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ABSTRACT OF THE DISSERTATION

Role of Wilson Lines in 3D Quantum Gravity

by

Ashwin Dushyantha Hegde

Doctor of Philosophy in Physics

University of California, Los Angeles, 2019

Professor Per J. Kraus, Chair

Gravity in three dimensions and AdS3/CFT2 is an interesting playground to study some

of the issues of quantum gravity. Using the Chern-Simons description of 3D gravity, we

construct gravitational Wilson lines in asymptotiacally AdS spacetimes. In this thesis, we

study the role of gravitational Wilson lines and find the correct dictionary to the dual CFT.

On the CFT side, networks of Wilson lines correspond to semi-classical limits of conformal

blocks. We establish some of the dictionary in Chapter 1. By explicit computation, we verify

these for the cases of pure gravity and particular instances of gravity with higher spin fields.

In chapter 2 we develop the quantization of this Wilson line. We compute the gravi-

tational self energy of a particle in AdS3 to first non-trivial order using a single boundary

to boundary Wilson line. In the CFT, this reproduces the 1/c correction to the two point

function of the corresponding primary operator.

Various renormalization ambiguities arise at higher order. We study these in Chapter

3 and extend the previous computation to order 1/c3, finding agreement with CFT results.

Renormalization ambiguities are fixed by imposing conformal invariance.
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CHAPTER 1

Holographic Conformal Blocks from Interacting

Wilson Lines

We present a simple prescription for computing conformal blocks and correlation functions

holographically in AdS3 in terms of Wilson lines merging at a bulk vertex. This is shown

to reproduce global conformal blocks and heavy-light Virasoro blocks. In the case of higher

spin theories the space of vertices is in one-to-one correspondence with the space of WN

conformal blocks, and we show how the latter are obtained by explicit computations.

1.1 Introduction

This paper continues a program aimed at determining the AdS gravity description of con-

formal blocks. For previous work see [5,13,17,29,45,46,56,58–60]. The conformal block de-

composition of correlation functions, combined with the constraints of unitarity and crossing

symmetry, is a powerful nonperturbative framework in which to study strongly interacting

conformal field theories [35, 72, 74, 76]. It has also proven to be very effective in eluci-

dating the AdS/CFT correspondence, in particular the emergence of local physics in the

bulk [36,40,44,45,54,55,64,68].

To push this program forward it is very useful to have in hand bulk AdS representations

of conformal blocks. In [59] it was shown that global conformal blocks with external scalar

operators have a simple bulk representation in terms of “geodesic Witten diagrams”. This

refers to a tree level exchange Witten diagram with a pair of cubic vertices, except that the

vertices are not integrated over all of AdS, but only over geodesics connecting the boundary

points hosting the external operators. This result leads to a strikingly simple procedure for
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expanding the full Witten diagram in conformal blocks.

In the case of AdS3/CFT2 the story is especially rich since the global conformal algebra

is enhanced to an infinite dimensional algbebra, namely Virasoro or something larger, such

as a W-algebra. Here one focusses on the regime of large central charge, since this is the

regime where the bulk becomes classical. In [5, 13, 45, 58, 60] it was shown that heavy-light

Virasoro blocks (defined by scaling some operator dimensions with c, while keeping others

fixed) are reproduced by geodesic Witten diagram operators, now not in pure AdS3 but in a

new geometry produced by backreaction from the heavy operators.

Conformal blocks forW-algebras are relevant to the recent interest in higher spin AdS/CFT

dualities. In particular, Gaberdiel and Gopakumar [47] proposed to consider the minimal

model cosets
SU(N)k ⊕ SU(N)1

SU(N)k+1

(1.1.1)

in the ’t Hooft limit k,N →∞ with λ = N/(N +k) fixed. This was argued to be holograph-

ically dual to the higher spin theory of Prokushkin and Vasiliev [71]. The theory in the ’t

Hooft limit has left and right moving W∞(λ) algebras [48,49]. These are nonlinear algebras

with an infinite tower of conserved currents. It is then of interest to know the correspond-

ing conformal blocks, but these are rather challenging to obtain directly on account of the

complexity of the algebra.

At fixed N the algebras are WN , with conserved currents of spins s = 2, . . . N . One of

the main results of this paper is to provide a very simple bulk prescription for the conformal

blocks of these algebras in the large c limit. Furthermore, this can be used as a backdoor

approach for obtaining (some of) the W∞(λ) blocks, as this can be achieved by the analytic

continuation N → −λ; see [21, 56] for examples of this approach. We also note that upon

setting N = 2 the conformal blocks are those of the Virasoro algebra.

The setup we use can be motivated as follows. We note that the central charge of the

coset theory is

c = (N − 1)

(
1− N(N + 1)

(N + k)(N + k + 1)

)
(1.1.2)

To take c → ∞ at fixed N we can take the limit k → −N − 1, dubbed the “semiclassical
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limit” in [70]. The negative value of k results in a non-unitary theory, manifested for example

by negative dimension primaries in the spectrum. As a result, this limit does not provide

a healthy example of the AdS/CFT correspondence in Lorentzian signature (see also [69]

for related discussion). However, as noted above it does act as a useful stepping stone for

obtaining results in the unitary ’t Hooft limit via analytic continuation in N . It is also of

interest — perhaps as a warmup example — as a very explicit and tractable setup where

many details of AdS/CFT an be worked out.

For example, all coset primaries in this limit can be identified in the bulk, at least below

the black hole threshold. The bulk description is in terms of SL(N)×S̃L(N) Chern-Simons

theory coupled to matter. Coset primaries are labelled by a pair of SL(N) highest weights,

(Λ+,Λ−). These are highest weights of finite dimensional representations of SL(N). Primaries

of the form (0,Λ−) have scaling dimension ∆ ∼ c; they are “heavy” operators, and are

described in the bulk by flat SL(N)×S̃L(N) connections [23]. On the other hand primaries

of the form (Λ+, 0) have ∆ ∼ O(1); these light operators are described by perturbative matter

in the bulk. The general (Λ+,Λ−) is then described by light matter fields propagating in the

heavy classical background [57,70].

The main result of this work is a simple and usable expression for computing correlators

of these operators, significantly extending previous work. Let us first consider the case of

n light operators. The correlator is described by n bulk-to-boundary propagators meeting

at an n-point vertex, according to the following rules. Each light operator corresponds to a

representation of SL(N)×S̃L(N) with highest weight state |hw〉i|h̃w〉i, i = 1, . . . n. We then

attach a Wilson line to each such state1, emanating from the associated boundary point xi

to a point in the bulk, Pe
∫ xb
xi

A
Pe

∫ xb
xi

Ã
. Since the connections are flat, the choice of path

does not matter. The bulk vertex located at xb is defined by choosing a singlet state |S〉 in

the tensor product of representations corresponding to the boundary operators. In general,

there are many choices for such singlet states, and as we discuss below these are in one-to-one

correspondence with conformal blocks, as can be seen by taking the tensor product of pairs

1 Wilson lines first made an appearance in these theories in the context of entanglement entropy [8, 30],
and have appeared more recently as a probe of black hole solutions [24].
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of operators, and then combining terms in the product into singlets. With these ingredients

in hand, the correlator is2

GS(zi, zi) = 〈S|
n∏
i=1

Pe
∫ xb
xi

A|hw〉iPe
∫ xb
xi

Ã|h̃w〉i (1.1.3)

The correlator is independent of the choice of xb, as seen by noting that changing xb just

introduces a group element that acts on the singlet state as the identity. To include heavy

primaries (0,Λ−) we still use (1.1.3) but now with (A, Ã) taken to be the flat connection

representing the heavy background; this is especially simple in the case of two heavy operators

in conjugate representations, which is all that we consider in this paper, while more generally

one needs to solve a nontrivial monodromy problem [29]. The general (Λ+,Λ−) primary is

included by taking the location of a light (Λ+, 0) primary to coincide with the insertion point

of the heavy (0,Λ−) primary.

Our master formula (1.1.3) reduces the problem of computing correlators to computing

SL(N) matrix elements. We will verify that we correctly reproduce various known results for

four-point functions. First, it’s easy to see that we reproduce all previous results [29,45,56,57]

for vacuum blocks. Setting N = 2 and taking all operators to be light we obtain the well

known formula for global conformal blocks. Taking two operators to be heavy we correctly

reproduce heavy-light Virasoro blocks. For N = 3 with four light operators we obtain the

result for W3 blocks found in [38]. Allowing N to be arbitrary and taking light operators in

the fundamental and anti-fundamental representations we reproduce previous results derived

using the Coulomb gas formalism [67]. In all these cases, the primaries we consider have

negative scaling dimension, due to the underlying non-unitarity. However, it is easy to

analytically continue to positive dimensions and obtain results in the unitary regime.

In our construction, each choice of singlet state yields a correlator. As we already men-

tioned, there is a natural basis for such singlet states that gives a one-to-one correspondence

with conformal blocks. The general correlator is then a general sum over products of left

and right moving conformal blocks. Of course, any particular theory will lead to particular

2An equivalent formula was proposed and studied in the N = 2 context in the recent paper [17], which
appeared while this work was in progress.
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coefficients in this sum. For example, this would be the case if we had derived (1.1.3) starting

from, say, a Lagrangian. In principle, it should be possible to start from the equations of

Prokushkin and Vasiliev and derive the precise correlators that reproduce those of the coset

theory, and it would be very interesting to do so.

Apart from a relation to any particular CFT, what the Wilson line approach does is allow

one to compute conformal blocks for operators in degenerate representations of the chiral

algebra. For example, in the N = 2 Virasoro case the dimensions of degenerate primaries

are given by the famous Kac formula, h = hr,s(c). As c→∞,

h1,s(c) = −s− 1

2
+O(1/c) , hr,1(c) = −r

2 − 1

24
c+O(c0) . (1.1.4)

Light operators of dimension h1,s will be seen to be described by Wilson lines in the spin

j = (s − 1)/2 representation of SL(2), while heavy operators of dimension hr,1 correspond

to flat connections whose holonomy around the boundary has winding number r. Since

minimal models are built up out of degenerate representations, we can use Wilson lines and

flat connections to compute correlators in these theories.

1.2 Correlation functions: general formulation

In this section we motivate and present our general expression for correlators and conformal

blocks, and illustrate with a few simple examples.

1.2.1 Preliminaries

We will be dealing with the group SL(N)×S̃L(N). The generators of the principally em-

bedded SL(2) are denoted as3 Ti, i = −1, 0, 1 and obey [Ti, Tj] = (i − j)Ti+j. We similarly

introduce T̃i generators for S̃L(2).

Each primary Oi will be associated with a finite dimensional representation (Ri, R̃i) of

SL(N)×S̃L(N). We denote the highest weight state in this representation as |hw〉i|h̃w〉i,

3These are typically denoted as Li, but we reserve Li for SL(2) matrices in the N dimensional defining
representation of SL(N).

5



where the notion of highest weight is determined by maximizing the eigenvalues of T0 and

T̃0. The scaling dimensions of these operators (hi, h̃i) are determined by the highest weights:

T0|hw〉i = −hi|hw〉i , T̃0|h̃w〉i = −h̃i|h̃w〉i . (1.2.1)

The connections for SL(N) and S̃L(N) are denoted A and Ã respectively. AdS3 with

planar boundary is described by

A = eρT1dz + T0dρ , Ã = eρT̃1dz − T̃0dρ (1.2.2)

As is standard, a gauge transformation can be performed to effectively remove all reference

to the radial coordinate ρ, so that we work with a = T1dz and ã = T̃1dz. More general

backgrounds are obtained by replacing the generators T1 and T̃1 by other group generators,

and we describe these later as needed. More details can be found in any number of references;

e.g. [9, 20]

1.2.2 Correlators

We start out by considering the correlation function of n primary operators on the plane

G(xi) = 〈O1(x1) . . .On(xn)〉 . (1.2.3)

An n-point correlator is built out of n bulk-to-boundary propagators meeting at a bulk

vertex located at the point (ρb, zb, zb). Since results will not depend on the choice of ρb we

suppress it throughout. Neither will results depend on the choice of (zb, zb), but intermediate

computations simplify for certain choices, so dependence on these quantities will be retained.

The bulk-to-boundary propagator emanating from boundary point (zi, zi) is

Pe
∫ xb
xi

a|hw〉ie
∫ xb
xi

ã|h̃w〉i = ezbiT
(i)
1 |hw〉iezbiT̃

(i)
1 |h̃w〉i . (1.2.4)

where zbi = zb−zi and zi = zb−zi. Note that (1.2.4) is a state in the representation (Ri, R̃i).

The bulk vertex is defined by choosing a singlet state in the tensor product (R1, R̃1)⊗. . .⊗
(Rn, R̃n). As discussed below, a particular basis for such singlet states corresponds to a basis

of conformal blocks in which to expand the correlation function. Certain linear combinations
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of these basis states can then be used to construct a correlation function obeying crossing

symmetry. Given a choice of singlet state |S〉, the corresponding correlator is given by the

matrix element

GS(zi, zi) = 〈S|
n∏
i=1

ezbiT
(i)
1 |hw〉iezbiT̃

(i)
1 |h̃w〉i . (1.2.5)

We show below that this object transforms correctly under the global conformal group.

It is natural to adopt a basis of singlet states which factorize as |S〉 = |s〉|s̃〉. The general

correlation function is then a sum of holomorphically factorized terms,

G(xi) =
∑
ss̃

Ass̃ws(zi)w̃s̃(zi) , (1.2.6)

with

ws(zi) = 〈s|
n∏
i=1

ezbiT
(i)
1 |hw〉i , and w̃s̃(zi) = 〈s̃|

n∏
i=1

ezbiT̃
(i)
1 |h̃w〉i. (1.2.7)

Once we have computed ws(zi) the corresponding result for w̃s̃(zi) follows by making obvious

replacements.

We now note a few key properties satisfied by ws(zi). First, we establish that the ex-

presssion in (1.2.7) is independent of the choice of bulk point zb. Suppose that instead of zb

we place the vertex at zb′ ; this gives back the same result:

w′s(zi) = 〈s|
n∏
i=1

ezb′iT
(i)
1 |hw〉i = 〈s|

n∏
i=1

ezb′bT
(i)
1

n∏
i=1

ezbiT
(i)
1 |hw〉i = ws(zi) , (1.2.8)

where we used the fact that 〈s| is a singlet, and hence invariant under the action of the group

element
∏n

i=1 e
zb′bT

(i)
1 .

A similar argument explains why we do not have to consider any additional “exchange”

type diagrams in addition to the “contact” diagram defined above. An exchange diagram

would have bulk vertices connected by bulk-to-bulk propagators. But since the location of

bulk vertices is arbitrary, we can always choose to move them all to a single point, in which

case the bulk-to-bulk propagators are absent, and we simply recover a contact diagram. The

completeness of contact diagrams will be corroborated by the fact that these will be seen to

yield a complete set of conformal blocks, out of which any correlator can be assembled.
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We next establish that ws(zi) transforms as it should under conformal transformations,

namely

ws(z
′
i) =

[
n∏
i=1

(
∂z′i
∂zi

)−hi]
ws(zi) , z′i =

azi + b

czi + d
. (1.2.9)

We do this by applying a gauge transformation that acts as zi → z′i. The details are given

in appendix 1.9.

While our main focus will be on 4-point functions, let us first illustrate by considering

the computation of 2-point and 3-point functions. Given (1.2.9), the dependence on z is

guaranteed to come out correctly in these cases, but verifying this is a useful warmup.

For the 2-point function, in order to construct a singlet state we need that the represen-

tations R1 and R2 be conjugates of each other. In particular, this implies the familiar fact

that the 2-point function vanishes unless the two operators have the same scaling dimension.

We use the freedom to choose zb arbitrarily to set zb = z2, which yields

ws(z1, z2) = 〈s|e−z12T (1)
1 |hw〉1|hw〉2 . (1.2.10)

The singlet state is |s〉 = | − hw〉1|hw〉2 + . . .. The omitted terms contain states other than

|hw〉2, but it’s clear from (1.2.10) that these won’t contribute, and so

ws(z1, z2) = 〈−hw|e−z12T (1)
1 |hw〉1 =

C

(z12)2h
, (1.2.11)

for some constant C. To arrive at (1.2.11) we just used that the highest weight has T0

eigenvalue −h, together with the fact that T1 lowers the weight by one unit, to note that

the only contribution comes from picking out the −2h power from the expansion of the

exponential. The result (1.2.11) is of course the one dictated by conformal invariance.

We now turn to the three point function. For this to be nonzero we need thatR1⊗R2⊗R3

contains a singlet. Although Ri are representations of SL(N) with highest weights −hi, for

the purposes of this computation we can take them to be representations of SL(2) of spin

ji = −hi, and the singlet to be the SL(2) singlet built out of these three representations.

The reason is that in (1.2.7) we are acting with SL(2) group elements on the highest weight

states, and these can only yield states in the same SL(2) representation. That is, terms in
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the SL(N) singlet containing SL(2) spins different from ji yield no contribution. With this

in mind, the singlet is given by the Wigner 3j symbol as

|s〉 =
∑

m1,m2,m3

 j1 j2 j3

m1 m2 m3

 |j1m1〉|j2m2〉|j3m3〉 . (1.2.12)

Using our freedom to choose the location of the bulk vertex, we take zb = z1, and note that

this implies that only the term m1 = j1 in the sum contributes. The three point function is

ws(z1, z2, z3)

=
∑

m1,m2,m3

 j1 j2 j3

m1 m2 m3

 〈j1m1|ezb1T
(1)
1 |j1j1〉〈j2m2|ezb2T

(2)
1 |j2j2〉〈j3m3|ezb3T

(3)
1 |j3j3〉 .

(1.2.13)

The sum can be evaluated using the known expression for the Wigner 3j symbol. Alterna-

tively, we can work in terms of tensors. The latter approach generalizes more readily to our

four-point computations, and in appendix 1.10 we show that this yields

ws(z1, z2, z3) =
C(j1, j2, j3)

zh1+h2−h3
12 zh1+h3−h2

13 zh2+h3−h1
23

, (1.2.14)

where C(j1, j2, j3) is nonzero provided the product of the three representations contains a

singlet. Again, this is the standard result dictated by conformal invariance.

1.3 Four-point functions

This paper focuses mainly on the study of four-point functions of primary operators on the

plane.

G(xi) = 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 . (1.3.1)

As in the previous section, each primary corresponds to the highest weight state of an

irreducible representation of SL(N)×S̃L(N) that we denote (Ri, R̃i). In the following sub-

sections we review the conformal block decomposition of four-point functions, we explain the

construction of conformal blocks through the assembly of singlets, and we discuss restrictions

due to crossing symmetry.
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1.3.1 Conformal block decomposition

We now quickly review the conformal block decomposition of four-point correlators on the

plane. The correlator is expressed as a sum of conformal partial waves (CPWs), each of which

corresponds to inserting a projector onto a single representation of the relevant symmetry

algebra,

〈O1(x1)O2(x)PPO3(x3)O4(x4) = CP
12C

P
34WP (xi) . (1.3.2)

The projection operator PP projects onto the space of states in a representation labelled by

the primary operator OP . Pulling out the OPE coefficients renders WP (xi) an object that is

completely determined by symmetry, and in terms of which the full correlator is expanded

as

G(xi) =
∑
P

CP
12C

P
34WP (xi) . (1.3.3)

Since the symmetry algebra factorizes into commuting left and right moving algebras, the

same is true of the CPWs,

WP (xi) = wp(zi)w̃p̃(zi) . (1.3.4)

Invariance under the global conformal group allows us to reduce the dependence to

wp(zi) =

(
z24

z14

)h12 (z14

z13

)h34 (z34

z13

)h1+h2 gp(z)

zh1+h2
24 zh3+h4

34

, (1.3.5)

where hij ≡ hi − hj, zij ≡ zi − zj, and z is the conformally invariant cross ratio

z =
z12z34

z13z24

. (1.3.6)

The analogous result holds for w̃p̃(zi) upon making the obvious substitutions. We note that

gp(z) depends on the quantum numbers of the primary operators appearing in the correlation

function as well as those of the exchanged primary.

