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Trauma and posttraumatic stress are highly comorbid with chronic pain and are often

antecedents to developing chronic pain conditions. Pain and trauma are associated

with greater utilization of medical services, greater use of psychiatric medication,

and increased total cost of treatment. Despite the high overlap in the clinic, the

neural mechanisms of pain and trauma are often studied separately. In this study,

resting-state functional magnetic resonance imaging (rs-fMRI) scans were completed

among a diagnostically heterogeneous sample of veterans with a range of back pain

and trauma symptoms. Using Group Iterative Multiple Model Estimation (GIMME), an

effective functional connectivity analysis, we explored an unsupervised model deriving

subgroups based on path similarity in a priori defined regions of interest (ROIs) from

brain regions implicated in the experience of pain and trauma. Three subgroups were

identified by patterns in functional connection and differed significantly on several

psychological measures despite similar demographic and diagnostic characteristics. The

first subgroup was highly connected overall, was characterized by functional connectivity

from the nucleus accumbens (NAc), the anterior cingulate cortex (ACC), and the posterior

cingulate cortex (PCC) to the insula and scored low on pain and trauma symptoms. The

second subgroup did not significantly differ from the first subgroup on pain and trauma

measures but was characterized by functional connectivity from the ACC and NAc to

the thalamus and from ACC to PCC. The third subgroup was characterized by functional

connectivity from the thalamus and PCC to NAc and scored high on pain and trauma

symptoms. Our results suggest that, despite demographic and diagnostic similarities,

there may be neurobiologically dissociable biotypes with different mechanisms for

managing pain and trauma. These findings may have implications for the determination

of appropriate biotype-specific interventions that target these neurological systems.

Keywords: insula, nucleus accumbens, effective connectivity, neuroimaging, veterans, catastrophizing, chronic

back pain, PTSD
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INTRODUCTION

Pain and trauma are highly comorbid conditions (1–6), especially
among the military and veteran population (7, 8), and both
are associated with dramatic changes in the brain structure
and function (9, 10). Using experimental pain and task-
based functional magnetic resonance imaging (fMRI), we and
others have repeatedly shown that men and women with
trauma demonstrate dysregulated behavioral (11, 12) and brain
response to pain, depicted in the increased pain avoidance and
dysregulated modulatory response within interoceptive, reward,
and frontal modulatory networks (13–17).

Resting-state fMRI (rs-fMRI) allows for the identification
of resting-state networks, which represent spatial distributions
of synchronized fluctuations in blood oxygen level-dependent
(BOLD) fMRI responses over time (18). Several neuroimaging
studies have shown that chronic low back pain is associated
with alterations in resting-state brain activity and dynamics (19–
23). Changes within default mode network (DMN), salience
network (SN), and cortico-striatal connectivity have all been
reported (24, 25), and reduced resting-state insula connectivity in
chronic back pain resolved following successful spinal surgery or
zygapophysial (facet) joint block (26). Similarly, growing research
demonstrates that chronic trauma is associated with alterations
in resting-state connectivity such as DMN, SN, and central
executive network (CEN, also referred to as the frontoparietal
control network) (27, 28). Substantial overlap between changes
in resting-state functional connectivity in both chronic pain and
trauma is consistent with clinical observations of comorbidity
between these conditions, and theoretical models wasproposed
to underlie pain–trauma overlap (6). Nevertheless, to the best of
our knowledge, no study has examined resting-state networks
in individuals with comorbid pain and trauma symptoms.
Understanding shared vs. unique underlying neural networks
related to pain and/or trauma may provide the basis for novel,
targeted interventions.

To examine the degree to which pain and/or trauma
symptoms alter resting-state functional connectivity, we
recruited a diagnostically heterogeneous sample of veterans
with varying degrees of back pain and trauma symptoms
and employed a model-free analysis approach with the goal
of identifying mechanistically meaningful subgroups. Such
diagnosis-free approach supports the National Institute of
Mental Health (NIMH) Research Domain Criteria (RDoC) goals
to understand mechanisms of psychiatric disorders and their
comorbidities in a transdiagnostic manner (29). Data-driven
approaches that characterize resting-state functional connectivity
patterns show great promise in elucidating neurobiological
mechanisms underlying clinical conditions and heterogeneous
symptoms (30, 31). Especially, employing effective connectivity
models, rather than Pearson’s correlation and distance measures,
can lead to an improved understanding of directional and causal
relationships between networks rather than finding simple
correlational associations (32, 33). A novel data-driven strategy
called group iterative multiple model estimation (GIMME)
has been shown to be particularly effective in deriving directed
pathways and is successful in separating clinically heterogeneous

population (34, 35). GIMME is a version of unified structural
equation modeling (uSEM) that uses time-series analysis within
an SEM framework to estimate the prediction strength of
directed paths between variables controlling for lagged and
contemporaneous effects of all the variables entered into the
model (36). Simulation and experimental evidence suggest
that GIMME is robust against problems associated with
signal-to-noise ratio, hemodynamic response variability, and
low sample sizes (35, 37). A modification of GIMME, called
subgrouping within GIMME (or “S-GIMME”), can identify
neural subtypes in small sample sizes and outperforms other
clustering methods (34).

