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ABSTRACT OF THE DISSERTATION

On Generalizable Inference and Prediction for Biased Samples

By

Olivia Marie Bernstein Morgan

Doctor of Philosophy in Statistics

University of California, Irvine, 2022

Professor Daniel L. Gillen, Chair

Most statistical methods assume that samples are representative of a target population of

interest, but this assumption is commonly violated in biomedical applications with human

volunteers. Study participants self-selection into a sample can cause it to be unrepresentative

which in turn leads to sampling bias. When analyzing data from a biased sample, the

sampling scheme must be accounted for to obtain inference and predictions that generalize

to the target population. In this dissertation, we discuss an approach for addressing sampling

bias by estimating sampling weights using an auxiliary data set. We then apply estimated

sampling weights in the field of causal inference. We assess the impact on bias and variance

of estimated causal effects when sampling weights are included or omitted when estimating

propensity scores and propensity-adjusted causal effects. Lastly, we quantify the impact

of sampling bias on estimates of the prediction error for a target population and compare

estimation methods.
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Chapter 1

Introduction

Most statistical methods assume samples are representative of some target population, but

this assumption is often violated in practice. It can be difficult or unethical to collect a

random sample from the target population. Medical research is conducted on samples of

volunteers which tend to overrepresent non-Hispanic White and male participants but this

does not represent the diversity of the United States population [87]. The sampling scheme

needs to be accounted for when analyzing unrepresentative samples to estimate associations

for some of interest. Sampling bias is the bias in estimated associations that arises when using

a sample that is not representative of some population. Accounting for how the sample was

collected will lead to more generalizable inference and predictions for the target population

so everyone in the target population can equally benefit from medical research.

Sampling bias can have real world consequences. A recent paper by Obermeyer et al. (2019)

[86] assessed the performance of a prediction model used to identify patients for high-risk care

management. They found that the predicted risk of future care needs was less accurate for

Black patients. More specifically, Black patients with more active chronic conditions were less

likely to be identified for high-risk care management programs compared to White patients.

1



Failing to identify black patients for the program could lead to poorer health outcomes.

Obermeyer et al. found that this happened because the model used healthcare spending

as a proxy for health status, but Black patients had lower health care costs than White

patients with the same number of active chronic conditions. Thus, the relationship between

healthcare spending and health (as measured by the number of active chronic conditions)

is differential for Black and White patients. When differential relationships like this are

marginalized over, they can lead to bias in predictions if subpopulations, such as the Black

patients in this example, are misrepresented in the training sample. Considering the sampling

scheme and addressing it is vital for estimating predictions with the same error rate for all

subpopulations.

In this dissertation, we develop methods for estimating sampling weights for biased samples

and implementing them into analyses when the sampling probabilities were not prespecified

by design. The objective of my research is to develop methods for valid estimates of asso-

ciations and predictions that generalize to a target population when using biased samples

while quantifying uncertainty.

We begin this dissertation in Chapter 2 with a background on different sampling schemes

and on the use of survey samples and inverse probability weighting to account for biased

sampling designs. Next, we provide a background on causal inference including a framework

for estimating causal effects, the assumptions involved, and methods for isolating causal

effects in the absence of randomization. Third, we give an overview of existing methods

for estimating out-of-sample prediction error in simple random samples and biased samples.

This chapter provides the necessary background for the methods developed and assessed

throughout the remainder of the dissertation.

In Chapter 3, we compare methods for estimating sampling weights for biased samples using

a representative sample for calibrating weights. We propose using the National Health and

Nutrition Examination Survey (NHANES) [25] as a representative sample for biomedical ap-

2



plications because it is open access and collects medical measurements on participants. We

provide a practical approach for utilizing NHANES to answer population questions via biased

samples. We further propose methods to estimate the variance of parameter estimates that

accounts for uncertainty that arises from the fact that sampling weights are estimated. Sim-

ulation studies explore the impact of sampling weight estimation on uncertainty in coefficient

estimates in generalized linear models. We provide an R package to estimate coefficients for

generalized linear models and corresponding variance estimates. We then apply these meth-

ods to obtain valid population-level estimates of racial and ethnic differences in willingness to

be contacted about research opportunities using participants from the Consent-to-Contact

(C2C) registry at the University of California, Irvine.

In Chapter 4, we discuss methods for incorporating estimated sampling weights into propensity-

adjusted estimates of causal effects when using biased samples. The objective of this chapter

is to estimate marginal treatment effects for a target population using a convenience sample

when there is treatment effect heterogeneity among over- or underrepresented subpopula-

tions. We conduct a simulation study to assess the utility of estimating sampling weights

for convenience samples with an auxiliary dataset and implementing them into models for

propensity score estimation, treatment effect estimation, or both. We also evaluate the abil-

ity to estimate sampling weights and treatment effects with a convenience sample when the

full sampling scheme is not measured and a proxy is observed instead. Additionally, we derive

an analytic variance estimator for estimated treatment effects when sampling weights are in-

cluded in the propensity score and outcome models using simultaneous estimating equations

approach that accounts for the uncertainty from estimating sampling weights and propensity

scores and quantify its performance against the empirical variance. We provide an R package

to estimate causal effects using propensity scores in a biased sample and corresponding vari-

ance estimates. We apply our approach to data from the National Alzheimer’s Coordinating

Center (NACC) Uniform Data Set [13] which is not a simple random sample of the United

States population because most volunteers come from referrals. We use the NACC data and
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our method to estimate the effect of vitamin E supplementation on functional activities with

estimated sampling weights derived using NHANES.

In Chapter 5, we assess methods for estimating the out-of-sample prediction error in a set

target population when predictions models are trained and evaluated with biased samples

that are too small for a hold out test set. We compare two classes of estimates: analytic

and resampling estimates. Analytic methods estimate the prediction error using an analytic

relationship between the training error and prediction error for biased samples. Resampling

methods mimic estimating the prediction error with a separate test set by resampling the

data and reweighting contributions to the loss function. To our knowledge, no one has

compared the performance of these estimators in a biased sample so we conduct a simulation

study to evaluate the merits of each method. Additionally, we compare their performance

for different samples sizes and when sampling weights are known versus estimated. C2C

researchers are planning to modify recruitment efforts to oversample neighborhoods with

more socioeconomic disadvantage which will limit generalizability of prediction models fit

in C2C if the sampling scheme is not accounted for. We compare estimates of the analytic

and resampling estimates of the prediction error for models fit with a subsample from C2C

drawn with sampling probabilities that are a function of socioeconomic disadvantage.

We conclude with a summary of our contributions and findings in Chapter 6. We then discuss

future research directions to extend methodology for obtaining generalizable inference and

predictions when using biased samples.
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Chapter 2

Background

2.1 Survey Sampling

A main goal of statistics is to use a sample to learn about a population. Many statistical

methods assume observations in the sample are representative of a set population of interest,

or the target population. This assumption can be violated in many ways. For example,

sampling units with equal probability requires a list of all units, known as a sampling frame,

of the target population, but this may not exist [73]. Alternatively, even if the list of all

units is available it may be too expensive or time consuming to sample all individuals with

equal probability. Lumley (2010) [75] gives an example of the National Health and Nutrition

Examination Survey (NHANES). NHANES samples approximately 5,000 people per year

[25]. Sampling uniformly from the United States would be impractical because participants

need to visit mobile examination sites across the country. It would be more efficient to

sample multiple people in each geographic location. Survey samples are useful because

they can increase statistical efficiency of estimates and efficiency in terms of saving time or

resources [75].
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2.1.1 Sample Types

Probability samples

Probability samples are samples where each unit’s sampling probability is known and pre-

specified by design in the sampling frame and each unit is drawn randomly according to their

sampling probability [73]. We assume there is a finite population we want to learn about

and a sample that is a subset of a finite population. The most straight forward example of

a probability sample is a simple random sample (SRS) where each subset of units of size

n from the sampling frame has an equal probability of being the sample. A stratified ran-

dom sample is one where the population is divided into disjoint subsets called strata and a

probability sample is drawn from each strata. This ensures representation from each strata

and can increase efficiency. A third type of probability sample is the cluster random sample

where units are part of a grouping called a cluster. One example of a cluster is a city where

the units are the citizens of that city. A probability sample of the clusters is drawn and then

a probability sample is drawn within each sampled cluster.

Non-probability samples

Non-probability samples are ones where the researchers do not know the sampling probabil-

ities for each unit in the sampling frame and did not randomly select units for the sample.

A convenience sample is one where the units from the population who are most likely to

respond are overrepresented [73]. This leads to a sample that is not representative of a

desired target population at best and one where sampling probabilities of zero can exist

for some populations at worst. For example, the National Alzheimer’s Coordinating Center

(NACC) Uniform Data Set recruits participants through their physician [13]. The NACC

website clearly states that inference based on the NACC Data Set may not generalize to the
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population of the United States.

The objective of methods developed for analyzing survey samples is to estimate quantities

for some finite population. The methods typically assume that the sampling probabilities are

known and prespecified. As such the methods discussed in this section only apply to prob-

ability samples, but they can be extended to convenience samples by estimating sampling

sampling probabilities relative to an auxiliary sample that is representative of the target pop-

ulation [2, 15, 26, 94, 40, 117, 88]. In practice, it is difficult to obtain a representative sample

because it is expensive and may even be infeasible. There is need of a representative data

set of the United States that collects demographic information and medical measurements

to estimate sampling probabilities for biomedical studies done in a convenience sample. In

Chapter 3, we discuss the utility of using NHANES as a representative sample for these

types of studies.

2.1.2 Design-Based and Model-Based Frameworks

There are two common frameworks for analyzing samples: design-based and model-based

inference [75]. Model-based inference assume data is generated from a probability model.

For example, let yi be the i-th observation in a sample, then yi could follow a normal

distribution with some mean µ and variance σ2: yi ∼ Normal(µ, σ2). This framework is

assumed for many statistical methods. Survey sampling, however, often assumes a design-

based framework. This framework assumes there is a finite population with N observations

and the i-th observation yi in the population is fixed for all i. Randomness comes from the

sampling scheme and how units are sampled. Sometimes the distinctions between design-

based and model-based frameworks are unclear and they are combined. An example of this

is regression models for survey samples discussed in Section 2.1.4.
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Assumptions for design-based inference

There are four assumptions required for design-based inference of population parameters[75].

Let πi be the sampling probability for the i-th unit in the finite population and πij be the

joint sampling probability for units i and j. Let S and P be the sets of individuals in the

sample and the finite population. These sets have cardinality of n and N , respectively. The

assumptions are:

1. Each unit in the population must have a non-zero sampling probability: πi > 0 ∀ i ∈ P .

2. The sampling probability πi must be known for each unit in the sample.

3. Each pair of units i and j in the sample must have a non-zero probability of both being

sampled πij.

4. The joint sampling probability πij must be known for every pair in the sample.

If units are sampled independently then assumptions 1 and 2 imply 3 and 4. The joint

sampling probabilities are usually calculated with statistical software for analyzing survey

data based on the survey design[75].

2.1.3 Sampling Weights

Sampling weights are commonly used to account for the sampling scheme in design-based

inference for finite populations [75]. Sampling weights are inversely proportional to sampling

probabilities. The sampling weight, wi for observation i is

wi ∝
1

πi
. (2.1)
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Sampling weights that are inversely proportional to the sampling probability are called in-

verse probability weights (IPW)[75]. Sampling weights can be scaled in several ways but it

common to scale them so the sum of weights for the n observations in a sample sum to 1,

n, or N . If the weights are scaled so they sum to the finite population size, N , then wi is

the number of units in the finite population the sampled observation i represents. Note that

sampling weights can be estimated for convenience samples by first estimating the sampling

probability as discussed in Section 2.1.1.

Horvitz-Thompson estimator

Survey weights allow us to estimate population quantities with a sample drawn with unequal

sampling probabilities [75]. Consider the population total of variable xi,

T =
∑
i∈P

xi.

This can be estimated with the Horvitz-Thompson (HT) estimator

T̂ =
∑
i∈S

N × wi × xi.

where
∑n

i=1wi = 1. This estimator is named for Horvitz and Thompson who formalized

it and derived the variance estimate [59]. The HT estimator can be extended for other

estimands such as the population mean.

Using a survey sample and accounting for the sampling scheme instead of using a SRS

impacts the uncertainty of estimates [75]. The design effect is the ratio of the variance of

the estimate from a survey sample divided by the variance of the estimate from a SRS is

the design effect [64]. This quantity is useful to compute because it tells you the ratio of the

sample size of a complex sampling design to the SRS needed to obtain the same variance
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estimate.

2.1.4 Regression Models for Survey Samples

Survey weights are also used in regression models to estimate associations for the target finite

population using a survey sample [77]. Suppose we have a sample of n observations where

xi is a vector of covariates or predictors, yi is a response variable, and i = 1, . . . , n. Each

observation has a sampling weight wi. Suppose we are interested in fitting a generalized linear

model (GLM) [85]. To estimate associations in a target population we can consider a hybrid

of the design-based and model-based frameworks. We assume that our finite population is

a subset of a larger super population, which is a subset of an even larger super population,

and so forth until the populations are as large as necessary for asymptotic results[73].

Coefficient estimates in survey regression models

The remainder of this section is based on Lumley and Scott (2017) [77]. Suppose we have

a super population which is a realization of a probability model f(Y |X; β). The finite

population is a realization from this super population. The sample is then drawn from the

finite population and the only randomness in this stage is from the sampling. Let g(·) be a

link function and β be a p× 1 vector of parameters. Then

g(E[Y |X = x]) = g(µ) = xTβ

and the variance of the response is a function of the mean µ where

Var(Y |X = x) = σ2V (µ).
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We can assume that n → ∞ and n/N → c ∈ [0, 1). Let β0 be the true paramater in the

super population, β̃N be the estimate for β0 that would be estimated using the full finite

population, and β̂n be the maximum pseudo-likelihood estimate that is obtained using the

survey sample when the sampling scheme is accounted for. Additionally, let β̃N
P−→ β∗.

With complete data from the finite population, we would solve the following estimating

equation

Ū(β) =
∑
i∈P

Ui(β) =
∑
i∈P

(yi − µi)

V (µi)

[
∂g(µi)

∂µi

]−1

xi = 0.

which is an unbiased estimating equation for β0 [46]. Then β̃N is the value of β that solves

this equation. The design-based estimator [42, 16] that uses the sample solves the weighted

estimating equation

Û(β) =
∑
i∈S

wiUi(β) = 0.

to obtain β̂n. This is an unbiased estimating equation for β̃N if wi ∝ π−1
i . Assuming a

law of large numbers and central limit theorem applies, then β̂n is asymptotically normal

and consistent for β0 if the super population model is correctly specified and for β∗ in more

general cases.

Variance estimators of coefficient estimates in survey regression models

The variance of the coefficient estimate obtained from a survey sample, β̂n is a sum:

V̂ar(β̂n) = V̂arπ(β̂n) + V̂arM(β̃N) (2.2)

11



where V̂arπ is the sampling variance and V̂arM is the model based variance. The first term

is of order n−1 and the second term is of order N−1 which can be ignored if the sample is

much smaller than the finite population (n << N). The first term can estimated with a

robust sandwich error derived using a delta-method argument [16] where

V̂arπ(β̂n) = A−1BA−1.

A is the weighted observed Fisher’s information matrix

A =
∑
i∈S

wi
∂Ui(β)

∂β

∣∣∣∣∣
β=β̂n

and B is a consistent estimate of the variance of the design-based score function

B = V̂arπ

[
Û(β)

]
.

If the second term in Equation 2.2 is non-negligible it can be estimated with the estimated

observed population Fisher’s information matrix:

V̂arM(β̃N) =
∑
i∈S

∂Ui

∂β
.

Variance estimators of coefficient estimates in survey regression models for con-

venience samples

As discussed earlier, sampling weights can be estimated for convenience samples. We can

then use the estimated sampling weights to weight regression models to obtain inference

about the target population. Using estimated sampling weights will likely lead to increased

variability in the coefficients estimates and this needs to be accounted for in the variance

estimate. In Chapter 3, we extend the variance estimate introduced above and account for

12



uncertainty from estimating the sampling weights using a joint estimating equation approach

similar to [103].

Methods for analyzing survey sample with inverse probability weights are very useful for

obtaining estimates of population quantities. They can be extended for use in convenience

samples using estimated sampling weights but there are three main issues that arise. First,

you need an auxiliary representative data set to gain information about the target population.

Second, you need to have a reasonable estimate of the sampling probabilities and thus the

sampling weights. And third, you need to account for uncertainty from estimating the

sampling weights in downstream parameter estimates. We address these three considerations

in Chapter 3.

Inverse probability of sampling weights are useful in many contexts including estimates of

causal effects and prediction error in the target population for samples with unequal sampling

probabilities. We discuss methods for estimating causal effects and prediction error and

how estimated sampling weights can be implemented and point out gaps in the existing

methodology in the following sections.

2.2 Causal Inference

The goal of causal inference is to estimate or isolate causal effects. Colloquially, a causal

effect is one where we can identify the effect of a given cause as opposed to an alternative

explanation.[58]. Causation can be difficult to define, but Greenland, Robins and Pearl point

to a definition from Hume in 1978. They say that event A caused event B if event A had

to happen for event B to happen [50, 60]. In common terminology, we call event A the

treatment or intervention. One example of a causal effect is the outcome of being exposed

to a treatment versus the outcome of being exposed to the placebo[58].
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2.2.1 Potential Outcomes

The framework discussed for causal inference and potential outcomes is based on Chapters 1

through 3 of Imbens and Rubin (2015) [62]. Following this textbook, we consider treatments

with two groups: units who received an active treatment (treatment) and units who received a

control treatment (control). These treatments are viewed symmetrically and can be thought

of as different levels of the treatment. The framework discussed in this section can be

extended to cases with more than 2 treatment groups or to a continuous treatment variable.

Suppose we have a sample of n units and we have a treatment indicator Ai for unit i.

A unit level causal effect is a comparison in the outcome for a given unit at a given time if

they were exposed to the treatment versus if they were exposed to the control. Consider unit

i at a given time. The outcomes when being exposed to a specific treatment, for a particular

unit, and at a particular point in time and space are called the potential outcomes. The

potential outcome for unit i at a given point in time if they had received the treatment

(Ai = 1) is Yi(1) and the potential outcome if they had received the control (Ai = 0) is

Yi(0). An example of a unit level causal effect is

Yi(1)− Yi(0).

To compute a causal effect for a given unit we need to know their potential outcomes for

both treatment options. “The fundamental problem of causal inference” is that we are only

able to observe unit i in one treatment group at a given point in time and space [62, 58]. We

are not able to observe all of the potential outcomes required to observe a unit level causal

effect. The observed potential outcome for unit i under treatment Ai is

Y obs
i = Yi(Ai) =

{
Yi(0) if Ai = 0

Yi(1) if Ai = 1
.

14



To estimate causal effects we need to impute the missing potential outcomes. To overcome

“the fundamental problem of causal inference” and gain information about both treatment

groups we need multiple observations. We can do this with multiple units at the same point

in time or with one unit at multiple points in time.

2.2.2 Assumptions for Causal Inference

When using multiple units there may be alternative explanations besides a treatment effect

for observed differences in the outcomes between treatment groups. We want to exclude these

alternative explanations to isolate the causal effect. First, differences in the outcomes of each

treatment group could be obscured by spillover effects where the treatment of one unit could

impact the results of units from a different treatment group. Second, the differences between

treatment groups could be caused by the reason that units end up in a given treatment group.

To isolate the effect of the treatment, we need to prevent alternative explanations through

assumptions or exclusion restrictions.

The Stable Unit Treatment Value Assumption (SUTVA)

The first assumption excludes spillover effects. The Stable Unit Treatment Value Assumption

(SUTVA) is that the treatment assignment of a unit does not impact the potential outcomes

of other units and there are no different forms of the treatment that lead to differences

in potential outcomes [62]. The first part of SUTVA is often called “no interference” and

attempts to exclude the existence of spillover effects. The second part is called the “no

hidden variation of treatment” and excludes the possibility that differences in the treatment

regiment within a treatment group are causing differences in potential outcomes.

15



Assumptions On The Assignment Mechanism

The second group of assumptions addresses how all units in the sample are selected for their

treatment groups, which is the process called an assignment mechanism. Let W be an n× 1

vector of assignments for the n units and X be covariates unrelated to the treatment. The

assignment mechanism, Pr(W |X, Y (0), Y (1)), is a function that assigns probabilities to each

of the 2n possible values of W . The assignment mechanisms must be in [0, 1] and sum to

one:

∑
W∈[0,1]N

Pr(W |X, Y (0), Y (1)) = 1

for all X, Y (0), and Y (1). Note that the assignment mechanism is not the probability of unit

i receiving a specific treatment, but it is instead the probability of a full vector of assignments

for all n units, W . Let Wi be the i-th value of W , then the unit-level assignment probability

is

Pr(Ai = 1|X, Y (0), Y (1)) =
∑

W :Wi=1

Pr(W |X, Y (0), Y (1)).

In randomized studies, we randomly assign each unit to a treatment group and thus con-

trol the treatment assignment. In observational studies, we do not control the treatment

assignment. For example, in Chapter 3 we discuss an analysis of the effect of Vitamin E

supplementation on measures of functional performance for older adults. The people in the

study chose if they would take Vitamin E supplements or not. There are three assumptions

for the assignment mechanism.

First, the individualistic assignment excludes the possibility that the treatment assignment of

a given unit is influenced by the pre-treatment covariates or potential outcomes of other units.

Definition 3.4 from Imbens and Rubin (2015)[62] states that given a function q(·) ∈ [0, 1],
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an assignment mechanism is individualistic if

Pr(Ai = 1|X, Y (0), Y (1)) = q(Xi, Yi(0), Yi(1)), ∀ i ∈ 1, ...n (2.3)

and

Pr(W |X, Y (0), Y (1)) = c
n∏

i=1

q(Xi, Yi(0), Yi(1))
Wi(1− q(Xi, Yi(0), Yi(1)))

1−Wi (2.4)

for (W,X, Y (0), Y (1)) ∈ A for some set A, and zero otherwise. The constant, c, is necessary

so the assignment mechanisms sum to one. Individualistic assignment is generally considered

a reasonable assumption.

Second, the probabilistic assignment assumptions requires that each unit has a non-zero

probability of being in all treatment groups, or equivalently Pr(W |X, Y (0), Y (1)) is proba-

bilistic if

0 < Pr(Ai = 1|X, Y (0), Y (1)) < 1 (2.5)

for all i ∈ 1, . . . , n.

Third, the unconfounded assumption requires that the potential outcomes are independent

of assignment mechanism conditional on the observed covariates.

Pr(W |X, Y (0), Y (1)) = Pr(W |X). (2.6)

Notice the conditioning on X in Equations 2.3, 2.4, 2.5, and 2.6. The assumptions are more

reasonable when we condition on pre-treatment variables or covariates for each unit that

are not influenced by the treatment. We often cannot verify these assumptions with data,

however, so we need to use domain knowledge to assess if they are reasonable.
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Given the individualistic assignment assumption, when the probabilistic assignment and

unconfounded assumptions hold the treatment assignment is said to be strongly ignorable.

If the treatment mechanism is a function of the treatment assignment, the covariates, and

the observed potential outcomes then it is called ignorable.

2.2.3 Causal Estimands

There are different ways to define a causal effect. We could be interested in the average

difference in outcome for the whole population. We could also be interested in the causal

effect for a subpopulation such as the average difference in outcomes among males.

Average treatment effect (ATE)

The average treatment effect (ATE) is the average difference in outcomes comparing units

in the treatment group to those in the control group for the population. It can be written as

E[Y (1)− Y (0)].

This is the definition of the ATE, but of course we do not observe both potential outcomes

for each unit and can estimate it by imputing the missing potential outcomes.

Average treatment effect on the treated (ATT)

The average treatment effect on the treated (ATT) is the treatment effect among individuals

who received treatment. It requires imputation of the potential outcome under control. It
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is written as

E[Y (1)− Y (0)|A = 1].

The average treatment effect on the controls (ATC) can be defined analagously.

Conditional average treatment effect (CATE)

The conditional average treatment effect (CATE) [1] is the average treatment effect at a set

value of a covariate X = x:

E[Y (1)− Y (0)|X = x].

X1 can be continuous or a factor. The CATE is useful for quantifying treatment effect

heterogeneity if the treatment effect varies with X1. Abrevaya et al. provide an example of

the CATE where the effect of mother’s smoking on the birth weight of babies among first

time mothers is a function of the mother’s age [1].

Local average treatment effect (LATE)

In a randomized clinical trial, non-compliers are participants who did not take their assigned

treatment. We assume that compliance is all or nothing, participants either take all of the

treatment or none of it. We also assume compliance is one-sided, it can only occur in the

treatment group. The control group units cannot decided to not comply by starting to take

the treatment if it is unavailable to them. The local average treatment effect (LATE) is

the treatment effect among compliers (Chapter 23 of Imbens and Rubin [62]). Let G be an
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indicator of compliance, then

E[Y (1)− Y (0)|G = 1].

To estimate the LATE we need to use an instrumental variable. An instrumental variable is

a variable that is almost certainly related to the treatment (Ai) but has no direct effect on

the outcome outside of it’s effect “through” the treatment. To estimate the LATE we will

use the treatment assignment (as opposed to the receipt of treatment) as the instrumental

variable.

There are two assumptions required for an instrumental variables approach. First, we need to

assume that the treatment assignment is unconfounded, even though the receipt of treatment

is confounded due to non-compliance. This assumption is satisfied in a randomized study.

Second, we need an exclusion assumption that requires that the treatment assignment has

no effect on the outcome for non-compliers. So, for people in the treatment group who did

not take their assigned treatment we assume their original assignment does not impact their

outcome. This is a reasonable assumption in randomized trials, but it is even more plausible

if the study was double-blind and neither the investigators or the participants know the

treatment assignment.

To estimate the LATE we need to estimate two intent-to-treat (ITT) effects. An intent-

to-treat analysis compares the treatment effect among all people in a study based on their

randomized treatment assignment, regardless of any noncompliance. The first effect is the

ITT effect of the treatment assignment on the outcome. The second effect is the ITT effect

of the treatment assignment on the receipt of treatment.

The LATE estimand is then equal to the ratio of the ITT effect of the treatment assignment

on the outcome and the ITT effect of the treatment assignment on the receipt of treatment.
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2.2.4 Estimating Causal Effects in Observational Studies

This subsection is based on Chapters 12 and 13 of Imbens and Rubin unless stated other-

wise [62]. In observational studies, the probability of treatment assignment is an unknown

function. Researchers conducting a study do not assign people to a treatment group. In

observational studies, we still need the individualistic assignment mechanism, probabilistic

assumption, unconfounded assumption, and SUTVA to estimate a causal effect.

Using covariates to make the unconfounded assumption reasonable is very important for

observational studies. Let Xi be a vector of pretreatment covariates for unit i. The uncon-

founded assumption can be written as

Yi(0), Yi(1) ⊥ Ai | Xi.

Thus, it is important to carefully consider which variables might explain a spurious rela-

tionship between the treatment and potential outcomes and ensure that is collected and

adjusted for. When the individualistic assignment mechanism, probabilistic assumption,

unconfounded assumption, and SUTVA are satisfied, we can fairly compare the outcomes

of units with the same values of Xi as we would in a randomized experiment. For exam-

ple, if the unconfounded assumption held when conditioning on sex, then we could estimate

the causal effect among females and males separately and do a weighted average of these

estimates based on their subpopulation sizes to get an estimate of the ATE.

This estimation procedure could be expanded for higher dimension Xi, but at larger dimen-

sions there will likely be subpopulations with zero units in one of the treatment groups.

Instead, we could match units across the treatment and control groups with similar values

of the covariates and estimate the treatment effect among matched pairs.
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Propensity scores

To reduce the dimensionality of the problem and make matching easier, we can match on a

scalar function of the covariates called a balancing score, b(Xi) which is defined as a function

of the covariates where

Ai ⊥ Xi | b(Xi).

Xi itself is a balancing score. The difference in outcomes for units exposed to treatment and

control at a set value of the balancing score is unbiased for the treatment effect at that value.

Thus, balancing on the propensity score can provide an unbiased estimate of the ATE [95].

One example of a scalar balancing score is the propensity score (Lemma 12.1 in Imbens

and Rubin (2015) [62]). The propensity score is the probability of receiving treatment

conditioned on the covariates or e(Xi) = Pr(Ai = 1|Xi = xi). According to Lemma 12.2 in

the same book [62], if treatment assignment is unconfounded, then it is unconfounded given

a balancing score. Thus, if we condition on the propensity score we can estimate a causal

effect. The distribution of the covariates across treatment groups should be the same given

the propensity score.

The propensity score is the probability of a binary treatment indicator, so it can be estimated

using binary prediction methods. Note that the propensity score definition can be expanded

for continuous treatments [56]. For more discussion about prediction models, see Section 2.3.

Alternatively, you can exploit the balancing properties of the propensity score and select the

propensity score that best balances the covariate distributions across the treatment and

control groups on propensity scores. For an example of how to estimate propensity scores

see Chapter 13 of Imbens and Rubin (2015) [62]. In practice this is done by comparing the

mean and variance of each covariate between the treatment and control groups within strata

of the propensity scores. The approaches are commonly combined in an iterative approach
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where the propensity scores are estimated with a prediction model, then the covariate balance

is checked, and then modifications to the prediction model are made as necessary and this

process is repeated until the estimated propensity score gives good balance. This process

involves updating a prediction model, but the outcome variable is not apart of it which

prevents multiple testing which would inflate the Type I error (or false positive rate).

Once the propensity scores are estimated, they can be used to estimate the causal effect in

several ways. First, propensity score stratification (or blocking) is an extension of matching

units based on similar covariate values. We can assign units into statra based on their

propensity score value, estimate the causal effect within each strata, and aggregate across

strata.

Second, inverse probability weighting with the propensity score is when observations are

weighted when estimating causal estimates. This approach is similar to IPW for sampling

weights discussed in Section 2.1.3 but the weights are a function of the propensity score.

There are different weighting schemes for different causal estimands. For example, the ATE

can be estimated as follow:

ÂTE =
1

n

n∑
i=1

AiY
obs
i

e(Xi)
− 1

n

n∑
i=1

(1− Ai)Y
obs
i

1− e(Xi)
.