Another way to express the above is to use conformal invariance to set x1 = z, x2 = 0,
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x3 =∞ and x4 = 1. We then have 4

〈O1(z, z)O2(0, 0)PPO3(∞,∞)O4(1, 1)〉

= CP
12C

P
34

[
(1− z)h34−h12gp(z)

] [
(1− z)h̃34−h̃12 g̃p̃(z)

] (1.3.7)

where O3(∞,∞) = limx3→∞ z
2h3z2h̃3O3(x3) inside the correlator. The form of gp(z) de-

pends on what symmetry algebra is controlling the conformal block decomposition. Explicit

formulas will be given below.

1.3.2 Conformal blocks from singlets

In this subsection we describe how to holographically construct conformal blocks which can

be combined to give crossing symmetric four-point functions of primary operators. We will

focus on the holomorphic part of a conformal block denoted gp(z). This implies that we will

ignore the representations R̃i and deal only with the construction of singlets in the tensor

product ⊗iRi.

Following the discussion in section 1.2 we consider four representations Ri of SL(N) and

separate the operators into two pairs (12) and (34). These give rise to the tensor products

R1 ⊗R2 = ⊕aR(12)
a , R3 ⊗R4 = ⊕aR(34)

a . (1.3.8)

Picking complex conjugate representations from the two sums we can construct singlets. We

choose a representation R(12)
a = Rp in the first sum, its conjugate R(34)

a = Rp in the second

sum and denote by |s12,34
p 〉 the singlet in Rp ⊗ Rp. Each singlet defines a conformal block

when used in (1.2.7) which we adapt here to the case in consideration

wp(zi) = 〈s12,34
p |

4∏
i=1

ezbiT
(i)
1 |hw〉i . (1.3.9)

Figure 1.1 shows a picture of this object.

Once we have obtained the blocks, the four point function can be constructed as

G(xi) = 〈O1(z1, z1) . . .O4(z4, z4)〉 =
∑
p,p̃

A12,34
pp̃ wp(zi)w̃p̃(zi) (1.3.10)

4The prefactor in (1.3.5) was chosen such that the wp reduce to gp for pairwise identical operators at
these distinguished positions. In the sections to follow we will assume that the prefactor has been chosen so.
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|hw〉4

|hw〉3

|hw〉1

|hw〉2

〈s|

a)

R1

R2

R4

R3

Rp

b)

Figure 1.1: a) Holographic calculation of a conformal block. Four bulk-to-boundary prop-

agators consisting of Wilson lines in some representation Ri meet at a common bulk point

where a singlet state is assembled. b) Construction of the singlet state |s12,34
p 〉. A represen-

tation Rp is chosen from the tensor product R1⊗R2, while its conjugate Rp is chosen from

the tensor product R3 ⊗R4. The singlet state is the one appearing in Rp ⊗Rp.

where A12,34
pp̃ are in principle unknown constants related to the OPE coefficients as A12,34

pp̃ =

C12
pp̃C

34
pp̃ . Alternatively, denoting the tensor product basis elements by |S12,34

pp̃ 〉 ≡ |s12,34
p 〉|s̃12,34

p̃ 〉,
we can define the singlet

|S〉 =
∑
p,p̃

A12,34
pp̃ |S12,34

pp̃ 〉 (1.3.11)

and then write the four point function as

G(zi, zi) = 〈S|
4∏
i=1

ezbiT
(i)
1 |hw〉iezbiT̃

(i)
1 |h̃w〉i . (1.3.12)

1.3.3 Crossing symmetry

In the above we expanded in the (12)(34) channel and wrote the corresponding basis of

singlets as {|S12,34
pp̃ 〉}, but we can expand in other channels as well, for example (14)(32). The

corresponding basis of singlets will differ from the previous one and we denote it {|S14,32
p′p̃′ 〉}.
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We can expand the singlet (1.3.11) in the new basis

|S〉 =
∑
p,p̃

A12,34
pp̃ |S12,34

pp̃ 〉 =
∑
p′,p̃′

A14,32
p′p̃′ |S14,32

p′p̃′ 〉. (1.3.13)

The bases appearing in (1.3.13) are complete and given coefficients A12,34
pp̃ we can find coef-

ficients A14,32
p′p̃′ such that (1.3.13) is obeyed. Crossing symmetry in the case that all Ri are

distinct relates OPE coefficients in one channel to those of another. The set of operators

that appears in each channel has already been fixed by the rules above.

The situation changes if two of the operators carry the same representation; for example

suppose R2 = R4. Then G(xi) should be invariant under x2 ↔ x4. Looking at (1.3.12), this

implies that |S〉 should be invariant under interchanging the states associated with R2 and

R4. This crossing symmetry condition imposes a constraint on the OPE coefficients. To see

this we study the holomorphic singlet states |s12,34
p 〉.

The change of basis associated with x2 ↔ x4 is given by

|s12,34
p 〉 =

∑
p′

Opp′ |s14,32
p′ 〉 (1.3.14)

for some orthogonal matrix Opp′ which we call the exchange matrix. We then have

|S〉 =
∑
p,p̃

A12,34
pp̃ |s12,34

p 〉|s̃12,34
p̃ 〉

=
∑
p,p̃

(O−1A12,34O)pp̃|s14,32
p 〉|s̃14,32

p̃ 〉 ,
(1.3.15)

which implies A14,32 = O−1A12,34O. This constraint on the OPE coefficients will play a role

in section 1.6 when we build four-point functions as sums over SL(N) conformal blocks.

1.4 General SL(2) result

We turn now to the evaluation of conformal blocks for the case of SL(2) representations. Each

operator is associated with the highest weight state of a finite dimensional representation of

SL(2). The Young tableaux for the representations Ri consist of a single row whose length
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is the Dynkin label λ.

Ri = . . .︸ ︷︷ ︸
λi

= {λi} . (1.4.1)

The Dynkin label is related to the spin of the representation as λi = 2ji. The conformal

dimension associated to the highest weight state |hw〉i is given by hi = −λi/2 = −ji. The

negative value of h is a manifestation of the non-unitary nature of the theory in which the

primaries lie in finite dimensional representations of SL(2). This will not pose any obstacle

towards verifying precise and detailed agreement between bulk and boundary observables in

the limit of large central charge.

In this section we examine the calculation of a holographic conformal block whose external

primary operators are highest weight states of representations Ri with Dynkin labels λi

placed at the points zi on the plane. Likewise, the exchanged primary is associated to a

representation Rp with Dynkin label λp. As explained above (1.2.7), the object we need to

evaluate reads

ws(zi) = 〈s|
∏
i

ezbiT
(i)
1 |hw〉i , (1.4.2)

where |s〉 is the singlet state corresponding to the exchange of the representation Rp. Figure

1.1 shows an intuitive picture of the setup. We will implement the following strategy. First,

we will construct the states of the representationRp out of the states ofR1 andR2. Likewise,

we will obtain the states of Rp out of those of R3 and R4. The singlet |s〉 is built by

contracting all the SL(2) indices of the states in Rp with those of Rp using the Levi-Civita

symbol, which is an invariant tensor. To make the calculation easier, we will perform certain

tricks involving gauge invariance. First, we will exploit conformal invariance to move three

of the external primaries to z1 = ∞, z2 = 1, and z3 = 0. After this, the configuration of

external primaries reads

z1 =∞ : R1 = {λ1} , z2 = 1 : R2 = {λ2} ,

z3 = 0 : R3 = {λ3} , z4 = z : R4 = {λ4} .
(1.4.3)

Before attempting to write the singlet state |s〉, it is useful to notice that the Wilson line

operator coming from infinity projects the highest weight state |hw〉1 to the lowest weight
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state

lim
z1→∞

z2h1
1 ezb∞T

(1)
1 |hw〉1 ∝ |−hw〉1 . (1.4.4)

This observation simplifies the calculation of the singlet greatly, as we now need to focus

only on the terms in |s〉 that are lowest weight for the primary O1. A further simplification

of the calculation consists in choosing the bulk point where the Wilson lines meet to be at

zb = 0. This gauge choice immediately implies that the Wilson line operator coming from

the boundary point z3 = 0 corresponds to the identity, and so it projects the highest weight

state to itself.

lim
zb→0

ezb0T
(3)
1 |hw〉3 = |hw〉3 . (1.4.5)

As a consequence the only terms in |s〉 contributing to ws(zi) are highest weight for O3

and lowest weight for O1. Instead of writing down 〈s| we will compute ws(zi) directly by

replacing the states |ej〉i by the objects q(i)j ≡ 〈ej|ezbiT
(i)
1 |e1〉i, where |ej〉i are the states in

the defining representation of SL(2) and the subscript i refers to the representation Ri (see

appendices 1.10 and 1.11.1). We start with the following expressions for the Wilson line

matrix elements involving states of the boundary representations

〈(R1)i1...iλ1 |e
zb1T

(1)
1 |hw〉1 = δ2

i1
. . . δ2

iλ1
,

〈(R2)i1...iλ2 |e
zb2T

(2)
1 |hw〉2 = q(2)(i1

. . . q(2)iλ2 ) ,

〈(R3)i1...iλ3 |e
zb3T

(3)
1 |hw〉3 = δ1

i1
. . . δ1

iλ3
,

〈(R4)i1...iλ4 |e
zb4T

(4)
1 |hw〉4 = q(4)(i1

. . . q(4)iλ4 ) ,

(1.4.6)

where we have projected the states of R1 to their lowest weight, and the states of R3 to their

highest weight. We now build the representation Rp out of the states in the first pair. This

representation must consist of λp symmetric indices. There are a total of λ1 + λ2 indices

and each contraction with the Levi-Civita symbol subtracts two indices. It follows that

(λ1 + λ2 − λp)/2 contractions are needed. The result reads

〈(Rp)i1...iλp |ezb1T
1
1 |hw〉1ezb2T

2
1 |hw〉2 = (q(2)1 )

λ1+λ2−λp
2 δ2

(i1
. . . δ2

iλp+λ1−λ2
2

q(2)iλp+λ1−λ2
2 +1

. . . q(2)iλp ) .

(1.4.7)
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The same logic follows for the construction of the states in Rp. In this case, there will be

(λ3 + λ4 − λp)/2 contractions with the Levi-Civita symbol

〈(Rp)i1...iλp |ezb3T
3
1 |hw〉3ezb4T

4
1 |hw〉4 = (q(4)2 )

λ3+λ4−λp
2 δ1

(i1
. . . δ1

iλp+λ3−λ4
2

q(4)iλp+λ3−λ4
2 +1

. . . q(4)iλp ) .

(1.4.8)

Finally, the singlet is obtained by contracting all the indices of (1.4.7) with the indices of

(1.4.8) using Levi-Civita symbols:

gs(z) = (q(2)1 )
λ1+λ2−λp

2 (q(4)2 )
λ3+λ4−λp

2 εi1j1 . . . εiλpjλp

× δ2
(i1
. . . δ2

iλp+λ1−λ2
2

q(2)iλp+λ1−λ2
2 +1

. . . q(2)iλp ) × δ1
j1
. . . δ1

jλp+λ3−λ4
2

q(4)jλp+λ3−λ4
2 +1

. . . q(4)jλp .
(1.4.9)

The last step of the calculation is to evaluate the object (1.4.9). The strategy is the fol-

lowing: we first classify the different symmetric permutations that give rise to inequivalent

contributions to gs(z). We will then sum over all permutation classes, taking into account

their contribution and multiplicity.

In order to classify the different permutations, let us define “red” indices as the indices

appearing in the objects δ1
j . We also define “green” indices as the indices appearing in q(4)j .

Each permutation will contribute differently depending of how many red and green indices

appear in the delta functions δ2
i (Box 1) and the objects q(2)i (Box 2). We then define our

permutation class as those with k red indices in Box 1. This also implies there will be

λp+λ1−λ2
2

− k green indices in Box 1, λp+λ3−λ4
2

− k red indices in Box 2, and λ4−λ3+λ2−λ1
2

+ k

green indices in Box 2. Each permutation of this class will contribute to the block as follows

g(k)
s (z) = (q(2)1 )

λ1+λ2−λp
2 (q(4)2 )

λ3+λ4−λp
2

× (εiRjRδ2
iR
δ1
jR

)k(εiGjGδ2
iG
q(4)jG)

λp+λ3−λ4
2

−k(εiRjRq(2)iR δ
1
jR

)
λp+λ3−λ4

2
−k(εiGjGq(2)iG q

(4)

jG
)
λ4−λ3+λ2−λ1

2
+k

= z
λ3+λ4−λp

2 (1− z)
λ4−λ3+λ2−λ1

2
+k .

(1.4.10)

The multiplicity of each class consists of choosing k red indices out of a total of λp+λ3−λ4
2

,

choosing λp+λ1−λ2
2

− k green indices out of a total of λp+λ4−λ3
2

, and ordering the indices of

each box. We then have

C(k) =

(λp+λ3−λ4
2

k

)( λp+λ4−λ3
2

λp+λ1−λ2
2

− k

)
Γ

(
λp + λ1 − λ2

2
+ 1

)
Γ

(
λp + λ4 − λ3

2
+ 1

)
. (1.4.11)

16



We are now ready to sum over permutation classes. This consists of a sum over k. The

result reads

gs(z) =

λp+λ3−λ4
2∑

k=0

C(k)g(k)
s (z) = z

λ3+λ4−λp
2 2F 1

(
−λp + λ2 − λ1

2
,−λp + λ4 − λ3

2
;−λp; z

)
.

(1.4.12)

This result can be written in a more suggestive way by replacing λi → −2hi

gs(z) = z−h3−h4+hp
2F 1 (hp + h21, hp + h43; 2hp; z) . (1.4.13)

This is the standard result for the chiral half of the global conformal block [34]. This result

was also obtained in [17].

1.5 SL(3) Result

After the warmup with SL(2), we can now move on to the more difficult task of computing

SL(3) blocks. Our goal here is to compute conformal blocks ofW3 in the large central charge

limit with the operator dimensions and charges kept fixed as c→∞. TheW3 algebra reduces

to SL(3) in the large central charge limit. Our strategy as before will be to compute blocks

in finite dimensional representations of SL(3) and then continue the result to more general

representations. Finite dimensional irreducible representations of SL(3) are labelled by two

integers (the Dynkin labels) λ1 and λ2. Alternatively, they can be written as symmetric

traceless tensors with λ1 lower and λ2 upper indices where the lower and upper indices

denote states in the defining representation and its conjugate respectively (see appendix

1.11 for details). Our main goal in this section is to reproduce the result for W3 conformal

blocks obtained in [38].

In terms of SL(3) tensors, constructing the singlet amounts to contracting all lower

and upper indices. It turns out to be computationally more tractable if we consider two

of the representations to have only upper (or only lower) indices i.e. the tensor product

(λ1, λ2)⊗ (0, µ)⊗ (0, µ′)⊗ (λ′1, λ
′
2). Let the exchanged representation be Rp = (x, y). Below
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we list the Young tableaux associated to these representations

R1
λ2 λ1

λ2

z1 = 0 , R2
µ

µ
z2 = z ,

R3
µ′

µ′
z3 = 1 , R4

λ′2 λ′1

λ′2

z4 =∞ ,

Rp
y x

y
zp = zb

(1.5.1)

To avoid cluttering, in the above Young tableau we have used λ to denote a row of λ

boxes. To evaluate the conformal block in the (12)(34) channel, we first construct the tensor

products R1 ⊗R2 and R3 ⊗R4 in terms of SL(3) tensors. The singlet is then obtained by

contracting all indices between the tensors coming from the two tensor products5. To be a

little more explicit, the representation Rp in the tensor product R1 ⊗R2 can be written as

M
j1···jy
i1···ix = (P

j1···jy
i1···ix )

a1···aλ1
b1···bλ2c1···cµ

|ea1 . . . eaλ1 ē
b1 . . . ēbλ2 ēc1 . . . ēcµ〉 (1.5.2)

where the indices a and b denote states of the representation R1 and c of R2. As a con-

sequence all the a, b and c indices are symmetrized and any contraction between a and b

vanishes. The tensor P projects onto the representation (x, y) and as we explain below must

be built out of δlk’s and εklm’s. Note that for the new tensor M to be irreducible, it must

be completely symmetric and traceless. The tensor N for the representation Rp can be

constructed out of the tensor product R3 ⊗R4 in a similar manner.

N i1···ix
j1···jy = (P i1···ix

j1···jy )
f1···fλ′1
g1···gλ′2

h1···hµ′
|ēh1 . . . ēhµ′ef1 . . . efλ′1 ē

g1 . . . ē
gλ′2 〉 (1.5.3)

where the indices f and g denote states of R4 and h of R3. In the full tensor product the

singlet state is then obtained as

|s〉 = M
j1···jy
i1···ix N

i1···ix
j1···jy

(1.5.4)

5For a singlet to exist, the two irreps coming from the two tensor products must be conjugate to each
other. Since conjugating irreps of SL(3) is equivalent to switching the Dynkin labels, the singlet exists only
if the number of upper indices on the first tensor is equal to the number of lower indices on the second and
vice versa.
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Now let’s study the kinds of representations that can appear in (1.5.2). We start out with

λ1 lower indices and λ2 +µ upper indices. The operations we can perform that are invariant

under SL(3) are contraction with the invariant tensors δlk, εklm and εklm. Taking the symmetry

properties of a, b and c into account, we are allowed to do one of two things: contract indices

a and c using δac , or convert indices b and c into a lower index using εibc. If we perform d

contractions using δ’s and e conversions using ε’s, a simple counting of indices requires the

relation

(x, y) = (λ1 − d+ e, λ2 + µ− d− 2e) (1.5.5)

We still need to make the tensor symmetric and traceless. The procedure for making a

symmetric tensor traceless is described in appendix 1.12. We will deal with this later as it

doesn’t change the relation in (1.5.5). Performing similar operations on the R3 ⊗R4 tensor

product with d′ contractions and e′ conversions, we obtain

(y, x) = (λ′1 − d′ + e′, λ′2 + µ′ − d′ − 2e′) (1.5.6)

The projectors in (1.5.2) and (1.5.3) without the tracelessness constraint imposed now look

like

(P
j1···jy
i1···ix )

a1···aλ1
b1···bλ2c1···cµ

= δa1i1 · · · δ
al1
il1
δj1b1 · · · δ

jl3
bl3
δ
jl3+1
c1 · · · δjycl4 εil1+1bl3+1cl4+1

· · · εixbλ2cl4+l2
× δal1+1

cl4+l2+1 · · · δ
aλ1
cµ

(P i1···ix
j1···jy )

f1···fλ′1
g1···gλ′2

h1···hµ′
= δf1j1 · · · δ

fn4
jn4
δi1g1 · · · δ

in1
gn1
δ
in1+1

h1
· · · δixhn2 εjn4+1gn1+1hn2+1 · · · εjygn1+n5hn2+n5

× δfn4+1

hn2+n5+1
· · · δ

fλ′1
hµ′

(1.5.7)

where the i’s and j’s are to be completely symmetrized. We have made the following defini-

tions for notational convenience

l1 = λ1 − d , l2 = e , l3 = λ2 − e , l4 = µ− d− e

n1 = λ′2 − e′ , n2 = µ′ − d′ − e′ , n4 = λ′1 − d′ , n5 = e′ ,
(1.5.8)

In simple terms, l1 is the number of i indices that appear in δai , the rest of them (l2 in

number) being in εibc. Similarly, n1 is the number of j indices that appear in δjb , the rest
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of them (n2 in number) being in δjc and so on. Recall that our final goal is to calculate the

Wilson line

ws(zk) = 〈s|
4∏

k=1

ezbkT
(k)
1 |hw〉k (1.5.9)

To make direct comparison with the results of [38], we choose the operator positions –

z1 = 0, z2 = z, z3 = 1, z4 =∞ where zk denotes the position associated to the representation

Rk. To this end we define

q(k)a = 〈ea|ezbkT
(k)
1 |e1〉k , q̄b(k) = 〈ēb|ezbkT (k)

1 |ē3〉k (1.5.10)

using which we can directly write out the matrix elements rather than the states appearing

in the singlet |s〉. The contributions from the R1 ⊗R2 tensor product can then be written

as

(M0z)
j1···jy
i1···ix =

(
(M †)

j1···jy
i1···ix

)
ezb1T

(1)
1 ⊗ ezb2T (2)

1 |hw〉1|hw〉2

= q(1)(i1
· · · q(1)il1 q̃il1+1

· · · q̃ix)q̄
(j1
(1) · · · q̄

jl3
(1) q̄

jl3+1

(2) · · · q̄jy)
(2)

× δal1+1
cl4+l2+1 · · · δ

aλ1
cµ q(1)al1+1

q̄
cl4+l2+1

(2) · · · q(1)aλ1 q̄
cµ
(2)

(1.5.11)

with q̃i ≡ εibcq̄
b
(1)q̄

c
(2). In the tensor M0z, it is clear that there are two types of lower indices:

ones that appear on q(1) and ones on q̃. There are two types of upper indices too: ones on q̄(1)

and ones on q̄(2). As in the SL(2) case, we refer to these different types of indices by colors.

