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ABSTRACT: Cloud microphysical processes are an important facet of atmospheric modeling, as

they can control the initiation and rates of snowfall. Thus, parameterizations of these processes

have important implications for modeling seasonal snow accumulation. We conduct experiments

with theWeather Research and Forecasting (WRFV4.3.3) model using three different microphysics

parameterizations, including a sophisticated new scheme (ISHMAEL). Simulations are conducted

for two cold-seasons (2018 and 2019) centered on the Colorado Rockies’ ∼750 𝑘𝑚2 East River

Watershed. Precipitation efficiencies are quantified using a drying-ratio mass budget approach

and point evaluations are performed against three NRCS SNOTEL stations. Precipitation and

meteorological outputs from each are used to force a land-surface model (Noah-MP) so that

peak snow accumulation can be compared against airborne snow lidar products. We find that

microphysical parameterization choice alone has a modest impact on total precipitation on the

order of ± 3% watershed-wide, and as high as 15% for certain regions, similar to other studies

comparing the same parameterizations. Precipitation biases evaluated against SNOTEL are 15 ±

13%. WRFNoah-MP configurations produced snowwater equivalents with good correlations with

airborne lidar products at a 1-km spatial resolution: Pearson’s 𝑟 values of 0.9, RMSEs between

8-17 cm and percent-biases of 3-15%. Noah-MP with precipitation from the PRISM geostatistical

precipitation product leads to a peak SWE underestimation of 32% in both years examined, and

a weaker spatial correlation than the WRF configurations. We fall short of identifying a clearly

superior microphysical parameterization, but conclude that snow lidar is a valuable non-traditional

indicator of model performance.
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1. Introduction29

Precipitation (rain and snowfall) in mountains is highly variable in space and time, under-30

sampled by weather stations and radar, and challenging to model and measure (Lundquist et al.31

2019). In mid-latitude regions, mountain precipitation often falls as snow, gradually accumulating32

as snowpacks that act as natural reservoirs supporting ecosystems and human systems across the33

watersheds into which they drain and beyond (Sturm et al. 2017; Siirila-Woodburn et al. 2021).34

The streamflow from snowmelt depends not only on the antecedent snow-volume, but also spatial35

location of snow accumulation throughout the watershed (Luce et al. 1998; Kiewiet et al. 2022).36

The variability of snow accumulation occurs at a range of process scales spanning individual37

hillslopes to synoptic scales (Clark et al. 2011). The value of seasonal snowpack in the Western38

U.S. has been estimated in the trillions of dollars (Sturm et al. 2017), yet spatial estimates of the39

water stored each winter remain poor in most areas. Snowfall is frequently the most uncertain40

forcing variable in snow energy and mass balance models, and therefore remains a critical but41

uncertain input for predicting this large natural reservoir (Raleigh et al. 2015).42

A significant component of snowfall, and therefore where snowpacks accumulate, is caused43

by orographic enhancement resulting from a variety of dynamical mechanisms including stable44

upslope ascent from mechanical uplift, release of potential instabilities, lee-side convergence,45

seeder-feeder processes, and convection triggered by differential heating associated with changes46

in slope and aspect (Roe 2005; Houze 2012; Stoelinga et al. 2013; Kirshbaum et al. 2018).47

Convection permitting atmospheric models (Prein et al. 2015) have demonstrated skill in modeling48

precipitation accumulation in mountain environments where orographic enhancement processes49

are important (Minder et al. 2008; Ikeda et al. 2010; Rasmussen et al. 2011; Gutmann et al. 2012;50

He et al. 2019; Rudisill et al. 2021). For these reasons, and because of deficiencies in gridded51

precipitation products (Henn et al. 2018), studies investigating the mountainous hydrologic cycle52

and water resource management now frequently use output from numerical weather or climate53

models (Lundquist et al. 2019; Meyer et al. 2023).54

However, the predicted precipitation fields from atmospheric models exhibit errors from a wide55

range of sources. For example, they are highly sensitive to the under-tested assumptions in mi-56

crophysical parameterizations (Liu et al. 2011; Minder and Kingsmill 2013; Comin et al. 2018;57

Rhoades et al. 2018; Rahimi et al. 2022). The problem is exacerbated in complex terrain where58
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the location of falling precipitation upwind/downwind of an orographic barrier can have important59

hydrologic ramifications (Pavelsky et al. 2012). Unfortunately, the lack of comprehensive precip-60

itation observations in complex terrain (Lundquist et al. 2019) creates an ill-posed process model61

development and diagnostic premise: modeled precipitation is highly sensitive to model struc-62

tural and parameterization choices, but those choices are not easily evaluated with observations.63

This is because commonly used gridded precipitation datasets are highly uncertain in locations64

far away from observations and can differ substantially in mountain regions (Henn et al. 2018).65

Radar beams are frequently blocked in complex terrain limiting quantitative precipitation estimates66

(Maddox et al. 2002). Consequently there is great need for better model evaluations in complex67

mountain terrain.68

At the same time, airborne Light Detection and Ranging (lidar) scanning is increasingly used69

to monitor watershed scale montane snowpack, and provides high spatial resolution (1-5m-scale)70

maps of snow depth (SD) and snow water equivalent (SWE) after making assumptions about71

density (Painter et al. 2016). This is a trove of useful information, as the water content of a72

seasonal snowpack tells us the lower-bound of the antecedent precipitation for that location. E.g.,73

if the snowpack has one meter of water stored, and a model says that only 750 mm of precipitation74

accumulated in that region, then we know the model is under predicting. Lidar SD is measured by75

first mapping the snow-free land surface from aircraft. Subsequent flights during the snow season76

record snow-top heights, which are differenced from the bare-ground elevation. The accuracy for77

snow-height measurements in flat terrain is considered ±8 cm for a 1 meter swath (Deems et al.78

2013; Painter et al. 2016) in several studies, though some have reported values as high 20-30 cm for79

certain vegetation types (Tinkham et al. 2014). Lidar SD can then be combined with model-derived80

snow density estimates to produce spatial estimates of snow water equivalent (SWE). Densities can81

be modeled using energy balance modeling (Hedrick et al. 2018), and generally vary less (spatially)82

than SD (Sturm et al. 2010). Lidar flights represent only a single snapshot in time of the state of83

the snowpack, and snow density estimates are limited by small observational datasets of density84

in complex terrain. Still, when measured near the peak of the accumulation season, SWE can be a85

very close measure of the antecedent snowfall received at that point, minus water lost to ablation,86

and both positive and negative impacts of wind redistribution. Previous studies have leveraged87

the strong relationship between precipitation processes and snow accumulation patterns to scale88
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precipitation forcings for use in hydrologic modeling (Vögeli et al. 2016; Pflug et al. 2021), to89

examine precipitation-elevation gradients (Kirchner et al. 2014), and to evaluate the skill of various90

precipitation datasets (Behrangi et al. 2018).91

The goal of this study is several-fold. We seek to evaluate the sensitivities of simulated snowfall92

in theWeather Research and Forecasting (WRF) model (Skamarock et al. 2019; Powers et al. 2017)93

to three different microphysical parameterizations (or "schemes") of varying complexity across the94

snow accumulation portions of two Water Years (WY; October through April of 2018 and 2019)95

covering the vicinity of Colorado’s East River Watershed (ERW) and surrounding regions (Figure96

