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Highlights

• Extracellular enzyme activity (Vmax), substrate affinity (Km), and the temperature 

sensitivity of Vmax and Km were established along a Mediterranean climate 

gradient in southern California.

• Fungal biomass, potential proteolytic activity, and substrate availability best 

explained variation in enzyme Vmax and Km along the gradient.

• Vmax and Km displayed positive temperature sensitivity along the gradient, and 

Vmax temperature sensitivity exhibited a negative relationship with site mean 

annual temperature during the wet season.
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22 Abstract

23 Microbial decomposers produce extracellular enzymes to degrade complex plant polymers, 

24 making plant C available for metabolism and eventual respiration back to the atmosphere as 

25 CO2. Knowledge of how extracellular enzyme kinetics and microbial activity vary with climate 

26 is therefore valuable for predicting how future carbon cycling may be affected by climate 

27 change, but studies investigating such dynamics in more xeric ecosystems are underrepresented 

28 in the literature. We investigated how microbial biomass, litter chemistry, and extracellular 

29 enzymes (Vmax and Km) and their temperature sensitivities varied along a Mediterranean climate 

30 gradient in southern California. Total microbial biomass did not vary among sites along the 

31 gradient in either the dry or the wet season. In contrast, extracellular enzyme Vmax and Km varied 

32 as a function of fungal biomass and substrate availability. We also found that Vmax and Km of 

33 most enzymes were more sensitive to temperature in colder sites than in warmer sites, though 

34 this relationship was seasonal for Vmax. Observed enzyme Vmax and Km were indicative of 

35 extracellular enzyme accumulation in the drier sites along the gradient, which may contribute to 

36 the large pulses of respiration that follow rewetting events in these xeric systems. Variation in 

37 enzyme characteristics along the gradient indicate that as these systems become more arid in the 

38 future, enzyme dynamics will shift from smaller, potentially more active pools to larger, 

39 potentially less active enzyme pools that accumulate over dry periods. In addition, rates of 

40 enzymatic decomposition will likely be most sensitive to rising temperatures in the coldest sites 

41 along our gradient.
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42 1. Introduction

43 Many microbes secrete extracellular enzymes (EE) capable of degrading complex 

44 biological polymers into bio-available compounds that fuel metabolism and respiration (Burns et 

45 al., 2013; Sinsabaugh et al., 1994). These processes account for a substantial fraction of 

46 ecosystem respiration from soils and litter (Raich and Schlesinger, 2002) and are affected by 

47 abiotic climate variables such as moisture and temperature that alter diffusion, reaction rates, and 

48 osmotic potential. In addition to these direct effects, climate indirectly shapes microbial 

49 communities by exerting strong control on the composition of plant communities (IPCC, 2014), 

50 thereby determining substrate availability for microbial decomposers (Saleska et al., 2002). 

51 EE catalysis of complex organic substrate degradation is the rate-limiting step in 

52 returning C from plant detritus to the atmosphere (Sinsabaugh and Shah, 2011), though physical 

53 protection of C and diffusion constraints can supersede the importance of enzyme catalysis in 

54 mineral soils (Schimel and Schaeffer, 2012). These substrates vary, from highly accessible 

55 disaccharides and starches to more chemically complex compounds such as hemicellulose, 

56 cellulose, and lignin. In the last few decades, decomposition dynamics have been related to 

57 microbial activity and assays of EE kinetics in a host of studies (Allison et al., 2007; see also 

58 references in Burns et al., 2013 and Sinsabaugh et al., 2008), but investigations of how EE 

59 characteristics vary in xeric ecosystems is lacking. In a 2008 global meta-analysis of EE activity 

60 in soils, 10% or fewer of the sites  were located in dryland ecosystems (Sinsabaugh et al., 2008), 

61 even though drylands make up ~40% of terrestrial ecosystems by land area (MEA, 2005).  

62 This knowledge gap is significant because decomposition models validated in mesic 

63 ecosystems and built around temperature, moisture, and litter chemistry consistently 

64 underestimate rates of decomposition in more xeric drylands ecosystems, such as semiarid 
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65 Mediterranean grasslands and arid deserts (Whitford et al., 1981).  As such, conclusions drawn 

66 from decomposition dynamics and EE kinetics observed in mesic ecosystems may not be 

67 applicable to more xeric ecosystems. This uncertainty complicates efforts to predict future 

68 carbon dynamics, especially given that xeric ecosystems are projected to become hotter and 

69 drier. This is especially true for  the American Southwest, where models are remarkably 

70 consistent in predicting a shift to a more arid climate beginning in the early part of the 21st 

71 century (Seager et al., 2007) and where temperatures are projected to rise by 2.5-5.5° in the next 

72 fifty years if global emissions continue to increase (Garfin et al., 2014). Determining how 

73 enzyme kinetics vary with climate in such drylands ecosystems is therefore a necessary step in 

74 predicting how decomposition rates in these systems may be affected by future climate change.

75 EE kinetics can be described by the Michaelis-Menten model, whereby activity (V) of an 

76 individual enzyme is described as a saturating function of substrate (S) concentration: 

77 V = Vmax[S]/(Km + [S])

78 where Vmax is the enzyme’s maximum reaction rate and Km, the half-saturation constant, is the 

79 substrate concentration at which the reaction rate is one-half Vmax. Given that enzyme 

80 concentrations in situ are controlled by feedbacks between microbial activity and substrate 

81 availability, conditions that are conducive to high EE Vmax should therefore also be conducive to 

82 high Km (Wallenstein et al., 2011). This is because high substrate availability makes enzymatic 

83 reactions proceed more quickly, resulting in more products that can be absorbed by microbial 

84 cells to fuel further enzyme biosynthesis. While we expect EE kinetic parameters to vary as a 

85 function of microbial activity (Sinsabaugh et al., 1994), thermodynamic theory predicts that Vmax 

86 and Km will also increase with increasing temperature (Davidson and Janssens, 2006), which has 

87 potential implications for future C-cycling. Increasing temperature can allow more reactants to 
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88 attain their activation energies, increasing Vmax. At the same time, the stability of the substrate-

89 enzyme complex may be reduced, causing decreased substrate affinity and higher observed Km 

90 (Johns and Somero, 2004; Sørensen et al., 2015).

91 Increases in temperature should have reduced effect on the kinetic parameters of EEs 

92 from colder environs (Siddiqui and Cavicchioli, 2006), especially if enzymes are locally adapted 

93 (Belotte 2003). This is because cold-adapted organisms optimize enzyme efficacy at low 

94 temperatures by minimizing reaction activation energy, or Ea (Georlette et al., 2004; Lonhienne 

95 et al., 2000), and Vmax temperature sensitivity increases as Ea increases according to the 

96 Arrhenius relationship (Davidson et al., 2006). Organisms optimized for higher temperatures 

97 have relaxed selection for minimizing Ea because their enzymes and substrates have greater 

98 kinetic energy. Given that changes in Vmax and Km are generally correlated (Sinsabaugh et al., 

99 2014), it is reasonable to assume that Km temperature sensitivity may exhibit similar patterns as 

100 those hypothesized for Vmax based on thermodynamic theory. Evidence from natural systems is 

101 generally lacking in the literature, but several published studies seemingly contradict these 

102 expectations:  Koch et al. (2007) found that EE temperature sensitivities increased at lower 

103 temperatures in alpine soils assayed across three seasons, and both they and Wallenstein et al. 