The indices on q(1) we call red, q̃ blue, q̄(1) green and q̄(2) yellow. In this language, the li defined

in (1.5.8) are just the number of indices of each color. There are further simplifications once

we fix the positions of the bulk and boundary points. We use our freedom of choosing the

bulk point to set zb = 0 such that the Wilson line projects out the highest weight state of R1.

This forces all red and green indices to be highest weight indices i.e. q(1)1 and q̄3
(1) respectively.

A similar story plays out for the R3 ⊗R4 tensor product

(N1∞)i1···ixj1···jy = q(4)j1 · · · q
(4)

jn4
q̃′jn4+1

· · · q̃′jy q̄i1(4) · · · q̄
in1
(4) q̄

in1+1

(3) · · · q̄ix(3)
× δfn4+1

hn2+n5+1
· · · δ

fλ′1
hµ′
q(4)fn4+1

q̄
hn2+n5+1

(3) · · · q(4)fλ′1 q̄
hµ′
(3)

(1.5.12)

with q̃′j = εjghq̄
g
(4)q̄

h
(3). Again mimicking the SL(2) computations, we refer to the indices of

N1∞ as boxes. We call the indices on q̄(4) and q̄(3) box 1 and box 2 respectively. Saving box
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3 for a different purpose, we call the indices on q(4) and q̃′ box 4 and box 5 respectively. The

ni of (1.5.8) count the number of boxes of each type. As discussed before in (1.4.4), setting

z4 → ∞ projects out the lowest weight state from the singlet in the Wilson line. In other

words all box 1 and box 4 indices are forced to be lowest weight indices i.e. q̄1
(4) and q(4)3

respectively.

The explicit form of the matrices L1 and L−1 (see appendix 1.11) in the defining repre-

sentation gives

q(k)a = 〈ea|e−zkL1 |e1〉k = δ1
a +
√

2zkδ
2
a + z2

kδ
3
a

q̄a(k) = 〈ēa|e−zkL−1|ē3〉k = δa3 −
√

2zkδ
a
2 + z2

kδ
a
1

(1.5.13)

Using z1 = 0, z2 = z and the fact that all the q(1) indices are highest weight indices we

have δac q
(1)
a q̄

c
(2) = δ1

cq
(1)

1 q̄c(2) = z2. Similarly, all q(4) indices are lowest weight giving δfhq
(4)

f q̄
h
(3) =

δ3
hq

(4)

3 q̄h(3) = 1.

Next , let us deal with the issue of making the exchanged tensor traceless. As discussed

in appendix 1.12, we first subtract all possible traces of the tensor. Then we subtract out

traces of the new terms added and so on until we run out of traces. The result from (1.12.10)

is

(Ñ1∞)i1···ixj1···jy =

min(x,y)∑
n=0

Cnδ
(i1
(j1
· · · δinjn(N1∞)

in+1···ix)k1···kn
jn+1···jy)k1···kn

(1.5.14)

where the Cn are read off from (1.12.10). In doing this we have introduced new types of

upper and lower indices – the ones appearing on δij. We call the upper index box 3, and lower

box 6. A caveat here is that the trace of some indices vanishes like the ones coming from the

representation (λ′1, λ
′
2). In other words some terms in the symmetrization in (1.5.14) vanish

depending on what indices are being traced out. Note that in the absence of this constraint

all terms in the symmetrization would contribute in exactly the same manner. To account

for the constraint we simply assume that all possible traces are allowed but then correct

by multiplying by the fraction of terms that would survive in the symmetrization. From

(1.5.12), we see q̄(4) · q̃′ = 0 = q̄(3) · q̃′ = q̄(4) · q(4) allowing us to trace out only box 2 and box

4. The fraction of terms for a given value of n is then found as follows : choose n indices
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from box 2 and box 4 to trace out, multiply by the number of permutations that preserve

this structure and divide by the total number of terms. This gives an additional factor to

add onto (1.5.14)

C ′n =

(
n2

n

)(
n4

n

)
Γ(x− n+ 1)Γ(y − n+ 1)Γ(n+ 1)2

Γ(x+ 1)Γ(y + 1)

=
Γ(n2 + 1)Γ(n4 + 1)Γ(x− n+ 1)Γ(y − n+ 1)

Γ(n4 − n+ 1)Γ(n2 − n+ 1)Γ(x+ 1)Γ(y + 1)

(1.5.15)

We now have the two objects M̃0z and Ñ1∞ and the only thing left to do is to contract the

indices between them in order to assemble the singlet. Note that since we are contracting

all indices, it is sufficient to make just one of them symmetric and traceless. Putting all of

this together, we have

gs(z) = (M0z)
j1···jy
i1···ix (Ñ1∞)i1···ixj1···jy

= q(1)i1 · · · q
(1)

il1
q̃il1+1

· · · q̃ix q̄j1(1) · · · q̄
jl3
(1) q̄

jl3+1

(2) · · · q̄jy(2) × z2d

×
min(x,y)∑
n=0

CnC
′
nδ

(i1
(j1
· · · δinjnq

(4)

jn+1
· · · q(4)jn4 q̃

′
jn4+1

· · · q̃′jy q̄
in+1
(4) · · · q̄

in1+n+1

(4) q̄
in1+n+2

(3) · · · q̄ix(3) × 1

(1.5.16)

As for the SL(2) case, keeping track of the permutations is a combinatorial problem; we need

to find different ways to color boxes 1, 2 and 3 red or blue and boxes 4, 5 and 6 green or

yellow. The details are relegated to appendix 1.13. Ignoring all factors that are independent

of z and the integer n, we obtain

gs(z) = z2d

∞∑
n=0

z2n

n!

(−n2)n(−l4)n(−l1)n(−n4)n
(−x)n(−y)n(−x− y − 1)n

× 2F 1(−l2, n− n2;n− x; z)2F 1(−n5, n− l4;n− y; z)

(1.5.17)

The representations we consider here are of the same form as the ones in [38]. The ri and si

there are defined to be the negative of the Dynkin labels : r1 = −λ1, s1 = −λ2 and so on.

Using this we find the following map to the definitions in equation (2.65) of [38] : n5 → −α,

l2 → −β, n2 → −γ and λ4 → −δ. With these relations our result in (1.5.17) agrees with

their CFT calculation of the W3 blocks in the large c limit.
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1.6 An SL(N) example

We now consider an example at arbitrary N , but with simple representations so as to keep

the computation tractable. In particular, we will study the four-point function of two pri-

maries in the fundamental (defining) representation of SL(N), and two primaries in the

anti-fundamental representation of SL(N),

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = 〈φ+(x1)φ+(x2)φ+(x3)φ+(x4)〉 . (1.6.1)

Using conformal invariance and identifying the conformal cross ratios

z =
z12z34

z13z24

, z =
z12z34

z13z24

(1.6.2)

this reduces to

Gφ+φ+φ+φ+
= 〈φ+(∞)φ+(1, 1)φ+(z, z)φ+(0, 0)〉 , (1.6.3)

where O1 = O2 = φ+ and O3 = O4 = φ+ are primaries corresponding to the highest weight

states of the following representations

φ+ : R1 = R2 = R+ =
(

, 0
)

and φ+ : R3 = R4 = R+ =

(
, 0

)
.

(1.6.4)

We denote by |hw〉i the highest weight state of Ri, and by |hw〉i the highest weight state of

Ri.

The holographic calculation of the blocks corresponding to this four point function follows

the logic of section 1.3. We first construct the matrix elements of the Wilson lines acting

on the boundary states. We then build the states corresponding to the exchanged represen-

tations, and we end the calculation by assembling the singlet. We will work in the channel

where the pair φ+(∞)φ+(1) exchanges states with the pair φ+(z)φ+(0). In order to see what

representations can be exchanged, we decompose the tensor product of the representations

of φ+ and φ+

⊗ = 1⊕Adj , where Adj = ... . (1.6.5)
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The adjoint representation is conjugate to itself, so there are two different blocks we can

construct. One of them corresponds to the exchange of the identity representation, the

other corresponds to the exchange of the adjoint representation. We construct each block in

a separate subsection.

1.6.1 Exchange of 1

We start by building the matrix elements of the bulk-to-boundary Wilson lines acting on

the highest weight states at the boundary.

〈(R1)j|ezb1L1|hw〉1 = q(1)j ,

〈(R2)k|ezb2L1|hw〉2 = q̄k(2) ,

〈(R3)j|ezb3L1|hw〉3 = q(3)j ,

〈(R4)k|ezb4L1|hw〉4 = q̄k(4) ,

(1.6.6)

with q(i)j = 〈ej|ezbiT
(i)
1 |hw〉i and q̄k(i) = 〈ek|ezbiT (i)

1 |hw〉i. The next step is to build the trivial

representation out of each pair. We do this by contracting indices with the invariant tensor

δjk

〈(1)|ezb1L1|hw〉1ezb2L1|hw〉2 = q(1)j q̄
k
(2)δ

j
k ,

〈(1)|ezb3L1|hw〉3ezb4L1|hw〉4 = q(3)j q̄
k
(4)δ

j
k .

(1.6.7)

The last step is to assemble the singlet out of 1 and 1. No contractions with any tensor are

needed

w1(zi) = 〈s|ezb1L1|hw〉1ezb2L1|hw〉2|ezb3L1|hw〉3ezb4L1|hw〉4 =
1

N
(q(1)j q̄

k
(2)δ

j
k)(q

(3)

j′ q̄
k′

(4)δ
j′

k′) (1.6.8)

where we normalized the singlet. Using the explicit form of q(i)j and q̄j(i) we obtain

g1(z) =
1

N
zN−1 . (1.6.9)

1.6.2 Exchange of Adj

We proceed in the same fashion as in the previous subsection. We start with the expressions

for the matrix elements of the bulk-to-boundary Wilson lines acting on the highest weight
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states at the boundary. These are written in (1.6.6). The next step is to build the adjoint

representation using the matrix elements of the first pair, the same can be done for the

second pair. For this we need an object with one index down (index in the fundamental

representation), and one index up (index in the anti-fundamental representation). For the

representation to be irreducible we also must impose a tracelessness condition. The answer

reads

(M12)kj ≡ 〈(Adj)kj|ezb1L1|hw〉1ezb2L1|hw〉2 = q(1)j q̄
k
(2) −

1

N
δkj q

(1)

i q̄
i
(2) ,

(M34)kj ≡ 〈(Adj)kj|ezb3L1|hw〉3ezb4L1|hw〉4 = q(3)j q̄
k
(4) −

1

N
δkj q

(3)

i q̄
i
(4) ,

(1.6.10)

where the second term in each expression ensures tracelessness. The singlet can now be

built by contracting all indices of (M12)kj with all indices of (M34)kj using Kronecker delta

functions

wAdj(zi) = 〈s|ezb1L1|hw〉1ezb2L1|hw〉2ezb3L1|hw〉3ezb4L1|hw〉4

=
1√

N2 − 1
δjkδ

j′

k′(M12)k
′

j(M34)kj′

=
1√

N2 − 1

(
q(1)j q̄

k
(2)q

(3)

k q̄
j
(4) −

1

N
q(1)j q̄

j
(2)q

(3)

k q̄
k
(4)

)
.

(1.6.11)

Using the explicit form of q(i)j and q̄j(i) we obtain

gAdj(z) =
1√

N2 − 1

(
(z − 1)N−1 − 1

N
zN−1

)
. (1.6.12)

1.6.3 The four-point function Gφ+φ+φ+φ+

As explained below (1.2.6), we have only computed the holomorphic conformal blocks. In

order to obtain the four point function we need to sum over the products of holomorphic

conformal blocks gs(z) and anti-holomorphic conformal blocks g̃s̃(z). We then write

Gφ+φ+φ+φ+
=

∑
p,p̃=1,Adj

App̃gp(z)g̃p̃(z) = gT (z)Ag(z) , (1.6.13)

where we introduced the matrix A and the vectors

g(z) =

 g1(z)

gAdj(z)

 , g(z) =

 g1(z)

gAdj(z)

 . (1.6.14)
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The correlator written explicitly in (1.6.3) is invariant under the exchange x2 ↔ x4. This

translates to a constraint on the matrix A in our construction. To see this we first observe

that the vector g(z) transforms under the exchange as

g(z) =

 g1(z)

gAdj(z)

 →

 1
N

√
N2−1
N

√
N2−1
N

− 1
N

 g1(z)

gAdj(z)

 ≡ Og(z) (1.6.15)

where O is the orthogonal exchange matrix defined in subsection 1.3.3 and g(z) transforms

similarly. This means that the correlator transforms as

gT (z)Ag(z) → gT (z)OTAOg(z). (1.6.16)

Demanding invariance of the correlator amounts to the constraint OTAO = A. Any linear

combination of the identity matrix and the exchange matrix O satisfies this equation and

will lead to a crossing symmetric correlation function when plugged in (1.6.13). We continue

to compute these crossing symmetric building blocks. With A = I we get

GI(zi, zi) = g1(z)g1(z) + gAdj(z)gAdj(z)

=
1

N2 − 1

[(
|z|2
)N−1

+
(
|z − 1|2

)N−1 − 1

N
((z − 1)z)N−1 − 1

N
(z(z − 1))N−1

]
.

(1.6.17)

And with A = O we get

GO(zi, zi) =
1

N

(
g1(z)g1(z)− gAdj(z)gAdj(z)

)
+

√
N2 − 1

N

(
g1(z)gAdj(z) + gAdj(z)g1(z)

)
=

1

N2 − 1

[
(z(z − 1))N−1 + ((z − 1)z)N−1 − 1

N

(
|z|2
)N−1 − 1

N

(
|z − 1|2

)N−1
]
.

(1.6.18)

One can see in (1.6.1)-(1.6.3) that the exchange x2 ↔ x4 corresponds to (z, z)→ (1−z, 1−z)

and (1.6.17) and (1.6.18) are indeed invariant under this transformation. A specific linear

combination of GI and GO gives

G(zi, zi) =
(
|z|2
)N−1

+
(
|z − 1|2

)N−1
. (1.6.19)

This is the semiclassical limit of the result computed in [67] using the Coulomb gas formalism.

Another linear combination of interest is the following

G(zi, zi) =
(
|z|2
)N−1

+
(
|z − 1|2

)N−1
+ ((z − 1)z)N−1 + (z(z − 1))N−1. (1.6.20)

26



For N = −1, this expression reduces to the following correlator of free complex bosons

G(zi, zi) = 〈∂φ∂̄φ(x1)∂φ∂̄φ(x2)∂φ∂̄φ(x3)∂φ∂̄φ(x4)〉

= (z12z12)−2(z34z34)−2 + (z14z14)−2(z23z23)−2

+ (z12z14)−2(z34z23)−2 + (z14z12)−2(z23z34)−2

(1.6.21)

after implementing coordinates as in (1.6.2) and (1.6.3).

1.7 Heavy-light Virasoro blocks

We now show how to use our approach to obtain Virasoro blocks in the heavy-light limit.

This refers to a limit in which we take c→∞ while scaling operator dimensions in a specific

way. In particular, we consider a four-point function of two light operators and two heavy

operators, 〈OL1OL2OH1OH2〉. Light operators have scaling dimensions h1,2 that are held

fixed in the limit, while heavy operator dimensions H1,2 scale like c, while their difference

H12 = H1 −H2 is held fixed. Further, the exchanged primary is taken to be light, with its

scaling dimension hp held fixed.

Rather than working on the z-plane, in this section it will be more convenient to work on

the cylinder, z = eiw, with w = φ+ iτ . Of course, the conformal blocks in the two cases are

simply related by a conformal transformation. We will further use conformal invariance to

place the heavy operators in the far past and future, and one of the light operators at w = 0.

With these comments in mind, the heavy-light Virosoro blocks on the cylinder are [46]

〈OL1(w,w)OL2(0, 0)PpOH1(τ = −∞)OH2(τ =∞)〉 = F(hi, hp;w)F(h̃i, h̃p;w)

(1.7.1)

with

F(hi, hp;w) =
(

sin
αw

2

)−2hL1 (
1− eiαw

)hp+h12
2F1

(
hp + h12, hp −

H12

α
, 2hp; 1− eiαw

)
.

(1.7.2)

Here

α =

√
1− 24hH1

c
. (1.7.3)
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Setting α = 1 yields the result for the global block. We then note that the heavy-light

Virasoro block is obtained from the global block by the replacements

w → αw , H12 =
H12

α
. (1.7.4)

We now show how this result comes out in our approach.

As shown in previous work, the relevant bulk geometry is a conical defect spacetime

whose energy matches the dimension of the heavy operators. The corresponding connection

is

a = (L1 +
α2

4
L−1)dw (1.7.5)

We now write

e(T1+α2

4
T−1)w = ec1(w)T1 [c0(w)]2T0ec−1(w)T−1 (1.7.6)

with

c1(w) =
2

α
tan

αw

2
, c0(w) = cos

αw

2
, c−1(w) =

α

2
tan

αw

2
(1.7.7)

obtained by matching the two sides in the two-dimensional rep of SL(2).

The conformal block is given by6

ws(wi) =
∑
{mi}

Sm1,m2,m3,m4

4∏
i=1

〈jimi|ec1(wbi)T1 [c0(wbi)]
2T0|jiji〉 (1.7.8)

where we have written the singlet state as 〈s| =
∑
{mi} Sm1,m2,m3,m4

∏4
i=1〈jimi|. We will

think of the first two spins as representing the light operators, so h1 = −j1 and h2 = −j2.

The insertion point of last two spins will be taken to τ = ±∞, since this is where the heavy

operators are inserted. The heavy operators correspond to the background connection with

the contribution of the spins added on top. Below we will see that H12 = −α(j3 − j4).

