
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generalizations of the Voronoi model already described can be employed to
obtain a closer fit. For example, use can be made of the non-homogeneous
Poisson point process (Eq. 5.2), doubly stochastic Poisson point processes,
scaling and stretching techniques, and grain growth extensions of the type
proposed by Kawasaki et al. [5.13].

The final results of interest in the analysis of the mechanical response of
MEMS, however, are not very sensitive to the accuracy of the geometric
models with regard to crystal grain shapes (see Ch. 7). Ferrari and Lin [5.8]
have recently reported results for the extensional behavior of multicrystalline
beams using a relatively crude model that employs rectangular prisms to
model individual crystals. It appears that the influence of the distribution of
grain sizes and the associated material texture are the most important factors
affecting the global behavior, e.g. the axial or flexural stiffness of
multicrystalline beams. This simplifies the calibration of PVDs for application
to MEMS structural components.

Local responses such as stresses at critical structural locations would be
more sensitive to the closeness of fit of the geometric model. Such local
phenomena are critical to failure analyses in fracture and fatigue problems.
Further extensions of this methodology to the study of failures, etc. may
require the use of more elaborate models of the type outlined in §3.3, §5.3, and
above, that more closely fit the actual multicrystalline structure.

In the context of this study, we are interested in the elastic behavior of
MEMS, and global responses are of most interest. Using calibrated PVDs, where
average grain sizes are matched, we are able to adequately predict, in a

probabilistic sense, the global elastic behavior of MEMS structures.



5.5 FINTTE ELEMENT IMPLEMENTATION 110
5.5 FINITE-ELEMENT IMPLEMENTATION

The discrete geometric model we have defined will be used to simulate
the mechanical behavior of the material microstructure of polysilicon. To this
end, we shall use finite elements to analyze an assemblage of silicon crystal
grains, with associated orientation angles, making up a multicrystalline
structure. The general purpose, research-oriented finite element code FEAP is
used for this purpose [5.35].

Due to the large storage and processing requirements associated with
simulating and analyzing structures with 3-D PVDs, we shall limit our
application of discrete models to 2-D problems. Many problems in MEMS, such
as beams and plates with columnar grains, can be modeled in this way. The
extension to 3-D, however, can be carried out using a similar methodology.

The finite element model employs an easy to generate, efficient, and
convergent finite element discretization mesh that maintains the integrity of
the crystal structure such that different orientation angles, y, can be assigned
for each grain.

In the following sub-sections, the rationale behind the choices for the
element formulation, meshing, and mesh refinement is first presented.
Then, finite element discretization errors are analyzed and a suitable

extrapolation scheme is proposed to reduce these errors.

5.5.1 Element Characteristics

There is no evidence of inelastic deformation at room temperature for
polysilicon and there are no slip mechanisms in the diamond cubic structure.

Given the types of MEMS structures that are being fabricated [5.34] and the
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associated range of imposed force and displacement boundary conditions, a
linear elastic assumption for the material behavior is therefore appropriate.
The linear elastic stress-strain relations for silicon have been defined in §3.3.
These relations are defined in the crystal-fixed frame and undergo rotational
transformations dependent on the crystal grain orientations defined in terms
of Euler angles [5.6]. These general transformations were used in §3.3 to
derive stress-strain relations in the global coordinate axes for certain
dominant textures found in polycrystalline silicon, namely {100}, {110}, and
{111} [5.11]. These relations are now employed in the development of element
stiffness matrices.

When discretizing problems based on the crystal structure shown in Fig.
5.2, the integrity of the crystal grains must be maintained since different
orientation angles are assigned for each grain. The simplest ‘mesh’ that could
satisfy this requirement would simply be the cell structure of PVDs. For this
mesh we would need to employ general n-sided polygonal elements to
represent each individual crystal grain. Due to the range of n-sided polygons
found in PVDs (3- to 14-sided polygons have been reported [5.17]), we need to
formulate either a large number of new elements, or a general adaptable n-
sided polygonal element. Since the formulation problems of these approaches
would be considerable, and since the resulting elements may have unreliable
behavior in modelling planar problems, neither of these approaches will be
pursued.

The use of existing quadrilateral elements avoids the problems associated
with developing new elements. These elements are well studied and have
superior convergence properties. Nevertheless, the use of quadrilateral

elements in modelling planar multicrystalline structures presents two
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problems: maintaining the integrity of the crystal grains, and ensuring that
the elements remain easily generatable. These problems are associated with
meshing and are outweighed by the advantages of using quadrilateral
elements. The solution of the meshing problem will be addressed in §5.5.2.
Meshing of the random geometry of the crystalline polygons generally
results in linearly distorted quadrilateral elements. Nine-noded isoparametric
quadriiateral elements (Fig. 5.6) are used in this study since they better
represent cartesian polynomials than 8-noded elements and are generally
preferable in minimizing the finite element discretization errors [5.35].
Material homogeneity is assumed within each crystal, allowing the
material coefficients to be taken out of the integrations involving the shape

functions, thus simplifying the finite element analysis.

Fig. 5.6 Nine-Noded Isoparametric Quadrilateral Element
Showing Node Numbering

5.5.2 Meshing and Mesh Refinement

To maintain the integrity of the crystal structure, each polygonal crystal
must be individually discretized. There are an infinite number of ways to
discretize an n-sided polygon in terms of quadrilaterals. However, the

possibilities for this problem are restricted if we require easy automatic
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generation of the elements based on the data defining the crystal structure.
Additionally, since adjacent crystals share nodes, each node on the edge of the
polygons must be matched in these crystals. This further limits discretization
options. An illustrative number of typical subdivisions of a pentagon into
quadrilaterals that satisfy both the simplicity and node-sharing requirements
are shown in Fig. 5.7.

The crystal subdivisions into elements used in this dissertation appear in
Figs. 5.7(a) and (b). Fig. 5.7(b) represents a mesh refinement of the subdivision
shown in Fig. 5.7(a). Each n-sided polygon that defines the crystal boundaries
is thus divided into n or 3n quadrilaterals, enabling convergence checks and

the use of extrapolation schemes cutlined in §5.5.3.

n Elements 3n Elements
(a) (b}
2n Elements 3n Elements

(c) (d)

Fig. 5.7 Subdivisions of a Typical Crystal Grain into Quadrilateral Elements
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An interesting aspect of the selected mesh refinement pattern is its
serendipitous usability in modelling grain boundaries. As indicated in §3.2.1,
for fine grained polysilicon, the grain boundary region, which is of the order
of a few inter-atomic distances in dimension, becomes significant compared
to the ‘bulk’ crystal grain scales. These boundary regions may have different
elastic moduli than the crystal and can be assigned appropriate values, as
indicated in §3.5 [5.1]. They can be modeled with separate elements of required
width, e.g. as shown in Fig. 5.8, where the shaded region indicates material

properties differing from the ‘bulk’ crystal grain.

Fig. 5.8 Grain Finite-Element Mesh with Grain Boundaries Shown

5.5.3 Error Analysis and Extrapolation

The finite element method offers only an approximation of the exact
solution. We therefore need to gain an understanding of the magnitude of
the errors and to formulate our problem such that the desired level of
accuracy is economically achieved. To this end, a typical example problem is
chosen and the displacement field errors are analyzed. This is followed by a
Richardson extrapolation [5.35], using results derived from using the mesh
refining sequence outlined in §5.5.2, that is shown to reduce the displacement

field errors by at least an order of magnitude.
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As an example, the bending behavior of a typical multicrystalline
cantilevered beam made up of a finite number, N = 33, of crystals is
considered as shown in Fig. 5.9, where the crystal structure is based on the
Voronoi tessellation of Poisson points with intensity, A =3/ d?, defined in

§5.4.4.1.

L=10d g

DX IV e

P

22
:

Fig. 5.9 Example “Multicrystalline” Structure and Loading

We wish to minimize the finite element discretization errors associated
with the distorted shapes of the quadrilateral elements that divide each n-
sided crystal into n or 3n elements. A uniform crystal orientation is assigned
throughout the beam so that the problem can be first solved using a regular
grid of elements. By reducing the size of the grid, convergence is reached to
the desired level of accuracy, i.e. our ‘exact’ result. The problem is then re-
solved using the subdivisions based on the crystal structure shown in Fig. 5.9
and the discretizations into quadrilateral finite elements as in Fig. 5.7(a) and
again using the mesh refinement as in Fig. 5.7(b). This process is repeated for
the full range of in-plane orientation angles, i.e. 0° to 180°. The results are
plotted in Fig. 5.10, where the % errors in the tip displacement are shown.
Results using a Richardson extrapolation scheme are also included. This
scheme is outlined below.

If the displacement is known to converge at O(h"), two approximate
solutions u! and u2 can be obtained with meshes of size h and h/m,

respectively. With u being the exact solution, we can write
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u'-u_ O o (5.4)

w-u O((/my"} B

Therefore an almost exact expression for u can be found
_ m'u® —ut (5.5)
m" -1
The problem considered here employs a non-standard mesh refinement
step, dividing each quadrilateral element into 3 rather than 4 smaller ele-
ments. Therefore m = V3 (rather than m = V4 = 2), resulting in the following

expression for the extrapolated tip displacement in the 2-D problem (n = 2):

P
umBuzu (56)

This extrapolation is used in calculating the values plotted in Fig. 5.10. It is

clear that the errors of the extrapolated solution are at least an order of

magnitude smaller than those for ul.

0.7
0.6 f

O n:Fig 5.7(a)
B 3n: Fig. 57(b)
® Extrapolation

0.3
:

% Error in Tip Displacement

0.1 —— T 1
0 30 60 90 120 150 180
Orientation Angle, Degrees

Fig. 5.10 Finite Element Errors and Extrapolation Results
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5.6 SUMMARY

This chapter presented details of a proposed multicrystalline simulation
model suitable for the probabilistic analysis of multicrystalline MEMS
structures. The model in its current form is restricted to 2-D problems;
however, the methodology for extension to 3-D is clear. Image analysis
techniques that can be used for obtaining empirical data on the material
microstructure were first outlined. This was followed by a general description
of theoretical models amenable to describing multicrystalline states such as
they exist in polysilicon MEMS. The focus was then shifted to the Poisson
Voronoi Diagram (PVD} that is the basis for the simulation model presented
in this chapter. Finally, the finite element implementation was described.

For implementation as a simulation model, suitably calibrated random
tessellations are first generated based on a Poisson point process. These are
then modeled using finite elements of the type developed in §5.5 and the
boundary value problems are solved using the finite element method. The
simulated results are used to estimate the probabilistic responses of interest in

Chapter 7.
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Chapter 6
RANDOM FiELD MODELS

6.1 INTRODUCTION

The discrete model presented in Chapter 5 represents a direct form of
analyzing the mechanical behavior of multicrystalline MEMS structures and is
useful in providing insights into the phenomenological characteristics of the
problem through a simulation approach. However, since the necessary finite
element discretization requires the generation of a new mesh for each
simulation, that approach is computationally intensive and has limited
applicability. The results are dependent on load and displacement boundary
conditions, grain sizes, and the beam geometry. Any change in these
boundary conditions or parameters would require a complete re-analysis.
Furthermore, the simulation approach can be prohibitively costly for
computing small probabilities associated with extreme levels of performance.

Now, a more efficient approach, employing continuous-parameter
random fields and stochastic finite elements is presented. Individual elastic
moduli, such as the Young’s modulus along one axis, E;, or more generally,
the elastic stiffness matrix coefficients, C,-j, are modeled as random fields.

This random field approach may aptly be termed “probabilistic
smoothing.” The mean of the random field corresponds to estimates obtained
through traditional homogenization methods, e.g. the Hill estimate (§4.3).
The random field model, however, includes additional information

regarding the second-moment properties of the modeled properties. Using
121
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the random field approach, in addition to the mean structural response, the
standard deviation of the response is found using only one stochastic finite
element analysis. Furthermore, the probability that the response will exceed a
given threshold is obtained by using just a few finite element analyses.

