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Summary

There is a pressing need to identify therapeutic targets in tumors with low mutation rates such as 

the malignant pediatric brain tumor medulloblastoma. To address this challenge, we quantitatively 

profiled global proteomes and phospho-proteomes of 45 medulloblastoma samples. Integrated 

analyses revealed that tumors with similar RNA expression vary extensively at the post-

transcriptional and post-translational levels. We identified distinct pathways associated with two 

subsets of SHH tumors, and found post-translational modifications of MYC that are associated 

with poor outcomes in Group 3 tumors. We found kinases associated with subtypes and showed 

that inhibiting PRKDC sensitizes MYC-driven cells to radiation. Our study shows that proteomics 

enables a more comprehensive, functional readout, providing a foundation for future therapeutic 

strategies.

Significance

Genomic and epigenomic analyses have revolutionized cancer diagnostics. Nevertheless, it has 

been difficult to identify therapeutic targets for tumors that lack recurrent genomic lesions. Here 

we used global, mass spectrometry-based measurements of protein levels and post-translational 

modifications to identify functional pathways associated with subtypes of medulloblastoma. 

Strong proteomic signals revealed altered pathways that were not detected transcriptionally. One 

molecular subgroup of tumors showed marked discordance of RNA and protein levels, suggesting 

global changes in translation and/or proteostasis. We demonstrate the utility of an integrative 

approach for discovery of candidate biomarkers or drug targets and provide a multi-omic dataset 

that will serve as a resource for the community. This study has the potential to impact clinical trial 

design.

Introduction

Medulloblastoma is one of the most common pediatric brain tumors. Survival rates are high, 

but current therapies can leave lasting side effects including problems with speech, cognition 

and behavior, and increased risks of secondary cancers (Archer et al., 2017). Identifying the 
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pathways driving medulloblastoma could guide development of less toxic and more effective 

targeted therapies. Previous analyses have demonstrated that, at the molecular level, 

medulloblastoma is extremely heterogeneous and comprises at least four major consensus 

subgroups: wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4 (Cho et al., 

2011; Hovestadt et al., 2014; Kool et al., 2012; Pugh et al., 2012; Robinson et al., 2012; 

Tamayo et al., 2011; Taylor et al., 2012). Almost all WNT tumors carry activating mutations 

in the β-catenin gene (CTNNB1) (Pugh et al., 2012). Unfortunately, the ubiquity of WNT 

signaling in non-cancer cells makes this pathway a challenging one for targeted cancer 

therapeutics (Kahn, 2014). Some SHH tumors respond to SMO inhibitors (Kool et al., 2014; 

Robinson et al., 2015). Group 3 and Group 4 are the least understood subgroups and 

constitute more than half of all medulloblastoma cases. These tumors have few consistent 

genetic abnormalities amenable to currently available targeted therapies (Northcott et al., 

2012).

Deeper analysis of the transcriptome and epigenome has revealed subtypes within the four 

consensus subgroups as defined by Taylor et al. (2012). Based on transcriptome evidence, 

we reported two subtypes of Group 3 tumors, including one with a dominant MYC-driven 

signature and exceedingly poor prognosis (Cho et al., 2011; Pfister et al., 2009; Schwalbe et 

al., 2017). More recently, Northcott et al. (2017) defined eight subtypes of Group 3 and 

Group 4 tumors based on DNA methylation, including a category of MYC-driven samples 

called subtype II. Similarly, Cavalli et al. (2017) proposed a division of Group 3 and Group 

4 into a total of six different subtypes. Recent evidence suggests that the MYCdriven Group 

3 tumors may be susceptible to CDK inhibitors or to combinations of PI3K and HDAC 

inhibitors (Hanaford et al., 2016; Pei et al., 2016).

Recent advances in mass spectrometry have allowed for proteomic and phospho-proteomic 

profiling of other cancers, and integration of these data with other biological data developed 

a more complete understanding of specific cancers and their genetic drivers (Edwards et al., 

2015; Huang et al., 2017; Lawrence et al., 2015; Mertins et al., 2016; Zhang et al., 2014, 

2016). Since proteins are ultimately the functional effectors of biological activity in cancer 

cells, we hypothesized that global proteomic analysis may be an especially sensitive method 

for identifying potential therapeutic targets in medulloblastoma.

Results

Global proteomics reveals medulloblastoma subgroups

To obtain a comprehensive view of medulloblastoma, we selected 45 primary tumors from 

all consensus subgroups in a cohort that had been previously characterized (Cho et al., 2011; 

Hovestadt et al., 2014; Kool et al., 2012; Northcott et al., 2017). Of these, 42 had been 

analyzed for DNA methylation, 41 had preexisting whole genome sequencing and 39 had 

RNA-seq data (Figure 1, Tables S1 and S2) (Northcott et al., 2017).

Towards our aim of understanding the functional pathways that distinguish medulloblastoma 

subgroups, we collected proteomic, phospho-proteomic, and protein acetylation data for all 

45 samples using isobaric labeling with TMT10 mass-tag reagents (Rauniyar and Yates 3rd, 

2014) followed by high-resolution liquid chromatography-tandem mass spectrometry. 
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Phosphorylation events were enriched using metal-affinity enrichment (detecting 

phosphorylated serine, threonine, and tyrosine peptides: pSTY). In addition, we used 

antibodies to enrich for phosphorylated tyrosine peptides (pY) and acetylated lysine residues 

(acK). Over 13,000 proteins, more than 50,000 phosphosites, and almost 11,000 acetylated 

sites were quantified in total. Unless otherwise noted, only the complete data sets, in which 

proteomic features had been measured across all 45 samples, were used for analyses (Figure 

1).

We applied uniform data normalization methods to each type of data and clustered samples 

using each data type separately (Figure 2A). Consensus clustering, principal component 

analysis (PCA), and t-distributed stochastic neighbor embedding (t-SNE) carried out 

separately on each data type predominantly revealed the known subgroups: Group 3, Group 

4, and SHH (Figures 2A, S1-S3). The proteomic data also identified very stable subsets of 

two known subgroups. Here, we refer to Group 3 clusters as Group 3a (G3a) and Group 3b 

(G3b), and SHH clusters as SHHa and SHHb (Figure 2A, Table S1). Including WNT 

samples in any of the clustering approaches on the proteomic data revealed the same five 

subsets with an additional sixth group for WNT samples (Figure S3). Performing pairwise 

statistical comparisons, we found 4,365 proteins and 2,642 phosphopeptides that differed 

significantly between these subsets of patients (FDR < 0.01, ANOVA; Table S2).

Proteome suggests post-transcriptional heterogeneity within SHH medulloblastoma

The SHHa and SHHb subsets that emerged (Figures 2A, S1-S3) are distinct from the age-

dependent subtypes found in DNA methylation data (Cavalli et al., 2017; Kool et al., 2014; 

Northcott et al., 2011; Schwalbe et al., 2017). All but one of the adult samples were found in 

SHHa, while the pediatric SHH samples were split evenly between SHHa and SHHb 

(Figures 2B, 3, S3, Table S1). We identified 510 proteins that differed between the SHHa 

and SHHb using ANOVA (FDR < 0.005). Proteins higher in SHHa were associated with 

mRNA processing, splicing, and transcription, as well as the MYC pathway, chromatin 

remodeling, and DNA repair (Figure 3A, Table S3). In contrast, proteins with higher levels 

in SHHb were linked to neuronal and neurotransmitter-like activity, including CD47, an anti-

phagocytic cell surface ligand (Figure S4). Many proteins in the glutamatergic synaptic 

pathway were elevated in SHHb, including glutamate, calcium, and MAPK/ERK signaling 

(Figures 3A, 3B, Table S4). SHHb samples consistently clustered closer to Group 4 samples 

than to SHHa samples (Figures 2A, 3A, S1-S3). Despite the differences in neuronal-like 

gene sets between SHHa and SHHb, there were no differences in histology (Figure 3C).