The ATT [69] can be estimated with:

ÂTT =
1

n

n∑
i=1

AiY
obs
i − 1

n

n∑
i=1

e(Xi)

1− e(Xi)
(1− Ai)Y

obs
i .

A third option for accounting for the propensity score to estimate the causal effect is propen-

sity score adjustment. We fit a regression model with the treatment indicator and the es-

timated propensity score as covariates and the outcome as the dependent variable. We can

select a regression model based on the distribution of the outcome. A generalized linear
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model (GLM) [85] with link function g(·) is

g(E[Y obs
i ]) = α0 + α1 · Ai + α2 · ê(Xi).

When g(·) is the identify link, the estimate of α1 is an estimate of the ATE.

Covariate adjustment

An alternative approach for accounting for covariates in estimating a treatment effect is a

regression analysis or covariate adjustment [3]. For this method, covariates are included as

predictors in a regression model along with the treatment indicator and the outcome is still

the dependent variable. A covariate adjusted model can take the form:

g(E[Y obs
i ]) = β0 + β1Ai + δX∗

i (2.7)

where X∗
i is a 1×q vector containing variables from Xi along with transformations of Xi and

δ is a q× 1 vector of parameters. The estimate of β1 is an estimated causal effect. Covariate

adjustment still requires the assumptions introduced in Section 2.2.2 (SUTVA, individualistic

assignment, probabilistic assignment, and unconfoundedness) for making causal statements.

Comparing propensity scores and covariate adjustment

The main strength of covariate adjustment is that the model is very interpretable. It is

easy to explain and show when a reasonable number of variables are adjusted for. For

example, assuming an identity link function (g(E[Y obs
i ] = E[Y obs

i ])), β1 in Equation 2.7 is

interpreted as the mean difference in Y comparing people in the treatment group to those

in the control group conditioning on all of the variables in X∗
i [105, 119]. It also requires

the statistician to think about which covariates are being included as confounders which
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could prevent inclusion of variables that are independent of the response which increase the

uncertainty in the treatment effect estimate [105]. A limitation of regression methods is that

they rely on extrapolation if the covariate distributions in the treatment and control groups

are dissimilar. Additionally, there can be confounding from misspecifying the functional

form of the covariates in the model [119, 30, 31, 97].

An advantage of the propensity score is that the model estimating it can be very flexible and

adjusted repeatedly without using information for the response. This reduces the temptation

of adjusting the covariate adjusted regression model to get a significant result which inflates

the Type I error rate [62]. The propensity score is also interpretable because it is easy to

explain that the causal effect is estimated among units with a similar propensity for treatment

[119]. A literature review of 47 observational studies using propensity scores published in

2001 assessed what details on the propensity score analysis were included in the paper. They

found that 24 of the articles did not state how variable selection for the propensity score

model was performed, 13 did not state the number of variables in the propensity score model,

and 44 did not include information on the form of the covariates [114]. When researchers

are not explicit about the methods and variables used to estimate the propensity score, it

can be difficult to replicate estimates of causal effects in observational studies.

Both the propensity score and covariate adjustment can account for confounding. When es-

timating the propensity score analysts can select the covariates that minimize the prediction

error and balance covariates, but covariate adjustment requires the analyst to think about

which and how each covariates will be included in the model based on their relation to the

treatment and response.
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2.2.5 Causal Inference Under Non-Uniform Sampling

All of the methods discussed in this section assume the sample used to estimate the causal

effect is representative of a target population. Estimating propensity scores and propensity-

adjusted causal effects need to account for the sampling scheme. There is some debate

in the literature about whether sampling weights should be included when estimating the

propensity score [93, 119, 32, 9, 68]. To our knowledge, no one has quantified the impact

of using sampling weights estimated for convenience samples when estimating propensity-

adjusted causal effects. Additionally, there is need of a variance estimator of the estimated

treatment effect that accounts for uncertainty in estimating the sampling weights, estimating

the propensity score, and estimating the propensity-adjusted causal effect.

Propensity Scores for Convenience Samples

Previous papers have studied how to use propensity scores to estimate causal effects in

survey samples with non-uniform, but prespecied sampling probabilities [93, 9, 68]. There

are two steps for estimating a causal effect: (1) estimate the propensity score and (2) balance

or match on the propensity score. There is some debate in the literature about whether

sampling weights should be implemented in one or both of these steps. Ridgeway et al.

(2015) [93] concludes that sampling weights should be included in both steps. In contrast

Austin et al. (2018) [9] and Lenis et al. (2019) [68] suggest that only the outcome model

(step 2) should be weighted, but they assume that the propensity score model is correctly

specified.

There is room for further work on this problem and particularly for analyses of convenience

samples where the sampling weights are not known. First, there is need of clarification about

the necessity of weighting the propensity score model when it is not correctly misspecified,

because it is unlikely to be correct in practice. Second, to our knowledge no one has assessed
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the impact of utilizing estimated sampling weights when using the propensity score to es-

timate causal effects. Furthermore, it is important to know how well the sampling weights

need to be estimated to address sampling bias in estimated causal effects. Lastly, uncertainty

from estimating both the sampling weights and the propensity score needs to be accounted

for when quantifying the variability of causal effect estimates. We address these gaps in the

research in Chapter 4.

2.3 Prediction Error

There are many options when selecting a predictive model. First, there are different classes

of prediction models to choose between, including maximum likelihood methods such as

generalized linear models, algorithmic methods such as random forest, shrinkage methods

such as ridge regression, and ensemble methods that combine multiple models. Second,

within one type of model you can also choose different degrees of complexity. For example,

if you were using linear regression for prediction you will have to specify which covariates

and transformations of the covariates will be included in the model. The standard way to

define the “best” model is the model that generalizes the best to the target population that

prediction model will be used for. Generalization is how well a given model performs on an

independent test set from the target population. Most of the material through Section 2.3.7

(except Efron’s general covariance penalty) is from Chapter 7 of the textbook “The Elements

of Statistical Learning” [54]. References for where the methods were originally proposed are

included when they are introduced.
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2.3.1 Loss Functions

Generalization is quantified using a loss function. Let X be a vector of covariates, Y be

the response, and f̂(X) be the predicted value of Y using model f̂(·). A loss function,

L(Y, f̂(X)), quantifies the difference between Y and f̂(X). Some examples of commonly

used loss functions when Y is continuous are absolute loss,

L1(Y, f̂(X)) = |Y − f̂(X)|;

squared error loss,

L2(Y, f̂(X)) = (Y − f̂(X))2; (2.8)

0-1 loss,

L3(Y, f̂(X)) = I(Y ̸= f̂(X));

and log-likelihood loss,

L4(Y, f̂(X)) = −2× loglik (2.9)

where loglik is the log-likelihood, or the joint probability distribution of Y [23]. The −2

term in the definition of the log-likelihood loss relates it to squared error loss when a Normal

likelihood is assumed and σ = Var(Y ) is known. The Normal log-likelihood is

log Pr(Y |X) = log

(
1

σ
√
2π

)
− 1

2

(
Y − f̂(X)

σ

)2

.

Notice that this is equivalent to Equation 2.9 since the first term is constant for all models.
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2.3.2 Error Definitions

To quantify how well a model generalizes to an independent test set, we can consider the test

error. The test error, ErrT , is also referred to as the generalization error or the extra-sample

error because it is computed for a new sample (X0, Y 0) drawn from the joint distribution of

X and Y . Let T be the sample used to train the predictive model then

ErrT = E(X0,Y 0)

[
L(Y 0, f̂(X0))|T

]
(2.10)

for fixed T . This quantity is the test set for a given training set T . The expected prediction

error (EPE) or the expected test error averages over X, Y , and T and is equal to

EPE = ET

{
E(X0,Y 0)

[
L(Y 0, f̂(X0))|T

]}
. (2.11)

Ideally, we would like to pick the model that minimizes ErrT in Equation 2.10 because it is

the error in the target population given the training sample you used. This is difficult to

estimate when you only have one sample, so we instead estimate EPE. An obvious estimate

of the expected prediction error is the training error or the loss function applied directly to

the training sample. Suppose there are n observations (xi, yi) in the training sample and

i = 1, . . . , n. The training error, err is

err =
1

n

n∑
i=1

L(yi, f̂(xi)). (2.12)

The training error tends to underestimate EPE because the model is estimated and evaluated

with the same sample. As models grow more complex they tend to adapt to idiosyncrasies

in the sample. Some of the patterns in the sample may generalize to other samples from the

target population but others may not. More complex models tend to have lower bias, but

have higher variability across training samples. The training error will continue to decrease
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as the model complexity grows, but the EPE usually starts to increase at some point. As

an extreme example, consider a model that is overfit to the point where f̂(xi) = yi. The

training error will be 0 for the saturated model, but a new sample will most likely have new

values of Y and so the EPE will be non-zero.

2.3.3 Model Selection and Assessment

There are two objectives for estimating prediction error. The first goal is model selection to

compare between models of different complexities or types. This is operationalized by select-

ing the model with the smallest loss in an independent test set. When comparing models of

different complexities, we can introduce a complexity parameter α and index the predictions

from a model with complexity α as f̂α(xi). The second goal is model assessment for a given

model, where you are interested in estimating the prediction error in an independent test

set.

2.3.4 Strategies for Model Selection

Suppose you have P different models and you want to select the model f̂α,p(xi) where p =

1, . . . , P with the smallest EPE. One strategy for selecting a model is to estimate the EPE

for all candidate models in your scope f̂α,p(xi) where {α1, ..., αP} are the parameters for

each of the P models. You then select the model with the smallest estimated EPE. This

approach is termed best subsets. Best subsets can be computationally expensive because you

have to fit P models and estimate the EPE P times. An alternative approach that reduces

the computational burden is to pick a subset of the candidate models to fit the model in

and compute the prediction error for and choose the best model among the subset. One

framework for doing this is stepwise selection in regression. For forward stepwise selection

you start with the model that only contains an intercept. Then you compare all models with
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one covariate added and select the model with the smallest estimated prediction error. You

repeat this process until there are no covariates left that decrease the estimated prediction

error. Another option is backwards selection where you start with the largest model and

remove one covariate at a time. For a comparison between best subsets and stepwise forward

selection see Hastie (2020) [55].

Bias variance trade off

When selecting a model, you have to make a trade off between bias and variance. Complex

models will fit the training data better and have lower bias, but high variance in the test set.

Simpler models will not fit the data as closely but will have lower variance. Consider the

case of additive errors, where Y = f(X)+ϵ, E(ϵ) = 0, and Var(ϵ) = σ2
ϵ . Under squared error

loss we can write down the relationship between EPE, bias, and variance for a regression fit

f̂(X) evaluated at X = x0.

EPE(x0) = E
[(
Y − f̂(x0)

)2|X = x0

]
= E

[(
(Y − E[f̂(x0)]) + (E[f̂(x0)]− f̂(x0))

)2|X = x0

]

We start by expanding this expression and let K be the product of the first and second

terms. We will show that K = 0 later. So,

= E
[
(Y − E[f̂(x0)])

2 + (E[f̂(x0)]− f̂(x0))
2|X = x0

]
+ 2K

= E
[
(Y − E[f̂(x0)])

2 + (E[f̂(x0)]− f̂(x0))
2|X = x0

]
+ 0

= E
[
(Y 2 − 2Y E[f̂(x0)] + E[f̂(x0)]

2)|X = x0

]
+ V

31



Where V = E
[
(E[f̂(x0)] − f̂(x0))

2|X = x0

]
. Now, we can replace Y with f(X) + ϵ and

evaluate the expectation,

= E
[
f(x0)

2 + ϵ2 + 2f(x0)ϵ− 2f(x0)E[f̂(x0)]− 2ϵE[f̂(x0)] + E[f̂(x0)]
2|X = x0

]
+ V

= f(x0)
2 + σ2

ϵ + 0− 2f(x0)E[f̂(x0)]− 0 + E[f̂(x0)]
2 + V

= σ2
ϵ +

(
f(x0)

2 − 2f(x0)E[f̂(x0)] + E[f̂(x0)]
2
)
+ V

= σ2
ϵ +

(
f(x0)− E[f̂(x0)]

)2
+ E

[
(f̂(x0)− E[f̂(x0)])

2|X = x0

]

Multiplying the third term by (−1)2 gives us,

EPE(x0) = σ2
ϵ + Bias2(f̂(x0)) + Var(f̂(x0)) (2.13)

Finally, we will show that the cross-term K is equal to 0. Note that Y ⊥ f̂(x0) because

the predicted value is a function of the training set and the new observation Y is from an

independent sample.

K = E
[
(Y − E[f̂(x0)])(E[f̂(x0)]− f̂(x0))|X = x0

]
= E

[
(Y − E[f̂(x0)])|X = x0

]
× E

[
(E[f̂(x0)]− f̂(x0))|X = x0

]
= 0

Thus, the EPE is the sum of the irreducible variance σ2
ϵ , bias squared and the variance in this

scenario. Reducing bias or variance will necessarily inflate the other. Additionally, we can

write out the variance term if we assume that the model is linear and fit with least squares,

or f̂p(x) = xT β̂ where β is a p × 1 vector of parameter estimates and p is the number of

covariates. Let X be the n× p matrix of predictors where row i corresponds to observation
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i and y is the p× 1 vector of observations, then

Var(f̂(x0)) = Var(xT0 β̂) = Var(xT0 (X
TX)−1XTy)

= xT0 (X
TX)−1XTVar(y)X(XTX)−1x0 = σ2

ϵx
T
0 (X

TX)−1x0.

Notice that this expression is a function of x0. If we set x0 equal to the observed values of

xi we can take an average across xi. Using the definition of the trace and the commutativity

property of the trace,

1

n

n∑
i=1

σ2
ϵx

T
i (X

TX)−1xi =
1

n
σ2
ϵ trace

(
X(XTX)−1XT

)
=

1

n
σ2
ϵ trace

(
(XTX)−1(XXT )

)
=

1

n
σ2
ϵ trace

(
Ip×p

)
= σ2

ϵ

p

n
.

We can use this relationship with the average of Equation 2.13 to show

1

n

n∑
i=1

EPE(xi) =
n∑

i=1

(
σ2
ϵ + Bias2(f̂(x0)) + Var(f̂(x0))

)
= σ2

ϵ +
1

n

n∑
i=1

(
f(xi)− E[f̂(xi)]

)2
+ σ2

ϵ

p

n
.

Thus when fitting a linear model when the data follows the additive error model, the average

EPE is a function of the number of parameters in the model.

In these examples, we can see that there is a trade-off between bias and variance when

selecting a model and that prediction error tends to increase with model complexity.

Strategies for estimating prediction error

One strategy for estimating prediction error when you have a large enough data set is to split

the sample into training, validation and test sets. The training sample is used for training
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the models, the validation sample is used for model selection, and the test set is used for

model assessment. Hastie, Tibshirani, and Freedman [54] suggest using 50% of the data

for training and 25% for both the validation and test samples. If using 50% of the data

set for the training set will lead to increased bias because it is too small, you can split it

into two samples: a training set and a combined validation/test set. This will lead to an

underestimation of the test error because you are picking the model with the lowest test

error which may be the lowest due to random chance.

In the following sections, I will discuss methods for estimating the prediction error for data

sets that are too small to be split into separate training and validation sets. There are two

categories of estimates of the prediction error: (1) analytic methods that try to directly

estimate the difference between the training error and the test error and (2) resampling

methods that resample the data to mimic having a validation set.

2.3.5 Analytic Methods

Analytic methods estimate prediction error by estimating the difference between the predic-

tion error for a new sample and the training error. It is difficult to express this analytically

for the EPE, so instead we can target the in-sample error (Errin). The in-sample error holds

the covariate distribution of x constant, but samples n new values of the response Y 0 at each

xi, so

Errin = ET

{
EY 0

[
L(Y 0, f̂(xi))|T

]}
(2.14)

The in-sample error is useful for model selection, but it is not usually of interest for model

assessment because in practice the X values are likely to change for a new sample. Thus,

analytic estimates of prediction error are more useful for model selection.
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Optimism

Optimism (op) is the difference between the in-sample error and the training error,

op ≡ Errin − err (2.15)

Optimism tends to be positive since the training error usually under estimates the prediction

error. It is easier to estimate the average optimism, ω, where the expectation is taken over

y where,

ω ≡ Ey(op).

For many loss functions, the expected optimism is a function of the covariance between yi

and the fitted value f̂(xi), or how strongly yi determines it’s own prediction.

ω =
2

n

n∑
i=1

Cov
(
yi, f̂(xi)

)
(2.16)

The proof for squared error loss is as follows,

ω = Ey

{ 1
n
EY 0

[
(Y 0

i − f̂(xi))
2
]
− 1

n
(yi − f̂(xi))

2
}

=
1

n

n∑
i=1

(
Ey[EY 0 [(Y 0

i )
2]]- 2Ey[EY 0 [Y 0

i f̂(xi)]] + Ey[EY 0 [(f̂(xi))
2]]

- Ey[y
2
i ] + 2Ey[yif̂(xi)]− Ey[(f̂(xi))

2]
)

Since f̂(xi) ⊥ Y 0
i , Ey[EY 0 [(f̂(xi))

2]] = Ey[(f̂(xi))
2] and the third and sixth terms cancel each

other out. Additionally, yi ∼ D and Y 0
i ∼ D for some distribution D but are independent.

Thus, Ey[EY 0 [(Y 0
i )

2]] = Ey[(Y
0
i )

2] = Ey[y
2
i ] and the first and fourth terms cancel. We are
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left with ,

ω =
2

n

n∑
i=1

(
Ey[yif̂xi]− Ey[EY 0 [Y 0

i f̂(xi)]]
)

We can use the properties f̂(xi) ⊥ Y 0
i and Ey[Y

0
i ] = Ey[yi] again to obtain the final result,

ω =
2

n

n∑
i=1

(
Ey[yif̂(xi)]− Ey[yi]Ey[f̂(xi)]

)
=

2

n

n∑
i=1

Cov
(
yi, f̂(xi)

)

When f̂(xi) is a linear function of y or f̂(xi) =
∑n

j=1 cjyj, Equation 2.16 simplifies further.

Recall that yi ⊥ yj when i ̸= j, then

ω =
2

n

n∑
i=1

Cov
(
yi, f̂(xi)

)
=

2

n

n∑
i=1

Cov

(
yi,

n∑
j=1

cjyj

)

=
2

n

n∑
i=1

Cov
(
yi, ciyi

)
=

2

n

n∑
i=1

ciVar(yi).

In least squares, ci is the i-th diagonal element of the hat matrix. Under the additive variance

model where yi = f(xi) + ϵ and Var(ϵ) = σ2
ϵ ,

ω =
2

n
pσ2

ϵ (2.17)

where p is the number of parameters. Thus, the optimism increases with model complexity

but decreases as the sample size increases.

A strategy for estimating the optimism and thus the in-sample error is to find an estimate

of the covariance between yi and f̂(xi). So analytic estimates of the in-sample error often
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take the form,

Êrrin = err + ω̂

Mallows Cp

Equation 2.17 leads to an estimate of the in-sample error for linear models with p parameters

fit with squared error loss called Mallows Cp [78]:

Cp = err +
2

n
pσ̂2

ϵ

where σ̂2
ϵ is estimated with the least biased (or most complex) model in the scope of con-

sideration. As is common with many analytic estimates of Errin, this takes the form of

the training error plus a penalty term which in this case is a function of the number of

parameters.

Akaike’s information criterion (AIC)

Akaike’s information criterion (AIC) [4, 5] is an extension to Cp for log-likelihood loss. Let

ŷi = f̂(xi) and θ̂ be the maximum likelihood estimates of θ, a vector of parameters. Then

the Errin under log-likelihood loss is

Errin = EY [−2 log Prθ̂(Y |X)]. (2.18)

AIC depends on an asymptotic relationship that applies as n→ ∞ similar to Equation 2.17

used for Mallows Cp.

−2EY [log Prθ̂(Y |X)] ≈ − 2

n
Ey[loglik] + 2

p

n
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where loglik =
∑n

i=1 log Prθ̂(yi|X). Multiplying by n, the AIC estimate is

AIC = −2loglik + 2p. (2.19)

This definition is equivalent to Mallows Cp for a Normal log-likelihood so Cp with known

variance σ2.

For a more general definition of AIC, p can be replaced by other measures of model com-

plexity, such as the effective degrees of freedom. This is especially useful for regularization.

Consider a linear model of the form,

ŷ = Sy

where S is an n×n matrix that is a function of X but not y. The effective degrees of freedom

for a linear model are

df(S) = trace(S).

If S is an orthogonal-projection matrix onto a basis set spanned by p features, such as the hat

matrix in ordinary least squares, then trace(S) = p. Replacing p with the effective degrees

of freedom allows AIC to be used with a broader range of models.

AIC can also be derived by picking the candidate model with the smallest Kullback-Leibler

divergence from the true model [5, 76, 28].

Efron’s general covariance penalty

Efron proposed a class of analytic approximations to the in-sample error that allow for the

use of general loss functions beyond log-likelihood loss [36]. He extends the relationship
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between optimism and covariance to the settings where y is generated from an unknown

probability distribution, f . Efron’s covariance penalty estimate applies for loss functions

from the q class of error measures where q(·) is a concave function. Let, q̇(ŷ) = ∂q
∂y
|y=ŷ. Then

the relationship between the loss function and q(·) is

L(y, ŷ) = q(ŷ) + q̇(ŷ)(y − ŷ)− q(y).

Let λ̂i = −q̇(ŷi)/2. Efron showed that

ωi = 2Cov(λ̂i, yi).

We will start with the definition of the err and Errin for a loss function from the q class :

Errin,i = EY 0

[
L(Y 0

i , ŷi)
]
= q(ŷi) + q̇(ŷ)(EY 0 [Y 0

i ]− ŷi)− EY 0 [q(Y 0
i )]

erri = L(yi, ŷi) = q(ŷi) + q̇(ŷ)(yi − ŷi)− q(yi).

Combining these expressions with the definition of optimism (Equation 2.15), we get

opi = Errin,i − erri

= q̇(ŷ)
[
(EY 0(Y 0

i )− ŷi)− (yi − ŷi)
]
− EY 0 [q(Y 0

i )] + q(yi)

= 2λ̂i(yi − EY 0(Y 0
i ))− EY 0 [q(Y 0

i )] + q(yi).
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Since yi and Y
0
i follow the same distribution, E[q(yi)] = E[q(Y 0

i )] and E[yi] = E[Y 0
i ]. So the

expected optimism,

ωi = Ey[opi]

= Ey

[
2λ̂i(yi − EY 0(Y 0

i ))
]
− EY 0 [q(Y 0

i )] + Ey[q(yi)]

= 2Ey

[
λ̂i(yi − Ey[yi]

]
= 2(Ey[λ̂iyi]− Ey[λ̂i]Ey[yi])

= 2Cov(λ̂i, yi).

We can multiply by n to match the definition of AIC and obtain Efron’s estimate of Errin

Êrrin =
n∑

i=1

(erri + 2cov(λ̂i, yi)).

The covariance term can be estimated with a parametric bootstrap when there is not an

analytic form available for a given loss function.

Bayesian information criterion (BIC)

The Bayesian information criterion (BIC) [104] is another estimate of the in-sample error

for models fit by maximizing the log-likelihood, but it is motivated by a Bayesian framework

for model selection.

Suppose we have M candidate models: {M1, . . . ,MM} each with prior probability of being

the true model Pr(Mm), where m = 1, . . . ,M and
∑M

m=1 Pr(Mm) = 1. Additionally, we

have training data (xi, yi) where i = 1, . . . , n. Let θm be the parameters for Mm.

We want to select the model with the largest posterior probability. The posterior probability
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for model Mm is

Pr(Mm|Data) ∝ Pr(Mm)Pr(Data|Mm)

∝ Pr(Mm)

∫
Pr(Data|Mm, θm)Pr(θm|Mm)dθm

It is common to assume a uniform prior probability on all models so Pr(Mm) =
1
M

for all

m. We can use a Laplace approximation to the integral in the above expression with some

simplifications to obtain,

Pr(Data|Mm) = log Pr(Data|θ̂m,Mm)−
pm
2

log n+O(1)

where θ̂m is the maximum likelihood estimate of θm. Under the following loss function,

−2 log Pr(Data|θ̂m,Mm)

the BIC is

BIC = −2loglik + p log(n).

Selecting the model with the smallest BIC is equivalent to selecting the model with the largest

posterior probability. If you compute the BIC for each model, you can use it to compute

the posterior probability. This is useful because comparing the posterior probabilities allows

you to quantify the relative performance of each model. The posterior probability of model

Mm is

e−
1
2
BICm∑M

ℓ=1 e
− 1

2
BICℓ

.

AIC and BIC have similar penalities, but BIC replaces 2 with log n. This means that BIC
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places a heavier penalty on complex models when n > e2 ≈ 7.4 and will tend to chose simpler

models than AIC. BIC, however, is asymptotically consistent so if the model scope includes

the true model, it will select the true model with probability approaching one as n→ ∞.

2.3.6 Resampling Methods

An alternative approach to analytic estimates of the optimism for estimating prediction error

are resampling methods. Resampling methods resample the data to create separate training

and evaluation sets. Resampling methods are more computationally intensive than analytic

methods, but they directly estimate the EPE since they resample both x and y.

Cross-Validation (CV)

Cross-validation [106, 107, 6] mimics splitting the sample into training and test sets. K-fold

cross-validation (CV) splits the data into K subsamples termed folds of approximately equal

size. For each of the k = 1, ..., K folds, the model is trained on the K − 1 other folds and

validated on the k-th fold. Figure 2.1 illustrates the case when K = 5. A row denotes the

k− th iteration where the model is fit on the 4 other folds and the loss function is computed

for the k-th fold. The loss function is combined across all folds.

More formally, let k(i) be the fold that observation i is apart of and f̂−k(i)(xi) denote the

predicted value for yi from the model fit on all folds besides k(i). Then the K-fold CV

statistic is

CVK =
1

n

n∑
i=1

L(yi, f̂
−k(i)(xi)) (2.20)

There are several considerations for how to pickK. WhenK approaches n there is substantial
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Figure 2.1: Example of 5-fold cross-validation. Each row represents the k-th iteration of
the algorithm where the model (k = 1, . . . , K) is fit on all folds except k and the loss is
computed for the k-th fold. Image is adapted from https://www.kaggle.com/dansbecker/

cross-validation.

overlap between the training sets which leads to higher variability of the EPE estimate. For

smaller K, the training sets are smaller because the fold size is roughly n−n/K which leads

to more bias. K = 5 or K = 10 is suggested as a compromise. When K = n, the so called

Leave-One-Out CV (LOO CV), the CV statistic is approximately unbiased for the true EPE,

but is highly variable. It is computationally expensive because it requires the model to be

fit n times.

There is an analytic form for the LOO CV statistic for simple linear regression. It is based

on the leave-one-out residuals that are the residuals that would be obtained if the model was

fit without yi [6]. Let ŷ(i) be the predicted value of yi from the model fit with all observations

besides yi, then the leave-one-out residual for yi is,

yi − ŷ(i) =
yi − ŷi
1−Hii

where H = X(XTX)−1XT ) is the hat matrix. The LOO CV estimator under squared error

loss is,

CVLOO =
1

n

n∑
i=1

[ yi − ŷi
1−Hii

]2
.
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This definition can be generalized by replacing the diagonal elements Hii with their average,

the effective degrees of freedom. The generalized CV estimate [47, 111] is

CVGCV =
1

n

n∑
i=1

[ yi − ŷi
1− trace(H)

]2
.

Bootstrap (BS)

Bootstrapping is a general resampling technique useful for obtaining a distribution for sample

statistics [34, 37]. Suppose we have data Z = {z1, ..., zn} where zi = (xi, yi). Bootstrapping

involves sampling from Z with replacement B times to obtain B bootstrap samples of size

n. You can fit the model of interest in each of the b = 1, ..., B bootstrap samples, obtain a

sample statistic such as a coefficient estimate and compute a Monte Carlo estimate of it’s

variance across bootstrap samples. The bootstrapped distribution should converge to the

empirical distribution which converges to the true distribution.

A naive bootstrap estimate of the EPE would be to fit the model on each of the B bootstrap

sample and compute the loss function for the original full sample. Let f̂ ∗b(xi) denote the

predicted value for yi from the model fit on the b-th bootstrap sample. The naive bootstrap

estimate is

BSnaive =
1

B

1

n

B∑
b=1

n∑
i=1

L(yi, f̂
∗b(xi)).

There is substantial overlap between each bootstrap and the full sample so this estimate

will likely underestimate the EPE. To avoid this, for each bootstrap sample b, we can fit the

model on the bootstrapped sample and calculate the loss function for all zi not included in

the b-th bootstrap sample. Let C−i be the set of indices of bootstrap samples that do not

include zi and |C−i| be the size of the set. Then the leave-one-out bootstrap estimate of the
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EPE is,

BSLOO =
1

n

n∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
∗b(xi)).

This estimate runs into the small sample size problem discussed for K-fold CV when K is

small. The probability an observation is contained in bootstrap sample b is,

Pr(zi ∈ BS sample b) = 1−
(
1− 1

n

)n
≈ 1− e−1

= 0.632.

So the number of unique observations in bootstrap sample b is approximately 0.632n. Thus,

the LOO BS estimator will likely overestimate the EPE. To address this, the .632 bootstrap

estimator pulls the LOO estimate down towards the training error using a weighted average.

The .632 estimator [35] is

BS.632 = .368 · err + .632 · BSLOO. (2.21)

This estimator breaks down in overfit situations. Take for example, the saturated model

with err = 0, the .632 estimate is

BS.632(saturated model) = .368 · 0 + .632 · BSLOO = .632 · BSLOO

which will underestimate the EPE. One solution is to adjust the weighting scheme in Equa-

tion 2.21 to account for the degree to which the model is overfit. The no-information error

rate is the error rate when the predictors are independent of the response which can be

estimated with the permutation distribution by computing the loss function for all possible
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combinations of X and y. The estimate of the no-information error rate, γ̂ is

γ̂ =
1

n2

n∑
i=1

n∑
j=1

L(yi, f̂(xj)).