104 (2009) found that EE temperature sensitivity declined over the growing season in alpine and 

105 arctic tundra soils, respectively. However, this hypothesis has never been tested along a regional 

106 climate gradient, where microbial communities are unlikely to be dispersal limited with regards 

107 to the pool of regional taxa (Kivlin et al., 2011), and local climate variation is likely to be a 

108 strong filter.

109 The goal of this study is to use a climate gradient across xeric ecosystems of southern 

110 California to determine how microbial EEs might respond to long-term climate change. Along 
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111 this gradient, temperature and moisture co-vary, such that hotter, drier sites at low elevations 

112 contrast with colder, wetter sites at higher elevations. As such, moving from higher to lower 

113 elevations mimics the shift to more arid climates expected in the American Southwest. Litter 

114 lignin content and the size of the litter pool also generally decrease when transitioning from 

115 higher to lower elevations. We aimed to quantify the environmental drivers of enzyme kinetic 

116 parameters along the climate gradient to advance knowledge of biogeochemical mechanisms in 

117 xeric ecosystems. Based on the above theory, we formulated the following hypotheses: 

118 1. Microbial biomass, EE Vmax, and EE Km will increase with increasing precipitation, as 

119 moisture and substrate availability limit microbial activity which in turn limits EE 

120 production.

121 2. Vmax and Km of enzymes from colder, wetter sites will be less temperature sensitive, and 

122 enzymes assayed in the wet season will be less temperature sensitive than those assayed in 

123 the dry season.

124 We tested these hypotheses by measuring microbial properties, litter substrates, and enzyme 

125 kinetics along a climate gradient spanning 12.5 °C and 300 mm precipitation in southern 

126 California. 

127

128 2.  Materials and methods

129 2.1  Site description

130 To test how EE kinetic parameters and thermodynamics varied with climate, we assayed 

131 plant litter from five sites representing five biomes in southern California – Colorado desert (lat, 

132 long: 33.652, -116.372), pinyon-juniper scrubland (33.605, -116.455), coastal grassland (33.737, 

133 -117.695), pine-oak forest (33.808, -116.772), and subalpine forest (33.824, -116.755). All five 
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134 sites are located on granitic parent material and experience Mediterranean precipitation patterns 

135 (cool, wet winters; hot, dry summers).  The desert is on a deposit of Carrizo stony sand, and is 

136 dominated by desert perennials and annuals. The scrubland is on an Omstott coarse sandy loam, 

137 and is dominated by pinyon pine, juniper, and desert perennials and annuals. The grassland is on 

138 a Myford sandy loam, and is dominated by annual grasses and forbs, particularly Bromus and 

139 Avena spp. The pine-oak forest is on a Pacifico-Preston families soil complex and is dominated 

140 by pines as well as evergreen and deciduous oak. The subalpine site is on a rocky outcrop of 

141 granite that lies among a Pacifico-Wapi families soil complex, and is dominated by lodgepole 

142 and limber pine. The gradient spans a range of ~12.5 °C in mean annual temperature (MAT), 

143 from 22.8±0.8 °C at the desert site to 10.3±1.8 °C at the subalpine site (Table 1). The desert site 

144 experienced the least mean annual precipitation in the form of rainfall over the five years prior to 

145 this study (100±24 mm), and the pine-oak forest (hereafter referred to as “pine-oak”) site 

146 experienced the most (400±120 mm). Standing litter pools are largest in the grassland and pine-

147 oak site, reduced in the subalpine site, significantly reduced in the scrubland site, and negligible 

148 in the desert site (personal observation). Air temperature, soil temperature, rainfall, and solar 

149 radiation data for all sites other than the subalpine site come from eddy covariance towers at each 

150 site.(Goulden et al., 2006). Two iButton temperature sensors (Maxim Integrated) were also 

151 installed at each site on January 18, 2015, to collect surface temperature at 90 minute intervals 

152 until the final sampling date on December 2, 2015. 

153

154 2.2  Sampling

155 Local plant litter was collected from each of the five sites on June 7, and December 2, 

156 2015. Along this gradient, these dates correspond to the beginning of the dry season and 
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157 increased litterfall throughout May and into June and the early-middle of the wet season in 

158 December. As such, litter collected in June was recently deposited and had been exposed to 

159 rising temperatures in the preceding months, whereas litter collected in December fell in late 

160 spring or early summer and would have been subject to a cooling trend and increased 

161 decomposition in the interim. Using gloves, 5 g litter was collected from the soil surface of each 

162 site by lightly raking across the surface to collect loose material and using clippers to detach 

163 senescent grass litter from root bundles if necessary. Litter replicates were collected from six 0.5 

164 m2
 plots established within a 50 m2 radius of one another at each site. Collected litter was stored 

165 in coolers and transported to UC Irvine, where it was ground into fragments <0.5cm in length 

166 and sub-sampled for EE assays and biomass of bacteria and fungi. The remaining litter was 

167 weighed and oven-dried to determine moisture content.

168

169 2.3  Litter chemistry

170 Oven-dried litter was sent to Cumberland Valley Analytical Services for near-IR 

171 spectroscopy, whereby reflectance spectra of near-infrared wavelengths of light are matched to a 

172 verified database of spectra for plant materials with known chemical compositions previously 

173 established by wet chemistry. This method has been shown to be more accurate and more 

174 repeatable than wet chemistry analysis for a diverse range of crop and tree residues (Shepherd et 

175 al., 2005). Relative amounts of the following organic compounds were determined as proportions 

176 of total dried litter mass: lignin, cellulose (acid detergent fiber – lignin), hemicellulose (neutral 

177 detergent fiber – acid detergent fiber), non-structural carbohydrates, structural carbohydrates 

178 (non-fiber carbohydrates – non-structural carbohydrates), and crude protein. The non-structural 

179 carbohydrate fraction consists of starches and sugars, whereas the structural carbohydrate 
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180 fraction includes plant cell components such as pectins, but also microbial cell wall components 

181 such as β-glucans and peptidoglycans (CVAS, personal communication). 