The following sections begin by introducing and briefly defining the
notion of a “random field.” This is followed by a brief outline of methods for
the mathematical modeling of random fields based on observations, and their
discretization for subsequent use with stochastic finite element methods.
Next, an approach for the modeling of beam-like MEMS structures is described.
The effective axial Young’'s modulus, Eg(x}, is first modeled as a continuous-
parameter random function of distance, x, along the beam axis. This is
followed by the random field modeling of the second moment of area, I(x),
that results from the uncertain cross-sectional dimensions of the beam along
its length. A more general random field approach is then introduced for 2-D
and 3-D multicrystalline structures. The effective material stiffness matrix is
modeled based on a continuous-parameter random field vector of crystal
orientations, suitably transformed to reflect the existing texture using
transformations developed in §4.1. Finally, details of the finite element
implementation for the above random field models are delineated, including

a discussion of the element characteristics.
6.2 RANDOM FIELDS

6.2.1 Definition

A random field is an indexed set of random variables LI(x), with the index
x describing coordinates in a multi-dimensional space. Random fields are

sometimes referred to as stochastic processes, however, the term “field”
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serves to indicate the multi-dimensional nature of the index space, usually
defined in terms of one or more spatial coordinate axes, while, strictly
speaking, the term stochastic process refers to a time-varying phenomenon.
Random fields can be continuous-parameter or discrete parameter. In this
context, where x represents spatial coordinates, continuous values of the
parameter set x are admissible, thus the resulting random fields are
continuous-parameter. A realization of the field along an axis x, however,
may be discontinuous, e.g. in the extreme case where a crystal boundary is

exactly vertical across the depth of the whole beam when modelling Eeplx).

6.2.2 Mathematical Modeling

Random fields can be defined using various approaches, e.g. by their joint
PDF, their joint characteristic function, or in terms of moment functions [6.7,
6.17]. For most practical purposes, however, the first- and second-moments,
called the mean function, y(x), and the autocorrelation Sfunction, Quu (x1, x2),
respectively, suffice in describing random fields. This approach is pursued
here.

The mean and autocorrelation functions are defined below using the first-

and second-moment relations

By () =E[Ux)] 6.1)

I L e

where E[.] indicates the expectation operator.
A random field is homogeneous in the strict sense if all of its finite-
dimensional distributions are invariant with respect to a shift in the

parameter origin. If the mean and autocorrelation functions are invariant,
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the random field is considered homogeneous in the wide sense [6.7]. For the
cases considered here, homogeneity can be assumed in the wide sense. This
implies a constant value for the mean function and allows the representation
of the autocorrelation function as a function of a “difference” quantity, i.e,

the length of the vector joining the two points x; and x;. Thus,

Hyu)=Hy (6.4)
¢ pulx. %)= Rgy() (6.5)

where
x =[x, -x] (6.6)

is the distane between the two points. We can also define the autocorrelation

coefficient function as

2
Ryu®) -
b)) = —E Ry
9y 6.7)
where
o = Ry (0)— (6.8)

represents the variance of the random field.

The objective here is to mathematically model the random fields of
interest based on observations of the MEMS multicrystalline materials. Nather
[6.11], Ramm [6.13], and Ivanov and Leonenko [6.7] have extensive studies on
the observation, estimation, and statistical analysis of random fields,
respectively. These references are comprehensive sources of methods that can
be used to solve a large variety of problems. For homogeneous random fields,

we can simply generate enough data to be able to estimate yy, oy, and pyy.(x)-
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For the case of modeling the effective axial Young’s modulus, E.gx), an
approach suggested by Vanmarcke {6.17] is used to find the autocorrelation
function (see §6.3.3). For modeling the effective material stiffness matrix, C(x),
random field, a semi-analytical approach is employed for deriving the

autocorrelation function (see §6.5.2).

6.2.3 Discretization

The random field models need to be discretized—i.e. be represented in
terms of a finite number of random variables—in order to solve problems
using finite elements. A random field such as E(x) can be represented through
interpolation functions and nodal random variables following the Expansion
Optimal Linear Estimation (EOLE) method of Li and Der Kiureghian [6.9].

Consider the following eigenvalue problem associated with the n xn
covariance matrix Zgr of nodal values E; of the Young’s modulus random
field E(x)

L, =6, 0, (6.9)
where 8; and ¢; are the eigenvalues and eigenvectors of the covariance
matrix, respectively.

The EOLE method represents E(x) by the following sum

B0 =he + 22 0B (610
where yr is the mean-value of E(x), 7 : r <n is the minimum number of terms
required to accurately model the random field, Z;,; is a column vector
containing the covariances of E(x) with the nodal random variables E,

(computed from the known autocorrelation function), and {; are a setofr
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independent standard normal (zerc mean, unit standard deviation) variates.
This assumes the field is Gaussian.

§6.6.1 shows results comparing the EOLE-discretized random field
stochastic finite element method with simulation results based on the
discrete model of Chapter 5 for the case of multicrystalline beams. This

discretization method is also applicable to 2- and 3-D random fields.

6.3 MODELING OF E(X)
6.3.1 Modeling Approach

The bending behavior of multicrystalline beams can be adequately
predicted using a flexural rigidity characterization. The random crystalline
structure results in a randomly varying effective bending stiffness, Elg{x),
expressed as a function of distance, x, where E represents the Young’s
modulus and I the second moment of area, I,;, along the beam (see Fig. 6.1).
A random field function that models Elg(x) is saught. Assuming a constant
value for I, the variations of El{x) are then only due to the random

arrangements of crystals and their uncertain orientations.
LY
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Fig. 6.1 Multicrystalline Beam Showing Axes

This section considers multicrystalline arrangements represented by
Poisson Voronoi Diagrams (PVDs), as introduced in Chapter 5, in planar

problems. The methodology, however, is applicable to any multicrystalline
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arrangements, including those empirically derived through image analysis
techniques. It is also extendible to 3-D cases.

By defining a particular beam depth, d, and the intensity of the Poisson
point process, 4, used to generate the PVD, the geometrical characteristics of
the planar beam probiem are fully defined. What remains is the information
provided by the orientation distribution function, ODF. Assuming strong out-
of-plane texture (see §4.5), the distribution of in-plane rotations, fy{y), would
give a complete description of the ODF.

Values for E.g(x) are generated by a moving window approach in fields of
simulated crystals, with constant I, shown schematically in Fig. 6.2. The value
for the effective Young's modulus is then evaluated for the window by
finding the Young's modulus for a homogeneous and isotropic beam
segment having depth d and width W. In the limit as the window width, W,
tends to zero, this value can be considered to equal E4(x). This concept is

further described in §6.3.2.

] AN
] 2-7 by

Fig. 6.2 Multicrystaliine beam showing moving window
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Fig. 6.3 illustrates three example PvD-based beams. Although these beams
have different dimensions, they are scaled variations of just one
multicrystalline beam. Clearly, the random field E.4(x) for these beams would
be similar, with only a scaling factor to distinguish between them. To account
for such scaling, a dimensionless problem description is now pursued so that
the random fields may be more efficiently modelled.

A scale parameter, {, defined as

{=dVa (6.11)

is introduced, where { is proportional to the mean number of crystals per
cross-section. For Figs. 6.3(a), (b), and (c), { is equal to V3. Beam problems with

PVD for crystal geometries are fully defined given {and fy{y).
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Fig. 6.3 Three Example PvD-Based Planar Multicrystalline Beams

The auto-correlation coefficient function of the random field E qx)
resulting from a multicrystalline beam is found to be independent of the ODF

(86.3.4) for the case of uncorrelated crystal orientations. This implies a
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decoupling of the problem, such that the auto-correlation coefficient function
is only a function of the problem geometry. This then enables the
development of a general model for the auto-correlation function of E.4(x) as
a function of { only. Although some sources report a certain degree of
correlation between adjacent crystal orientations, the assumption of
uncorrelated crystal orientations is still widely accepted and employed in
material modeling and characterization. In applications where the adjacent
crystal orientations are correlated, the auto-correlation function of E.g(x) will
be a function of both { and higher-order textural characteristics of the
material, such as the misorientation distribution function (§4.2.2).

The mean of the random field E.g(x) is found from the ODF. Due to the
averaging performed at a section, the standard deviation is not geometry-
independent. This is further illustrated in the following sections. An auto-
correlation coefficient model for E.4(x) is used and fitted to observed data for

simulated microstructures using the PVD model formulated in Chapter 5.

6.3.2 Evaluation of E {x) at a Section

In the following sub-sections, a numerical approach employing finite
elements is first presented, followed by an analytical-geometric approach: both
are aimed at evaluating the effective axial Young’s modulus, E 4{x), at a

section along the length of a multicrystalline beam.

6.3.2.1 Finite Element Derivation
A recent study by Wang [6.18] reports on the within-specimen variability
in the modulus of elasticity for wood, where a “grading” machine is used to

measure the bending deformations through a fixed loading pattern. Here, a
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similar idea is employed, but numerical “experiments” are conducted using
two alternative methods: (a) subjecting a window along the multicrystalline
beam to a uniaxial tension; and (b) subjecting the window to pure flexure.
These loading conditions are shown in Fig. 6.4 together with the associated
finite-element mesh, Fig. 6.4 (c), used in the numerical derivations described
below.

For the beam in tension, as in Fig. 6.4 (a), the average strain, &£y, is
calculated by measuring the average displacement of the right side of the
window relative to the left and dividing by the width of the window. The
stress state for the problem then enables the direct calculation of the effective

Young's modulus for axial tension, Et

E =L (6.12)

Eﬂ' vg
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Fig. 6.4 Beam in Tension (a) and in Pure Flexure (b);
(c) Finite Element Mesh
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For the beam in flexure, as in Fig. 6.4 (b), the state of strain is more
complicated. We fit a plane section through the displaced nodal positions of
the left and right sides of the window, imposing zero strain at mid-section.
This is illustrated for a typical node in Fig. 6.5, noting that since strains in
direction 2 are negligible, only displacements in direction 1 are considered.
The slopes of the best fit lines, m; and mpg, are found by minimizing the sum
of the squares of the errors ¢j on either side of the deformed window. These

slopes define the average curvature, Pavg, Of the window

1 1

Gope = =

TEomy omg 6.13)
and the effective Young’s modulus for flexure, Ef, is then calculated according
to the following relation

(6.14)

Original
® Undeformed Nodal
2 Position

Idealized
i C  Deformed Nodal
Position

Actual
® Deformed Nodal
Position

Fig. 6.5 Axial Deformation of a Typical Node

The above finite element procedures are cumbersome and compu-
tationally demanding, due to the repeated remeshings necessary for each
window. However, they can serve to verify the accuracy of the more

simplified techniques that are introduced next.
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6.3.2.2 Analytic-Geometric Derivation

Here an “analytic-geometric” approach is pursued. At a section of a
multicrystalline beam, the beam is composed of a finite number, n, of crystals,
each with a distinct orientation angle. For each crystal, the axial Young’s
modulus, E;, is defined in terms of the orientation angle, y;, with respect to
the beam axis.

The orientation-dependent axial Young’s modulus, E(y;), for in-plane
rotations, y;, was derived for various texture states in §4.3 and is shown again
below for the case of {100} texture:

1

E,=E (y,) =
a cosdy, + b (6.15)

where g and b are constants related to Cy1, Cy2, and a as follows:

(a - 1)
4(C-Co)a (6.16)

Ba+1H)Cy+(1-a)Cy,

2 2
1(Cy-Cpp)e (6.17)
where
2C
yo _ 2Cu
(Cyy-Cyp) , (6.18)

The effective Young’s modulus for a section may be approximated as a
weighted average of the n E;s. A simple approach would be to weight the
contributing E;s according to the relative areas, A;, that the corresponding
crystals occupy in a window. This would give an appropriéte answer if the

window was being subjected to a uniform tension. For the case of flexure, not



6.3 MODELING OF E{x) 133

only do the sizes of the crystals count, but so do their positions relative to the

neutral axis of the beam at that section.

i Y Sx

Fig. 6.6 Vertical “Slice” Taken Along a Multicrystalline Beam
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Fig. 6.7 Cross-section of Vertical “Slice”

Considering a multicrystalline window with n crystals, an approximation

for the effective window axial Young’'s modulus, Ey, is:

1 n
Ey = AE(y, .
A Z E( ) (6.19)

otal i=1
where E (y) is as defined in Eq. 6.15, A; are the individual crystal areas within

the window, and A7, is the sum of all A4;, equal to the area of the widow.

The expression for Ey reduces to E(x) at a section as W — 0



6.3 MODELINGOFE{(x) 134

Eg(x)= «‘%—i(d'. -d,_)E(v,) (6.20)

n ie1
with d; defined in Fig. 6.7.