As no transcripts (RNA-seq) differed significantly (FDR < 0.05, ANOVA) between SHHa 

and SHHb, we asked whether the subsets differed in post-transcriptional regulation. We 

compared the Spearman correlations for approximately 8,700 mRNA-protein pairs in every 

patient sample (Figure 3D). All clusters of samples except SHHb have a median Spearman 

correlation near 0.5, consistent with studies in other systems (Mertins et al., 2016; Zhang et 

al., 2014). However, the median correlation for SHHb was 0.38 (p = 0.012, compared to 

SHHa; Mann-Whitney U test), suggesting that SHHa and SHHb differ in translation and/or 

proteostasis.
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We next asked if genetic lesions might account for the observed differences between SHHa 

and SHHb. Gains of chromosome 3q are characteristic of SHH medulloblastoma (Cho et al., 

2011; Kool et al., 2012; Taylor et al., 2012), and in our cohort they occur in several SHHa 

samples, and do not occur in SHHb samples (Figure 3C). The neural progenitor regulator 

SRY-box 2 gene (SOX2) lies within this region, and its protein levels and phosphorylation 

events (T7, S18, and T26) were all increased in SHHa samples compared to SHHb (Figures 

3C, S4A) (Archer et al., 2011). In contrast, CD47 protein levels were significantly elevated 

in SHHb, while mRNA levels did not differ between the groups (Figure S4B). Mutations in 

PTCH1, PRKAR1A, and in the TERT promoter (Figure 3C) occurred only in SHHa. In 

contrast, other SHH pathway activating alterations were found in both SHHa and SHHb, 

which suggests that there are relatively few differences in the genetic lesions of these SHH 

subsets.

Post-translational modifications of MYC in Group 3 tumors are predictive of patient 
outcome

Clustering of the proteomic data identified two subsets of Group 3 samples, which we refer 

to as G3a and G3b (Figures 2, S1-S3). First, we sought to understand how these clusters 

related to the subgroups that had been previously identified using much larger cohorts. All 

G3a samples were assigned to subtype II that was defined by Northcott et al. (2017), while 

the G3b samples were assigned to the Northcott et al. (2017) subtypes I, III, IV, and VII 

(Figure 2B, Table S1). The transcription-based classifier of Cho et al. (2011) assigned the 

G3a samples to the MYC-activated c1 subtype. Two G3b samples and one Group 4 sample 

also were classified as c1 (Figure 2B, Table S1). The remaining G3b samples were assigned 

to c4 and c5. These results suggest that the proteomic features associated with G3a likely 

represent the MYC-activated form of medulloblastoma and that the proteomic data for G3b 

samples represent the known Group 3/4 continuum. Indeed, several proteomic signatures in 

G3a associated with MYC activation including significant differences in ribosomal proteins 

and proteins related to ribosome assembly, mitochondrial ribosomal proteins, and proteins 

involved in transcription (Figure S5A) (Morrish and Hockenbery, 2014; Staal et al., 2015).

To identify the sources of MYC activation in G3a, we investigated the MYC events in all our 

data (Figure 4A). While MYC amplification is a “hallmark” of MYC-activated 

medulloblastoma, it does not occur in every tumor of this type (Cho et al., 2011; Northcott et 

al., 2017). Here, only two G3a tumors have a MYC amplification. However, all G3a samples 

have increased post-translational modifications of MYC at multiple sites (Figures 4A, S5B). 

Acetylation of lysine 148 (K148) was pronounced, as was increased phosphorylation of 

serine 71 (S71) and a serine at either position 62 or 64 (the ambiguity of these nearby sites 

cannot be resolved in the spectra). Our data also revealed peptides that are simultaneously 

phosphorylated at both serine (S62) and threonine 58 (T58). Peptides phosphorylated on T58 

and S62 are particularly informative for MYC activity, as these sites regulate MYC half-life 

and transcriptional activity (Arnold et al., 2009; Wang et al., 2011). Considering known 

MYC regulators, our data showed significantly increased protein levels of the B55a subunit 

of PP2A (encoded by PPP2R2A, FDR = 0.0085, ANOVA), and the deubiquitinating 

enzymes USP28 (significant with FDR = 0.018, ANOVA) and USP36 (not significant with 

FDR = 0.084, ANOVA) in G3a compared to G3b (Figure S5C). By contrast, we did not 
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observe differing levels of PP2A-B56 or the phosphatase inhibitors SET or CIP2A (Figure 

S5C).

To examine the localization of active forms of MYC, we stained formalin-fixed and paraffin-

embedded (FFPE) slides of the tumors for MYC phosphorylated at S62 or T58 (Figure 4B). 

Cell mean immunofluorescence density for phosphorylation of residues S62 and T58 MYC 

(pS62 and pT58) was significantly higher in G3a compared to G3b (Figure 4C), while 

Group 4 tumors showed lower levels of signal. Localization of pS62 MYC was primarily in 

the nucleus with exclusion from the nucleolus (Figure 4B). In contrast, pT58 MYC localized 

mainly in the cytoplasm for G3a and G3b tumors. Elevated pS62 and pT58 MYC suggest a 

breakdown in the canonical pathway of MYC degradation (Farrell and Sears, 2014), 

consistent with the increased expression of some kinases upstream of S62 phosphorylation 

as well as increased expression of deubiquitinating enzymes USP36 and USP28.

We sought to understand whether the observed MYC modifications had clinical 

implications. Indeed, G3a and G3b patients differed dramatically in rates of five-year 

progression free (PFS) and overall survival (OS), but these differences were not statistically 

significant, possibly due to the small sample size (Figure 4D). To extend our analysis to a 

larger cohort, we built a binary classifier based on single sample gene set enrichment 

analysis (Barbie et al., 2009) to distinguish G3a and G3b using only transcriptional data. We 

then applied it to the c1 and c5 samples from Cho et al. (2011) to give them G3a/G3b labels 

(Figure S5D, Table S1). Surprisingly, while we had expected c1 samples from the original 

Cho cohort to be assigned to G3a and c5 to G3b, the classifier assigned approximately one 

quarter of the samples to the other subtype. The combined cohort using proteomic labels 

performed better at predicting PFS and OS (Figure 4D, S5E). The difference in PFS using c1 

and c5 labels (Figure 2B and Table S1) on the combined cohort did not reach statistical 

significance (p = 0.098), while the difference using G3a vs. G3b classification did (p = 

0.002). The newly defined sets of patients had the same median age (5 years), ruling out that 

variable as a potential trivial explanation for the improved predictor. Taken together, these 

data demonstrate that the proteomic distinctions provide a strong signal of clinical relevance.

Medulloblastoma subgroups differ in activity of kinases

We next investigated kinase signaling in medulloblastoma. Potential kinases of the 

phosphopeptides in each subset of tumors were identified by leveraging kinase specificity 

data from PhosphoSitePlus (Hornbeck et al., 2015) and Scansite (Obenauer et al., 2003). 

Filtering this list based on the protein and phosphorylation levels of the kinases in our data, 

we identified the 38 kinases listed in Figure 5 (Table S5). PRKDC, GSK3B, and CDK5 were 

significant in both our analyses. PRKDC is important for repair of DNA double-stranded 

breaks through non-homologous end-joining (Ma et al., 2004) and downstream targets of 

PRKDC were consistently elevated in Group 3 and WNT samples (Figure 5, Scansite). 

GSK3B is a promising therapeutic target. It is overexpressed in many cancers (McCubrey et 

al., 2014) and its substrates have increased phosphorylation in the Group 4 and SHHb 

samples. CDK5 has been associated with oncogenesis and resistance to cancer therapies 

(Pozo and Bibb, 2016) and its targets had increased phosphorylation in Group 4. CDK5 

phosphorylates MYC at S62, much like CDK1 and CDK7, which were fittingly associated 
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with G3a. AURKB was also linked to this disease group. Diaz et al. (2015) previously 

treated MYC overexpressing medulloblastoma cell lines and orthotopic xenografts with an 

AURKB inhibitor, which led to growth impairment and induction of apoptosis in the cell 

lines, and inhibited intracranial growth and prolonged survival in mice. Many kinases were 

predicted to be active in SHHa, and this was the only subgroup with consistent 

phosphorylation of sites targeted by ATM (PhosphoSitePlus) and PIK3R1 (Scansite). G3b 

was unusual, as only one kinase, EEF2K, was associated with this group in our analyses. 

Overall, these analyses highlight potential upstream kinases that may be driving some of the 

molecular differences between medulloblastoma subgroups and that represent possible novel 

targets to explore for future therapeutic gains.

MYC-active medulloblastoma cell lines have phosphorylated MYC and PRKDC

To test the finding that pS62 MYC is enriched in Group 3 MYC-active medulloblastoma, we 

measured MYC expression by Western blot in medulloblastoma cell lines reported to be 

MYC-amplified (D425, D458 and D556) compared to two that are not (DAOY and D283) 

(Bigner et al., 1990). MYC-amplified lines were highly enriched for MYC protein and pS62 

MYC, while DAOY and D283 were not (Figure 6A-C). Consistent with the kinome analysis, 

pS2056 PRKDC correlates with pS62 MYC and pT58/pS62 MYC in these lines (Figures 

6A-C). To explore possible functional consequences of this finding, we first examined the 

localization of PRKDC and MYC. Immunofluorescence identified that pS62 MYC and 

pS2056 PRKDC co-localize in the nucleus (Figure 6D).