182

183 2.4  Extracellular enzyme assays, kinetics, and thermodynamics

184 In assays of EEs from ecological systems, Vmax and Km are measured as apparent 

185 parameters, appVmax and appKm. appVmax does not represent the reaction rate of a single enzyme, but 

186 instead indicates the overall concentration of enzymes in a sample that degrade a particular class 

187 of substrates (Wallenstein et al., 2011). appKm does not represent a single enzyme’s substrate 

188 affinity, but instead reflects relative substrate availability because the fluorescently labeled 

189 substrates added during EE assays compete for enzyme active sites with naturally occurring 

190 substrates already present in environmental samples (Chróst, 1990). Thus, for a given substrate 

191 concentration, the observed reaction velocity will be lower than its actual in-assay value and its 

192 corresponding Km will be higher, because some natural non-fluorescently labeled substrates will 

193 also be cleaved. For simplicity, appVmax and appKm at 22 °C are presented as Vmax and Km 

194 throughout the text.  

195 Litter was assayed for Vmax, Km, and the temperature sensitivities of Vmax and Km for 

196 seven hydrolytic enzyme classes using fluorescently labeled substrates based on German et al. 

197 (2012). The enzyme classes assayed were as follows: α-glucosidase (AG), acid phosphatase 

198 (AP), β-glucosidase (BG), β-xylosidase (BX), cellobiohydrolase (CBH), leucine-aminopeptidase 

199 (LAP), N-acetyl-β-D-glucosaminidase (NAG). 125µL of fluorometric substrate solution was 

200 combined with 125µL of litter homogenate in each microplate well. Substrate solutions, standard 

201 controls, and litter homogenate were made in 25 mM maleate buffer with pH 6.0. Litter was 

202 stored at -80 °C and homogenate was made using 0.4 g frozen litter in 150mL buffer. A 
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203 reference standard was used, and the quench coefficient was calculated by dividing the 

204 fluorescence of the reference standard in wells with litter homogenate by its fluorescence in 

205 wells with just buffer. Assays were incubated for 4h at 4, 10, 16, 22, 28, or 34°C. Each enzyme 

206 was assayed at a range of eight substrate concentrations for each temperature (Table S1), where 

207 the highest concentration was previously established to saturate enzymes in solution (German et 

208 al., 2011). Negative potential activities were considered to indicate that no enzyme was present, 

209 and were converted to zero values before further analyses.

210 EE kinetic parameters were calculated for each enzyme class and incubation temperature 

211 by fitting observed EE activity at each substrate concentration to the Michaelis-Menten equation. 

212 Non-linear regressions were performed in the R software environment 3.3.1 (R Development 

213 Core Team, 2016) using the nls function. Confidence intervals were determined for Vmax and Km 

214 values using the nlstools package. Fits of Vmax with a 95% CI greater than twice the magnitude 

215 of Vmax were discarded; because of greater variability in calculated fits of Km, fits with a 95% CI 

216 greater than four times the magnitude of Km were discarded.

217 Temperature sensitivities of EE kinetic parameters for each enzyme class were 

218 determined by linear regression of ln Vmax or ln Km against incubation temperature. Regressions 

219 were performed using the lm function in R. Regressions with R2 < 0.50 were discarded. Slopes 

220 were converted to Q10 values as in Wallenstein et al. (2009) using the formula:

221 Q10 = exp(slope x 10)

222

223 2.4  Microbial biomass

224 Litter bacterial cell density was estimated by methods identical to those in Allison et al. 

225 (2013). In brief, ground litter was suspended in a phosphate-buffered, 1% glutaraldehyde 
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226 solution on the day of sample collection to “fix” bacterial cells for storage. Within two weeks, 

227 0.1 M tetrasodium pyrophosphate was added to each sample, and samples were sonicated to 

228 dislodge bacterial cells. These extracts were passed through 2.7 µm filters to remove particulate 

229 matter before being stained with 1x SYBR-Green. Stained extracts were run on an Accuri C6 

230 flow cytometer to determine cell counts from fluorescing bacterial cells that exceeded the 2000 

231 limit on the FLH1 channel and appeared distinct from particulate noise when comparing the side- 

232 and front-scatter of reflecting light. 

233 The length of fungal hyphae in litter was measured by adapting methods used in Allison 

234 et al. (2013). Ground litter was suspended in 0.395% (w/V) sodium hexametaphosphate and 

235 vigorously stirred before being vacuum-filtered and stained with acid fuchsin. Two filters 17 mm 

236 in diameter were made for each litter sample and affixed to a glass slide. Hyphal lengths were 

237 measured with a Carl Zeiss photomicroscope at 100X magnification using Axioplan 2 Imaging 

238 software. Hyphal lengths were measured in 89 x 67 μm viewing panes using 30 panes per slide 

239 (15 per filter). Total hyphal length in all viewing panes for a single sample was converted to 

240 estimates of hyphal length in meters per gram of dry litter using a modified procedure of Sylvia 

241 (1992).

242 Bacterial cell density and fungal hyphal lengths were converted to bacterial and fungal 

243 biomass  (mg C g-1 dry litter) and combined to estimate total microbial biomass C using methods 

244 identical to those in Alster et al. (2013). In brief, bacterial cells were assumed to be spherical 

245 with a radius of 0.6μm and C density of 2.2 x 10-13 g um-3 (Bratbak, 1985), and fungal hyphae 

246 were assumed to have a fresh density of 1.1g per cm-3 of hyphae, 33% dry mass,  40% C in dry 

247 mass, and diameter of 5.2 μm (Paul and Clark, 1996). Bacterial cell counts from June 2015 

248 samples could not be assayed because of technical issues with the flow cytometer; as such, 
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249 bacterial cell densities, fungal hyphal lengths, and EE Vmax and Km from litter collected in 

250 identical fashion on October 16, 2014 were used to determine seasonal variation of microbial 

251 biomass as well as any relationships between microbial biomass and EE parameters. These time 

252 points were deemed comparable because a concurrent study indicated that microbial decomposer 

253 activity is greatly reduced throughout the dry season in these sites.

254

255 2.5  Statistical methods

256 Effects of site and sampling date on microbial and fungal biomass were analyzed using 

257 mixed-model ANOVA with the identity of each plot as a random factor. Because litter moisture 

258 is known to be a strong control on decomposition processes in Mediterranean ecosystems, the 

259 model was run as an ANCOVA with litter moisture content as the covariate. ANCOVA was also 

260 used to determine if there was a relationship between total microbial biomass or fungal biomass 

261 and Vmax or Km across sites. Post hoc analyses of pairwise comparisons were done with Tukey 

262 contrasts using the lsmeans package in R. 

263 Effects of site and sampling date on litter chemistry, Vmax, Km, Vmax temperature 

264 sensitivity, and Km temperature sensitivity of all EE classes were determined by MANCOVAs 

265 containing the relevant parameters for all EE classes with litter moisture content as a covariate, 

266 using the Wilks Lambda method to calculate the test statistic. Differences in EE profiles, climate, 

267 and litter chemistry between sites were determined by canonical discriminant analysis (CDA).  