1) We evaluate the Morrison et al. (2005), Thompson et al. (2008), and recently developed Ice-97

Spheroids Habit Model with Aspect-ratio EvoLution (ISHMAEL; Jensen et al. 2017) schemes. We98

seek to 1) determine if the WRF model meteorology can produce snowpacks with similar spatial99

patterns and magnitudes to what is observed by Airborne Snow Observatory (ASO; Painter et al.100

2016) snow lidar, 2) identify which microphysical scheme is better, if any, as compared to ASO and101

NRCS SNOTEL gauge data ("SNOwTELemetry"; Serreze et al. 1999), and 3) examine if theWRF102

model does better than the PRISM (Parameter Regression on Independent Slopes; Daly et al. 2008)103

geostatistical precipitation product for matching the ASO snow product. The PRISM dataset is104

commonly used for precipitation model validation in the Western US (e.g. Liu et al. 2017) so it is a105

useful baseline to compare models against. Model point-scale biases of accumulated precipitation106

are evaluated against three NRCSSNOTEL sites within the domain (Figure 1). To better understand107

precipitation sensitivity to microphysics parameterizations, we also use a “drying ratio” method to108

evaluate the efficiency of each model configuration for converting water vapor flux to precipitation,109

based on Eidhammer et al. (2018). We also examine cross-section views of atmospheric quantities110

across the ERW to better understand the differences between each WRF scheme. The ultimate111

motivation of this study is to improve modeling capabilities of mountain cryosphere processes,112

particularly in the water-resource essential Upper Colorado River basin where this study is located113

(Tillman et al. 2022).114
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Fig. 1. A) WRF model inner (black box) and outer (map extent) domains with elevation shown. The East

River Watershed (ERW) is outlined in red. The bounding box for drying-ratio calculations is also shown (purple

dashed line). B) The Noah-MP static geographic data used for snow modeling. Topography from the ASO lidar

digital elevation model (DEM; upper right) and USGS 24 category vegetation classification type (bottom right).

Locations of NRCS SNOTEL locations (black diamonds) are also shown. The ASO domain extends slightly

beyond the extent of the ERW.

115

116

117

118

119

120

2. Methods121

a. Study Area122

We focus our analysis on the ERW near Crested Butte, Colorado. The ERW is a high elevation123

(2500-3500 masl), representative Rocky Mountain watershed and the location of numerous critical124

zone, snow, and hydrologic studies (Hubbard et al. 2018), aswell as a recently-deployedDepartment125

of Energy Atmospheric Radiation Measurement (ARM) field site (Feldman et al. 2021). The126

landcover types are predominantly open shrubland and evergreen needleleef. The Airborne Snow127

Observatory (Painter et al. 2016) provides a lidar based SD and SWE product for WY2018-128

2019 covering the ERW with one flight near peak snow accumulation for WY2018 and 2019.129

Consequently, this watershed is an ideal testbed for examining microphysical, precipitation, and130
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snow processes, and model products will serve as guidance for hypothesis testing of ongoing field131

observation campaigns. The study region technically extends beyond the ERW boundaries into the132

Taylor and Castle creek watersheds, as ASO data covers these regions as well, and doing so allows133

for comparisons against two additional NRCS SNOTEL monitoring sites.134

b. Microphysical Parameterizations135

It has been repeatedly shown that the representation of microphysical processes in atmospheric136

models applied at regional to global scales can have a significant impact on modeled orographic137

precipitation magnitude and spatial variability (Khain et al. 2000; Gettelman et al. 2019; Liu138

et al. 2011; Rhoades et al. 2018). Fundamentally, the microphysical parameterization schemes139

in atmospheric models attempt to represent removal of atmospheric water from a given model140

grid-cell based on kinematic and thermodynamic conditions (Khain et al. 2000; Morrison et al.141

2020). Schemes in operational models typically use “bulk” approaches, where the hydrometeor142

mixing ratio (mass per mass of dry air), number concentrations (particles per unit volume), and143

other hydrometeor properties are predicted for a limited number of species (graupel, rain, snow,144

cloud-water, etc; Morrison et al. 2020). Figure 2 illustrates an idealized depiction of some of145

the most prominent cloud microphysical processes that control distributions of precipitation in146

mountain regions. Moist processes can also influence the dynamics through latent heat release147

(Jiang 2003) and interactions with radiation (Chen et al. 2018).148

In this study we test the Thompson (Thompson et al. 2008; hereafter MP08), Morrison (Morrison153

et al. 2005; hereafter MP10) and ISHMAEL (Jensen et al. 2017; hereafter MP55) microphysical154

schemes (Table 1). Each scheme treats ice phase hydrometeors and growth processes in different155

ways. The MP10 and MP08 both use 5 separate hydrometeor categories: cloud liquid, cloud ice,156

snow, graupel, and rain and predict mixing ratios for each. MP10 predicts the number concentration157

for ice, rain, snow and graupel, whereas MP08 only predicts the number concentration for rain.158

In MP10, all hydrometeors are assumed to be spherical, with mass-density relationships given159

by 𝑚(𝐷) = 𝜋/6𝜌𝑠𝐷3. MP08 is similar but describes snowflakes as approximately planar, with160

mass-diameter relationships given by 𝑚(𝐷) = 0.069𝐷2. The most sophisticated scheme tested is161

MP55 which forecasts higher-order moments of hydrometeor species beyond mixing ratios and162

number concentrations at the expense of a higher computational cost. The MP55 scheme uses163
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Fig. 2. Conceptual diagram illustrating key microphysical process controls on orographic precipitation as a

parcel moves across a mountain barrier. The lifting condensation level (LCL), temperature (T), relative humidity

(RH), hydrometeor velocity (V), and advection distance (D) are depicted. Secondary controls on slope scale

snow deposition/redeposition are also shown. Gray countours show hypothetical wind streamlines.