We can use this to estimate the relative overfitting rate:

R̂ =
BSLOO − err

γ̂ − err
.

If there is no overfitting and BSLOO = err, R̂ = 1 but if the LOO BS estimate is equal to

the no-information error rate (BSLOO = γ̂) R̂ will be 0. Then the .632+ bootstrap estimator

[38] is

BS.632+ = (1− ŵ) · err + ŵ · BSLOO

where

ŵ =
.632

1− .368R̂
.

The .632+ BS estimate ranges from the .632 BS estimate when R̂ = 0 to the LOO BS

estimate when R̂ = 1.

2.3.7 Comparing Analytic and Resampling Methods

Resampling methods are more computationally intensive than analytic methods, but they

estimate the expected prediction error (EPE) instead of the in-sample error (Errin). If

your goal is model assessment, resampling methods will give a better estimate of the EPE

which is usually of interest since the y values will likely change for a new sample. Analytic

methods are more useful for model selection when estimating the prediction error is only
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necessary for comparing between models. Resampling methods are more difficult for model

selection because it has to be computed for each candidate model. Another advantage of

resampling methods is they can be computed for any loss function, but Efron’s analytic

covariance penalty estimate works for a broad class of loss functions. Stone (1977) [107]

showed that AIC and leave-one-out cross-validation are asymptotically equivalent assuming

the true model is in the scope.

2.3.8 Estimates of Prediction Error Under Non-Uniform Sam-

pling

The prediction assessment methods introduced above assume that training sample is repre-

sentative of the target population. When observations are sampled with unequal sampling

probabilities, as is the case for survey samples or convenience samples these methods will

not be a good estimate of the prediction error in an independent simple random sample from

the target population. They will instead estimate the prediction error for an independent

sample drawn with the same sampling scheme as the training sample. There are analogues

to analytic and resampling prediction error estimates that account for the sampling scheme

by including sampling weights.

Design-based AIC

Lumley and Scott [76] extended AIC and BIC to include sampling weights. The derivation of

the design-based AIC, or dAIC follows the derivation under uniform sampling from [28]. The

derivation is motivated by estimating and minimizing the Kullback-Leibler (KL) divergence

of the candidate model from the true model. Let wi be the sampling weight for observation

i under the constraint that
∑n

i=1wi = 1. Suppose that the true model is f(x) and an

estimated candidate model is f̂θ(x) with parameters θ. The KL divergence between the true
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model and the estimated model is

KL(f, f̂θ) = Ef

[
log

{
f(x)

f̂θ(x)

}]
= Eg

[
log f(x)

]
− ℓ(θ)

where ℓ(θ) = Ef [log f̂θ(x)] is the expected log-likelihood in the target population. Only the

second term is a function of θ so selecting θ that maximizes the log-likelihood is equivalent

to minimizing the KL divergence. The maximum is obtained at a unique point θ∗. A sample

estimate of ℓ(θ) is the weighted sample mean,

ℓ̂(θ) =
n∑

i=1

wiℓ
(
f̂θ(xi)

)
=

n∑
i=1

wiℓi(θ).

Then θ̂ is the value of θ that maximizes ℓ̂(θ). Under some regularity conditions (see Fuller

(2009) [42]) θ̂ is consistent for θ∗ as n,N → ∞ where N is the population size. We also

assume the asymptotic framework that there is a sequence of finite populations that are

random samples from the target superpopulation. Let the population score be

U(θ) =
∂ℓ(θ)

∂θ

and the weighted estimate of the score is

Û(θ) =
∂ℓ̂(θ)

∂θ

with the corresponding score equations U(θ∗) = 0 and Û(θ̂) = 0. Under the regularity

conditions,

√
n(θ̂ − θ∗)

d−→ N(0, V (θ∗)) as n→ ∞.
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The asymptotic covariance of
√
nθ̂ can be estimated with a sandwich estimate:

V̂ (θ̂) = Î(θ̂)−1V̂U(θ̂)Î(θ̂)−1 (2.22)

where V̂U(θ) is a consistent estimator of the covariance of
√
nÛ(θ) such as a method of

moments estimator. Additionally, Î(θ̂) is Fisher’s observed information matrix with sampling

weights,

Î(θ) = −∂Û(θ)
∂θ

= −
n∑

i=1

wi
∂2ℓi(θ)

∂θ∂θT
.

The KL divergence for the fitted model with the estimate θ̂ is

KL(f, f̂θ̂) = Ef

[
log

{
f(x)

f̂θ(x)

}]
= Eg

[
log f(x)

]
− ℓ(θ̂).

To select the model with the smallest KL divergence we can select the model with the

largest ℓ(θ̂). To calculate the AIC we need to estimate Eg[ℓ(θ̂)]. A naive estimate of the

log-likelihood is the log-likelihood fit to the training data ℓ̂(θ̂). This can be thought of as −1

times the weighted training error under negative log-likelihood loss. As in the unweighted

case, the training error will likely underestimate the test error so ℓ̂(θ̂) should overestimate

Eg[ℓ(θ̂)]. Namely,

Eg[ℓ̂(θ̂)] = Eg[ℓ(θ̂)] +
1

n
trace(∆) + op(1/n)

where ∆ = E[Î(θ∗)]V (θ∗). The proof is in the Appendix A.1 of [76]. Thus, the expected

population log-likelihood Eg[ℓ(θ̂)] can be estimated by,

ℓ̂(θ̂)− pδ̄/n (2.23)
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where δ̄ = trace(∆)/p which can in turn be estimated by ˆ̄δ = trace(nÎ
(
θ̂)V̂ (θ̂)

)
/p. Let

loglik = nℓ̂(θ̂) = n
∑n

i=1wiℓi(θ̂) which is the sum over all observations since the weights sum

to one. We then multiply this estimate by −2 to match the original AIC formula and obtain

the design-based AIC,

dAIC = −2loglik + 2pˆ̄δ.

This extends the definition of AIC (Equation 2.19) by inflating the penalty term with the

average estimated design effect ˆ̄δ. If the weights are uniform and the true model is included

in the sampling scope (so ∆ is the identity matrix), then the dAIC reduces to the standard

AIC.

Horvitz-Thompson-Efron estimator

Holbrook, Lumley and Gillen [57] combined the idea from Efron’s general covariance penalty

and the design-based AIC. The resulting estimator, named the Horvitz-Thompson-Efron

(HTE) Estimator is an analytic estimate of the prediction error for the q class of error

measures that accounts for the sampling scheme by including sampling weights. The HTE

estimator is,

HTE =
n∑

i=1

wi(erri + 2Cov(λ̂i, yi)). (2.24)

The q class of error measures and λ̂i are defined and discussed in Section 2.3.5. The co-

variance between λ̂i and yi can be estimated with a parametric bootstrap if there is not an

analytic form.

In the conclusion of their paper, Holbrook, Lumley, and Gillen suggested it would be useful

to develop weighted resampling estimates of the prediction error for survey samples.
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Weighted cross-validation

A recent paper by Wieczorek et al. (2022) proposed several analogues of K-fold cross-

validation for survey samples [115]. A natural extension to the cross-validation estimator for

the EPE under non-uniform sampling (Equation 2.20) is

CVK,w =
n∑

i=1

wiL(yi, f̂
−k(i)(xi)) (2.25)

where the weights wi sum to one. Wieczorek et al. discussed how to construct the folds for

this weighted K-fold cross-validation estimator of the EPE. First, they discussed unequal

probablity sampling, such as the when units are sampled based on prespecified sampling

probabilities. For this case, they proposed following the standard approach where each fold

is a simple random sample from the larger training sample. They cite a Lemma from Cheng

et al. 2010 [27] that states this approach will provide folds with sampling probabilities for

each unit proportional to their sampling probability from the full training sample. They also

discuss cross-validation for cluster samples and stratified samples. They suggest drawing the

folds with cluster and stratified sampling, respectively, to mimic the sampling scheme of the

original sample.

After the folds are determined they suggest following the standard cross-validation approach

of mimicking the full analysis within each cluster regardless of if the original sampling

scheme involved clustering, stratification, or unequal probability sampling. For each fold, the

weighted prediction model should be fit on all folds besides the given fold and the weighted

loss function is computed on that fold.

In a simulation study they found that selecting folds using cluster sampling or stratified

sampling if the original sample was collected using cluster sampling or stratified sampling,

respectively, was a better estimate of the true EPE than drawing the folds using a simple

random sample. Additionally, when the sample was drawn with informative sampling, they
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found that weighting both the prediction model and the estimate of the EPE selected the

correct model but omitting weights in one or both of these steps selected a less optimal

model in their scenario.

Wieczorek et al. concluded that the weighted cross-validation estimates of the EPE out per-

formed the unweighted cross-validation estimates. They did not, however, compare weighted

resampling estimates to weighted analytic estimates.

2.3.9 Comparing Analytic and Resampling Methods Under Non-

Uniform Sampling

Lumley and Scott derived a relationship between the design-based AIC and weighted leave-

one-out cross-validation estimators [76]. They extended the relationship between AIC and

the LOOCV under uniform sampling from Stone (1977) [107] discussed in Section 2.3.7. The

weighted LOO CV estimator of the expected population log-likelihood is

ℓ̂LOO = ℓ̂(θ̂(i)) =
n∑

i=1

wiℓi(θ̂(i))

where θ̂(i) is the vector of parameters from fitting the model without observation i. Lumley

and Scott showed (see Section 3.1 and Appendix A.1 for the proof) that this can be related

to the model fit on the full data as follows,

ℓ̂LOO = ℓ̂(θ̂)− trace
(
Î(θ̂)V̂J

)
+ op(n

−1)

where V̂J is a jackknife estimator of Cov(θ̂):

V̂J =
n− 1

n

n∑
i=1

(
θ̂(i) − θ̂

)2
.
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From Equation 2.23, the dAIC estimator of the expected population log-likelihood is,

ℓ̂dAIC = ℓ̂(θ̂)− trace
(
Î
(
θ̂)V̂ (θ̂)

)
.

Recall that V̂ (θ̂) (Equation 2.22) is a consistent estimator of the covariance of θ̂. As long

as V̂J is also a consistent estimator of the covariance, the dAIC and weighted LOO cross-

validation estimators of the prediction error are asymptotically equivalent.

Although previous papers have evaluated the performance of weighted analytic estimates

[76, 57] and weighted resampling methods [115] individually, to our knowledge no one has

compared the methods to each other. Resampling methods should be a better estimate

of the EPE because they directly estimate the quantity instead of targeting the in-sample

error, but they are more computationally expensive. It would be useful to know how much

better resampling methods perform and their computational burden compared to analytic

methods with non-uniform sampling weights. Additionally, no one has evaluated if the

dAIC and weighted leave-one-out cross validation estimators are asymptotically equivalent

in a simulation study. We address these gaps in Chapter 5.
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Chapter 3

Adjustment for Biased Sampling

Using NHANES Derived Propensity

Weights

3.1 Introduction

In this chapter, we discuss a method for estimating sampling weights for biased samples.

As mentioned in the introduction, the Consent-to-Contact (C2C) registry at the University

of California, Irvine (https://c2c.uci.edu) enrolls potential participants to aid in clinical

research recruitment strategies [51]. Participants are recruited into the registry through

a variety of outreach strategies including emails, community talks, postcards, and other

methods. Due to this the C2C is not expected to be representative of the United States

(US) population. For example, C2C participants tend to report more years of education

relative to the general population, are more likely to be non-Hispanic White, have lower rates

of comorbidities and higher rates of exercise (see Figure 3.3). C2C participants self-report
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demographic and clinical characteristics during the enrollment process. They also indicate

their willingness to be contacted for potential participation in studies that involve various

procedures or requirements such as lifestyle/behavioral modification, medication use, blood

collection, brain imaging, autopsy, or lumbar punctures. Depending on the requirements and

enrollment criteria of a study, participants who specifically report willingness to be contacted

about required procedures are likely to be eligible and can be invited to participate, increasing

the efficiency of recruitment.

Due to the under-representation of racial/ethnic minority populations in clinical research

[87], members from our research team used data from the C2C to examine differences in

willingness to participate by race/ethnicity [100]. Since the C2C is unrepresentative of the

target population, using it directly could lead to potentially biased estimates and limited

generalizability of estimated associations. For example, one natural way this bias could arise

is through a differential relationship between race/ethnicity and willingness to participate

by education level.

Convenience samples, like the C2C, are widely used to answer scientific questions because

samples representative of the population may be impractical or unethical to collect. Most

statistical methods assume representative sampling, but may be naively applied to biased

samples. Participant self-selection into convenience samples may, however, reduce the degree

to which such samples are representative of target populations of interest leading to a biased

sample.

Some common approaches to address biased samples from self-selection, or selection bias,

incorporate outside information about a population to obtain more generalizable inference.

MRP (multilevel regression and poststratification) derives subpopulation estimates from

national surveys. Iterative proportional fitting (or raking) adjusts subpopulation counts to

match known marginal counts. For examples of MRP see [45] and [89], for an application

of MRP see [102] and for raking see [17] and [71]. Additionally, there are several methods
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developed to combine estimates from multiple surveys, such as small-area estimation, joint-

modeling, and imputation based methods. For a summary see [39].

Inverse probability of sampling weights is a popular solution for obtaining more generalizable

inference and this approach is the focus of this chapter. Inverse probability weights are com-

monly used to adjust for design-based sampling of subpopulations and provide generalizable

inference [75]. For design-based survey sampling, inverse probability weights are generally

prespecified and fixed by design as the inverse of the sampling probability for each unit.

Weights can also be used to account for selection bias in convenience samples, but in this

context they are not fixed or known. Convenience samples often do not reflect the prespec-

ified target population of interest because subjects self-select to participate. One solution

is to use a representative sample to estimate sampling probabilities and the corresponding

sampling weights for subjects in convenience samples (see for example [26], [2], [94], [40],

[117], and [88]).

Estimating sampling weights for convenience samples can only be done if a relevant repre-

sentative dataset is available. Most of the previous work on calibrating sampling weights

assume that a representative sample or a sample frame was readily available (as in [117]

and [88]). The National Health and Nutrition Examination Survey (NHANES) is a practical

dataset for estimating propensity weights in biomedical convenience samples such as the C2C

because it is representative of the US population, it contains medical measurements, and the

data are open access (https://wwwn.cdc.gov/nchs/nhanes/Default.aspx). NHANES re-

cruits approximately 5,000 individuals from across the US each year and over-samples people

over 65 and minority groups, i.e. Hispanic, non-Hispanic (NH) Black and NH Asian sub-

jects. NHANES data comes with sampling weights for each subject that are a function of

the sampling probabilities and can be used to obtain a dataset that is representative of the

US. Medical and dietary information are collected through structured questionnaires and

in-person measurements [25]. It is common to compare estimates of population parameters,
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such as the prevalence of diabetes in the US, to estimates from NHANES as a diagnostic

check for selection bias [43, 49, 11], but it is not often used for estimating sampling weights.

Concurrent work from [2] proposed the use of national survey samples, including NHANES,

as a practical way to obtain a representative sample to generalize randomized trial results.

They used sampling weights for the complex survey sample in the propensity weight esti-

mation model and the final outcome model, but we utilize them as frequency weights and

generate a representative pseudopopulation.

The goal of this chapter is to obtain generalizable estimates of a scientific association from

a convenience sample while correcting for sampling bias using a representative sample. In

our setting, we are unable to obtain a pooled estimate across the convenience sample and

representative sample because the outcome of scientific interest is not observed in the rep-

resentative dataset. In this chapter, we focus on estimating inverse probability weights or,

as we refer to them in this chapter, propensity weights for inclusion into a convenience sam-

ple. The propensity weights should not be confused with the propensity score discussed in

Chapter 4. We do this by combining a convenience and representative sample and use the

commonly collected covariates between the two to estimate the probability of membership in

the convenience sample versus the representative sample. Our goal is to make this method

easy to implement by using NHANES as a representative dataset and providing a package

in R. We further derive an analytic variance estimator that extends the sandwich estimator

for survey weighted generalized linear models [77] to account for uncertainty from estimating

the propensity weights. We follow a similar approach to [103] and treat the sampling weight

estimation model and final outcome model as being simultaneously estimated. Recent work

by [113] and work by [26] also use a simultaneous estimation procedure for estimating the

variance in the final parameter estimates when using estimated sampling weights. Our ap-

proach is similar, but we derive the variance of coefficient estimates in the final outcome

model, instead of for population mean estimates. Alternatively, [2] used a double-bootstrap

to account for uncertainty from estimating propensity weights and from the impact of non-
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response on the complex survey sample weights. We apply these methods to obtain valid

population-level inference for the C2C registry.

The remainder of the manuscript is organized as follows: In Section 3.2, we develop the

proposed methodology for calibrating propensity weights and quantifying uncertainty in the

final scientific model of interest. In Section 3.3, we present a simulation study investigating

the impact of estimated propensity weights on bias and variance. In Section 3.4, we apply

our method to an analysis of racial and ethnic differences in research willingness. Finally,

we conclude with a discussion of the advantages and limitations of the proposed method.

3.2 Methodology

Consider two collections of variables, XR and XC and let X be the set of variables in both XR

and XC , or X ≡ XR ∩ XC . Further, let Y be a subset of the variables in XC that are not in

XR, i.e., Y ∈ XC \X . We will assume that it is possible to collect data sets on variables from

both XR and XC , but that it is not possible to collect random samples for all of the variables

from XC and thus difficult to obtain population inference. A data set obtained on XC will

be “convenience” and thus subject to potential bias (such as self-selection bias among other

potential issues). Our ultimate goal is population-based inference on the set of variables in

Y that are only collected in the convenience sample. For example, we may be interested in

the estimation of the association between some subset of variables from X , defined as Z, i.e.,

Z ⊂ X , and Y . In our context Z is race/ethnicity (available in both NHANES and C2C)

and Y is willingness to participate in research (available only in C2C). This is not possible

using XC alone and so our goal is to leverage data sets collected through random sampling

(XR) and convenience (XC) to obtain valid population-based inference for Y .

To accomplish this goal, we employ weighted estimators for samples on variables from XC

58



that are constructed to obtain population-based inference. To do this, we estimate weights,

wC , that leverage information about the differences in the sample distributions between

data sets on the variables from XC and XR. Let X, Y , and Z be samples of observations

on variables from the sets X , Y , and Z respectively. The general approach for estimating

weights is to first collect data sets, XC and XR on variables from XC and XR, respectively,

and then estimate a model to discriminate between the two datasets. To accomplish this we

stack XC onto XR to a create a single combined dataset. We then construct an auxiliary

variable, C, which is an indicator that an observation was in dataset XC . Thus, C evaluates

to 1 for units from XC and 0 otherwise. We can use this stacked data set to estimate the

probability of a given unit arising from each sample and use this information to weight XC

to be similar to XR and obtain inference on variables from Y .

Let the subscript i denote the observation for subject i. Our goal is to obtain a weighted

estimator for population-based inference such that,

EP|C [wCiYi|Ci = 1] = EP [Yi] (3.1)

where EP is the expectation taken over the distribution of the target population, P . Now,

we define,

PCi = Pr(Ci = 1|Xi = xi), (3.2)

which allows us to construct weights

wCi ∝
1− PCi

PCi

(3.3)

so that Equation 3.1 holds under appropriate assumptions on the set X (see Section 3.2.1).

Weights will be normalized so they sum to one. Equation 3.2 is analogous to the propensity

score from the causal inference literature [95] and Equation 3.3 would correspond to the
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weights for the average treatment effect on the control (ATC) [69]. Thus, we refer to the

estimated weights wC as inverse propensity weights for self-selection into the convenience

sample, or propensity weights for short.

3.2.1 Assumptions

While our focus throughout will be obtaining population inference from a convenience sam-

ple, there are many analogs between the methods here (and their assumptions) and those

from the field of causal inference. See Section 2.2 for more details about the assumptions.

Therefore, we will describe the assumptions needed for estimating population parameters

through the lens of estimating causal effects and discuss how these assumptions do, and

do not, apply in our context. The methods here relate most closely to those involving the

“propensity score” [95].

A propensity score as defined by Rosenbaum and Rubin [95] is the probability of receiving

a treatment when conditioned on observed covariates. In the field of causal inference, typ-

ically three assumptions are needed for making causal conclusions using propensity scores:

(1) unconfoundedness, (2) positivity, and (3) the stable unit treatment value assumption

(SUTVA) (See Chapter 1 and 12 of [62] or Appendix 1 of [50] for an overview). First, the

(1) unconfoundedness assumption requires that potential outcomes be conditionally inde-

pendent of the treatment assignment given the observed covariates. Second, (2) positivity

requires that each unit has a positive probability of receiving both treatment and control

treatments. More formally, if T is an indicator for receiving a treatment and X are covari-

ates, then 0 < Pr(T = 1|X = x) < 1 for all subjects. Finally, (3) SUTVA requires that each

subjects treatment assignment does not affect any other subject’s potential outcomes and

there is no hidden variability in the treatment.

Versions of two of these assumptions are relevant in our context with propensity weights.
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First, we assume (1) unconfoundedness, that the response is independent of the selection

probability conditional on the collected covariates. In other words, any covariate (or a proxy

of the covariate) related to both the response or selection probability must be measured in

both the representative and biased samples. We are unable to balance on unmeasured covari-

ates. For (2) we assume that each subject must have a non-zero probability of being selected

into the convenience sample, or 0 < Pr(C = 1|X = x) < 1. Although C2C registration is

open to any adult, participants are primarily enrolled from Southern California. Although

theoretically possible, the probability of people from outside of the Southern California re-

gion being sampled in the C2C is close to zero. Thus, we must assume that the relationship

between race/ethnicity and research willingness does not vary by state within the US.

The SUTVA assumption (3) has less applicability in our setting. In particular, SUTVA

is typically used to make a consistency argument to map potential outcomes to observed

outcomes. In our setting, we assume that the response of an individual would be the same

whether or not they are in the convenience sample or the random sample, and therefore the

need for this assumption in our setting is diminished. More explicitly, we assume no effect

of survey participation on the potential outcome of a participant and our propensity weights

are being used to reweight participants back to their population prevalence based on the

rates from the random sample.

In practice, it is important to carefully design the data collection to include any covariates

hypothesized to be related to the sampling probability. If there are any missing covariates,

accounting for the sampling bias due to measured covariates should be better than ignor-

ing the selection mechanism completely [80], but the unconfoundedness assumption is not

testable [62]. The non-zero sampling probability assumption should motivate researchers to

collect participants from each subpopulation based on variables related to selection. We can

upweight underrepresented subpopulations, but we are never able to learn about subpopu-

lations that were never studied.
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3.2.2 Dataset Construction for Estimating Propensity Weights

We want to estimate propensity weights for the convenience sampleXC with nC observations.

Let m and p be the number of variables in X and Z, respectively. We include a column of

1s in the sets X and Z to be able to estimate an intercept. When using a complex survey

sample, such as NHANES, as the representative sample we need to first incorporate design

weights to ensure it is representative of the population of interest because certain subpopu-

lations may be oversampled by design. Let XS be a survey sample with nS observations and

PSi denote the sampling probability for subject i in the survey sample. In NHANES, the

sampling probabilities for each subject account for both the survey design and both item and

subject level non-response. To obtain a representative dataset, we utilize frequency weights,

wsi = P−1
Si , which represent the number of subjects each sampled subject represents in the

population and replicate each subject according to their frequency weight. To obtain the

smallest representative dataset with whole numbers of subjects, we divide each frequency

weight by the smallest observed weight and take the ceiling of it to obtain the number of

replications: w∗
Si = Ceiling(wSi/min[wS]). We implement the frequency weights to obtain

a representative sample XR with dimension nR ×m, where each subject from XS is repli-

cated w∗
Si times for a total of nR =

∑nS

i=1w
∗
Si observations. While this approach does not

fully account for clustering in the NHANES dataset because information on clustering is not

publically available, it is a pragmatic solution because the constructed sample will be more

representative than most convenience samples thereby leading to improved inference on the

target population. Additionally, clustering may slightly impact the variance of parameters,

but in this project, we do not account for variability in the NHANES sampling weights.

Recall that X is the sample of variables collected in both XR and XC and containing ob-

servations from both representative and convenience sample subjects. Specifically, X is an

n×m dimension matrix where n = nR + nC . For notational convenience, let C be the set of

subjects from the convenience sample with |C| = nC and and R be the set of subjects from
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the representative sample with |R| = nR. To obtain X in practice, we concatenate the con-

venience and representative samples for the variables in X . We can derive the indicator for

membership in the convenience sample, C, and append it to X. To estimate the propensity

weights, wC , defined in Equation 3.3 we can directly estimate the probability of convenience

sample membership, PCi, defined in Equation 3.2. Many types of propensity weight estima-

tion methods can be considered and we discuss their advantages and disadvantages in the

following section.

3.2.3 Classes of Propensity Weight Estimation Methods

In this section we compare different sampling weight estimation strategies and provide ex-

amples of each that we will use as test cases. Our goal is to assess the relative performance

of different estimation strategies and their strengths and weaknesses. We discuss likelihood

based methods and use logistic regression as an example, covariate balancing methods with

the covariate balancing propensity score and entropy balancing as examples, and algorithmic

methods with random forest as an example. We will explore these four examples of meth-

ods for estimating propensity weights and their impact on covariate balance of convenience

samples and on bias and variance of estimated associations.

Likelihood-based methods such as linear regression, logistic regression, probit regression, and

penalized regression minimize the negative log-likelihood. We focus on logistic regression

which takes the form logit(PCi) = Xiγ, where logit(·) is the logit function, γ is a m × 1

vector of regression coefficients and Xi is the m× 1 vector of observed covariates for subject

i. When implementing logistic regression, we include second order terms and use forward-

selection with Akaike’s Information Criterion (AIC) for selecting predictors using the step

function in the stats package.

By definition, propensity scores are balancing scores [95] and another strategy for propensity
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weight estimation is to directly balance covariate distributions across the two classes of a

binary outcome. Covariate balancing methods, such as the covariate balancing propensity

score (CBPS) and entropy balancing (EB), optimize weights by directly targeting covariate

balance between the the convenience sample (Ci = 1) and the representative sample (Ci = 0).

CBPS extends the logistic regression model by incorporating additional moment balancing

constraints [61]. CBPS is a common method used for estimating propensity scores (see for

example [116], [44], and [82]). Researchers may be familiar with CBPS and interested in

using it for estimating propensity weights, so we will assess how it performs relative to lo-

gistic regression. In our context, estimated propensity weights should balance the covariate

distribution of the convenience sample so it matches the representative sample [69]. Thus,

we estimate weights for the average treatment effect on the control (ATC) so that the rep-

resentative sample is the reference population. The CBPS method solves the estimating

equations as well as covariate balancing conditions. For the ATC, the balancing conditions

are

EP

{
(1− PCi)Cif(Xij)

PCi

− (1− Ci)f(Xij)

}
= 0, (3.4)

where f(Xij) is a function of Xij. For example, f(Xij) = (Xij;X
2
ij) would ensure the first

and second moments of each covariate will be balanced. We fit the CBPS model with the

CBPS package and included balancing constraints on second order orthogonal polynomial

terms.

Entropy balancing (EB) is a non-parametric approach to weight estimation that incorpo-

rates moment balancing conditions into model selection [52]. Entropy balancing allows for

the inclusion of initial base weights that contain information about population prevalence.

Entropy balancing estimates weights that minimize the divergence between estimated weights

and base weights. If there are no base weights available, they can be treated as uniform for
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all units (bi = 1/n). Similar to the CBPS, we want to estimate weights for the ATC where

the representative sample is considered the reference group. Assuming Kullback–Leibler

divergence, EB minimizes H(wC) =
∑

i∈C wCi log(wCi/bi), subject to balancing constraints,

1

nR

∑
i∈R

xdij =
∑
i∈C

wCix
d
ij, for d = 1, ..., D,

where xij is the j-th covariate for subject i,
∑
wCi = 1, and wCi > 0. We implemented

entropy balancing with D = 3 using the entbal package for R (https://github.com/

bvegetabile/entbal) available on GitHub [110].

Unconstrained algorithmic methods, such as support-vector machines or random forest, do

not require specifying a model. They predict class probabilities that minimize some out-of-

sample measure of goodness of fit (e.g. prediction error) and do not assume a distribution

or any moments of the response. As an example, we focus on random forest [19] which is

a flexible model that does not require the user to specify a functional form of predictors.

Random forest (RF) is an extension of classification and regression trees or CART [20] and

limits susceptibility to overfitting by introducing stochasticity. RF builds separate decision

trees on bootstrapped samples and averages the prediction across trees for each subject, a

technique known as bagging, and for each node of a decision tree, only a random sample

of predictors are considered for splitting. To prevent extreme weight values, we trim RF

estimates of the probability of convenience sample membership that are 0 or 1 and replace

them estimate with 0.01 and 0.99, respectively [67]. We fit RF using the randomForest

package in R [70].

To demonstrate the advantages and disadvantages of the different approaches, we will evalu-

ate the performance of the different propensity weight estimation methods described above:

logistic regression, covariate balancing propensity score (CBPS), entropy balancing (EB),

and random forest (RF).
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3.2.4 Quantifying Uncertainty

There are several common ways to estimate the variance of coefficients from models with

weights. Standard analytic variance estimates for coefficient estimates from weighted GLMs

are an extension of the sandwich, or Huber-White, estimator [41]. These design based

variance estimates are included in most survey sampling software packages such as the svyglm

function in the survey package [77]. This approach assumes the propensity weights are fixed,

i.e. not estimated, but uncertainty from propensity weight estimation will likely impact the

uncertainty of the parameter estimates in the scientific model. If there is little uncertainty

in ŵC , then the design based errors used in survey sampling methodology will likely perform

well. Alternatively, resampling methods, such as the bootstrap, are more computationally

intensive, but can be used to account for the impact of the uncertainty in the propensity

weight estimation procedure on the variance of the parameter estimates by reestimating

weights within each bootstrap sample.

In this section, we derive an analytic variance estimate that accounts for uncertainty from the

propensity weight estimation method. We use a simultaneous estimating equation approach

for variance estimation and extend the approach of [103]. We treat both the propensity

weight estimation and final scientific model as if they are being estimated simultaneously

and derive the sandwich estimator for the parameters of the scientific model. Of the four

propensity weight estimation methods we have considered, only the logistic model allows

for a readily tractable analytic variance estimate that accounts for uncertainty in propen-

sity weights. The design based variance estimate can be used for other weight estimation

methods.