The current study sought to utilize S-GIMME with resting-
state functional connectivity to identify whether pain and trauma
symptoms are associated with differential functional connectivity
patterns at rest in a diagnostically heterogeneous sample of
veterans within brain regions implicated in the experience
of pain and trauma [i.e., insula, anterior cingulate cortex
(ACC), thalamus, posterior cingulate cortex (PCC), and nucleus
accumbens (NAc)]. We hypothesized that a model-free approach
would identify specific connectivity patterns for increased pain,
trauma, and their overlap.

MATERIALS AND METHODS

Fifty-seven veterans (9 women, mean ± SD age: 35.5 ± 3.75,
range 28–44) gave written informed consent to participate
in this study, which was approved by the University of
California San Francisco Human Research Protection Program
and Veterans Affairs San Francisco Healthcare System Research
and Development Committee. Participants were recruited from
the VA San Francisco Healthcare System (VASFHS) via
advertisement materials (e.g., flyers posted in the hospital public
areas) or through referrals from other ongoing research projects
at this site and through mining VA electronic health records.
The sample included individuals with a range of back pain
and/or trauma symptoms. Study inclusions were (1) veterans
between the ages of 18 and 55; (2) veterans experiencing back
pain and/or history of life-threatening trauma during combat
and experiencing distress, such as excessive anxiety, jumpiness,
or nightmares, related to trauma; (3) veterans that were able
to undergo MRI (e.g., have no contraindications for MR);
and (4) veterans currently not taking narcotic medication.
Subjects were excluded from the study if they: (1) had a
current or lifetime history of bipolar disorder, psychosis,
eating disorders, and obsessive-compulsive disorder (OCD);
(2) had a history of alcohol and/or drug dependence within
3 months of study participation; (3) showed a neurological
disorder that might be associated with cognitive dysfunction
(including head trauma associated with fracture, pre-deployment
traumatic brain injury (TBI) resulting in loss or alteration of
consciousness, cerebrovascular accident, or intracranial surgery,
aneurysm, and seizures); (4) had prior neurosurgery; (5) had
irremovable ferromagnetic material; (6) were pregnant; (7) were
claustrophobic; (8) had TBI with loss of consciousness (LOC) >

10min; and (9) had vision problems uncorrectable with lenses.
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Three subjects were excluded from the analyses due to extensive
motion in the MRI scanner.

Clinical Measures
All subjects underwent a Structural Clinical Interview
administered by trained interviewers according to the Mini-
International Neuropsychiatric Interview (38) to establish
current and past psychiatric diagnoses. In addition, each subject
completed a Research Electronic Data Capture (REDCap)
battery of questionnaires assessing specific pain, trauma, and
comorbid symptoms. The battery included pain severity and
interference from the Brief Pain Inventory (BPI) (39) and post-
traumatic stress disorder (PTSD) checklist for DSM5 (PTSD
Checklist version 5, PCL-5) (40) to assess pain and trauma
symptoms, respectively. In addition, subjects completed Beck
Depression Inventory-2 (BDI-2) (41) to assess the severity of
depressive symptoms, the Pain Catastrophizing Scale (PCS)
(42), and a short form of the Pain Anxiety Symptoms Scale
(PASS-20) (43) to assess pain-related cognitions, and the
Combat Exposure Scale (CES) (44) to access wartime stressors
experienced by combatants. Note that we used the symptoms

spectrum approach in the current study; nevertheless, each
subject was also given a tentative group assignment based on
meeting/not-meeting trauma criterion A, and/or chronic pain
diagnosis, as recommended (45, 46).