149

150

151

152

three ice categories in place of snow/graupel categories and models the evolution of snowflakes164

as oblate spheroids with two evolving axes 𝑎𝑖 and 𝑐𝑖, such that the particle mass is given by165

𝑚(𝑎, 𝑐) = 𝜌𝑖 4
3𝜋𝑎

2
𝑖
𝑐𝑖. Here, 𝑎𝑖 is half the major axis for plate-like crystals and half the minor axis166

for column-like crystals, and 𝑐𝑖 is half the minor axis for plate-like crystals and half the major axis167

for column-like crystals. Consequently, MP55 explicitly models both columnar and dendritic ice-168

habits (characterized by different 𝑎𝑖/𝑐𝑖 ratios), and the temperature dependent nucleation of each169

of these forms. It is important to note that the growth processes (e.g., collection, vapor deposition)170
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depend on the particle aspect ratio. Although we highlight some of the differences across the three171

microphysics schemes, there are a variety of other differences between the schemes, and a full172

accounting is beyond the scope of the present study.173

Scheme Abbreviation Reference

Thompson MP08 Thompson et al. (2008)
Morrison MP10 Morrison et al. (2005)
ISHMAEL MP55 Jensen et al. (2017)

Table 1. Weather Research and Forecasting (WRF) Model V4.3.3 Microphysics options examined in this study.

c. Weather Research and Forecasting (WRF) Model Configuration174

This study tests precipitation from WRF atmospheric model version V4.3.3 and sensitivities to175

microphysical parameterizations therein (Skamarock et al. 2019; Powers et al. 2017). WRF solves176

the compressible, non-hydrostatic Euler equations using a third order Runge-Kutta timestepping177

method. Both simulations use a two-way nested domain. Table 2 lists WRF subgrid-scale178

parameterization schemes used in this study. Additional model configuration options inlcuding179

the entire WRF namelist are included in the supplementary material. Lateral boundary and initial180

conditions for the WRF simulations are provided by the Climate Forecast System Reanalysis181

Version 2 (CSFv2; Saha et al. 2014). CFSv2 has a 0.5◦ horizontal resolution (∼55 km), and lateral182

boundary conditions are provided every 6 hours. Two nested domains are used, a ∼3 km outer183

(230x349 grid cells) and a ∼1 km inner grid (349x391 grid cells). A two-week spin-up period is184

used prior to the October 1 start date for each model run.The WRF meteorological outputs are then185

used to force a high-resolution (250 m dx/dy) offline configuration of the Noah-MP land surface186

model (Niu et al. 2011), providing peak SWE and SD that are comparable to the spatial resolutions187

provided by the ASO lidar-derived snow product (50 m).188

In this study, the WRF model is run from October 1, 2017 - April 30, 2018 (part of WY2018)189

and October 1 2018 - April 30, 2019 (part of WY2019), respectively. These periods are chosen190

since they correspond with the typical snow-accumulation season for this watershed, and that the191

two ASO flight dates of interest are on March 31, 2018 and April 7, 2019 which are near the192

dates of peak SWE. In the paper we will refer to these time periods as WY2018 and WY2019193
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Physics Parameterization Option Reference

Convection None N/A

Microphysics Thompson (MP08) Thompson et al. (2008)

Morrison (MP10) Morrison et al. (2005)

Ismael (MP55) Jensen et al. (2017)

LSM Noah-MP Niu et al. (2011)

Surface Layer Monin-Obukhov (Option 2) Monin and Obukhov (1954)

Planetary Boundary Layer Mellor-Yamada-Janjic (Eta/NMM) PBL Janić (2001)

Longwave Radiation Community Atmosphere Model (CAM) Neale et al. (2010)

Shortwave Radiation Community Atmosphere Model (CAM) Neale et al. (2010)

Table 2. Weather Research and Forecasting (WRF) subgrid-scale physics parameterizations used in this study.

for convenience, even though they only represent the cold-season part of the year, not the entire194

year. These years represent a fairly wet and a fairly dry cold-season, so fortunately we can test195

the model for a range of snow conditions. Examining precipitation data from the NRCS Schofield196

SNOTEL site shows that WY2019 is the 8th wettest (172.8 mm above average) and WY2018 the197

23rd wettest (-68.5mm below average) out of 38 years of record. In addition, a fourth Noah-MP198

experiment is conducted using precipitation from the PRISM dataset (Daly et al. 2008). PRISM199

is a commonly used data product that is frequently used, either directly or indirectly, to generate200

spatial precipitation forcings for model applications (Lundquist et al. 2019), so this experiment201

serves as a useful benchmark test for the skill of WRF precipitation. PRISM is often used as a202

benchmark dataset for atmospheric model development studies, so it is a good test for the baseline203

of model performance.204

d. Model Performance Metrics205

The efficiency of each microphysical scheme is evaluated using the Drying Ratio (DR) method206

(Eidhammer et al. 2018), which is in essence the accumulated precipitation normalized by the flux207

of the integrated vapor transport. The components are given by:208

𝐹𝑢,𝑥 = −1
𝑔
∗
𝑝𝑇𝑜𝑝∫
𝑝0

∫
𝑥

∫
𝑡

𝑞U𝑑𝑃𝑑𝑥𝑑𝑡 (1)
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𝐹𝑣,𝑦 = −1
𝑔
∗
𝑝𝑇𝑜𝑝∫
𝑝0

∫
𝑦

∫
𝑡

𝑞V𝑑𝑃𝑑𝑦𝑑𝑡 (2)

where 𝑝 is atmospheric pressure, 𝑈 and 𝑉 are meridional/zonal winds, and 𝑞 is the water vapor209

mixing ratio (kg/kg). The DR is then given by:210

𝐷𝑅 =
𝑃

𝐹
(3)

where 𝐹 = 𝐹𝑣,𝑦 + 𝐹𝑢,𝑥 and P is mass of precipitation in kilograms. The DR calculation makes211

several assumptions, following Eidhammer et al. (2018). The assumptions are that non-vapor212

phases (clouds, ice, snow, etc.) are not included in the 𝑄 flux calculation (Equation 2), as the213

fraction of the total vapor is small. The contribution of local evaporation to local precipitation214

is also considered negligible. Year-to-year variation in precipitation accumulation could result215

from a fairly constant precipitation efficiency but moisture flux variability, precipitation efficiency216

variability alone, or a combination of both. The purpose of computing the drying ratio for the two217

study years is to help disentangle these factors. Eidhammer et al. (2018) used the DR to examine218

how the shapes of mountain ranges impact orographic precipitation for a single configuration of219

WRF. This study on the other hand examines one geographic region, but how the DR changes for220

different configurations of the WRF model. The DR is computed on a 145 by 180 grid cell box221

surrounding the ERW (Figure 1). The calculation is simplified as the direction of season average222

integrated vapor transport is uniformly from the southwest.223

We apply several different metrics to evaluate model snowpack against ASO observations. Two224

primary quantities are assessed: the spatial locations of snow accumulation within the ERW, and225

the total watershed storage of snow at the evaluation time steps. The spatial locations of snow are226

important for modeling the temporal dynamics of snowmelt and runoff (Luce et al. 1998), while227

the total snow provides an estimate of the water contained in the snow reservoir.228

To assess spatial pattern similarity, we use an objective function described in Demirel et al.229

(2017) and applied in a similar, recent snow modeling study (Wrzesien et al. 2022). This Spatial230

Efficiency (SPAEF) metric for two datasets 𝑥 and 𝑦 of length 𝑛 are given by:231

𝑆𝑃𝐴𝐸𝐹 = 1−
√︃
(1−𝛾)2 + (1− 𝛽)2 + (1− 𝑟)2 (4)
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where 𝛾 is the histogram intersection (Swain and Ballard (1991)), given by:232