We next examined the role of PRKDC in MYC-amplified medulloblastoma cell lines. 

PRKDC inhibitors are radio-sensitizing agents, but may have limited cytotoxic activity by 

themselves (Ciszewski et al., 2014; Sunada et al., 2016). We find that that the PRKDC 

inhibitor NU7441 preferentially sensitizes MYC-active cell line D458 to radiation (Figures 

6E-F). Irradiation reduced the IC50 of the MYC-amplified D458 from 28 μM to 2.7 μM 

(Figure 6G), but did not change the IC50 of NU7441 in DAOY. These data suggest that cell 

lines with pS62 MYC depend on PRKDC activity for survival in response to DNA damage, 

and that PRKDC inhibition may radio-sensitize MYC-active tumors.

Integrative modeling

To search for common patterns in the genomic, proteomic, and phospho-proteomic data, we 

adopted an integrated modeling approach (Figure 7). Omics Integrator (Tuncbag et al., 2016) 

searches a vast network of physical interactions for sets of proteins and genes from disparate 

‘omic data that are likely to represent pathways altered in a disease process. Applied to 

signals that differ significantly between G3a and G3b, it identified coherent proteomic 

changes in proteins that physically associate with MYC, and up-regulation of known MYC 

transcriptional targets (Figure 7A). In addition, the networks highlighted ribosomal, 

mitochondrial and cell-cycle regulatory proteins. A similar analysis for SHH (Figure 7B) 

identified calcium, glutamate and Ras signaling pathways that were upregulated in SHHb. 

These networks integrated disparate data types including: mutated genes (TP53, PIK3R1, 
and NOTCH1) and kinases with genomic/proteomic/PTM changes (CAMKs (CAMK2A/G, 

CAMK4), protein kinase A and C (PRKACB, PRKCA), ERK2 (MAPK1), ribosomal protein 

kinase 6 (RPSK6KA1/2), glycogen synthase kinase B (GSK3B), PI3Ks (PIK3R1, PIK3CA), 
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DGKI, and CDK2). The networks also supported the role of several predicted kinases 

(PIK3R1, CAMK2G, GSK3B, and MAPK1).

Discussion

Molecular subgroups identified using mRNA expression and DNA methylation array data 

have recently been accepted by the WHO as the international standard for medulloblastoma 

diagnosis (Louis et al., 2016a, 2016b). Here we show that, at the highest level, proteomic 

and phospho-proteomic data sets revealed similar subgroup assignments to these consensus 

subgroups. This finding contrasts with global proteomic studies in breast and colon cancer 

where molecular subgroups were not as consistently durable across data types, and subgroup 

compositions are dependent on the data type used (Mertins et al., 2016; Zhang et al., 2014). 

The consistency of the medulloblastoma subgroups may in part be due to the distinct 

developmental states of the cell of origin of medulloblastoma subgroups, as well as the 

subgroup-specific driver genetic events (Gibson et al., 2010; Northcott et al., 2012).

Our data identify heterogeneous molecular mechanisms within the subgroups that are not 

evident in the transcriptome or genome. The two clusters of SHH samples revealed by our 

proteomic data (SHHa and SHHb) reflect a different distinction from the known age-based 

split in SHH samples (Cavalli et al., 2017; Kool et al., 2014; Schwalbe et al., 2017). Adult 

patients in our cohort (ages 23–35) predominantly clustered with SHHa, but the infant and 

childhood patients were spread across both subsets. The different signals that emerged from 

DNA methylation and proteomics may reflect the differing sensitivity of these methods to 

specific biological processes. DNA methylation data likely reflect the developmental state of 

the cells of origin at the onset of oncogenesis (Horvath et al., 2015; Lu et al., 2016). By 

contrast, the proteomic data will be strongly affected by post-transcriptional changes 

including RNA stability, protein stability, translational regulation, and signaling pathways.

The proteomic data we gathered from SHH tumors have important clinical implications. 

SHHa samples had expression signatures and molecular alterations including PTCH1 
mutations that are consistent with activation of the canonical SHH pathway. SHHb tumors 

also had SHH pathway activating mutations, but also were enriched for pathways typically 

associated with Group 4, such as glutamate, calcium, and Ras signaling. For example, we 

saw very consistent increases in many of the proteins associated with the glutamatergic 

synapse. While these pathways are known features of some gliomas and Group 4 

medulloblastoma (Arcella et al., 2005; Cavalli et al., 2017), they are not typically associated 

with SHH medulloblastoma. SHHb-like patients may therefore also benefit from any future 

therapies developed for Group 4 tumors. Proteomic data identifies one potential candidate 

therapeutic target: CD47 protein is enriched in Group 4 and SHHb tumors. CD47 is a 

membrane protein involved in several processes, including vesicle-mediated transport, and is 

an anti-phagocytic cell surface ligand (Brown and Frazier, 2001; Jaiswal et al., 2009). 

Currently, an anti-CD47 antibody is being tested for efficacy in Group 3 medulloblastoma 

(Gholamin et al., 2017). While CD47 RNA levels are not significantly different between the 

SHH groups (p = 0.06, t-test), the mean CD47 protein level for SHHb samples is much 

higher than the mean for SHHa and Group 3 samples. These data suggest that anti-CD47 

therapies may be particularly effective on SHHb tumors. The discrepancy between protein 
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and mRNA levels in CD47 is not unique, as the correlation of global protein levels with 

mRNA expression was significantly lower in SHHb samples. It will be important for future 

studies to examine whether there exist fundamental differences in the efficiency of protein 

translation or in the stability of proteins in SHHb tumors. These observations highlight the 

importance of proteomic studies for discovery of biomarkers.

Group 3 medulloblastoma are clinically diverse and it has been clear that MYC activation 

has important therapeutic consequences. Previously, we demonstrated that transcriptional 

profiles can distinguish low- and high-risk Group 3 patients (Cho et al., 2011; Tamayo et al., 

2011). More recent studies have proposed additional subtypes of Group 3. Cavalli et al. 
(2017) proposed three subtypes, and Northcott et al. (2017) identified eight subtypes of 

Group 3 and Group 4. However, genomic, epigenomic, and transcriptional data do not 

directly measure activation of MYC, which can occur through several mechanisms. In breast 

cancer, for example, more than 40% of tumors show increased levels of MYC protein, but 

the fraction with increased MYC mRNA ranges from 22–35% and only 13–22% have an 

amplification of the MYC locus (Chen and Olopade, 2008). In breast cancer, higher MYC 

protein levels without genomic amplification have been explained by elevated levels of 

pS62, a phosphosite associated with more stable and transcriptionally active MYC 

(Janghorban et al., 2014). Using the direct measurement of MYC post-translational 

modifications, we were able to refine the transcriptional signature of MYC-activated Group 

3 tumors. It is clear from the pathway-level analysis that G3a tumors have higher levels of 

MYC activity compared to those in the G3b cluster. Consistent with these data, we see pS62 

on MYC in the proteomic data and by staining both of FFPE tumor sections and 

medulloblastoma cell lines; and we found that pS62 MYC was primarily expressed in the 

nucleus. More work will be needed to understand the functional consequences of the 

observed post-translational modifications.

Through systematic analysis of the phospho-proteomic data, we have identified several 

kinases that should be studied further to understand their therapeutic implications. PRKDC 

was predicted by our kinome analysis and its levels were elevated in many Group 3 and 

WNT samples. While there is no prior evidence for PRKDC’s role in medulloblastoma, in 
vitro experiments with various tumor cell lines show that PRKDC promotes MYC stability 

(An et al., 2008). PRKDC and MYC are known to function together in the presence of DNA 

damage (Cui et al., 2015). Notably, we have shown that in the presence of high levels of 

endogenous MYC activity in medulloblastoma cell lines, PRKDC inhibition functions as a 

radiation sensitizer, but not in cells with low MYC levels. Indeed, our data suggest that the 

radio sensitizing effects of PRKDC inhibitors may be dependent on MYC status, and 

furthermore that PRKDC inhibition may serve as radiation sensitizer of MYC-active G3a 

medulloblastoma in clinical trials.