MRI Acquisition and Preprocessing
Brain imaging data were acquired on 3-T Siemens Skyra MRI
scanner. All subjects underwent (1) a high-resolution T1-
weighted structural scan (320 slices; repetition time, TR =

2,400ms; echo time, TE = 2.24ms; flip angle, FA = 8◦; field of
view, FOV = 166.4mm × 240mm; matrix size = 208 × 300;
voxel size = 0.8mm × 0.8mm × 0.8mm); and (2) rs-fMRI
scan (66 slices in interleaved ascending order; TR = 1,000ms;
TE = 35ms; FA = 62◦; FOV = 208mm × 208mm; matrix
size = 104 × 104; voxel size = 2mm × 2mm × 2mm; MB
factor = 6) while laying comfortably in the MRI scanner. The
rs-fMRI run was 8:22min in length, during which 502 functional
volumes were acquired. Data were preprocessed using fMRIPrep
1.5.7 (47), which is based on Nipype 1.4.0 (48, 49) and followed
the recommended pipeline. Briefly, data were (1) de-spiked by
removal of regional statistical outliers with interpolated regional

FIGURE 1 | Unsupervised GIMME (USG) identified common and unique effective connectivity for the three subgroups based on effective connectivity paths. Subgroup

1 [USG1, yellow, n = 16, 7 connections] was characterized by functional connectivity to the insula from NAc, ACC, and PCC, and from the thalamus to ACC and

bidirectional interconnections between the thalamus and PCC. Subgroup 2 [USG2, indigo, n = 23, 4 connections] was characterized by functional connectivity from

the ACC and NAc to the thalamus and from ACC to PCC. Subgroup 3 [USG3, sky blue, n = 15, 4 connections] was characterized by functional connectivity from the

thalamus and PCC to NAc. Both USG1 and USG3 had overlapping functional connections from PCC to ACC (garnet), whereas USG2 and USG3 were characterized

by overlapping functional connectivity from the insula to ACC (cyan). No connections were shared between USG1 and USG2. (Right) The box on the right shows

pictorial of the five regions of interest (ROIs) extents of voxels included in signal averages [Hammers_mith atlas n30r83 (51)]. We extracted the mean BOLD time series

from the average activity across voxels using five bilateral regions averaged across both sites; only one side is displayed for clarity. IC, insular cortex; ACC, anterior

cingulate cortex; Thal, thalamus; PCC, posterior cingulate cortex; NAc, nucleus accumbens; BOLD, blood oxygen level-dependent. c.f. text for details.
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means, (2) temporarily corrected to slice acquisition, (3) spatially
corrected for six direction motion parameters (x, y, z, roll,
pitch, and yaw) and their derivatives, (4) aligned to anatomical
T1 and normalized brain space, and (5) scaled for percent
signal change. For more details of the pipeline, see the section
corresponding to workflows in fMRIPrep’s documentation (47).
Data were smoothed with a Gaussian kernel (full-width half-
maximum, FWHM = 5mm) and band-pass filtered (range
[0.008, 0.09] Hz).

Resting-State Networks
We extracted the mean BOLD time series from the average
activity across voxels using five bilateral regions of interest
(ROIs) averaged across both sites: thalamus, insula, ACC (SN
and interoception), PCC (DMN), and NAc (reward/relief) using
Hammers’ atlas (50, 51) (see inset on the right in Figure 1).
The mask was chosen based on the fact that these regions
are part of the networks that are heavily implicated in both
pain and trauma (52–55). Considering that our sample was
heterogeneous, which is typical for the veteran population,
identifying symptom-specific vs. comorbid and diagnostic
vs. symptomatic changes in functional connectivity between
these regions at rest can provide valuable insight into the
biological underpinnings of pain and/or trauma symptoms,
diagnoses, and potential treatment targets. These five ROIs
were then entered into connectivity classification analyses with
unsupervised S-GIMME (see below) to derive subgroups based
on path similarity.

Unsupervised S-GIMME
An unsupervised subgroup classification was performed using
unsupervised subgrouping-GIMME, or S-GIMME, in R (R
Core Team) in order to identify whether clinically relevant
subgroups of subjects can be derived based upon resting-state
effective connectivity patterns (34). Unsupervised S-GIMME
can be used to not only identify common pathways across all
subjects but also importantly classify subjects within subgroups
based upon unique connectivity profiles and estimate subject-
level connectivity (34). First, unsupervised S-GIMME searches
across individuals to derive a connectivity profile of lagged
(lag = 1 TR) and contemporaneous directed pathways that
are common for the majority of subjects (group-level) and
prunes the remaining paths. Furthermore, unsupervised S-
GIMME uses unsupervised community detection [Walktrap;
(56, 57)] on the similarity matrix derived from the individual-
level estimates of the group-level connections to identify an
optimal number of subgroups who have similar connectivity
profiles. Once subgroups are identified, unsupervised S-GIMME
searches for unique connectivity paths for each data-driven
subgroup. Finally, unsupervised S-GIMME identifies individual-
level connections using the group- and subgroup-derived
temporal patterns as priority. After identification of subgroups
derived from unsupervised S-GIMME, we compared subgroups
on clinical measures to examine clinical relevance of the
identified subgroups. Like previous reports (58, 59), we only
report on contemporaneous pathways.