Considering a vertical “slice” taken along a multicrystalline beam, as
shown in Fig. 6.6, this would reduce to a “section” in the limit as the slice
width, éx, tends to zero. A typical slice is shown schematically in Fig. 6.7. It is
composed of n crystals, each with its top surface a distance d; from the x axis,
and with its distinct in-plane crystallographic orientation, y;, and corre-
sponding axial Young’s modulus, E(y,), as derived from Eq. 6.15 (note that dg
= 0). This section is thus made up of n distinct materials with different values
for their Young’s moduli. The different shadings in Fig. 6.7 serve to indicate
the different material properties.

Using the transformed cross-sectional area approach [6.12], E.¢(x) for
flexure is given by the following expression

E(x) =%§§[d!(q2 —dg+d’[3)-d_ (¢ -d_q+d%, B)E(v)  (621)
where, the height of the neutral axis, g, above the x axis is given by

il

Z(df—deEdW:‘)

29 (d-d,)Eslvi)

Comparing the axial and flexural approaches, Eqs. 6.20 & 6.21, we note that

(6.22)

the general analytical-geometrical expression for Eg(x) is

E 4(x) = 2w, Ey)
i=1
(6.23)
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where, w;, are the weights given by

= (d,-d_,)

6.24
@i d (6.24}
for the tension case, and
12
w, = F{di(qz -dg+ df/3) - d,_l(q?! —-d_g+ df_l/S)] (6.25)

with g defined in Eq. 6.22 for the case of flexure. An example problem is
shown in §6.6.1 where the above geometric idealization is used in defining
E.#x). The results of beam deflections using this approach are shown to

compare well with the multicrystalline finite element model.

6.3.3 Modeling and Identification of the Auto-Correlation Function

Using the procedure described in the previous section, realizations of the
random field of the effective Young’s modulus, E.(x), along a
multicrystalline beam are computed. One such realization using the flexural
assumption is shown in Fig. 6.8. This is obtained by assigning a set of
uniformly distributed in-plane orientation angles, U(0,n), for the constituent
{100} crystals. By generating an ensemble of such realizations, statistical
characteristics of the random field such as the mean, variance and the auto-

correlation function may be estimated.

200
~ 3
I b
G 175 ]
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Fig. 6.8 Effective Young’s Modulus vs. Beam Position
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Use can be made of various existing models for describing the statistics of
the random field. Here, use is made of a class of models introduced by

Vanmarcke [6.17] that is appropriate in this context.

6.3.3.1 Local Average Fields

The effective Young’'s modulus, or any other material property, obtained
as realizations of a random field using the windowing method outlined
previously is a moving average field. From a continuous parameter
stationary random field E(x) with mean p and standard deviation o, a family

of moving average fields E, (x) can be derived by [6.17]:

1 r o+ W /2
Ew(x)=-—.-f_m E (u)du

w (6.26)

where W denotes the window width or averaging length.

Properties of moving average fields are based on the parent, or point-to-
point random field. For a homogeneous random field, the mean is not
affected by the averaging operation; however, the variance of Ey (x) is, given

by

2

2
Var[Ey =0y =7y (W )o (6.27)

where y(W), denoting the variance function of E(x), is a dimensionless
function measuring the reduction of the point variance under local
averaging. In the limit as W tends to infinity, the expi‘ession Wn W)
approaches a constant value, 8, known as the scale of fluctuation [6.17].

The covariance function, By, (z), of local average fields is given by:

2

o

By, (1) =——| 4(W +1 )-24(x)+ AW 1 )

2W (6.28)
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where a(W) = W2¢W). Thus knowing #W) and o of the parent random field,
the covariance function, and hence the autocorrelation coefficient function,
pw(x) = Bw(x) /oy ?, of a moving average field such as the one produced by
the windowing method previously outlined can be derived for different
values of W using Eq. 6.28. The pw(yx) for the point-to-point random field is
found as W approaches zero. For practical problems, a value of W £ 6/10 is
sufficiently small and can be used to define the point-to-point autocorrelation

function.

6.3.3.2 Variance Function Model
Use is now made of a family of models for the variance function, ¥ W),

described by Vanmarcke [6.17] as:

Yo (W)= [“(}i\i) }
6 (6.29)

Substituting for /W) in Eq. 6.28, we obtain an analytical expression for the

moving average correlation function for a given window width W as shown

mYm
2 11
B (x) = 2;2{(W+x)2[1+(’ ““] J
()T

=152 }

Thus, given 8, m, and ¢ the correlation function for a specified W is fully

below:

defined. The set of values {g,m,0}, as well as the mean, g, of the random field,

can be empirically estimated from the generated data for various values of the
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parameter {, derived earlier. The estimation of y and o is clear and the

following subsection describes the estimation of 8 and m.

6.3.3.3 Empirical Estimation of 6 and m

As W —0, o), = o°. Therefore W) can be approximated using the
relation ¥(W)= o}, /ol (based on Eg. 6.27). Also, as W becomes large, Eq.
6.29 implies that y(W)— 8/W. Therefore by plotting W ®W) vs. W, the
asymptotic value of 6 can estimated. This is illustrated in Fig. 6.9 for an
example beam with d =1 and 4 = 3 (i.e. { = ¥3). The value for WyW)
converges rapidly and the scale of fluctuation, 6, is found to be approximately
equal to 0.56 for this example.

To find m, the model variance function, y,(W), is fitted to the observed
variance function, W), through a least squares method, where
I}f,,,(W)“y(W)[2 is minimized for the set of data points corresponding to

different Ws. Fig. 6.10 shows the best fit with m = 2.5 as a dotted line.
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Fig. 6.9 Convergence of W{W) to @
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Fig. 6.10 Actual and Model ¥W) vs. W/e

6.3.3.4 Summary of Procedure

Random multicrystalline beams are first generated based on the Poisson
point process and their associated Voronoi tessellation. Random orientation
angles are then assigned to each crystal based on a prescribed ODF which
reflects the texture present in the material.

Flexural rigidity is assumed to be the dominant quantity defining the
bending behavior of long beams. The effective Yoﬁng’s modulus at a section
is evaluated using area-weighted approximations of Eqs. 6.20 & 6.21 (see §6.6.1
for comparison with “exact” finite element solutions).

Taking moving averages of successive “points” of the data to represent
windows of increasing width, the scale of fluctuation, 8, is estimated as
shown in Fig. 6.9. This is then used to model the variance function, W),

with Eq. 6.29, using a least squares fit.
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Multicrystalline
Arangement for Beam

Defined by ¢

4

‘Assign Orientation
Angles based on the
ODF

X

Find E g (x) for | Find mean and Standard
successive Sections Deviation of theE 4x)
C ‘ Random Field

y

Estimate the Scale of
Fluctuation, 6, using
Moving Averages

y

Estimate m defining the Define Autocorrelation
Variance Function ' Function Using
Eq. 6.28

Fig. 6.11 Flow Chart Showing the Procedure for Modeling the Random Field

Having established values for {6,m,0], Eq. 6.30 is used as the analytical
expression defining the auto-correlation function of the moving window
random field, shown schematically in Fig. 6.2. The above procedure is

summarized in the flow chart shown in Fig. 6.11.
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6.3.4 Texture and Grain Size Effects

By following the procedure summarized in §6.3.3.4, values for 8, m, o, and
y are established from an ensemble of point-to-point samples of effective
Young's moduli, which define the stationary process, E.g(x), for the selected
crystal grain structure (defined by ¢ = dV4) and associated ODF.

A representative set of results are summarized in Table 6.1, defining the
covariance function (Eq. 6.30) for each case. U(ab) indicates the uniform
distribution, with limits a and b, and N(u,c) indicates a normal distribution
with mean gy and standard deviation ¢ which is truncated outside of the
interval (-m,7) and then normalized. Increased values of 4 indicate higher
densities of crystals, i.e. smaller crystals within the beam. For U(0,n) ODFs, u =

164.3 GPa.

Table 6.1 Effects of Texture and Average Grain Size on {6,m,d}

{=dVA ODF m o (GPa) ]
1 U(0,x) 2.5 13.02 0.9718
V3 U(0,m) 25 11.94 0.5626
3 U0,n) 2.5 10.74 0.2663
V3 N(O,r/8) 25 10.89 0.5195
V3 N(0,r/40) 25 1.01 0.5929

In the following sub-sections, the effects of the ODF and grain size on the

random field characteristics of Eeg(x) are assessed in turn.

6.3.4.1 Texture Dependence
The results in Table 6.1 show examples with the following ODFs: uniform

distribution, U(0,x), and two different truncated normally distributed textured
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cases, N(0,n/8) and N(0,n/40) respectively. It is observed that values for m are
jdentical in all cases. Furthermore, for equal { values ({ = V3), the scale of
fluctuation, 6, is nearly the same, indicating independence of this parameter
from texture. The standard deviations, o, however, vary significantly as do
the means (not shown here). Variations in o do not affect the shape of the
covariance function and only have a scaling effect. The similarities between
these cases are seen more clearly by looking at plots of the autocorrelation

coefficient functions in Fig. 6.12.
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Fig. 6.12 Comparison of Autocorrelation Coefficient Functions

The functions are sufficiently close for us to conclude that the
autocorrelation coefficient function is insensitive to the ODF. This result is
valid if the crystal orientations are uncorrelated. Thus, the autocorrelation
coefficient function appears to depend only on the geometry of the problem.

On the other hand, the mean and standard deviation are strongly affected by

texture.
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6.3.4.2 Grain Size Dependence

Using a uniform ODF, U(0,x), but with different grain sized beams (varying
A and keeping d constant), insight is gained into the effects of relative grain
size on the defining characteristics of the random field representation. These
results are summarized in Table 6.1 for the cases {= 1, V3, and 3.

Beams with increasing A, have an increasing average number of crystal
grains per cross-section. The standard deviation, o, of the random field is re-
duced with increasing A, since the effective modulus is now averaged over a
larger number of crystals. The mean, g, is dependent on the mean of the ODE.

The scale of fluctuation, 6, is seen to reduce with increasing {. It seems
appropriate to associate 8 with the average width of individual crystals
measured along the beam, i.e using the inverse of VA. Fig. 6.13 shows a clear
trend for the U(0,m) results taken from Table 6.1. Typical realizations E.gx)
for {= 1, V3, and 3 are shown in Fig. 6.14.
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Fig. 6.13 Scale of Fluctuation, 8, vs. 1/VA
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The micro-fabrication process can result in an irregularly shaped beam

coss sedion [6.20], as fllustrated in the scanning electron micrograph (SEM) in Fig.
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Fig. 6.14 Typical Realizations of the point-to-point E.g(x) for {
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6.15. These cross-sectional variations are idealized schematically in Figs. 6.16
and 6.17. Additionally, as shown in Fig. 6.18, the cross section can be non-
rectangular [6.15]. The thickness variabilities are small and are assumed to be
negligible when compared with the width variations. This results from the
fabrication process (see §2.1) where the deposition stage (establishing film
thickness) is more controlled than the plasma etch that “cuts” beam edges.
The unevenness of the etch, however, can change from laboratory to
laboratory and needs to be assessed before any detailed modeling

considerations are made.

Fig. 6.15 SEM Showing Unevenness of the Etch

The irregularities in the beam cross-section result in the second moment
of inertia being a random function of distance along the beam. Denoted by

I{x), it can be expressed as

I(x)=§—i-i—wc(x) Zw:(x)-l-%—wj} 631

where ¢ is the film thickness, w, is the difference in the top and bottom beam
widths (taken to be constant since the variations in etch angle are negligible

along the beam), and w.(x) is given by
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w.(x )=y, +w, (x)+w, (x) (6.32)
where Uy, is the mean value of beam width in the central ‘slice,” and wy(x)
and w;{x) are zero-mean functions shown schematically in Fig. 6.17.

A nominal beam width is assigned for the value of yy, and the random
fields represented by wy(x) and w(x) are taken to be identical but
independently distributed zero-mean functions with the same standard
deviation and autocorrelation function. The following autocorrelation

function is assigned for w,. and wy,

Pun(BX) = exp[w(f‘f)z} (6.33)

where, Ax is the distance between any two points along the beam axis and 4 is

the correlation length.