In conclusion, our results show that quantitative mass spectrometry-based proteomics reveals 

molecular mechanisms within medulloblastoma subgroups that are not evident through 

analysis of genome, epigenome, or transcriptome. Protein expression and post-translational 

modifications represent the functional state of the cancer cells, a reflection of the influence 

that somatic mutations and other genetic and epigenetic alterations have to alter the cellular 

state during progression from normal to a cancerous state. Kinome analysis is a particularly 
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sensitive method to identify specific kinases for therapeutic targeting. Finally, differential 

modification of proteins through post-translational modifications offers new biomarkers for 

specific medulloblastoma subtypes. Our integrative exploration of medulloblastoma 

furthermore provides the clinical and research communities with a wealth of data that may 

help advance strategies for patient selection and treatments for this devastating disease.

It has come to our attention that a parallel study by Forget et al. (2018) also identifies two 

subgroups of SHH medulloblastoma. Their pathway analysis also finds SHHa samples to be 

enriched for DNA replication processes, and SHHb to be enriched for neuronal and 

neurotransmitter genes.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, E.F. (fraenkel-admin@mit.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient samples—Primary medulloblastoma patient samples, including FFPE slides, were 

obtained with informed consent according to the International Cancer Genome Consortium 

(ICGC) guidelines as approved by the Ethics Committee of the Medical Faculty at 

Heidelberg University, and as approved by the institutional review board of contributing 

center Nikolay Nilovich Burdenko Neurosurgical Institute in Moscow. All samples were de-

identified. Tumor samples of 50 mg were freeze-fractured using Covaris cryoPREP CP02 at 

setting “impact level 4”. The pulverized samples were aliquoted for the downstream 

methods.

Cell Lines—Medulloblastoma cell lines D425, D458 and D556 were a kind gift from Dr. 

Darell Bigner (Duke University). DAOY and D283 were obtained from American Tissue 

Culture Collection.

METHOD DETAILS

Proteomic profiling—The global proteome and phospho-proteome were processed 

according to adapted protocols from our previous studies (Huang et al., 2017; Mertins et al., 

2016). In brief, cryo-pulverized tumor tissue from each patient was lysed at 4°C using 8M 

urea lysis buffer. Extracted proteins were reduced using dithiothreitol and alkylated with 

iodoacetamide before digestion using LysC for two hours followed with trypsin overnight. 

Both digestion steps were performed at a 1:50 enzyme:protein ratio. For relative 

quantification of the global proteome and phospho-proteome by liquid chromatography 

tandem mass spectrometry (LC-MS/MS), 400 μg per patient, as measured on protein level 

(BCA protein concentration determination kit; before digestion) was labeled with 10-plexing 

tandem mass tags (TMT-10; Thermo Scientific) following the manufactures instructions. All 

45 patients were run in 5 total TMT-10 plexes, with each plex including 9 patient samples 

and an internal reference sample. Samples were assigned to plexes in a semi-randomized 

manner, such that consensus subgroups were split across TMT-10 plexes (assignments in 
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Table S1). The internal reference sample was composed of equal amounts of peptide 

material from 40 of the 45 patients, representing all subgroups, and was included in each 

TMT10-plex to provide a common standard for precise relative quantitation. Isobarically-

labeled peptides were combined and fractionated using high-pH reversed phase 

chromatography into 24 fractions. From each fraction, 5% of the material was evaluated for 

its proteomic content. The remaining 95% material was combined into 12 fractions which 

were each enriched for phosphopeptides using immobilized metal affinity chromatography 

(IMAC) (Mertins et al., 2013). The flow-throughs after IMAC enrichment were collected 

and further concatenated into 4 fractions that were each enriched using antibodies for 

acetylated peptides (see Key Resource Table). In parallel to the global proteome, phospho-

proteome, and acetylome, an additional 500ug of TMT-labeled peptides per patient were 

enriched for phosphotyrosine peptides using phospho-tyrosine antibodies (see Key Resource 

Table) and analyzed as a single fraction on the mass spectrometer. All proteomic based data 

were collected on a Lumos mass spectrometer (Thermo Fisher Scientific) and the resulting 

spectra were searched using Spectrum Mill (Agilent, version 12.212). All mass spectra 

contributing to this study can be downloaded in the original instrument vendor format from 

the MassIVE online repository (MSV000082644).

Sequencing and DNA Methylation Array Data Collection—Whole genome 

sequencing, RNA expression, and DNA methylation data sets reported here are previously 

published in Northcott et al. (2017) (European Genome-phenome Archive 

EGAS00001001953). Consensus subgroup assignments (Figure 1) were provided by DKFZ, 

and methylation-based subgroups were assigned previously in Northcott et al. (2017).

Western blots—Cells were cultured as previously described (Weeraratne et al., 2012). For 

Western blots, 1 million cells were plated in 10 cm dishes and harvested after 48 hours. 

Proteins were normalized using Pierce BCA Protein Assay Kit and 50 μg protein was loaded 

per well into NuPAGE Novex gels with Bolt running buffer (see Key Resource Table for 

specifics). Proteins were transferred using iBlot2 system. Blots were probed for primary 

antibodies and visualized using the Licor Odyssey system on the Odyssey CLx Infrared 

Imaging System according to manufacturer’s directions. Antibodies dilutions for Western 

blots are listed on Key Resource Table. Antibody staining was quantified using Image Studio 

Lite for Western blots. Densitometry was performed by comparing raw densitometry for 

each antibody to actin on unmodified images.

Immunofluorescence of cell lines—Immunocytochemistry was performed as 

previously reported (Weeraratne et al., 2012) with the following modifications: cells were 

plated at 30,000 cells/well in 500 μl of media on glass coverslips. Slides were imaged using 

Zeiss 710 Confocal Microscope in the IDDRC and analyzed using Fiji Image J. All 

antibodies were used at 1:50 concentration for immunofluorescence.

Drug dose response assay—Adherent DAOY cell lines were plated at 2,500 cells per 

well and suspended D458 were plated at 20,000 cells per well in 96-well plates in 75 μL of 

culture media. Each sample was plated in sextuplicate. NU7441 was added 24 hours after 

plating at 4x concentrations in 25 μL. CellTiter-Glo Luminescent Cell Viability Assay was 

Archer et al. Page 11

Cancer Cell. Author manuscript; available in PMC 2019 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used to measure viability 18 hours after drug addition according to manufacturer’s directions 

in white opaque plates. Luminescence data was measured by EnSight Multimode Plate 

Reader using Kaleido 1.2 software with 0.1 second measurement time. For irradiation, the 

cells were exposed to 200 rads of gamma radiation and assayed for cell viability 5 hours 

later.

Immunofluorescence staining of FFPE slides—Antigen retrieval was achieved by 

pressure-cooking in citrate buffer pH 6 (Sigma) for 10 minutes. Antibodies used for staining 

are as follows (details in Key Resource Table): rabbit polyclonal c-Myc S62 specific 

phospho-antibody 1:25 (Zhang et al., 2012) and rabbit polyclonal c-Myc pT58 antibody 1:50 

(Applied Biological Material) incubated overnight at 4°C. Secondary antibody was Alexa 

Fluor 594 1:500 (Invitrogen) and DAPI at 1:5000 (Sigma) incubated for 1 hour at room 

temperature. ProLong Gold mounting media (LifeTech) was used and allowed to cure for at 

least 24 hours. Images were taken with a Hamamatsu digital camera (Japan) mounted on a 

Leica fluorescence microscope (Wetzlar, Germany) at 40x. Representative images (Figure 

4B) were acquired at 63x on a Zeiss LSM 880 laser-scanning confocal microscope 

(Germany).

QUANTIFICATION AND STATISTICAL ANALYSIS

Processing of DNA Methylation Array Data—We used the minfi R library (Aryee et 

al., 2014) to process the IDAT files into quantile normalized beta values. The probes’ beta 

values were then collapsed to gene symbols using the means of geneassociated probes.

Processing of genomics data—This section describes the (re)processing of genomics 

data (RNA-seq, WGS) for the medulloblastoma cohort that is the subject of this study. All 

genomics data were available prior to this study and published elsewhere (Northcott et al., 

2017). Details about sequencing protocols can be found in the corresponding publications. 

We decided to re-process all data using the latest best-practice pipelines developed at the 

Cancer Genome Analysis (CGA) group of the Broad Institute.

Processing of RNA-seq data—Bam files were unaligned and converted to FASTQ 

using Picard (http://broadinstitute.github.io/picard/). All further RNA-seq data processing 

described below was conducted in FireCloud, a cloud-based computing environment 

developed and maintained at the Broad Institute. Briefly, RNA-seq reads (50 bp) were 

aligned to GRCh37 (UCSC hg19) genome assembly using STAR aligner (Dobin et al., 

2013). For each sample we assessed QC metrics using RNA-SeQC (DeLuca et al., 2012). 

Transcript expression was quantified as Transcripts Per Kilobase Million (TPM) using 

RSEM (Li and Dewey, 2011).