We use conformal invariance to set

w1 → w , w2 → 0 , w3 → −i∞ , w4 → +i∞ , wb → 0 (1.7.9)

6To avoid confusion with the cylinder coordinates wi, we use ws to denote the conformal blocks in this
section.
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The functions behave as

c1(wb2) ∼ 0 , c0(wb2) ∼ 1

c1(wb3) ∼ 2i

α
, c0(wb3) ∼ 1

2
e
iαw3

2 →∞

c1(wb4) ∼ −2i

α
, c0(wb4) ∼ 1

2
e−

iαw4
2 →∞ (1.7.10)

The first limit picks out m2 = j2 from the sum. After stripping off the w3,4 dependent factors

(which are absorbed into the definition of the operators at τ = ±∞) we are left with

ws(wi) = (cos
αw

2
)2j1

∑
m1,m3,m4

Sm1,j2,m3,m4〈j1m1|e−
2
α

tan αw
2
T1|j1j1〉

〈j3m3|e
2i
α
T1|j3j3〉〈j4m4|e−

2i
α
T1|j4j4〉 (1.7.11)

Now, starting from the α = 1 case we obtain (1.7.11) by the replacements

w → αw , T1 →
1

α
T1 (1.7.12)

We first establish that the rescaling of T1 has no effect other than contributing an overall

multiplicative constant. This is because upon expanding the exponentials only a fixed overall

power of T1 contributes, since m1 + j2 + m3 + m4 = 0 by the singlet condition. We simply

pick up one power of α for each power of T1, which as noted above just yields a fixed overall

constant which we ignore.

Besides the rescaling of w, we also need to account for the rescaling of H12 in (1.7.4). At

α = 1 we have only light operators and we would write H12 = −(j3 − j4). For general α

we can read off the contribution to the scaling dimension from j3,4 from the w3,4 dependent

prefactor that we stripped off. From the behavior of the functions c0(wb3) and c0(wb4) we see

that this factor is e
iαj3w3

2 e−
iαj3w4

2 . This tells us that it is αj3,4 that contributes to the scaling

dimensions, and so −(j3 − j4) = H12

α
. This accounts for the rescaling of H12.

Altogether, we see that if we have established the correct result for the global conformal

block, as we have indeed done in section 1.4, then agreement for the heavy-light block follows.

This completes the argument.
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1.8 Discussion

We close with a few comments. The main result of this work is formula (1.1.3), yielding

large c correlators and conformal blocks ofWN theories. We showed by explicit computation

how the choice of light external operators yields global blocks, recovering known results in

a new way that is well adapted to holographic considerations. We can equally well obtain

heavy-light blocks, as was demonstrated in the N = 2 case where we obtained heavy-light

Virasoro blocks. Similarly, heavy-light blocks for WN can be obtained through more work,

if desired. In all these cases, all our results directly pertain to the case where operator

dimensions are negative; however, after the result has been obtained one can analytically

continue to positive dimensions. Of course, this requires some knowledge of the analytic

structure as a function of operator dimension. This is usually no obstacle: for example, one

knows that each term in the series expansion of a conformal block in the cross ratio is a

rational function of operator dimensions, rendering analytic continuation trivial. Similarly,

one can analytically continue in N to obtain blocks of W∞(λ).

Looking ahead, it would be very interesting to obtain (1.1.3) directly from the equations

of Prokushkin and Vasiliev. At present, we only know how to do this in the case of two

light operators, corresponding to computing a two-point function in a heavy background.

Starting from the Prokushkin-Vasiliev equations, it is well known (e.g. [10]) how to linearize

in the matter field to obtain a description of a free scalar interacting with Chern-Simons

gauge fields, and how the computation of two-point functions leads to a special case of

(1.1.3). However, the system of equations becomes much more complicated when matter

self-interactions are included, and they have so far not been put into a usable form. We also

note that the case of two light operators includes all existing computations of entanglement

entropy in higher spin theories, which correspond to two-point functions of operators with

quantum numbers chosen to match those of twist operators [8, 25,30,56].

Results obtained here pertain to the large c limit, which corresponds to the classical limit

in the bulk. On the CFT side one can work out 1/c corrections [41], and it is interesting

to ask how these might arise in the bulk as quantum corrections. For example, one might
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entertain computing loop diagrams in the bulk via Wilson lines. However, the most obvious

way of defining such diagrams does not lead to anything new when we recall that gauge

invariance implies that the location of bulk vertices can be moved without changing the

result. The same argument that said that tree level exchange diagrams can be reduced to

contact diagrams by merging vertices also tells us that such loop diagrams can be reduced to

tree level contact diagrams. Apparently some new ingredient is needed to compute quantum

corrections.

Appendices

1.9 Conformal invariance of correlators

Here we show that our correlation functions transform properly under global conformal

transformations, as in (1.2.9). We start from our general expression for an n-point function

ws(zi) = 〈s|
n∏
i=1

ezbiT
(i)
1 |hw〉i . (1.9.1)

Under a gauge transformation of the connection

a→ LaL−1 + LdL−1 (1.9.2)

a Wilson line transforms as

Pe
∫ y
x a → L(y)Pe

∫ y
x aL−1(x) (1.9.3)

An arbitrary SL(2) transformation can be written as

L(z) = ec−1T−1 e2 log c0T0 ec1T1 (1.9.4)

where the ci are functions of z. Starting with the connection corresponding to pure AdS in

Poincaré coordinates , a = T1dz, a gauge transformation by L(z) gives

a′ =

[
1− c′1
c2

0

T1 −
2(c−1 + c0c

′
0 − c−1c

′
1)

c2
0

T0 −
c2

0c
′
−1 − 2c0c

′
0c−1 − c2

−1 + c2
−1c
′
1

c2
0

T−1

]
dz (1.9.5)

31



To verify this one can first work out the result in the 2 × 2 matrix representation of SL(2)

and then use the fact that the group multiplication is independent of the representation. We

demand that a′ ∝ T1, so that the coefficients of T0 and T−1 vanish. It will prove sufficient to

take

c1(z) = 0 , c0(z) = cz + d , c−1(z) = −cc0(z) (1.9.6)

corresponding to the new connection

a′ =
T1dz

(cz + d)2
= T1dz

′ (1.9.7)

where

z′ =
az + b

cz + d
, ad− bc = 1 . (1.9.8)

Returning to (1.9.1) we write

ws(zi) = 〈s|
n∏
i=1

L−1(zb)L(zb)e
zbiT

(i)
1 L−1(zi)L(zi)|hw〉i

= 〈s|
n∏
i=1

ez
′
biT

(i)
1 L(zi)|hw〉i (1.9.9)

We further have

L(zi) |hw〉i = ec−1T−1 e2 log c0T0 |hw〉i
= e−2hi log c0 |hw〉i
= (czi + d)−2hi |hw〉i (1.9.10)

which yields

ws(zi) =

[
n∏
i=1

(czi + d)−2hi

]
ws(z

′
i) . (1.9.11)

This is equivalent to (1.2.9).

1.10 Computation of three-point function

In this appendix we give the details for deriving (1.2.14). We work with a description of

SL(2) representations based on symmetric tensors, or equivalently Young tableau with a
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single row. We start with Young tableaux with one single row of length λ = 2j for a spin

j representation. In tensor notation the states of this representation are Aα1...αλ |eα1 . . . eαλ〉
where A is a symmetric tensor, and |e1〉 and |e2〉 are the spin up and spin down states of

the spin half representation of SL(2), respectively. In other words, |e1〉 and |e2〉 are states

in the fundamental representation of SL(2). The highest weight state is |e1 . . . e1〉. Wilson

lines emanating from the boundary points z1, z2 and z3 carry Dynkin labels λ1, λ2 and λ3,

respectively, and we take λ1 ≥ λ2 without loss of generality. The tensor product of the first

two representations decomposes as

λ1
⊗ λ2

=

λ1+λ2∑
λ=|λ1−λ2|

λ (1.10.1)

where representations of label λ ∈ {|λ1 − λ2|, . . . , λ1 + λ2} appear. If λ3 lies in this interval

we can build a singlet out of the three representations. Once we have the singlet we need

to evaluate the bulk-to-boundary Wilson lines. These act independently on each state of

the fundamental representation so it is convenient to first evaluate matrix elements on these

factors and then assemble the singlet, which will then lead directly to the three point function.

We denote by q(i)α the following matrix element of the Wilson line

q(i)α = 〈eα| ezbiT
(i)
1 |e1〉i = δ1

α − zbiδ2
α. (1.10.2)

We now exploit gauge invariance to set z1 = zb. After this we see that q(1)α = δ1
α, which

simplifies the calculation. We now define the tensor (Mi)j1...jλi = 〈(Ri)j1...jλi |e
zbiL1|hw〉i

representing the matrix element of the Wilson line for any state in the representation Ri.

z1 : (M1)α1...αλ1
= δ1

α1
. . . δ1

αλ1

z2 : (M2)β1...βλ2 = q(2)(β1
. . . q(2)βλ2 )

z3 : (M3)ρ1...ρλ3 = q(3)(ρ1
. . . q(3)ρλ3 )

(1.10.3)

We now build a tensor of λ3 symmetric indices out of M1 and M2.

(M12)γ1...γλ3 = εα1β1 . . . ε
αλ1+λ2−λ3

2

βλ1+λ2−λ3
2 (M1)α1...αλ1+λ2−λ3

2

(γ1...γλ1+λ3−λ2
2

(M2)γλ1+λ3−λ2
2 +1

...γλ3 )β1...βλ1+λ2−λ3
2

= (q(2)2 )
λ1+λ2−λ3

2 δ1
(γ1
. . . δ1

γλ1+λ3−λ2
2

q(2)γλ1+λ3−λ2
2 +1

. . . q(2)γλ3 )

(1.10.4)
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where we have contracted indices with the invariant tensor εαβ. Finally we bring M12 and

M3 together and construct the singlet

ws(z1, z2, z3) = εα1β1 . . . εαλ3βλ3 (M3)α1...αλ3
(M12)β1...βλ3

= (q(2)2 )
λ1+λ2−λ3

2 εα1β1 . . . εαλ3βλ3q(3)α1
. . . q(3)αλ3

δ1
β1
. . . δ1

βλ1+λ3−λ2
2

q(2)βλ1+λ3−λ2
2 +1

. . . q(2)βλ3

(1.10.5)

where we have made use of the symmetric structure of M3 and M12, and discarded constant

factors. Using now the explicit form of q(i)α from (1.10.2) we obtain

ws(z1, z2, z3) = z
λ1+λ2−λ3

2
12 z

λ1+λ3−λ2
2

13 z
λ2+λ3−λ1

2
23 (1.10.6)

This yields the result (1.2.14) upon using hi = −λi/2.

1.11 SL(N) Conventions and Facts

1.11.1 Conventions

We use the same conventions as in [23]. All the Wilson lines that appear in this paper are

valued in the SL(2) subgroup of SL(N). The matrices we then need are for the generators of

SL(2) which in the N dimensional defining representation are

L1 = −



0 . . . 0
√
N − 1 0 . . .

0
√

2(N − 2) 0
...

. . . . . .
...√

i(N − i) 0

. . . . . .

0 . . .
√
N − 1 0


L0 = diag

(
N − 1

2
,
N − 3

2
, . . . ,

N − 2i+ 1

2
, . . . ,−N − 1

2

)
L−1 = −(L1)†

(1.11.1)
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Using these matrices, we find for the defining representation

〈−hw|ezL1|hw〉 =
zN−1

(N − 1)!
〈−hw|(L1)N−1|hw〉

= (−z)N−1

(1.11.2)

1.11.2 Irreducible Tensors

We denote states of the defining representation of SL(N) by an n-dimensional lower indexed

vector |ei〉, i = 1, . . . , N . It is natural then to denote states of the conjugate representation by

upper indexed objects |ēi〉, such that the invariant tensors are given by δji , εi1...iN and εj1...jN .

Their invariance follows from the fact that the matrices of SL(N) have unit determinant.

This characterization is useful for the SL(3) calculations of section 1.5. The invariant

tensors are now δji , εijk and εijk. Consider a tensor with arbitrary number of lower and upper

indices. First focus on a pair of lower indices. The part that is antisymmetric in these two

indices can be converted into a single upper index using an εijk. Next we do the same with

pairs of upper indices. We can keep doing this until we have a tensor that has completely

symmetric upper and lower indices. We can also contract an upper and a lower index using

δji to give a lower rank tensor. Thus an irreducible tensor of SL(3) should be completely

traceless and symmetric in upper and lower indices.

We can construct a symmetric traceless tensor with m lower and n upper indices, T j1...jni1...im
,

by taking a tensor product of m copies of the defining and n copies of its conjugate represen-

tation, symmetrizing and subtracting out traces. Since the traces are all lower rank tensors,

we have

⊗ · · · ⊗︸ ︷︷ ︸
m

⊗ ⊗ · · · ⊗︸ ︷︷ ︸
n

=
n m

n
⊕ · · ·

(1.11.3)

where the . . . on the right denote Young tableau with boxes < m + 2n. So we conclude

T j1...jni1...im
∼ (m,n). Conjugation of a representation simply conjugates each factor in the tensor

product above which is equivalent to exchanging upper and lower indices or (m,n) = (n,m).
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1.12 Removing Traces of Symmetric Tensors

Consider a tensor with x lower indices and y upper indices, A
j1···jy
i1···ix , where the upper and lower

indices are completely symmetrized. For the purposes of having an irreducible representation

of SL(3) we also need this tensor to be traceless. Since all the indices are symmetric we can

consider a particular trace, say δi1j1 , all other traces being equivalent. The trace of the

tensor A
j1···jy
i1···ix gives a term with one upper and one lower index contracted — a single trace

expression. To make this tensor traceless, we need to subtract out single trace expressions

with appropriate coefficients while maintaining the symmetry of the indices. Trace of the

single trace terms we just added to our tensor gives new double trace expressions. We then

subtract those double trace terms and keep on going until we run out of indices to contract.

In general, the expression for the traceless tensor looks like

Ã
j1···jy
i1···ix = A

j1···jy
i1···ix +

min(x,y)∑
n=1

Cnδ
(j1
(i1
· · · δjninA

jn+1···jy)k1···kn
in+1···ix)k1···kn

(1.12.1)

where the parentheses denote symmetrization. Our goal is then to fix the coefficients C̃n.

First note that since both i and j are symmetrized, a lot of the terms have the same tensor

structure. For example, δj1i1 δ
j2
i2

is the same as δj2i2 δ
j1
i1

(but different from δj2i1 δ
j1
i2

). To account

for these degeneracies (given n), fix the indices that appear on the tensor A. There are

(x − n)!(y − n)! terms which are the same, coming from permutations of the (x − n) lower

and (y − n) upper indices on A. Further, we have a total of (n!)2 terms coming from the

permutations of the lower and upper indices on the Kronecker deltas but only n! of them

are distinct corresponding to keeping the sequence of lower indices fixed while permuting

the upper indices. This gives an additional degeneracy factor of n!. We then redefine our

constants

Cn =
(−1)nC̃n

(x− n)!(y − n)!n!
(1.12.2)

such that each tensor structure appears with a factor of (−1)nC̃n in the sum. Note that we

have included a sign since the single trace terms cancel the zero trace terms, the double trace

cancel the single trace terms and so on. We will use induction to determine C̃n. Consider
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the term with n traces and n+ 1 traces respectively.

n :
(−1)nC̃n

(x− n)!(y − n)!n!
δ

(j1
(i1
· · · δjninA

jn+1···jy)k1···kn
in+1···ix)k1···kn

n+ 1 :
(−1)n+1C̃n+1

(x− n− 1)!(y − n− 1)!(n+ 1)!
δ

(j1
(i1
· · · δjn+1

in+1
A
jn+2···jy)k1···kn+1

in+2···ix)k1···kn+1

(1.12.3)

To facilitate counting, further restrict to a particular tensor structure after contracting with

δi1j1 , say δj2i2 · · · δ
jn+1

in+1
A
jn+2···jyk1···kn+1

in+2···ixk1···kn+1
. This tensor structure can arise from the n+1 trace terms

in one of 4 ways.

1. Both the indices i1 and j1 are among the Kronecker deltas and on the same Kronecker

delta.

δj1i1 δ
j2
i2
· · · δjn+1

in+1
A
jn+2···jyk1···kn+1

in+2···ixk1···kn+1
(1.12.4)

There is exactly one such term after accounting for the degeneracies. Contracting with

δj1i1 gives an additional factor of 3.

2. Both the indices i1 and j1 are among the Kronecker deltas but are on different Kro-

necker deltas.

δjai1 δ
j2
i2
· · · δj1ia · · · δ

jn+1

in+1
A
jn+2···jyk1···kn+1

in+2···ixk1···kn+1
(1.12.5)

where 2 ≤ a ≤ n+ 1. There are n such terms and each gives a factor of 1.

3. i1 is on a Kronecker delta but j1 is on the tensor A.

δjbi1 δ
j2
i2
· · · δjn+1

in+1
A
jn+2···j1···jyk1···kn+1

in+2···ixk1···kn+1
(1.12.6)

where n+ 2 ≤ b ≤ y. There are (y − n− 1) such terms and each gives a factor of 1.

4. On a similar note, we can have j1 on the Kronecker delta but i1 on A.

δj1ic δ
j2
i2
· · · δjn+1

in+1
A
jn+2···jyk1···kn+1

in+2···i1···ixk1···kn+1
(1.12.7)

where n+ 2 ≤ b ≤ x. There are (x− n− 1) such terms and each gives a factor of 1.
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It is easily checked that no other possibility gives the right tensor structure. Combining all

this we get a factor of (x+y−n+1) accompanying the required tensor structure in the n+1

trace terms. Looking at the terms in (1.12.3) with n traces, the required tensor structure

can appear only when both the i1 and j1 indices are on the tensor A and the Kronecker

deltas are in the correct form. This term occurs exactly once after removing degeneracies.

Hence, we get the recursion relation

C̃n+1 =
C̃n

x+ y − n+ 1
(1.12.8)

Note that we can think of the original tensor as the n = 0 term with C̃0 = 1. The coefficients

are then given by

C̃n =
1

[x+ y + 1]n
(1.12.9)

where [a]n is the descending Pochhammer symbol, [a]n = a(a − 1) . . . (a − n + 1). Putting

all of this together, the traceless tensor is given by

Ã
j1···jy
i1···ix =

min(x,y)∑
n=0

(−1)nΓ(x+ y − n+ 2)

Γ(x+ y + 2)Γ(x− n+ 1)Γ(y − n+ 1)Γ(n+ 1)
δ

(j1
(i1
· · · δjninA

jn+1···jy)k1···kn
in+1···ix)k1···kn

(1.12.10)

1.13 Details of SL(3) Calculation

In this appendix, we present some details of the SL(3) calculations of section 1.5. The singlet

in terms of tensors of SL(3) was found in (1.5.16). All that is required now is to contract all

the indices while keeping track of all the combinatorial factors and powers of z.

gs(z) = z2d q(1)i1 · · · q
(1)

il1
q̃il1+1

· · · q̃ix q̄j1(1) · · · q̄
jl3
(1) q̄

jl3+1

(2) · · · q̄jy(2)

×
min(x,y)∑
n=0

CnC
′
nδ

(i1
(j1
· · · δinjnq

(4)

jn+1
· · · q(4)jn4 q̃

′
jn4+1

· · · q̃′jy q̄
in+1
(4) · · · q̄

in1+n+1

(4) q̄
in1+n+2

(3) · · · q̄ix(3)

(1.13.1)
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As mentioned before we refer to the indices on the first line by colors and the second line by

boxes. The various labels we use for indices and the number of them are collected below

Label Index on Number

Red q(1) l1 = λ1 − d
Blue q̃ l2 = e

Green q̄(1) l3 = λ2 − e
Yellow q̄(2) l4 = µ− d− e
Box 1 q̄(4) n1 = λ′2 − e′

Box 2 q̄(3) n2 = µ′ − d′ − e′

Box 3/6 δ n

Box 4 q(4) n4 = λ′1 − d′

Box 5 q̃′ n5 = e′

(1.13.2)

Each permutation will correspond to a particular way of coloring the boxes. Note that we

are allowed to color boxes 1, 2 and 3 red or blue only and boxes 4, 5 and 6 green or yellow

only. Taking this into account, the various contributions from different combinations are

Coloring Contribution Number

Box 1 Red q(1) · q̄(4) u

Box 2 Red q(1) · q̄(3) l1 − u− u′

Box 3 Red q(1)j u′

Box 1 Blue q̃ · q̄(4) n1 − u
Box 2 Blue q̃ · q̄(3) l2 − n1 − n+ u+ u′

Box 3 Blue q̃j n− u′

Box 4 Green q̄(1) · q(4) v

Box 5 Green q̄(1) · q̃′ l3 − v − v′

Box 6 Green q̄i(1) v′

Box 4 Yellow q̄(2) · q(4) n4 − n− v
Box 5 Yellow q̄(2) · q̃′ l4 − n4 + v + v′

Box 6 Yellow q̄i(2) n− v′

(1.13.3)

39



Note that box 3 and box 6 must be contracted as they refer to lower and upper indices

appearing on δ. Our definition q̃j = εjbcq̄
b
(1)q̄

c
(2) automatically gives q̃ · q̄(1) = 0 = q̃ · q̄(2). Since

R1 is represented as a symmetric traceless tensor, we also have q(1) · q̄(1) = 0. We are then left

with just one possible combination – color box 3 red and box 6 yellow giving a contribution

of q(1) · q̄(2). In the above table this means u′ = n and v′ = 0.