Subgroup Characterization Analysis
Statistical analysis of clinical and psychological variables was
conducted in R and JASP (60). JASP (Version 0.14.1), ANCOVAs,
t-tests, and chi-square tests were used to compare S-GIMME
subgroups on clinical and demographic variables (i.e., age
and education). For pain and trauma symptoms, results were
uncorrected formultiple comparisons due to a priori assumption.
Other results were corrected for multiple comparisons using
Dunn’s method. Post-hoc analyses also explored associations of
unique connectivity by subgroup with clinical variables using
Spearman’s correlations.

RESULTS

Unsupervised S-GIMME
Unsupervised S-GIMME produced a three-group solution
(Figure 1), sorting 16 subjects into subgroup 1 (USG1, yellow),
23 subjects into subgroup 2 (USG2, indigo), and 15 subjects
into subgroup 3 (USG3, sky blue). The connectivity and
directionality of connections between ROIs within each subgroup
are illustrated in Figure 1 (left). Overall, USG1 had 7 connections
between 5 ROIs, whereas USG2 and USG3 had 4 connections.
USG1 was characterized by functional connectivity to the
insula from NAc, ACC, and PCC and from the thalamus to
ACC and bidirectional interconnections between the thalamus
and PCC. USG2 was characterized by functional connectivity
from the ACC and NAc to the thalamus and from ACC
to PCC. USG3 was characterized by functional connectivity
from thalamus and PCC to NAc. Several connections were
overlapping between the subgroups. Both USG2 and USG3
were characterized by overlapping functional connectivity from
the insula to ACC, whereas USG1 and USG3 had overlapping
functional connections from PCC to ACC. No connections were
shared between USG1 and USG2. We have displayed (Figure 1,
right) the extent of voxels included in signal averages for each of
the five ROIs in Figure 1 [Hammers_mith atlas n30r83 (51)].

Demographic, Clinical, and Psychological
Variables
Unsupervised S-GIMME subgroups did not differ significantly
on age [F(2,1.50) = 1.41, p = 0.254], sex (χ2 = 1.972, p =

0.373), race/ethnicity (χ2 = 8.295, p = 0.405), education level
[F(2,1.48) = 0.766, p = 0.471], marital (χ2 = 8.255, p = 0.409),
or employment (χ2 = 0.609, p = 0.996) status (see Table 1).
Similarly, there was no significant difference in the reported
mild TBI (χ2 = 0.414, p = 0.813) or the proportion of veterans
meeting/not-meeting trauma and/or chronic pain criteria (χ2 =

6.208, p= 0.400, Figure 3B). Similarly, no significant differences
between subgroup analyses in combat exposure were observed
[see Table 1, F(2,1.50) = 0.347, p= 0.708].

Conversely, unsupervised S-GIMME subgroups differed
significantly on several clinical symptoms and psychological
measures (see Table 1). This is graphically demonstrated by the
radial plot in Figure 2.

As can be seen in Figure 2, USG1 was characterized by
low scores of pain and psychological symptoms, USG3 was
characterized by high scores of pain and psychological symptoms
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TABLE 1 | Subjects’ characteristics.

USG1 USG2 USG3 Fstat/ χ2 p-value

N 16 23 15

Age 34.44 (4.15) 35.7 (3.43) 36.4(3.76) 1.41 n.s.

Sex, number of subjects (percent) 1.972 n.s.

Male 12(75%) 21(91%) 12(80%)

Female 4(25%) 2(9%) 3(20%)

Ethnicity/Race 8.295 n.s.

Caucasian 6(38%) 15(68%) 8(57%)

African-American 1(6%) 0(0%) 1(8%)

Asian/Pacific Islander 3(19%) 0(0%) 1(7%)

Hispanic/Latino 2(13%) 4(18%) 2(14%)

Mixed 4(25%) 3(14%) 2(14%)

Education 14.5(1.16) 14.91(1.02) 15.143(1.70) 0.766 n.s.

Marital Status, number of subjects (percent) 8.255 n.s.

Single 1(6%) 6(26%) 5(33%)

In a relationship 5(31%) 9(39%) 5(33%)

Married 8(50%) 5(22%) 4(27%)

Divorced/separated 2(13%) 2(9%) 0(0%)

Employment, number of subjects (percent) 0.609 n.s.

Employed 12(75%) 16(69%) 10(67%)

Out of work 1(6%) 2(9%) 2(13%)

Student 2(13%) 3(13%) 2(13%)

Other 1(6%) 2(9%) 1(7%)

Clinical and Psychological Variables

Mild TBI, number of subjects (percent) 0.414 n.s.