268 Data for ANCOVAs and MANCOVAs were checked for normality visually using quartile-

269 quartile plots of residuals and by the Shapiro-Wilk test, and non-normal data were natural log-

270 transformed to improve normality when necessary. Microbial and fungal biomass met 

271 assumptions of normality after ln-transformation; ln Vmax and ln Km did not but passed visual 
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272 inspection. Litter chemistry fractions and temperature sensitivities of Vmax and Km did not meet 

273 assumptions of normality but were visually determined to be approximately normal when in base 

274 form, and as such were not transformed prior to statistical analyses. 

275 Recent mean annual air temperature at the subalpine site was extrapolated from a linear 

276 regression (R2 > 0.8) of elevation versus air temperature observed by the four eddy covariance 

277 towers and a Remote Area Weather Station (RAWS) located at the summit of Mt. San Jacinto 

278 (2626 m above sea level, 2.5 km from the subalpine site, and also on the windward side of the 

279 range). Recent rainfall, solar radiation, and daily temperature range at the subalpine site could 

280 not be extrapolated from the RAWS data, but the values observed at Mt. San Jacinto are 

281 presented for the subalpine site to provide context given the proximity and likely similarity 

282 between the two locations. 

283 CDA indicated that most climate variables measured by the eddy covariance towers were 

284 positively correlated. As a result, air temperature was used for climate-related analyses because 

285 of our high confidence in extrapolated air temperature at the subalpine site. Linear regression 

286 was then used to determine if site air MAT explained a significant amount of the variation in 

287 Vmax and Km temperature sensitivities observed in either June or December 2015. 

288

289 3.  Results

290 3.1  Climate gradient

291 Recent climate observed by the four flux towers followed a similar trend for air MAT, 

292 soil MAT, soil moisture, rainfall, and mean daily ranges for air and soil temperature. The desert 

293 and pine-oak sites were at the two extremes for each variable, and the grassland and scrubland 

294 experienced similar, intermediate climate relative to the two extremes (Table 1). Based on flux 
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295 tower data collected over the last six years, the desert experienced the hottest air and soil 

296 temperature (22.8±0.8 °C), received the least rainfall per annum (100±24 mm), and experienced 

297 the greatest range of daily air and soil temperatures (10.8±0.4 and 10.9±0.2 °C, respectively), on 

298 average. Plot-level temperature sensors indicated that from January to December of 2015, the 

299 desert site was the hottest (29.3±0.4 °C), but the grassland was significantly hotter (22.0±0.4 °C) 

300 than the scrubland (19.5±0.5 °C), which is consistent with elevation. In addition, over the course 

301 of the study, the scrubland and grassland experienced the greatest diurnal temperature ranges 

302 (26.2±0.5 and 24.8±0.4 °C, respectively) on average, and the subalpine site experienced the least 

303 diurnal temperature variation (13.7±0.4 °C). Extrapolating the subalpine site’s recent climate 

304 from that observed at lower and higher elevations indicates that it has likely been the coldest site.

305

306 3.2  Litter chemistry

307 Relative fractions of cellulose, hemicellulose, lignin, crude protein, and structural and 

308 non-structural carbohydrates are presented in Table 2. Litter chemistry was significantly affected 

309 by site (p<0.001, F4,24=40.3), season (p<0.001, F1,6=11.2), and interactions between site and 

310 season (p<0.001, F4,24=4.2) (Table 3). In the dry season, structural carbohydrate content was 

311 highest in the pine-oak and subalpine sites (34.0±0.3 and 31.3±0.5%), followed by the desert, 

312 then the scrubland, and lowest in the grassland (13.3±0.8%). Crude protein content was greater 

313 than 9% in the desert, scrubland, and grassland sites but less than 3% in the pine-oak and 

314 subalpine sites.  Cellulose content was highest in the desert and grassland sites (36.3±1.5 and 

315 35.6±1.4%), and less than 30% in the scrubland, pine-oak, and subalpine sites. Non-structural 

316 carbohydrate content was highest in the scrubland and pine-oak sites (12.6±0.5 and 10.5±0.3%), 

317 intermediate in the grassland and subalpine sites, and lowest in the desert site (5.0±1.1%).
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318 Site-level differences in litter chemistry followed similar trends in both the wet and dry 

319 season for structural carbohydrate, cellulose, and protein content, but differed between seasons 

320 for non-structural carbohydrate content. In the wet season, non-structural carbohydrate content 

321 was greater than 11% in the scrubland, pine-oak, and subalpine sites, and ~5% in the desert and 

322 grassland sites. 

323 CDA showed that differences in the relative amounts of structural and non-structural 

324 carbohydrates, cellulose, and protein explained most of the variation in litter chemistry both 

325 between sites and between seasons (Fig. S1). When comparing differences in litter between sites, 

326 the first CDA axis explained 91.1% of the variation, and the absolute values of loading 

327 coefficients on this axis were 0.94, 0.93, 0.86, and 0.61 for fractions of structural carbohydrates, 

328 crude protein, cellulose, and non-structural carbohydrates, respectively. When comparing 

329 differences in litter between seasons, there was only one CDA axis, and the absolute values of 

330 loading coefficients for crude protein, structural carbohydrates, cellulose, and non-structural 

331 carbohydrates were 0.79, 0.78, 0.54, and 0.45, respectively.

332

333 3.3  Microbial biomass

334 Litter microbial biomass varied by site (p<0.001, F4,44=7.0), season (p<0.001, 

335 F1,44=133.5), and their interaction (p=0.002, F4,44=4.9) (Table 3). In the dry season (Oct. 2014), 

336 microbial biomass was similar (0.37±0.02 mg C g-1 dry litter) in the scrubland, grassland, pine-

337 oak, and subalpine sites, and significantly lower (0.16±0.02 mg C g-1) in the desert site (Fig. 1A). 

338 In the wet season (Dec. 2015), microbial biomass was higher and more variable across the entire 

339 gradient (Fig. 1B), and significantly higher in the grassland, pine-oak, and subalpine sites 

340 (1.84±0.30 mg C g-1) than in the desert and scrubland sites (0.79±0.10 mg C g-1).  
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341 Litter fungal biomass varied by site (p<0.001, F4,44=34.0) and season (p=0.039, F1,44=4.5) 

342 (Table 3). In the dry season, fungal biomass was highest in the grassland site (0.24±0.02 mg C g-

343 1), intermediate in the scrubland and pine-oak sites (0.15±0.01), and lowest in the desert and 

344 subalpine sites (0.09±0.01) (Fig. 1C). Fungal biomass across sites increased from an average of 

345 0.13±0.01 mg C g-1 in the dry season to an average of 0.15±0.01 in the wet season, likely 

346 because of increased fungal biomass in the grassland (Fig. 1D).