Suppose the scientific outcome model with response, Yi, and the p × 1 vector of covariates,

Zi, for subject i is ηi = g(µi) = ziβ where ηi is the linear predictor, g(·) is a link function,

µi = E(Yi|Zi = zi), and β is a p × 1 vector of parameters. Recall, when applying this

66



method to the analysis of the C2C, Z is the subset of covariates in the C2C sample needed

for the final analysis, which includes race/ethnicity and adjustment variables, and Y is the

willingness to participate. Assuming a representative sampling scheme, the i-th observation’s

contributions to the k-th element of the score equation is given by

Uki(β) =
(∂µi

∂βk

)(Yi − µi

V (µi)

)

where V (µi) = V ar(Yi) and for k = 1...p [85]. When using an unrepresentative sample, each

subjects contribution to the score is weighted by their propensity weight, wCi as follows,

Uk(β) =
∑
i∈C

wCiUki(β) = 0.

This notation deviates from the notation introduced in Section 2.3.8 and instead follows

the notation from [77]. Define the logistic regression propensity weight model, ψi, as

ψi = logit(PCi) = xiγ where γ is a m × 1 vector of coefficients. Let xi be the i-th row

of X, the combined n×m matrix including covariates from the convenience sample and rep-

resentative sample. The estimated propensity weights wCi are a function of the probability

of convenience sample membership (Equation 3.3) and sum to one. The m×1 score equation

has element j,

Tj(γ) =
∑

i∈C∪R

Tji(γ) =
∑

i∈C∪R

(Ci − PCi)xij = 0, (3.5)

where j = 1...m. We consider both the score equation for the propensity weight estimation,

Ti(γ), and the score equation for the scientific outcome model, U i(β, γ) = U i(β). We include

γ in the notation to emphasize that the score for the final scientific outcome is a function of

the γ through the propensity weights as in [103]. To simplify notation, we sometimes refer

to Ti(γ) and U i(β, γ) as Ti and U i, respectively. We combine the two estimation equations
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into a stacked estimating equation


∑

i∈C∪R Ti(γ)

∑
i∈C U i(β, γ)

 = 0. (3.6)

Using a first order Taylor series expansion of the stacked estimating equation (Equation 3.6)

we obtain the variance estimate,

V̂Prop[(γ̂, β̂)] = Î−1Q̂Î−1, (3.7)

where the parameters have been replaced with maximum likelihood estimates. In Equation

3.7, I is Fisher’s information matrix under the assumed distributions of Yi and Ci such that,

I =

ITT 0

IUT IUU


and Q is the true variance of the score, where

Q = Var

(∑i∈C∪R Ti(γ)

∑
i∈C U i(β, γ)

∣∣∣∣∣X = x, Z = z

)
=


EP [TT

T |X = x] RT

R EP [U U
T |Z = z]

 .

Derivations of the components of I and Q are provided in Appendix A. The reader may notice

similarities to the design based variance used in the survey sampling literature without the

finite population correction factor [77]. Define Â = ÎUU and B̂ = UU
T
so the proposed

variance estimator is,

V̂Prop(β̂) = Â−1B̂Â−1 − Â−1ÎUT Î
−1
TT R̂

T Â−1.
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Thus the proposed variance estimate can be expressed as the standard design based variance

estimator plus a correction factor. We have provided a estweight package available for R

on GitHub (https://github.com/oliviabern/estweight). The convGLM function takes

a representative sample, convenience sample, and the final outcome model and provides

weighted parameter estimates. If the user selects a logistic propensity weight estimation

method, the function returns the proposed variance estimate, otherwise it provides standard

design-based variance estimates.

3.3 Simulation Studies

We considered the impact of our proposed weight estimation on bias of estimated associ-

ations and the accuracy of uncertainty quantification procedures through empirical simu-

lation studies. We designed a simulation study to be similar to the analysis of Salazar et

al. (2020) [100]. NHANES collects cross-sectional data on a 2-year cycle so we combined

data from the 2013-2014 and 2015-2016 surveys. All simulations utilized the NHANES

data, and like Salazar et al., we excluded all subjects with a reported race or ethnic-

ity of “other” for a total of nS = 4, 471 subjects. All subjects had complete data on

age, sex, education, race, ethnicity, medical history (high blood pressure, diabetes, kidney

disease, liver disease, coronary heart disease, cancer, major depression, prescription drug

use), exercise, and amount of sleep. To obtain a representative sample we replicated each

observation according to their frequency weight for a final sample size of nR = 38, 811

observations. We refer to this representative dataset as NHANES-REP. Code for cre-

ating NHANES-REP and for reproducing the simulation study is available on GitHub

(https://github.com/oliviabern/estweight_simulationstudy).
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3.3.1 Simulation Set Up

To investigate the potential impact of underrepresentation in samples and estimated propen-

sity weights on bias and variance of estimated associations we used NHANES-REP as a finite

population and drew both representative and deliberately biased samples. Subjects who are

Hispanic, NH Black, NH Asian, or who have lower education levels and do not exercise tend

to be underrepresented in the C2C and so we generated smaller sampling probabilities for

these subpopulations. We use 1 to denote an indicator variable. Let PCi be the biased

sampling probability for subject i where logit(PCi) = ψi with

ψi = .151Female,i + .251HighSchool,i + .11<HighSchool,i + .41SomeCollege,i

+ .851Hispanic,i + .451NHAsian,i1NHAsian,i1SomeCollege,i

+ .051NHBlack,i + .751NHBlack,i1Exercise,i − .001Age2i + 4.

Within each simulation, we drew a representative simple random sample of size 500 and a

biased sample of size 500 with sampling probabilities PCi. We simulated Yi ∼ Bernoulli(µi)

with logit(µi) = ηi and

ηi = 1 + log(2)1Hispanic,i − log(3)1NHAsian,i + log(1.5)1NHBlack,i − log(2)PCi

+ log(2)1Hispanic,iPCi + log(4)1NHAsian,iPCi − log(3)1NHBlack,iPCi.

We estimated propensity weights for subjects in the biased sample with each of the four

propensity weight estimation methods described in Section 3.2.3. Similar to our applied ex-

ample, we were interested in a model of the the marginal relationship between race/ethnicity

where,

logit(Pr[Yi = 1|Xi = xi]) = β0 + β11Hispanic,i + β21NHAsian,i + β31NHBlack,i.
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For each simulation, we (1) fit the above model in the representative sample with the ob-

jective of obtaining a similar estimate using a biased sample. (2) We then fit the model

in the biased sample without any weighting, (3) with the true propensity weights (wCi ∝

P−1
Ci (1− PCi)), and (4) with the estimated propensity weights from each of the four estima-

tion methods and compared the estimates to those obtained in the representative sample.

For CBPS and EB, we balanced continuous variables on the first and second moments such

that f(Xij) = (Xij, X
2
ij) for CBPS and d = 2 for EB. For the logistic regression model, we

included second-order terms in the model scope and used stepwise AIC for variable selection.

Note that we did not include interactions in the model scope so even though the data gener-

ating model is logistic, we were unable to correctly specify it. We computed and compared

analytic and bootstrap estimates of the standard error to the empirical Monte Carlo stan-

dard error. To prevent under-representation of small subpopulations in bootstrap samples,

we used race/ethnicity as a stratification variable for sampling. When stratifying the boot-

strap sample failed to provide adequate representation of subpopulations leading to extreme

weights and inestimable coefficients, we removed the parameter estimates from bootstrap

variance estimates. We conducted 1,000 simulations and used 200 bootstrap samples within

each simulation.

3.3.2 Simulation Results

Coefficient estimates

The average log odds ratios for representative and biased samples for each of the propensity

weight types are shown in Figure 3.1. The goal of incorporating estimated weights is to

match estimates fit using a biased sample (columns 2-7 of the tabulated results) to those

estimated using a representative sample (column 1). Note that estimates derived from a

biased sample that fail to account for the sampling scheme (i.e. no weighting, column 2) did
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None True Logistic CBPS EB RF

Percent difference vs. SRS
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(0.39)

(0.52)

(0.33)

(0.14)

(0.43)

(0.55)

(0.34)

(0.13)

(0.42)

(0.53)

(0.33)

(0.15)

(0.45)

(0.57)
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(0.22)

(0.51)

(0.63)

(0.43)

Figure 3.1: Results for the simulation study described in Section 3.3.1. The average es-
timated log odds ratios (empirical standard errors) are presented in the table on the left.
Estimates for the marginalized model fit in the simple representative sample (SRS) are in
column 1 and estimates fit in a biased sample along with different types of propensity weights
are in the other columns. Results compare models fit in a biased sample that do not include
weights (None), incorporate the true propensity weights (True), or incorporate propensity
weights estimated with a logistic (Log.), covariate balancing propensity score (CBPS), en-
tropy balancing (EB), or random forest (RF) approach. Percent bias comparing average
estimates fit in a biased sample to estimates fit in a simple random sample (SRS) are pre-
sented in the figure on the right.

not match those from the representative sample. Incorporating both true (column 3) and

estimated (columns 4-7) propensity weights allowed us to match the representative sample

estimates. The type of propensity weight model did not have an appreciable impact as all of

the weighted estimates did not vary much in comparison to the representative sample and to

each other. Logistic regression performed well and allowed us to obtain weighted estimates

fit in a biased samples that matched the association in the target population. It is a practical

choice because it is parsimonious and easy to implement. It is important to note that the

true sampling probabilities were generated from a logistic model, but the model included

interactions that were not in the scope of the logistic model we used for estimation. In this

example, incorporating estimated propensity weights was an effective method for obtaining

inference on the target population.
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Uncertainty estimates

In this simulation, empirical standard errors were larger for weighted estimates fit in biased

samples compared to unweighted estimated fit in a representative sample (Figure 3.1). We

also investigated the impact of the propensity weight estimation method on uncertainty and

the performance of analytic and bootstrap variance estimates. Standard error estimates for

the four different propensity weight estimation methods are reported in Figure 3.2. For the

analytic variance estimate, we used the proposed analytic standard error estimate (V̂Prop)

when using weights estimated via logistic regression. When using weights estimated with

CBPS, EB, and RF methods we used the design based errors from the survey package that

ignore the propensity weight estimation [77]. The average analytic standard error estimate

was generally comparable to the empirical standard error across simulations, but the boot-

strap generally overestimated the true uncertainty. The design based and proposed variance

estimates resulted in similar standard error estimates. Compared to the bootstrap estimate,

analytic estimates more closely approximated the empirical standard error even though they

did not account for uncertainty from variable selection when estimating propensity weights.

Additionally, they were computationally easier than the bootstrap.

In 21 out of 1,000 simulations, coefficients were not estimable in some bootstrap samples due

to extreme values of estimated weights. There was one bootstrap sample in two simulations

where the association was inestimable when weights were estimated using EB. This was

slightly more common when weights were estimated using RF–out of 1,000 simulations, 19

simulations had at most 5 bootstrap sample that were unable to estimate the association.

We hypothesize that this occurs due to uniquely sparse bootstrap samples with little to

no representation of some subpopulations, but this does not occur for logistic regression

or CBPS. The RF method draws bootstrap samples to fit each tree and this bootstrap

within a bootstrap may lead to subpopulations without any variation in the response, and

thus extreme weights. Entropy balancing targets covariate balance which can be difficult if
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Figure 3.2: Standard error estimates for the simulation study described in Section 3.3.1.
The different standard error estimates (empirical, analytic and bootstrap) are reported for
the coefficient estimates in the marginalized model fit in a biased sample. Standard error
estimates are reported for models implementing propensity weights estimated using a logistic
(Log.), covariate balancing propensity score (CBPS), entropy balancing (EB) or random
forest (RF) method. Details of the standard error calculations are reported in Section 3.2.4

certain subpopulations are only observed in either the representative or convenience sample.

Although CBPS also targets covariate balance, we did not observe any extreme weights

and we hypothesize the focus on maximizing the likelihood may prevent this. Although

this occurs infrequently, it may arise in practice. We excluded any bootstrap samples with

insufficient information for estimating the association for a given sampling weight estimation

method from the bootstrapped estimate of the variance.

3.4 Application to the C2C Willingness Analysis

The work of [100] investigated differences in research willingness by race and ethnicity using

logistic regression. The methods are described in detail in that chapter and we summarize

them here. They performed logistic regression models to assess racial/ethnic differences
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in willingness to participate in research in participants 50 years or older. They separately

evaluated 9 different responses: willingness to be contacted about studies involving (1) phys-

ical activity/diet modification, (2) cognitive testing, (3) magnetic resonance imaging (MRI),

(4) positron emission tomography (PET) scans, (5) blood draws, (6) approved medications,

(7) investigational medications, (8) lumbar punctures and (9) autopsy. They adjusted for

age, sex, educational attainment, number of comorbidities, number of medications, cognitive

function instrument score [7, 112] and research attitudes questionnaire score [99] and used

multiple imputation to handle missing data. C2C data is updated as more participants en-

roll and can be requested at https://c2c.uci.edu/request-c2c-data/. When replicating

this analysis, we started with the same dataset of C2C participants, but performed our own

multiple imputation.

3.4.1 Identifying Matching Covariates

We first identified covariates likely to modify the relationship between race/ethnicity and

willingness to participate in research and were collected in both the C2C and NHANES.

Some covariates were recorded with differing levels of granularity in the two datasets so we

collapsed them into comparable subgroups. For example, the question regarding exercise

was phrased differently in the two datasets. NHANES participants were asked if they par-

ticipated in vigorous or moderate recreational activities in a typical week for at least 10

minutes.The C2C participants were asked if they participated in the following activities for

at least 15 minutes/day at least once/week for the last year: walking, hiking, biking, aero-

bics, calisthenics, swimming, water aerobics, weight training, stretching, or another form of

exercise. We decided to exclude the question about walking for the C2C subjects because

there were high agreement rates for this question and we were concerned participants may

have reported walking for purposes other than recreational exercise. To compare across

groups, we created an indicator for exercise. We used NHANES participants who were 50
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years or older to match inclusion criteria from [100]. In total, we included 14 variables: age,

sex, education level [Educ.] (less than 12 years [< 12], high school/GED [12], some college

[12-16], college graduate [16]), race/ethnicity (NH White, Hispanic, NH Asian, NH Black),

high blood pressure (BP), kidney disease, liver disease, congestive heart failure (CHD), past

cancer diagnosis, major depression, average hours of sleep per night, prescription medicine

use (Presc. meds), and exercise.

Excluding subjects with a reported race or ethnicity of “other” resulted in nC = 2, 749

observations in the C2C and excluding 917 NHANES participants with missing data (out

of nS = 5, 605) resulted in nR = 38, 811 observations in NHANES-REP. Most of the miss-

ingness in the C2C was confined to a few covariates: 576 subjects were missing sleep, 207

were missing prescription drugs, 167 were missing exercise, and 29 were missing history of

cancer. Matching covariates for each dataset are summarized in Figure 3.3. Continuous

covariates were summarized by mean (standard deviation) and the proportion was reported

for categorical variables. Weighted sample statistics using estimated propensity weights for

the C2C dataset were also presented. The propensity weights were estimated using logistic

regression, CBPS, EB, and RF with one imputed C2C dataset. Logistic regression, CBPS,

and EB balance the covariate distributions well, but RF weighted estimates are similar to

unweighted ones.

3.4.2 Estimating Propensity Weights

We repeated the analysis performed by Salazar et al. and imputed 5 C2C datasets and used

Rubin’s rules to aggregate across datasets [98]. Within each dataset we estimated propensity

weights for each subject using logistic regression, CBPS, EB, and RF. We fit the outcome

models that quantify the relationship between race/ethnicity and each of the 9 outcomes and

incorporated the estimated propensity weights. We report the estimated odds ratios (OR)
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None Log. CBPS EB RF

−0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5

Age

Sleep (Hr)

Educ: < 12
Educ: 12
Educ: 12−16
Educ: 16
NH White
Hispanic
NH Asian
NH Black
Female
High BP
Diabetes
Kidney
Liver
CHD
Cancer
Exercise
Depression
Presc. meds

63.6
(9.3)
7.4
(1.4)
0.16
0.22
0.31
0.31
0.75
0.11
0.04
0.11
0.53
0.52
0.19
0.05
0.05
0.09
0.20
0.46
0.10
0.79

None
65.9
(8.7)
6.7
(1.5)
0.01
0.07
0.19
0.73
0.87
0.07
0.05
0.01
0.62
0.34
0.10
0.03
0.02
0.06
0.32
0.83
0.12
0.78

Log.
62.4
(9.2)
7.2
(1.2)
0.12
0.23
0.31
0.34
0.74
0.13
0.04
0.08
0.49
0.50
0.17
0.04
0.06
0.09
0.24
0.51
0.07
0.75

CBPS
62.5
(9.2)
7.2
(1.2)
0.12
0.23
0.31
0.34
0.75
0.13
0.04
0.08
0.49
0.50
0.17
0.04
0.06
0.09
0.24
0.51
0.07
0.76

 EB
63.6
(9.3)
7.5
(1.4)
0.16
0.22
0.31
0.31
0.75
0.11
0.04
0.11
0.53
0.52
0.19
0.05
0.05
0.09
0.21
0.48
0.10
0.78

RF
64.2
(9.7)
7.2
(1.0)
0.02
0.10
0.26
0.62
0.88
0.06
0.04
0.02
0.59
0.37
0.06
0.01
0.01
0.03
0.25
0.75
0.04
0.78

NHANES
 −REP C2C

Standard difference in mean vs. NHANES−REP

Figure 3.3: Covariates were summarized as mean (standard deviation) for continuous vari-
ables and as proportions for categorical variables in the table on the left for NHANES-REP
(38,811 observations), the unweighted C2C (2,749 subjects) dataset (None), and weighted
C2C datasets. Weights were estimated using a logistic (Log.), covariate balancing propen-
sity score (CBPS), entropy balancing (EB), or random forest (RF) method. Continuous
covariates were summarized by mean (standard deviation) and categorical covariates by pro-
portion. Standardized difference in means relative to NHANES-REP are presented in the
figure on the right [108]. Propensity weights were estimated with missing values in the C2C
imputed once. Covariates are described in Section 3.4.1.
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and 95% confidence intervals using the analytic variance estimates for each racial/ethnic

group for each of the 9 responses. We report the full results with no weighting and each of

the four types of propensity weights in Appendix B (Table B.1). A selection of these results

are depicted using forest plots to discuss the impact of weighting.

Across all forest plots (Figure 3.4), we observed that the standard errors increased with

weighting, but this added variance better reflects the true uncertainty in the estimates and

their ability to generalize to an external population. For example, the odds ratio comparing

Hispanics to NH Whites for willingness to be contacted about studies with lumbar punc-

ture (LP) had a noticeably wider confidence interval for the weighted estimates. The C2C

underrepresents Hispanic subjects relative to the US population and the wider confidence

intervals reflect this lack of information on the subpopulation. Several statistically significant

odds ratios were no longer significant after incorporating estimated propensity weights. NH

Asians had significantly higher odds of being willing to be contacted about studies involving

LP compared to NH Whites in the original analysis, but this relationship was no longer

statistically significant after weighting. Salazar et al. (2020) [100] found it surprising that

NH Asians would be more willing to undergo an LP because previous studies had found

them less willing relative to NH Whites [84]. They speculated that NH Asians in the C2C

had been exposed to more education about the LP procedure through outreach events for

older Chinese adults. Accounting for sampling bias with estimated weights has attenuated

this relationship to the null which aligns with previous findings.

The models using logistic and CBPS estimated weights tended to have similar estimates

and confidence intervals. The CBPS model uses a logistic regression model but incorporates

moment balancing conditions into the model fitting. These additional constraints did not

impact the final result substantially when compared to the standard logistic regression de-

rived estimates. The estimates using RF and EB weights had high variability and differed

from the results using logistic and CBPS weights. Additionally, the point estimates from
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Hispanics vs. NH White
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Figure 3.4: Forest plots of the estimated odds ratios (OR) and 95% confidence intervals for
the racial ethnic differences analysis with MRI, PET, lumbar puncture (LP) and autopsy as
the response. Results are presented for unweighted analysis (None) along with the weighted
analysis using propensity weights estimated with logistic, covariate balancing propensity
score (CBPS), entropy balancing (EB), and random forest (RF) methods.

the models using RF weights tended to differ the most from the other 3 weighted models.

Random forest is unique because it is both non-parametric and does not target covariate

balancing. An advantage of decision trees is they naturally include interactions in modeling,

but in sparse data with little representation of subpopulations this can lead to increased

variability. Weight trimming, where estimated probabilities of 0 or 1 were replaced with 0.01

and 0.99, may have also impacted bias and variance estimates as well as the population of

inference [67].

Incorporating estimated propensity weights not only impacted the uncertainty, it also changed

the direction of point estimates. For example, in the original analysis Hispanics had lower

odds of being willing to be contacted about studies that involve an MRI scan, but most

of the weighted point estimates suggested Hispanics may actually have higher odds. The
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results for the original analysis were close to being statistically significant but the weighted

models showed little evidence of an effect which leads to a different interpretation of the

results. The four weighted point estimates were not covered by the unweighted confidence

interval.

3.5 Discussion

Our results demonstrated the utility of using convenience samples in concert with a repre-

sentative sample to estimate weights that can be used to estimate population representative

parameters of interest. Convenience samples are widely available and often used in research

studies, but failing to account for the selection mechanism can lead to biased estimates and

underestimation of the true variance of estimates. It is important to carefully select a target

population and design studies and analyses that generalize to this population. If researchers

are not able to obtain a representative sample because of ethical or practical considerations,

they are forced to use a convenience sample. Since estimated propensity weights can only

balance a convenience sample on observed covariates, researchers must take care to collect

any covariates that they hypothesize are related to both the outcome and sampling proba-

bility. Additionally, any subpopulation with a convenience sample membership probability

of zero and thus not represented in the convenience sample cannot be included in the tar-

get population. Researchers must carefully consider which covariates should be collected

and which subpopulations are being sampled into a convenience sample to allow for valid

estimates of associations in the desired target population.

In the analysis of racial/ethnic differences of research willingness, weighted confidence inter-

vals were generally at least twice as wide as unweighted confidence intervals. Incorporating

propensity weights can increase the variability of parameter estimates because subjects with

a low estimated probability of convenience sample membership will have large estimated
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weights and undue influence on the estimated associations [71]. Although propensity weights

may increase variance, they can reduce bias of the estimated association in the population of

interest. Using an unrepresentative sample provides less information about the target pop-

ulation, and thus the increased variance of our estimator reflects this uncertainty [75]. To

measure how much the sampling mechanism impacts efficiency, we can compute the design

effect, which is the ratio of the variance of the parameter estimate in an unrepresentative

sample compared to a simple random sample [75, 64]. When comparing empirical variances

from the simulation study for logistic-weighted coefficient estimates fit in a biased sample

compared to unweighted estimates in a SRS, the design effect ranges from 1 to 1.6. Thus,

we will need a biased sample that is up to 1.6 times bigger than a simple random sample to

obtain the same variance.

For estimating the variance of parameter estimates in the outcome model, we compared

a resampling approach and our proposed analytic approach for a logistic regression model

that accounts for uncertainty arising from the propensity weight estimation. In empirical

studies, we found the proposed analytic estimates performed better than the bootstrap

estimate even though the analytic estimate does not account for the model selection when

estimating propensity weights. Surprisingly, the bootstrap estimate tends to overestimate the

uncertainty even though we replicated the estimation method within each bootstrap sample.

Perhaps there was more variability in estimated weights within bootstrap samples than

within the full simulated data set. Previous work on implementing entropy balancing weights

[110] and exact matching using the propensity score [10] also reported conservative bootstrap

variance estimates, but the stratified double bootstrap where units are resampled from the

survey sample and convenience sample used by [2] provides similar variance estimates to a

design-based approach. The proposed analytic variance for model-based propensity weight

estimation methods accounts for uncertainty in the estimated weights. The design based

standard errors, however, perform well even though they fail to account for the propensity

weight estimation process. We suggest using the proposed variance estimator with a model
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based propensity weight estimation procedure because it may perform better than the design

based estimate, but the design based approach should perform well if needed. In our context,

the two methods did not diverge substantially, but they could if there is high variability in

the propensity weights. It is possible to derive an analytic variance estimator that accounts

for the weight estimation for the CBPS model. However, it is made difficult because the

CBPS model is overspecified and fit using generalized method of moments [61, 53]. One

might be able to incorporate the final scientific model into the CBPS model as an additional

balancing constraint for a simultaneous estimation approach. This may be an interesting

area of research to pursue.

All four propensity weight estimation models decreased bias in the simulation study. Algo-

rithmic propensity weight estimation methods are very flexible, but random forest provided

the smallest degree of bias reduction and the largest variance in the simulation study. Using

RF-derived weights provided the poorest covariate balance (Figure 3.3). Models that incor-

porate covariate balancing into model-selection help ensure covariate balance in the biased

sample. EB, however, scales better than forward step-wise model selection for logistic regres-

sion, but CBPS tends to be slower due to the additional constraints. Estimates using CBPS

did not deviate substantially from those using logistic regression, so the additional balancing

constraints did not improve performance. We used the default settings for the CBPS package

and users can change the settings to focus more on covariate balance. Although EB balanced

covariates better than the logistic model in the applied example, they both reduced bias in

estimated associations to the same extent in simulation study. Likelihood-based regression

models, such as logistic regression, allow for an analytic variance estimate that fully accounts

for uncertainty. It can also be easily expanded to include interaction and smoothers to allow

for greater flexibility, but the second order terms seemed to perform well enough in our

experiments. In practice, we suggest using logistic regression because it effectively reduces

bias under our assumptions, is familiar to many scientists, is broadly accessible in different

statistical software packages, and allows for an analytic variance estimate that accounts for
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uncertainty from estimation of propensity weights. The prediction models we implemented

are only several examples of many different options one could use. Practitioners can select

their preferred prediction model.

NHANES is a practical choice for generalizing biomedical studies to the US population. Dif-

ferent research areas may, however, collect variables that are not recorded in NHANES but

are believed to be strongly related to the sampling probability. Other national surveys collect

different variables and may be more relevant to different research areas. Other examples of

national surveys are the American Community Housing Survey which collects population and

housing information, the Behavioral Risk Factor Surveillance System which conducts health-

related telephone interviews, the General Social Survey which studies American society, and

the Current Population Survey that collects labor force statistics. Additionally, researchers

may want to generalize to a population outside of the US. If the target population is a subset

of the US population, NHANES can be subset and used as the representative sample. Oth-

erwise, other representative samples need to be obtained. Researchers can consider census

data if available, government sponsored national surveys, or international surveys. After

specifying the target population, one should consider which samples are most representative

and accessible.

Overall, estimated propensity weights reduce bias on parameter estimates from unrepresen-

tative sampling. We, of course, are unable to account for any unmeasured covariates that

may contribute to selection bias. Additionally, we are unable to learn about subpopulations

that were never sampled. For example, if there are no NH Blacks with less than a high

school education in the C2C, we cannot weight this missing subpopulation. We collapsed

different variables to match across different datasets and were unable to empirically evalu-

ate if these are equivalent definitions. Implementing estimated propensity weights increases

the uncertainty of estimates but this reflects the information available on target population

parameters.
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Convenience samples are easily collected and are used for research in many disciplines. The

NHANES dataset is a rich, open access dataset that will likely have many overlapping covari-

ates with convenience samples. Estimated propensity weights using NHANES is practical

and effective at addressing selection bias concerns in convenience samples when trying to

generalize to the non-institutionalized US population.
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Chapter 4

Propensity Scores in Convenience

Samples

4.1 Introduction

In the previous chapter, we discusses a method for estimating sampling weights. In this

chapter, we apply estimated sampling weights to estimate causal effects for observational

studies with a biased sample. Please note that in the previous chapter we used the term

“propensity weights” to refer to inverse probability of sampling weights, but in the remainder

of the dissertation we use the term “sampling weights” to avoid confusion with the propensity

for treatment.

Convenience samples are often used to estimate causal effects in observational studies, but

the resulting effect estimates are subject to potential confounding and sampling bias. One

example of a convenience sample is the National Alzheimer’s Coordinating Center (NACC)

Uniform Data Set. NACC collects longitudinal demographic, clinical and specimen data on

participants from 41 Alzheimer’s Disease Research Centers[13]. Although there has been an

85



effort at some centers to recruit more representative cohorts, most of the volunteers in the

NACC data set come from referrals and so it is not a random sample of older adults in the

United States (US) population. Highly educated and non-Hispanic (NH) white volunteers

are overrepresented in the NACC sample as is common in clinical research [87]. Suppose

we want to use the NACC data set to estimate the effect of vitamin E supplementation on

the Functional Activities Questionnaire (FAQ) [81], a measure of activities of daily living,

among cognitively normal older adults in the US. Then we must account for the NACC

selection mechanism as well as any potential confounders to avoid biased estimates of the

effect of vitamin E supplementation. We will accomplish this by studying methodology for

using convenience samples to estimate causal effects for a prespecified target population.

Using propensity scores to address potential confounding is a common method for estimating

causal effects in observational studies. Adjusting for propensity scores alone, however, does

not address sampling bias. Inverse probability of sampling weights are commonly used

to obtain generalizable inference for survey samples where the sampling probabilities are

prespecified by design [75]. Sampling weights for convenience samples can be estimated

by using a more representative sample [15, 26, 2, 94, 40, 117, 88]. Incorporating sampling

weights into a propensity score analysis is not straight forward because both the propensity

score estimation model and the causal model can be weighted when they are estimated, but

there is debate in the literature about whether the propensity score model should be weighted

[93, 119, 32, 9, 68]. The objective of this chapter is to quantify when and if propensity score

and outcome models should be weighted with sampling weights when using convenience

samples and to quantify uncertainty in treatment effect estimates.