Yes 9(56%) 13(57%) 7(47%)

No 7(44%) 10(43%) 8(53%)

PTSD Checklist (PCL) 9.81(9.16) 12.34(15.76) 24.53(20.11) 4.107 <0.05

Pain Severity (BPI) 2.05(2.26) 1.93(2.06) 3.44(2.42) 2.220 n.s.

Pain Interference (BPI) 1.59(2.31) 1.67(2.02) 3.02(2.24) 2.161 n.s.

Beck Depression Inventory2 (BDI2) 7.31(7.31) 12.17(11.59) 16.13(13.18) 2.815 0.069

Pain Catastrophizing Scale (PCS) 8.44(7.32) 9.61(9.99) 18.4(14.47) 3.963 <0.05

Pain Anxiety Symptoms Scale (PASS) 14.25(10.77) 17.39(15.79) 28.47(17.17) 4.421 <0.05

Combat Exposure Scale (CES) 12.25(10.83) 11.13(12.14) 13.27(12.87) 0.347 n.s.

USG [1,2,3]– unsupervised GIMME subgroups based on effective connectivity path similarities; BPI – brief pain inventory; n.s. p > 0.05.

with USG2 being in the middle. GIMME subgroup differences
for pain and trauma symptoms are shown in Figure 3A. As
determined by one-way ANCOVA with GIMME subgroup as
a fixed factor and sex as a covariate, PCL-5 scores were
significantly different [F(2,1.50) = 4.107, p = 0.022]. Dunn’s post-
hoc comparisons of the GIMME subgroups indicated that the
mean in the USG3 group was significantly higher than that
in the USG1 and USG2 (p < 0.05) groups, and there was no
significant difference between USG1 and USG2 (p= 0.469). Both
pain severity and pain interference showed similar differences,
yet ANCOVA only showed a tendency for significant GIMME
subgroup effect while co-varying for sex [pain severity: F(2,1.50)
= 2.220, p = 0.1; pain interference: F(2,1.50) = 2.161, p =

0.1]. Since we hypothesized a priori that GIMME subgroups
would differ in pain and/or trauma symptoms, we performed

Dunn’s post-hoc comparisons of the GIMME subgroups. Post-
hoc analysis indicated that the mean in the USG3 group was
significantly higher than that in the USG2 for pain intensity
and pain interference (p < 0.05). Relative to USG1, USG3
was significantly higher on pain interference (p < 0.05) and
approached significance on pain intensity (p = 0.055). There
were no significant differences in either pain intensity or pain
interference between USG1 and USG2 (p-values >0.5). When
PCS, BDI-2, and PASS-20 scores were examined, the one-way
ANCOVA with GIMME subgroup as a fixed factor and sex as
a covariate showed that PCS scores, as well as the PASS-20
scores [F(2,1.50) = 4.421, p = 0.017], were significantly different
[F(2,1.50) = 3.963, p = 0.025], whereas BDI-2 scores approached
significance [F(2,1.50) = 2.815, p = 0.069] to be different between
the three GIMME subgroups.
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FIGURE 2 | Graphic representation of clinical and psychological variables among the three subgroups identified by unsupervised S-GIMME based on effective

connectivity paths at rest. Subgroup 1 [USG1, yellow, n = 16], subgroup 2 [USG2, indigo, n = 23], and subgroup 3 [USG3, sky blue, n = 15]. The radar plot is

bounded by the minimum and maximum scores in the current sample for each scale (these averages for each subgroup are displayed for reference). c.f. Table 1 for

statistical details. Severity, pain severity; Interference, pain interference; both from Brief Pain Inventory (BPI); PCS, Pain Catastrophizing Scale; PCL-5, PTSD Checklist

version 5; BDI-2, Beck Depression Inventory-2; PASS-20, Pain Anxiety Symptoms Scale; c.f. text for details.

Exploratory Correlational Analysis
To examine which connections were indicative of a vulnerability
or resiliency, GIMME subgroup-specific correlations were
performed between pain and trauma scores and individual
path estimates for subgroup-unique connections. For the
USG1, or the group with the minimal levels of psychiatric
and pain symptoms, we found that the NAc connection
to the insula, which was unique to this group, was
inversely correlated with pain interference (ρ = -0.631,
p = 0.004) and PCS (ρ = −0.722, p < 0.001) scores
(Figures 4A,B). No other subgroup-specific connections
showed a significant relationship with the psychological and/or
pain measures.