Film Thickness, t

Uneven Etch
of Beam

/ Side Walls

id

Non-FPerpendicular
Side Walls

Fig. 6.16 Irregularities in Beam Cross-Section

The parameters in the above model, fyc and the mean, standard
deviation, and correlation length, a, of the unevnness can be estimated from

SEM observations of typical beams.
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Fig. 6.18 Non-Rectangular Beam Cross-Section

6.5 RANDOM FIELD MODELING OF THE STIFFNESS TENSOR

In this section, we model the multicrystalline material stiffness properties
as a 2D or 3D random field. First, the transformed generalized Hooke’s Law
from §4.1 is reintroduced. The discrete multicrystalline arrangements
introduced in Chapter 5 are used to represent the structure of large-grained
polycrystalline silicon samples. The elastic properties of each crystal are
differentiated from others based on their distinct crystallographic orientation
with respect to some global coordinate axes. The orientation variations in
space are modeled as a vector random field y(x), where y = (y, 8, ®)T denotes
the vector of Euler angles at each location x [6.1]. The elastic stiffness random

field matrix is then found by defining the stiffness matrix, C, as C = C [Cyy, Cy,
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Cy44, w(x)], where Cy1, Cq3, and Cy4 are the known elastic constants defined in
the crystal-fixed frame. Finally, the model is related to the developments in

§6.3, where the random field, E.g(x), was found for beam structures.

6.5.1 Rotationally Transformed Elastic Stiffness Matrix

The transformed generalized Hooke’s Law, relating the elastic stresses and
strains in a co-ordinate system different from the crystal-fixed frame has

previously been defined in §3.35 as

*

;i = Cijx €y (6.34)
where C',’jkg is the transformed stiffness tensor. The more convenient matrix
representation was also defined, relating the stress and strain vectors ¢T =

(011, O, O33, G23, 013, 012) and €T = (€11, €, €33, 2623, 2613, 2612) respectively:

L3

o=Ce (6.35)
where the superscript ‘T’ stands for the transpose and C"is the transformed

6x6 stiffness matrix. C" is found using the transformation relation [6.16]:

c=0cQ (6.36)
where Q is the rotation matrix defined in terms of the direction cosines of
angles between the global and crystal-fixed coordinate axes.

In the crystal-fixed coordinate axes, the stiffness matrix, C, for crystals with
cubic symmetry reduces to a simple form shown in Eq. 6.37 [6.8]. Elements of
C” are thus fully defined, using the transformation relation, Eq. 6.36, in terms
of the constants Cy;, C2, C44, and the crystal orientation relative to the global

coordinate axes. These angles are derived from the three Euler angles [6.1] (see

§4.5).
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C11CCGi 0 0 0
C12CGy, 0 0 0
C= CpCiCy; 0 0 0
0 0 0 C4O O
0 0 0 0C,0
0 0 0 0 0c¢,

(6.37)
Restricting our discussion to plane problems, the Euler angles reduce to
just one angle v in the plane. The elasticity matrix random field C*(x) for
silicon is then fully defined by Cy3, C12, C44 and w(x), through Eq. 6.36.
For example, as was shown in §4.4, the transformed stiffness matrix, C°, for

{100} texture is defined as

[1-cos (4y)JU+4Cyy -[1-cos (4y)]U+4Cy; 4Cy; 0 O U sin (4y)
-[1-cos (4y)]U+4Cy; [1-cos@y)]U+4Cyy 4Cy; O 0 - Usin (4y)
‘__1 4C12 4C12 4C11 0 0 G
4 0 0 0 4C, O 0
0 0 0 0 4C,, 0
U sin (4y) - Usin {(4y) 0 0 0 1+cos(4y)] U +2V
{(6.38)
where
Us=-C+C,+2C,, (6.39)
and V=Cu-Cp (6.40)

6.5.2 Random Field of Multicrystalline Orientations

To characterize the variations in y, the mean, uy, standard deviation, o,
and the autocorrelation function, pyx1,x2), need to be established for the
material under consideration. The problem can be divided into two parts: (i)

geometrical—where the multicrystalline geometry has influence on the
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results; and (ii) ODF related—where the orientation distribution function
affects the characteristics of the random field. For uncorrelated crystal
orientations, (i) alone defines pyy{x1,x2), while (ii) defines uy and oy. As in
§6.3, the discussion will be restricted to these cases.

Consider a linear probe intersecting a multicrystalline structure (Fig. 6.19).
Each intersected crystal is identified by the bounding intersection points along
the linear probe and by its associated orientation angle, y. Plotting this
orientation angle variation as a function of distance along the probe produces

a square-wave function (see Fig. 6.20).

Fig. 6.19 Linear Probe in a Planar Multicrystalline Micro-structure

Generally, geometric studies of the multicrystalline structure are needed to
define pyy(x1,x2). Here, studies are made of a previously defined model rep-
resenting a random multicrystalline arrangement in the plane—the Poisson
Voronoi diagram (PVD). The ensuing discussion is cast in general form so that

it can be easily extended to any spatial multicrystalline arrangements.
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An m-dimensional PVD may be intersected by an s-dimensional hyper
plane H; (1 < s < m) producing a structure called a sectional PVD denoted by
Vp(s,m). With s = 1 one obtains linear probes. An example of the intersection

points obtained for Vp(1,2) is shown in Fig. 6.20 (a).

(@ e | — P
a —

sy | j
—_| B

Fig. 6.20 (a) Example Realization of Intercept Point Process Vp(1,2);
(b) Associated Square-Wave Function for Orientation Angles

For Vp(1,2), the mean and mean square of the chord lengths, w, have been
established as #/(4V4) and 0.804/ 1 respectively by Gilbert [6.6], where 1 is the
intensity of the Poisson point process. The PDF of w has been obtained by
Muche and Stoyan [6.10] through simulations and is shown in Fig. 6.21

together with an approximate fitted analytical model defined by:

2 2
fw(w)zﬁ{exp[w—%(%&) :]—i-expl:—%(w;p) :'}, O<w (6.41)

with parameter values y = 0.754,, and o = 0.464y,, where u,, is the mean of w.

A similar model can be fitted for Vp(1,3), i.e. a linear probe in a 3-D PVD.
Again, the values for the mean and mean square of the widths, w, have been

established [6.6]. For non-Voronoi multicrystalline geometries, the PDF can be
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empirically derived through observations of the microstructural geometry,

e.g. through image analysis and stereological studies (see §5.1).
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Fig. 6.21 Simulated & Fitted PDF of Normalized Intercept Widths, w

Vp(1,2) is stationary and isotropic, therefore py,{x;,x») reduces to PyulX),
where y = | x5 - x7 |. For uncorrelated crystal orientations, the case considered
here, the autocorrelation function pyy{x) can be derived from the PDF of
intercept widths, fw(w). This derivation 1s described below.

Assuming independence between angle orientations when points lie in
different intervals of the intercept process (see Fig. 6.22), one can define the
following relationship

Ey(x)v(x)] = E[¥’[p + EY[w]1-p)
= E*[y]+p{E[w*]- B[]}
=4, +po, (6.42)
where p is the probability that points x; and x; are in the same interval (i.e.

same crystal), (1 - p) is the probability that they are in different intervals, and
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#y and oy are the mean and standard deviation of the distribution of angles y.

The latter are directly obtained from the ODF.

<—-2:-————> \ ;
e location of intercept

[ ,E(l-a),(_g,{ points

l —- N o Py —-
x x
-

X location of sample
x, pointsx _ aru:ix2

1

Fig. 6.22 Schematic Diagram of Two Points in Relation to the Crystal Intervals

The autocorrelation coefficient function, Pyw(x), can now be defined in

terms of E[ ¥(x,)¥(x,)], and simplified using Eq. 6.42 to yield the following

expression:
2

PR L ALC) e (6.43)

Oy

An expression defining p can be derived for fixed a based on the schematic
diagram in Fig. 6.22
p=Plaw> 1)

- P(w > i;) (6.44)

= j;afw(w)dw =1~ FW(%)

where ¥ = | x; - x; | and a is the parameter defined in Fig. 6.22. Since the
point could be anywhere within the interval with equal likelihood, a
uniformly distributed a between 0 and 1 is assumed. Eq. 6.44 is then

integrated with respect to g, resulting in the following expression for p

p=1- j:.Fw[-é-)da (6.45)
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Integrating Eq. 6.45 by parts and substituting in Eq. 6.43, we obtain

p=pa0=[(1- L), s (6.46)

Thus we have an analytic expression for the autocorrelation coefficient
function, pyy(x). This expression can be evaluated by substituting the
analytical PDF into Eq. 6.46 {or the analytical CDF into Eq. 6.45). We are in no
way restricted to 2-D problems here. The PDF in Eq. 6.46 can be derived from
any medel (2-D or 3-D), either theoretical or empirical, the latter based on
observations obtained through image analysis (see §5.1).

Since point-to-point characteristics of y are determined, there is no spatial
averaging involved in the derivations and therefore u, and oy, simply
correspond to the mean and standard deviation of y defined by the ODF.

Thus, gy and 0y, are obtained from the ODF and pyy(x) is evaluated using
the PDF of w and Eq. 6.46. For planar PVDs, the analytical PDF defined in Eq.
6.41 can be used. Thus, knowing A and the ODF, the y random field is
identified in a second-moment context. This also defines the full elasticity
matrix random field in terms of C; and employing the appropriate
transformations, e.g. through Eq. 6.38.

E[w(x)] is easy to find once the y{(x) random field is modeled, e.g. using Eq.
6.15. In E(x) modeling for a beam structure (§6.3), spatial averaging is
performed in the y direction, thus changing the standard deviation (reduced)

and correlation structure (increased correlation).

6.6 FINITE ELEMENT IMPLEMENTATION
6.6.1 Beam Elements for EI{(x) Random Field Model

The structural model needs to employ appropriate beam elements to

model the irregular variation in E4{x) shown in Fig. 6.8 or of I(x).
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Nonuniform beam elements are used here which allow a linear variation of
El{x) within each element [6.5]. The beam element degrees of freedom 1,2,3,
and 4 are the vertical displacements and end rotations for the left and right
nodes respectively. To solve for the elements of the stiffness matrix, the

following three basic integrals need to be evaluated:

I,-"-'-J'L x dx, i=012 (6.47)
¢ E(x)(x)

Eq. 645, for i = 0, 1, 2, is solved analytically for linear variations in El{x).

The element stiffness matrix is given by:

Jo Js -To Jol- 1

I - hi-1

s % -Jo *];1 I}: ']}OL+II
R T £ A A A e ] I

where L is the length of the beam element and D is defined by:
D=JJ- I (6.49)

The above formulation enables a continuous modeling of any irregular
variation in El{x) and, with sufficiently fine discretizations, produces close
representations of the multicrystalline beam behavior. Fig. 6.23 compares
results for the deflection of a cantilever beam obtained through the discrete
model presented in Chapter 5 (Fig. 5.9) and the beam model developed above
using 200 elements. This example represents a deterministic case with known
geometry.

A probabilistic problem is presented in §7.2.2 and solved using the above
formulation and the random field model. The results compare well with the

simulated multicrystalline model.
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6.6.2 2-D & 3-D Elements for C(x}) Random Field Model
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Since the elasticity stiffness matrix C(x) is fully modeled, any finite

element approximation is possible in the linear elastic range. Depending on

the assumptions regarding the structural behavior, membrane, plate, shell, or

solid (brick) elements can be used with their constitutive properties based on

the C(x) model. The random field discretization using the EOLE method

would proceed in a similar fashion to 1-D models, except the ordering of the

elements must be made such that the eigenvalue problem has as narrow a

band width as possible.
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An example is used to illustrate the above approach. MEMS polycrystalline
beams are often assumed to have a fixed end boundary. In many applications,
however, the fabrication results in a finite flexibility at the “fixed” ends. Fig.
6.24 (a) shows such a case for a beam of depth d, where the end-zone is fully
restrained against movements only beyond a 34 by 34 region (variable d is
used instead of w to avoid confusion with chord lengths w). This problem is
now analyzed to assess the mean and standard deviation of the flexibility in
the end-zone.