347

348 3.4  Potential extracellular enzyme activity

349 There was a significant effect of site on Vmax (p<0.001, F4,28=28.2), and a significant 

350 interaction between site and season (p<0.001, F4,28=6.6) (Table 3). Mean Vmax across all enzyme 

351 classes and seasons was highest in the grassland site, next-highest in the scrubland, intermediate 

352 in the desert, and lowest in the pine-oak and subalpine sites (Tukey p<0.001), with mean values 

353 of 24.2±2.0, 16.1±1.4, 10.6±0.7 and 3.3±0.3 µmol·hr-1·g-1, respectively (Fig. 2). 

354 The first CDA axis explained >68% of the variance in Vmax, and loading coefficients for 

355 all seven EE classes along the first axis were greater than 0.76 (Fig. S2). Therefore, Vmax results 

356 were combined across enzyme classes for analyses of site-level differences.

357 There was no significant relationship between microbial biomass and mean Vmax across 

358 the gradient (Fig. S3A), but there was a significant positive relationship between fungal biomass 

359 and mean Vmax (p<0.001, R2=0.30, Fig. S3B). Mean EE Vmax and Km values for all enzymes, 

360 sampling dates, and sites are presented in Table S2.

361

362 3.5  Potential extracellular enzyme half-saturation constant
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363 There was a significant effect of site on Km (p<0.001, F4,28=11.0), and there was a 

364 significant interaction between site and season (p<0.001, F4,28=4.2) (Table 3). Mean BG Km 

365 across seasons was lowest in the subalpine site, intermediate in the desert site, and greatest in the 

366 scrubland, grassland, and pine-oak sites (Tukey p<0.01), with mean values of 106±13, 189±10, 

367 and 435±40 µM, respectively (Fig. 3A). Mean CBH Km across seasons was also lowest in the 

368 subalpine site, intermediate in desert, scrubland, and pine-oak sites (Tukey p<0.001), and 

369 greatest in the grassland site, with mean values of 51±13, 100±8, and 273±25 µM, respectively 

370 (Fig. 3B). Mean LAP Km across seasons was lowest in the desert, scrubland, and grassland sites 

371 and highest in the pine-oak and subalpine sites (Tukey p<0.001), with mean values of 183±15 

372 and 560±110 µM, respectively (Fig. 3C). Mean NAG Km across seasons was lowest in the 

373 desert, pine-oak, and subalpine sites, intermediate in the grassland site, and highest in the 

374 scrubland site (Tukey p<0.05), with mean values of 92±7, 171±13, and 289±64 µM, respectively 

375 (Fig. 3D). 

376 The first CDA axis explained >58% of the cross-site variance in Km, with 

377 cellobiohydrolase (CBH, |loading coefficient| = 0.87), β-glucosidase (BG, 0.82), and leucine 

378 aminopeptidase (LAP, 0.66) Km distinguishing sites the most (Fig. S4). The second CDA axis 

379 explained >30% of the remaining cross-site variance in Km, with N-acetyl-glucosaminidase 

380 (NAG, 0.86) Km as the main response variable. As such, mean apparent Km values across seasons 

381 for BG, CBH, LAP, and NAG were analyzed for site-level differences using pairwise 

382 comparisons.

383 There was no significant relationship between microbial biomass and mean Km (Fig. 

384 S5A), but there was a significant positive relationship between fungal biomass and mean Km 

385 (p<0.001, R2=0.12, Fig. S5B). There was also a significant positive relationship between CBH 
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386 Km and cellulose content and a negative relationship between LAP Km and protein content across 

387 sites and seasons, but there was no significant relationship between Km and putative substrate 

388 content for AG, BG, or BX (Table 4).

389

390 3.6  Temperature sensitivity of Vmax

391 Temperature sensitivity of Vmax was positive (Q10>1) for all EE classes assayed at all 

392 sites in both seasons (Fig. 4A). There were significant effects of site (p<0.001, F4,28=9.3), season 

393 (p=0.001, F1,7=4.4), and the interaction between site and season (p=0.007, F4,28=2.0) on observed 

394 temperature sensitivity of EE Vmax for all enzyme classes when analyzed in conjunction (Table 

395 3). The temperature sensitivity-MAT relationship was significantly or marginally significantly 

396 negative for six of the seven EE classes assayed in the wet season, but was only significant (and 

397 positive) for LAP in the dry season (Table 5). The weak relationships during the dry season 

398 generally resulted from lower EE temperature sensitivities in the coldest sites and higher 

399 temperature sensitivities in the scrubland site when compared to the wet season. Vmax Q10 values 

400 for all enzymes assayed in all sites at all sampling dates are presented in Table S3.

401

402 3.7  Temperature sensitivity of Km

403 Temperature sensitivity of Km was positive for all EE classes assayed at all sites across 

404 both seasons, except for AG in the subalpine site and LAP in the subalpine and pine-oak sites 

405 (Fig. 4B). There were significant effects of site (p<0.001, F4,20=6.5) on observed temperature 

406 sensitivity of EE Km of all enzyme classes when analyzed in conjunction, but no significant 

407 effect of season or interaction between site and season (Table 3). Temperature sensitivity of Km 

408 exhibited a significant relationship with MAT across seasons for four of the EE classes assayed: 
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409 a positive relationship with LAP, BG, and NAG Km (in order of increasing slope and 

410 significance) and a negative relationship with BX Km (Table 5). Km Q10 values for all enzymes 

411 assayed in all sites at all sampling dates are presented in Table S4.

412

413 4.  Discussion

414 The gradient presented in this study spans five biomes in southern California along which 

415 climate variables covary. Colder, wetter sites transition to hotter, drier sites in a manner that 

416 emulates future climate change in the American Southwest. By analyzing litter along the 

417 gradient, we determined that microbial communities differ in their EE kinetics in a manner 

418 consistent with differences in fungal biomass, substrate availability, and proteolytic activity, but 

419 not differences in total microbial biomass or local climate. We also observed that local microbial 

420 communities occurring under different litter chemistry and long-term climate exhibit 

421 significantly different EE temperature sensitivities. These sensitivities can be predicted in part by 

422 local mean annual temperature. If climate is in fact what is driving these temperature 

423 sensitivities, then as climate becomes more arid in the future, microbes at the wetter end of our 

424 gradient will initially produce EEs that are relatively sensitive to increases in temperature. 

425 However, as local climate transitions to more xeric conditions, the microbial communities will 

426 potentially produce less temperature-sensitive EEs. In addition, systems undergoing the 

427 transition to more xeric conditions will likely accumulate EEs that are mainly active during 

428 increasingly episodic rainfall events (Alster et al., 2013).

429

430 4.1  Climate and microbial activity
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431 We hypothesized that variations in microbial biomass in litter would be driven by 

432 differences in climate and substrate availability across the gradient, and that we would observe 

433 greater biomass in cooler, wetter sites. Our results did not support this hypothesis. Microbial 

434 biomass in both the dry season and wet season was similar in four of the five sites along the 

435 gradient despite significant differences in mean annual precipitation and air temperature (Table 

436 1).  Other research in Mediterranean and semiarid ecosystems indicates, however, that sporadic 

437 increases in water potential may actually inhibit microbial growth (Sherman et al., 2012), 

438 presumably because microbes adapted to semiarid conditions can experience severe osmotic 

439 stress when exposed to precipitation (Fierer and Schimel, 2003). High diurnal temperature 

440 variation and pulse-driven rainfall may therefore overwhelm any positive effects of increasing 

441 average precipitation on microbial growth in our sites.