DISCUSSION

The present study reports new findings of unique functional
connectivity patterns associated with pain and trauma symptoms
during rest in a sample of veterans with a spectrum of pain and
trauma symptoms. Using an unsupervised modeling approach,
we identified unique connectivity patterns in these veterans at
rest. Specifically, we found three separate subgroups showing
different functional connectivity between the chosen ROIs that
play an important role in pain, reward, and trauma (52–
55), despite having similar demographic and clinical diagnostic
characteristics. This study suggests that even though they may
have similar demographic and diagnostic characteristics, there
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FIGURE 3 | Clinical (A) and diagnostic (B) characteristics of GIMME subgroups identified by unsupervised S-GIMME based on effective connectivity paths at rest. (A)

Box plots of trauma and pain symptoms (marginal mean ± SE) for each of the subgroups. (top) PCL scores were significantly different [F (2,1.50) = 4.107, p < 0.05],

ANCOVA (GIMME subgroup as a fixed factor and sex as covariate); Dunn’s post-hoc comparisons indicated that the mean in the USG3 group was significantly higher

than that in the USG1 and USG2 (p-values < 0.05), and there was no significant difference between USG1 and USG2 (p = 0.469). (middle) Pain severity (from BPI)

showed a tendency for a significant GIMME subgroup effect while covarying for sex [F (2,1.50) = 2.220, p = 0.1]; Dunn’s post-hoc comparisons indicated that the mean

in the USG3 group was significantly higher than that in the USG2 (p < 0.05) and approached significance when compared with USG1 (p = 0.055); there was no

significant difference between USG1 and USG2 (p-values > 0.5) (bottom) Pain interference (from BPI) showed a tendency for significant GIMME subgroup effect while

covarying for sex [F (2,1.50) = 2.161, p = 0.1]. Dunn’s post-hoc comparisons indicated that the mean in the USG3 group was significantly higher than that in the USG2

and USG1 (p < 0.05). There was no significant difference between USG1 and USG2 (p-values > 0.5). (B) Treemap charts show a hierarchical view of tentative

diagnostic groupings within each of the GIMME subgroups. The symptoms-based approach was utilized in the current work; nevertheless, each subject was also

given a tentative group assignment based on meeting/not-meeting trauma criterion A, and/or chronic pain diagnosis, as recommended (45, 46). NONE—no pain/no

trauma, PAIN—pain/no trauma, TRAUMA—trauma/no pain, and BOTH—pain/trauma. The proportion of each diagnostic group within each GIMME subgroup is

shown. There was no significant differences between subgroup analyses in the proportion of veterans meeting/not-meeting trauma and/or chronic pain criteria

(χ2 = 6.208, p = 0.400); * <0.05, c.f. Table 1 and text for details.
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FIGURE 4 | Exploratory correlations: (A) Insula—Accumbens Connectivity and Pain Catastrophizing Association in USG1. NAc connection to the insula, which was

unique to subgroup USG1, or the group with the minimal levels of psychological and pain symptoms, was inversely and significantly correlated with pain

catastrophizing scores (PCS) (ρ = −0.722, p < 0.001). The Scatter plot (middle) shows Pearson’s correlations for a visual demonstration. Density plots for NAc to

insula connectivity (left) and PCS scores (right) within USG1 are shown. (B) Insula—Accumbens and Pain Interference Association in USG1. NAc connection to the

insula, which was unique to subgroup USG1, was inversely and significantly correlated with pain interference scores (ρ = -0.631, p = 0.004). The Scatter plot

(middle) shows Pearson’s correlations for a visual demonstration. Density plots for NAc to insula connectivity (left) and interference scores (right) are shown. No other

subgroup-specific connections showed a significant relationship with the psychological and/or pain measures. ** <0.01, *** <0.001; PCS, Pain Catastrophizing Scale;

Interference, pain interference measure from Brief Pain Inventory (BPI).

may be neurobiologically dissociable biotypes with different
mechanisms for handling pain and trauma. This may have
implications for the determination of appropriate biotype-
specific interventions that target these neurological systems.

We found that the subgroups, defined by unsupervised S-
GIMME as showing differential functional connectivity patterns
at rest, were clearly separable in their clinical symptoms
of trauma and pain. Specifically, we found that the group
characterized by the lowest pain and trauma scores (USG1),
or the least clinically impaired subgroup was highly connected