Ridgeway et al. (2015) studied the impact of including sampling weights in the propensity

score and outcome models for survey samples with known sampling weights [93]. They

conclude that the outcome model should always be weighted and in addition the propensity

score model should be weighted under 3 scenarios: (1) When there is a covariate used in the
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sampling weight calibration that is not available in the data set for estimating propensity

scores, (2) when residual confounding occurs from lack of flexibility in the propensity score

model, and (3) when data from multiple survey samples is combined and thus sampling

weights are based on different covariates. More recent papers have disagreed with Ridgeway

et al. and suggested that only the outcome model should be weighted, but they assume the

propensity score model is correctly specified [9, 68].

In this chapter, we will focus on the second scenario and quantify how well we are able

to estimate a marginal treatment effect estimate for a target population when there are

heterogenous treatment effects in under- or over-represented subpopulations in a convenience

sample. Ridgeway et al.’s work assumes that sampling weights are pre-specified or contain

all known information related to the selection mechanism. In this chapter, we will investigate

the impact and feasibility of estimating sampling weights for convenience samples to account

for sampling bias in estimated treatment effects. We use Monte Carlo methods to quantify

the bias reduction when sampling weights are calibrated using covariates related to sampling

bias and compare it to when the covariates are not available, but proxies associated with

them are instead available. Lastly, we consider the impact of estimating sampling weights

and propensity scores on the uncertainty in the final treatment effect estimate and propose

a variance estimate that accounts for the estimation of both quantities.

The remainder of this chapter is organized as follows. In Section 4.2 we formalize the method

for estimating sampling weights, propensity scores, and the treatment effect to account for

the selection mechanism. We also derive the variance estimate that accounts for uncertainty

in when simultaneously estimating sampling weights and propensity scores. In Section 4.3 we

present Monte Carlo studies to compare the impact on bias when including sampling weights

in the propensity score model, outcome model, or both when the selection mechanism is

known. We then quantify the impact on bias when those variables that determine sampling

probabilities are unobserved but where proxy variables of varying strength are observed.
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Next, we assess the performance of the proposed variance estimate relative to the empirical

error. In Section 4.4 we apply the methods from this chapter and estimate sampling weights

for participants in the NACC using a representative US population sample obtained from the

National Health and Nutrition Examination Survey (NHANES). We use inverse probability

of sampling weighted propensity scores to estimate the effect of Vitamin E on the ability to

perform daily activities for cognitively normal older adults. We compare the estimated effect

when omitting sampling weights and including them in the propensity score model, outcome

model, or both. We conclude with a discussion about the advantages and disadvantage of

weighting both models with estimated sampling weights in Section 4.5.

4.2 Methods

In this paper, we implement an analogous approach for estimating sampling weights for

convenience samples via a representative data set as discussed in our previous work. [15]

We then implement the estimated sampling weights to estimate a marginal treatment effect

in a target population. To estimate a causal effect with a convenience sample, we need

to collect two samples: a convenience sample and a representative sample for estimating

sampling weights. Both of these samples have specific variables they must contain. First,

the convenience sample must include the treatment indicator, the response, covariates related

to potential confounding, and covariates related to the sampling probability. Second, the

representative sample only needs to contain covariates related to the sampling probability.

To construct a data set for analysis, we need two collections of variables, XR and XC , which

represent that variables collected in the representative and convenience samples, respectively.

Next, we will formalize which variables need to be included in XR and XC . Consider the set

of variables collected in both of these sets, so that V = XR

⋃
XC . V should contain variables

related to the sampling probability and will be used to estimate sampling weights. The other

88



variables necessary to estimate a causal effect, the treatment A, outcome Y and potential

confounders Z are all collected as part of the convenience sample. So A ⊂ XC , Y ⊂ XC , and

Z ⊂ XC . There may be some overlap between the covariates needed to estimate a causal

effect (A, Y , and Z) and the variables collected in the representative sample XR, but we

assume that the majority of these variables are only collected in the convenience sample

or (A
⋃

Y
⋃

Z) \ XR ̸= ∅. Since we are unable to directly estimate a causal effect in the

representative sample, our goal is to leverage auxiliary information from the representative

sample to estimate sampling weights that will let us estimate a causal effect for a target

population using a convenience sample. To do this, we will estimate propensity scores in

a convenience sample using a model weighted by estimated sampling weights, and then

estimate a causal effect with estimated propensity score and estimated sampling weights.

4.2.1 Assumptions

To estimate causal effects using a convenience sample we must make two sets of assumptions.

The first set involves assumptions necessary for estimating a causal effect and the second set

includes assumptions for valid estimation of sampling weights.

As discussed in Chapter 2, there are three assumptions necessary for making causal conclu-

sions using propensity scores: unconfoundedness, positivity, and the stable unit treatment

value assumption (SUTVA). These assumptions are discussed in Chapter 1 and 12 of Imbens

and Rubin (2015) [62] and Appendix 1 of Greenland, Robins, and Pearl (1999)[50]; among

other places. The unconfoundedness assumption states that the potential outcomes are in-

dependent of the treatment assignment conditional on the observed covariates. Next, the

positivity assumption requires each unit to have positive probability of being in both treat-

ment groups. Let A be an indicator for being in the treatment group and Z denote observed

covariates, then the positivity assumption can be expressed 0 < Pr(A = 1|Z = z) < 1 for
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all units. And lastly, SUTVA states that a unit’s treatment assignment does not impact the

potential outcomes of any other unit and there is no hidden variability in the treatment.

These three assumptions are required to estimate causal effects using propensity scores.

As discussed in our previous chapter on estimating sampling weights[15], similar assump-

tions are needed to use estimated sampling weights to address sampling bias. We need to

assume a version of unconfoundedness, that the response is independence of the selection

probability, conditional on observed covariates. This means that all covariates related to

both the sampling probability and response must be collected in both the representative

and convenience samples. More formally, V must contain all variables associated with the

sampling probability and response. We must also assume a form of positivity, all subjects

must have a positive probability of being sampled into the convenience sample. Let V be the

observed covariates specified in V and C be an indicator of being in the convenience sample,

0 < Pr(C = 1|V = v) < 1 for all subjects in the representative and convenience samples.

4.2.2 Estimating Causal Effects in a Convenience Sample

Let Ai be the indicator of receiving treatment (Ai ∈ {0, 1}), then for individual i who is

exposed to treatment Ai = 1, their potential outcome is Yi(1). If subject i is exposed to

treatment Ai = 0, then their potential outcome is Yi(0) [95]. Since we are assuming two

treatment levels, each subject has two potential outcomes at a given time corresponding

to the two treatment levels. A causal effect is defined as a comparison in the potential

outcomes for two treatment groups for subject i. We are only able to observe one potential

outcome per individual at a given time, because they can only be in one treatment group.

The observed response for individual i exposed to treatment Ai = ai is then

Yi = (1− ai)Yi(0) + aiYi(1)
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Ideally, we would calculate an individual’s treatment effect, such as Yi(1) − Yi(0), but we

are unable to do so because only one of these terms is observable at a given time point.

Instead to identify a causal effect, we can estimate the average causal effect by comparing

the mean outcomes in the treated and control groups. In this paper we will focus on the

average treatment effect (ATE)

EP [Y (1)− Y (0)] (4.1)

where EP denotes an expectation over some population, P . In an observational study, in-

dividuals’ characteristics in the control group may be systematically different from those in

the treated group because researchers do not control the treatment assignment mechanism.

There may be confounders related to the treatment assignment and the potential outcomes

with different distributions in the treatment and control groups. To address this, we estimate

the ATE when comparing individuals with a similar propensity for treatment by condition-

ing on the propensity score. Let z denote a vector of observed covariates that should include

variables related to the treatment probability. The propensity score e(z) is then the proba-

bility of being exposed to treatment A = 1 conditioned on Z, or e(z) = Pr(A = 1|Z = z). To

account for potential confounding we can estimate the ATE by conditioning on propensity

scores, or

EP

[
EZ

{
Y (1)− Y (0)|e(zi)

}]
. (4.2)

This expectation is over a specific population P . In this chapter, we address the scenario

where the distribution of the Z and Y in the convenience samples differs from the distribution

in the population P because it is not a random sample. Our target estimand is the average

treatment effect in a target population defined in Equation 4.2 and not the average treatment

effect conditioned on being sampled. Let C be an indicator of being sampled into the

convenience sample. If we ignore the selection mechanism instead of estimating the ATE in
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the population (Equation 4.1), we will instead estimate the ATE in the sampled population,

EP |C [Y (1)− Y (0)|C = 1]. (4.3)

In the absence of confounding, we could account for the selection mechanism to estimate the

population ATE by estimating sampling weights, w, such that

EP |C [w(Y (1)− Y (0))|C = 1] = EP [Y (1)− Y (0)]. (4.4)

We define the form of these weights and discuss estimation strategies in the following section.

In this chapter we discuss combining the approach for using propensity scores to address

confounding in Equation 4.2 and the approach for using sampling weights to address the

selection mechanism in Equation 4.4. Weighting the propensity score estimation model and

weighting the treatment effect with estimated sampling weights for a convenience sample

will allow us estimate our estimand of interest from Equation 4.2.

When estimating a causal effect using propensity scores in a representative sample, there

are two steps. First, you (1) estimate propensity scores and then you (2) estimate an

effect conditioning on the propensity score. There are several approaches to condition on

the propensity score including matching, stratification, adjustment, and weighting (for an

overview see Chapter 12 of Imbens and Rubin 2015) [62]. In this chapter, we will focus on

propensity score adjustment in regression models as an example because it allows us to derive

an analytic variance estimate, but all of these options estimate the average treatment effect

[8]. Our findings about whether the propensity score estimation model should be weighted

will likely extend to the other propensity score methods.

Estimating causal effects in a convenience sample without accounting for the selection mech-

anism can lead to biased estimates of the effect in a target population. Incorporating es-

timated sampling weights into the analysis allows us to estimate causal effects for a target
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population. We will then have three steps, (1) estimate sampling weights, then (2) estimate

propensity scores, and (3) estimate a causal effect. Estimated sampling weights can be in-

corporated into the analysis by weighting the propensity score estimation model, weighting

the outcome model, or weighting both models. The goal of this chapter is to compare these

three options for incorporating sampling weights and identify when weighting is necessary.

We will start by laying out the analysis plan when both the propensity score and outcomes

models are weighted, and then illustrate the differences when they are omitted.

Sampling weight model

Let C and R be sets of individuals in a convenience sample and representative sample, re-

spectively. When estimating sampling weights, we subset the representative and convenience

samples down to the variables collected in both data sets, V and concatenate them into a

combined data set. We construct an indicator of convenience sample membership, Ci, which

equals one for subjects from the convenience sample and zero for those from the representa-

tive sample. Let vi be a 1 ×M vector of covariates (including 1 to allow for estimating an

intercept) for the sampling weight estimation model and γ be a M × 1 vector of parameters

for the sampling weight estimation model. To estimate the sampling probability, we use lo-

gistic regression to estimate pi = Pr(Ci = 1|vi). There are many options of predictive models

that can be used to estimate the sampling probability, but we used logistic regression with

forward stepwise model selection with Akaike information criterion (AIC) for computational

tractability. We found this approach generally performed well in Chapter 3 [15].

We use a generalized linear model (GLM) framework to fit the logistic regression model. [85]

Define logit(·) as the logit link function and Ψi as a linear predictor, the sampling weight

estimation model is then given by

Ψi = logit(pi) = viγ
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with the corresponding score or estimating equation for the m-th parameter,

Tm(γ) =
∑

i∈C∪R

Tmi(γ) =
∑

i∈C∪R

(Ci − pi)vim = 0. (4.5)

Note that pi is a function of γ.The estimated sampling probabilities, p̂i, are then used to

formulate the estimated sampling weights,

ŵi ∝
1− p̂i
p̂i

where the weights are scaled so that
∑

i∈C wi = 1.

Propensity score model

Let Ai be an indicator of whether subject i received treatment and e(zi) = Pr(Ai = 1|Zi = zi)

be the propensity score for subject i. We define zi as a 1×L vector of covariates and ξ as a

L× 1 vector of parameters for the propensity score estimation model including an intercept.

Although there are many options for which model to estimate a propensity score because it

is commonly used in practice, can be made very flexible with the addition of higher order

terms, interactions or smoothers, and is easy to implement. The logistic model for estimating

propensity scores with linear predictor Φi is,

Φi = logit(e(zi)) = ziξ.

The unweighted estimating equation for the l-th parameter, where e(zi) is a function of ξ,

is

Sl(ξ) =
∑
i∈C

Sli(ξ) =
∑
i∈C

(ai − e(zi))zil = 0 (4.6)
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and the weighted estimating equation is

S̄l(ξ) =
∑
i∈C

S̄li(ξ; ŵ) =
∑
i∈C

ŵi(ai − e(zi))zil = 0. (4.7)

Implementing sampling weights into the analysis by using S̄l(ξ) in Equation 4.7 will cal-

culate estimated propensity scores, ê(zi). Ignoring the selection mechanism and fitting the

unweighted estimating equation Sl in Equation 4.6 will calculate estimated propensity scores

that will correspond to the probability of receiving treatment in the sampled population. We

will refer to the unweighted propensity score estimates as ê∗(zi).

Outcome model

Finally, we are able to estimate a causal effect. We use a generalized linear model framework

to estimate a causal effect to allow for different types of responses [85]. We will start by

considering the models that use the estimated propensity score ê(zi). Let Yi be the response

variable, µi = E[Yi] be the expectation of the response, and V (µi) = Var(Yi) be the variance

of the response. Additionally, g(·) is the link function and ηi is a linear predictor. Then

xi = [1 ai ê(zi)] are the covariates for subject i in the outcome model and β is the 3× 1

vector of parameters. The outcome model using estimated weighted propensity scores is

ηi = g(µi) = β0 + β1ai + β2ê(zi)

The unweighted estimating equation is

Uj(β) =
∑
i∈C

Uji(β) =
∑
i∈C

(yi − µi)

V (µi)

[∂ηi
∂µi

]−1

xij
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which provides the estimate of the treatment effect when only the propensity score model is

weighted, β̃1. The weighted estimating equation is

Ūj(β) =
∑
i∈C

ŵiUji(β) = 0 (4.8)

which results in the doubly-weighted estimate of the average treatment effect, β̂1. The

analogous model when using the unweighted propensity score is

η∗i = g(µ∗
i ) = β∗

0 + β∗
1ai + β∗

2 ê
∗(zi)

The unweighted estimating equation using the unweighted propensity score and x∗i = [1 ai ê∗(zi)]

is

Uj(β
∗) =

∑
i∈C

Uji(β
∗) =

∑
i∈C

(yi − µ∗
i )

V (µ∗
i )

[∂η∗i
∂µ∗

i

]−1

x∗ij

which provides the naive estimate of the treatment effect that excludes sampling weights

and thus ignores the selection mechanism, β̃∗
1 . The weighted estimating equation that uses

unweighted propensity score estimates is

Ūj(β
∗) =

∑
i∈C

ŵiUji(β
∗) = 0

which results in the estimate of the average treatment effect that only accounts for sampling

bias in the outcome model, β̂∗
1 .

4.2.3 Analytic Variance Estimator

The standard analytic sandwich estimator of the variance of parameter estimates in gener-

alized linear models that accounts for survey weights is an extension of the Huber-White
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variance estimate [41]. This variance estimator is provided in the svyglm function in the

survey package[75, 77] in R. The standard analytic variance estimator assumes that sam-

pling weights ŵ and propensity scores ê(z) used in the outcome model are fixed. To derive

an analytic variance estimator that accounts for the uncertainty from estimating sampling

weights and propensity scores, we propose to use a simultaneous estimating equation ap-

proach similar to the one used by Schildcrout and Rathouz (2010) [103]. The goal is to treat

the three estimating equations: the sampling weight estimating equation Tm(γ) (Equation

4.5), the propensity score estimating equation S̄l(ξ) (Equation 4.7), and the outcome model

estimating equation Ūj(β) (Equation 4.8). In this section, we update our notation to empha-

size that the propensity score model is a function of the estimated sampling weights and the

outcome model is a function of the estimated propensity scores and sampling weights and

call the estimating equations S̄l(ξ, γ) and Ūj(β, ξ, γ), respectively. We treat these estimating

equations as if they are jointly estimated giving us a stacked estimating equation:

κ =


∑

i∈C∪R Ti(γ)∑
i∈C S̄i(ξ, γ)∑

i∈C Ūi(β, ξ, γ)

 = 0

We can use a Taylor series expansion of the stacked estimating equation (see Appendix C)

to obtain the following variance estimator of the parameter estimates

V̂Prop[(γ̂, ξ̂, β̂)] = Î−1Q̂Î−1, (4.9)

where the hats denote estimates. Q is the true variance of the stacked estimating functions

κ,

Q = Var(κ) = E(κκT ).
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A method of moments estimator for Q is Q̂ = κ̂κ̂T . I is Fisher’s information matrix

I =


ITT 0 0

IST ISS 0

IUT IUS IUU

 . (4.10)

Definitions of the terms in I and corresponding estimates are detailed in Appendix C.

4.2.4 Implementation of Variance Estimator

We developed an R[91] package to estimate causal effects when are both the propensity

score model and outcome model are weighted with estimated survey weights. It also returns

standard error estimates using our proposed variance estimator described in this section.

Description of the estweight package and with instructions for downloading and use can

be found at (https://github.com/oliviabern/estweight). In short, the convPS function

requires a convenience sample and representative sample. The user specifies which variables

are used for estimating sampling weights and propensity scores, along with the names of the

treatment and response variable. The function then returns the estimated causal effect and

corresponding standard error estimate.

4.3 Simulation Study

We conducted a simulation study to investigate the impact of including sampling weights in

the propensity score and outcome models. Our goal is to estimate the causal effect for the

target population using a convenience sample. We simulated data for an unrepresentative

sample and compared estimated causal effects fit in an unrepresentative, or convenience,
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sample and compared them to estimates from a simple random sample (SRS) from the

target population. We estimate bias of the estimated treatment effect by the difference

between the mean estimate using the convenience sample and the mean estimate from the

SRS across simulations. Code for this simulation study is available at https://github.

com/oliviabern/weighted_propscores.

4.3.1 Simulation Scenario

Suppose there is an indicator, Ki, for a subpopulation that is overrepresented in the con-

venience sample relative to the target population, but is unmeasured. Instead we observe

a covariate X1i that is correlated with Ki. We let Ki and X1i be binary variables that are

transformations of normally distributed covariates K∗
i and X∗

1i with correlation ρ. To reflect

this, let

K∗
i

X∗
1i

 ∼ N

(0

0

 ,

1 ρ

ρ 1

).

We transform K∗
i and X∗

1i with a probit link so

Ki =

{
1, if K∗

i > 0

0, if K∗
i ≤ 0

X1i =

{
1, if X∗

1i > 0

0, if X∗
1i ≤ 0

.

Individuals are sampled with uniform probability regardless of K into the simple random

sample, but the probability of being sampled into the convenience sample is

Pr(Sampledi) = .6Ki + .2 (4.11)
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so individuals with K = 1 are four times more likely to be sampled than individuals with

K = 0. Let X2i ∼ N(0, 2) and X3i ∼ N(0, 2). Sampling bias can lead to bias in the estimated

propensity scores if the probability of receiving treatment is dependent on the probability

of being sampled. Let Zi = [X1, X2, X3, X4] and suppose the covariates X2 and X3 have a

differential relationship with the probability of receiving treatment e(Zi) for people in the

K = 0 and K = 1 subpopulations, so that

e(Zi) = expit
{
(1−Ki)(log(α02)X2i + log(α03)X3i) +Ki(log(α12)X2i + log(α13)X3i)

}
.

(4.12)

Let Ai be the treatment indicator, so that Ai ∼ Bernoulli(e(Zi)). Unrepresentative sampling

can lead to bias in the estimated treatment effect if there is a differential treatment effect

in subpopulations that are disproportionately sampled. To illustrate this, we simulate a

differential treatment effect for the K = 1 and K = 0 subpopulations. Let Yi be the

response, X4i ∼ N(0, 1), and X5i ∼ N(0, 1). The response Yi ∼ N(µi, 1) and

µi = δAAi + δAKAi ×Ki + δ2X2i + δ3X
2
3i + δ4X4i + δ5X

3
5i (4.13)

Within each simulated data set we generated a finite population with 10,000 observations

and then from this we draw a convenience sample of size 2000 according to the sampling

probabilities in Equation 4.11 and a representative sample of size 2000 where each individ-

ual has an equal probability of selection. Let Ci be an indicator of being in the convenience

sample and Vi = [X1i, ..., X5i] be the covariates used for estimating the sampling weights.

We estimated the probability of being sampled Pr(Ci = 1|Vi = vi) relative to the representa-

tive sample for the convenience sample using logistic regression with forward-selection with

AIC. We included V with first and second order terms in the model scope, but excluded

interactions between covariates from the scope. When the correlation, ρ, between K and X1

is 1, then X1 = K which reflects the scenario where the covariate K related to the sampling
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probability is observed which is analagous to the situation considered by Ridgeway et al.

[93]. The estimated sampling weights are then

ŵi =
1− P̂r(Ci = 1|Vi = vi)

P̂r(Ci = 1|Vi = vi)
.

Let Zi = [X1i, ..., X5i] be the covariates used for estimating the propensity score. Within the

convenience sample, we estimated propensity scores ê(zi) = Pr(Ai = 1|Zi = zi) using logistic

regression with forward-selection using AIC with Zi and included linear terms, quadratic

terms, and interactions in the model scope. We used the design based AIC (dAIC) [76]

when including sampling weights in the propensity score model. We then estimated the

estimated treatment effect by adjusting for the propensity score, where

g(µi) = β0 + β1ai + β2ê(zi).

In our case where Yi is normally distributed, we used the canonical link so g(µi) = µi. In

the convenience sample, we estimated propensity scores and a treatment effect in the same

way. We compared estimates of β1 from the convenience sample when including or omitting

sampling weights in both the propensity score and outcome models to estimates from the

representative sample. Notice that our estimand of interest is β1, the marginal treatment

effect even though there is treatment effect heterogeneity in Equation 4.13.

We conducted 1000 simulations and compared the bias in estimates fit in the convenience

sample relative to estimates from the representative sample. Unless otherwise specified,

parameters in Equation 4.12 are α02 = 1.3, α12 = 2, α03 = 0.4, and α13 = 1.5 and parameters

in Equation 4.13 are δA = 1, δAK = 3, δ2 = 1.5, δ3 = −2, δ4 = −1, and δ5 = 1.5. We started

with the scenario whereK is observed or ρ = 1. We compared the mean absolute bias relative

to the representative sample when varying the true coefficients in the outcome model (δA,

δAK , δ2, δ3, δ4 and δ5). We also evaluated the mean absolute bias relative to the SRS when
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varying the parameters in the true propensity model (α02, α03, α12, and α13). Next, we

examined the relative bias when the correlation ρ decreased to show the impact of failing

to fully measure the variable related to the sampling probability. Lastly, we assessed the

uncertainty of the parameter estimates. We fixed the coefficients in the outcome model

and compare the empirical standard errors across the weighted and unweighted models.

Finally, we compare the standard error estimates (naive non-robust, standard robust, and

the proposed robust estimates) to the empirical Monte Carlo estimate.

4.3.2 Simulation Results

In Figure 4.1, we demonstrated the impact of each term in Equation 4.13 which is the data

generating mechanism for the response by varying the coefficients δA, δAK , δ2, δ3, δ4, and

δ5. We report the absolute bias in the estimated treatment effect relative to the estimate

from a simple random sample when ρ = 1. We compared estimates from the convenience

sample when sampling weights were omitted (blue), when only the propensity score model

was weighted (green), only the outcome model was weighted (purple), and when both the

propensity score and outcome models were weighted (orange). Treatment effect estimates

that use the true propensity scores instead of the estimated propensity scores are shown with

dotted lines. Setting ρ = 1 implies that K = X1, and since X1 is measured we have full

information on the sampling bias. We are able to obtain unbiased estimates of the sampling

weights which is similar to the scenario considered by Ridgeway et al. [93] because the

sampling weights contain all of the information about the selection mechanism.

Overall, weighting the outcome model has the largest impact on reducing bias but weighting

the propensity score model removes additional bias. Notice that varying δA, δ3, δ4, and δ5

have little impact on the absolute bias. This means that the size of the treatment effect does

not impact the magnitude of bias. Varying one of the confounders, δ2, has an impact on the
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bias but varying δ3 does not. The reason δ3 does not have an impact is because X3 is squared

in the outcome model (Equation 4.13) and bias can cancel out. The estimates when failing to

weight both models fluctuate when varying δ2. Covariates related to the response, Y , but not

the treatment probability (δ4 and δ5) also do not have an impact on sampling bias. Varying

δAK , or the difference in the treatment effect for the K = 1 and K = 0 subpopulations,

impacts sampling bias. When sampling weights are omitted (see the blue line) the bias is

minimized when interaction between K and a is 0. For sampling bias to occur, there must

be treatment effect heterogeneity for subpopulations that are disproportionately represented

in a convenience sample. Failing to weight either the propensity score model or the outcome

model results in a minimum bias at other values of δAK because the marginal treatment

effect estimate is weighted incorrectly. The marginal treatment effect can be pushed closer

or farther to the estimate from the SRS, but it is difficult to predict which way it will go.

In Figure 4.2 we presented the results from varying the coefficients in the true propensity

score model defined in Equation 4.12. We varied α02 the exponentiated coefficient on X2

along the x-axis and α12 the exponentiated coefficient onK×X2 along the y-axis. We present

the absolute bias relative to the estimate from the SRS when using a convenience sample

and only weighting the outcome model (β̂∗
1) and weighting both the propensity score model

and outcome model (β̂1) in the left and right figures, respectively. Notice that the bias from

the doubly-weighted model (right side) is generally stable regardless of the parameters in the

propensity score model. The bias from the estimate with only the outcome model weighted

(left side) is more erratic. At the given parameters of the outcome model, the bias when

only weighting the outcome model is always larger than when weighting both models but it

can actually be pushed to other directions when ρ decreases and δAK changes. See Figure

4.5 for an example of this. The analogous plots for varying α03 and α13 are shown in Figure

4.3. The trends are similar but less extreme because the X3 term in the outcome model

(Equation 4.13) is squared so bias of a different sign cancels. Overall, the bias when only

weighting the outcome model is hard to predict and the bias when weighting both models is
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Figure 4.1: Comparison of the absolute bias of estimates of the treatment effect (β1) relative
to the estimate from a simple random sample (SRS) when different weighting strategies are
used. In all figures, ρ = 1 and the data generating mechanism was modified by varying the
coefficients in Equation 4.13.
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Figure 4.2: Absolute bias of treatment effect estimates (β̂1) relative to the estimate from a
simple random sample (SRS) with estimated propensity scores when ρ = 1 and varying the
parameters α02 and α12 in Equation 4.12.

more stable.

Next, we assessed the impact of not measuring K directly, but instead varying the strength

of a proxy for K. In Figure 4.4, we report the mean absolute relative bias of the estimated

treatment effect from the convenience sample relative to the estimate from the SRS when

using different weighting strategies and varying the correlation between K∗ and X∗
1 . The ab-

solute relative bias is calculated as the absolute value of the difference between the estimates

from the convenience sample and the SRS divided by the bias from the SRS estimate. When

ρ = 0, we have no information on the sampling bias, but when ρ = 1 we have measured

everything related to the sampling bias. As ρ increases and we have more information on

the sampling bias, we observe less bias in the estimated treatment effect when weighting

the outcome model (orange and purple). Weighting both the propensity score model and

the outcome model (orange) leads to a greater reduction in bias than only weighting the
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Figure 4.3: Absolute bias of treatment effect estimates (β̂1) relative to the estimate from a
simple random sample (SRS) with estimated propensity scores when ρ = 1 and varying the
parameters α03 and α13 in Equation 4.12.
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Figure 4.4: Absolute relative bias of treatment effect estimates (β̂1) relative to the estimate
from a simple random sample (SRS) with estimated propensity scores when varying the
correlation between K∗ and X∗

1 .

outcome model in this scenario. When the correlation is around 0.9, we are able to remove

about half of the relative bias when weighting both the propensity score model and outcome

model. A correlation of 0.9 between the continuous covariates K∗ and X∗
1 translates to a

misclassification rate of 14% for the binary variables, where 14% of the observations of X1 do

not match K. When only weighting the propensity model (green) the relative bias increases

as ρ approaches 1. This observation is consistent with the observation from Figure 4.1 that

only weighting one model can lead to unexpected fluctuations in the bias. The correlation,

ρ, had to be high before the sampling weights helped address sampling bias. The more

information we are able to collect about the selection mechanism and the better we are able

to estimate sampling weights, the better we are able to address sampling bias by weighting

both the propensity and outcome models.

To illustrate how failing to weight both models can push the treatment effect estimate either

direction, we repeated the top middle panel of Figure 4.1 which looks at the absolute bias of
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Figure 4.5: Comparison of the absolute bias of estimates of the treatment effect (β1) relative
to the estimate from a simple random sample (SRS) for different weighting strategies and
varying ρ and δAK .

the estimated treatment effect as the magnitude of the treatment effect heterogeneity δAK

varies but vary the correlation ρ in Figure 4.5. Notice that when ρ < 0 and δAK < 0, the

estimate from only weighting the outcome model (purple) has less bias than weighting both

models (orange). Although one may think it would be better to only choose to weight the

outcome model in some scenarios, we were unable to predict when it would have less bias

than weighting both models. As we showed in Figure 4.2, only weighting the outcome model

leads to volatile results. When failing to weight the propensity score model, the propensity

score model is misspecified relative to the propensity score that is estimated in a SRS and

leads to untrustworthy treatment effect estimates. Additionally, we see that the absolute

bias when weighting both models tends to decrease as the correlation increases and the

misclassification rate of X1 increases.

Finally, we quantified the impact of accounting for the selection mechanism on the variance

of the treatment effect estimates and presented the performance of our proposed variance

estimate in Figure 4.6. We fixed all parameters in the data generating mechanism to the

values specified in Section 4.3.1. In the table and figure on the left, we present the average

estimated treatment effects and corresponding 95% confidence intervals based on the em-
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pirical standard errors across simulations. We compared estimates from a simple random

sample and the convenience sample while using different weighting strategies. We observed

that weighting both the propensity score model and outcome model leads to the treatment

effect estimate closest to the estimate from the SRS. Additionally, the variance increased

when both models were weighted which is expected because sampling weights often increase

uncertainty. This increased uncertainty is a reflection of using a convenience sample and

extrapolating to a target population[75, 64, 15] and reflects the true variability of the treat-

ment effect estimation for a target population. On the right table, we compare the proposed

standard error (SE) estimates, the design based SE estimate, the naive (non-sandwich) SE

estimate, and the empirical SE estimate. The proposed and design based similarly which is

expected since our proposed estimate is an extension to the design based estimate that adds

in uncertainty from estimating sampling weights. These two estimates are similar to the

empirical standard error estimate. The naive standard error estimate that does not account

for including sampling weights does not come close to the empirical estimate.