Choosing the bulk point to coincide with z1 = 0 and imposing z4 → ∞ constrains q(1),

q̄(1) to be highest weight (q(1)1 and q̄3
(1)) and q(4), q̄(4) to be lowest weight (q(4)3 and q̄1

(4)). All

the contributions can then be found by our knowledge of the matrix elements in the defining

representation (1.5.13). For example we have

q(1) · q̄(3) = q̄1
(3) = 1

q̃ · q̄(3) = εi3cq̄
i
(3)q̄

c
(2) =

√
2z(1− z)

(1.13.4)

The next task is to find the combinatorial factors accompanying each combination and to

sum them all up. As an example consider boxes of type 1 i.e. the first and fourth rows of

table (1.13.3). We need to color u boxes red and the rest blue. First choose u red indices

and n1 − u blue indices which can be done in
(
l1
u

)(
l2
u

)
ways. The coloring of the n1 boxes of

type 1 can then be done in Γ(n1 + 1) ways. Proceeding in a similar manner with the rest of

the boxes, we obtain

gp(z) = z2d

min(x,y)∑
n=0

CnC
′
n

n1∑
u=0

n4−n∑
v=0

(
l1
u

)(
l2

n1 − u

)
Γ(n1 + 1)

(
l1 − u
n

)
Γ(n+ 1)Γ(n2 − n+ 1)

×
(
l3
v

)(
l4

n4 − n− v

)
Γ(n4 − n+ 1)

(
l4 − n4 + n+ v

n

)
Γ(n+ 1)Γ(n5 + 1)

× (
√

2z)n1−u(
√

2z(1− z))l2−n1+u(−
√

2)l3−v(−
√

2(1− z))l4−n4+vz2n

∼ z2d+l2

min(x,y)∑
n=0

CnC
′
n

Γ(n2 − n+ 1)

Γ(l1 − n+ 1)
z2n(1− z)l2−n1+l4−n4

× 2F 1(−n1, n− l1; 1 + l2 − n1; 1− z)2F 1(−l3, n− n4; 1 + l3 − n4; 1− z)

(1.13.5)

where the ∼ indicates that we have ignored factors that are independent of z and the

summation variable n. We can put the hypergeometric functions into standard form using
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the identity

2F 1(a, b; b−m; z) =
(−1)m(a)m
(1− b)m

(1− z)−a−m2F 1(−m, b− a−m; 1− a−m; 1− z) , m ∈ N

(1.13.6)

where (a)m = a(a+ 1) . . . (a+m− 1) is the ascending Pochhammer symbol. We also use the

following reflection formula for gamma functions

Γ(s− a+ 1)

Γ(s− b+ 1)
= (−1)b−a

Γ(b− s)
Γ(a− s) , a, b ∈ Z, s ∈ C (1.13.7)

With a = n and b = 0, we obtain

Γ(s− n+ 1) = (−1)n
Γ(s+ 1)Γ(−s)

Γ(−s+ n)

∼ (−1)n

(−s)n

(1.13.8)

The only other ingredient required is the factor CnC
′
n which is obtained from (1.12.10) and

(1.5.15) to be

CnC
′
n ∼

(−1)n

Γ(n+ 1)

Γ(x+ y − n+ 2)

Γ(n4 − n+ 1)Γ(n2 − n+ 1)
(1.13.9)

We then put all the factors and identities together into (1.13.5) and after the dust settles,

we have

gp(z) ∼ z2d+e

min(x,y)∑
n=0

z2n

n!

(−n2)n(−l4)n(−l1)n(−n4)n
(−x)n(−y)n(−x− y − 1)n

× 2F 1(−l2, n− n2;n− x; z)2F 1(−n5, n− l4;n− y; z)

(1.13.10)

Note that we have the relations n1 + n2 = x = l1 + l2 and n4 + n5 = y = l3 + l4 with all of

the l’s and n’s being non-negative integers. We can then take the upper limit of the sum to

be ∞ as all the extra terms in the sum vanish.
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CHAPTER 2

Anomalous Dimensions from Quantum Wilson Lines

We study the self-energy of a gravitating point particle in AdS3, and compare to operator

dimensions in CFT2. In particular, we compute the one and two loop diagram contributions

to the expectation value of an open Wilson line in the SL(2,R)× SL(2,R) Chern-Simons

formulation of AdS3 gravity. This gives the two-point function of CFT primary operators

to second order in a large c expansion, and hence yields the scaling dimension h(j, c) as a

function of the SL(2,R) spin j. Comparison to CFT is made in the context of constructing

Virasoro representations starting from representations of SL(2,R) current algebra. Our Wil-

son line computations follow the framework advanced recently by Fitzpatrick et. al., which

is based on earlier work by H. Verlinde. We encounter some renormalization scheme ambi-

guities at the two-loop level which we are not able to fully resolve, hampering a definitive

comparison with CFT expressions at this order.

2.1 Introduction

In this paper we study the gravitational self-energy of a point particle in AdS3, and in

particular the relation between the energy of the particle when Newton’s constant is vanishing

or finite. Typically, the relation between these energies is not very interesting since it is cutoff

dependent: the self-energy suffers from the classic UV divergence problem, necessitating a

short distance cutoff, and there is no universal relation between the bare and renormalized

energies. However, for a particle in AdS3 the situation appears to be more favorable, as we

now discuss.

The Hilbert space of a particle coupled to gravity in AdS3 corresponds, via the AdS3/CFT2
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duality, to a representation of the Virasoro algebra. The lowest allowed energy of the

particle maps to the dimension of the primary operator which labels the representation,

E0 = h+ h− c
12

. We will use the well-known fact [14], reviewed below, that representations

of the Virasoro algebra can be obtained by starting from SL(2,R) current algebra and im-

posing constraints on the currents. Starting from an SL(2,R) primary of spin-j, one thereby

obtains a Virasoro primary of dimension h(j, c), which depends on j and the central charge

c. The formula can be written as

h(j, c) = −j +
m+ 1

m
j(j + 1) , c = 1− 6

m(m+ 1)
. (2.1.1)

Recalling the Brown-Henneaux formula [19], c = 3l/2GN , sending GN → 0 corresponds to

c→∞, which can be accomplished by taking m→ −1. h(j, c) admits an expansion in 1/c,

h(j, c) = −j − 6

c
j(j + 1)− 78

c2
j(j + 1) + . . . . (2.1.2)

We aim to give the subleading terms an interpretation in terms of gravitational self-energy.1

The relation between the SL(2,R) current algebra and the Virasoro algebra has an ana-

log on the AdS3 side that is also well known; see [12] for a review. Starting from SL(2,R)×
SL(2,R) Chern-Simons theory, which is equivalent [1, 78] (in perturbation theory) to three-

dimensional Einstein gravity with a negative cosmological constant, imposing the boundary

conditions that imply asymptotic AdS3-ness has the effect of implementing the aforemen-

tioned reduction of the symmetry algebra. Our particle is described by a Wilson line in the

spin-j representation of SL(2,R). An open Wilson line with endpoints on the AdS boundary

computes a boundary two-point function, from which the dimension h(j, c) can be deduced,

and hence our task is to compute such a Wilson line perturbatively in 1/c. Wilson lines in

the context of AdS3/CFT2 duality first appeared in [8,30] as a tool to compute entanglement

entropy in higher spin theories.

Our setup is motivated by ongoing work [5, 17, 29, 41, 45, 46, 52, 58, 60] on the bulk inter-

pretation of conformal blocks in two-dimensional CFTs, which is in turn aimed at gaining

1In much of this paper we will take 2j to be a positive integer corresponding to a finite dimensional non-
unitary representation of SL(2,R). This of course yields a negative “bare” energy. However, we stress that
our analysis carries over immediately to j-values corresponding to positive energy unitary representations,
as we discuss later.
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insight into the emergence of local bulk physics — and its ultimate breakdown — starting

from CFT. In particular, conformal blocks were given a bulk formulation in terms of particle

worldlines in [4–7,22,26,28,43,45,46,51,58–60]. A Wilson line version of these constructions

in the large c limit, with generalizations to higher spin theories, was given in [15,17,29,56].

The fully quantum version incorporating 1/c corrections appears in [42]. We should also

note that the main features of these Wilson line constructions already appeared long ago

in [77], building on the famous connection between Chern-Simons theory and CFT developed

in [79], albeit at a somewhat formal level that did not take into account such issues as UV

divergences. This early work is reviewed in the modern AdS/CFT context in [42].

Figure 2.1: Wilson line diagrams to order 1/c2

We compute a Wilson line two-point function to the first two subleading orders in the

1/c expansion, corresponding to the diagrams shown in figure 2.1.2 These diagrams are

Figure 2.2: Graviton self energy

UV divergent, as expected. The proper treatment of these divergences is not completely

straightforward, as we are not starting from the standard framework of a local Lagrangian

to which we can add counterterms, and this gives rise to some ambiguities. At order 1/c

2The graviton self-energy diagrams in figure 2.2 are implicitly taken into account, as will become clear.
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simply removing power law divergences yields the first correction in (2.1.2). At order 1/c2

the two loop diagrams include contributions that can be unambiguously associated to the

exponentiation of the order 1/c result, but ambiguity arises in trying to deduce the 1/c2

correction to h(j, c), essentially due to the need to remove a divergent term of the same

form as the finite term we are after. It seems likely that to resolve this ambiguity one needs

to study in more detail how the Virasoro generators act in this setup and require that the

symmetry is being implemented consistently.

2.2 CFT results

We begin by reviewing how imposing constraints on SL(2,R) current algebra representations

yields representations of Virasoro [14]. The SL(2,R) current algebra at level k is

Ja(z)J b(0) ∼ (k/2)ηab

z2
+
iεabcJ

c(0)

z
(2.2.1)

Here ηab = (1, 1,−1) and ε123 = 1. We also define J± = J1 ± iJ2. The stress tensor is given

via the Sugawara construction

TSL(2) =
1

k − 2
ηabJ

aJ b (2.2.2)

Its modes obey a Virasoro algebra with central charge

cSL(2) =
3k

k − 2
(2.2.3)

Current algebra primaries sit in representations of SL(2,R), as labelled by the quadratic

Casimir C2 = ηabJ
aJ b and the J3 eigenvalue. For ease of comparison with our later formulas

it turns out to be convenient to focus on representations with J3 bounded from below, and

to define j as the negative of the smallest value of J3 in the representation, so that the

quadratic Casimir is C2 = −j(j + 1). In this notation, taking 2j to be a positive integer

yields a finite dimensional, non-unitary, representation of SL(2,R). The scaling dimension of

a spin-j primary is

hSL(2)[Φj] = −j(j + 1)

k − 2
(2.2.4)
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The reduction to Virasoro proceeds by imposing the constraints J−(z) = k and J0(z) = 0.

For conformal invariance to be compatible with the J− constraint the stress tensor needs

to be modified so that J−(z) acquires vanishing scaling dimension. This is accomplished by

adding to the stress tensor a term proportional to ∂J3(z). Also, ghosts are introduced so

that the constraints can be implemented by a BRST construction. The full stress tensor is

then

T = TSL(2) + ∂J3 + Tgh (2.2.5)

with central charge

c =
3k

k − 2
+ 6k − 2 (2.2.6)

with the −2 coming from the ghosts. The improvement term yields a contribution J3 to

the dimension of the original current algebra primaries, so the dimension of the Virasoro

primary is

h[Φj] = −j − j(j + 1)

k − 2
(2.2.7)

since J3 = −j yields the lowest dimension operator. It is convenient to write the central

charge in the standard minimal model parametrization

c = 1− 6

m(m+ 1)
, k =

m+ 2

m+ 1
, (2.2.8)

so that

h(j, c) ≡ h[Φj] = −j +
m+ 1

m
j(j + 1) (2.2.9)

To put this in context, recall that the dimensions of the Kac degenerate representations

are

hr,s =

(
r(m+ 1)− sm

)2 − 1

4m(m+ 1)
. (2.2.10)

We have

h(j, c) = hr,s , r = 2j + 1 , s = 1 . (2.2.11)

Of interest to us is the large c limit obtained by taking m→ −1, which yields

h(j, c)] = −j − 6j(j + 1)

c
− 78j(j + 1)

c2
+ . . . . (2.2.12)
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The alternative case m → 0 is commented on below. As we have discussed, we expect

the terms appearing in the expansion (2.2.12) to correspond, in the bulk, to perturbative

gravitational self energy diagrams.

2.3 Bulk side: preliminary comments

The 1/c expansion on the CFT side maps to an expansion in the 3d Newton constant G, so

we can hope to recover (2.2.12) by gravitational perturbation theory in AdS3. The Brown-

Henneaux formula c = 3l/2G relates the expansions.3

Let us first give a heuristic explanation for the part of (2.2.12) which is due to classical

self-energy. We consider a spinless point particle of mass ml = 2h� 1. In higher than three

dimensions, as soon as gravity is turned on the particle would collapse into a black hole,

but in three dimensions and for sufficiently light particles one instead gets a conical defect

solution. In the absence of a cosmological constant, a particle of mass m yields a solution

described by Minkowski space with a wedge of angle ∆φ = 8πGm cut out [32]. Let us now

think of placing this particle in AdS3. We do so while keeping m fixed, meaning that we hold

fixed the deficit angle computed by examining the geometry in the immediate neighborhood

of the solution. Now, a conical defect solution in AdS3 takes the form

ds2 = −(r2 − 8GMl2)dt2 +
l2dr2

r2 − 8GMl2
+ r2dφ2 (2.3.1)

where φ ∼= φ + 2π. Here M is the total energy measured at the asymptotic AdS boundary,

with M < 0 for a conical defect. By rescaling coordinates, this metric can be written

in standard form ds2 = −(r2 + l2)dt2 + l2dr2/(r2 + l2) + r2dφ but with an angle ∆φ =

2π(1−
√
−8GM) cut out. Equating our two expressions for ∆φ yields the relation between

the “bare” mass m and the physical energy M ,

M = − 1

8G
+m− 2Gm2 . (2.3.2)

3More precisely, we should recall that the Brown-Henneaux formula is a classical result in Einstein gravity.
In the presence of higher derivative terms it is replaced by the Wald-like formula [65,75] c = l

2Ggµν
δL
δRµν

.
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Writing Ml = − c
12

+ 2h, ml = −2j, and using the Brown-Henneaux formula, this becomes

h = −j − 6j2

c
. (2.3.3)

The j2/c contribution matches (2.2.12). To capture the j/c term we need to go beyond

treating the particle as having a definite position and include the effect of its finite size

quantum wavefunction, which is suppressed for j � 1. This effect is incorporated in the

perturbative treatment given below.

Before turning to that analysis let us return to (2.2.9) and now expand around m→ 0,

h(j, c) = −j(j + 1)

6
c− j +

13j(j + 1)

6
+

6j(j + 1)

c
+ . . . . (2.3.4)

This result was given a nice bulk interpretation in [73]; to compare, set j = (s−1)/2 and write

L0 = h(j, c) − c
24

= − s2c
24

+ (13s+1)(s−1)
24

+ . . .. These states correspond to classical solutions

with conical excess angle 2π(s − 1). The O(c0) contribution comes from quantizing the

solutions using the method of coadjoint orbits. For s a positive integer these representations

correspond to the degenerate h1,s representations of the Virasoro algebra, examined at large

c.

2.4 Perturbative self-energy computation

2.4.1 Chern-Simons formulation, and correlators from Wilson lines

The Chern-Simons formulation of 3d gravity is perfectly adapted to our problem, since the

above procedure of going from SL(2,R) current algebra to Virasoro has a precise counterpart

in terms of imposing boundary conditions on the connection in SL(2,R)× SL(2,R) Chern-

Simons theory. In the bulk, the Virasoro symmetry arises as the symmetry algebra preserving

the asymptotic boundary conditions. We will not review the details of this, as it is well

described in many references, e.g. [12]. We just note the following. AdS3 in the form

ds2 = dρ2 + e2ρdzdz is represented by the connection A = L0dρ + eρL1dz, along with a

similar expression for the second SL(2,R) factor which we henceforth suppress. Here Ln are

standard SL(2,R) generators obeying [Lm, Ln] = (m − n)Lm+n. More generally, a metric
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with boundary stress tensor T (z) is represented by A = L0dρ+ (L1 + 6
c
T (z)e−ρL−1)dz. The

ρ dependence can be removed by a gauge transformation by eln(ρ)L0 , allowing us to work

with the reduced connection

a =
(
L1 +

6

c
T (z)L−1

)
dz . (2.4.1)

Given a connection of the above form, the rule for computing correlators is extremely

simple. More precisely, we focus here on the conformal blocks, and in particular just the

holomorphic half of the conformal block. Each operator in the CFT corresponds to some

spin-j representation of SL(2,R).

In the large c limit the rule for computing conformal blocks is as follows [15, 17]. We

set T (z) = 0 corresponding to the vacuum state. Each primary operator is represented

by its corresponding highest weight SL(2,R) state |jiji〉. We then attach a Wilson line

Wji [zi, zb] = Pe
∫ zb
zi
a

directed from the operator location to some arbitrary location zb. At zb

there resides a singlet state 〈S| in the tensor product of the representations of the primary

operators. The large c conformal block is then simply

G(z1, j1; z2, j2; . . . zn, jn) = 〈S|
n∏
i=1

Wji [zi, zb]|jiji〉 . (2.4.2)

This expression satisfies two basic properties. First, it is independent of the choice of zb, as

moving zb is easily seen to be realized by a gauge transformation, which acts trivially on the

singlet state. Second, gauge invariance implies that it transforms as it should under conformal

transformations. We also remark that there are in general multiple ways to construct singlet

states out of the representations hosted by the primary operators, and this corresponds to

the space of conformal blocks. A full fledged correlation function is constructed by combining

holomorphic and anti-holomorphic conformal blocks in a manner compatible with crossing

symmetry.

The above large c construction yields the global conformal blocks, in which exchanged

operators fill out representations of the global conformal group SL(2,R). These conformal

blocks can be viewed as the large c limit of Virasoro blocks, which are much richer objects.

From the bulk point of view, the Virasoro blocks capture the effect of gravitational interac-

tions, including both classical and quantum effects. Indeed, at finite c the Virasoro blocks
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in some sense contain non-perturbative quantum gravity effects [43, 66], and indeed this is

the main motivation for trying to formulate them in bulk terms.