Processing of Affymetrix expression array data—Expression array data was 

quantile normalized using the preprocessCore R library (function “normalize.quantiles”).

Processing of WGS data—The processing of 44 WGS tumor-normal pairs described 

below was accomplished by chaining together modules implemented in GDAC Firehose 

(http://gdac.broadinstitute.org/). Somatic variant calling modules were based on the Genome 
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Analysis Tool Kit v3 (GATK) following ‘GATK Best Practices’ workflows for variant 

discovery (DePristo et al., 2011).

Paired-end (PE) sequencing reads (100 bp) in FASTQ format were aligned to GRCh37 

(UCSC hg19) genome assembly using BWAMem. Base quality score recalibration (BQSR) 

to correct systematic errors made by the sequencer was done using GATK’s 

‘BaseRecalibrator’ and ‘PrintReads’ programs. Local realignment of insertions and deletions 

(indels) to correct alignment artifacts was performed with GATK’s ‘IndelRealigner’ 

program. Cross-sample contamination was assessed by GATK ‘ContEst’ program.

Mutation calling. Somatic single nucleotide variants (SNVs) and indels were called using 

Mutec2. Resulting VCF files were annotated and converted to MAF format by Oncotator 

(Ramos et al., 2015). Oxidative artifacts contributing to SNV calls were assessed by D-

ToxoG. SNVs and indels were further filtered for commonly observed germline variants 

using a panel of normal (PoN) (Costello et al., 2013).

Copy number calling. To derive somatic copy number variants, we used a GATK v4 

workflow that comprised four steps: 1) Proportional coverage per read group was calculated 

by the ‘CalculateTargetCoverage’ program. 2) A panel of normals (PoN) was created from 

the normal samples which is meant to encapsulate sequencing noise and common germline 

variants. The program ‘CombineReadCounts’ combined proportional read counts from all 

normal samples into a single file. The PoN file stores information like the median coverage 

target and was generated using ‘CreatePanelOfNormals’ using Principle Component 

Analysis (PCA) to calculate systematic noise. 3) Normalization of tumor coverage by PoN 

target medians and PoN principle components using ‘NormalizeSomaticReadCounts’. 

Resulting data were log2 transformed. 4) Segmentation of groups of contiguous targets with 

the same copy ratio using the ‘PerformSegmentation’ program.

To derive gene-centric copy number variant calls we used GISTIC2.0. Contiguous gene copy 

number ratios were corrected for diploidy; a value of zero indicates the presence of two gene 

copies.

Normalization of proteomics data—Relative expression data derived from proteomics 

profiling (proteome, phospho-proteome, acetylome) were separately normalized by sample 

using robust z-scores (Zr ): Zr=(x − M)/MAD . In this expression, M is the median 

expression of the sample; and MAD is the median absolute deviation of the sample. To allow 

for a better comparison across data types, WNT samples were excluded from these analyses 

as they lacked all but the proteomic data, and there was insufficient high-quality tissue to 

perform the additional assays.

Normalization of RNA-seq expression data—TPM values were first converted to 

relative scale by median-row normalization. Resulting ratios were then transformed to robust 

z-scores as described above (Table S2).

Quantification of Immunofluorescence staining—Mean immunofluorescence 

densities were generated using OpenLab 5.5 software (Improvision) by using the ROI tool to 
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quantify 50 to 100 nuclei in 3 to 4 fields of view at 40x magnification. Scatter and bar plots 

were generated using GraphPad Prism. Error bars represent SEM and significance reported 

is from two-tailed unpaired t-tests.

Quantification of Western Blots—Raw densitometry for each antibody was normalized 

to actin using Image Studio Lite. All quantification was performed in at least triplicate on 

original unmodified blots. Normalized signals were compared between cell lines by 

arbitrarily normalizing samples against the DAOY line. One-way ANOVA with a Dunnett 

multiple comparison test was performed to compare the normalized signal for each antibody 

across the five cells lines using GraphPad Prism 5. Error bars represent mean normalized 

signal ± SEM.

Dose response curve—Luminescence for each well was measured and the mean signal 

for each condition ± SEM plotted. Because adherent (DAOY) and suspended (D458) cells 

were compared, we normalized mean luminescence to 100% for the non-irradiated treatment 

group for each cell line. A dose-response curve and the IC50 were determined by non-linear 

regression with GraphPad Prism.

Survival Curves—Group 3 samples were divided into G3a and G3b groups. G3a consists 

of the samples in our cohort assigned to G3a and the samples from the Cho et al. (2011) 

cohort predicted to be G3a. The same scheme applies to G3b. Kaplan-Meier curves were 

generated for each of these groups, for both overall survival (OS) and progression-free 

survival (PFS). All Kaplan-Meier curves and log rank test p values were generated with the 

lifelines Python package (Davidson-Pilon et al., 2017). Samples whose death event were not 

observed within the 10 years following initial diagnosis were right-censored for Figure 4D, 

and the full outcome follow up Kaplan-Meier plots are available in Figure S5E.

Group 3 Cohort Expansion—To expand our PFS and OS analysis for G3a and G3b, we 

developed a Group 3 Cohort Expansion predictor (https://github.com/ckmah/

archer2018_g3_cohort_expansion/) following the methods in Cho et al. (2011). From the 

Cho et al. (2011) cohort, we used the c1 and c5 samples which are most like Group 3. Since 

only array data were available for the Cho samples, we also used array data for our current 

Group 3 cohort to better normalize the two data sets. We projected the expression data for 

both cohorts into “gene set space” using a single sample version of GSEA (ssGSEA), using 

the Hallmarks (H), Curated Gene Sets (C2), Motif Gene Sets (C3), and Oncogenic Gene 

Sets (C6) collections from the MSigDB. Using the G3a, G3b labels for the current cohort, 

we determined the 10 most differentially enriched gene sets for each subtype (Figure S5D, 

main text) according to the Information Coefficient (IC) as defined in Kim et al. (2016). 

These top sets were used as features to train a Bayesian cumulative logodds predictor as 

previously described (Tamayo et al., 2011). The predictor was applied to the projected Cho 

et al. (2011) c1 and c5 samples to assign G3a and G3b labels and those labels were used to 

construct a combined cohort PFS and OS analysis. We used the Cho et al. (2011) labels for 

the current cohort as given in Figure 2B of the main text to construct a combined c1/c5 

labeled cohort for PFS and OS analysis. This analysis did not include sample MB166 and 

MB278 from G3b which were labeled c4. The c1/c5 labeling of the current cohort used the 
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classifier developed for Cho et al. (2011), with two minor modifications: (1) we restricted 

the analysis to genes contained in both data sets, and (2) the IPA_KCNIP2_DN gene set 

used as a feature for c5 in Cho et al. (2011) was replaced by BIOCARTA_PS1_PATHWAY. 

The classifier’s group assignments are provided in Table S1.

Glutamate Pathway modeling—For Figure 3B, the gene sets were collected from the 

Kyoto Encyclopedia of Genes and Genomes (KEGG). Protein levels were summarized using 

the median log2-normalized protein level for a gene for all samples in a group (SHHa or 

SHHb). When multiple genes are in a gene set, the average of those gene values is shown. 

We only included genes with data for at least 75% of samples from both groups. A summary 

of all the genes included in Figure 3B is included in Table S4.

Consensus Clustering—We used the ConsensusClusterPlus R library (Wilkerson and 

Hayes, 2010) to perform consensus clustering on our data sets. For each data set we varied 

k, the number of clusters, from 2 to 9 and ran the algorithm with 1,000 subsamples for all 

combinations of two clustering methods (hierarchical clustering and k-means) and three 

distance metrics (Euclidean, Spearman, Pearson). Consensus heatmaps are available in the 

Supplement (Figure S1). Consensus clustering of proteomic data indicated that this data type 

produced highly consistent clusters with k = 5. Runs with k < 5 showed a clear substructure 

within the clusters identified. Notably, for all clusterings with k < 5, the SHHb samples 

clustered with Group 4 samples rather than the SHHa group. Runs with k > 5 largely 

included very small clusters or samples that showed pronounced cluster promiscuity. We 

also calculated PAC (proportion of ambiguously clustered pairs) scores (Senbabaoglu et al., 

2014) for our consensus clustering runs (Figure S1) and found confirmation that, for 

proteomics data, k = 5 was the optimal number of clusters when trying to avoid clusters with 

three or fewer samples. Using the PAC scores we also determined that hierarchical clustering 

and Pearson-based distance was the best parameter setting for this k. With these settings, one 

sample, MB247, frequently shifted between G3a and G3b. We decided to assign it to G3a 

based on results from other unsupervised methods such as PCA.