The finite element discretization and loading are shown in Fig. 6.24 (b), (¢),
and (d). The material is assumed to have {100} texture, with uniform in-plane
distribution for the orientation angle w(x). Using the random field
discretization methodology of §6.2.3 for w(x), taking the mean orientation

angle to equal zero, Eqg. 6.9 and 6.10 are rewritten as

z,.,9 =629 (6.50)
and

y(x) = Z‘J% XD (6.51)

The covariance matrix Zyy of orientations for the 36 elements shown in
Fig. 6.24 (b) is established based on the autocorrelation function of the form
defined in Eq. 6.46. This equation is solved numerically, with parameters d = 1
pmand A =3/ {um)? to yield the autocorrelation function, Pyyl(x). plotted in
Fig. 6.25.

Solution of the eigenvalue problem in Eq. 6.50 yields the eigenvalues, 8;,
and eigenvectors, ¢;. Sufficient accuracy is obtained in characterizing the
random field using 7 = 12, i.e. only 12 independent random variables are
needed to characterize the uncertainty in the problem. All 36 eigenvalues are

listed in Table 6.2.
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Fig 6.24 End-Zone Model—(a) Dimensions and Displacement Boundary
Conditions; (b) Finite Element Mesh; (c) Force Boundary Conditions;
(d) 9-node Isoparametric Element
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Table 6.2 Eigenvalues for Covariance Matrix

1.155339 1.129385 1.129395 1.104698
1.091905 1.091905 1.069009 1.069009
1.050295 1.050295 1.035922 1.029397
1.029397 1.012805 1012805 0.999199
0.959199 0.993708 0.993708 0.986861
0.986861] 0.965010 0.969010 0.966112
0966112 0.965681 0.943215 0.943215
0.935483 0.935483 0.914585 0914585
0.507887 0.888790 0.838790 0.870939
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Given the values of {;, discrete orientations are assigned to each element

based on Eq. 6.51. These orientations are sufficient to define the element

stiffness matrices (Eq. 4.16) and the finite element solution is found for the

approximate rotated beam angle, ¥ Ford =1 um, t =025 um, A = 3 / um?2, and

M = 10-12 Nm, the rotational stiffness is computed to be 7310 x 10-}2 Nm, with

aC.OV. of 1.2 %.
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The beam endzone problem is re-solved using tensile and shear loading in
order to evaluate the stiffness characteristics in DOFs 1 and 2, respectively (see
Fig. 6.24). The mean and C.O.V.s are found to be 211 x 10-3 Nm"1 and 5.9 % for
DOF 1, and 103 x 10-3 Nm-! and 4.2 % for DOF 2. If these flexibilities are applied
to the beam shown in Fig. 5.9, the average end deflection would increase by
approximately 11%. The relative inflexibility in all DOFs, and the small
C.0.V s therefore indicate that the modelling of fixed-end beams as fully fixed

is a good approximation.

6.7 SUMMARY

The simulation model of Chapter 5 is computationally intensive and
cannot be readily applied using conventional finite element models. A
random field model was proposed here which captures the essential features
of the behavior of multicrystalline beams. This model was first developed for
the effective stiffness of flexural multicrystalline beams by establishing the
mean, standard deviation, and autocorrelation function. This model then
allows a regular finite element mesh to be used to model the multicrystalline
problems. Comparisons with the multicrystalline model show close
agreement in global response such as end deflection.

The random field approach is generalized to 2- and 3-D problems by
characterizing the random field of orientations in space. The stiffness matrix
at each point is fully determined by the crystalline orientation. Empirically
based chord length distributions are employed to derive closed form
expressions for the autocorrelation function. An example problem was used
to illustrate the use of this approach in modelling the end-zone flexibility of

“fixed” beam connections.
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Chapter 7
MEMS STRUCTURAL APPLICATIONS

7.1 INTRODUCTION

Estimation of the mechanical response of MEMS is a necessary component
of any design process. This estimation is acheived through the modelling of
the material properties and subsequent structural analysis of MEMS devices.
Experimental, or in-situ, procedures have also been developed which predict
quantities characterizing the mechanical properties of thin films, e.g. residual
stresses [7.4 , 7.13], or Young’s modulus [7.3, 7.13, 7.17]. These quantities are
often impossible to measure through direct means and their indirect
experimental estimation relies on mechanical models of the measuring
devices. Material modelling is the basis for all mechanical models and this
chapter is devoted to the application of these models to the analysis of MEMS’
structural responses.

The material processing of MEMS results in a wide range of material
properties depending on the specific process conditions (§2.4). A uniform
material model applicable to all these cases, even for the polysilicon sub-class
of MEMS, is therefore impossible to define. Thus, separate material models are
required. Here, the importance of appropriate choices of material models is
illustrated through the application of models developed in earlier chapters
(homogenization, simulation, and random field models) to a number of

example problems. These examples highlight common misleading

163
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interpretations of response observations and, through the analysis of the
results, a guideline is proposed for choosing the appropriate material model
for various classes of problems.

Design applications are presented at both the structural component and
device levels. Contributing parameters to structural component performance
uncertainty are examined. Ways of reducing this uncertaintainty to an
acceptable level at the structural component level or for a complete device are
then identified. The former can be achieved through varying structural
dimensions and/or control of grain size and texture, while the latter can be
achieved through variations in structural configurations or designs. These
topics are explored using the folded-beam lateral micro resonator (FBLMR) as
the example device.

Finally, experimental results for an example MEMS device—a “passive in-

sifu micro strain gauge” [7.6}—are compared with theoretical predictions.

7.2 CHOICE OF MATERIAL MODELS

7.2.1 Basic Concepts

Design of MEMS structures and devices often requires prior structural
analyses to predict the mechanical response of the device. Structural analyses
of appropriate sophistication are performed employing derived or measured
material properties. Direct experimental methods are often used for the in-
situ determination of elastic moduli, e.g. the “Young’s modulus,” for
polysilicon [7.3, 7.13, 7.17]. This is achieved through measurement of an
observable response, R (such as a displacement, rotation, or the natural
frequency of vibration), of an elastic structure or device, followed by a

mechanical transformation to obtain the elastic modulus of interest.
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Both structural analyses for device designs and in-situ measurement
techniques are based on mechanical transformations of the form:

R=£(E) (7.1)
where E represents a set of one or more elastic moduli. These relations are
established either using an appropriate closed-form theoretical approach, such
as the theory of elasticity and structural mechanics theories (Euler-Bernoulli
beam theory, non-linear beam theories, plate theories, etc.), or through
algorithmic approaches, e.g. using finite element analysis [7.18]. The values
for E are then deduced using one or more observed responses and the inverse
of the mechanical transformation.

Advanced approaches to establishing mechanical transformations (Eq. 7.1)
have been employed in MEMS applications, e.g. through the use of higher-
order structural theories [7.18], or through more precise modelling of the
boundary conditions [7.19]. Implicit in all such approaches as applied to
polycrystalline materials, however, has been the adoption of a simplified
material model—namely that of a homogeneous isotropic medium. This
assumption, however, is not generally valid, only applying under certain
limiting conditions. When these assumptions are not valid, the increased
accuracy obtained by the use of more advanced structural thories is,
essentially, increasing the precision of an innaccurate approach.

The elastic properties of isotropic, homogeneous materials can be
characterized using only two independent parameters, e.g. Young’s modulus,
E and Poisson’s ratio, v. A unique value of E, for example, is meaningful only
when describing isotropic, homogeneous materials. For MEMS structural

components composed of fine-grained polysilicon, a homogeneity
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assumption is valid only if a representative volume element (RVE) exists
(§4.2.1). In such cases, sufficient numbers of crystal grains exist for statistical
averaging to be valid in determining homogenized materijal properties.
Furthermore, for untextured fine-grained samples, the material can be treated
as being isotropic since the single-crystal anisotropies are uniformly averaged
out in all directions.

Textured polysilicon, however, is anisotropic. For some textures, e.g. {100}
or {110} perpendicular to the thin-film surface (§3.2 and §4.3), a plane of
symmetry exists and the material is transversely-isotropic {7.18]. For those
cases, a “Young’'s modulus” for the material usually refers to the planar
Young’s modulus. Since many MEMS structures and devices are planar, their
behavior can be described using isotropic material models. For out-of-plane
behavior of textured samples, however, isotropy assumptions are incorrect.

For all other textured homogeneous cases together with non-
homogeneous cases the notion of a unique value for the Young’s modulus of
the polycrystalline material samples is both imprecise and incomplete.

Figure 7.1 illustrates a flow chart defining different material-structure
classifications as Class 1, II, III, and IV for given structural dimensions. Each
material-structure classification requires a different material modelling
approach. Failure to apply the appropriate material model invalidates the
mechanical transformation of Eq. 7.1 and can produce at best misleading, and
sometimes meaningiess results regardless of the level of sophistication of the
structural analysis method. For example, the irreproduceability of certain
experimental results in different microfabrication laboratories or the widely
differring reported values for elastic moduli, say, E [7.15] can be partly

attributed to such innapropriate uses of material models in the various
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methods of analysis. The example problem which now follows illustrates

some of these inconsistencies.

Polycrystalline
Material
RVE
Valid ?
Y N
Textured ?
N Y
ymmeiry
Plane ?
Y
T’II!IIIIIIf
Polycrystalline Polycrystailine Polycrystalline ] Multicrystalline f
Homogeneous Homegeneous Homogeneous Inhomogeneous [
Isotropic Trans. Isotr. Anisotropic Anisotropic |
A A A AT A A /4:
Class I Class II Class Il Class IV

Fig. 7.1 Identification of Material-Structure Classifications I through IV

7.2.2 Example Problem

Three of the four material-structure classifications of Fig. 7.1 are examined
in the context of an example problem. For these problems, all crystalline
imperfections such as dislocations, effects of dopants, etc. (see §3.2.1) are

ignored. Thus, the results only illustrate the response variations related to
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differring material microstructures. The inclusion of the effects of
imperfections in the analysis would introduce additional variations and
therefore should net invalidate any of the following results and inferences.
First, a fine-grained sample with perfect disorder (i.e. untextured) is
chosen. To a good approximation, this is a homogeneous and isotropic
medium (Class I) and an exact solution for the value of E exists (see §4.2.3,
where using Egs. 4.10-13, an iterative solution is found). Using the following

values for the elastic constants for silicon (crystaline state) [7.12]

C,, =165.6 GPa
C,, =63.8 GPa (7.2)
Cy =795 GPa
the n-th order bounds on E for an untextured sample are found to converge
to 162.8 GPa as n — o {see §4.23 and Fig. 4.2).

Polycrystalline, homogeneous, but anisotropic samples (Class III), e.g. fine-
grained material with {110} texture, would exhibit anisotropy. For the case of
{110} texture, there would be in-plane orthotropy and analysis of problems
would need to use orthotropic beam behavior models.

Next, the material is assumed to be fine-grained, but with {100} texture
perpendicular to the thin-film plane (Class II). This configuration results in
transversely-isotropic properties. The material is still homogeneous and the
problem can be treated deterministically. However, with incomplete statistical
information regarding the grain shapes, only bounds on the elastic properties
can be established. With only volume fraction information, i.e. the
orientation distribution function (ODF), the bounds on E are the lst-order

Voigt and Reuss bounds (see §4.2.3). The derived Voigt, and Reuss bounds for
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{100} texture, Ejjy,, Efy, and the Hill (arithmetic) average, Ejy,, are given
below (VRH values):
El, =166.3 GPa

E%,, =1611 GPa

A simple end-loaded cantilever beam problem shown in Fig. 7.1(a) is
chosen to illustrate the outcomes of the analysis using the different material
assumptions.

Employing Euler-Bernoulli beam theory for a homogeneous and isotropic

material, the inverse of Eq. 7.1 is

3
%}

where R = A is the tip displacement and I is the moment of inertia of the cross
section. Taking L = 10 um, beam thickness f = 0.25 uym, d = 1 gm, and P =1uN,

the beam deflection, 4 = 9.828 x 102 um =4 for the untextured case. For

iset ropic
{100} texture, the VRH values for A are found to be:
Al =0.9794

A{}iﬂm =1 01 IAisorropr':
H
Al =0.9954,,.

isotropic

(7.5)

The end-loaded cantilevered beam, shown in Fig. 7.2(b), is made up of a
relatively small number of crystals arranged randomly, corresponding to a
Voronoi tesselation of Poisson points in two-dimensional space with 4 =3
pm-2 (see §5.4). With o = 1.562, i.e. representing silicon, {100] texture, d = 1
um, P =1 4N, and a beam thickness of 0.25 um, the average size of the crystal
grains relative to the dimensions of the beam is such that a RVE does not exist

(Class IV). For this problem basic assumptions such as plane sections
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remaining plane are invalid and the Euler-Bernoulli beam theory does not
apply. Furthermore the uncertainty associated with the shapes, sizes, and
orientations of the individual grains that make up the beam means that the
problem cannot be solved by deterministic means. Hence, a probabilistic finite
element solution is sought. The results are obtained in the form of mean and
C.0O.V. using the simulation model (Chapter 5) and in the form of a

probability density function (PDF) using the random field model (Chapter 6).