At finite c the same construction (2.4.2) applies, at least formally, except now we should

integrate over all connections compatible with asymptotically AdS boundary conditions,

G(z1, j1; z2, j2; . . . zn, jn) =

∫
DAµe

−SCS(A)〈S|
n∏
i=1

Wji [zi, zb]|jiji〉 . (2.4.3)

Rather than performing the explicit path integral we can follow [42] and take the point of

view that the effect is simply to produce correlation functions of the stress tensor appearing

in (2.4.1). That is, we expand the path ordered exponentials in powers of T (z), and then

replace a string of T (z) operators by the corresponding vacuum correlator, recalling that

these are uniquely fixed by Virasoro symmetry. At a formal level this recipe is justified [77]

on the grounds that the objects it produces satisfy the Virasoro Ward identities, and some

explicit checks of the 1/c expansions applied to four-point blocks were carried out in [42].

We focus here on a two-point function since our goal is to compute scaling dimensions.

To get a nonzero result the two representations appearing in (2.4.2) should be conjugates

of each other, in order that their product contain a singlet. We then simplify by using the

freedom to choose zb to place zb coincident with one of our operator insertions. The result

is that the two-point function is

Gj(z1, z2) = 〈j,−j|Wj[z1, z2]|jj〉 . (2.4.4)

As already mentioned, we are taking j to be a non-negative integer, so that we have a finite

dimensional representation with states |jm〉, m = −j,−j+1, . . . j, but this is essentially just

for notational convenience. Using the prescription of [42], the same functional j dependence

arises order by order in perturbation theory for the infinite dimensional representations.

More explicitly, we have the following

Gj(z1, z2) = 〈j,−j|Pe
∫ z2
z1

a(y)dy|jj〉 =
∞∑
n=0

∫ z2

z1

dyn

∫ yn

z1

dyn−1 . . .

∫ y2

z1

dy1〈j,−j|a(yn) . . . a(y1)|jj〉 ,

(2.4.5)

with a given in (2.4.1) and where each string of stress tensors is replaced by its vacuum

correlator.
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If the CFT operator has a definite scaling dimension the result should take the form

Gj(z1, z2) = Cz
−2h(j,c)
21 , zij = zi − zj. (2.4.6)

In the 1/c expansion we write

h(j, c) =
∞∑
n=0

hn(j)

cn
, (2.4.7)

so that

Gj(z1, z2) = Cz
−2h0(j)
21

(
1− 2h1(j)

c
ln z21 −

2h2(j)

c2
ln z21 +

2h1(j)2

c2
(ln z21)2 + . . .

)
. (2.4.8)

The overall constant C will itself have a 1/c expansion. Based on our CFT discussion, we

expect the results,

h0(j) = −j , h1(j) = −6j(j + 1) , h2(j) = −78j(j + 1). (2.4.9)

Our explicit computation of Gj(z1, z2) will encounter UV divergences due to the collision

of stress tensor insertions on the Wilson line. In the analogous computation of four-point

conformal blocks in [42] a normal ordering prescription was adopted such that there were no

contractions between any pair of stress tensors on the same Wilson line. That is of course

not an option here, since we just have a single Wilson line and the entire result comes from

such contractions.

2.5 Computation of the two-point function

2.5.1 Expansion in T (z)

We now perform a simple transformation so that we can expand the Wilson line in powers

of T (z) rather than a(z). Starting from

W [z1, z2] = Pe
∫ z2
z1

(
L1+ 6

c
T (y)L−1

)
dy

(2.5.1)

we define V [z1, z2] = e−L1z21W [z1, z2] which obeys

d

dz2

V [z1, z2] = e−L1z21
6

c
T (z2)L−1e

L1z21V [z1, z2] (2.5.2)

=
6

c
(L−1 − 2z21L0 + z2

21L1)T (z2)V [z1, z2] . (2.5.3)
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Solving this by a path ordered exponential then yields

W [z1, z2] = eL1z21Pe
6
c

∫ z2
z1

(L−1−2(y−z1)L0+(y−z1)2L1)T (y)dy
. (2.5.4)

To implement the 1/c expansion we now just need to expand the second exponential factor.

To streamline our expressions we now set

z2 = z , z1 = 0 (2.5.5)

so that z21 = z.

2.5.2 Order c0

At leading order we have simply

G(0)(z) = 〈j,−j|eL1z|jj〉 ∼ z2j , (2.5.6)

so that h0(j) = −j as expected.

2.5.3 Order 1/c

Since 〈0|T (z)|0〉 = 0 the first nontrivial correction comes from expanding the second expo-

nential factor in (2.5.4) to second order, yielding

G(1)(z) =
62

c2

∫ z

0

dy1

∫ y1

0

dy2〈j,−j|eL1z(L−1−2y1L0+y2
1L1)(L−1−2y2L0+y2

2L1)|jj〉〈T (y1)T (y2)〉
(2.5.7)

The SL(2,R) matrix element is easily computed by the following strategy, which extends to

more complicated higher order cases. Use the commutation relations to put the generators

in the normal order (L1)n1(L0)n0(L−1)n−1 . Using L−1|jj〉 = 0 and L0|jj〉 = j|jj〉 we are left

with only L1 insertions, and only the power (L1)2j has a nonzero matrix element. This gives

〈j,−j|eL1z(L−1 − 2y1L0 + y2
1L1)(L−1 − 2y2L0 + y2

2L1)|jj〉 (2.5.8)

= 〈j,−j|eL1z|jj〉2jy2(z − y1)
(
2jy1(z − y2)− y2(z − y1)

)
z2

(2.5.9)

As for the stress tensor correlator, we have the usual expression

〈T (y1)T (y2)〉 =
c/2

(y1 − y2)4
. (2.5.10)
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Note that c is the full central charge; this is why the self-energy diagrams of figure 2.2)

is implicitly included. The integral in (2.5.7) diverges when y2 → y1 and needs to be

regulated. Our strategy will be as follows. In general, stress tensor correlators will be built

out of products of factors of the form 1/(yi − yj)
2, and we regulate these by making the

replacement
1

(yi − yj)2
→ 1

(yi − yj)2 + ε2
, (2.5.11)

so in particular we now take

〈T (y1)T (y2)〉 =
c/2(

(y1 − y2)2 + ε2
)2 . (2.5.12)

One way to motivate this is to express the stress tensor in terms of c free bosons, T (z) =∑
i ∂φi(z)∂φi(z). Stress tensor correlators are then obtained by Wick’s theorem. If we

regulate the basic two-point function as 〈∂φ(z)∂φ(0)〉 = 1/(z2 + ε2) then we recover the

above procedure. The advantage of this regulator is that it is computationally tractable.

On the other hand, introducing a nonzero ε of course breaks conformal invariance, and it

is not immediately obvious how to subtract divergences such that conformal invariance is

recovered as ε→ 0.

We now compute

G(1)(z) = 〈j,−j|eL1z|jj〉36j

c

∫ z

0

dy1

∫ y1

0

dy2

y2(z − y1)
(
2jy1(z − y2)− y2(z − y1)

)
z2
(
(y1 − y2)2 + ε2

)2

= 〈j,−j|eL1z|jj〉36j

c

[
(2j − 1)πz3

120ε3
+

z2

12ε2
− (j + 1)πz

12ε
+
j + 1

3
ln
z

ε
+

2j − 1

18
+O(ε)

]
(2.5.13)

We now perform a “minimal subtraction” and simply remove the divergent terms and then

set ε = 0, even though there is no clear relation at this stage to adding local counterterms

to an underlying action. This gives

G(1)(z) = 〈j,−j|eL1z|jj〉
[2j(2j − 1)

c
+

12j(j + 1)

c
ln z
]
. (2.5.14)

Combining this with the order c0 contribution, we have

G(0)(z) +G(1) = Cz2j
[
1 +

12j(j + 1)

c
ln z +O(

1

c2
)
]
, (2.5.15)

from which we read off h1(j) = −6j(j + 1) in perfect agreement with (2.4.9).
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2.5.4 Order 1/c2

At this order there are four contributing diagrams. One diagram comes from expanding the

exponential in (2.5.4) to third order and using 〈T (y1)T (y2)T (y3)〉 ∼ c. However we can also

expand (2.5.4) to fourth order and use the fact that 〈T (y1)T (y2)T (y3)T (y4)〉 has order c2

contributions, which can be thought of as the disconnected diagrams. There are three such

disconnected diagrams. The four contributing diagrams are shown in figure 2.3.

Figure 2.3: Diagrams contributing at order 1/c2, with stress tensor insertions on the Wilson

line as indicated.

We evaluated these four diagrams using the approach described in the appendix. As in

the above, we renormalize by dropping divergent terms.

2.5.4.1 G
(2)
123(z)

Here we use the regulated three-point function

〈T (y1)T (y2)T (y3)〉 =
c

[(y1 − y2)2 + ε2][(y2 − y3)2 + ε2][(y3 − y1)2 + ε2]
(2.5.16)

The result is

G
(2)
123(z)

〈j,−j|eL1z|jj〉 =
[
− 168j(j + 1)− 144j3

c2
ln z − 144j(j + 1)

c2
(ln z)2

]
. (2.5.17)

2.5.4.2 G
(2)
12;34(z)

We use

〈T (y1)T (y2)T (y3)T (y4)〉
∣∣
12;34

=
c2/4

[(y1 − y2)2 + ε2]2[(y3 − y4)2 + ε2]2
, (2.5.18)
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which yields

G
(2)
12;34(z)

〈j,−j|eL1z|jj〉 =
[ 1

c2

(
72

5
j − 264j2 +

384

5
j3 +

1776

5
j4

)
ln z +

144j2(j + 1)2

c2
(ln z)2

]
.

(2.5.19)

2.5.4.3 G
(2)
14;23(z)

We use

〈T (y1)T (y2)T (y3)T (y4)〉
∣∣
14;23

=
c2/4

[(y1 − y4)2 + ε2]2[(y2 − y3)2 + ε2]2
, (2.5.20)

which yields

G
(2)
14;23(z)

〈j,−j|eL1z|jj〉 =
[ 1

c2

(
−324

5
j − 492

5
j2 +

1824

5
j3 +

1992

5
j4

)
ln z +

72j2(j + 1)2

c2
(ln z)2

]
.

(2.5.21)

2.5.4.4 G
(2)
13;24(z)

We use

〈T (y1)T (y2)T (y3)T (y4)〉
∣∣
13;24

=
c2/4

[(y1 − y3)2 + ε2]2[(y2 − y4)2 + ε2]2
, (2.5.22)

which yields

G
(2)
13;24(z)

〈j,−j|eL1z|jj〉 =
[ 1

c2

(
396

5
j +

1908

5
j2 − 2736

5
j3 − 3528

5
j4

)
ln z+

1

c2

(
144j − 288j3 − 144j4

)
(ln z)2

]
.

(2.5.23)

2.5.4.5 Complete result at order 1/c2

We now combine all of our results for the complete correlator up to this order. The result is

G(z) = G(0)(z) +G(1)(z) +G(2)(z) + . . .

= Cz2j

[
1 +

12j(j + 1)

c
ln z +

24(3j − 29)j(j + 1)

5c2
ln z +

72j2(j + 1)2

c2
(ln z)2 +O

(
1

c3

)]
(2.5.24)
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Note that the 2j(2j−1)/c term in (2.5.14) contributed to this, since we have set the leading

term in [. . .] to be 1 by absorbing the overall constant factor into C.

Comparing with expectations, we see that the (ln z)2 term is in agreement with (2.4.8),

so that the result to this order takes the form of a single power of z. This is quite nontrivial

from the diagrammatic point of view, as there are (ln z)2 contributions from all four of the

1/c2 diagrams which must all combine together to give the correct coefficient. On the other

hand, the 1
c2

ln z term does not have the expected coefficient −2h2(j)/c2 = 156j(j + 1)/c2.

We now make a few comments about this result. A feature that emerges at order 1/c2

but which is absent at order 1/c is the appearance of divergent terms of the form 1
c2εn

ln z.

If we take the general point of view that when removing a divergence we can also subtract

a finite term with the same z dependence, then this renders the coefficient of the 1
c2

ln z

term ambiguous. By contrast, the absence of divergences of the form 1
cεn

ln z and 1
c2εn

(ln z)2

suggests that the coefficients of the terms 1
c

ln z and 1
c2

(ln z)2 are unambiguous, and indeed

these coefficients precisely match expectations. Of course, what this emphasizes is the need

for a more systematic renormalization approach. On the other hand, we again note the

fact that our result to this order takes the form of a single power law in z, suggesting that

conformal invariance is being respected by our procedure.

2.6 Discussion

We have computed the expectation value of an open Wilson line to order 1/c2. From this

result we read off the scaling dimension of the corresponding primary operator and compared

it to expectations from CFT considerations. This revealed partial agreement with CFT

predictions as well as some unresolved issues. The order 1/c result was as expected, and

furthermore we found that at order 1/c2 the result takes the form of a single power law,

as dictated by conformal invariance. On the other hand, the order 1/c2 contribution to the

scaling dimension is at odds with our expectations. More accurately, the result is ambiguous

within the framework of our computation, as the desired coefficient of a 1
c2

ln z term is

“corrupted” by the presence of 1
εnc2

ln z UV divergences requiring renormalization. This
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clearly points to the need for a more principled renormalization scheme.

There are of course other ways to regulate the stress tensor correlators. For example,

instead of making the replacement in (2.5.11) we can implement a simple version of dimen-

sional regularization. In particular, we can replace the exponent 2 in the denominator with

(2 − ε), taking ε to be sufficiently positive so that the integrals converge, and then analyt-

ically continue the result to ε near 0. After a minimal subtraction of pole terms, the 1/c

contribution we find is still in agreement with (2.4.9) but the 1/c2 contribution is not.

It is worth contrasting what we have found here with what one encounters in the com-

putation of closed Wilson loops in ordinary Chern-Simons theory, which yield topological

invariants [79]. The leading order contribution comes from a gluon exchanged between two

points on the Wilson loop. This leads to an integral which is UV finite, but the result is not

a topological invariant. To rectify this one needs to introduce a “framing”, corresponding

to displacing the worldines on which the two gluons are inserted. The result is a topological

invariant that depends on the choice of framing [50,79].

Our primary operators are labelled by an SL(2,R) spin j, which from the CFT side

comes from constructing Virasoro representations by applying constraints to SL(2,R) current

algebra representations. An SL(2,R) spin-j also naturally appears in the bulk, via the

formulation of gravity in terms of SL(2,R) Chern-Simons theory, and it therefore seems

meaningful to compare scaling dimensions in the two descriptions as a function of j and the

central charge c. On the other hand, strictly from the Virasoro point of view, j is simply

a label, so one might wonder if there is perhaps some c dependent relation between the

j labels in the two descriptions. To address this we note that degenerate representations

correspond to 2j being a positive integer, which precludes such a c dependent relation for

such representations. This is to say that we certainly expect to be able to meaningfully

compare the scaling dimensions of degenerate representations on the two sides as a function

of c. Of course, these scaling dimensions are entirely fixed by Virasoro representation theory,

but we do not want to use this, as the entire point here is to develop computational rules in

the bulk that will apply more generally.
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We have tried to extract scaling dimensions from two-point functions, but another ap-

proach is to adopt canonical quantization [37]. In particular, we can consider a single parti-

cle, associated to a spin-j representation of SL(2,R), coupled in a gauge invariant fashion to

SL(2,R) Chern-Simons gauge fields. One should be able to realize the Virasoro generators

on this Hilbert space, and demanding that the algebra is realized consistently may resolve

the ambiguities associated with renormalizing UV divergences. We hope to report on this in

the near future.

Appendices

2.7 Evaluation of integrals

We encounter nested integrals of the form

I(z) =

∫ z

0

dy1

∫ y1

0

dy2 . . .

∫ yn−1

0

dyn
P (z, yi)∏

i<j[(yi − yj)2 + ε2]nij
, (2.7.1)

where P (z, yi) is a polynomial and nij are non-negative integers.

We first rewrite this in terms of unconstrained integrals by introducing step functions,∫ z

0

dy1

∫ y1

0

dy2 . . .

∫ yn−1

0

dyn →
∫
dny θ(z − y1)θ(y1 − y2) . . . θ(yn−1 − yn)θ(yn) , (2.7.2)

and use the Fourier representation

θ(y) =

∫
dp

2πi

eipy

p− iδ , δ > 0 . (2.7.3)

We also write the denominator factors in momentum space using

1

y2 + ε2
=

1

2ε

∫ ∞
−∞

dkeiky−|k|ε . (2.7.4)

The y-integrals can then be carried out, yielding n delta functions involving p and k. These

delta functions soak up all but one of the p integrals, and the remaining p integral can be

done by computing residues. This leaves some k-integrals, where the integrand is a sum

of terms taking the form of exponentials time rational functions. Some of the denominator
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factors can be removed by differentiating with respect to z, and the other by using relations

like
1

k1 − k2

= − i
2

∫ ∞
−∞

du sgn(u)ei(k1−k2)u . (2.7.5)

The k integrals are then carried out, followed by the u integrals. The result is then expanded

for small ε, and we finally integrate to undo the earlier z differentiation. Due to the last step,

this procedure will only determine the result up to a polynomial in z. However, if desired,

this polynomial can easily be determined by directly studing the small z expansion of the

original integral.

We present a representative example to make the procedure concrete,

I3(z) =

∫ z

0

dy1

∫ y1

0

dy2

∫ y2

0

dy3
1

(y1 − y2)2 + ε2
1

(y1 − y3)2 + ε2
1

(y2 − y3)2 + ε2
. (2.7.6)

Proceeding as above, we have

I3(z) =
1

8ε3

∫
d4pd3k

(2πi)4

e−|k1|ε−|k2|ε−|k3|ε

(p1 − iδ)(p2 − iδ)(p3 − iδ)(p4 − iδ)

×
∫
d3yeip1(z−y1)+ip2y12+ip3y23+ip4y3+ik1y12+ik2y23+ik3y31

=
i

8ε3

∫
dp1d

3k

2πi

e−|k1|ε−|k2|ε−|k3ε

(p1 − iδ)2(p1 − k1 + k3 − iδ)(p1 − k2 + k3 − iδ)
eip1z

=
i

8ε3

∫
d3ke−|k1|ε−|k2|ε−|k3|ε

[
ei(k1−k3)z

(k1 − k3)2(k1 − k2)
− ei(k2−k3)z

(k2 − k3)2(k1 − k2)

+
(k1k2 + k2

3 − k1k3 − k2k3)z + k1 + k2 − 2k3

(k1 − k3)2(k2 − k3)2

]
(2.7.7)

In getting to the final expression we performed the p1 integral by residues, but discarded the

contribution from the pole at p1 = iδ, since this will only contribute a degree 1 polynomial

in z that will anyway be killed by the derivatives that we will apply in the next step. On

the other hand, convergence of the k integrals in the above undifferentiated expression does

require the presence of this polynomial part, as it is needed to render the integrand finite at

the locations where the denominator factors vanish.
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We now differentiate twice to get

∂2I3

∂z2
= − i

8ε3

∫
d3ke−|k1|ε−|k2|ε−|k3|εe−ik3z

eik1z − eik2z
k1 − k2

= − i

4ε2
1

z2 + ε2

∫
d2ke−|k1|ε−|k2|ε

eik1z − eik2z
k1 − k2

(2.7.8)

Using (2.7.5) gives

∂2I3

∂z2
= − 1

8ε2
1

z2 + ε2

∫ ∞
−∞

du sgn(u)

∫
d2kei(k1−k2)ue−|k1|ε−|k2|ε

(
eik1z − eik2z

)
=

2z

z2 + ε2

∫ ∞
−∞

du sgn(u)
u

(u2 + ε2)[(u+ z)2 + ε2][(u− z)2 + ε2]

= 2
tan−1

(
z
ε

)
+ ε

z
ln
(

1 + z2

ε2

)
ε(z2 + ε2)(z2 + 4ε2)

=
π

εz4
+

4

z5
ln
z

ε
− 2

z5
+O(ε) (2.7.9)

and so we arrive at

I3(z) =
π

6εz2
+

1

3z3
ln
z

ε
+

1

36z3
+O(ε) , (2.7.10)

where we fixed the integration constants by examining the original integral.