𝛾 =

∑𝑛
𝑖=1min(𝐾𝑖, 𝐽𝑖)∑𝑛

𝑖=1𝐾𝑖
(5)

where 𝐾 and 𝐽 are the respective histograms for datasets 𝑥 and 𝑦. The histogram bin size is set233

to 100. The 𝛽 term in Equation 4 is given by:234

𝛽 =
𝜎𝑥

𝜇𝑥

/𝜎𝑦
𝜇𝑦

(6)

where 𝜎 and 𝜇 are standard deviations and means of 𝑥 and 𝑦, and 𝑟 is the Pearson correlation235

coefficient (Pearson’s 𝑟) and is given by:236

𝑟 =

∑𝑛
𝑖=0(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦̄)√︃∑𝑛

𝑖=0(𝑥𝑖 − 𝑥)2∑𝑛
𝑖=0(𝑦𝑖 − 𝑦̄)2

(7)

The histogram-intersection is performed after normalizing the data (subtracting the mean and237

dividing by the standard deviation). Consequently, the SPAEF is designed to be ameasure of spatial238

similarity between two datasets 𝑥 and 𝑦 that is insensitive to biases in those datasets (Demirel et al.239

2017). A perfect value of SPAEF (equivalent 𝑥 and 𝑦) is 1.240

In addition to the SPAEF and the Pearson’s 𝑟 , we evaluate the percent bias (𝑏𝑖𝑎𝑠𝑝), given by:241

𝑏𝑖𝑎𝑠𝑝 =
(∑𝑛

𝑖=1 𝑥𝑖 −
∑𝑛
𝑖=1 𝑦𝑖)∑𝑛

𝑖=1 𝑦𝑖
∗100 (8)

The percent bias is insensitive to the spatial agreement of each dataset and is determined to242

measure watershed average snow quantity (depth or SWE) between the two datasets. Finally, we243

compute the root mean square error (RMSE), given by244

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑︁
𝑖=0

(𝑥𝑖 − 𝑦𝑖)2 (9)

e. Snowpack Modeling, ASO Data Processing, and SNOTEL Data Comparison245

Snowpack spatial variability, at the peak of the accumulation season, is shaped by a combination246

of 1) precipitation variability, 2) slope scale preferential deposition, 3) secondary redistribution247
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(e.g., blowing snow), and 4) melt/sublimation (or loss) processes (Mott et al. 2018; illustrated in248

Figure 2). Avalanches also redistribute snow on steep slopes typically greater than 30◦. In order249

to use ASO lidar snow data to evaluate precipitation variability, secondary redistribution and loss250

processes must be taken into account. The following sections describe how ASO data is processed251

for comparison purposes, and then how Noah-MP is configured to perform these tasks.252

1) Data Processing253

First, the ASO data in UTM spatial coordinates (downloaded from the NSIDC;254

https://nsidc.org/data/aso/data) data are clipped to the region of interest. The data are bilinearly255

resampled from 50 m to 250 m using the "gdalwarp" algorithm (https://gdal.org/). The gdalwarp256

algorithm allows for several different resampling methods. Bi-linear is chosen, following other257

studies that have similarly applied the same method to resample ASO snow products (Bair et al.258

2016; Behrangi et al. 2018). The ASO data are then reprojected to a lat-lon coordinate system,259

again using the gdalwarp method, and converted to netcdf file format. At this stage, to enable grid-260

to-grid comparison, we use the xESMF python library (https://xesmf.readthedocs.io/en/latest/) and261

again select a bi-linear interpolation method to align the ASO and Noah-MP model grids. We262

compared the total SD between converted ASO data and the raw data, and found that there was a263

very small difference overall. From there, we are able to compare the Noah-MP output grid cell to264

grid cell against the ASO data product. We chose an analysis scale of 1 km, as this matches the265

resolution of the parent WRF meteorology and wind-related features captured by ASO are likely266

smoothed out. To illustrate the effects, Figure 3 shows the re-sampled SD data from 50 m to 1 km.267

Wind redistribution is clearly present on the windward/leeward sides of ridges at 50 m, but at 1268

km these high-frequency features are removed. This step is performed using the xarray "coarsen"269

function.270

Converting SD to snowwater equivalent requires estimates of snowdensity. WhileASOproduces271

some density products using energy balance modeling, the snow densities distributed for 2018 and272

2019 in the ERW were created using a linear regression between snow course observations of SD273

and density (ASO Inc., personal communication). Consequently we chose to use the distributed,274

spatially explicit snow densities produced by Noah-MP, averaged across the model runs produced275

by this study to produce SWE estimates from the ASO depth products.276
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2) The Noah-MP Model277

We use the Noah-MPmodel to account for snow ablation prior to the date of the ASO flight and to278

model snow densities. Noah-MP can be used as a stand-alone land surfacemodel, or can be coupled279

with atmospheric models such as WRF. Niu et al. (2011) provides a technical description of the280

model. We use the version of Noah-MP distributed with V5.1.1 of the WRF-Hydro (Gochis et al.281

2018) modeling software, available online here: (https://github.com/NCAR/wrf_hydro_282

nwm_public/releases/tag/v5.1.1). Noah-MP solves the energy and mass budgets of a multi-283

layer snowpack taking into account sublimation, snowmelt, snow liquid-water retention, and canopy284

interception among other processes. Noah-MP uses three snow layers. Noah-MP also uses a semi-285

tile approach, such that there are separate flux calculations for the vegetated and non-vegetated286

fraction of each grid cell. We use the same physics options that were implemented in the National287

Water Model configuration of Noah-MP (as described in the technical documentation) as the288

model was tested and vetted in a number of snow-dominated basins across the Western US.289

Parameterizations relevant to this work include using the CLASS snow-albedo scheme (Verseghy290

2007), the Jordan precipitation phase option (Jordan 1991), Monin-Obukov type surface layer291

resistance for heat (option 1) Brutsaert (1982), and option 3 for canopy-radiation (Dickinson 1983;292

Sellers 1985). The full Noah-MP namelist configuration is included in the supplementary material.293

In addition to ASO data, we compare timeseries of WRF precipitation against accumulated297

precipitation from three NRCS SNOTEL (Serreze et al. 1999) stations located in or near the ERW298

(Figure 1). The Schofield, Butte, and Taylor are located to the North, in the Center, and to the East299

of the ERW, respectively, and are each located approximately 20 km away from each other (Figure300

1).301

The ERW is a high elevation, continental watershed with cold temperatures, so we hypothesize302

that both rain and melt prior to peak SWE are relatively minimal basin-wide. This hypothesis303

is confirmed by analyzing SNOTEL data in the watershed, as the April 1 SWE (recorded at the304

Butte SNOTEL snow pillow) is within ± 2% of the accumulated precipitation (recorded at the305

co-located precipitation gauge) on October 1 for the two years examined (Figure S1) and average306

two-meter surface air temperatures are -4.5◦C at the SNOTEL locations over the same time period.307

Nevertheless, Noah-MP and the non-precipitation forcings are run and constructed for a 250 meter308

regular latitude longitude grid based on the high-resolution DEM distributed with ASO. This is309
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Fig. 3. Airborne Snow Observatory (ASO) lidar derived SD for April 7, 2019 at three different resolutions (50

m, 500 m, and 1 km) resampled using bi-linear interpolation. The black box in the left hand figures corresponds

to the latitudinal and longitudinal extent of the figures on the right.