N L=10d >
—
@ N b L
N P

= L=10d -]

o N AR LK

Fig. 7.2 End-Loaded Cantilevers: (a) Homogenizable (Class I, I, or III); (b)
Inhomogeneous—Multicrystalline Structure (Class 1V)

Using the simulation model, the mean of the response, 4, is found to be

0.9904 with a coefficient of variation (C.0.V.) of approximately 3%. This

wotropic /
involved simulation of 100 beams and their repeated finite element
modelling and analysis. The finite element discretization is as formulated in
Chapter 5.

The random field solution for the problem is based on the correlation
model developed in §6.3.3, discretized using the “EOLE” method [7.5] and
using variable stiffness beam elements [7.14] in conjunction with the first-
order reliability method (FORM) and associated sensitivity results [7.9] to

evaluate the PDF of structural response. For the cantilever problem shown in

Fig. 7.2(b), 20 random variables are used in discretizing the random field,
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together with 100 beamn elements, consistent with the correlation length
requirements of the random field. The PDF of the cantilever tip displacement,
A, is derived and the coefficient of variation (C.0.V.) of response is found to
equal 3.14%. The results for the above are summarized in Table 7.1 and are

shown graphically in Fig. 7.3.

Table 7.1 Cantilever Tip Displacement Results

Class 1 Class 1 Class IV
By =0.9798 i | Ha-04=0.9594, 0
_ -2
Auorope = 9.828X107Um | pn 09954, 1a=0.9904,, .
Al =1.0114,, . | Ha+04=1.0214,,.
14 :
12 4 & ! \ =~ PDF
10 + : E — Voigt (V)
8 na : f -7 Hlﬁ
E v i Reuss (R}
& 6+ o
Vo PDF Mean
4 r J || Untextured
2 4 A
Vol
0 o W— — S ; —
090 0.95 1.00 1.05 1.10

Normalized Tip Displacement, A/A ...

Fig. 7.3 Tip Displacement Results for Class ], II, and IV Problems

Results for Class IV quantify the uncertainty in the structural response,
This uncertainty arises from the random grain sizes and shapes, and the
variation in individual grain orientations. It is clear from Fig. 7.3 that the

Voigt and Reuss bounds are apparently “violated” by a significant proportion
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of the outcomes. Note, however, that the assumption for the validity of the
Voigt Reuss bounds do not apply for Class IV materials (see §4.2.1). The
uncertainty in structural response will diminish as crystal grain sizes become
smaller relative to the beam dimensions.

For a sufficiently large number of grains such that a RVE exists, the CO.V.
of response will be negligible, such that a deterministic approximation would
be appropriate. This would reclassify the problem as Class II. Hence, for the
crystal geometry defined by the Voronoi diagram, the “exact” homogenized
result—i.e. convergent bounds when full statistical information is
available—coincides with the mean response. This result, as expected, is
within the Voigt and Reuss bounds. The Hill estimate (the arithmetic mean
of the Voigt and Reuss bounds}, however, does not coincide with this value.
Nevertheless, the Hill estimate, although ad hoc, is the best approximation
based on first-order textural information such as the ODF.

In the design of structures, incorrect material models would result in
incorrect response predictions. Furthermore, deriving material properties
such as Young’s modulus from experimental observations would also result
in similar errors in the predicted values. The incorporation of appropriate
material models in the design/analysis/testing process is therefore necessary
for more reliable results. For example, consider a Class IV material with {100}
texture in the cantilever beam problem outlined above. An incorrect
homogeneous isotropic material assumption would result in an error of 1%
in the estimate for the average end deflection, while incorporation of {100}
textural information and use of the Hill estimate (i.e. assuming material
homogeneity) would reduce this error down to 0.5%. In both cases, the

inherent uncertainty in the results, namely a C.O.V. of 3.14%, has not been
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accounted for. The above discrepancies, while small in the context of
mainstream structural engineering, can be significant in the context of MEMS,
where a high degree of precision in predicting structural response is often
required. Furthermore, materials exhibiting higher degrees of anisotropy than
polysilicon, will further accentuate the above discrepancies.

For many applications, oversights on material modelling accuracy have
gone unnoticed due to their relative unimportance. Residual stress effects, for
example, have often dominated structural behavior. Certain self-calibrating
devices have also been designed which overcome the unpredictable structural
response [7.2]. Nevertheless, with the increasing push to the frontiers of
miniaturization, the knowledge and use of material modelling techniques
that take into account the deviations from isotropy and homogeneity
becomes increasingly important. Hence, methods that can capture these

material behaviors will have increasing demand.

7.3 STRUCTURAL COMPONENTS—BEAMS IN FLEXURE

There will always be a finite coefficient of variation associated with a
property of interest, i.e. one can never assign an absolute deterministic value
to, say, the Young’s modulus of a material. Practically speaking, however,
when the C.O.V. is lower than a certain level, the problem effectively
becomes deterministic.

A quantifiable method of determining whether the problem is effectively
deterministic is to define finite bounds for the response of interest within
which a “sufficient” proportion of random outcomes can be expected to fall,
e.g. 95%. In Chapter 4, the Voigt-Reuss bounds on E for polysilicon were

shown to be relatively narrow due to the relatively small anisotropy of silicon



7.3 STRUCTURAL COMPONENTS—BEAMS IN FLEXURE 174

(a = 1.56). These bounds are therefore used as an example for determining
whether the lateral stiffness of a multicrystalline beam can be considered as
being deterministic.

The beam analyzed in §7.2.1 is re-analyzed with different displacement
and force boundary conditions such that the lateral stiffness of a beam of

length L and width w can be found. The desired boundary conditions are as

follows:
u=0
W =0 }at x=0
(7.6)
=1
S =0 }at x=L

where u and u’ denote the transverse displacement and slope of the beam,
respectively. In this example, results are generated for the vertical reaction at
u =L, i.e. the equivalent lateral stiffness of the beam given the displacement
boundary conditions in Eq. 7.6.

Fig. 7.5 illustrates the above concepts. The unshaded area represents the
probability that the Voigt and Reuss bounds are not “violated”. This is
mathematically defined as

P(k* <k <kV)=F (k)= F (k) (7.7)
where F, (k) is the cumulative distribution function. For a normally
distributed k?, i.e. N(i;, ox), Eq. 7.7 can be rewritten as

P(kF <k<k’)= @[u]— ¢[u) (7.8)

Oy O

where @(.) is the standard normal probability.

t Values for k are bounded by the 0-th order bounds, -0} and K*0) however, the normal
distribution is an acceptable approximation since these bounds are relatively wide.
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Fig. 7.5 Proportion of Outcomes Qutside the Voigt-Reuss Bounds

The non-dimensional plot in Fig. 7.6 shows this equation graphically

against the (C.O.V. of k)/ Q{),. where

v R
Euoo; - E{me}

Qi = [—Eﬁ--_w—) ~0.03177 (7.9)
1100)

for polysilicon and where the varying values of § represent normalized
deviations of i from kH defined by

A
[‘uk—(kv-f-kR)/Z} +1 when H, =k

=< 0 when y, =k" (7.10)
k' - k%) /2 )
(K- i%)/ —1 when g, = k"

o=

An acceptable proportion is chosen from the y-axis and the corresponding
upper bound on the C.O.V. of k is found.

The C.O.V. of k is determined using stochastic finite elements and the
random field models of Chapter 6. Coefficients of variation for beams with
different grain sizes and lengths are evaluated and shown in Table 7.2. The
mean number of crystal grains within each beam (L,A) is given by the product

ALlw.
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Fig. 7.6 Probability of not violating Voigt-Reuss Bounds vs. C.O.V. of Lateral
Stiffness, k (valid for all A, w, L)—{100} Texture

Table 7.2 Effect of Beam Length on the C.O.V. of Lateral Stiffness, k for
“Multicrystalline” Silicon Beams of Width, w = 1 um, and {100} Texture

L=10pum { L=20pym | L=40pum
A=1/{pm)? 3.20% 4.42% 6.11%
A =3 /{um)? 2.29% * *
A =9 /{um)? 1.38% * *

* Not analyzed
From Fig. 7.6, the proportion of outcomes within the VR bounds are
determined and are compared with a suitable pass rate for the application of
interest, e.g. 95%. This procedure may serve as a preliminary test for

evaluating the need for more costly probabilistic analysis.
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7.4 DEVICE ANALYSIS AND DESIGN
7.4.1 Beam Super-Element

Numerous designs of MEMS use beams as the main structural element, e.g.
folded beam lateral micro resonators (FBLMR) [7.16], in-sifu micro strain
gauges [7.6], etc. These structures can be modeled in detail using a simulation
of the detailed crystal grain microstructures (Chapter 5) or using random
fields (Chapter 6). The shear scale of such a model may be impractical for
routine computer implementation. Additionally, the designer is not usually
interested in the detailed within-beam quantities such as stresses,
displacements, etc, but rather in the global beam responses and how these
affect the device behavior.

For example, the natural frequency of vibration of a FBLMR is governed by
the effective stiffnesses of the folded beams and the associated uncertainties.
The geometry of the beams are nominally identical and with their close
proximity within the die, it is reasonable to expect that their stiffnesses will
have identical probability distributions.

The random field approach provides an efficient means for a probabilistic
study of micro-electro-mechanical systems consisting of multicrystalline
micro-beam elements with arbitrary geometry and boundary conditions. By
developing beam super-elements, the response of devices with complex
structural configurations can be readily estimated using existing finite-
element models. For these cases, the response of interest is the device global
response, e.g. the natural frequency of vibration of a resonator, and not the
within-beam variations of displacement, rotations, etc.

For the typical sizes of these beams, the spatial randomness in the material

micro-structure is dictated by the fabrication process conditions such as
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deposition temperature, gas flow rate, anneal time and dopant concentration.
These process conditions can produce random grain sizes and orientations of
the type shown in Fig. 7.7 (a). This results in uncertainties in the effective
axial Young’s modulus as shown in Fig. 7.7 (a). Additionally, there are
dimensional uncertainties, such as variations in beam length, width—Fig. 7.7
(b)—and thickness that can contribute to the uncertain response of the micro
beam in various MEMS applications, e.g. folded-beam resonators and passive
micro strain gauges {7.6]. Boundary condition uncertainties may also be
present and need to be modelled accurately for a satisfactory estimation of the
effective beam stiffness uncertainty (e.g. see example problem in §6.6.2).

The lateral stiffness of micro-beams used in MEMS, e.g. folded-beam
microresonators, Fig. 2.4 [7.16], are probabilistically characterized using the
methodology described above, e.g. the lateral stiffness k, is characterized using
its mean, yi, and standard deviation, oy using the same methodology shown
in §6.3.4 and §7.3. These are then used to model the structural response of the
device, for example, the natural frequency, @: uy, oy as shown in the
following section. The complete beam in the device of interest is therefore
treated as one element—the beam super-element—with lateral stiffness k

characterized using u and ox .

7.4.2 Analysis and Design of Lateral Micro Resonators

The basic features of the folded-beam micro lateral resonator {(FBMLR)
have already been described in §2.3 (also see Fig. 2.4). This device can serve as
both a sensor and an actuator and its versatility has been used in numerous

applications of MEMS [7.13, 7.16].
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u;=1, u,muy= 0

(d) !

u,=1, u;=ug=90 uz;=1, u;=u,=0

Fig. 7.8 Structure, DOFs, and Deformed Configurations of the Folded-Beam
Lateral Micro-Resonator

The response of this device is modelled using beam super-elements of the

type discussed in §7.4.1. Fig. 7.8 (a) shows a structural model with the three
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degrees of freedom. The four beams, 1, 4, 5, and 8 are rigidly connected at one
end to the shuttle mass and at the other end to a connecting bar (assumed to
behave rigidly). Beams 2, 3, 6, and 7 are rigidly connected at one end to the
connecting bar and at the other end to anchor points that are the supports for
the structure. The comb-drive mechanism is designed such that the shuttle
mass is only free to move in the lateral direction denoted as degree of
freedom (DOF) 1 in Fig. 7.8 (a). DOFS 2 and 3 correspond to the lateral
movement of the rigid beams. Figs. 7.8 (b), (¢), and (d) show the deformed
shape of the structure when each of the DOFs takes on the value of unity,
while the others are kept equal to zero. The stiffness coefficients for the 3x3
structural stiffness matrix can be deduced from these deformed shapes.