442 We expected that microbial biomass would be related to both the production of enzymes 

443 (reflected in Vmax) and the availability of substrates (as indicated by Km) in litter along our 

444 gradient. Our results in part failed to support this hypothesis, as total microbial biomass did not 

445 explain a significant amount of the variation in mean Vmax or Km across sites at either time point 

446 (Fig. S3A and S5A). However, fungal biomass did explain a significant amount of the variation 

447 in mean Vmax (Fig. S3B) and Km (Fig. S5B) along the gradient, though this relationship was 

448 driven primarily by conjunction of high fungal biomass, Vmax, and Km in litter from the grassland 

449 site. Although both bacteria and fungi produce extracellular enzymes in decomposer 

450 communities, other studies have found evidence that fungi exert more control on community EE 

451 activity (Romaní et al., 2006) and that enzymes that degrade more complex polymers such as 

452 cellulose and lignin, in particular, are primarily produced by fungi rather than bacteria 
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453 (Schneider et al., 2012). Our results similarly indicate that fungal decomposers likely exert more 

454 control than bacteria over EE production and potential decomposition rates along our gradient. 

455 In general, mean Vmax for the EE classes assayed in this study differed significantly by 

456 site (Table 3), but the differences were not consistent with our initial hypothesis. Mean Vmax of 

457 all EEs in litter from the two highest elevation sites was an order of magnitude lower than in the 

458 grassland, scrubland, and desert sites (Fig. 2), even though the three lower elevation sites receive 

459 less precipitation and have drier soils (Table 1). Rather than climate-driven production of 

460 enzymes, our results suggest that EE Vmax may be driven by enzyme turnover.  The subalpine 

461 and pine-oak litter showed low levels of crude protein (Table 2) but high Km values for 

462 proteolytic enzyme (LAP; Fig. 3), which could imply a greater abundance of protein degradation 

463 products (Chróst, 1990). If so, protein turnover may be occurring more rapidly in these sites, 

464 thereby reducing enzyme Vmax. 

465 Our results for microbial biomass and EE Vmax are consistent with those of a prior study 

466 performed in the grassland site along our gradient. Alster et al. (2013) found that increases in 

467 microbial biomass over the wet season did not correspond with increases in EE Vmax, and that EE 

468 Vmax remained static from the end of the wet season to the middle of the dry season, despite 

469 significant reductions in microbial biomass. These EE dynamics can be explained in part by the 

470 observation that proteolytic EEs were the only enzyme class to decline in Vmax under drought. 

471 Reduced proteolytic activity may allow EEs in arid and semiarid ecosystems to persist long after 

472 their production by ephemeral microbial decomposers, a mechanism supported by our LAP Km 

473 and crude protein results at some sites along our gradient.

474 Our enzyme and protein accumulation results may help explain pulses of CO2 that are 

475 emitted by microbial communities in Mediterranean ecosystems, particularly grasslands, when 
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476 exposed to rewetting after long dry periods. EEs persisting in microsites may degrade substrate 

477 during periods of elevated humidity or at dewpoint, resulting in accumulation of labile substrates 

478 during dry periods. After rewetting, these labile compounds combine with built up microbial 

479 necromass (Blazewicz et al., 2014) and soil organic matter released from aggregates (Fierer and 

480 Schimel, 2003) to produce large pulses of CO2 (Zhang et al., 2014).

481

482 4.2  Temperature sensitivity of EE kinetics

483 The results of our study support a growing consensus that EE kinetic parameters have 

484 positive temperature sensitivities (German et al., 2012; Lehmeier et al., 2013; Min et al., 2014; 

485 Stone et al., 2011). We show that these results hold true for EEs in litter, a substrate for which 

486 such intrinsic responses to temperature have rarely been explored (but see Bárta et al. 2014). Our 

487 hypothesis that cold-adapted EEs would have reduced Vmax temperature sensitivity compared to 

488 warm-adapted enzymes was not supported for EEs in either season – instead, the opposite trend 

489 of cold-adapted enzymes exhibiting greater Vmax temperature sensitivity was observed in the wet 

490 season (but not the dry season). Significant relationships between temperature sensitivity of EE 

491 Vmax and MAT in the wet season were driven by a bimodal trend, whereby the two high 

492 elevation, forested sites had higher temperature sensitivities, and the three lower elevation, grass 

493 and scrub-dominated sites had significantly lower temperature sensitivities (Fig. 4A). During the 

494 dry season, this bimodal trend disappeared as the two higher elevation sites no longer exhibited 

495 higher temperature sensitivity of EE Vmax in comparison with the lower elevation sites. This 

496 indicates that the structure of enzymes produced by microbial decomposer communities along 

497 this gradient vary seasonally, likely as a result of different organisms being responsible for 

498 producing those enzymes at different times of year (Wallenstein and Weintraub, 2008). 
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499 Previous studies have shown seasonal variation in EE temperature sensitivity of Vmax
 

500 (Brzostek and Finzi, 2012; Fenner et al., 2005; Koch et al., 2007; Trasar-Cepeda et al., 2007; 

501 Wallenstein et al., 2009) and others have shown site-to-site variation in temperature sensitivity of 

502 Vmax  (German et al., 2012; Khalili et al., 2011; Stone et al., 2011). Some of these studies 

503 indicate that EEs from colder biomes or seasons exhibit greater temperature sensitivity (Koch et 

504 al., 2007; Wallenstein et al., 2009), in contrast with thermodynamic theory but in agreement with 

505 our findings. A previous study of EE Vmax temperature sensitivity in soils across a latitudinal 

506 gradient found no relationship between site MAT and temperature sensitivities for all but one EE 

507 class (German et al., 2012). However, this study did not control for season when collecting soils, 

508 and our results indicate that ignoring seasonality may obscure potentially significant 

509 relationships between site MAT and EE thermodynamics.