All of our integrals can be worked out this way. This somewhat circuitous procedure has

the advantage that it can easily be automated.
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CHAPTER 3

Renormalization of Gravitational Wilson Lines

We continue the study of the Wilson line representation of conformal blocks in two-dimensional

conformal field theory; these have an alternative interpretation as gravitational Wilson lines

in the context of the AdS3/CFT2 correspondence. The gravitational Wilson line involves a

path-ordered exponential of the stress tensor, and its expectation value can be computed

perturbatively in an expansion in inverse powers of the central charge c. The short-distance

singularities which occur in the associated stress tensor correlators require systematic regular-

ization and renormalization prescriptions, whose consistency with conformal Ward identities

presents a subtle problem. The regularization used here combines dimensional regularization

and analytic continuation. Representation theoretic arguments, based on SL(2,R) current

algebra, predict an exact result for the Wilson line anomalous dimension and, by building

on previous work, we verify that the perturbative calculations using our regularization and

renormalization prescriptions reproduce the exact result to order 1/c3 included. We also

discuss a related, but somewhat simpler, Wilson line in Wess-Zumino-Witten models that

yields current algebra conformal blocks, and we emphasize the distinction between Wilson

lines constructed out of non-holomorphic and purely holomorphic currents.

3.1 Introduction

Wilson lines and Wilson loops are obtained by the path-ordered exponential integral of a

connection respectively along an open interval and a closed contour. In gauge theory, the

connection is the canonical gauge field and the resulting Wilson loop operator is a gauge-

invariant observable with applications to elucidating the phases of gauge theory and beyond.

61



A different type of Wilson line operator has recently found use in two-dimensional conformal

field theory; in this case the connection is a composite field involving the stress tensor of

the CFT. What this object yields is a conformal block associated with a pair of primary

operators, one at each endpoint of the Wilson line. Actually, the two types of Wilson

lines just mentioned are closely related objects if viewed in the context of the AdS/CFT

correspondence: the CFT Wilson line is the boundary image of a bulk Wilson line, and

for this reason we often refer to it as a gravitational Wilson line, although it exists as an

object in CFT independent of the AdS/CFT correspondence. In this paper we continue the

study of these Wilson lines, focussing in particular on their status as well defined quantum

mechanical operators. Their renormalization poses a rather subtle and nonstandard problem

which we aim to understand better.

The general connection between Wilson lines in three dimensions and conformal field

theory in two dimensions arose in [79], and the relation to the Virasoro algebra appeared

in [77]. More recently, Wilson lines arose in the context of the AdS3/CFT2 correspondence,

first as a tool for computing entanglement entropy in higher spin theories [8, 30], and then

in the more general context of computing conformal blocks [15, 17]. Quantum aspects of

these Wilson lines have been studied in [11,16,42,61–63]. The related representation of CFT

conformal blocks and OPE structures in terms of AdS appeared in [59] and in [28]. We also

note that the notion of integrating the stress tensor over a contour arises in the context of

the averaged null energy condition (proven in flat space in [39, 53]), and the related notion

of a “length operator” discussed in [2] has connections to the Wilson line discussed here.

More motivation and details on the form of the Wilson line will be given in the next

section, but for now it suffices to write,

W [z2, z1] = 〈j,−j|P exp

{∫ z2

z1

dz
(
L1 +

6

c
T (z)L−1

)}
|j, j〉. (3.1.1)

Except for the non-holomorphic Wilson line discussed in section 3.4.2 our formulas refer

to a chiral half of a CFT and z denotes the corresponding holomorphic coordinate on the

plane. The shape of the integration contour from z1 to z2 used to define the Wilson line is

inconsequential, except when we introduce a regulator and break conformal invariance, and
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then it is taken to be along the real line. L0 and L±1 are generators of the Lie algebra of

SL(2,R), with the states |j,±j〉 being highest/lowest weight states of a spin j representation,

corresponding to a primary of dimension h = h(j, c), as will be discussed in more detail

below. T (z) is the stress tensor operator, such that W [z2, z1] is supposed to represent

the Virasoro vacuum OPE block corresponding to the bi-local O(z2)O(z1), where O(z) is a

primary operator of dimension h(j, c). That is, W [z2, z1] captures all terms in the O(z2)O(z1)

OPE involving only stress tensors.

The Virasoro vacuum block is a rich object, capturing as it does the effect of an arbitrary

number of stress tensors. Phrased in terms of AdS, it encodes the gravitational interac-

tion [52]. The Wilson line provides an expression for the Virasoro vacuum block in a form

admitting a convenient 1/c expansion, which in the bulk corresponds to an expansion in

Newton’s constant. Our goal here is to understand this perturbative expansion; once that is

under control one can contemplate using the Wilson line to study non-perturbative effects

as well.

The Wilson line as defined in (3.1.1) is a singular object due to the appearance of stress

tensors at coincident points, and thus requires regularization and renormalization [16, 42,

61]. Here we adopt a type of dimensional regularization [61], in which the stress tensor is

taken to have dimension 2− ε. Renormalization of the Wilson line then requires an overall

multiplicative renormalization by a factor N(ε), as well as a vertex renormalization factor

α(ε) multiplying T (z), where both N(ε) and α(ε) depend on the regulator ε as well as on c

and j. This regularization scheme breaks conformal invariance at intermediate stages, and

from the point of view of diagrammatics it is highly nontrivial that conformal invariance is

restored upon renormalization.

The most basic quantity to consider is the Wilson line expectation value itself; given

what we have said, this should take the form of a conformal two-point function,

〈W [z2, z1]〉 ∼ |z2 − z1|−2h(j,c). (3.1.2)

At lowest order in the 1/c expansion one finds h(j, c) = −j, but this value receives corrections

order by order in an expansion in powers of 1/c. There is in fact an expectation for the
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exact answer based on general conformal field theory considerations. The Wilson line, as

we have defined it, is based on a representation of SL(2,R) but once the stress tensors are

included it describes an object in Virasoro representation theory. Hamiltonian reduction

supplies a procedure for constructing a representation of the Virasoro algebra by imposing

a constraint on a corresponding representation of SL(2,R) current algebra. This procedure

has an analog in bulk gravity, where the constraints are precisely those that correspond

to imposing asymptotically AdS boundary conditions. The resulting relation between the

SL(2,R) spin j and the Virasoro dimension h(j, c) is given by, (see e.g. [14]),

h(j, c) = −j +
m+ 1

m
j(j + 1) , c = 1− 6

m(m+ 1)
. (3.1.3)

Expanding h(j, c) in powers of 1/c the first few contributions are given by

h(j, c) = −j − 6

c
j(j + 1)− 78

c2
j(j + 1)− 1230

c3
j(j + 1) +O(c−4) . (3.1.4)

and provide a prediction for the perturbative expansion of the Wilson line expectation value.

One of the main results of this paper is to verify, by explicit calculation, that the procedure

of dimensional regularization and renormalization via the inclusion of the factors N(ε) and

α(ε), does indeed reproduce the dimension formula (3.1.4) to the order indicated, thereby

extending previous results [16,61].

It is also useful to give a bulk gravity perspective on the result (3.1.4) in terms of grav-

itational self-energy. If we take the classical point particle limit, c, j → ∞, with j/c fixed

we can write the result as m = m0 − 2G
`
m2

0. To obtain this we used the Brown-Henneaux

formula c = 3`
2G

, the relation between the mass of a particle in AdS and the corresponding

conformal dimension m` = 2h, and similarly m0` = 2h0 = −2j. The relation between m and

m0 is the same as that obtained from considering the classical gravitational self-energy of a

point particle in AdS [16]. The general formula (3.1.4) can thus be thought of as supplying

quantum corrections to this result. This is interesting, because the gravitational self-energy

is typically ill-defined, or rather sensitive to unknown UV physics, but the situation in three

dimensions appears to be under better control.
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3.1.1 Organization

We now summarize the remainder of this paper. In section 3.2 we review the logic behind

the construction of the gravitational Wilson line. In section 3.3 we discuss the analog of the

gravitational Wilson line for a level k current algebra with conserved current Ja(z) given by

the Wilson line P exp 1
k

∫
JaT a. Here T a denote the generators of the relevant Lie algebra,

and we denote by G the corresponding Lie group. This object yields the current algebra

vacuum OPE block for a bi-local primary operator. Its evaluation poses a similar, but

somewhat simpler, renormalization problem as compared to the stress tensor case. In this

case the 1/k expansion should yield the standard expression for the scaling dimension h of

a current algebra primary in terms of quadratic Casimirs, h = C2(r)/(2k+C2(G)). In order

to better understand the origin of the Wilson line, we study an alternative construction

starting from the WZW model. We consider the bi-local operator g−1(x2)g(x1) constructed

from the basic WZW primary g(x) which lives on the group manifold G. This can be

written identically in terms of a Wilson line for a non-conserved current, Jµ = −kg−1∂µg,

and admits a relatively straightforward perturbative expansion using standard dimensional

regularization (modulo subtleties associated with the appearance of epsilon tensors). What

is not manifest in this approach is why this operator holomorphically factorizes.

In section 3.5 we turn to the gravitational Wilson line. We describe the systematics of

the renormalization procedure and compute the expectation value of the Wilson line with

zero and one additional stress tensor insertions through order 1/c3. Consistency of these two

computations uniquely fixes all renormalization constants and yields an unambiguous answer

for the anomalous dimension, which indeed reproduces the expansion (3.1.4). In section 3.6

we discuss an alternative regularization procedure. Rather than modifying the dimension

of the stress tensor we adopt another method for softening the short distance singularities

arising from collisions of stress tensors. This approach also involves a dimensionless regulator

ε and a priori seems just as sensible as the prior scheme. However, our explicit computations

reveal that conformal invariance is not recovered in this scheme. This serves to highlight the

subtleties involved in renormalizing the Wilson line. We close the paper with some comments
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in section 3.7. Various technical results appear in appendices.

3.2 The gravitational Wilson line operator

Consider a primary operator O(z, z̄) in a two-dimensional CFT. As most of our consider-

ations involve one chiral half of the CFT, we henceforth write O(z). Under a conformal

transformation, z′ = f(z), the bi-local operator O(z2)O(z1) transforms as

O(z′2)O(z′1) =
(
f ′(z2)f ′(z1)

)−h
O(z2)O(z1) , (3.2.1)

which identifies the scaling dimension h of O.

3.2.1 Wilson line covariant under global conformal transformations

We first discuss how to write down a Wilson line whose transformation is given by (3.2.1)

under global conformal transformations, f(z) = (az+b)/(cz+d), which describe an SL(2,R)

subgroup of the full Virasoro symmetry. To this end, let (L−1, L0, L1) be SL(2,R) generators

obeying [Lm, Ln] = (m− n)Lm+n. We then consider the matrix element

W [z2, z1] = 〈h; out|P exp

{∫ z2

z1

dzL1

}
|h; in〉 , (3.2.2)

for suitable in and out states to be defined momentarily.

To see how to implement the conformal transformation, consider the more general path

ordered exponential P exp
∫ z2
z1
a(z), where the connection a(z) = az(z)dz takes values in the

Lie algebra of SL(2,R). Under the action of an arbitrary group element U(z) ∈ SL(2,R),

the connection transforms by U−1(z)a(z)U(z)−U−1(z)dU(z) = aU(z) while the Wilson line

transforms by

U−1(z2)P exp

{∫ z2

z1

a(z)

}
U(z1) = P exp

∫ z2

z1

aU(z) . (3.2.3)

In the present case, a(z) = L1dz. The following transformation leaves a(z) invariant, i.e.

aU(z) = a(z), and hence represents a global conformal transformation

U(z) = eλ1(z)L1eλ0(z)L0eλ−1(z)L−1 (3.2.4)
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with

λ1 = z − f(z) , λ0(z) = − ln(f ′(z)) , λ−1(z) = − f
′′(z)

2f ′(z)
, (3.2.5)

and f(z) = (az + b)/(cz + d) as above. Together with (3.2.3) we then have

W [z2, z1] = 〈h; out|e−λ−1(z2)L−1eln[f ′(z2)]L0P exp
{∫ z′2

z′1

dzL1

}
e− ln[f ′(z1)]L0eλ−1(z1)L−1|h; in〉,(3.2.6)

again with z′ = f(z). We now observe that if the states are taken to obey

L−1|h; in〉 = 0 , L0|h; in〉 = −h|h; in〉
L1|h; out〉 = 0 , L0|h; out〉 = h|h; out〉 , (3.2.7)

then we obtain the desired transformation law

W [z′2, z
′
1] =

(
f ′(z2)f ′(z1)

)−h
W [z2, z1] . (3.2.8)

It will be convenient to write h = −j, since if 2j is a non-negative integer the Ln can be

taken to be a finite dimensional matrix representation of SL(2,R). One can then carry out

computations for such j and at the end set j = −h for h ≥ 0. This is just a computational

shortcut, and the same results are obtained by working with representations with h ≥ 0

throughout. A convenient representation for h ≥ 0 is discussed in appendix 3.8.

With this in mind, our Wilson line is at this stage written as

W [z2, z1] = 〈j,−j|P exp
{∫ z2

z1

dzL1

}
|j, j〉 (3.2.9)

with L0| ± j〉 = ±| ± j〉 and L∓1| ± j〉 = 0. The matrix element is readily evaluated using

the fact that L1 lowers the L0 eigenvalue by one, and we have W [z2, z1] ∼ z2j = z−2h. The

Wilson line (3.2.9) thus gives the coefficient of the identity operator in the OPE expansion

of the two primaries: O(z2)O(z1) ∼ W [z2, z1]+(other operators).

The Wilson line (3.2.9) emerges naturally in the AdS/CFT correspondence when we

describe gravity in the bulk in the Chern-Simons formulation. The AdS metric ds2 =

dρ2 + e2ρdzdz̄ is represented by the pair of connections A = eρL1dz + L0dρ and A =

eρL−1dz̄ − L0dρ. See, e.g. [20]. The Wilson line in the Chern-Simons theory W [z2, z1] =
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〈j,−j|P exp
{ ∫ z2

z1
A
}
|j, j〉 reduces to the Wilson line (3.2.9) upon substituting for A with

the reduced connection a = L1dz, as the ρ dependence can be gauged away.

This “global Wilson line” of (3.2.9) forms the basis of a convenient description of arbitrary

global (i.e SL(2,R)) conformal blocks. Rather than a single Wilson line, one considers a

network with trivalent vertices. Each vertex is represented by a singlet state in the tensor

product of the three representations that enter the vertex. The space of conformal blocks is

in one-to-one correspondence with the space of such networks; see [15, 17].

3.2.2 Wilson line covariant under local conformal transformations

The main point of the preceding subsection was to motivate the form of the Wilson line

that incorporates the stress tensor. It should yield the Virasoro OPE block, which is to say

that it should capture all contributions to the O(z2)O(z1) OPE involving only stress tensors.

One way to motivate the proposal is to repeat the analysis that led to (3.2.8) but now for

an arbitrary local conformal transformation z′ = f(z). In this case, a(z) cannot be left

invariant, but must transform as follows

aU(z) =

(
L1 +

6

c
T (z)L−1

)
dz (3.2.10)

with T (z) given in terms of f(z) by

T (z) =
c

12
Sf (z) , Sf (z) =

f ′′′(z)

f ′(z)
− 3

2

(
f ′′(z)

f ′(z)

)2

, (3.2.11)

where Sf (z) is the Schwarzian derivative. We then obtain

〈j,−j|P exp
{∫ z2

z1

dz
(
L1 +

6

c
T (z)L−1

)}
|j, j〉 =

[f ′(z2)f ′(z1)]h

[f(z2)− f(z1)]2h
, (3.2.12)

where we again have h = −j. In this expression T (z) is the classical function given in (3.2.11),

not the stress tensor operator. However, this result naturally suggests an expression for the

Virasoro vacuum OPE block as the gravitational Wilson line W [z2, z1] given by,

W [z2, z1] ≡ 〈j,−j|P exp
{∫ z2

z1

dz
(
L1 +

6

c
T (z)L−1

)}
|j, j〉 , (3.2.13)

where now T (z) is the stress tensor operator. In particular, suppose we take the expectation

value of W in a CFT state with a classical stress tensor expectation value in the large c limit.
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Such a stress tensor can be generated from T (z) = 0 by some conformal transformation

z′ = f(z). The Wilson line expectation value should then be equal to the primary two-

point function transformed by f(z), and this is precisely what (3.2.12) says. At the level

of correlation functions, the statement that W [z2, z1] is the Virasoro vacuum block is the

statement that it equals O(z2)O(z1) inside any correlation function involving just stress

tensors,

〈O(z2)O(z1)T (z3) . . . T (zn)〉 = 〈W [z2, z1]T (z3) . . . T (zn)〉 . (3.2.14)

See [42] for more discussion and tests of this proposal.

This Wilson line also arises naturally from the bulk Chern-Simons description. The most

general asymptotically AdS3 solution of Einstein’s equations corresponds to the connections

A = (eρL1 +
6

c
e−ρT (z)L−1)dz + L0dρ

A = (eρL−1 +
6

c
e−ρT (z̄)L1)dz − L0dρ (3.2.15)

where the holographic dictionary identifies T (z) and T (z̄) as the components of the dual

CFT stress tensor (e.g. [20]). The Wilson line therefore corresponds to P exp
∫
a where

a = (L1+ 6
c
T (z)L−1)dz is the reduced connection. In the quantum theory we should integrate

over all asymptotically AdS connections weighted by the Chern-Simons action. On general

grounds, this should have the effect of replacing any string of stress tensors by their vacuum

expectation value, and this is precisely what was meant above in saying that T (z) appears

in the Wilson line as an operator.

3.3 Current algebra Wilson lines in the WZW model

Just as the gravitational Wilson line defined in terms of the stress tensor encodes conformal

blocks of the Virasoro algebra, we can define a Wilson line built out of a spin-1 current that

encodes current algebra conformal blocks. The current algebra Wilson line is a somewhat

simpler object, and we also have the useful Lagrangian realization of current algebra in

terms of the WZW model. In this section we explore this current algebra Wilson line from
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several complementary points of view. We first define a holomorphic Wilson line that is

the direct spin-1 analog of our gravitational Wilson line and discuss its renormalization.

We then turn to a non-holomorphic Wilson line, defined by a simple rewriting of a bi-local

primary operator. Its renormalizaton proceeds somewhat differently, but we show that the

anomalous dimensions of the two Wilson lines agree. We finally make some comments about

the connection between these two constructions.

3.3.1 WZW model and current algebra

We first review some background material; see, e.g. [33]. The action of the WZW model is

S[g] =
k

4π

∫
Σ

d2x
√
γγµν Tr′(∂µg

−1∂νg) +
ik

6π

∫
Γ

Tr′(ω)3 (3.3.1)

where the theory lives on the Riemann surface Σ with local coordinates xµ, metric γµν ,

and where γ = det (γµν). The surface Σ is the boundary of a three-manifold Γ. The field

g(x) takes values in a compact Lie group G, and the one-form ω = g−1dg takes values

in the Lie algebra G of G, in an arbitrary finite-dimensional irreducible representation r.

Denoting the structure constants of G by fabc and a basis of Hermitian generators of G in

the representation r of G by T a with a, b, c = 1, · · · , dimG, the structure relations are given

by [T a, T b] =
∑

c ifabcT
c, and we use the normalization for the trace in the representation r

by Tr′(T aT b) = 1
2
δab. With these normalization conventions, the level k is quantized such

that 2k is an integer. We denote by C2(r) the value of the quadratic Casimir operator

C2 =
∑

a T
aT a in representation r. For example, for G = SU(N) and r the defining

representation we have C2(r) = (N2 − 1)/(2N), while in the adjoint representation r = G

we have C2(G) = N .