294

295

296

done because, while antecedent melt might be small basin-wide, forcing resolution and terrain310

related effects are important for snow simulations and there may be south facing locations with311

significantmid-winter ablation. DownscalingNoah-MP to 250m is chosen, in part, based on results312

from Winstral et al. (2014) who examined the impact of various resolutions on snow simulation313
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accuracy, and found that 250 provided reasonable performance but was much degraded at coarser314

scales.315

First, the hourly WRF output variables are bi-linearly interpolated to the 250 meter grid. Then,316

shortwave radiation, temperature, pressure, and specific humidity are adjusted to account for terrain317

differences between the digital elevation model distributed with WRF and the higher-resolution318

elevationmodel distributed byASO. Temperature and pressure for each grid cell are adjusted via the319

constant dry adiabatic lapse rate and hydrostatic relationship to match the updated digital elevation320

model. Specific humidity is adjusted for elevation by assuming that the relative humidity (from321

the original WRF data) is conserved, and specific humidity is adjusted to match the corrected air322

temperature. The WRF downwelling shortwave radiation is converted to terrain-normal shortwave323

radiation using terrain-geometry and solar angle relationships (Dingman 2015), using the slope324

and aspect from the high resolution DEM. Terrain shadowing is not accounted for, but this impact325

is assumed to be minimal at 1 km resolution. Longwave radiation and winds are not adjusted,326

though corrections for terrain effects on shortwave and longwave radiation could improve the327

simulations (Arthur et al. 2018; Feldman et al. 2022)) and could be pursued in future work. Some328

studies have further downscaled wind-fields using empirical terrain relationships (Liston and Elder329

2006) or physically-based solvers (Reynolds et al. 2021). Since Noah-MP does not simulate330

wind redistribution, the benefits of more finely resolved wind fields are likely small (though wind331

velocities do control rates of latent/sensible heat). The code to perform the forcing corrections is332

available on GitHub (https://github.com/bsu-wrudisill/wrf_ERriv_mphys_aso).333

3. Results334

a. Precipitation Accumulation Evaluation335

The timeseries of WRF modeled precipitation and two-meter surface air temperature from each336

WRF microphysical scheme are compared against data from the three NRCS SNOTEL stations337

(Figure 4). We don’t show a comparison of PRISM against SNOTEL, since PRISM ingests338

SNOTEL information, so this would not constitute an independent validation. The spatial scales339

of orographic precipitation variability is apparent from looking at the SNOTEL data alone, as the340

Schofield station receives almost twice the precipitation of the Butte site, and each site receives341
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almost double the precipitation in 2019 compared to the previous year (∼1200 mm versus ∼650342

mm at Schofield, for example).343

MP55 consistently produces the most precipitation (across all sites and both years), and MP08344

generally has the least precipitation (all but the Taylor in 2019; Figure 4). The WRF simulated345

two-meter surface air temperatures are systematically cold biased by approximately 3◦𝐶 across346

microphysical schemes. Evaluated against the NRCS SNOTEL stations, WRF has a bias of 15347

±13% of accumulated precipitation at the end of the analysis period when averaged across each348

all of the years and WRF schemes. Across the three sites, MP10 scheme performs the best for349

both WY2018 (9.5% bias) and the WY2019 (16 % bias). These are just the biases from the three350

grid-cells with SNOTEL observations. When the accumulated precipitation is averaged across the351

entire ERW (not just at SNOTEL locations) the WRF configurations differ by slightly more than352

2% of accumulated precipitation, but different regions within the watershed differ by as much as353

10-15% (Figure S2).354

The differences in precipitation accumulations can be expressed as the efficiency of dynami-358

cal/microphysical processes for converting the incoming water vapor flux into precipitation. Fig-359

ure 5 shows the DR averaged over October 1 to April 1 for each scheme and each WY. MP55360

consistently has the highest DR, with almost double the DR values from WY2018 to WY2019.361

b. Vertical Atmospheric Profiles364

The temporally averaged (October 1 to April 1) cross section views of microphysical quantities,365

cross-sectional winds (U and W components), and vertical velocities show the different locations366

of ice-phase hydrometeor creation and fate, in addition to illuminating some of the precipitation367

relevant dynamics (Figure 6). The ice-phases are lumped together snow and graupel for MP8 and368

MP10, the three ice species in MP55. For all cases, the highest densities form a plume above of369

the western watershed boundary, concentrated near the surface and decaying with height. MP55370

has the highest densities across microphysical schemes, with a region of 3.0 g/kg during WY2018.371

There is a consistent negative vertical velocity component on the lee-side of the western ridge372

(Figure 6). Upstream of the ridge, there is a consistent low-level jet, characterized by a reversal373

in the zonal wind direction (northerly, green dots) relative to the zonal wind (southerly) on the lee374

side of the peak (not shown).375

17



Fig. 4. Timeseries of WRF total accumulated precipitation (Acc. Precip, bottom) and two meter surface air

temperature (Tair, top) compared against three NRCS SNOTEL sites, Butte, Schofield, and Taylor, for WY2018

(first row) and WY2019 (second row).

355

356

357

c. Modeled SWE and SD - Comparisons Against ASO Snow lidar381

Figure 7 shows the results of comparing SD and SWE between ASO lidar products and each382

Noah-MP model forced with the three WRF model configurations (MP08, MP10, MP55) and a383

fourth test using the PRISM based precipitation data. Air temperature, radiation, winds, and all384

other non-precipitation meteorological forcings for the PRISM experiment come from the MP08385

WRF run. In order to compare SWE from model results to the ASO lidar product, an estimate of386

snow density is still required. We chose to use the average density from the Noah-MP model rather387

than the ASO densities.388
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Fig. 5. Drying Ratios (total precipitation normalized by incoming water vapor flux) computed for the greater

ERW watershed region for October 1 to April 1 for WY2018 and WY2019, for each WRF microphysics scheme.

362

363

The fields from each model run are aggregated to a 1 km resolution from the native 250 m391

resolution for comparison of the final SWE values, and snow fields are plotted at the date of ASO392

acquisition (Figure 7). The RMSE computed at several analysis resolutions were examined from393

250 m to 8 km and we found the RMSE decreases asymptotically towards the mean-difference394

between the respective datasets (not shown). The northwest region of the watershed collects the395

most snow compared to the rest of the watershed, a pattern which is consistent for both years. The396

snow accumulation in ASO does not simply follow topography, as the western ridge delineating397

the watershed boundary is higher elevation than the northwestern ridge, which collects more snow.398

ASO has a more variable pattern of snow accumulation and higher maxima than any of the WRF-399

forced Noah-MP cases for both WY. The PRISM case has a smaller proportion of snow in the400

northwestern region compared to ASO and the WRF cases.401

Table 3 shows summary statistics of the SWE and SD comparisons. The ASO data is treated as402

the reference for computing the bias. MP08 has the highest Pearson’s correlation coefficient for403

both SWE and SD for both years, and the PRISM case has the worst correlations. Still all WRF-404
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Fig. 6. Cross sections of average directions of vertical windspeed (red/blue shading; units of m/s), vertical

and zonal flow (arrows; units of m/s), and ice-phase hydrometeor concentrations (contours; units of g/kg dry

air). Green dots show the regions where the average meridional wind speed reverses and is greater than 1 m/s).