510 In contrast with our Vmax results, our hypothesis that Km of cold-adapted EEs would show 

511 reduced temperature sensitivity was supported by our results. There are indications that Km 

512 temperature sensitivity exhibits a significant positive relationship with MAT, as BG, LAP, and 

513 NAG Km temperature sensitivities were generally higher in hotter sites. It is possible that 

514 environmental variables other than mean annual temperature play a greater role in determining 

515 EE Km temperature sensitivities – all major climatic variables were correlated along our gradient, 

516 so an apparent response to MAT could also be linked to MAP, solar radiation, or biotic factors 

517 that covary with climate. Vmax temperature sensitivity also exceeded Km temperature sensitivity 

518 for all EEs, at all sites, in both seasons. Therefore, it is possible that temperature effects on Vmax 

519 outweigh those on Km, both in lab assays and in response to natural selection. To our knowledge, 

520 this is the first study of seasonal variation in Km temperature sensitivity, though we did not 

521 observe significant seasonal variation in this EE parameter.
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522

523 4.3  Conclusions

524 Our study shows that EE kinetics in southern California are not explained by total 

525 microbial biomass, but may be more dependent on fungal biomass. In addition, potential 

526 interactions between substrate availability and proteolytic activity likely drive observed EE 

527 kinetics along this gradient. Accumulation of EE relative to substrate in the more arid sites along 

528 our gradient may partially explain the pulses of CO2 emitted during rewetting events after the dry 

529 season, as EEs remain present while microbial biomass declines over the course of the dry 

530 season. 

531 As the American Southwest shifts to a more arid climate in the future, biomes will shift 

532 towards the hotter, drier end of our gradient. Our results indicate that litter will become more 

533 cellulosic and contain more protein – likely as a result of increased accumulation of EEs 

534 produced by litter-bound microbial communities. These shifts will increase the influence of 

535 rewetting events, making resource pulses more episodic and potentially more difficult to predict. 

536 The EEs produced by these communities may initially be very sensitive to temperature, 

537 particularly in subalpine and montane forests, but our results indicate that over time EEs 

538 produced by these communities may become less sensitive to climate as microbes adapted to 

539 hotter, drier conditions become more prevalent.  

540 Our study also shows that the temperature sensitivity of EE kinetics varies seasonally, 

541 and that large-scale climate indices can explain variation in EE temperature sensitivities in the 

542 wet season, but not in the dry season. When taken in conjunction with evidence of extracellular 

543 enzyme accumulation across our gradient, our temperature sensitivity results suggest two lines of 

544 research for the next generation of carbon-cycling models that explicitly account for enzymatic 
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545 decomposition (Sihi et al., 2015; Sulman et al., 2014; Wieder et al., 2014). First, if EE potential 

546 in arid and semiarid systems indicates enzyme accumulation, not just activity, then we must 

547 determine when enzymes are seasonally most active to parameterize C-cycling models. Second, 

548 we must determine temperature sensitivities of EE kinetics during the seasons when EEs are 

549 most active to predict how enzyme-driven decomposition will be affected by future changes in 

550 temperature.
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Table 2 Mean (± SE) percentage of non-ash dry weight of litter attributed to cellulose, 
hemicellulose, lignin, crude protein, structural carbohydrates, and non-structural 
carbohydrates, in all five sites during the dry season (June 2015) and the wet season 
(December 2015).

Dry season (June 2015)
Compound Desert Scrubland Grassland Pine-Oak Subalpine
Cellulose 35.6±1.4 28.0±0.7 36.3±1.5 24.1±0.4 24.1±0.7
Hemicellulose 0.0 17.1±2.7 16.0±2.3 5.6±0.2 6.1±0.3
Lignin 17.4±0.6 8.0±0.7 8.0±0.4 13.6±0.1 13.8±0.5
Crude protein 9.1±0.8 12.8±0.9 11.9±0.9 1.9±0.2 2.9±0.5
Struct. Carbs. 25.7±0.9 17.2±1.7 13.3±0.8 31.3±0.5 34.0±0.3
Non-struct. Carbs. 5.0±1.1 10.5±0.3 8.8±1.6 12.6±0.5 8.9±0.9

Wet season (December 2015)
Compound Desert Scrubland Grassland Pine-Oak Subalpine
Cellulose 33.1±0.5 27.6±4.3 36.0±1.0 22.2±0.7 23.1±0.5
Hemicellulose 0.9±0.4 20.9±0.2 8.6±1.9 5.3±0.7 5.5±1.1
Lignin 16.2±0.1 8.2±0.3 14.3±0.7 13.1±0.7 13.9±0.8
Crude protein 11.0±0.2 14.9±2.6 16.5±1.1 1.5±0.3 2.8±0.7
Struct. Carbs. 18.7±0.4 12.0±0.1 12.6±0.9 30.6±0.4 32.8±0.7
Non-struct. Carbs. 4.9±0.2 11.0±0.7 5.1±0.8 16.0±0.8 11.6±1.3

561



28

Table 3 The p-values for independent variables from ANCOVA (A) or MANCOVA (M), 
run with gravimetric litter moisture (H2O) as a covariate. Significant (<0.05) p-values are 
in bold. “Normality” indicates the type of transformation required to normalize the data by 
the indicated method. Visual tests of adherence to normality were performed using 
quartile-quartile plots of residuals.
Response variable Site Season Site:Season H2O Normality
Microbial biomass A <0.001 <0.001 0.002 0.106 Log, test
Fungal biomass A <0.001 0.039 0.107 0.527 Log, test
Litter chemistry M <0.001 <0.001 <0.001 0.694 Base, visual
Vmax M <0.001 0.227 <0.001 <0.001 Log, visual
Km M <0.001 0.114 <0.001 0.004 Log, visual
Vmax TS M <0.001 0.001 <0.001 0.051 Base, visual
Km TS M <0.001 0.628 0.104 0.510 Base, visual

562
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Table 4 Pearson coefficients and p-values for the correlation between EE Km and 
percentage of litter mass attributed to the substrate degraded by that EE class. R2

 
values for the linear regression between the two variables are presented for 
significant relationships.
Enzyme Substrate Correlation R2 p
α-glucosidase Starches 0.12 - 0.383
β-glucosidase Cellulose -0.14 - 0.312
β-xylosidase Hemicellulose 0.18 - 0.193
Cellobiohydrolase Cellulose 0.60 0.35 <0.001
Leucine aminopeptidase Protein -0.60 0.35 <0.001

563
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Table 5 Slope (± SE), R2, and p-values for linear regression of EE Vmax and Km Q10 against site mean annual 
temperature for each EE class by site and season. Bolded p-values are significant (<0.05).

Vmax, dry season Vmax, wet season Km, both seasons
Enzyme Slope R2 p Slope R2 p Slope R2 p
AG 0.019±0.025 - 0.450 -0.080±0.040 0.08 0.053 -0.004±0.024 - 0.879
AP -0.001±0.005 - 0.766 -0.023±0.005 0.41 <0.001 -0.005±0.005 - 0.318
BG -0.005±0.011 - 0.649 -0.028±0.008 0.27 0.002 0.039±0.007 0.39 <0.001
BX -0.017±0.016 - 0.279 -0.094±0.025 0.30 <0.001 -0.057±0.014 0.27 <0.001
CBH -0.030±0.032 - 0.351 -0.097±0.030 0.24 0.004 -0.013±0.014 - 0.368
LAP 0.023±0.010 0.15 0.028 -0.018±0.030 - 0.530 0.084±0.014 0.62 <0.001
NAG -0.010±0.008 - 0.261 -0.039±0.012 0.25 0.003 0.012±0.005 0.09 0.013

564



31

Dry season Wet season

Figure 1 Mean microbial biomass by site in mg C g-1 dry litter in A) October 2014 and B) December 2015, 
and mean fungal biomass in C) October 2014 and D) December 2015 (n=6 for each site). Error bars denote 
standard error. Depicted means and standard errors are back-transformed from ln values. Means sharing the 
same letter are not statistically different (p>0.05). 