Dimensionality Reduction—Principal component analysis (PCA) and t-distributed 

stochastic neighbor embedding (tSNE) were employed to display our high-dimensional data 

sets in two dimensions. We used the R function “princomp” in the “stats” library for PCA, 

and the “Rtsne” package for tSNE. Running Rtsne, we used the function’s default 

parameters along with the maximum perplexity the program would allow for (perplexity = 

(number of samples – 1) / 3).

Differential analysis—We used two types of analyses to find differential features in our 

proteomic data sets. One strategy sought to extract features specific to a single disease group 

in comparison to the rest of the samples; the other approach selected features that differ 

between pairs of groups. We performed univariate t-tests (using “t.test” in R) to find features 

between each disease group and all the other samples. For pairwise comparisons across all 

groups, we performed ANOVA along with R’s “TukeyHSD” method to calculate p values. P 

values from both methods were corrected for multiple hypothesis testing using the 

Benjamini-Hochberg/FDR method implemented in R’s “p.adjust” function. Due to concerns 
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associated with the small number of samples (in particular for comparisons involving SHH 

samples), we aimed to focus the comparison on the most homogeneous groups possible. We 

therefore withheld sample MB136 from these statistical tests, as it clustered stably with 

SHHb in the proteomic data but showed similarities with SHHa in other data types.

We are aware that the small sizes of our cohort’s disease groups present challenges in the 

selection of statistical tests and estimation of significance of results. We selected the 

methods mentioned above as they were able to identify differential features with reasonable 

confidence and allowed us to prioritize features to feed into downstream analysis methods 

(e.g. Omics Integrator). These downstream methods served as a second filter and none of our 

conclusions are directly based on the results of these tests. For statistics on individual 

univariate comparisons we used a Mann Whitney U test (these instances are indicated as 

such in the main text). Across the different testing methods, we considered FDR-adjusted p 

values of less than 0.05 as significant, but chose more stringent thresholds for certain 

analyses to limit the number of features. Table S2 contains a complete list of proteins and 

peptides that are significantly differential between our proteomic groups (for FDR < 0.01, 

ANOVA). In this table, we also indicate differential kinases (FDR < 0.005).

Global Correlation Analysis—To correlate proteomic and RNA-seq data, we considered 

only those data with no missing values and identified matching proteins and transcripts 

based on gene symbols. In doing so, splice isoforms were collapsed by their means. For each 

sample, we then calculated the Spearman correlation for the 8,674 proteins and their 

corresponding mRNAs.

Functional Annotation of Data Sets—To project data sets into the space of gene sets 

representing functional information, we performed hypergeometric overlap tests 

(background size context dependent) and used an in-house implementation of single sample 

Gene Set Enrichment Analysis (ssGSEA) (Barbie et al., 2009; Subramanian et al., 2005). 

For the latter, we used the following parameter settings: rank-based sample scoring 

(“sample.norm.type”: ranks), area under curve statistic to calculate scores (“statistic”: 

area.under.RES), default weight (0.75), 500 permutations, z-score pre-processing 

(“correl.type”: z.score), and normalized enrichment score output (“NES”).

We used the gene sets available in the Molecular Signature Database (MSigDB v6.0) 

(Liberzon, 2014; Liberzon et al., 2015), primarily focusing on canonical pathways (C2CP), 

GO terms (C5), and Hallmark sets (H). P values from these methods were corrected for 

multiple hypothesis correction using the Benjamini-Hochberg/FDR correction implemented 

in R’s “p.adjust” function. FDR-adjusted p values less than 0.05 were considered significant.

Integrative Network Analysis—We used the latest version of Omics Integrator 2 (OI2 

v0.2.24, https://github.com/fraenkellab/OmicsIntegrator2) to construct disease-focused, 

integrative networks using proteomic and genomic data (Tuncbag et al., 2016). Omics 

Integrator begins by mapping a set of proteins of interest onto the nodes in a network of 

physical interactions (“interactome”) among proteins. The nodes are assigned “prizes”, 

reflecting their importance (see below for details). The interactions were derived from public 

databases using the iRefIndex v14 collection of interactions (Razick et al., 2008). Each 

Archer et al. Page 16

Cancer Cell. Author manuscript; available in PMC 2019 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/fraenkellab/OmicsIntegrator2


interaction is associated with a cost that is lowest for the most reliable interactions 

(calculated as 1 minus the edge score provided by iRefIndex). We also added previously 

published site-protein (cost: 0.25) and sitekinase (as published in PhosphoSitePlus, 

(Hornbeck et al., 2015)) edges (cost: 0.4) to the interactome to allow the algorithm to find 

site-kinase interactions in the solution that are not included in the iRefIndex interactome. 

The algorithm seeks to identify subnetworks that contain many disease relevant nodes (based 

on prizes) while still avoiding using too many low confidence edges (based on costs). For 

more details about this method, see Tuncbag et al. (2016).

We tailored the selection and definition of prizes to the type of network we sought to detect. 

We created networks focusing on the differences between G3a and G3b (“G3 network”), as 

well as SHHa and SHHb (“SHH network”). Input nodes were selected based on differential 

protein or peptide levels for the relevant sample group comparison in each network. For the 

G3 network, proteomic features needed to pass the same FDR threshold (FDR < 0.05) in 

each data set. For the SHH network, proteins and phosphopeptides in pSTY needed to pass a 

more stringent threshold (FDR < 0.005) due to the large number of differential features, 

while the threshold for acetylated peptides and phospho-tyrosine peptides was set to 0.05. 

Prizes for nodes based on proteomic data sets were calculated as the absolute value of the 

log2-based fold changes (based on the sample groups’ means) from pairwise comparisons. 

Genomic events were each assigned a fixed prize at an arbitrary value of 2.5 and each CNA 

and mutation found in at least one sample in the relevant group was given a prize. This value 

was used as we wanted to lend strong weight to genomic alterations, but not have them 

outweigh strong proteomic signals. We therefore opted for a value between the median and 

the 3rd quartile in the proteomic prize distributions.

Data for protein and acetylation events were collapsed to gene symbols of the relevant 

proteins, keeping the highest prized features as inputs for OI2. Due to the large number of 

differential phosphosites, these sites were treated as individual nodes in the OI2 network 

formulation and the required edges were added to the interactome (site-protein edges, cost: 

0.25), splitting doubly phosphorylated sites into individual sites.

We ran OI2 with the selected disease-associated nodes and their prizes (see Table S6) as 

inputs on all combinations of the following parameters: Gs = (50k, 100k, 500k, 1M, 2.5M, 

5M, 10M), Bs = (0.5, 1, 10), and Ws = (1, 3, 6, 10). We evaluated these networks to find a 

parameter set (W = 1, B = 1, G = 2.5M) that produced a network that was not dominated by 

hub-nodes, and had a reasonable balance of input nodes and those added by the algorithm 

for connectivity. Using this parameter set, we performed additional calculations to assess the 

robustness and specificity of nodes in the network. To determine the robustness of nodes, we 

added Gaussian noise (standard deviation: 0.05, mean: 0) to the edges in the interactome 

before each of 200 runs. We then calculated the robustness score for each node as the 

fraction of times a node appeared across the networks. To calculate specificity, we assigned 

our prizes to randomly selected, degree-matched nodes in the interactome before each of 200 

runs. The specificity score was then calculated as the one minus the fraction of times a node 

appeared across these networks. (More details on and rationale around these scores can be 

found in (Tuncbag et al., 2016). For downstream analysis, we removed nodes from the OI2 
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output that were neither specific nor robust (threshold: 0.75). To link the network clusters to 

functional annotations we used hypergeometric tests as described above.

We used Cytoscape v3.3 (Shannon et al., 2003) for visualizations of our networks. Nodes 

received log2fold change-based colors based on the source of their prizes, and shapes 

according to the data type they represent (protein, genomic lesion, phosphosite, acetylated 

protein – see figure legend for details). Nodes in the network that did not receive a prize but 

were still included in the network received the log2-FC based color of the corresponding 

proteomic value if data was available (or were colored grey otherwise). For the final display 

items in Figure 7, we rearranged nodes primarily based on pathway associations rather than 

the clustering of the network used for the initial analysis.

Kinome Analysis—This analysis sought to identify the kinases potentially responsible for 

phosphorylating phosphopeptides of interest. We first selected phosphopeptides that were 

either specific to one of the clusters found in proteomic data or significantly different 

between a pair of clusters (FDR < 0.01). We then used two different methods to identify 

upstream kinases:

1. PhosphoSitePlus: Cell Signaling Technologies’ PhosphoSitePlus database 

(Hornbeck et al., 2015) is a curated resource of experimentally determined 

peptide targets of specific kinases (downloaded February 2017). We searched this 

database for matches to phosphopeptides identified in our analyses.