The equations of motion for free vibrations of the FBLMR can be written in

matrix form as
Mu+Ku=0 (7.11)

where M and K are the 3x3 mass and stiffness matrices, respectively. K is

defined in terms of k;, i = 1,8, the individual beam lateral stiffnesses, as

k,+k, +k, +k, ~k, — k, ks -k,
K= -k, -k, k,+k,+k, +k, 0 (7.12)
-k =k, 0 k+k, +k, +kg

The equivalent system represented by the three-bay shear frame with
massless first floors shown in Fig. 7.9 may be more familiar to structural
engineers. Ignoring axial effects, the equations of motion for the two systems
are identical.

The entire comb-drive structure is part of the shuttle mass (see §2.3),

therefore, the beam and connector masses are relatively negligible and can be
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ignored’. The resultant mass matrix M therefore has only one non-zero term,

namely M =m.

m
I
ky ky ks ks
(Em—— - ; I 3
k; ky ky ke

/L

Fig. 7.9 Equivalent 3-Bay Shear Frame with Mass, m, Stiffnesses, k;, and
Degrees of Freedom 1, 2, and 3

The eigenvalue problem for free vibrations of the FBLMR is now solved:

det(K - 0’M)=0 (7.13)
with solutions, w;, 7 = 1,2,3, as the modal natural frequencies. The square of

the natural frequency in the fundamental mode is given by the smallest of

the narural frequencies, w,,, = @,, where the eigenvalue solution is given by

W% g = (kkokg + Kok ky + Kooy + Kok + kkokg + kokkg + ok, + kok kg +
kok ks + ko k kg + kkokg + Kok + ko kok, + kkok, + kkk, + kkk, +
kok,k, + kk .k, + kkk, + kkk, + kkk, +kkk, + kkk, +kkk, + (7.14)
kik kg + Kok k, + kikokg + ok, + kok g + Kk ks + kkoke + kkoks)
+[m (k,+ 4y + K Yks + ko + Ky +K)]
For k; = deterministic constant, i = 1, 8, the fundamental mode shape is 1, 0.5,

0.5]" which is shown schematically in Fig. 7.10. This is equivalent to the mode

shape of the mean system.

¥ Pratt et al. [10] have incorporated the masses of the stiffener and the beams for a more precise
derivation of the mass matrix M. This adjustment, however, will only alter the mean value of
the natural frequency, @, and does not have a significant impact on the uncertainties in w.
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=1, u,=uy=05
Fig. 7.10 Fundamental Mode Shape for mean FBLMR
For identically distributed, independent random variables k;, with mean
Ui, the first order approximate mean value for the natural frequency of the

FBLMR, M, is derived from Eq. 7.14 by substituting y; for k;:

=y 2 (7.15)
m

Two different resonator designs are now considered that have the same
mean value for the natural frequency of free vibrations. These are shown
schematically in Fig. 7.11 (a) and (b).

The single-degree-of-freedom (SDOF) systems’ stiffnesses are established in
a similar manner to the above, and the fundamental natural frequencies are

derived to be:
2 _ k+k+k +k,

B ns o {7.16}
Wy = ——k‘;kz (7.17)

Both systems have the mean natural frequency as in Eq. 7.15.
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Note that the masses of the two designs have been adjusted such that the
mean value of the natural frequency is the same for all three designs. Using
this arrangement, the effect of resonant structure design on U, & 0, can be
assessed.

Structural reliability concepts [7.9] are used to efficiently determine the
response statistics. By defining the limit-state function as

E=Wp,,— O, (7.18)

the cumulative distribution function of @png is computed as

F, (w)= [ fy(x)dx (7.19)

g<C

2m

Fig. 7.11 (a) Four-Beam and (b) Two-Beam Fixed-Fier:l’ Lateral Resonators
where x denotes the set of random variables with joint PDF f,(x). By
substituting the appropriate expression for @, in Eq. 7.18, i.e. from Egs. 7.14,
7.16, or 7.17, each limit-state function is defined. The integral is then

computed using the first-order reliability method [7.9]. The PDF of w,,, is

computed as the sensitivity of the above integral with respect to @,, i.e.
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oF,
fo (@)= —sme e (7.20)

The spread in the results using a coefficient of variation (C.0.V.) of 1% for
k is shown in Fig. 7.12 for the resonators in Fig. 7.8, and Fig. 7.11. Clearly,
using more beams reduces the uncertainty in the resonant frequency. Figs.
7.13 and 7.14 show the variations in resonant frequency when using beams of
different lengths. The structure studied is from Fig. 2.4, i.e. the folded-beam
microresonator. The absolute value of the spread in the results reduces with

increased length, however, the effect is the opposite in relative terms (i.e. the

C.0.v.s).
250 -
Fig. 7.8
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Fig. 7.11(a)
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Fig. 7.12 Spreads in the Random Natural Frequencies About the Mean Value

990 995

As there are more crystals to average over, beams with smaller grain sizes
have lower response standard deviations. Similarly, when a device is
employing more beams, and/or longer beams there will be a reduction in the
standard deviation of response. This can be used advantageously in designs of

lateral micro-resonators when the grain size cannot be made smaller due to
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other constraints. For a fixed grain size, FBLMRs with longer beams and with
appropriate adjustments in the shuttle mass and beam widths (such that the
desired mean value for the natural frequency is maintained} will have
reduced uncertainty in their natural frequencies.

The uncertainties in the micro-beam stiffnesses reduce with increased
length, L, thus resulting in reduced standard deviation for the resonant fre-

quency (Fig. 7.13). Note, however, that the C.O.V.s tend to increase (Fig. 7.14).
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7.4.3 Probabilistic vs. Deterministic Analysis

Depending on the level of uncertainty in the response of interest,
probabilistic analysis may be necessary for a MEMS device. It should be clear
from the previous sections, however, that problems where a RVE does not
exist and where the component responses, e.g. beam lateral stiffnesses, are
unacceptably uncertain can still be treated as deterministic if the device design
has resulted in an acceptably low C.O.V. for the response of interest. Indeed,
many of the current designs of MEMS devices result in significant reductions
in the uncertainty of the device response as compared to the structural
component response. The FBMLR with eight relatively long beams is a very
good example of such a design. The design features for this device have been
dictated by requirements such as stability, levitation control, and stress relief
features (e.g. the folded beam design allows free outward extension of the
beams during annealing). The resulting design satisfies these requirements
and fortuitously reduces the uncertainty in the device response.

For MEMS devices, the required level of precision in performance is often
much higher than, say, civil engineering structural applications. Therefore,
for adequate performance of many MEMS devices, although C.O.V.s of
approximately 1% considered in previous sections may appear to be very
small, they may still have to be accounted for or reduced. An example device
where such precision is of paramount importance is the microelectro-
mechanical filter where a pair of FBLMRs are used either in series or in parallel
[7.8]. The device performance relies on a precise small difference between the
natural frequencies of the two resonators.

By recognizing the parameters contributing to the reduction of the device

response uncertainty, the MEMS designer can directly address the issue of
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device response uncertainty. For many cases, devices can be designed that will
have an essentially deterministic response in spite of uncertain component

characteristics.

7.5 ANALYSIS OF A MICRO STRAIN GAUGE

7.5.1 Device Description

Fig. 7.15 shows the conceptual diagram of a passive micro strain gauge
[7.6]. The response of the slope beam is the subject of the probabilistic analysis
here. The wafer is first deposited with a 2.5 um thick layer of phosphorus-
doped glass (PSG) and the anchors are opened to the substrate (mask #1). The

Vemier Gauge

Tensile AR ——» Compressive
Strain z Stl:'ain
s
| Indicator Bearn
Siope Beam .
j Anchor
Tesi Beam

_ Anchor

Fig. 7.15 Schematic Diagram of a Passive in-situ Micro Strain Gauge
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structure layer, polysilicon with thickness of 2 um, is then deposited at 605 °C
and is followed by a 0.5 um thick PSG deposition. A high temperature {900 °C,
two hours) drive-in/annealing step is then executed to dope the structure
with phosphorus. The wafer is then patterned and etched to form the strain
gauge (mask #2). The residual strain can be calculated by observing the
displacement of the vernier gauge after removing the PSG layers in 5:1 BHF

(buffered hydro-fluoric acid).

7.5.2 Structural Model

The structural model for the in-sifu micro strain gauge assumes the test
beam to be infinitely rigid relative to the slope beam. With this assumption,
the slope beam can be modeled with both ends fixed. The rotation at mid-
span is estimated when one end of the slope beam is subjected to a lateral
deflection (equivalent to the extension or contraction of the test beam). This is

shown schematically in Fig. 7.16.

Indicator Beam

N

§ Slope
Beam

]

E()I(x)
v
L L/2 L L/2 L
A A g

Fig. 7.16 Slope Beam Structural Model
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Assuming Euler-Bernoulli beam theory to be wvalid, the slope beam mid-
span rotation, 6, is expressed as:
L2

jﬁ [4(1-2x)/EDI)] &

Ul P

j [%(1-»%::)2/2(1)1(2:)] 2

4]

8= (7.21)

If E(x) and I(x) are constant along the slope beam, the mid-span rotation
would be independent of the lateral stiffness of the slope beam. Due to
microstructural uncertainties and unevenness of etch, however, there are
small variations in both E(x) and I(x) which result in variations in the mid-

span rotation.

7.5.3 Experimental Results

Tensile strain is found in the above process and the histogram of the
vernier gauge measurements for 54 different structures is shown in Fig. 7.17,
indicating a coefficient of variation (C.O.V.) of approximately 10% [7.6]. Each
individual strain gauge, however, was located on a different die of the same

wafer. Variations in strain are to be expected over the area of a wafer.

Number
25

20

15 4

1.2 14 i6 1.8 20 2.2 24

Vernier Gauge Movement,um

Fig. 7.17 Histogram of the Vernier Gauge Readings for 54 Cases
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7.5.4 Theoretical Predictions

The measured response of the strain gauge is the slope beam rotation at
mid-span, which is proportional to the vernier gauge readings. Table 7.3
summarizes the coefficients of variation (C.0.V.) of the response for various
slope beam lengths, L,, and for various grain sizes which result in Young'’s
modulus variations. Three different slope beam lengths: 20 um, 40 um, and
80 pm, and three grain sizes: A=1, 4 =3, 1 = 9 (A being the mean number of
grains per unit area) are simulated. It is found that longer beams and larger
grain sizes give higher C.O.V.s for the response. Table 7.4 summarizes
simulation results for different beam width variations. Two cases—3% and
6% C.O.V. for w—corresponding to different levels of uncertainty, are
simulated, 6% approximating the real test structure. The larger width

variations result in higher C.0.V.s for the response.

Table 7.3 Coefficient of Variation of Slope Beam Rotation Due to Young's
Modulus Variations

L =20 L =40 L, =80

A= 1.14% 1.58% 2.01%
= 0.91% 1.32% 1.66%
=9 0.66% 1.04% 1.34%

Table 7.4 Coefficient of Variation of Slope Beam Rotation Due to Beam
Width Uncertainties

Ls =20 Ly =40 Ls =80
COV.ofw =3% 0.80% 1.12% 1.54%
COV.ofw =6% 1.56% 2.21% 3.12%

The probabilistic analysis predicts a maximum C.O.V. of approximately

1.14% for the response due to the random grain structure and a C.O.V. of
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approximately 1.56% due to the beam width variations. Assuming these two
events to be independent, the total C.O.V. would be 1.93%. This would
correspond to a set of nominally identical structures, measuring the same
residual strain. This estimate does not compare well with the experimental
results referred to above (C.O.V. of 10%). Those results, however, are based on
residual strain measurements made throughout one wafer and, therefore,
may not be measuring identical strains. Measuring residual strains within
one die using up to 100 nominally identical strain gauges should show much
smaller C.0.V.s. Experimental measurement errors, angle variations of the
beam cross section, variations in the film thickness, and boundary condition
uncertainties could be additional sources of uncertainty that are not
accounted for in this example. These effects, however, should be small
compared to those that have already been modeled.

