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Gene–lifestyle interactions have been suggested to contribute to
the development of type 2 diabetes. Glucose levels 2 h after a stan-
dard 75-g glucose challenge are used to diagnose diabetes and
are associated with both genetic and lifestyle factors. However,
whether these factors interact to determine 2-h glucose levels is
unknown. We meta-analyzed single nucleotide polymorphism
(SNP) 3 BMI and SNP 3 physical activity (PA) interaction re-
gression models for five SNPs previously associated with 2-h glu-
cose levels from up to 22 studies comprising 54,884 individuals
without diabetes. PA levels were dichotomized, with individ-
uals below the first quintile classified as inactive (20%) and the
remainder as active (80%). BMI was considered a continuous

trait. Inactive individuals had higher 2-h glucose levels than
active individuals (b = 0.22 mmol/L [95% CI 0.13–0.31], P =
1.63 3 1026). All SNPs were associated with 2-h glucose
(b = 0.06–0.12 mmol/allele, P # 1.53 3 1027), but no signifi-
cant interactions were found with PA (P . 0.18) or BMI (P $
0.04). In this large study of gene–lifestyle interaction, we
observed no interactions between genetic and lifestyle factors,
both of which were associated with 2-h glucose. It is perhaps
unlikely that top loci from genome-wide association studies
will exhibit strong subgroup-specific effects, and may not,
therefore, make the best candidates for the study of interactions.
Diabetes 61:1291–1296, 2012
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G
lucose levels 2 h after a 75-g glucose challenge
are used to diagnose diabetes and are associ-
ated with cardiovascular morbidity and mor-
tality even below the diabetic threshold (1). A

large number of type 2 diabetes–associated genetic var-
iants have now been identified (2), and recent genome-wide
meta-analyses identified five loci that were associated with
postchallenge glucose at genome-wide levels of significance
(3). Previously identified single nucleotide polymorphisms
(SNPs) in TCF7L2 and GCKR were associated with 2-h
glucose levels, as were newly identified loci in ADCY5,
GIPR, and VPS13C. Risk alleles at each of these loci con-
ferred elevated 2-h glucose levels with effect sizes ranging
from 0.07 to 0.11 mmol/L per allele (3), although with some
heterogeneity.

Age, BMI, and physical inactivity are all associated with
glycemia and are key risk factors for type 2 diabetes (4–6).
Glucose levels at 2 h appear more susceptible to age- and
lifestyle-mediated increases than fasting glucose levels. For
example, physical activity (PA) levels have been shown to be
inversely associated with 2-h glucose but not with fasting
glucose (7,8). Differences in 2-h glucose between individuals
at either end of the PA spectrum are appreciable, with the
most active individuals having a mean 2-h glucose level ;1
mmol/L lower than those with low PA levels (7). Further-
more, lifestyle intervention trials including prescribed PA
have been effective in decreasing the incidence of diabetes
in individuals with impaired glucose tolerance at baseline
(9,10). However, it is unclear whether these responses to PA
are homogenous among those with genetically conferred
elevations in 2-h glucose levels or whether genetic effects are
similar across lifestyle strata. Identification of gene–lifestyle
interactions will offer valuable insight into the etiologic
processes leading to disease and the biologic pathways by
which lifestyle modification can reduce the risk of diabetes.

Although gene–lifestyle interactions are suggested as be-
ing important in the etiology of type 2 diabetes, few con-
sistently replicated examples have been identified (11) and
methodologic difficulties limit the opportunity for literature-
based meta-analyses (12). The association of 2-h glucose
with lifestyle and genetic factors makes it a good trait for the
study of gene–lifestyle interaction. Furthermore, the hetero-
geneity observed in the association between SNPs and 2-h
glucose (3) is potentially attributable to factors such as
gene–lifestyle interaction. Therefore, we investigated the
presence of gene–lifestyle interactions at these five 2-h
glucose-associated loci (in or near GCKR, ADCY5, TCF7L2,
VPS13C, and GIPR) by meta-analyzing SNP3PA and
SNP3BMI interactions on 2-h glucose in up to 54,884 indi-
viduals from 22 studies.