Accumulated precipitation (precip) along the transect is shown (top plots). WY2018 (2019) is shown in the top

(bottom) row. The top of each plot shows cross sections of accumulated precipitation across the transect.

376

377

378

379

380

forced cases have a good spatial correlation with the ASO SWE (𝑟 = .9). The PRISM precipitation405

forced case has the lowest skill of all of the categories examined. The PRISM case underestimates406

watershed total snow accumulation (∼32-36%) compared against the other WRF cases. The MP08407

simulated SWE has the lowest RMSE (8.45 cm) but MP55 has the lowest percent bias for 2018408

(12.0 %). MP55 has the lowest RMSE and percent bias for 2019 (13.6 cm; -2.5%).409

The trend between elevation and snow accumulation illustrates some additional important dif-412

ferences between ASO and WRF (Figure 8). In each case, there is relatively little modeled melt413

except for the lower elevations (not shown). The average ASO SWE increase with elevation follows414

a linear pattern when a 200-grid cell rolling-mean window is applied, which approximately flattens415

out above approximately 3500 m. The SD (not shown) show the same leveling-off, so this is a416

function of a decrease in depths, not just an artifact of modeled densities. The slope of the SWE417
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Fig. 7. Comparison of WY2018 and WY2019 SWE (top two rows) and SD (bottom two rows) from ASO and

Noah-MP. The labels (08, 10, 55, and PRISM) refer to the precipitation forcing used for Noah-MP.

389

390

versus elevation line is higher for WY2019 and parallels the 0.625 mm of SWE per m of elevation,418

whereas 2018 more closely parallels the 0.50 mm/m line. The Noah-MP model SWE shows no419

such leveling out with elevation. The slopes of the Noah-MP curves are less-steep than the ASO420

data and shows the greatest spread during 2018. The variance of the ASO data increases with the421

magnitude (heteroskedasticity), which is not found in the WRF/Noah-MP modeled SWE.422
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Spatial Mass Balance

Variable Year Model 𝑟 SPAEF RMSE Bias

(unitless) (unitless) (cm) (%)

Snow Water
Equivalent
(cm)

2018
Noah-MP-MP08 0.914 0.878 8.453 -15.498
Noah-MP-MP10 0.905 0.870 8.603 -14.614
Noah-MP-MP55 0.894 0.543 8.950 12.043
Noah-MP-PRISM 0.821 0.805 13.133 -32.290

2019

Noah-MP-MP08 0.922 0.832 15.947 -13.526

Noah-MP-MP10 0.913 0.795 17.187 -14.713

Noah-MP-MP55 0.908 0.688 13.600 -2.576

Noah-MP-PRISM 0.785 0.706 30.605 -32.606

Snow
Depth
(cm)

2018

Noah-MP-MP08 0.913 0.902 26.798 -15.039

Noah-MP-MP10 0.903 0.888 27.254 -13.823

Noah-MP-MP55 0.896 0.539 30.026 19.270

Noah-MP-PRISM 0.840 0.783 43.084 -36.093

2019

Noah-MP-MP08 0.939 0.859 39.281 -12.851

Noah-MP-MP10 0.924 0.800 43.496 -14.669

Noah-MP-MP55 0.917 0.604 35.157 3.052

Noah-MP-PRISM 0.811 0.780 77.039 -32.765

Table 3. Spatiotemporal and mass-balance error statistics for Noah-MP models compared against the ASO

lidar derived basin-wide SD and SWE estimates. Bold values denote the best performing scenario.

410

411

4. Discussion428

This is the first study, to our knowledge, that has used airborne lidar derived snow products to429

attempt to evaluate snowfall sensitivity to microphysical schemes in atmospheric models. To be430
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Fig. 8. SWE versus elevation relationships within the ERW. The left column shows density scatterplots of

ASO derived SWE and the right column shows the same, but for the SWE from the Noah-MP simulations. The

rolling-mean curves for the Noah-MP simulation and ASO product are shown. Lines with four different SWE

versus elevation slopes (purple lines) are provided on each plot to better enable juxtaposition of datasets across

different WY

423

424

425

426

427

clear, there are many other snow and atmospheric processes that must be understood to explain431

the elevation patterns of snow accumulation (Figure 8) including high-elevation snow deposition,432

redistribution, and sublimation processes. The issue of scale mismatches between models (such433

as WRF with a 1 km grid spacing) and observations (such as meter scale ASO lidar) presents a434

persistent challenge in snow-hydrology and hydrology in general (Blöschl 1999). Atmospheric435

water delivery processes operate across a wide range of scales, from cloud-particle to synoptic436

weather (see Figure 2), just as terrestrial processes influence snow variability. In this study, the437

decision was made to compute Noah-MP to ASO performance statistics at a 1 km resolution, rather438
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than the 250m resolution of theNoah-MPmodel. This choice aimed to address unresolved features,439

such as wind redistribution, which would likely contribute to model error (see Figure 3), while still440

accounting for the impact of precipitation-induced variability. An natural question arises: Why not441

run the model at 1 km resolution from the outset, without further downscaling of non-precipitation442

forcings? (see Section 2) Initial testing revealed that model performance degraded compared to443

the 250 m case, consistent with the findings of Winstral et al. (2014). Hence, the downscaling444

approach proved valuable for isolating the dominant error sources. Nevertheless, understanding445

the relationship between process scales, data resolution, and model evaluation scales remains a446

crucial area of investigation. As argued by Blöschl (1999), optimal modeling element sizes are447

influenced by data availability and the required resolutions of model predictions. Following this448

philosophy, the model scale decisions in this study were carefully made.449

Other studies have used snow lidar data to evaluate precipitation processes in various ways.450

Kirchner et al. (2014) evaluated both PRISM (Daly et al. 2008) precipitation and statistical SWE451

reconstructions against airborne lidar recorded near peak SWE accumulation in California. The452

tapering-off of the SD/SWE with elevation relationship found in the ERW (Figure 8) was also453

observed in that study. Behrangi et al. (2018) used ASO data to evaluate several precipitation454

reconstructions in California’s Tuolumne watershed. Our study found higher correlations between455

WRF/Noah-MP and ASO than any of the datasets examined in that study, but worse RMSE and456

biases (Behrangi et al. 2018; Table 3), which is also related to the scales of analysis (10 km versus457

1 km). The RMSEs between Noah-MP SWE and ASO SWE are similar to other reports comparing458