2. Scansite: the Scansite platform (Obenauer et al., 2003) contains sequence 

specificity motifs for kinases that were derived from oriented peptide library 

screens. For this analysis, we used 15 amino acid long peptide sequences 

(phosphosite ± 7 amino acids) surrounding our phosphorylation events as input 

into Scansite (Scansite 3 Web Service) and used its most stringent setting (high 

stringency) to get only the best motif matches. For results to be reported with this 

setting, a motif’s score for a peptide sequence needs to be in the top percentile of 

scores from an empirical score distribution that is based on all potentially 

matching sites in the vertebrate proteome.

For each of these two methods, we then collapsed all peptides matched to a kinase (median 

across matching peptides) and calculated the Spearman correlation of this ‘peptide-profile’ 

to the kinase’s protein and/or phosphopeptide-levels (if available). If the correlation with the 

kinase’s protein levels or any of its phosphopeptides was higher than 0.4 (or less than −0.4 

for phosphosites) it was labeled as correlating (or anticorrelating). Our peptide-kinase 

associations can be found in Table S5.

We checked DrugBank.ca (Law et al., 2014) for drugs that are known to target any of the 

kinases nominated by our analysis. Whenever this information was available, we also 

annotated whether any FDA approved products were listed for a drug. We provide a full 

table of all kinase-drug matches in Table S5.

To identify disease-related kinases that we could not associate with peptides (as in the 

analyses described above) due to a lack of supporting data (no kinase motifs or known sites), 

Archer et al. Page 18

Cancer Cell. Author manuscript; available in PMC 2019 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we also extracted significantly differential kinases from all our proteomic data sets (FDR < 

0.005). These kinases are indicated in Table S2.

We also used an R implementation (Wagih et al., 2016) of the motif-x algorithm (Chou and 

Schwartz, 2011) to discover motifs. We performed the analysis for 15 amino acid-long 

peptide sequence windows around serine (S), threonine (T), and tyrosine (Y) residues in our 

phospho-proteomics data sets. As foreground sets we used peptides up/down in only a single 

proteomic group of samples and ran the algorithm for all our groups at various significance 

thresholds with all S, T, Y-centered peptides in our data set as background. The most specific 

motifs found by this approach were “SP” and “TP”.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

1. Deep proteomic profiling reveals mechanistic differences among 

medulloblastomas

2. Proteomic defined SHH subtypes do not differ in RNA expression

3. MYC phosphorylation events define a higher risk subset of Group 3 patients

4. Inhibiting PRKDC may sensitize MYC-activated medulloblastoma tumors to 

radiation
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Figure 1: Summary of data types included in this study, depth of proteomic data types, and 
cohort composition.
The extent of the data from proteomics, including post-translational modifications, is 

summarized at the top. pSTY: phosphorylation on serine, threonine, or tyrosine detected 

after immobilized metal affinity chromatography; pY: phosphorylated tyrosine detected after 

antibody purification; Total: the total number of features identified; All Samples: the number 

of features measured across all samples, i.e. without any missing values. The number of 

samples covered by each data type and their split by subgroups are summarized at the 

bottom. G3: Group 3; G4: Group 4; WGS: whole genome sequencing. Proteomics includes 

proteome, pSTY, pY, and acetylomics data sets. See also Table S1.
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Figure 2: Comparison of clustering results.
(A) The optimal clustering of DNA methylation data, RNAseq, and proteome, as determined 

using Pearson correlation as distance metric. k, number of clusters. Consensus scores are 

indicated using a color scale from white (samples never cluster together) to blue (samples 

always cluster together). (B) Comparison of the assignment of samples using the four 

“consensus subgroups” (Taylor et al., 2012), the DNA Methylation-based subtype-calls 

assigned in Northcott et al. (2017), which included most samples used in our study, and 

RNA expression assignments based on application of the classifier described in Cho et al. 
(2011). NA: no assignment available. See also Figures S1-S3 and Tables S1 and S2.
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Figure 3: Molecular and functional differences between SHHa and SHHb.
(A) Hierarchical clustering of 510 proteomic features that differ significantly between SHHa 

and SHHb (FDR < 0.005; ANOVA). Summaries of gene sets that significantly differ (FDR < 

0.01; hypergeometric overlap tests) between SHHa and SHHb are shown alongside the 

heatmap. (B) A schematic of the pathway for the glutamatergic synapse. Each box 

represents a gene or gene set taken directly from the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway. The left and right boxes summarize SHHa and SHHb protein 

levels, respectively. Grey boxes indicate a lack of proteomic data for the gene product. Small 
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white circles represent metabolites, solid directed arrows activation, and lines ending with a 

bar inhibition. Dotted lines indicate transport of metabolites. Solid lines and connected 

boxes represent physical interactions in the cell. Figure adapted from KEGG pathway 

hsa04724 (Kanehisa et al., 2017). (C) Clinical annotations of and recurrent genomic 

alterations in SHHa and SHHb samples. (D) Box-and-whisker plots of Spearman 

correlations between the mRNA and protein levels for approximately 8,700 genes for each 

tumor sample. Boxes range from first to third quartile in each group, with line indicating the 

group-median. The whiskers extend to the lowest and highest data points within 1.5 times 

the interquartile range from the box (p value shown from Mann Whitney U test). See also 

Figure S4 and Tables S3 and S4.
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Figure 4: G3a medulloblastomas have post-translational modifications of MYC protein that 
strongly correlate with MYC downstream activity and patient outcome.
(A) Heatmap of multi-omic data for MYC, showing protein levels, post-translationally 

modified peptides, mRNA expression, DNA copy number, and DNA methylation. Scale bar 

is of log2 values for all data sets except DNA methylation, which ranges from 0 to 1 on a 

linear scale. Methylation values, converted to percentages, are superimposed on the 

heatmap. The phosphorylation locations are provided both based on RefSeq (as used in our 

data sets) and Uniprot (frequently used in the literature). S77 or 79: phosphorylated at either 
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S77 or S79 but not at T73; S359* / T365: phosphorylated at T365 as well as a proximal site 

that could not be uniquely determined. (B) Representative confocal microscopy images 

showing pS62 and pT58 MYC in G3a, G3b, and Group 4 tumors. (C) Scatter bar charts 

showing mean immunofluorescence densities quantified across 50–100 nuclei in 3–4 fields 

of view captured at 40x for MYC pS62 and pT58. Error bars represent standard error of 

means (SEM) and significance reported is from two-tailed unpaired t-tests. (D) Kaplan-

Meier plots of overall survival and progression-free survival of Group 3 medulloblastoma 

from the current cohort (left) and the current cohort combined with Group 3 samples from 

Cho et al. (2011). The survival analysis on the combined cohort was performed using the 

classifier defined by the proteomic clusters G3a and G3b (“Proteome-based Classifier” in 

the center) and the original classifier from Cho et al. (2011) (c1/c5, right, gray scale). In the 

combined cohort with proteomebased group assignments (G3a/G3b), both outcome 

predictions reached statistical significance (p values as shown; Log-rank test). See also 

Figure S5.
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Figure 5: Medulloblastoma subtypes differ in kinase regulation and substrate levels.
Two different methods used to analyze the kinome are shown. On the left, upstream kinases 

are predicted from differential phosphopeptides between subgroups using PhosphoSitePlus 

database (Hornbeck et al., 2015). On the right, kinases are predicted from scoring 

differential phosphopeptides using sequence specificity motifs from Scansite (Obenauer et 

al., 2003). Heatmaps show the median levels of peptides matched to an upstream kinase, 

with the number of peptides matching each kinase shown in parentheses. Kinases found by 

both methods are annotated with an asterisk. Bars on the side of the heatmaps indicate 
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whether target peptides correlate with protein or phosphorylation levels of upstream kinases; 

and if DrugBank (Law et al., 2014) lists any drugs targeting the kinases. See also STAR 

Methods and Table S5.
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Figure 6: MYC status correlates with PRKDC phosphorylation, and predicts increased 
sensitivity to PRKDC inhibition with irradiation.
(A) Representative Western blots of medulloblastoma cell lines performed in at least 

triplicate. Antibody against pT58/S62 MYC detects either site or both sites. (B) 

Quantification of Western blots represented as fold change compared to expression in DAOY 

cells. All proteins are normalized to β-actin. Significance was determined via one-way 

ANOVA with a Dunnett multiple comparison test to compare the normalized signal for each 

antibody across the five cells lines; **p < 0.001, ***p < 0.0001. Error bars represent mean 
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normalized signal ± SEM. (C) Correlations between normalized means for specified 

antibodies determined by calculating a Pearson correlation coefficient. Error bars indicate ± 

SEM, and are depicted but are not visible for some data points because of scale. (D) 

Representative confocal images of indicated cell lines showing pS62 MYC and pS2056 

PRKDC. (E) Experimental design of dose-response curve of PRKDC inhibitor NU7441 for 

18 hours prior to irradiation. (F) Viability assay of medulloblastoma cell lines treated as 

indicated. Plotted is the mean of 6 biological replicates ± SEM for each dose; note, small 

error bars for D458 are depicted but obfuscated by trend lines. (G) Histogram of mean IC50 

values ± SEM for DAOY vs D458 treated with NU7441 ± irradiation. *p < 0.01; ***p < 

0.0001; ns = not significant; IR = irradiation.
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Figure 7: Network methods relying on known protein-protein interactions identify pathways 
relating to SHHb and G3a tumors.
Omics Integrator output showing network views of proteins, posttranslational modifications, 

and genomic alterations associated with G3a (A) and SHHb (B). Node shapes indicate data 

type and colors indicate log2-based fold change between groups as described in the legends. 