RESEARCH DESIGN AND METHODS

Participating cohort characteristics. We meta-analyzed results from up to
22 Meta-Analyses of Glucose and Insulin Related Traits Consortium (MAGIC)
studies (3) comprising up to 54,884 individuals. Study descriptives are detailed
in Supplementary Table 1. Participants with known diabetes, those with fasting
glucose$ 7 mmol/L, and individuals with a BMI,18.5 kg/m2 were excluded. All
data were cross-sectional except for Atherosclerosis Risk in Communities Study
(ARIC) where PA data were available at the visit ;3 years before 2-h glucose
measurement.
Lifestyle exposure classification. Study-specific details of the measurement
of PA are in Supplementary Table 1. Where a quantitative measure of PA was
available, individuals below the first quintile were classified as inactive and the
remainder as active (i.e., 20% inactive and 80% active). In studies where PA
data were categoric, the proportion of inactive individuals was dependent on
the questionnaire used and reported in Supplementary Table 1. Inactive individ-
uals were coded as 0 and active individuals as 1 in the analyses. BMI was treated
as a continuous variable in the primary analyses.
Genotyping and statistical analysis. Genotyping methods are reported in
Supplementary Table 1 and have been described in detail previously (3). Ana-
lysts from each study performed study-level analyses and submitted summary
statistics to the meta-analysis group. We ran linear regression models testing the
association of each SNP with 2-h glucose, adjusted for age, sex, fasting glucose,
BMI, and PA (as a dichotomous variable), and any necessary study-specific
variables. We also examined the association of each SNP with BMI, adjusted for
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age and sex. Given our exclusion of individuals on the basis of glycemia, we
sought replication of BMI associations by lookup of those SNPs in previous
Genetic Investigation of ANthropometric Traits (GIANT) meta-analyses (13). To
investigate SNP3PA and SNP3BMI interactions, each study included interaction
terms (e.g., SNP3PA) in the models and reported the estimated interaction effect
and standard error. The interaction effect estimates were combined using inverse
variance-weighted meta-analysis. Studies with genotypes extracted from genome-
wide SNP arrays reported interaction terms with robust standard errors and are
included in the meta-analysis as such. Additive genetic models were applied.

We performed meta-analyses using a fixed-effects, inverse-variance weighted
approach via the metan command in Stata SE-11.1 software (StataCorp LP,
College Station, TX) to study SNP main effects on 2-h glucose or BMI. To study
interaction between SNPs and PA or BMI, as well as the association between PA
and BMI with 2-h glucose, we used random effects meta-analyses to account for
potential heterogeneity introduced by factors such as PA differences among
studies (Supplementary Table 1).

RESULTS

Study descriptives are reported in Supplementary Table 1. In-
active individuals had a higher 2-h glucose (b = 0.22 mmol/L
[95% CI 0.13–0.31], P = 1.63 3 1026) and BMI (b = 0.73 kg/m2

[0.51–0.95], P = 1.42 3 10210) than active individuals.
Higher BMI was also associated with higher 2-h glucose
levels (b per 1 kg/m2 = 0.086 mmol/L [0.08–0.10], P = 1.04 3
10247). SNP effects were consistent with those reported
previously in overlapping studies (Fig. 1A) (3).
SNP3PA and SNP3BMI interactions on 2-h glucose.
Figure 1B shows the absence of any difference in SNP ef-
fect on 2-h glucose between inactive and active individuals
(SNPxPA P $ 0.18 for interaction). Likewise, we did not

observe any significant interaction effects when analyses
were limited to those studies showing association between
PA and 2-h glucose (SNPxPA P $ 0.1 for interaction).
Figure 1C shows the difference in SNP effect on 2-h glucose
per 10 kg/m2. Again, no statistically significant interaction
effects were observed after correction for multiple testing
(five tests for each hypothesis: a = 0.01), although
rs1260326 in GCKR reached nominal levels of statistical
significance (albeit with very small interaction effects).
BMI-stratified results for rs1260326 showed that SNP effects
were largest in the 30 to 34.9 kg/m2 group (Supplementary
Fig. 1), although few individuals at .35 kg/m2 makes
the smaller effect in this stratum difficult to interpret.
Association of SNPs with BMI. As can be seen from Fig. 2,
TCF7L2 rs12243326 and GIPR rs10423928 were both
associated with BMI: the alleles associated with increased
2-h glucose were associated with lower BMI. The TCF7L2
and GIPR SNPs were both associated with a 0.11 kg/m2

lower BMI per allele (95% CI 20.17 to 20.04 and 20.20 to
20.03, respectively; Fig. 2). These findings were directionally
consistent with those from previous meta-analyses by the
GIANT consortium (13) (rs12243326 P = 5.7 3 1024;
rs10423928 P = 1.9 3 1026).

DISCUSSION

Each of the gene variants investigated in the current study
was robustly associated with 2-h glucose levels, as reported
previously in overlapping studies (3). However, we observed

FIG. 1. A: Effect of SNP is shown on 2-h glucose. The b-coefficient is the magnitude of the observed association. B: Shows the SNP3PA interaction
effect in which the b-coefficient is the difference in SNP association effect between inactive and active individuals. Inactive individuals were coded
as 0 and active individuals a 1; therefore, a value of 0 for the interaction coefficient reflects equivalent SNP effect in inactive and active strata,
whereas a positive value reflects a larger SNP effect in active individuals. C: The SNP3BMI interaction is shown. Here, the b-coefficient is the
difference in SNP effect per 10 kg/m

2
difference in BMI. A positive value reflects a larger SNP effect in those with higher BMI. The 2-h glucose–

raising allele in A is always the effect allele.
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no difference in effect of the gene variants studied among
PA groups or with increasing BMI.