Noah-MP to ASO observations in Grand Mesa, Colorado (Wrzesien et al. 2022; Figure 12) at a459

similar resolution. Wrzesien et al. (2022) also used a genetic calibration algorithm to calibrate460

Noah-MP, a step which was not conducted here. Calibrating model parameters could possibly461

reduce model structural errors, further isolating the errors caused by model forcings, however the462

similarity of errors with Wrzesien et al. (2022) suggests that Noah-MP is reasonably configured463

to model snow accumulation for this watershed and for the purposes of this study. Additionally,464

we should note that all Noah-MP models had higher SWE and SD values at the lowest elevations465

(less than 3000 m), which could be caused by a combination of underestimation in densification466

processes, too much precipitation in valley bottoms, and/or not enough melt or sublimation loss467

prior to the ASO lidar acquisition dates. Vegetation densities also change with elevation (Figure468
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1) which may influence the aforementioned snow processes through snow-canopy interactions.469

Moreover, the heteroskedasticity of SWE/SD with elevation in the ASO products is another clear470

feature not well-captured by Noah-MP. This could be due to avalanches or wind redistribution,471

which are not modeled by Noah-MP. Better capturing the ASO observed elevation/precipitation472

relationships in both atmospheric and snowpack models is a clear and testable objective for model473

improvement identified in this study.474

More tightly coupling the land surface model and microphysical schemes may improve the study475

in a number of ways. The current version of Noah-MP does not accept solid/liquid precipitation476

phases as input, and instead uses a partitioning scheme from Jordan (1991). Near surface air477

temperature based methods do not always account for the range of microphysical processes, such478

as cooling from latent heat release near the surface, that can lead to frozen phase precipitation479

accumulations at a wider range of temperatures (Jennings et al. 2018). This might be a major480

limitation in another watershed with lower elevations/warmer temperatures, but for each scheme481

tested a small percentage of the precipitation fell as rain, regardless of partitioning method. Even482

after bias correcting the two-meter surface air temperatures uniformly across the domain for483

the -3◦C bias compared against SNOTEL data (Figure 4) only the modeled SWE in the lowest484

elevations of thewatershedwere significantly impacted. Consequently, performance of the different485

microphysical schemes with respect to watersheds with larger rain-snow transition zones is untested486

and could be an area of future research.487

Another interesting product of this research is the large modeled DR for WY2019. Eidhammer488

et al. (2018) reports lower DR more similar to that of WY2018, also for a region in Colorado,489

but for individual storm events as opposed to an entire cold season. Some of the differences are490

attributable to different WRF configurations and specific averaging regions used to compute the491

DR. This investigation shows the increase in DR largely responsible for the higher precipitation492

in 2019 compared to 2018, as opposed to an increase in water vapor flux, highlighting the role493

of precipitation generating dynamic mechanisms. DR as high as 0.5 have been reported for the494

Andes (Smith and Evans 2007) so the quantities reported in 2019 (a maximum of 0.37) are not495

without precedent. The differences in DR between schemes could be a result of multiple factors.496

Differences in the treatment of heterogeneous ice-nucleation (Morrison et al. 2020) are one possible497
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source of different computed DR. Additional work that examines specific microphysical tendencies498

could isolate these specifics in greater detail, such as the analysis performed in Bao et al. (2019).499

a. Snowpack Density Uncertainties and Other Potential Improvements500

The largest uncertainty in estimating basin wide SWE from lidar derived snow-depth data comes501

from estimating snow density (Raleigh and Small 2017). In this study, we used snow densities502

simulated by Noah-MP to combine with ASO measured SD. In this way, the SWE and SD503

comparisons (Figure 7) are not really independent. The density of new snow accumulation in the504

Noah-MP follows Hedstrom and Pomeroy (1998) and depends on the two-meter air temperature505

alone. Snowpack densification processes follow Anderson (1976) and Sun et al. (1999). ASO506

also distributes a density product that is based on energy balance and/or empirical depth modeling507

(ASO Inc., personal communication) but we chose to ignore it in this analysis. Incorporating508

snow density observations is one avenue for improving this work. Better coupling between the509

WRF microphysics scheme output and the snow model in Noah-MP could potentially improve510

simulated snow densities. The bulk snowpack density depends on density of new snow, snow511

metamorphosis, and compaction due to overburden (Colombo et al. 2019). Though untested in this512

study, modifying the Jensen (MP55) or Thompson (MP08) schemes and the Noah-MP code so that513

prognostic densities of snow and/or graupel are used by the land surface model, as opposed to re-514

calculating snow densities in the land surface model, could potentially improve new snow density515

estimates. The Morrison scheme (MP10) does not treat snow or graupel density as a prognostic516

variable and the quantities are fixed at 100 and 500 𝑘𝑔/𝑚3 respectively, so better coupling MP10517

would be of less utility. Moreover, coupling advanced schemes such as MP55 that explicitly model518

hydrometeor shapes with snow process models may have additional utility for snow remote sensing519

applications, where grain geometries complicate the retrieval of snow properties from radar signals520

(Tsang et al. 2022).521

Whether or not energetic forcings, such as shortwave and longwave radiation and sensible and522

latent heat fluxes, that contribute to snow melt/densification are well represented is a significant523

source of uncertainty in this study. Three dimensional longwave radiation effects from complex524

terrain are not considered by WRF and can be significant (Feldman et al. 2021). With that said,525

the observed cold-bias in WRF has been observed in other climate models (Rhoades et al. 2018,526
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2022) and may potentially be related to longwave radiation processes, too-stable boundary layers527

over snow surfaces inhibiting heat exchanges (Slater et al. 2001), and/or other compensating biases528

(e.g., cloud cover). However, sensitivity tests showed that correcting for biases had relatively little529

effect on simulated peak SWE, particularly, for WY2019. Air temperatures at SNOTEL stations530

have also been shown to have quality control and calibration issues (Oyler et al. 2015) that may or531

may not be accounted for here, though comparisons with other meteorological station data near the532

watershed (not shown) suggests this alone does not explain the biases. Therefore, we caution to the533

hydrometeorological community that a more rigorous scrutiny of the temperature fields provided534

by WRF simulations in complex, high elevation mountain terrain is needed. Comparing model535

outputs with ASO lidar datasets during the ablation season was not performed for this study, but536

could be another avenue to decompose simulated biases in temperature and radiation and identify537

systemic structural issues in the models, as the condition of the ablation season snowpack will be538

more sensitive to temperature and radiative forcings (in addition to other model parameterziations,539

like snow albedo) that cause snowmelt.540

b. Comparison with other Microphysical Parameterization Sensitvity Studies541

Ultimately, the sensitivity of precipitation accumulation to microphysics choice is similar to542

other studies that have compared the same options in WRF, but is much less than some that have543

examined a wider range of options in the WRF model. Hughes et al. (2020) found that single544

moment microphysics (WSM6) schemes were wetter than double-moment (Thompson/Morrison)545

when evaluated over a single WY in the Sierra Nevada, and that precipitation accumulation was546

more sensitive to microphysical parameterization choice than to lateral boundary conditions for547