Additional experimental results for four sets of 100 nominally identical
strain gauges on a single die have also been generated by Lin {7.20]. While not
refuting the theoretical predictions noted above, the gauge readings lacked the
necessary resolution to allow the calculation of the small variation in the
slope beam mid-span rotation. A redesign of the vernier scale would be

necessary to capture a more precice set of readings.

7.6 SUMMARY

Four classifications are defined for polysilicon MEMS. Classes 1, Il and III are
homogenizable since a representative volume element (RVE) exists. Class I is
composed of untextured material and is therefore isotropic. Class II is
textured, but with a plane of symmetry coincident with the structural

geometry of the device and is therefore transversely isotropic in that plane.
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Class Il is textured, but without a plane of symmetry coincident with
structural geometry of the device, and is therefore anisotropic. Class IV is not
homogenizable since an RVE does not exist. Examples are presented for Class I,
Il and IV problems. The Chapter concentrates mainly on Class IV polysilicon
MEMS example devices and structural components since existing models and
analysis approaches are most inadequate for this Class.

Section §7.2 highlights the importance of choosing material models
appropriate for the dimensions, excitations, and controlling responses of
MEMS devices. For homogenizable cases (Classes I, II, and III), the first-order
Voigt and Reuss bounds are adequate in describing the elastic response of
MEMS devices composed of polysilicon. For cases where a RVE does not exist
(Class 1V), an uncertainty in the material properties is introduced due to the
geometric and textural variations of the material microstructure. This
translates into elastic moduli best described by random fields, e.g. Young's
modulus, E(x) (§6.3).

For “multicrystalline” beams (Class IV), uncertainty in E(x) leads to
uncertainty in the lateral stiffness of the beam, k, which then translates into
uncertainty in the response of the device (composed of one or more beams).
Although uncertainties at the component level may be too large, the
performance at the device level is usually the gauge as to whether it is
necessary to undertake probabilistic analysis.

Examples showed how design changes can result in lower Class IV device
response uncertainty. The models developed here can be used to estimate the
response of different designs, thus avoiding costly trial and error in actual

fabrication and testing of prototype designs.
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A shear beam super-element is derived and employed in the analysis of an
example device—the folded-beam lateral micro-resonator (FBLMR). This
model captures the global behavior of multicrystalline beams. The element
can be conveniently incorporated into existing MEMS analysis tools, either
through direct definition of the element, or by substituting an equivalent
effective Young’s modulus (as a random variable) for a standard shear beam
element.

An example was presented to make a practical comparison. A passive in-
situ micro strain gauge was modelled and the response uncertainties were
predicted. The experimental results, although not disproving the theoretical
predictions, could not verify the exact uncertainties due to resolution
problems with the device design.

The models and approaches presented here are a first attempt to
incorporate uncertainties in the modelling and respense prediction of MEMS.
Improvements are possible at all levels—for the material microstucture
models, structural element models, or device models—and recom-

mendations for future work in this area are discussed in §8.2.
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Chapter 8

CONCLUSIONS
& RECOMMENDATIONS

8.1 CONCLUSIONS

The mechanical response of Micro-Electro-Mechanical Systems (MEMS) is
governed by the properties of the constituent materials. For IC-process based
micromachined MEMS, the process conditions and device dimensions often
result in structural components for which assumptions of material isotropy
or homogeneity may be invalid. These effects pose challenges for analyzing
and designing such devices, especially as MEMS technology pushes the
frontiers of miniaturization.

Homogenization techniques are shown to be readily applicable to
polycrystalline silicon—the chief constituent material in 1C-process based
MEMS. For many applications, the inhomogeneities of a polycrystalline
aggregate can be homogenized, or averaged out, when the scale of the
microstructure is far smaller than the structural dimensions of MEMS devices.
For such cases, a representative volume element (RVE) is said to exist, a basic
requirement for homogenization. The low degree of anisotropy of silicon is
shown to result in relatively narrow first order bounds on the elastic
properties of polycrystalline samples. The first-order Voigt and Reuss bounds
are relatively easy to compute as they only require first-order statistical

information regarding the material microstructure, i.e. the orientation
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distribution function (ODF). The ODF is easily obtained using well-established
laboratory techniques. The deterministic analysis employing homogenized
material properties is a generally more consistent approach than assuming
transverse isotropy for a particular microstructure and measuring the
“Young’s modulus” by experimental techniques. The texture measurements
will first confirm whether transverse isotropy can be assumed, and the
homogenization would allow the prediction of out of plane responses.

Polycrystalline inhomogeneities, however, cannot be averaged out when a
structural member consists of a relatively small number of grains, i.e. when a
RVE does not exist. Length scales associated with MEMS and the process
conditions which may require high degrees of annealing result in relatively
large grains that are of the same order of magnitude as the smallest
dimensions of the structural components. This results in the material
behaving as an inhomogeneous continuum. Moreover, the material’s micro-
structural characteristics, e.g shapes, sizes, orientations, or arrangements of
the crystal grains, are generally uncertain. This uncertian inhomogeneity
translates into a material with uncertain mechanical properties. In such cases,
for example, the concept of a deterministic “Young’s Modulus” is no longer
applicable.

When a RVE does not exist, structural responses may lie outside the range
predicted by the Voigt and Reuss bounds. This is normally the case for large
grained samples. An example problem has been presented which
demonstrates the probabilistic nature of the structural response (§7.2.2). The
tip deflection of an end-loaded cantilever polysilicon beam was analyzed for a
beam width of 1 pm and an average grain area of 0.33 pm2. For this

configuration, the structural response had a C.O.V. of approximately 3%.
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With this level of uncertainty, a large proportion of outcomes would fall
outside the range predicted by the Voigt and Reuss bounds on the effective
Young’s modulus.

A finite element simulation model has been developed herein which .
captures the geometric and orientational uncertainties of the material and
which predicts the mean and standard deviation of response for structural
members composed of such materials. The model methodology is applicable
to any geometric arrangement of crystal grains which can be approximated
using straight-edged polygons. A mathematical construct—the Voronoi
diagram-—is used in this dissertation as an analytically-derived substitute for
an observed dataset of the microstructural geometry of polycrystalline silicon.
Owing to the degree of detail to which the material is described, the model
can predict both local and global effects.

This simulation method, however, involves computationally demanding
re-meshing for each simulation and is specific to the boundary conditions and
to the structural geometry of a particular problem. A large number of
simulated analyses are normally required before convergence is achieved in
the mean and standard deviations of the response. A computationally more
efficient random field model is developed which addresses this problem. This
model is developed for application to beam problems and is calibrated using
the simulation model. Structural response analysis involves either several
FORM /SORM analyses in order to obtain the probability distribution function of
the response of interest or a more simple second-moment approach yielding
the mean and standard deviation of response. Moreover, the random field

model need only be defined once for a particular beam depth and grain size.
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All combinations of beam length and force and displacement boundary
conditions can then be analyzed using the same model.

An example problem is used to illustrate the use of the more efficient
random field model.

For structural elements other than beams, a similar approach using
effective properties can be established. However, a more general approach
applicable to a wide variety of elements is developed herein, whereby the
stochastic material stiffness matrix is modelled as a random field. The
random field autocorrelation is established based on the chord-length
distribution of the constituent aggregates. This random field can then be
discretized for implementation with a finite element code in modelling any
desired continuum structure.

For modelling MEMS devices comprised of several structural members, e.g.
a lateral micro-resonator [8.9], the development of super-elements is shown
to be an efficient way of determining the device response characteristics. For
general devices comprising of many different structural elements, this super-
element approach is found to be a practical and effective method of analysis.

The importance of appropriate material modeling in the analysis of MEMS
structural components is established through the use of the developed
models in several examples. Through these examples, the “hidden” problems
of using inappropriate material models and the inconsistencies and
misinterpretations that would otherwise ensue are highlighted.

A simplified methodology is presented whereby the level of uncertainty of
a given problem is efficiently established, thus determining whether costly

probabilistic analysis is necessary at all.
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Finally, the material and structural component models are used to show
how the MEMS designer can be aided in selecting a combination of structural
dimensions and material grain sizes which minimize the uncertainty of the
structural response of interest. Often, the material microstructure is
predefined due to the electrical property requirements or due to the necessary
annealing which reduces detrimental residual stresses. The most fruitful
dimensional modifications can be gleaned from analyzing prototype designs
using the models developed in this dissertation. This would significantly
reduce the high cost of numerous prototype designs constructed in an ad hoc
manner through which a suitable solution is finally found by trial and error.

For example, the standard deviation of the lateral stiffness of large-grained
beams is shown to reduce with increased beam lengths—longer beams have
more grains, resulting in more averaging of properties. However, as beam
lengths are increased, the mean lateral stiffness of the beams is shown to
reduce at a faster rate than their standard deviation. This results in increasing
C.O.V.s for the lateral stiffness of long beams. For example, C.O.V.s of
approximately 3.2%, 4.4%, and 6.1% are predicted for 1 pm wide beams of
length 10, 20, and 40 pum, respectively (§7.3). These component C.O.V.s
translate into a corresponding C.O.V. for the natural frequency of a FBMLR.
The device C.0.V.s are generally lower than the component C.O.Vs (by
approximately 1/6th), however, the device design plays an important role in
determining this uncertainty: devices with more beams have reduced
uncertainty, while longer beams reduce the standard deviation of response
but increase the C.O.V.

The models and analysis procedures developed in this dissertation are the

first to address the inherent uncertainties in the response of MEMS
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components and devices. The application of the models shows the extent to
which the material uncertainties can affect MEMS structural response. The
existence of these response uncertainties has been established, while the issue
of appropriate analysis models is highlighted. Many of the concepts
developed herein can be directly applied to the analysis and design of practical
MEMS devices. Several of the models developed in this dissertation can be
further developed and applied to a broader range of structures and enable the
inclusion of additional features. These further developments together with
other areas that are deemed appropriate for further research are discussed in

the following section.

8.2 RECOMMENDATIONS FOR FUTURE DEVELOPMENT

8.2.1 Material Level

A necessary element for the use of the simulation model developed in
Chapter 5 is a detailed geometric description of the polycrystalline structure.
In this dissertation, for lack of sufficient data, the Voronoi diagram has been
chosen to generate fictitious “grain” geometries that are then used in the
simulations. A more realistic geometric modeling of the polycrystalline state
would be to calibrate the Voronoi model to match an observed ensemble of
microstructural geometries. In addition to matching the average grain size,
this may entail a non-uniform scaling of the Voronoi diagram to match the
shapes of the observed crystal grains. This calibration requires a large number
of transmission electron micrographs (TEMs) and development of a
theoretically sound methodology for studying the TEMs and performing the

calibration. Such calibrations would then be made for material



8.2 RECOMMENDATIONS FOR FUTURE DEVELOPMENT 205

microstructures arising from differing process conditions. The paper by
Stoyan et al. [8.8] develops some methods for performing such calibrations.

Another approach for modeling the microstructural geometric features
would be to develop analytic process simulation models, similar to work
underway in metallurgy [8.7]. These models generally use an analytic-
numerical approach in simulating the physical processes involved—
deposition, nucleation, grain growth, texture development, etc. These analytic
models can be calibrated using experimental observation to produce a very
efficient “active” database which will predict the detailed microstructure for
any desired fabrication process. The effects of dopant concentration, process
temperature and pressure, and varying anneal times can be modeled and the
resulting material microstructure be known in advance. Aside from allowing
an efficient and more reliable means of accessing microstructural information
for the purpose of simulating uncertain geometric features, this tool would
allow the prediction of different material properties and could, for example,
be used in developing processes to achieve improved electrical performance,
and aid in mechanical/electrical behavior prediction.

The generalized random field model (§6.6.2) can be applied to a variety of
2-and 3-D problems. The implementation of this model for the solution of
MEMS problems would entail the development of suitable finite elements.
The most suitable course of development would be to pose the problem in a
variational setting. The variation of elastic properties introduced by the
uncertain grain geometries and orientations is captured by the generalized
random field model of Chpater 6. Damaged states [8.10], crystal defects, and

residual stresses can be included in developing stochastic finite elements. By