Previous studies have reported gene–lifestyle interactions,
although often based on small sample sizes without inde-
pendent replication (11). In light of the small effect sizes of
most complex disease-associated SNPs, large sample sizes
are important to investigate interactions (14). However,
despite the large sample size in the current study, no
significant interactions were observed between 2-h glucose-
associated SNPs and established lifestyle correlates. Nota-
bly, however, in 6 of the 10 interaction meta-analyses we
performed (i.e., 5 SNPs and interaction with PA or BMI), at
least 1 individual study would have shown a significant in-
teraction had it been studied in isolation. However, had we
considered studies individually, for ;200 tests of interac-
tion we would have observed only nine interactions at P ,
0.05, spread among a range of studies. We suggest that these
associations reflect type I errors. Such a finding further
supports our use of large sample sizes or independent rep-
lication to reduce the potential for type I error.

Although the variety of subjective measures and dichot-
omous classification of PA is an important limitation of the
current study, inactive individuals had a higher 2-h glucose
and a higher BMI than active individuals, suggesting the
validity of our PA classification. Another factor may con-
tribute to the absence of interactions: the SNPs we selected
arose as top SNPs associated with 2-h glucose levels from a
genome-wide meta-analysis (3). Although heterogeneity of
associations was observed for ADCY5, TCF7L2, and GIPR
(3), these SNPs had the strongest association P values in the
genome by virtue of their effect size relative to the variation
in effect size among samples. One may not, therefore, expect
significant variation in genetic effect between subgroups of
the population. A similar approach to ours was recently
used to investigate interactions between breast cancer–
associated genes and risk-altering lifestyle exposures and
also failed to detect significant interactions between them
(15), although there was a suggestion that a physically

active lifestyle attenuated genetic predisposition to
obesity (16).

Although it has been suggested that the search for inter-
actions should be informed by biologic plausibility (11),
experience from the study of genetic main effects, where
hypothesis-generating discovery approaches revolutionized
the field (2), suggests that such an approach, not limited to
those SNPs with extremely significant main effects, may be
valuable in detecting gene–lifestyle interactions. Such ap-
proaches have been proposed and efforts are underway, but
whether current analytic methods will yield success in the
genome-wide search for gene–lifestyle interactions remains
unclear.

Data from large-scale trials, such as the Finnish Diabetes
Prevention Study (DPS) and Diabetes Prevention Program
(DPP), have shown suggestions of differential response to
intervention by genotype (17–22), although not always
reaching statistical significance for interaction (17–19).
However, lifestyle interventions in such studies often con-
tain numerous lifestyle modifications, making interpretation
of any interaction difficult, whereas large-scale genotype-
stratified lifestyle intervention trials are not feasible. There-
fore, prospective nested approaches will likely offer the
most efficient approach for the study of gene–lifestyle in-
teraction (23), allowing standardized measures of lifestyle
at baseline and also the opportunity to study large numbers
of individuals. Refined and standardized lifestyle exposure
measurement will also represent a valuable alternative to
straightforward increases in sample size (24).

Variants in TCF7L2 have previously been associated
with diabetes (2,17) and a number of related traits (3,25).
The diabetogenic, glucose-raising allele was previously as-
sociated with lower BMI, although not conclusively (26),
and principally in individuals with diabetes (27,28). Here, we
replicate this association in a larger sample size of partic-
ipants without diabetes, where the glucose-raising allele at
rs12243326 was associated with a 0.11 kg/m2

–lower BMI
(Fig. 2). Similarly, we report that the glucose-raising allele at

FIG. 2. The SNP association with BMI is shown. The 2-h glucose–raising allele from Fig. 1A is shown as the effect allele.
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GIPR rs10423928 is associated with lower BMI (20.11 kg/m2

per allele). Lookup results from the GIANT consortium
suggest that these associations are unlikely to arise from
ascertainment bias.

Although the association with BMI highlights a genetic
predisposition on BMI and the risk of confusing gene–gene
and gene–environment interactions, the small proportion
of variance in BMI explained by such SNPs is likely to limit
the effect of this concern in our study. Because BMI is a
major risk factor for diabetes and has a strong positive as-
sociation with 2-h glucose, it seems counterintuitive that 2-h
glucose-raising alleles at TCF7L2 and GIPR are associated
with lower BMI and highlights the etiologic complexity of
type 2 diabetes.

In conclusion, in our study of up to 54,884 individuals
from 22 studies, we found no evidence of gene–lifestyle
interaction among the variants studied. This was despite the
clear association of 2-h glucose with PA, BMI, and genetic
exposures. Although the descriptive epidemiology of diabe-
tes suggests an influence of gene–lifestyle interaction in its
etiology, our study finds no evidence to that effect for SNPs
known to be associated with 2-h glucose. Further, our study
supports the use of large-scale analyses to robustly investi-
gate gene–lifestyle interaction. In future, hypothesis-
generating approaches may offer a valuable opportunity to
detect gene–lifestyle interactions in type 2 diabetes and re-
lated traits.
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