overall, i.e., compared to the other two groups, USG1 showed
more subgroup-unique connections, and overlapping functional
connections with the other subgroups. This so-called “low
symptom group” was characterized by functional connectivity
from NAc, ACC, and PCC to the insula, and also from the
thalamus to ACC and bidirectional interconnections between the
thalamus and PCC. The insula plays a pivotal role in emotional
and interoceptive processing (52, 61, 62). Besides its proposed
role as an interoceptive sensory cortex (63, 64), substantial
evidence supports the notion that the insula represents a hub
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for dynamic switching between different networks, i.e., based
on the emotional and interoceptive needs of an organism, the
insula helps to access attention, working memory, and other
higher-order cognitive processes (62, 65). Not surprisingly, many
pain and psychiatric disorders are thought to be related to faulty
insula connectivity (66–71). Such interpretation is consistent
with our findings of the insula being a hub for connectivity
at rest in the “low symptom,” i.e., the least clinically impaired,
subgroup. Interestingly, this “low symptom” subgroup is the
only group that showed unique connectivity from NAc to the
insula, which also was inversely correlated with pain interference
and PCS scores in this subgroup. In other words, those with
the lowest pain catastrophizing and pain interference scores
had the highest functional connectivity from NAc to the insula,
potentially suggesting the protective role of such connections.
The NAc is at the core of the reward system, as it integrates
emotional information to modulate motivated behavior (72, 73).
In addition, a meta-analysis of healthy subjects has shown that
spontaneous activity in the NAc predicts activity in the insula,
suggesting consistent co-activation among these regions (74).
Our study shows that co-activation of these regions plays an
important role in discriminating between anticipating more
painful vs. anticipating less painful experimental pain stimuli
(75). This is consistent with the reported activation of NAc
during pain predictive cues, the anticipation of pain relief, and
the reported dopaminergic inputs to NAc during both reward
and punishment (76–80). Furthermore, the motivation-decision
model of pain states that actions are influenced by decisions
about whether to approach something pleasant (a reward) or
avoid something unpleasant (pain/loss) (53). We believe that
NAc–insula connection provides a balance between pain and
pain relief, and functional connection between these regions at
rest thus underlies a healthy (or resilient) way to respond to
stressful events such as trauma and/or pain.

With regard to the thalamus to ACC connectivity that was also
unique in the “low symptom” subgroup, both the ACC and the
thalamus are implicated in the affective/emotional aspects of pain
and are thought to play important roles in painmodulation.More
specifically, evidence suggests that, in response to pain, the ACC
engages lower parts of the descending pain control system (i.e.,
PAG, hypothalamus, and rostral ventromedial medulla), which
in turn exert an opioid-dependent inhibitory influence on spinal
nociceptive processing, reducing nociceptive input to thalamic
and cortical regions, and ultimately leading to a reduced pain
experience (81). As such, it is possible that our observation of
greater connectivity between the ACC and the thalamus in the
“low symptom” subgroup could reflect the proper functioning of
the descending analgesic pathway that is ready to engage in the
setting of painful/traumatic experiences.

We found that the GIMME subgroup that demonstrated the
highest pain and trauma symptoms, or the comorbid “high
symptom” subgroup, reported the highest pain catastrophizing,
pain anxiety, and depressive symptom severity scores and was
characterized by functional connectivity from the thalamus to
NAc and from PCC to NAc. Considering the above fact, the
lack of insula connectivity with NAc and with other regions
in this subgroup can potentially underlie the highest clinical

impairment in this subgroup. The fact that NAc appears to be
a hub for connectivity at rest in the “high symptom” subgroup
may not be surprising, considering the role that NAc plays
in chronification of pain in both human and animal models
(25, 82–85). Furthermore, chronic pain patients suffer from
anhedonia, decreased motivation, and exhibit impaired value-
based decision-making—all properties of the cortico-striatal
system (86–88). Not surprisingly, decreased motivation and
impaired valence-based processing are typical for PTSD (17),
and NAc circuitry is implicated in post-trauma active avoidance
(89). The thalamus is a central hub of homeostatic information
(90), whereas the PCC is implicated in regulating the focus
of attention (e.g., internal vs. external) (91). Greater NAc
connectivity between these regions in this “high symptom”
subgroup may work jointly to influence pain catastrophizing and
pain anxiety via the increased projection of internal pain states
and the increased demand to direct internal attention away from
such states.

We also found that “low symptom” and “high symptom”
subgroups had overlapping functional connections from PCC to
ACC. We speculated that increased connectivity here underlies
coping with stress, yet in one group, it is an adaptive flexible
response, such as mind wandering and cognitive control, whereas
in another, it is maladaptive, conveying learned helplessness (92).