4.4 Application

A recent meta-analysis summarized the evidence about the effect of vitamin E on symptoms

of Alzheimer’s Disease (AD) [22]. A randomized study of cognitively normal male older

adults did not find an association between vitamin E supplementation and cognitive decline

as measured by the Memory Impairment Screen and Consortium to Establish a Registry

for Alzheimer’s Disease Neuropsychological Assessment Battery [66]. A randomized study

of adults with mild-to-moderate AD found a decrease in functional decline among patients

assigned to a vitamin E supplement[33] and a second randomized study showed vitamin E

supplementation decreased progression of AD [101]. Two additional randomized studies, one

in patients with mild cognitive impairment and one in patients with AD, did not find a pos-
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Figure 4.6: The table and figure on the left side show the mean estimated treatment effect
estimated using a simple random sample (SRS) and a convenience sample with different
weighting strategies. The 95% confidence interval (CI) is constructed using the empirical
standard error estimate. The table on the right compares standard error (SE) estimates of
the treatment effect when when the propensity score and outcome models were weighted.
The four standard error estimates are the mean proposed estimate, the mean design based
estimate, the mean naive (non-sandwich) estimate, and the empirical estimate calculated
across simulations.
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itive effect of vitamin E [72, 90]. Three observational studies found a significant association

between vitamin E supplementation and risk of progressing to AD for cognitively normal

older adults [83, 118, 12], but three additional observational studies in the same population

did not find this association [79, 74, 48]. We wanted to estimate the effect of vitamin E on

a functional outcome with an observational study in a convenience sample and demonstrate

the impact of accounting for the selection mechanism. The National Alzheimer’s Coordi-

nating Center (NACC) Uniform Data Set can be used to estimate the effects of potential

treatment for Alzheimer’s disease [13]. NACC data is, however, subject to sampling bias

and overrepresents highly educated and non-Hispanic White participants, relative to the

US population of older adults. We estimated the effect of vitamin E supplementation on

the Functional Activities Questionnaire (FAQ) using propensity scores and estimated sam-

pling weights. We compared the estimates when the propensity score estimation model was

weighted, the causal model was weighted, when both models were weighted, or when neither

were weighted.

4.4.1 Methods for Application

NACC data were contributed by the NIA-funded Alzheimer’s Disease Core Centers and

Alzheimer’s Disease Research Centers (ADCs). The NACC database is funded by NIA/NIH

Grant U24 AG072122. We used baseline data for NACC participants from 41 ADCs who

enrolled from September 2005 to August 2021, were cognitively normal, and 65 or older. We

created an indicator for prescription drug use by reviewing patients’ medications listed from

the last two weeks and removing common over the counter medications (such as pain pills)

and vitamins. Patients who reported other medications were classified as taking prescription

medications. We constructed the indicator for vitamin E supplementation by identifying

individuals who reported any medication usage in the last two weeks containing the phrase

”vitamin E” as those who used a vitamin E supplement.
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We estimated the probability of self-selection into NACC relative to a representative sample

of adults over 65 years old from the 2013-2016 cycles of the National Health and Nutrition

Examination Survey (NHANES) which we denote NHANES-REP. We use logistic regression

with forward-selection using AIC for model selection and included quadratic terms in the

scope as described in Chapter 3 [15]. To estimate the sampling probablities, we matched on

age, sex, education, race and ethnicity, presence of high blood pressure, presence of diabetes,

presence of congestive heart failure, presence of major depression, and prescription drug use.

We used the estimated sampling probabilities to compute estimated sampling weights for the

NACC participants. We report summary statistics from NHANES and NACC along with

weighted estimates from NACC.

We summarized covariates collected in NACC by mean and standard deviation for continuous

covariates and proportion for categorical variables. We compared the raw summary statistics

collected in NACC and weighted summary statistics that use estimated sampling weights to

those estimated with NHANES-REP. We estimated propensity scores using logistic regression

with forward-selection using dAIC and AIC depending on whether the logistic model was

weighted or not. We included age, sex, education, race and ethnicity, presence of high

blood pressure, presence of diabetes, presence of congestive heart failure, presence of major

depression, prescription drug use, type of residence, study partner type, marital status,

level of independence, family history of cognitive impairment, history of smoking, thyroid

disease, previous stroke, previous heart attack, and previous seizure along with quadratic

terms and two-way interactions in the model scope. We estimated propensity scores by both

including and omitting the estimated sampling weights. Finally, we estimated the effect of

vitamin E on the FAQ score using propensity score adjustment. We estimated the effect

using the unweighted and weighted propensity score estimates and compared results when

including and omitting estimating sampling weights in the causal model. When both the

propensity score and outcome models were weighted, we report the proposed standard error

estimates detailed in Section 4.2.3. For all other estimates, we use the standard sandwich
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estimate that accounts for sampling weights [77]. Code for this section is available at https:

//github.com/oliviabern/weighted_propscores.

4.4.2 Results

After excluding 809 participants missing the FAQ, there were 14,358 participants available

for our analysis. Unweighted and weighted summary statistics for NACC compared to those

from NHANES-REP are reported in Table 4.1. When failing to account for the selection

mechanism, NACC participants where more likely to be college educated (63% vs. 29%)

than the general population of older adults in the US as estimated with NHANES-REP.

NACC participants were also more likely to be female and have lower rates of high blood

pressure, diabetes, and congestive heart failure. NACC underrepresents Hispanic and non-

Hispanic Asian participants but overrepresents non-Hispanic Black participants relative to

the population of older adults in the US. This is likely driven by individual Alzheimer’s

Disease Research Centers that focus on recruiting Black participants. Once sampling weights

are incorporated into the estimation of summary statistics from NACC, they are very similar

to those calculated using NHANES-REP.

When weighting both the propensity score and outcome models to obtain inference about

the US population, we estimated that participants who take vitamin E supplements have

a 0.29 point lower (95% CI: -0.54, -0.04) FAQ score, on average, compared to participants

who do not. When failing to account for sampling bias and omitting sampling weights, we

estimated that they have a 0.01 point lower (95% CI: -0.11, 0.09) FAQ score, on average.

Full results are reported in Figure 4.7. The confidence intervals for the weighted methods are

wider, but that reflects are increased variability from generalizing to a population different

than the one sampled.
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Table 4.1: Covariates are summarized as mean (standard deviation) for continuous vari-
ables and as proportions for categorical variables from samples of adults older than 65 from
NHANES-REP (23,468 observations), the unweighted NACC (14,358 subjects) data set, and
weighted NACC data sets. The standardized mean difference for summary characteristics
in NACC relative to NHANES-REP is reported in italics and brackets. Sampling weights
for NACC participants are estimated using logistic regression with forward model selection
based on the AIC.

NHANES-REP NACC

Unweighted Unweighted Weighted

Age 69.6 (6.7) 72.0 (6.2) [-0.34 ] 69.9 (6.8) [-0.04 ]

Education: Less than high school 0.16 0.04 [0.33 ] 0.16 [-0.01 ]
Education: High school 0.23 0.14 [0.22 ] 0.23 [0.00 ]
Education: Some college 0.32 0.19 [0.28 ] 0.32 [-0.01 ]
Education: College or higher 0.29 0.63 [-0.75 ] 0.29 [0.01 ]

Race/Ethnicity: Non-Hispanic White 0.75 0.74 [0.02 ] 0.72 [0.06 ]
Race/Ethnicity: Hispanic 0.09 0.06 [0.09 ] 0.10 [-0.04 ]
Race/Ethnicity: Non-Hispanic Asian 0.04 0.03 [0.08 ] 0.05 [-0.03 ]
Race/Ethnicity: Non-Hispanic Black 0.09 0.16 [-0.21 ] 0.10 [0.00 ]
Race/Ethnicity: Other 0.02 0.01 [0.10 ] 0.03 [-0.07 ]

Female 0.54 0.65 [-0.22 ] 0.55 [-0.01 ]
High blood pressure 0.59 0.52 [0.15 ] 0.61 [-0.04 ]
Diabetes 0.22 0.13 [0.23 ] 0.24 [-0.04 ]
Congestive heart failure 0.07 0.02 [0.19 ] 0.08 [-0.04 ]
Major depression 0.10 0.09 [0.02 ] 0.08 [0.05 ]
Prescription medications 0.86 0.90 [-0.12 ] 0.86 [-0.02 ]

Higher FAQ scores correspond to needing more help with functional activities. Accounting

for the selection mechanism by including sampling weights in both the propensity score and

outcome models led to a larger estimated treatment effect, where the participants assigned

to vitamin E had less difficulty completing activities. An FAQ score of 1 corresponds to a

patient having difficulty on one activity but still being able to complete it independently

[81]. The treatment effect of a third of a point is likely not clinically meaningful, but these

results suggest that failing to obtain representative samples my lead to bias in the estimated

treatment effect. In this application, the effect of vitamin E on FAQ scores seems to be

differential for those overrepresented and underrepresented in the sample. The best way to
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Figure 4.7: Forest plot showing the estimated treatment effect or the average difference
in Functional Activities Questionnaire for older adults who take vitamin E supplements
compared to those who do not. Estimates that included or omitted sampling weights in the
propensity score and outcome models are compared. For the estimate that used sampling
weights in the propensity score and outcome models, the reported 95% confidence intervals
uses the proposed variance estimate described in Section 4.2.3, and the other three estimates
use a standard robust variance estimate.

obtain representative treatment effect estimates is to recruit a representative sample, but

including estimated sampling weights will allow for a more generalizable estimate.

Our results are consistent with the 3 other observations studies that have estimated an

association between vitamin E supplementation and a decreased risk of cognitive decline.

Using NACC data and using sampling weights to generalize to the US population considers

a different patient population than clinical trials which tend to overrepresent highly edu-

cated and non-Hispanic White patients relative to the US population. Our estimates are

more comparable to estimates from observational studies but those are subject to potential

unobserved confounding. The NACC website (https://naccdata.org/publish-project/

authors-checklist#acknowledgment) states “NACC data are not ideally suited to study

risk factors for dementia because of varying methods of subject recruitment across Cen-

ters and because of largely incomplete exposure histories.” Estimating sampling weights and

using them to estimate the effect of vitamin E supplementation addresses the former limita-
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tion, but not the latter. We defined vitamin E supplementation as individuals who reported

consuming vitamin E on their medications list from the previous two weeks. We may by

missing identifying individuals who took vitamin E at an earlier time of their life or whose

who did not include vitamin E when reporting current medications.

4.5 Discussion

In this chapter we discussed a strategy to estimate a marginal treatment effect estimate for

a target population when using a convenience sample that may not be representative of that

population. Bias from the selection mechanism arises when the treatment effect varies for

subpopulations that are disproportionately represented in a convenience sample. Estimating

sampling weights for convenience samples and using them to estimate propensity scores for

a target population and corresponding propensity score adjusted treatment effect estimates

for a target population is a practical solution to sampling bias. One may argue that we could

directly model the treatment effect for each subpopulation that is over- or under-represented

in a sample, but the proposed approach does not require us to specify which subpopulations

will have treatment effect heterogeneity. In practice, we will always marginalize over some

subpopulations and using sampling weights allows us to obtain a marginal estimate that

generalizes to the target population. Additionally, implementing sampling weights allows us

to assess the impact of sampling bias by comparing the unweighted and weighted estimated

treatment effects. For example, in our application to the NACC data we estimated that

vitamin E had a larger impact on functional activities scores when accounting for the selection

mechanism. This suggest that subpopulations that are underrepresented in NACC have a

stronger relationship between vitamin E supplementation and functional activities.

Our work extends previous papers that address combining sampling weights and propensity

scores. Several papers assume the propensity score model is correctly specified and conclude
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that sampling weights are unnecessary in the propensity score estimation modeling[9, 68]

and we agree. Ignoring the selection mechanism will not bias propensity score estimates if

the model is correctly specified. We address the scenario where we are unable to correctly

estimate propensity scores. Our work is most related to the analysis of Ridgeway et al.

[93] and their data generation scenario 5 where the propensity score model is misspecified.

Ridgeway also assumes that there is treatment effect heterogeneity with respect to a covariate

that is misrepresented in the sample (see Appendix A.1 for the simulation details).

We extended this work by quantifying the impact of different features of the data generating

mechanism on the sampling bias. We found that the the magnitude of treatment effect het-

erogeneity impacted the sampling bias–larger heterogeneity led to more bias. When looking

at covariates that do not modify the treatment effect, the strength of the relationship be-

tween the covariate and the response did not change the magnitude of the sampling bias. The

relationship between confounders and the probability of treatment as well as the relationship

between confounders and the response impacted the volatility of estimates when only weight-

ing the outcome model. Additionally, we expanded Ridgeway’s work by considering the case

when sampling weights are unknown and must be estimated, as is the case in convenience

samples. We assessed the relationship between how well sampling weights are estimated

and the amount of bias reduction. We considered the scenario where we collect proxies for

the group membership that is overrepresented in the convenience sample and found that as

the strength of the proxy increases, the bias from unrepresentative sampling decreases. We

found that the correlation between the proxy and the group membership indicator had to be

large before implementing sampling weights removed sampling bias. In particular, we found

that when there was a 14% misclassification rate between the proxy and the covariate that

determined the sampling probability, weighting the propensity score and outcome models fit

in a convenience sample removed half of the sampling bias. In practice, is very important

to carefully consider which covariates should be related to the sampling probability, ensure

they are collected, and include them when estimating the sampling weights. Even if we are
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only able to collect partial information about the sampling probability, we are still able to

remove some bias.

Third, we assessed the impact of accounting for the selection mechanism on the uncertainty

of the treatment effect estimate and proposed a novel estimate of the variance to quantify

the uncertainty. We observed that including sampling weights increased uncertainty in the

treatment effect estimates which is a result of using a convenience sample to estimate a

treatment effect for a different population [75, 64]. We observed this same trend in our pre-

vious work on estimating sampling weights for convenience samples [15]. Additionally, our

proposed variance estimate accounts for uncertainty arising from estimating sampling prob-

abilities and propensity scores. We observed that the proposed variance estimate matches

the empirical standard errors in our simulation scenario. Our proposed variance estimate is

easy to implement and so we recommend using it to account for uncertainty that arises from

estimating sampling weights.

Our approach to estimating causal effects in a convenience sample with observational data

does have limitations. As in all observational studies, the treatment effect estimate can be

subject to unmeasured confounding if the unconfoundedness assumption fails. Using propen-

sity scores to adjust for observed confounding, however, will allow us to better reduce bias in

estimated causal effects than ignoring all confounding. It is important to carefully consider

potential confounders and attempt to collect them. Similarly, we are only able to account

for measured sampling bias. Sampling bias occurs when the treatment effect is differen-

tial for subpopulations misrepresented in the sample. Researchers should hypothesize which

variables are likely related to the sampling probability and may cause treatment effect mod-

ificiation. In clinical studies, treatment effect may be differential by socioeconomic status,

health status, sex, education, race, or ethnicity. It is important to collect the hypothesized

variables in the convenience sample and use a representative sample that also collects these

variables. NHANES is a practical option in biomedical application because it contains infor-
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mation on group identifiers that may be under- or over-represented in your sample. As we

saw in our simulation study, only collecting partial information on the selection mechanism

still reduced bias relative to estimates from a simple random sample. Thus, adjusting for

measured sampling bias is better than ignoring it. In our application, we are unable to

quantify how well we are able to estimate sampling weights for NACC participants, but we

were able to account for sampling bias related to race, ethnicity, education level, sex, age,

and several comorbidities. We are unable to account for sampling bias caused by differences

in socioeconomic status or unmeasured health concerns. Both weighted estimates and un-

weighted estimates have the same direction of effect, but weighted estimates shift further

away from the null hypothesis. Incorporating estimated sampling weights leads to increased

variability in estimates but that is preferable to ignoring the selection mechanism and pro-

viding a biased treatment effect estimate for the population of interest. Directly collecting

a representative sample is the best solution to avoid sampling bias, but it may not always

be practical or ethical. Estimating sampling weights allows us to better estimate treatment

effect estimates in a target population.

Oversampling individuals from certain subpopulations with differential treatment effects can

lead to biased estimates of the treatment effect in a target population. Estimating sampling

weights for a convenience sample allows us to address and quantify the impact of sampling

bias. Using our proposed variance estimate allows for quantification of the treatment effect

estimate in a target population.
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Chapter 5

Comparison of analytic and

resampling estimates of prediction

error under a biased sampling scheme

5.1 Introduction

In the previous chapter, we discussed methods for incorporating sampling weights into

propensity scores with convenience samples and in this chapter we will discuss methods

for incorporating sampling weights into predictive models for convenience samples. Pre-

diction models are common in healthcare and many other fields including political science,

physics, technology, finance, and biology. Although accurate predictive models are benefi-

cial, inaccurate predictions can be misleading at best and unethical at worst. A common

way to select a prediction model from a set of candidate models is to select the model that

minimizes the prediction error in the population of interest [54]. If the training sample is

not representative of the population, estimates of the prediction error will likely be biased
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for the error in the target population. Biased estimates of the prediction error can result in

failing to select the best predictive model leading to inaccurate predictions.

The Consent-to-Contact (C2C) registry at the University of California (UC), Irvine enrolls

volunteers who are interested in participating in future research studies [51]. C2C researchers

want to learn about recruitment strategies for the United States and want to gain more

information about strategies for neighborhoods with greater socioeconomic disadvantage. As

part of a recently funded NIH grant, the leadership of the C2C registry plans to oversample

this subpopulation. Once this is implemented, if the C2C data set is used to build predictive

models the predictions will not generalize to the target population of the United States. To

address this, the sampling scheme needs to be accounted for when fitting and evaluating the

performance of a predictive model.

We can broadly classify methods for assessing predictive model performance into two classes:

analytic methods and resampling methods. Analytic methods such as Mallows Cp [78],

Akaike’s information criterion (AIC) [4, 5], and Bayesian information criterion (BIC) [104]

derive an analytic relationship between the training error and the prediction error to estimate

the prediction error of a given model. Resampling methods such as cross-validation [106, 107,

6] and the bootstrap [35] resample the data to mimic having a separate test set for estimating

the prediction error. All of these methods assume that the sample is representative of the

population or that the sample is collected using a simple random sampling scheme (SRSS).

If a training sample is not representative of the target population, these estimates will not

give a true assessment of a model’s performance in the target population. A biased sampling

scheme (BSS) is one where observations are sampled with unequal sampling probabilities,

leading to an unrepresentative sample. Survey samples are one example of a BSS where

researchers sample individuals with non-uniform, but pre-specified sampling probabilities.

The resulting sample is not representative of the target population, but sampling weights for

each observation are known because they are a function of the sampling probabilities (see
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chapter 2 of Lohr (2010) for an overview [73]). Convenience samples are another example of a

sample with a BSS where researchers select individuals based on their availability (see Section

1.3 of Lohr (2010) [73]). For example, in a research registry the participants are people

who were interested in volunteering and were informed about the opportunity. Sampling

weights must be estimated for convenience samples because the sampling probabilities are

not pre-specified. Sampling weights are commonly used in the survey sampling literature to

obtain estimates for the target population when using a sample with non-uniform sampling

probabilities [75, 59, 73]. Sampling weights estimated with a representative sample are used

for convenience samples to obtain estimates for the target populations [2, 15, 26, 94, 40, 117,

88].

There are several extensions to methods for estimating the prediction error that have been

developed for a BSS. These extensions use sampling weights in the estimate of the prediction

error for the target population. Lumley and Scott (2015) developed an extension to the AIC

called the design-based AIC (dAIC) [76]. Wieczorek et al. (2022) developed an extension to

5-fold cross-validation that implements sampling weights [115]. In Lumley and Scott’s paper

they derive a relationship between dAIC and weighted cross-validation and show that the two

are asymptotically equivalent. No one has, however, empirically compared their performance

for estimating out-of-sample predictive error. In the SRSS case, it has been shown that

resampling methods are a better estimate of out-of-sample predictive error because they

directly estimate it but are more computationally expensive [54]. The objective of this

chapter is to evaluate the performance and trade-offs of analytic and resampling estimates

of predictive error with a BSS.

The remainder of this chapter is organized as follows. We introduce common estimates of

the prediction error under a SRSS in Section 5.2 and under a BSS in Section 5.3. We discuss

the theoretical relationship between analytic and resampling methods developed by Lumley

and Scott (2015) [76] in Section 5.4. Next, we present a simulation study comparing analytic

122



and resampling methods for estimating the prediction error under a BSS in Section 5.5. In

Section 5.6 we then apply these methods to real data and compare out-of-sample predictive

estimates for models designed to predict individual willingness to participate in research

using a sub-sample of C2C data with larger sampling probabilities for individuals from

neighborhoods with more socioeconomic disadvantage in. We conclude with a discussion

of the considerations for deciding between analytic and resampling methods when data are

obtained via a BSS in Section 5.7.

5.2 Prediction assessment methods under a simple ran-

dom sampling scheme

For a more comprehensive overview of prediction assessment see Chapter 7 of Hastie, Tibshi-

rani, and Freedman (2009) [54]. Briefly, a common strategy for selecting a prediction model

from a scope of models is to choose the model with the lowest prediction error in the target

population. We quantify the prediction error using a loss function such as 0−1 loss, squared

error loss, or log-likelihood loss. A loss function takes the form, L(Y, f̂(X)) where X is a

vector of covariates, Y is the response, and f̂(X) is the predicted value of Y using model

f̂(·). The log-likelihood loss is

L(Y, f̂(X)) = −2× loglik = −2× ℓ
(
f̂(X)

)
= −2× log Pr(Y |X)

where loglik and ℓ() both denote the log-likelihood. Note that the −2 term out front is

included so log-likelihood loss is equivalent to squared error loss when a normal likelihood

is assumed, because for relative model comparison the scaling factor is inconsequential.

A common analytic method for estimating prediction error, Akaike’s information criterion

(AIC), uses the log-likelihood loss and so in this chapter we focus on the log-likelihood loss for
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ease of comparison, but all of the methods discussed can be adapted to other loss functions.

The prediction error, as measured by the loss function, in the target population is formalized

by the expected prediction error (EPE) or expected test error for an independent sample

drawn from the target population. The EPE under log-likelihood loss is

EPE = E(X0,Y 0)

[
L(Y 0, f̂(X0))

]
= −2E(X0,Y 0)

[
− 2× ℓ

(
f̂(X)

)]
(5.1)

where the expectation is over the joint distribution of X and Y . The notation X0 and Y 0

denote new values of X and Y drawn from their joint distribution. If the data set is large

enough one can partition it into separate training and test sets. For smaller data sets the

full sample is commonly used for model training, selection, and assessment.

A naive estimate of the EPE is the loss function computed with the training sample which

is termed the training error. It is well known that training error underestimates the true

EPE because the model is fit and evaluated with the same data. Suppose we have a training

sample with n independent observations {(xi, yi)} where i = 1, . . . , n that we use to estimate

f̂(xi). Let

ℓ
(
f̂(X)

)
=

n∑
i=1

ℓi
(
f̂(xi)

)

where ℓi
(
f̂(xi)

)
is the i-th observation’s contribution to the log-likelihood. Then the training

error (err) under log-likelihood loss is

err =
1

n

n∑
i=1

L(yi, f̂(xi)) = −2×
n∑

i=1

ℓi
(
f̂(xi)

)
.

There are two classes of estimators of prediction error using training data. The first class

consists of analytic methods that estimate the difference between the test error and the
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training error. The second class, resampling methods, resample the data to mimic having

separate training and test sets. There have been many estimates in both classes developed

that assume the training set is representative of the target population. We will compare

several examples of analytic and resampling methods, but there are many options to choose

from for different loss functions and estimation strategies.

5.2.1 Analytic estimates for a SRSS

For ease of computation, analytic methods estimate the prediction error when the covariate

distribution of X is held constant. This can be interpreted as the expected prediction error

if n new values of the response, y0i , i = 1, . . . , n were drawn for each xi value in the training

set. This is called the in-sample error (Errin). Under log-likelihood loss Errin is given by

Errin =
1

n

n∑
i=1

EY 0

[
L(Y 0

i , f̂(xi))
∣∣Y ] = −2

n∑
i=1

EY 0

[
ℓi
(
f̂(xi)

)∣∣Y ].
Notice that the expectation is only over the distribution of Y 0. Optimism (op) is defined as

the difference between the in-sample error and the training error,

op ≡ Errin − err.

Optimism tends to be positive since the training error generally underestimates Errin. In

most cases it is easier to estimate the average optimism, ω, where the expectation is taken

over Y ,

ω ≡ EY (op).
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Thus analytic estimates of the in-sample error generally take the form

Êrrin = err + ω̂.

Akaike’s information criterion (AIC)

Akaike’s information criterion (AIC) [4, 5] is an analytic estimate of the in-sample error

under log-likelihood loss that follows the above form. Let θ̂ be the maximum likelihood

estimates of θ, a vector of parameters defining prediction model f(·). Then Errin under

log-likelihood loss is estimated by

AIC = −2ℓ
(
f̂(X)

)
+ 2p. (5.2)

To emphasize the dependence of the log-likelihood on θ̂ we could change our notation in this

formula from ℓ
(
f̂(X)

)
to ℓ

(
θ̂
)
. The Bayesian information criterion (BIC) [104] is another

common analytic estimator under log-likelihood loss and Efron’s general covariance penalty

[36] extends analytic estimates to a broader class of loss functions. In this chapter we will

focus on the AIC as an example of analytic methods, but other estimators should perform

similarly.

5.2.2 Resampling estimates for a SRSS

Resampling estimates are able to directly estimate the EPE because they train the model

and test it on non-overlapping samples which is analogous to drawing new observations for

both X and Y .
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K -fold cross-validation

K-fold cross-validation (CV) [106, 107, 6] mimics partitioning the data into training and

test sets by splitting the data into K folds. For k = 1, . . . , K the model is fit on all folds

except fold k and the loss function is computed for the k-th fold. The loss function is then

aggregated across all the folds. More formally, let k(i) be the fold that containing observation

i and let f̂−k(i)(xi) denote the predicted value for yi from the model fit on all folds besides

k(i). Then the K-fold CV statistic under log-likelihood loss is

CVK =
1

n

n∑
i=1

L(yi, f̂
−k(i)(xi)) = −2

n∑
i=1

ℓi(f̂
−k(i)(xi)). (5.3)

For large values of K, the cross-validation estimate is subject to high variability because

there is a high degree of overlap across the folds, but for small values of K the estimate

can have high bias because the training samples are smaller. Setting K = 5 or 10 is often

recommended as a compromise and we will use K = 5 in this chapter [54, 21, 65].

Leave-one-out cross-validation

WhenK = n, the CV estimator is termed the leave-one-out (LOO) CV estimator. In general,

it is expensive to compute but there is an analytic form of the estimator for linear regression

models. Specifically, the analytic form of the LOO statistic in the ordinary least squares

model is based on the leave-one-out residuals, or the residuals that would be obtained if the

model was fit without yi [6]. Let ŷi = f̂(xi) and ŷ(i) be the predicted value of yi from the

model fit with all observations besides yi. Then let X be the n × p matrix of p covariates

where the i-th row is xi. Then the leave-one-out residual for yi is,

yi − ŷ(i) =
yi − ŷi
1−Hii
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where H = X(XTX)−1XT is the hat matrix. The LOO CV estimator under log-likelihood

loss when Y is assumed to follow a normal distribution with variance σ2 is,

CVLOO = −2n log

(
1

σ
√
2π

)
+

n∑
i=1

1

σ2

[ yi − ŷi
1−Hii

]2
(5.4)

where σ is often estimated with a low bias model.

5.2.3 .632 bootstrap

Bootstrapping is a versatile technique commonly used to estimate a sampling distribution

for summary statistics [34, 37]. Suppose we have data Z = {z1, ..., zn} where zi = (xi, yi).

Bootstrapping involves sampling from Z with replacement B times to obtain B bootstrap

samples of size n. The general approach of a bootstrap (BS) estimate is to compute a statistic

for b = 1, . . . , B bootstrap samples and observe it’s behavior across samples. Bootstrapping

can be used to estimate the expected prediction error, but there is overlap across bootstrap

samples so they can not act as separate training and test sets as is done in cross-validation.

The leave-one-out bootstrap fits the model on the b-th bootstrap sample and computes the

loss function on all zi from the full sample that were not sampled into the b-th bootstrap

sample.

Let f̂ ∗b(xi) denote the predicted value for yi from the model fit on the b-th bootstrap sample,

C−i be the set of indices of bootstrap samples that do not include zi, and |C−i| be the size

of the set. Then the leave-one-out bootstrap estimate of the EPE under log-likelihood loss

is

BSLOO =
1

n

n∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
∗b(xi)) = −2

n∑
i=1

1

|C−i|
∑
b∈C−i

ℓi(f̂
∗b(xi)). (5.5)

The LOO BS estimator is subject to high bias from small sample sizes because each sample
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is drawn with replacement. The probability a given observation will be sampled into the

b-th bootstrap sample is

Pr(zi ∈ BS sample b) = 1−
(
1− 1

n

)n
≈ 1− e−1 = 0.632.

The .632 bootstrap estimator [35] is a weighted average between the LOO BS (which overes-

timates the EPE) and the training error (which underestimates the EPE). The weights are

based on the probability of sample inclusion. The .632 BS estimate of the EPE is

BS.632 = .368 · err + .632 · BSLOO. (5.6)

This estimator does not perform well for very overfit models.