565
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Figure 2 Mean EE Vmax in µmol hr-1 g-1 across all 
enzyme classes and both seasons (n=12 for each 
site). Error bars denote standard error. Depicted 
means and standard errors are back-transformed from 
ln values. Means sharing the same letter are not 
statistically different (p>0.05). 

566
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Figure 3 Mean EE Km in µM across seasons for the four EE classes whose Km most distinguished sites from 
one another: A) BG, B) CBH, C) LAP, and D) NAG (n=12 for each site). Error bars denote standard error. 
Depicted means and standard errors have been back-transformed from ln Km values. Means sharing the same 
letter are not statistically different (p>0.05)

567
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Figure 4 Mean Q10 across all enzymes by site in the dry season (June 2015) and wet season (December 
2015) for A) Vmax and B) Km. Note that the y-axis scale differs between the two plots. Error bars denote 
standard error. Asterisks (*) denote significant differences between mean EE Q10 in the dry season vs. the 
wet season (Tukey p<0.05).

568
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Table S3 Mean (± SE) Q10 of Vmax for each EE class by site and season. n = number of samples.
Desert Scrubland Grassland Pine-Oak Subalpine

Enzyme Season Q10 n Q10 n Q10 n Q10 n Q10 n
AG Dry 2.35±0.16 6 2.88±0.37 4 2.10±0.06 6 2.82±0.19 5 1.78±0.17 6

Wet 2.28±0.06 6 2.51±0.27 6 2.07±0.04 6 3.94±0.94 6 2.71±0.45 6
AP Dry 1.58±0.03 6 1.60±0.03 6 1.64±0.02 6 1.77±0.04 5 1.53±0.06 6

Wet 1.64±0.02 6 1.58±0.02 6 1.73±0.03 6 1.94±0.04 6 1.89±0.03 6
BG Dry 2.04±0.02 6 2.42±0.12 6 1.80±0.03 6 2.26±0.04 5 1.99±0.06 6

Wet 2.05±0.02 6 1.95±0.05 6 1.89±0.04 6 2.38±0.07 6 2.33±0.07 6
BX Dry 2.20±0.03 6 2.42±0.10 6 1.99±0.03 6 2.84±0.16 5 2.16±0.16 6

Wet 2.22±0.02 6 1.99±0.05 6 2.10±0.03 6 3.25±0.23 6 3.25±0.37 6
CBH Dry 2.55±0.06 6 3.93±0.32 6 2.04±0.02 6 3.21±0.07 5 2.69±0.12 6

Wet 2.51±0.03 6 2.36±0.06 6 2.06±0.09 6 3.98±0.28 6 3.29±0.30 6
LAP Dry 2.19±0.06 6 2.29±0.09 6 1.99±0.03 6 2.08±0.08 5 1.78±0.13 4

Wet 2.09±0.08 6 2.27±0.08 6 1.98±0.12 6 2.28±0.63 4 2.32±0.72 3
NAG Dry 2.09±0.02 6 1.74±0.02 6 1.90±0.05 6 2.13±0.02 5 2.19±0.08 6

Wet 2.06±0.08 6 1.90±0.03 6 2.06±0.13 6 2.22±0.03 6 2.63±0.13 6
4
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Table S4 Mean (± SE) Q10 of Km for each EE class by site, across seasons. n = number of samples.
Desert Scrubland Grassland Pine-Oak Subalpine

Enzyme Q10 n Q10 n Q10 N Q10 n Q10 n
AG 1.06±0.21 3 1.49±0.15 4 1.22±0.02 9 1.77±0.49 2 0.66±0.02 2
AP 1.22±0.02 8 1.30±0.03 10 1.28±0.07 11 1.28±0.03 11 1.28±0.05 4
BG 1.80±0.04 12 1.67±0.08 9 1.89±0.06 12 1.32±0.02 9 1.37±0.03 11
BX 1.36±0.03 10 1.29±0.03 8 1.39±0.07 11 2.04±0.22 6 2.07±0.24 7
CBH 1.80±0.07 12 2.11±0.11 8 2.06±0.05 11 1.89±0.18 9 1.98±0.34 6
LAP 1.34±0.27 2 1.29±0.06 3 1.20±0.06 8 0.40±0.02 2 0.52±0.08 7
NAG 1.65±0.02 11 1.40±0.03 11 1.52±0.04 12 1.60±0.04 11 1.43±0.06 10
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Figure S1. Canonical discriminant analysis for variation in litter chemistry fractions A) between sites and B) 
between the dry season (June 2015) and the wet season (December 2015). Loading coefficients – A) Lignin 
(0.22, -0.91), cellulose (-0.86, -0.32), hemicellulose (-0.29, 0.90), structural carbohydrates (0.94, -0.26), non-
structural carbohydrates (0.61, 0.55), protein (-0.93, 0.11). B) Lignin (-0.11), cellulose (-0.54), hemicellulose 
(-0.09), structural carbohydrates (0.78), non-structural carbohydrates (0.45), protein (-0.79).
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Figure S2. Canonical discriminant analysis for variation in extracellular enzyme 
Vmax of all enzyme classes between sites. Loading coefficients – AG (0.81, 0.37), 
AP (0.76, -0.54), BG (0.85, 0.21), BX (0.80, 0.25), CBH (0.81, 0.41), LAP (0.94, 
0.01), NAG (0.91, -0.20).
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Figure S3. Mean EE Vmax 
(µmol hr-1 g-1) across the 
gradient in both seasons a 
function of A) microbial 
biomass (mg C g-1 dry litter, 
NS) and B) fungal biomass 
(mg C g-1 dry litter, 
p<0.001, R2=0.30). October 
2014 and December 2015 
samples are depicted due to 
lack of bacterial cell density 
data for June 2015 samples.
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Figure S4. Canonical discriminant analysis for variation in 
extracellular enzyme Km of all enzyme classes between sites. Loading 
coefficients – AG (0.09, -0.06), AP (-0.43, 0.16), BG (0.82, 0.33), BX 
(0.08, -0.40), CBH (0.87, -0.33), LAP (-0.66, 0.16), NAG (0.35, 0.86).
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Figure S5. Mean EE Km 
(µM) as a function of A) 
microbial biomass (mg C g-1 
dry litter, NS) and B) fungal 
biomass (mg C g-1 dry litter, 
p=0.004, R2=0.12).  October 
2014 and December 2015 
samples are depicted due to 
lack of bacterial cell density 
data for June 2015 samples.
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