Our model-free approach identified another subgroup that
was characterized by low pain and trauma symptoms, similar
to the “low symptom” subgroup, but was functionally separated
from the “low symptom” and “high symptoms” subgroups.
This, so-called, “medium symptom” subgroup showed unique
connections from ACC to PCC. PCC is a key part of DMN).
More DMN connectivity in this group can likely be understood
in the context of DMN regulatory response to pain, depression,
and trauma. Evidence within the broader chronic pain literature
suggests that stronger DMN connectivity may reflect an
enhanced ability to engage in mind wandering (i.e., attention
fluctuating away from the present sensory environment) (93, 94),
thereby decreasing the salience of pain (95, 96). Therefore, it is
possible that our analysis revealed a subgroup that is different
from the “low symptom” subgroup by being able to disengage
from pain and/or trauma through avoidance and/or dissociation,
a process often associated with pain, trauma, and depression (13,
15, 16, 97). This would result in an increased ability to wander
the mind away from painful and traumatic experiences and
thus decrease their immediate salience. Avoidant and suppressive
responses may alleviate distress in the short term but, in the
long term, may become maladaptive and in fact exacerbate
emotional behaviors and interfere with one’s ability to extinguish
fear responses (98), potentially creating neural vulnerability
for pain and trauma chronification. Of note, it has also been
suggested that within DMN and to PCC connectivity in the
context of pain could reflect pain rumination (i.e., perseverative
negative thinking about pain) (99), yet this interpretation is less
likely since this group did not demonstrate heightened pain or
trauma symptoms. We also found that this “medium symptom”
subgroup had overlapping functional connections with the “high
symptom” subgroup, i.e., the group with the highest clinical
impairment. These overlapping functional connections were
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from insula to ACC. With regard to insula–ACC connectivity,
mechanistically, increased connections between limbic sensory
cortex (insula) and limbic motor cortex (cingulate) convey
stronger affective experience (62, 100) and increased motivation
to modulate feeling of pain, and we have previously shown that
weaker connections during experimental pain task are associated
with increased subjective pain and avoidant brain response in
those with combat trauma and PTSD (16). Thus, it is likely,
that the increased insula–ACC connectivity in these subgroups
underlies avoidant response to pain and trauma, yet in the
“medium symptom” subgroup, the avoidant response is effective
in reducing subjective experience.

We hypothesized that the model-free approach would identify
specific connectivity patterns for increased pain, increased
trauma, and their overlap. We did not, however, observe
pain-specific vs. trauma-specific circuits in our heterogeneous
sample, but the degree of symptoms was driving our subgroup
differences. Note that the incidence of meeting the criteria
for pain and/or trauma in our sample was not different
among the subgroups. This supports the RDoC transdiagnostic
notion (29). It is also of note that patients and veterans,
in particular, rarely present with a single disorder but often
with multiple comorbidities and that treatments tested in
uncomplicated patients often fail in clinical settings. This
potentially more generalizable approach may direct choices for
various non-opioid interventions and need to be tested in
the future.

Limitations of the current study include the use of a cross-
sectional design, which restricted our ability to draw conclusions
as to whether the brain findings represent a vulnerability to,
or impact of, chronic pain and/or trauma. It is also important
to note that our sample had relatively high levels of education,
and although this demographic factor did not differ between
groups, its limited range may reduce the generalizability of these
findings. Similarly, the proportion of women in this study was
low; thus, current findings may not generalize to the female
population. In addition, our overall sample size was relatively
small but is comparable with other recent studies using rs-
fMRI (28). Furthermore, GIMME has been shown to be robust
with small sample sizes, which suggests that this is an ideal
method for investigations with challenging-to-recruit patient
populations. Nonetheless, future work with larger samples will
be required to determine if larger samples will also find similar
subtypes as those observed in our study and to probe the
unique within-subgroup connectivity profiles. In addition, we
used S-GIMME, which is a version of uSEM that uses time-
series analysis with an SEM framework (36). Although it offers
an improvement over simple functional connectivity models
(e.g., Pearson’s correlation and distance measures) by providing
directional and causal relationships between networks (32, 33,
101), it also has several limitations. These include statistical
dependence of multiple features, reduced equivalency with other
methods, and a lower maximum of allowable features in the
model (due to the increased computational load <20 lagged

and contemporaneous features are allowed into the model).
Nevertheless, this approach, when combined with the RDoC
approach, provides a unique opportunity to understand unique
functional brain connectivity as it maps to pain and trauma
symptoms in heterogeneous samples.

CONCLUSIONS

We report novel evidence of unique functional connectivity
patterns associated with pain and trauma symptoms in a
sample of veterans. Using an unsupervised approach rather
than predefined diagnostic grouping, we identified a unique
and overlapping pattern of functional connectivity at rest
that represented subjects with differential clinical symptoms
subtypes. Our “low symptom” subtype that was characterized
by integrated connectivity patterns between the networks, both
in the hub (i.e., insula) and pain modulatory networks, may
be consistent with the resilient biotype following trauma.
Conversely, the “high symptom” subtype was the most
interesting candidate as a risk-related biotype. We believe that
specific connections or whole-brain patterns are important for
determining vulnerability or resilience subtypes and may be used
to classify future samples.
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