5.3 Prediction assessment methods for a biased sam-

pling scheme

All of the prediction assessment methods discussed above assume the training sample is

representative of the target population. Samples obtained via a BSS are, however, not

representative of the target population. Directly using the above estimates of the EPE will

provide estimates of the prediction error for the population one’s sample is representative

of. Several methods have been proposed for incorporating sampling weights that have been

developed to estimate the prediction error in a target population for a model trained on data

from a BSS. In this section we assume that all prediction models are fit using sampling weights

to account for the sampling scheme. For example, suppose a weighted linear regression

model is fit. The goal of weighted prediction assessment methods is to estimate how well

the estimated prediction model will perform in the target population.
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5.3.1 Analytic estimates for a BSS

Similar to analytic estimates for the EPE for a SRSS, analytic estimates that account for the

sampling scheme target the in-sample error by estimating the expected optimism. Sampling

weights are included in the computation of the training error and the optimism.

Design-based AIC

Lumley and Scott (2015) extended AIC (Equation 5.2) to include sampling weights to ac-

count for the sampling scheme [76]. Let wi be the sampling weight for observation i where∑n
i=1wi = 1. The weighted estimate of the training error under log-likelihood loss is

ℓ̄(θ) =
n∑

i=1

wiℓ
(
f̂θ(xi)

)
=

n∑
i=1

wiℓi(θ).

Then θ̄ is the value of θ that maximizes ℓ̄(θ). Suppose the maximum of the expected popu-

lation log-likelihood ℓ(θ) is obtained at a unique point θ∗. Under some regularity conditions

θ̄ is consistent for θ∗ as n,N → ∞ where N is the population size [76, 42]. We also assume

the asymptotic framework that there is a sequence of finite populations that are random

samples from the target super-population.

A weighted estimate of the score function that accounts for the sampling scheme is

Ū(θ) =
∂ℓ̄(θ)

∂θ

where θ̄ solves the corresponding score equation Ū(θ̄) = 0. Let Ī(θ̄) be the weighted analogue

of Fisher’s observed information matrix,

Ī(θ) = −∂Ū(θ)
∂θ

= −
n∑

i=1

wi
∂2ℓi(θ)

∂θ∂θT
.
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The asymptotic covariance of
√
nθ̄ can be estimated with a sandwich estimate:

V̄ (θ̄) = Ī(θ̄)−1V̄U(θ̄)Ī(θ̄)−1

where V̄U(θ) is a consistent estimator of the covariance of
√
nŪ(θ) such as a method of

moments estimator. The design-based AIC, or dAIC, that accounts for the sampling scheme

is given by

dAIC = −2ℓ̄
(
θ̄
)
+ 2trace(Ī(θ)V̄ (θ̄)). (5.7)

If the weights are uniform and the model is correctly specified this reduces to the usual

AIC (Equation 5.2). There are also survey weighted extensions to the BIC [76] and Efron’s

general covariance penalty [57].

5.3.2 Resampling estimates for a BSS

Since resampling estimates directly estimate the EPE using mutually exclusive training and

test sets, they do not require estimating (and accounting for the sampling scheme in) the

optimism. Instead, the sampling scheme can be accounted for by including sampling weights

in the computation of the loss function on the test sets.

Survey weighted K -fold cross-validation

An extension of the K-fold cross-validation estimate (Equation 5.3) for a BSS was recently

proposed by Wieczorek et al. (2022) [115]. Under log-likelihood loss the weighted K-fold

131



CV statistic is given by

wCVK =
1

n

n∑
i=1

wiL(yi, f̂
−k(i)(xi)) = −2

n∑
i=1

wiℓi(f̂
−k(i)(xi)).

Notice the weights scale each observation’s contribution to the loss function.

Survey weighted leave-one-out cross-validation

Similarly, there is a natural weighted extension to the leave-one-out CV estimator (Equation

5.4) for weighted linear regression under a BSS. Assuming a log-likelihood loss function and

that Y follows a normal distribution with variance σ2, the weighted LOO CV estimate is

wCVLOO = −2n log

(
1

σ
√
2π

)
+

n∑
i=1

wi
1

σ2

[
yi − ȳi
1− H̄ii

]2

where ȳi is the estimate from solving the weighted score equation Ū(θ). In the scenario under

consideration where the model is fit with weighted least squares, if W is the n× n diagonal

matrix of weights wi then H̄ = X(XTWX)−1XTW and ȳi = H̄iiyi.

Cawley (2006) proposed a weighted LOO CV estimator for weighted linear regression sup-

port vector machines with a categorical response but they discuss weights for balancing the

response categories to match the population prevalence [24].

Survey weighted .632 bootstrap

A weighted extension to the leave-one-out BS estimator (Equation 5.5) for a BSS with log-

likelihood loss is

wBSLOO =
1

n

n∑
i=1

1

|C−i|
∑
b∈C−i

wiL(yi, f̄
∗b(xi)) = −2

n∑
i=1

1

|C−i|
∑
b∈C−i

wiℓi(f̄
∗b(xi)).
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We can denote the weighted training error as werr = ℓ̄
(
θ̄
)
, then the weighted extension to

the .632 bootstrap estimator (Equation 5.6) is

wBS.632 = .368 · werr + .632 · wBSLOO.

Rowe and Binder (2008) [96] discussed a weighted version of the leave-one-one bootstrap

for stratified samples based on a bootstrap method proposed by Rao, Wu, and Yue (1992)

[92]. They compared it to a weighted AIC that did not account for the sampling scheme in

the optimism, as is done for dAIC, in an applied data analysis. They did not provide any

theoretical justification or simulation studies to assess the performance of their method.

5.4 Asymptotic relationship between AIC and leave-

one-out cross-validation

There are trade-offs of using analytic or resampling methods to estimate the EPE [54]. Re-

sampling methods directly estimate the EPE instead of the training error, but they suffer

from high computational cost. Analytic methods estimate the in-sample error which gener-

ally underestimates the EPE since it conditions on the observed distribution of the predictor

space, X. They are also constrained by which loss functions are available, though Efron’s

general covariance penalty extended analytic methods to loss functions from the q class of

error measures. Analytic methods are, however, easy to implement and quick to compute,

so it is of interest to see how well they perform compared to resampling methods.

For a SRSS, Stone (1977) [107] showed that AIC and leave-one-out CV are asymptotically

equivalent assuming the true model is considered in the scope. Lumley and Scott (2015) [76]

derived a similar relationship for the dAIC and weighted leave-one-out CV in Section 3.1

and Appendix A.1 of their paper.
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Briefly, the weighted LOO CV estimator of the expected population log-likelihood is

ℓ̄wLOO = ℓ̄(θ̄(i)) =
n∑

i=1

wiℓi(θ̄(i))

where θ̄(i) is the vector of parameters from fitting the weighted model without observation

i. The LOO log-likelihood can be related to the model fit on the full data as follows,

ℓ̄wLOO = ℓ̄(θ̄)− trace
(
Ī(θ̄)V̄J

)
+ op(n

−1)

where V̄J is a jackknife estimator of Cov(θ̄):

V̄J =
n− 1

n

n∑
i=1

(
θ̄(i) − θ̄

)2
.

From Equation 5.7, the dAIC estimator of the expected population log-likelihood is,

ℓ̄dAIC = ℓ̄(θ̄)− trace
(
Ī
(
θ̄)V̄ (θ̄)

)
.

Recall that V̄ (θ̄) is the asymptotic covariance of the maximum likelihood estimate of θ. If

the jackknife estimate V̄U is also a consistent estimate of θ, the dAIC and weighted LOO

CV estimates are asymptotically equivalent.

Thus, the AIC and dAIC should approach the unweighted and weighted LOO estimators,

respectively, as the sample size increases which is when resampling methods become more

computationally expensive. In light of this, analytic methods should be more attractive in

larger samples because they will yield better estimates of the EPE and save computational

resources precisely when needed. We will empirically explore this later via a simulation

study.
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5.5 Simulation study

We conducted a simulation study to compare the performance of unweighted and weighted

estimates of the EPE along with analytic and resampling estimates. We designed a simulation

study that would reflect our application. We used the same data set from the C2C registry

but simulated the response so we could control the data generating mechanism and sampling

scheme. As part of the enrollment process participants answer questions about demographics,

medical history, behaviors, and attitudes towards research.

The Area Deprivation Index (ADI) is a measure of socioeconomic disadvantage at the census

block level [63, 109]. The ADI includes features such as income, education, employment, and

housing quality. ADI ranks neighborhoods within individual states or across the US with

each neighborhood being assigned to a decile. We used ADI scores based on the state

rankings. Scores range from 1 to 10 where a score of 1 represents neighborhoods with the

least socioeconomic disadvantage and a score of 10 representing the most socioeconomic

disadvantage. To obtain more information about recruitment strategies for neighborhoods

with more socioeconomic disadvantage, the future plan for the C2C registry is to recruit

participants with a stratified approach so that there is equal representation across the ten

levels of ADI.

To replicate this sampling scheme, we treated the C2C sample with N = 2,822 observations

as a finite population and drew training samples with a BSS using sampling probabilities for

each ADI score inversely proportional to the proportion of that score in C2C. An illustration

of the sampling scheme and the prevalence of each ADI score in samples drawn with a SRSS

and a BSS is provided in Figure 5.1. We fit weighted linear regression models to predict a

simulated continuous response, Y , and compared estimates of the expected prediction error

in the population. Note that all of the predictive models are weighted regardless of whether

or not the prediction error estimate is weighted.
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Figure 5.1: The distribution of state Area Deprivation Index (ADI) scores in samples drawn
with a simple random sampling scheme (SRSS) and a biased sampling scheme (BSS).

The covariates collected on C2C participants included age, Cognitive Function Instrument

score (CFI) [7, 112], Research Attitudes Questionnaire score (RAQ) [99]), years of educa-

tion (educ), primary language English (English primary), enrollment after the start of the

COVID-19 pandemic on 3/19/2020 (join > 3/19/20), exercise, sex, prescription medicine use

(medications), reporting 0, 1, or 2+ medical conditions (N. medical cond), race and ethnicity,

consenting to receive calls from C2C researchers (receive calls), consenting to receive mail

from C2C researchers (receive mail), whether they learned about the C2C from an email,

community talk, or other method (referral method), and signing up for the email newsletter

(enewsletter). Race and ethnicity were grouped into five mutually exclusive categories. The

Hispanic category includes all participants who reported a Hispanic ethnicity. The non-

Hispanic (NH) Asian, NH Black, and NH White categories include participants who did not

report a Hispanic ethnicity but reported only one race which were Asian, Black or African

American, and White, respectively. The Other category includes all remaining participants

who who reported a non-missing race including multiple races. We originally included an

additional covariate, agreeing to receive emails from C2C researchers, but almost all (98.6%)

of participants agreed and so we removed it from the model scope to avoid problems with

sparsity.
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5.5.1 Simulation methods

We conducted 250 simulations and within each simulation we drew a training sample using

a BSS of size n = 500 and drew a test set using a SRSS of the same size. We simulated a

normally distributed response, yi ∼ Normal(µi, 1), to reflect a continuous measure of research

willingness where

µi = 30 + .8(Receive Callsi)− .5log(RAQi)× (ADIi) + .5(Receive Maili)

+ .5(Sexi) + .7(enewsletteri)− .03(agei) + .2(Hispanici)− .4(NH Asiani)

+ .4(NH Blacki) + .7(medicationsi)× (2+ medical conditionsi) (5.8)

We then fit weighted linear regression models in the training sample drawn with a BSS

with different subsets of the covariates mentioned above as predictors. We included linear

and quadratic terms for all continuous covariates in our model scope. For each model fit, we

estimated the prediction error using unweighted estimates: AIC, 5-fold cross-validation (CV5

or 5-fold CV), leave-one-out cross-validation (CVLOO or LOO CV), and the .632 bootstrap

(BS.632 or .632 BS). We also estimated the prediction error with weighted estimates: the

design-based AIC (dAIC), weighted 5-fold cross-validation (wCV5 or 5-fold wCV), weighted

leave-one-out cross-validation (wCVLOO or LOO wCV), and the weighted .632 bootstrap

(wBS.632 or .632 wBS). These methods are defined in Sections 5.2 and 5.3. Throughout, we

assumed the sampling weights were known. For comparison, we computed the prediction

error on the test set sampled with a SRSS which functions as an independent test set from

the target population. We refer to this quantity as the EPE in our results.

Ideally, we would have used best subsets regression and picked the best model from the full

scope of candidate models. There were, however, too many potential predictors for this to

be computationally feasible and we instead used stepwise forward selection to determine the
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path for adding covariates. To mimic best subsets, within each simulation we determined

the order covariates would be added by using forward selection with the EPE calculated on

the test set. We did not stop adding covariates when the estimated loss stopped decreasing,

but continued adding covariates until all covariates were included. We then estimated the

prediction error with the four unweighted and four weighted methods for those same models.

This allowed us to make a fair comparison across methods because we were comparing the

same scope.

To assess each method for estimating the EPE’s performance for model selection, we deter-

mined which model had the lowest prediction error to decide which model was chosen within

each simulation. We compared how frequently each covariate was chosen as part of the most

optimal model by each EPE estimation method across simulations in Figure 5.2. In the

left panel, we report the proportion of simulations where each covariate was included in the

model chosen using the EPE. In the right panel, for each covariate (denoted by color) we

report the difference in the proportion of times it was selected for the optimal model using

each prediction model versus the proportion of times using the EPE. The EPE estimates

are on the x-axis and the difference in proportion is on the y-axis. If a given covariate was

included in the model chosen by the EPE and the estimate of the EPE at the same rate, the

difference in proportion would be zero.

Next, we compared the estimates of the EPE across 250 simulations. We did this my fixing

the order in which covariates were added to the model. We ordered covariates based on

how often they were included in the chosen model using the EPE in the first simulation

(left panel of Figure 5.2). The covariate most frequently included in the model chosen by

EPE was added first and the one least frequently included was added last. We computed

the EPE and the estimated EPE using the eight methods for each model and compared the

mean estimated EPE for the 8 methods and the mean EPE across simulations in Figure 5.3.

We also compared the uncertainty in the EPE estimates by presenting the box plots of the
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Model Selection Using Stepwise Forward Selection

Figure 5.2: The left panel shows the proportion of the 250 simulations each covariate is in
the selected model using stepwise forward selection with the expected prediction error (EPE)
under log-likelihood loss computed on the test set drawn under a simple random sampling
scheme (SRSS). The right panel shows the difference in the proportion of simulations each
covariate is in the model selected with each estimate of the EPE versus the one selected
with EPE. The 8 methods used to estimate the EPE are AIC, 5-fold cross-validation (5-fold
CV), leave-one-out cross-validation (LOO CV), .632 bootstrap (.632 BS), the design-based
AIC (dAIC), weighted 5-fold cross-validation (5-fold wCV), weighted leave-one-out cross-
validation (LOO wCV), and weighted .632 bootstrap (.632 wBS).
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Figure 5.3: The mean expected prediction error [EPE] (black), unweighted estimates of the
EPE (dashed colors), and weighted estimates of the EPE (solid colors) are shown for 20
nested models. The EPE is computed on a test set drawn with a simple random sampling
scheme and the estimates are computed on a training set drawn with a biased sampling
scheme. The results are based on 250 simulations. The right panel shows the same data as
the left panel, but it is zoomed into the weighted estimates to show more detail.

distribution of the difference between the estimates and the mean EPE for each method and

each model in Figure 5.4.

Third, we assessed the impact of the sample size on each methods performance. In Section

5.4 we discussed how AIC and dAIC estimates should converge to the LOO CV estimates as

the sample size increases. We fixed the model to include all possible predictors and varied

the sample size n of the training set (sampled under a BSS) and the test set (sampled with a

SRSS). We conducted 250 simulations and reported the mean estimated EPE for all methods

for n ranging from 500 to 10, 000 in Figure 5.5.

Lastly, we investigated the consequences of estimating sampling weights for a convenience
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Boxplots of the Difference Between Estimates and Mean EPE
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Figure 5.4: The distribution of the difference between the unweighted estimates (orange)
and weighted estimates (green) of the EPE versus the mean EPE are shown for 20 nested
models. The EPE is computed on a test set drawn with a simple random sampling scheme
and the estimates are computed on a training set drawn with a biased sampling scheme.
The results are based on 250 simulations.
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Figure 5.5: The mean expected prediction error [EPE] (black) and weighted estimates of
the EPE (colors) are shown for varying sizes (n) of the training and test sets. The EPE is
computed on a test set drawn with a simple random sampling scheme and the estimates are
computed on a training set drawn with a biased sampling scheme. The results are based on
250 simulations.
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samples instead of where the sampling probabilities were not prespecified. We drew an addi-

tional sample drawn with a SRSS of size 500 from the population to act as a representative

sample for estimating sampling weights. We estimated the probability of inclusion in the

training sample versus the representative sample, πi, using logistic regression with age, ed-

ucation, medications, sex, race and ethnicity, N. medical conditions, exercise, and ADI as

covariates. We included quadratic terms in the scope and used stepwise forward selection

with AIC to select a logistic regression model. We used the estimated inclusion probabilities

to compute sampling weights ŵi ∝ (1−πi)π−1
i as discussed in our previous work [15]. Recall

that ADI is the only covariate related to the sampling probability so we have misspecified

our sampling probability model by including additional covariates. Thus, we should obtain

a reasonable, but not perfect, estimate of the sampling weights. We followed the same order

of adding variables as in Figure 5.3 and fit weighted linear regression models and estimated

the prediction error for each method. We conducted 250 simulations and reported the mean

estimated EPE for each method and each model in Figure 5.6.

5.5.2 Simulation results

In the left panel of Figure 5.2 we see that when the EPE is computed on the test set,

the indicator of whether participants agreed to receiving calls from the C2C was in the

selected model in more than 80% of the simulations and was the most frequently selected

covariate. The indicator of prescription drug use was the least frequently selected covariate.

These results are reasonable because the receive calls indicator has the largest coefficient

in the true model (Equation 5.8). In the right panel, we are able to assess the frequency

with which each covariate is selected into the chosen model when the EPE estimates are

used versus the true EPE. The unweighted estimates are the four estimates on the left

side of the plot. We see that the models selected using unweighted estimates of the EPE

included most covariates more frequently than the models selected with the true EPE. In this
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Figure 5.6: The mean expected prediction error [EPE] (black), unweighted estimates of the
EPE (dashed colors), and weighted estimates of the EPE (solid colors) are shown for 20
nested models when sampling weights are estimated with a reference sample. Details on the
sampling weight estimation is in Section 5.5.1. The EPE is computed on a test set drawn
with a simple random sampling scheme and the estimates are computed on a training set
drawn with a biased sampling scheme. The results are based on 250 simulations. The right
panel shows the same data as the left panel, but it is zoomed into the weighted estimates to
show more detail.
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context, ignoring the sampling scheme led to overfit models. Models selected using weighted

estimates of the EPE tend to include covariates at the same rate as the model selected with

the true EPE. Additionally, there is more variability in the difference in proportion for the

unweighted estimates than the weighted estimates. In 33 out of the 250 simulations, the

bootstrap was unable to estimate the prediction error for one or more models due to sparsity

in the bootstrap samples and in 1 simulation the 5-fold CV was unable to estimate the EPE

for one model. The unweighted and weighted BS and CV estimates were fit with the same

bootstrap samples or folds, respectively so the the rate was the same for the unweighted and

weighted estimates. The sparsity was generally caused by the race and ethnicity covariate

because only 1.2% of C2C participants report being NH Black.

The results in Figure 5.2 for the dAIC and AIC are flipped from the other estimates. The

AIC tends to pick models more similar to those selected by the EPE compared to those

selected with the dAIC, but this fits with the results shown in Figure 5.3. The left panel

in Figure 5.3 shows the mean EPE estimate as covariates are added to the model for the

unweighted (dashed lines) and weighted (solid lines) estimates. The true EPE is shown in

black and the estimates are shown in other colors. To highlight differences in the weighted

estimators, the right panel zooms into the weighted estimates and the true EPE. Overall,

we see that the weighted estimators provide a better estimate of the true EPE. When we

compare the weighted estimates to each other in the right panel, we see that the resampling-

based estimates are closer to the true EPE than the dAIC.

The prediction error curve for the true EPE is minimized when 10 covariates are added to

the model (up to and including age2). The LOO wCV, .632 wBS, and 5-fold wCV curves

have the same minimum, but the dAIC estimate of the loss function is minimized when 14

covariates are added (up to the number of medical conditions). The LOO CV, .632 BS, and

5-fold CV prediction error curves are minimized when 18, 19, and 17 covariates are included,

respectively. The AIC curve is minimized when 12 covariates are added. Although the dAIC
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is a better estimate of the true EPE than the AIC, the AIC is minimized at a model that is

more similar to the model that minimizes the true EPE.

Figure 5.4 shows the distribution of the difference between the EPE estimates and the EPE

across simulations. Each of the four panels shows a different estimation method: AIC/dAIC,

LOO CV/LOO wCV, .632 BS/.632 wBS, and 5-fold CV/5-fold wCV. The unweighted es-

timates are shown in orange and the weighted estimates in green. The weighted estimates

are approximately unbiased and centered at zero but the unweighted estimates are biased

upwards. The weighted estimates have more uncertainty than the unweighted estimates. For

this simulation, the bootstrap was unable to estimate the EPE due to sparsity for at least

one model in 41 out of 250 simulations and 5-fold CV was unable to estimate the EPE in 2

simulations.

In Figure 5.5 we can assess the impact of the sample size. The sample size is on the x-axis,

the mean negative log-likelihood loss divided by the sample size n is on the y-axis, and

the different estimates are denoted by varying colors. The mean estimates are converging

towards the true EPE as the sample size increases. In this simulation scenario, the bootstrap

was unable to estimate the EPE in 7 out of 250 simulations and 5-fold CV was unable to

estimate the EPE in 1 simulation and only when the sample size was 500. In this study, the

sparsity was only a problem with the smallest sample size so it should be less problematic

for larger sample sizes.

Figure 5.6 shows the mean estimated EPE by estimation method when the sampling weights

are estimated. We see very similar results to when the weights were known. The weighted

estimates are less biased for the EPE than the unweighted estimates.
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5.6 Application

5.6.1 Application methods

We used the same C2C data set described above in Section 5.5, but we did not simulate a

response variable. C2C participants were asked if they were willing to be contacted about

studies that involve approved medications, investigational medications, diet and lifestyle

interventions, blood draws, cognitive tests, magnetic resonance imaging, Positron Emission

Tomography (PET scans), lumbar punctures, and autopsies. We created a willingness score

that counted the number of study types participants agreed to be contacted about. The

score ranged from 0 to 9. We did subject wise imputation for those who were missing less

than 30% of the questions about willingness (1 or 2 questions). We replaced the missing

values with the participant’s average score on the other questions. We treated the total

willingness score as missing for those who did not answer 3 or more willingness questions.

There were 10 participants missing 3 or more questions.

We treated the complete C2C data set as our population of interest and drew a test set using

a SRSS of size 500 to estimate the true EPE. We then drew a training set with replacement

of size 500 from the remaining observations with a BSS using sampling probabilities for

each ADI score inversely proportional to the proportion of that score in C2C. We used the

training sample to fit weighted linear regression models to predict willingness. We used

the same predictors as were used in the simulation study. We performed stepwise forward

selection to add covariates sequentially using the EPE computed on the test set and used

stepwise forward selection to add all covariates. We determined the next covariate to add

choosing the one with the lowest estimate prediction error. We then estimated the prediction

error with the unweighted (AIC, LOO CV, .632 BS, 5-fold CV) and the weighted (dAIC,

LOO wCV, .632 wBS, and 5-fold wCV) methods for all of the models selected using stepwise

forward selection.
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We summarized continuous covariates with means and standard deviations and the categori-

cal covariates with proportions for the full C2C data set that we used as the finite population.

We similarly summarized the covariates in the two samples drawn with a SRSS and BSS.

Additionally, we presented the distribution of the willingness scores using a histogram for

the samples drawn with a SRSS and BSSS.

5.6.2 Application results

There were 3,773 observations in the full data set and after removing missing data there were

2,822 observations. 725 participants were only missing an ADI score, 27 were only missing

RAQ, and 11 were missing both. There were more missing values for ADI because it could

not be computed without a valid address or for PO boxes.

The summarized covariates for the full C2C data set and the samples drawn with a SRSS

and BSS are presented in Figure 5.1. Individuals in the sample drawn with a BSS tend to

be slight older, have fewer years of education, and have a higher CFI on average, compared

to the C2C data set and the sample drawn with a SRSS. Additionally, individuals in the

sample drawn with a BSS are less likely to identify as NH White and are more likely to

identify as female than those in the C2C data set and the sample drawn with a SRSS.

A histogram of the willingness scores stratified by sampling scheme is shown in Figure 5.7.

Higher willingness scores correspond to agreeing to be contacted about more types of studies.

The distribution of willingness scores across samples are similar, but the individuals in the

sample drawn with a BSS tend to have slightly higher scores.

The true EPE and the estimates for the four unweighted and four weighted methods are

shown in Figure 5.8. The weighted estimates are closer to the true EPE than the unweighted

estimates. The weighted estimates seem to be more variable. All estimates of the EPE reach
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Figure 5.7: Histogram of willingness scores stratified by sampling scheme. The sample drawn
with a simple random sampling scheme (SRSS) is shown in blue and the sample drawn with
a biased sampling scheme (BSS) is shown in green.
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Finite Population Samples

C2C (N = 2,822) SRSS (n = 500) BSS (n = 500)

Age 58.4 (15.9) 57.6 (16.1) 57.1 (16.6)
Education (years) 16.4 (2.7) 16.3 (2.6) 16.0 (3.0)
CFI 3.0 (3.0) 3.1 (3.0) 3.3 (3.3)
RAQ 28.6 (4.4) 28.5 (4.6) 28.7 (4.1)

Race & Ethnicity: Hispanic 0.10 0.10 0.13
Race & Ethnicity: NH Asian 0.06 0.07 0.07
Race & Ethnicity: NH Black 0.01 0.01 0.02
Race & Ethnicity: NH White 0.73 0.70 0.67
Race & Ethnicity: Other 0.09 0.11 0.11

Female 0.64 0.61 0.69
Enrollment after 3/19/20 0.06 0.08 0.04
English Primary 0.98 0.96 0.97
Exercise 0.85 0.85 0.82
Receive Calls 0.67 0.68 0.69
Receive Mail 0.84 0.83 0.84
Enewsletter 0.71 0.73 0.73

N. Medical Conditions: 0 0.11 0.12 0.12
N. Medical Conditions: 1 0.64 0.64 0.61
N. Medical Conditions: 2+ 0.25 0.24 0.26

Referral Method: Email 0.54 0.54 0.55
Referral Method: Community Talk 0.10 0.08 0.10
Referral Method: Other 0.36 0.38 0.35

Table 5.1: Continuous covarates are summarized using means (standard deviations) and
categorical variables are summarized using proportions for the full C2C data set and samples
drawn with a simple random sampling scheme (SRSS) and a biased sampling scheme (BSS).

their minimum at a smaller model than the model with the minimum EPE.

5.7 Discussion

In this chapter, we have discussed several examples of weighted analytic and resampling

methods for estimating the expected prediction error in a target population for samples

drawn with a biased sampling scheme. The results from our simulation study show that it
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Figure 5.8: The expected prediction error [EPE] (black), unweighted estimates of the EPE
(dashed colors), and weighted estimates of the EPE (solid colors) are shown for 20 nested
models for predicting research willingness among C2C participants. The EPE is computed
on a hold out test set drawn with a simple random sampling scheme and the estimates are
computed on a training set drawn with replacement using a biased sampling scheme. Results
are shown for one training and test set drawn from C2C.
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is important to account for the sampling scheme by including sampling weights in estimates

of the prediction error (5.3). Weighted estimates of the EPE in the simulation study were

more variable (Figure 5.4), but this is common with weighted estimates. This occurs because

subpopulations with small sampling probabilities and large weights have a large influence on

estimates [15, 71]. It is better to have a less precise unbiased estimate than a precise biased

estimate. Weighted estimates, excluding the dAIC, performed better for model selection

than unweighted estimates (Figure 5.2). Although weighted estimates of the EPE are more

variable, there is less variability in which model they select.

Additionally, in the simulation study we showed that weighted resampling estimates are less

biased for the EPE than weighted analytic estimates. These results were expected because

resampling methods directly estimate the EPE and do not assume the distribution of the

covariates is fixed [54]. Analytic estimates were consistent for the same quantity, however,

and performed better as the sample size increased. This is consistent with the theory derived

by Lumley and Scott [76].

In practice, based on previously developed theoretical results and our simulation study we

recommend using weighted resampling methods for estimating the prediction error for a

BSS if it is computationally feasible. Analytic methods, however, still perform very well.

Although the dAIC was more biased for the EPE than the resampling methods it was still

a reasonable estimate (Figure 5.3). It did not outperform the unweighted AIC for model

selection, but that may just be an artifact of our simulation scenario because it was a better

estimate of the EPE. In general, estimating the EPE well should translate to doing well at

model selection. Weighted analytic estimates of the EPE, such as the dAIC are a great option

for larger samples because they perform better as the sample size increases which is when

the computational burden increases for resampling methods. If researchers are interested

in using a weighted analytic method with a loss function besides log-likelihood loss, they

can use the Horvitz-Thompson-Efron estimator [57]. When deciding between resampling
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methods, 5-fold cross-validation is less likely to face sparsity than the bootstrap which often

has 100 bootstrap samples drawn with replacement. LOO CV is a good option when there

is an analytic form, as in our scenario, but it would be more computationally expensive

than the 5-fold CV otherwise. Thus, we suggest using the weighted 5-fold cross-validation

to estimate the EPE if it is computationally feasible.

In our application of assessing prediction error for prediction models of research willingness

using C2C data, we observed that weighted estimates were less biased than unweighted

estimates. The differences between these two groups were less stark than the differences

in the simulation study, but it is still important to account for the sampling scheme. In

future research projects, we can not rule out that sampling weights could have a large

impact on the EPE estimates. Sampling weights will matter if the relationship between the

predictors and research willingness is modified by a variable related to ADI. Socioeconomic

disadvantage is thought of as a social determinant of health [18] and C2C researchers want

to gain more information on recruitment strategies for individuals traditionally represented

in research [87]. When the C2C recruitment strategy is updated in the future to oversample

neighborhoods with higher degrees of socioeconomic disadvantage, sampling weights need to

be included when fitting assessing predictive models trained with C2C data.