convection-permittingWRF simulations in the Sierra Nevada. Xu et al. (2022) tested the sensitivity548

of WRF simulated meteorology to various subgrid parameterizations and boundary conditions for549

a sub-region of the ERW. They found that a suite of physics options using the WSM6 scheme led550

to 34% higher precipitation than simulations using the Thompson scheme, which is much higher551

than the sensitivity found comparing MP08, MP10, and MP55 in this study. Liu et al. (2011)552

examined a larger Colorado Rockies domain, and likewise found a modest ∼2% difference between553

the MP08 and MP10 schemes for a 3-month period across a Colorado Rockies subdomain (Table 2554

of their paper), with spatial pattern differences that are somewhat similar, but across a much larger555
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area (Figure 6 of their paper). The PLIN scheme Chen and Sun (2002) however, also produced as556

much as 30% higher precipitation than the Thompson scheme. Interestingly, the PLIN scheme also557

showed a greater variance with elevation, which might better match reality in our study area (if558

snowpack is a good proxy; Figure 8). Jensen et al. (2018) likewise compared MP08 and MP55 (in559

addition to several others) for a case study in the Olympic Penninsula. They determine that MP55560

responds less strongly to topography than MP10 and two additional scenarios where hydrometeor561

growth in MP55 has been modified. Ultimately accumulated precipitation from MP55 differed562

from MP10 by less than 4% during their 18-h study period (Table 2 of their study), though it is563

unclear if that would change for longer evaluation period. Our simulation also produced very little564

graupel from either MP08 or MP10 (Figure S3). Transitions from snow to graupel categories can565

introduce artificially abrupt transitions in particle properties (such as density and fall speed) and566

avoiding this is among the reasons that MP55 chooses to explicitly predict particle shapes rather567

than a graupel category (Jensen et al. 2018), so a simulation where atmospheric conditions are568

more favorable for graupel might show more spatial variability in precipitation. Ultimately, the569

precipitation sensitivity to microphysics choice was fairly modest averaged across the watershed,570

and in keeping with other studies that compared the same schemes. Testing other WRF options571

(such as PLIN orWSM6)might reveal a greater variance in snowfall accumulation and performance572

relative to ASO and SNOTEL.573

Finally, while three schemes are tested in this study, each contains a range of parameters that574

each have an uncertainty space that has been under-explored, such as assumed concentrations575

of ice-nucleating particles. Idealized simulations show that perturbing individual parameters576

within individual microphysics schemes can have a similar impact to using an entirely different577

microphysics scheme (Morales et al. 2019). Future studies may consider producing an ensemble578

of simulations that sample across a plausible range of these parameter values, informed by new579

observational campaigns focused on mountain precipitation (Feldman et al. 2021).580

5. Conclusions581

High-altitude complex terrain is undergoing profound changes (Mountain Research Initiative582

Edw Working Group et al. 2015) which are setting the stage for much-reduced snowpack in583

the coming years and decades (Siirila-Woodburn et al. 2021). The details of the snowfall that584
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produces this snowpack are central to understanding the potential for changes in precipitation585

amount and phase. Nowhere is this more apparent than in the Upper Colorado River Basin, which586

is dramatically stressed due to both long-term warming trends (Milly and Dunne 2020) and recent587

extreme drought (Williams et al. 2022). Since the East River Watershed (ERW) represents a588

focused area of observations and research, collocated data and models of the ERW provide the589

opportunity to develop new tests of uncertain model processes.590

This study used a high resolution ASO lidar dataset of SD, collected near the peak of the591

snow accumulation season in the ERW, to evaluate precipitation for three different microphysical592

parameterizations (or schemes) implemented in the WRF model for both a high precipitation593

(2019) and low precipitation (2018) cold-season (October through April) prior to the dates of594

significant snowmelt. Model results show the magnitudes of precipitation between the years were595

more controlled by precipitation efficiencies (higher/lower DR) compared to increases/decreases596

in water vapor flux. All WRF configurations were able to capture the total precipitation evaluated597

at three NRCS SNOTEL sites, with an average bias of 15% ± 13 of accumulated precipitation at598

the end of the analysis period. The MP55 scheme had a slightly higher DR and better matched both599

SNOTEL and ASO observations for the high-snow volume year, but overpredicted precipitation600

and snowpack for the dry-year (2018). Each microphysics scheme resulted in the development601

of snowpacks with a high spatial correlation with ASO lidar datasets at a ∼1 km scale, but the602

Thompson (MP08) had the highest Pearson’s correlation coefficient for both years examined. In603

terms of bias and correlation, all WRF models produced snowpacks that better matched ASO data,604

in particular in terms of bias, compared to the gauge-based statistical model estimates provided by605

the PRISM precipitation product with the exception of one measure of spatial similarity (SPAEF).606

Root mean square errors between the 1 km ASO lidar based SWE and WRF model products were607

on the order of 8-13 cm (WY2018) and 13-15 cm (WY2019). Underestimations of cold-season608

mountain precipitation from gridded products such as PRISM have been demonstrated in other609

circumstances (Lundquist et al. 2015, 2019).610

This study found ASO lidar snow datasets can potentially help evaluate microphysical scheme611

fidelity, but more importantly high resolution regional climate models in poorly observed mountain612

regions in general. Model deficiencies that may or may not be related to microphysical process are613

also demonstrated, particularly with respect to snowpack/elevation patterns. While this study used614
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only two ASO lidar flights, other studies with longer data coverage have shown repeatability of615

snow patterns to scale precipitation inputs into hydrologic models (Vögeli et al. 2016; Pflug et al.616

2021). In the two ASO lidar flights used here, the locations of peak accumulation are consistently617

on the northwestern ridge of the ERW on the windward side and the location of strongest uplift.618

All models fail to create deep enough snowpacks in this region, highlighting a clear area of model619

improvement, though it remains to be seen if improved microphysical parameterizations, finer grid620

spacing, boundary conditions, or improvements to other model components are required to meet621

this challenge. Revisiting the three questions posed in the introduction, we can conclude that 1)622

WRF and Noah-MP does match ASO snowpack with good fidelity, but certain features are not well623

captured (increasing snow depth variance with elevation; extreme accumulation on the NW ridge624

of the watershed), 2) no single microphysics scheme emerges as clearly superior in terms of all of625

the criteria examined, and 3) WRF does perform better at matching the ASO snow products than626

the PRISM product.627

The ability of any existing schemes to perform in out-of-sample conditions and additional628

constraints must be demonstrated as well. There is a potential to do this using field campaigns629

such as the Surface Atmosphere Integrated Field Laboratory (SAIL) for expanding upon the ASO630

lidar data collection presented in this study. Such data can and should be used to further constrain631

specific model microphysical process representations to establish if one or more schemes produce632

consistent results relative to observations across more hydroclimatological states than we tested633

here. We have demonstrated here that snowpack lidar products can be a useful diagnostic tool634

for microphysics parameterizations across two WY, but the question of whether snowpack surveys635

consistently constrain microphysics has not been demonstrated.636
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