Phosphopeptides are labeled with their phosphorylation sites (based on RefSeq) after the 

‘@’ symbol. Nodes associated with selected pathways are highlighted with yellow 

background. Grey nodes were added by Omics Integrator and have no associated proteomic 

data for our samples. (A) mRNA levels of transcriptional targets of MYC are shown at the 

bottom. Thick borders highlight proteins that are also shown as direct transcriptional targets 

of MYC. SNVs, indicated by diamonds, are color-coded to show which subtype the genomic 

alteration was seen in: G3a, red; G3b, blue. (B) Kinases that were also found by our 

independent Kinome Analysis (Figure 5) are highlighted with thick borders. The color of 

genomic lesions (diamonds) indicates the subtype in which they occur: SHHb, red; SHHa, 
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blue. The location of color in a diamond indicates the type of genomic lesion: upper triangle, 

SNV; lower triangle, indel.

Archer et al. Page 37

Cancer Cell. Author manuscript; available in PMC 2019 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Archer et al. Page 38

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-Tyrosine (P-Tyr-1000) Cell Signaling Technology 8954; RRID:AB_2687925

PTMScan Acetyl-Lysine Motif 
[Ac-K] Kit #13416

Cell Signaling Technology https://www.cellsignal.com/products/proteomic-analysis-products/acetyl-lysine-motif-ac-k-kit/13416

Rabbit polyclonal c-Myc pS62 
specific antibody 1:25

Zhang et al. (2012)

Rabbit polyclonal c-Myc pT58 
antibody 1:50

Applied Biological Materials Y011034; RRID:AB_895681

Anti-DNA PKcs (phospho 
S2056) antibody - ChIP Grade 
(ab18192) 1:500

Abcam ab18192 RRID:AB_869495

p-c-Myc S62/T58 Antibody 
(C-3): sc-377551 1:500

Santa Cruz sc-377551

β-Actin (8H10D10) Mouse 
mAb 1:2000

Cell Signaling Technology 3700S; RRID:AB_2242334

Phospho-c-Myc (Ser62) 
(E1J4K) Rabbit mAb 1:500

Cell Signaling Technology 13748S

c-Myc (D84C12) Rabbit mAb 
1:1000

Cell Signaling Technology 5605S RRID:AB_1903938

Alexafluor 488 Goat anti 
Mouse

Thermo A11029 RRID:AB_2534088

Alexafluor 647 Goat anti 
Rabbit

Thermo A21244 RRID:AB_2535812

IRDye 800 CW Goat anti 
Rabbit

Licor 925–32211 RRID:AB_2651127

IRDye 680RD Goat anti Mouse Licor 925–98070 RRID:AB_10956588

Reagent

Licor Odyssey Blocking Buffer Licor 927–50000

NuPAGE™ Novex™ 4–12% 
Bis-Tris Midi Protein Gels, 20-
well

Thermo WG1402BOX

iBlot2 PVDF Stacks Thermo IB24001

Bolt MES SDS running buffer Thermo B000202

Pierce BCA Protein Assay Kit Thermo 23225

Benzonase Santa Cruz sc-202391

Phosphatase inhibitors Thermo 88667

Protease inhibitors Thermo 88266

NU7441 Selleck Chemicals S2638

CellTiter-Glo Luminescent Cell 
Viability Assay

Promega G7571

Biological Samples

45 primary medulloblastoma 
samples

Northcott et al. (2017)

Deposited Data

WGS, RNA-seq, Affy 
expression, and DNA 

Northcott et al. (2017) http://www.ebi.ac.uk/ega/studies/EGAS00001001953

Cancer Cell. Author manuscript; available in PMC 2019 September 10.

https://www.cellsignal.com/products/proteomic-analysis-products/acetyl-lysine-motif-ac-k-kit/13416
http://www.ebi.ac.uk/ega/studies/EGAS00001001953


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Archer et al. Page 39

REAGENT or RESOURCE SOURCE IDENTIFIER

Methylation data: 
EGAS00001001953

Proteomics Data http://massive.ucsd.edu MSV000082644

Software and Algorithms

OmicsIntegrator 2 (v0.2.24) Tuncbag et al. (2016) https://github.com/fraenkel-lab/OmicsIntegrator2

Cytoscape v3.3.0 Shannon et al. (2003) RRID:SCR_003032

ConsensusClusterPlus 
Bioconductor library (v1.38.0)

Wilkerson and Hayes (2010) http://bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.html

The R project (R v3.3.2) RRID:SCR_001905

Minfi Bioconductor library 
(v1.16.1)

Aryee et al. (2014) RRID:SCR_012830

Scansite Webservice Obenauer, Cantley and Yaffe (2003) RRID:SCR_001905

Illumina's 450k array probe 
annotation Bioconductor 
library (v0.2.1)

http://bioconductor.org/packages/release/data/annotation/html/IlluminaHumanMethylation450kanno.ilmn12.hg19.html

RMotifX Wagih et al. (2016) https://github.com/omarwagih/rmotifx

Rtsne https://github.com/jkrijthe/Rtsne

Picard tools http://broadinstitute.github.io/picard/ RRID:SCR_006525

STAR Dobin et al. (2013) https://github.com/alexdobin/STAR

RSEM Li and Dewey (2011) RRID:SCR_013027

RNASeqQC DeLuca et al. (2012) RRID:SCR_005120

BWAmem Li and Durbin (2009) RRID:SCR_010910

GATK DePristo et al. (2011) RRID:SCR_001876

MuTect2 Cibulskis et al. (2013) RRID:SCR_000559

Oncotator Ramos et al. (2015) RRID:SCR_005183

D-ToxoG Costello et al. (2013) http://archive.broadinstitute.org/cancer/cga/dtoxog

GISTIC2.0 Mermel et al. (2011) RRID:SCR_000151

ssGSEA Barbie et al. (2009) RRID:SCR_003199

Spectrum Mill

RCircos Zhang, Meltzer and Davis (2013) https://cran.r-project.org/web/packages/RCircos/

PreprocessCore (v1.36) http://bioconductor.org/packages/preprocessCore/

OpenLab 5.5 PerkinElmer Inc. RRID:SCR_012158

ZEN Digital Imaging for Light 
Microscopy

Carl Zeiss RRID:SCR_013672

Image Studio Lite for Western 
Blots

Licor RRID:SCR_014211

GraphPad Prism RRID:SCR_002798

Lifelines https://github.com/CamDavidsonPilon/lifelines

Image J RRID:SCR_003070

Kaleido 1.2 PerkinElmer Inc.

Other

PhosphoSitePlus (downloaded 
March 2017)

Hornbeck et al. (2015) RRID:SCR_001837
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REAGENT or RESOURCE SOURCE IDENTIFIER

DrugBank.ca (downloaded Oct 
2017)

Law et al. (2014) RRID:SCR_002700

MSigDb (v6.0) Liberzon et al. (2015) RRID:SCR_003199

iRefIndex (v14.0) Razick, Magklaras and Donaldson 
(2008)

RRID:SCR_002085

UCSC RefSeq (downloaded 
Sept 14, 2016)

Karolchik et al. (2004) https://genome.ucsc.edu/cgi-bin/hgTables

Odyssey CLx Infrared Imaging 
System

Licor RRID:SCR_014579

EnSight Multimode Plate 
Reader

PerkinElmer Inc. HH34000000
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