Our results are limited by how accurate the sampling weights are. This limitation is obvi-

ous for convenience samples where weights are estimated. Estimated sampling weights are

subject to an analogue of confounding if covariates related to the sampling scheme are not

measured. For more details on the assumptions see our previous work [15]. For example,

even without oversampling neighborhoods with more socioeconomic disadvantage, the C2C

tends to underrepresent groups historically underrepresented in medical research [15, 87].

We can estimate sampling weights for the C2C to generalize to the US population, but we

may not have measured all covariates related to the sampling probability. This is also a

limitation in survey samples with prespecified sampling probabilities. The true sampling
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probabilities may differ from the prespecified probabilities due to sampling variability or

non-response [75]. Accounting for sampling weights that are not perfect, but still contain

information about the sampling scheme is better than failing to account for the sampling

scheme.

In conclusion, all weighted estimates of the expected prediction error for the target popula-

tion under a BSS perform well. The difference between unweighted and weighted estimates

is larger than the difference between weighted resampling methods and weighted analytic

methods. Resampling methods perform better than analytic methods because they directly

estimate the EPE, but they are more computationally expensive. We used weighted linear

regression models as an example in this chapter, but these relationships should hold for more

flexible weighted prediction models such as random forest [19] or generalized linear models

[85]. We recommend using resampling methods in smaller samples, but we recommend an-

alytic methods in larger samples when they get more computationally expensive and the

difference between analytic and resampling methods decreases. Among weighted resampling

methods, we suggest using 5-fold cross-validation because it requires less resampling which

saves computational cost and has fewer issues with sparsity. Accounting for the sampling

scheme by using a weighted estimate is more important than the decision between analytic

and resampling methods.
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Chapter 6

Discussion and Future Research

Directions

In this dissertation, we proposed and assessed methods for estimating associations and pre-

dictions that generalize to a set target population when using a biased sample. We accom-

plished this by estimating sampling weights and quantifying uncertainty in associations for

biased samples in biomedical applications using NHANES as a representative sample of the

United States. Additionally, we assessed the utility of incorporating estimated sampling

weights in propensity score adjusted estimates of causal effects and quantified uncertainty in

the estimates. Finally, we compared analytic and resampling estimates of prediction error

for biased samples.

In Chapter 3, we discussed previous work on estimating sampling weights for biased samples

and the necessity of obtaining a representative sample. We proposed using NHANES as

practical solution for this requirement for biomedical applications. We derived an analytic

variance estimate to quantify uncertainty in coefficient estimates in weighted generalized

linear models for biased samples. We developed an R package with the goal of reducing
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the amount of work necessary to account for the sampling scheme when fitting GLMS. Our

estweight package contains functions to (1) estimate sampling weights using four predictive

models (logistic regression, covariate balancing propensity score, entropy balancing, and

random forest), (2) estimate coefficient estimates for weighted GLMs for biased samples,

and (3) provide variance estimates.

In Chapter 4, we assessed when and how estimated sampling weights should be included when

estimating propensity scores and propensity-adjusted causal estimates for biased samples–

particularly when the propensity score model was misspecified. We found that the mag-

nitude of treatment effect heterogeneity (if not correctly modeled) impacted the degree of

sampling bias. As the heterogeneity increased, so did the bias. Previous papers agreed

that sampling weights needed to be included in the outcome model, but disagreed about

the necessity of including them in the propensity score model. We observed that failing to

include sampling weights in the propensity score model led to increased volatility of causal

estimates. We also assessed the impact of how well sampling weights were estimated and

derived a variance estimate for the estimated causal effect that accounted for uncertainty

from estimating the sampling weights, propensity scores, and the causal effect. We extended

our estweight package for R to include functions to estimate sampling weights, propensity

scores, propensity-adjusted causal effects and corresponding variance estimates.

Lastly, in Chapter 5, we compared different methods for estimating the prediction error for

a target population with a biased sample. We found that prediction estimates that included

sampling weights were less biased than unweighted estimates. Within weighted estimates,

resampling methods outperformed analytic estimates. The analytic estimates, however, are

less computationally expensive and converge to the resampling methods as the sample size

increases. We recommend using resampling methods when computationally feasible, and

more specifically we recommend weighted 5-fold cross-validation because it requires less

computation than weighted leave-one-out cross-validation (except for cases with an analytic
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form) and has less difficulty from sparsity than the bootstrap. We recommend using an

analytic estimate like the design-based estimate or Horvitz-Thompson-Efron estimator for

larger sample sizes.

There is more work to be done in addressing sampling bias. In this next section we discuss

future research areas.

6.1 Future Work

The work presented in this dissertation can be extended in several different directions. First,

there is need of sensitivity analyses to assess the impact of missing variables in the sampling

weights estimation model. Second, the design-based AIC assumes the sampling weights are

prespecified but could be expanded to convenience samples where the weights are estimated

with an auxiliary data set.

Similar to the unconfounded assumption for estimating causal effects, using estimated sam-

pling weights to address sampling bias is based on the assumption that covariates related to

the sampling probability are measured (see discussion in Section 3.2.1). When we submitted

the materical in Chapter 3 for publication, one of the reviewers asked for a sensitivity analy-

sis of the impact of missing variables in the sampling weight estimation model for our applied

data example. We decided to save this project for future work because to our knowledge

there were no existing method to handle this. In Chapter 4, we used a simulation study

to assess the results of failing to fully capture all variables related to the sampling scheme

(see Figure 4.4). We considered a scenario where one variable determined the sampling

probability, X1, but instead of measuring it we only observed a proxy, K. We found that

the weaker the correlation between X1 and K, the more bias there was in the estimated

treatment effect. This analysis was done with simulated data, however, and the reviewer
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suggested a sensitivity analysis for real data. It would be useful to develop something similar

to Cornfield at al. (1959) [29] to assess the impact on magnitude of estimated coeffients for

the scientific outcome model from a missing confounder in the sampling weight estimation

model.

Next, the dAIC could be extended for convenience samples with estimated sampling weights.

The dAIC is a function of a consistent estimate of the covariance of the estimating function.

The current covariance estimate that is implemented assumes sampling weights are known,

but this could be replaced with an estimate that assumes weights are estimated as proposed

in Chapter 3.

158



Bibliography

[1] Jason Abrevaya, Yu-Chin Hsu, and Robert P. Lieli. Estimating Condi-
tional Average Treatment Effects. Journal of Business & Economic Statis-
tics, 33(4):485–505, October 2015. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/07350015.2014.975555.

[2] Benjamin Ackerman, Catherine R. Lesko, Juned Siddique, Ryoko Susukida, and Eliz-
abeth A. Stuart. Generalizing randomized trial findings to a target population using
complex survey population data. Statistics in Medicine, 40(5):1101–1120, 2021. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.8822.

[3] Alan Agresti. Foundations of Linear and Generalized Linear Models | Wiley. John
Wiley & Sons, 2015.

[4] Hirotugu Akaike. Information theory and an extension of the maximum likelihood
principle. Second International Symposium on Information Theory, pages 267–281,
1973.

[5] Hirotugu Akaike. A new look at the statistical model identification. IEEE Transac-
tions on Automatic Control, 19(6):716–723, December 1974. Conference Name: IEEE
Transactions on Automatic Control.

[6] David M. Allen. The Relationship between Variable Selection and Data Agumentation
and a Method for Prediction. Technometrics, 16(1):125–127, 1974. Publisher: [Taylor
& Francis, Ltd., American Statistical Association, American Society for Quality].

[7] Rebecca E. Amariglio, Michael C. Donohue, Gad A. Marshall, Dorene M. Rentz,
David P. Salmon, Steven H. Ferris, Stella Karantzoulis, Paul S. Aisen, and Reisa A.
Sperling. Tracking early decline in cognitive function in older individuals at risk for
Alzheimer’s disease dementia: the Alzheimer’s Disease Cooperative Study Cognitive
Function Instrument. JAMA neurology, 72(4):446–454, April 2015.

[8] Peter C. Austin. An Introduction to Propensity Score Methods for Reducing the
Effects of Confounding in Observational Studies. Multivariate Behavioral Research,
46(3):399–424, May 2011.

[9] Peter C Austin, Nathaniel Jembere, and Maria Chiu. Propensity score matching and
complex surveys. Statistical Methods in Medical Research, 27(4):1240–1257, April 2018.

159



[10] Peter C Austin and Elizabeth A Stuart. Estimating the effect of treatment on binary
outcomes using full matching on the propensity score. Statistical Methods in Medical
Research, 26(6):2505–2525, 2015. Publisher: SAGE Publications Ltd STM.

[11] L. Charles Bailey, David E. Milov, Kelly Kelleher, Michael G. Kahn, Mark Del Bec-
caro, Feliciano Yu, Thomas Richards, and Christopher B. Forrest. Multi-Institutional
Sharing of Electronic Health Record Data to Assess Childhood Obesity. PloS One,
8(6):e66192, 2013.

[12] Luta Luse Basambombo, Pierre-Hugues Carmichael, Sharlène Côté, and Danielle Lau-
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Appendix A

Derivation of Variance Estimator for

Chapter 3

In this section we derive the various components of I and Q introduced in Chapter 3 Section

3.2.4. Please note that the notation in this section follows the notation used in Chapter 3.

Using iterated expectations we can show the cross-term R is

R = EP

[∑
i∈C

U i

(∑
i∈C

T T
i +

∑
i∈R

T T
i )
)∣∣∣Z = z

]
= EP

[∑
i∈C

U i

∑
i∈C

T T
i

∣∣∣Z = z
]
.

So the method of moments estimator for Q is

Q̂ =

TT T R̂T

R̂ U U
T

∣∣∣∣∣
(βγ)=(

β̂
γ̂)

with R̂ =
∑

i∈C U i

∑
i∈C T

T
i .

Now consider the the terms of I. ITT is the derivative of T with respect to γ which is Fisher’s

171



information matrix for logistic regression,

ITT =
∑

i∈C∪R

EP

(
− ∂Ti
∂γ

∣∣∣Xi = xi

)
=
∑

i∈C∪R

(
xTi (PCi(1− PCi))xi

)
.

IUU is similar,

IUU = −
∑
i∈C

EP

[
wCi

∂Uj

∂βk

∣∣∣Z = z
]
= zTM(β)z

where

M(β) = diag
(wCi(∂ηi/∂µi)

−2

V (µi|Zi = zi)

)
.

Finally, IUT is

IUTjk = −
∑

i∈C∪R

EP

[∂Uki

∂γj

∣∣∣Zi = zi

]
=
∑

i∈C∪R

EP

[
wCi

(∂µi

∂βj

)(Yi − µi

V (µi)

)
Xij

∣∣∣Zi = zi

]
.

This term does not equal zero, because Xij is not fixed. We can rearrange I−1QI−1 to point

out the relationship to the design based variance used in the survey sampling literature ([77]).

Define Â = ÎUU and B̂ = UU
T
so that,

Q̂ =

T
U

(T TU
T

)
=

TT T R̂T

R̂ B̂

 .

Using the formula for blockwise inversion (Fact 2.17.1 in [14]),

I−1 =

ITT 0

IUT A


−1

=

 I−1
TT 0

−A−1IUT I
−1
TT A−1

 .
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Combining I−1 and Q we obtain the proposed variance estimator,

V̂Prop(β̂) = Â−1B̂Â−1 − Â−1ÎUT Î
−1
TT R̂

T Â−1.
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Appendix B

Bias Adjusted C2C Results
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Table B.1: Bias adjusted C2C results: Odds Ratios and 95% confidence intervals are pre-
sented for the models from [100] assessing the relationship between race/ethnicity and 9
responses with adjustment variables. The models were fit without any propensity weights
and with propensity weights estimated using logistic regression, covariate balancing propen-
sity score (CBPS), entropy balancing (EB), and random forest (RF) methods.

Trial type Model Hispanic NH Asian NH Black

Physical Activity / Unweighted 1.06 (0.52, 2.16) 0.68 (0.34, 1.35) 1.87 (0.25, 13.95)
Diet Modification Logistic 1.52 (0.40, 5.83) 0.82 (0.23, 2.97) 4.54 (0.45, 45.38)

CBPS 1.52 (0.40, 5.76) 0.83 (0.23, 3.02) 4.64 (0.46, 46.28)
EB 4.80 (0.54, 42.33) 0.35 (0.06, 2.18) 4.61 (0.31, 69.07)
RF 0.74 (0.16, 3.50) 0.87 (0.19, 4.09) 3.93 (0.36, 43.02)

Cognitive Testing Unweighted 0.50 (0.22, 1.12) 0.52 (0.18, 1.52) 0.71 (0.09, 5.55)
Logistic 0.73 (0.13, 4.26) 0.47 (0.06, 3.89) 0.95 (0.09, 10.14)
CBPS 0.72 (0.13, 4.04) 0.45 (0.05, 3.72) 0.99 (0.09, 10.66)
EB 1.75 (0.09, 33.19) 0.91 (0.03, 23.98) 0.93 (0.08, 11.60)
RF 0.27 (0.06, 1.27) 0.88 (0.15, 5.36) 1.41 (0.13, 15.37)

MRI Scans Unweighted 0.67 (0.39, 1.15) 1.34 (0.58, 3.12) 0.28 (0.12, 0.66)
Logistic 2.73 (0.68, 10.90) 1.71 (0.47, 6.22) 0.10 (0.03, 0.30)
CBPS 2.61 (0.67, 10.25) 1.70 (0.47, 6.17) 0.10 (0.03, 0.31)
EB 2.99 (0.28, 31.66) 3.06 (0.59, 15.86) 0.06 (0.02, 0.23)
RF 1.09 (0.28, 4.19) 1.98 (0.42, 9.35) 0.44 (0.08, 2.47)

PET Scans Unweighted 0.66 (0.45, 0.97) 0.78 (0.49, 1.25) 0.46 (0.22, 0.98)
Logistic 0.73 (0.21, 2.57) 0.48 (0.21, 1.12) 0.13 (0.04, 0.47)
CBPS 0.72 (0.21, 2.47) 0.49 (0.21, 1.11) 0.13 (0.04, 0.48)
EB 1.55 (0.31, 7.65) 0.47 (0.13, 1.70) 0.06 (0.02, 0.21)
RF 0.81 (0.34, 1.94) 0.52 (0.20, 1.31) 0.42 (0.10, 1.74)

Blood Draws Unweighted 0.62 (0.35, 1.10) 0.31 (0.18, 0.53) 0.27 (0.11, 0.67)
Logistic 1.62 (0.45, 5.75) 0.37 (0.15, 0.89) 0.70 (0.15, 3.20)
CBPS 1.58 (0.45, 5.54) 0.37 (0.15, 0.88) 0.70 (0.16, 3.16)
EB 4.17 (0.69, 25.15) 0.24 (0.05, 1.07) 0.61 (0.12, 3.01)
RF 0.77 (0.17, 3.47) 0.16 (0.04, 0.60) 0.29 (0.05, 1.61)

Approved Unweighted 0.68 (0.42, 1.10) 0.61 (0.36, 1.01) 0.67 (0.25, 1.80)
Medications Logistic 0.17 (0.06, 0.49) 0.66 (0.29, 1.50) 0.72 (0.21, 2.40)

CBPS 0.17 (0.06, 0.49) 0.65 (0.29, 1.49) 0.72 (0.21, 2.41)
EB 0.13 (0.02, 0.79) 0.43 (0.08, 2.44) 0.81 (0.10, 6.69)
RF 0.64 (0.19, 2.17) 0.44 (0.15, 1.29) 0.45 (0.14, 1.45)

Investigational Unweighted 0.62 (0.42, 0.90) 0.55 (0.36, 0.83) 0.52 (0.24, 1.11)
Medications Logistic 0.31 (0.10, 0.93) 0.33 (0.14, 0.77) 0.70 (0.25, 1.98)

CBPS 0.31 (0.10, 0.93) 0.33 (0.14, 0.76) 0.71 (0.25, 1.98)
EB 0.50 (0.07, 3.73) 0.29 (0.08, 1.04) 0.82 (0.25, 2.75)
RF 0.67 (0.26, 1.67) 0.40 (0.15, 1.08) 0.36 (0.11, 1.15)

Lumbar Puncture Unweighted 0.95 (0.70, 1.30) 1.82 (1.26, 2.63) 0.25 (0.10, 0.62)
Logistic 0.82 (0.33, 2.02) 1.06 (0.55, 2.05) 0.14 (0.03, 0.62)
CBPS 0.82 (0.34, 2.01) 1.05 (0.55, 2.03) 0.14 (0.03, 0.64)
EB 1.45 (0.35, 5.97) 0.64 (0.21, 2.00) 0.09 (0.01, 0.62)
RF 1.27 (0.64, 2.50) 1.09 (0.45, 2.64) 1.07 (0.30, 3.85)

Autopsy Unweighted 0.83 (0.59, 1.16) 0.43 (0.30, 0.62) 0.30 (0.16, 0.59)
Logistic 0.50 (0.19, 1.33) 0.28 (0.10, 0.76) 0.55 (0.16, 1.88)
CBPS 0.51 (0.20, 1.35) 0.28 (0.10, 0.74) 0.57 (0.17, 1.90)
EB 0.32 (0.09, 1.13) 0.27 (0.04, 1.82) 0.41 (0.10, 1.62)
RF 1.07 (0.54, 2.10) 0.28 (0.12, 0.65) 1.12 (0.34, 3.70)
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Appendix C

Derivation of Variance Estimator for

Chapter 4

In this appendix we derive the form of Fisher’s expected information matrix, I, introduced

in Equation 4.10 for the variance estimator defined in Chapter 4 Section 4.2.3. To simplify

notation throughout the derivation, we have omitted the hats on the estimated sampling

weights and propensity scores.

To make the derivation easier to follow, we are repeating the model definitions from Section

4.2.2 for estimating the sampling weights, propensity scores, and the causal effect as well as

the corresponding estimating equations used to estimate the model parameters. Recall that

sampling weights wi are a function of sampling probabilities pi where

wi ∝
1− pi
pi

and sampling probabilities are estimated using a logistic regression model with parameters
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γ:

Ψi = logit(pi) = viγ.

The model is fit by solving the following estimating equation:

Tm(γ) =
∑

i∈C∪R

Tmi(γ) =
∑

i∈C∪R

(Ci − pi)vim = 0.

Thus the estimated sampling weights w are a function of γ through the sampling probability

p. The propensity scores e(z) are estimated using a logistic regression model with parameters

ξ,

Φi = logit(e(zi)) = ziξ,

and the model is fit by solving the weighted estimating equation,

S̄l(ξ, γ) =
∑
i∈C

S̄li(ξ, γ; ŵ) =
∑
i∈C

ŵi(ai − e(zi))zil = 0.

Thus the estimated propensity scores e(z) are functions of w, p, ξ, and γ. This fact will be

useful when we take derivatives of the propensity score using the chain rule in the derivation.

We then use the estimated sampling weights and propensity scores in the outcome model

with parameter vector β = [β0 β1 β2] and covariates xi = [1 ai ê(zi)]:

ηi = g(µi) = β0 + β1ai + β2ê(zi).

This model is fit with the weighted estimating equation:

Ūj(β, ξ, γ) =
∑
i∈C

ŵiUji(β, ξ, γ) =
∑
i∈C

ŵi
(yi − µi)

V (µi)

[∂ηi
∂µi

]−1

xij = 0.

177



ITT = −
∑

i∈C∪R

E
[∂Ti(γ)

∂γ

]
=
∑

i∈C∪R

vTi pi(1− pi)vi

ISS = −
∑
i∈C

E
[∂S̄i(ξ, γ)

∂ξ

]
=
∑
i∈C

wiz
T
i e(xi)(1− e(xi))zi

IUU = −
∑
i∈C

E
[∂Ūi(β, ξ, γ)

∂β

]
=
∑
i∈C

xTi diag
[ wi

V (µi)

{∂ηi
∂µi

}−2]
xi

IST requires the chain rule

IST lk = −
∑
i∈C

E
[∂S̄i(ξ, γ)l

∂γk

]
= −

∑
i∈C

E
[∂S̄i(ξ, γ)l

∂wi

∂wi

∂pi

∂pi
∂Ψi

∂Ψi

∂γk

]

where

∂S̄i(ξ, γ)l
∂wi

= Si(ξ, γ)l

∂wi

∂pi
= −p−2

i

pi
∂Ψi

= pi(1− pi)

Ψi

∂γk
= vik

Thus,

IST lk = −
∑
i∈C

E
[∂S̄i(ξ, γ)l

∂γk

]
= −

∑
i∈C

E
[
(Sil)(−p−2

i )pi(1− pi)vik

]
=
∑
i∈C

E
[
wi(ai − e(xi))zilvik

]
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Now, IUS requires the product rule and the chain rule

IUSjl = −
∑
i∈C

E
[∂Ūi(β, ξ, γ)j

∂ξl

]
= −

∑
i∈C

E

[
∂

∂ξl

{
wi
yi − µi

V (µi)

[∂ηi
∂µi

]−1

xij

}]

Applying the product rule,

IUS = −
∑
i∈C

E

[
wi

(
∂

∂ξl

{
yi − µi

} 1

V (µi)

[∂ηi
∂µi

]−1

xij + (yi − µi)
∂

∂ξl

{ 1

V (µi)

}[∂ηi
∂µi

]−1

xij

+
yi − µi

V (µi)

∂

∂ξl

{[∂ηi
∂µi

]−1}
xij +

yi − µi

V (µi)

[∂ηi
∂µi

]−1 ∂

∂ξl

{
xij

})]

Applying the chain rule,

IUSjl = −
∑
i∈C

E

[
wi

(
∂

∂µi

{
yi − µi

}∂µi

∂ηi

∂ηi
∂e(xi)

∂e(xi)

∂ξl

1

V (µi)

[∂ηi
∂µi

]−1

xij

+ (yi − µi)
∂

∂µi

{ 1

V (µi)

}∂µi

∂ηi

∂ηi
∂e(xi)

∂e(xi)

∂ξl

[∂ηi
∂µi

]−1

xij

+
yi − µi

V (µi)

∂

∂µi

{[∂ηi
∂µi

]−1}∂µi

∂ηi

∂ηi
∂e(xi)

∂e(xi)

∂ξl
xij

+
yi − µi

V (µi)

[∂ηi
∂µi

]−1 ∂xij
∂e(xi)

∂e(xi)

∂ξl

)])]

= −
∑
i∈C

E

[
wi

(
− ∂ηi
∂e(xi)

∂e(xi)

∂ξl

1

V (µi)

[∂ηi
∂µi

]−2

xij

+
−(yi − µi)

V (µi)2
∂

∂µi

{
V (µi)

} ∂ηi
∂e(xi)

∂e(xi)

∂ξl

[∂ηi
∂µi

]−2

xij

+
yi − µi

V (µi)

∂

∂µi

{[∂ηi
∂µi

]−1}[∂ηi
∂µi

]−1 ∂ηi
∂e(xi)

∂e(xi)

∂ξl
xij

+
yi − µi

V (µi)

[∂ηi
∂µi

]−1 ∂xij
∂e(xi)

∂e(xi)

∂ξl

)]
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Pulling out common terms,

IUSjl = −
∑
i∈C

E

[
wi
∂e(xi)

∂ξl

(
∂ηi

∂e(xi)
xij

[
− 1

V (µi)

[∂ηi
∂µi

]−2

+
−(yi − µi)

V (µi)2
∂

∂µi

{
V (µi)

}[∂ηi
∂µi

]−2

+
yi − µi

V (µi)

∂

∂µi

{[∂ηi
∂µi

]−1}[∂ηi
∂µi

]−1
]
+
yi − µi

V (µi)

[∂ηi
∂µi

]−1 ∂xij
∂e(xi)

)]

Now consider the following partial derivatives,

∂e(xi)

∂ξl
=
∂e(xi)

∂Φi

∂Φi

∂ξl
= e(xi)(1− e(xi))zil

∂ηi
∂e(xi)

= β2

∂xij
∂e(xi)

= I(j = 3)

Plugging these terms in we get,

IUSjl = −
∑
i∈C

E

[
wie(xi)(1− e(xi))zil

(
β2xij

[
− 1

V (µi)

[∂ηi
∂µi

]−2

+
−(yi − µi)

V (µi)2
∂

∂µi

{
V (µi)

}[∂ηi
∂µi

]−2

+
yi − µi

V (µi)

∂

∂µi

{[∂ηi
∂µi

]−1}[∂ηi
∂µi

]−1
]
+ I(j = 3)

yi − µi

V (µi)

[∂ηi
∂µi

]−1
)]

Putting it into matrix form we get,

IUS = −E

[
XTDUS1Z +


0

0

1

 1TnC
DUS2Z

]
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where

DUS1 = diag

(
wie(xi)(1− e(xi))β2

[
− 1

V (µi)

[∂ηi
∂µi

]−2

+
−(yi − µi)

V (µi)2
∂

∂µi

{
V (µi)

}[∂ηi
∂µi

]−2

+
yi − µi

V (µi)

∂

∂µi

{[∂ηi
∂µi

]−1}[∂ηi
∂µi

]−1
])

DUS2 = diag

(
wie(xi)(1− e(xi))

yi − µi

V (µi)

[∂ηi
∂µi

]−1
)

To find IUT we will also need to use the product rule and the quotient rule. Note that

Ū(β, ξ, γ) is a function of γ through wi, µi and xij.

IUTjk = −
∑
i∈C

E
[∂Ūi(β, ξ, γ)j

∂γk

]
= −

∑
i∈C

E

[
∂

∂γk

{
wi
yi − µi

V (µi)

[∂ηi
∂µi

]−1

xij

}]

Let’s consider the following derivatives

∂wi

∂γk
=
∂wi

∂pi

∂pi
∂Ψi

∂Ψi

∂γk
= (−p−2

i )[pi(1− pi)](vij) = −wivik

∂µi

∂γk
=
∂µi

∂ηi

∂ηi
∂e(xi)

∂e(xi)

∂wi

∂wi

∂γk
=
[∂ηi
∂µi

]−1

β2
∂e(xi)

∂wi

∂wi

∂γk
∂xij
∂γk

=
∂xij
∂e(xi)

∂e(xi)

∂wi

∂wi

∂γk
= I(j = 3)

∂e(xi)

∂wi

∂wi

∂γk

Now, e(xi) is a function of γk through wi through the estimating equation S̄l,

S̄l =
∑
i∈C

wi(ai − e(xi))zil =
∑
i∈C

wiaizil −
∑
i∈C

wie(xi)zil
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Applying the chain rule,

∂e(xi)

∂wi

=
∂e(xi)

∂S̄l

∂S̄l

∂wi

=

[
∂S̄l

∂e(xi)

]−1
∂S̄l

∂wi

=
[
− wizil

]−1(
(ai − e(xi))zil

)
= − 1

wi

(ai − e(xi))

Applying the product rule,

IUTjk = −
∑
i∈C

E

[
∂wi

∂γk

yi − µi

V (µi)

[∂ηi
∂µi

]−1

xij + wi
∂

∂γk

{
yi − µi

} 1

V (µi)

[∂ηi
∂µi

]−1

xij

+ wi(yi − µi)
∂

∂γk

{ 1

V (µi)

}[∂ηi
∂µi

]−1

xij

+ wi
yi − µi

V (µi)

∂

∂γk

{[∂ηi
∂µi

]−1}
xij + wi

yi − µi

V (µi)

[∂ηi
∂µi

]−1∂xij
∂γk

]

Applying the chain rule,

IUTjk = −
∑
i∈C

E

[
∂wi

∂γk

yi − µi

V (µi)

[∂ηi
∂µi

]−1

xij

+ wi(−1)
∂µi

∂ηi

∂ηi
∂e(xi)

∂e(xi)

∂wi

∂wi

∂γk

1

V (µi)

[∂ηi
∂µi

]−1

xij

+ wi(yi − µi)
−1

V (µi)−2

∂

µi

{
V (µi)

}∂µi

∂ηi

∂ηi
∂e(xi)

∂e(xi)

∂wi

∂wi

∂γk

[∂ηi
∂µi

]−1

xij

+ wi
yi − µi

V (µi)

∂

∂µ

{[∂ηi
∂µi

]−1}∂µi

∂ηi

∂ηi
∂e(xi)

∂e(xi)

∂wi

∂wi

∂γk
xij

+ wi
yi − µi

V (µi)

[∂ηi
∂µi

]−1 ∂xij
∂e(xi)

∂e(xi)

∂wi

∂wi

∂γk

]
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Rearranging and collecting common terms,

IUTjk = −
∑
i∈C

E

[
∂wi

∂γk

1

V (µi)

[∂ηi
∂µi

]−1
(
(yi − µi)xij

+ wi
∂ηi

∂e(xi)

∂e(xi)

∂wi

xij

{
−
[∂ηi
∂µi

]−1
(
1 +

(yi − µi)

V (µi)

∂

µi

{
V (µi)

})
+ (yi − µi)

∂

∂µ

{[∂ηi
∂µi

]−1}}
+ I(j = 3)wi(yi − µi)

∂e(xi)

∂wi

)]

Plugging in values for known partial derivatives,

IUTjk = −
∑
i∈C

E

[
−wivik
V (µi)

[∂ηi
∂µi

]−1
(
(yi − µi)xij

− β2(ai − e(xi))xij

{
−
[∂ηi
∂µi

]−1
(
1 +

yi − µi

V (µi)

∂

µi

{
V (µi)

})
+ (yi − µi)

∂

∂µ

{[∂ηi
∂µi

]−1}}
− I(j = 3)(yi − µi)(ai − e(xi))

)]

Putting this into matrix form,

IUT = E

[
XTDUT1V +


0

0

1

 1TnC
DUT2V

]

where

DUT1 =
wi

V (µi)

[∂ηi
∂µi

]−1
(
(yi − µi)− β2(ai − e(xi))

[
−
[∂ηi
∂µi

]−1
(
1 +

yi − µi

V (µi)

∂

µi

{
V (µi)

})

+ (yi − µi)
∂

∂µ

{[∂ηi
∂µi

]−1}])

DUT2 = − wi

V (µi)

[∂ηi
∂µi

]−1

(yi − µi)(ai − e(xi))

To estimate I, we can replace Fisher’s expected information with Fisher’s observed informa-

tion matrix and remove the expectations.
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