Invariance of S[g] under global transformations g(x)→ gL g(x) g−1
R with (gL, gR) ∈ G×G

implies the existence of two independent conserved currents, which take the form

Jµ = −k
2

(γµν − iεµν)g−1∂νg , J̄µ = −k
2

(γµν + iεµν)∂νg g
−1 . (3.3.2)

In a system of local complex coordinates xµ = (z, z̄), the metric on Σ takes the form

γµνdx
µdxν = dzdz̄ and the non-vanishing components of γµν and of the anti-symmetric
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tensor εµν are given by γzz̄ = γz̄z = 1
2

and εzz̄ = −εz̄z = i
2
. In terms of these complex

coordinates, the expressions for the currents simplify as follows

Jz = −k g−1∂zg , Jz̄ = 0 ,

J̄z̄ = −k ∂z̄g g−1 , J̄z = 0 , (3.3.3)

and obey ∂z̄Jz = ∂zJ̄z̄ = 0. In view of these relations, Jz and J̄z̄ are respectively referred to as

the holomorphic and anti-holomorphic currents of the WZW theory, properties which will be

reflected in the notation of their coordinate dependence Jz(z) and J̄z̄(z̄). The holomorphic

currents Jz(z) =
∑

a J
a
z (z)T a obey the OPE

Jaz (z)J bz(0) ∼ kδab
z2

+
∑
c

ifabc
J cz(0)

z
, (3.3.4)

and similarly for the anti-holomorphic currents.

Primary operators of the WZW theory are group elements g(x) taken in some represen-

tation r. They have conformal weight (h, h) where the dimension h is given by,

h =
C2(r)

2k + C2(G)
. (3.3.5)

The basic two-point function is 〈g−1(x2)g(x1)〉, which is proportional to the identity matrix

by virtue of the G×G global symmetry 1. Expanded in powers of 1/k we have

〈g−1(x2)g(x1)〉 ∼ (x2
21)−2h (3.3.6)

∼ 1− C2(r)

k
ln(x2

21) +
C2(r)2

2k2

(
ln(x2

21)
)2

+
C2(r)C2(G)

2k2
ln(x2

21) +O(k−3)

up to an overall multiplicative factor. Here we use the notation xµ21 = xµ2 − xµ1 .

In perturbation theory in powers of 1/k the scaling dimension h is extracted from the

correlator by computing Feynman diagrams. The algebraic approach to the WZW model

yields the full result (3.3.5), such that the perturbative series simply amounts to the shift

2k → 2k+C2(G). In diagrammatic terms it is not at all obvious how we just get this simple

shift. However, agreement is expected, since we have good reason to believe that the path

1In what follows we do not distinguish between a matrix proportional to the identity and one of its
diagonal elements, including in the cases of the holomorphic and WZW Wilson lines.

71



integral and algebraic definitions of the WZW theory describe one and the same theory.

Examples of perturbation theory computations in WZW include [18, 31]. However, we are

not aware of any prior computation of the anomalous dimension of primary operators in

perturbation theory.

3.3.2 Holomorphic Wilson line

Given the holomorphic current J(z) ≡ Jz(z) a natural object to consider is the Wilson line

operator P exp 1
k

∫ z2
z1
dzJ(z), where P denotes path ordering along the contour from z1 to

z2. The basic claim is that, up to renormalization, this operator gives the current algebra

vacuum OPE block. That is, consider the bi-local operator g−1(x2)g(x1), with g taken in

some irreducible representation r. We can decompose the operator into irreducible repre-

sentations of the current algebra. The Wilson line then gives the representation containing

only holomorphic currents. An equivalent way of stating this is that the Wilson line should

reproduce correlation functions with any number of holomorphic current insertions,

〈g−1(x2)g(x1)Ja3(z3) . . . Jan(zn)〉 = Z(z̄1, z̄2)〈P exp
{1

k

∫ z2

z1

dzJ(z)
}
Ja3(z3) . . . Jan(zn)〉(3.3.7)

where the factor Z(z̄1, z̄2) is independent of z3, · · · , zn and depends anti-holomorphically on

x1 and x2 through z̄1 and z̄2 only. At lowest order in 1/k this is easy to establish using the

OPE of the currents. At higher orders we encounter divergences requiring renormalization.

In this section we wish to check this relation in a perturbative expansion in powers of 1/k

in terms of suitably renormalized operators. Setting z1 = 0 we consider the case of zero and

one current insertions, and we wish to establish

W (z) ≡ lim
ε→0
〈Wε(z)〉 = z−2h ,

lim
ε→0
〈Ja(x)Wε(z)〉 = z−2h

(
1

x− z −
1

x

)
T a (3.3.8)

where we introduced the notation Wε(z) for the regulated Wilson line operator and W (z)

for its renormalized vacuum expectation value.

Although the current algebra Wilson line can be understood on its own terms, it is usefully

thought of as existing due to the well-known equivalence between Chern-Simons theory on
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a three-dimensional manifold M and the WZW theory on the boundary of M [37, 79]. The

natural observables in Chern-Simons theory are Wilson lines P exp
∫
A, and in the present

case we consider an open Wilson line with endpoints on the boundary. On account of the

flatness of the connection, the precise shape of the Wilson line contour does not matter, only

the location of its endpoints, hence the Wilson line is well-suited to represent the bi-local

operator g−1(x2)g(x1) (or more precisely, its current OPE block).

To flesh this out a bit more, the boundary components of the Chern-Simons gauge field are

mapped in the WZW model to the current and an external gauge field: (Az, Az̄)↔ (Jz, Az̄).

In the Chern-Simons path integral we fix Az̄ on the boundary but allow Az to fluctuate.

Such a path integral is equal on the WZW side to a generating function for the current

correlators, 〈exp
∫
d2zJazA

z
z̄〉. This is established by relating the Chern-Simons equations of

motion to the current algebra Ward identity. The same procedure can be carried out in the

presence of a Wilson line. The Chern-Simons gauge field now gets a source due to the Wilson

line, which maps on the WZW side to the Ward identity for the current in the presence of

a primary operator inserted at each endpoint. This then leads to the equivalence (3.3.8)

between current correlators computed in the presence of the bi-local g−1(x2)g(x1) and in the

presence of the Wilson line P exp 1
k

∫ z2
z1
dzJ . This discussion explains why such a relation

exists, but it is purely formal, as it does not take into account UV divergences in the path

integral. Here, we are trying to establish that the relation holds in the full quantum theory.

3.3.3 Lowest order calculations

The regulated holomorphic Wilson line operator takes the form

Wε(z) = N(ε)P exp
{α(ε)

k

∫ z

0

dyJ(y)
}
, (3.3.9)

where ε is a UV regulator. Expanding out the exponential and taking the vacuum expectation

value, we need to compute nested integrals of current correlators. All current correlators are

obtained from the corresponding modification of the standard recursion relation, which is
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determined by OPE and holomorphy considerations,

〈Ja(y)Jan(yn) . . . Ja1(y1)〉

=
n∑
i=1

∑
b

ifaaib
(y − yi)1

〈Jan(yn) . . . Jai+1(yi+1)J b(yi)J
ai−1(yi−1) . . . Ja1(y1)〉

+
n∑
i=1

kδaai
(y − yi)2

〈Jan(yn) . . . Jai+1(yi+1)J
ai−1(yi−1) . . . Ja1(ya1)〉 (3.3.10)

starting from 〈1〉 = 1 and 〈Ja(y) = 0〉. Singularities arise from collisions of pairs of currents,

as in [61]. We implement a form of dimensional regularization in which we assign scaling

dimension 1− ε to the currents. For example, the regulated two-point function is

〈Ja(y1)J b(y2)〉 =
kδab

(y1 − y2)2−2ε
. (3.3.11)

Regulating correlators can be subtle since each term in the recursion relation (3.3.10) doesn’t

scale as the full correlator should. For example the three point function is obtained as

〈Ja(y1)J b(y2)J c(y3)〉 =
∑
d

ifabd
(y1 − y2)

kδdc
(y2 − y3)2

+
∑
d

ifacd
(y1 − y3)

kδbd
(y2 − y3)2

=
ikfabc

(y1 − y2)(y1 − y3)(y2 − y3)
. (3.3.12)

Our prescription then is to first compute the correlator and write it in a form where scaling of

each coordinate is manifest. Then simply replace every instance of (yi−yj) with (yi−yj)1−ε.

To illustrate the general procedure outlined above, we consider the Wilson line expecta-

tion value at order 1/k,

〈Wε(z)〉 = N(ε)
[
1 +

α(ε)2

k2

∑
a,b

T aT b
∫ z

0

dy1

∫ y1

0

dy2〈Ja(y1)J b(y2)〉+ . . .
]

= N(ε)
[
1 +

α(ε)2

k
C2(r)

∫ z

0

dy1

∫ y1

0

dy2
1

(y1 − y2)2−2ε
+ . . .

]
= N(ε)

[
1− α(ε)2

k
C2(r)

( 1

2ε
+ ln z + 1 +O(ε)

)
+ . . .

]
(3.3.13)

At this order we can take N(ε) = 1 + C2(r)
2kε

and α(ε) = 1. This gives the expected result

W (z) ∼ z−2h +O
(

1

k2

)
, h =

C2(r)

2k
+O

(
1

k2

)
. (3.3.14)
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We can similarly verify the Ward identity at lowest order, which corresponds to expanding

the exponential to first order. This gives

〈Ja(w)Wε(z)〉 = T a
∫ z

0

dy

(y − w)2−2ε
+ . . .

= T a
(

1

w − z −
1

x

)
+ . . . (3.3.15)

which is the correct result at this order.

3.3.4 Higher order computations

We now make a few comments about the computation of the holomorphic Wilson line at

higher orders in 1/k. We will be brief here, as the most significant technical details will be

discussed later in the context of the gravitational Wilson line.

Since the correlation function of n currents contains a maximal power kp with p =
⌊
n
2

⌋
,

to obtain the Wilson line at order 1/kn we need to expand the exponential to order 2n. The

correlation function of up to 2n currents is obtained from the recursion relation (3.3.10).

The nested integrals can be evaluated by the methods discussed below. Finiteness of the

renormalized Wilson line as ε → 0 only partially fixes the renormalization constants N(ε)

and α(ε) up to the given order in the 1/k expansion. The unfixed part of N(ε) can be

fixed by adopting a normalization convention, such as 〈Wε(1)〉 = 1. To fix α, which is

needed to determine the scaling dimension, we need to demand that the Ward identity is

satisfied. Rather than the general Ward identity (3.3.8), various integrals greatly simplify

if we place the current at infinity, using the usual formula obtained from z → 1/z: Ja∞ ≡
− limz→∞ z2Ja(z). So this amount to imposing

lim
ε→0
〈Ja∞Wε(z)〉 = T azW (z) . (3.3.16)

We carry this out order by order in 1/k, fixing the constants N and α up to that order as

we go. These considerations completely fix the terms in the ε expansion that contribute to

the finite parts of the correlators as ε → 0. The program is in fact highly overconstrained,

since just from counting terms there is no guarantee that constants N and α can be found
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that satisfy these criteria. It is furthermore not guaranteed that the Wilson line correlator

will be a pure power law. Nevertheless, explicit computations demonstrate that all these

conditions are indeed satisfied, at least to third order in the 1/k expansion.

As an example, consider the Wilson line (3.3.9) expanded to order 1/k2. Focussing only

on the term that involves three current insertions, we have

〈Wε(z)〉 ∼ Nα3

k3

∑
a,b,c

T aT bT c
∫ z

0

dy1

∫ y1

0

dy2

∫ y2

0

dy3 〈Ja(y1)J b(y2)J c(y3)〉 , (3.3.17)

=
Nα3

k2

∑
a,b,c

ifabcT
aT bT c

∫ z

0

dy1

∫ y1

0

dy2

∫ y2

0

dy3
1

(y1 − y2)1−ε(y1 − y3)1−ε(y2 − y3)1−ε .

The integral is discussed in detail in the gravitational case and we will skip its derivation

here. The Lie algebra factor multiplying the integral is easily computed as

ifabcT
aT bT c = 1

2

∑
a,b,c,d

ifabc[T
a, T b]T dT c ,

= −1
2

∑
a,b,c,d

fabcfabdT
dT c ,

= −1
2
C2(G)C2(r) , (3.3.18)

where we have used the anti-symmetry of the fabc in the first line, the structure relations to

obtain the second line, and the definitions of the quadratic Casimir values C2(G) and C2(r),

respectively, in the adjoint representation and the representation r.

The Lie algebra factors for other diagrams can be computed in a similar manner. All

the required integrals are simpler versions of the ones that appear in the gravitational case.

We skip them here for brevity. Evaluating the Wilson line, we find the expected anomalous

dimension to order 1/k3,

h =
C2(r)

2k
− C2(r)C2(G)

4k2
+
C2(r)C2(G)2

8k3
+O(1/k4) (3.3.19)

which reproduces the expansion of the current algebra result in (3.3.5) to this order.
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3.4 Non-holomorphic Wilson line from WZW

In this section we discuss the computation of primary two-point functions in WZW models

in a manner that does not exhibit manifest holomorphic factorization. The virtue of this

approach is that computations can be carried out using familiar dimensional regularization

(modulo subtleties associated with epsilon tensors) with Feynman rules obtained from the

WZW Lagrangian, and there is a simple relation between the bi-local primary operator and

a Wilson line which holds even in the regulated theory. The drawback is the lack of manifest

holomorphic factorization, which in turn makes computations more laborious than those in

the previous section, although the results are mutually consistent.

3.4.1 Direct perturbative computation of 〈g−1(x2)g(x1)〉

We proceed by computing 〈g−1(x2)g(x2)〉 in perturbation theory, and then showing how

this computation can be recast in terms of a non-holomorphic Wilson line. To carry out

perturbation theory we parametrize the field g(x) which takes values in the representation

r of the group G in terms of the field X(x) which takes values in the Lie algebra G of G 2

g(x) = exp

{
i√
k
Xa(x)T a

}
. (3.4.1)

Expanding the exponential in powers of k−
1
2 and substituting into the WZW action yields

S[g] =
1

8π

∫
d2x ∂µX

a∂µXa +
i

24πk1/2
fabc

∫
d2xεµνXa∂µX

b∂νX
c

− 1

24πk
Kabcd

∫
d2xXaXb∂µXc∂µX

d +O(k−
3
2 ) (3.4.2)

where the metric is taken to be ds2 = dxµdxµ, and the tensor K is given by

Kabcd = Tr′
(
T aT bT cT d − T aT cT bT d

)
= ifbceTr

′(T aT eT d) . (3.4.3)

We work in dimensional regularization, taking the spacetime dimensionality to be d = 2− ε.
The one subtlety is how to define quantities involving εµν in this scheme; this will be discussed

2In this section repeated Lie algebra indices are summed over.
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below. The position space free field correlator in d = 2− ε dimensions is given by

〈Xa(x)Xb(0)〉free = ∆(x) δab (3.4.4)

where ∆(x) is the free-field propagator given by

∆(x) =

∫
ddp

(2π)d
4π

p2
eipx =

Γ(d
2
− 1)

(π x2)
d
2
−1

= −2

ε
− ln(π x2)− γ +O(ε) . (3.4.5)

and x2 = γµνx
µxν the the d-dimensional norm of xµ. As is familiar when using dimensional

regularization, we are setting self-contractions to zero: 〈Xa(0)Xb(0)〉free = 0. Renormalizing

the two-point function of the primary field g to order 1/k by introducing a multiplicative

renormalization factor N(ε) = 1 + 2C2(r)/(kε) +O(1/k2), we find to this order

N(ε)〈g−1(x)g(0)〉 = N(ε)
[
1 +

C2(r)

k
∆(x) +O(k−2)

]
= 1− C2(r)

k
ln(x2) +O(k−2) (3.4.6)

••• •
x 0 x 0

(a) (b)

Figure 3.1: Feynman diagrams at order 1/k2.

At order 1/k2 we have the diagrams shown in Figure 3.1. Figure 3.1a comes from expand-

ing each of the exponentials in g−1(x) and g(0) to second order and taking Wick contractions.

Figure 3.1b arises from bringing down two cubic interaction vertices. This yields

〈g−1(x)g(0)〉1a =
1

2k2

Γ(d
2
− 1)2

πd−2

(
C2(r)2 − 1

4
C2(r)C2(G)

)
(x2)2−d .

〈g−1(x)g(0)〉1b = − 1

k2

1

2dπd−
5
2

Γ(d
2
)Γ(d− 2)

(d− 4)(d− 2)Γ(d
2

+ 1
2
)
C2(r)C2(G)

×γµαεµνεαβ[2(2− d)xνxβ + x2γνβ](x2)1−d . (3.4.7)

To proceed we need a rule for defining γµαε
µνεαβ in d-dimensions. In d = 2 we have

γµαε
µνεαβ = γνβ . (3.4.8)
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One option is to adopt this rule in d dimensions. But there are alternative prescriptions as

well. For instance, we could first use the d = 2 identity εµνεαβ = γµαγνβ − γµβγνα and then

contract with γµα in d dimensions. This gives γµαε
µνεαβ = (1 − ε)γνβ. More generally, we

could multiply ε by any coefficient. These prescriptions differ in the sense that one can show

that the value of the anomalous dimension depends on the value of this coefficient. However,

conformal invariance singles out the rule (3.4.8). In particular, consider the current algebra

Ward identity

〈g−1(x2)g(x1)Ja(x3)〉 ∼
(

1

z3 − z2

− 1

z3 − z1

)
〈g−1(x2)g(x1)〉T a . (3.4.9)

This Ward identity, together with the definition of the Sugawara stress tensor, is what fixes

the conformal dimension of g in the algebraic approach to the WZW model. Evaluating

both sides of (3.4.9) in 1/k perturbation theory we encounter, at order 1/k2, on the right

hand side the same diagrams as above, including the ambiguity associated with the product

of epsilon tensors. On the other hand, no epsilon tensors appear on the left hand side at

this order, and hence there is no ambiguity. We then find that demanding (3.4.9) implies

that we should adopt (3.4.8). In fact, it turns out that under this rule (3.4.9) holds for all

d. This discussion of course raises the question as to the proper rule at higher loop orders,

where higher powers of epsilon tensors will arise. There is a natural generalization of (3.4.9)

in which one reduces all products of epsilon tensors directly in d = 2, but whether this is

compatible with the Ward identity at higher orders in 1/k is an open question that we do

not address here.

Returning to (3.4.7) we now have

〈g−1(x)g(0)〉1b =
C2(r)C2(G)

k2

Γ(d
2
− 1)2

8πd−2(d− 1)
(x2)2−d , (3.4.10)

where we used the Legendre duplication formula to simplify.

The computation of the renormalized correlator N(ε)〈g−1(x)g(0)〉 also receives a contri-

bution from the 1/k term in N(ε). However, we need not consider this as it has no bearing

on the computation of the anomalous dimension, since the latter can be extracted from

x∂x ln〈g−1(x)g(0)〉.
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Collecting all contributions through order 1/k2 we have

〈g−1(x)g(0)〉 = N(ε)
[
1 +

C2(r)

k

Γ(d
2
− 1)

πd/2−1
(x2)1− d

2 +
C2(r)2

2k2

Γ(d
2
− 1)2

πd−2
(x2)2−d

− C2(r)C2(G)

k2

Γ(d
2
− 1)2

8πd−2

d− 2

d− 1
(x2)2−d

]
(3.4.11)

Since the scaling dimension h is identified via 〈g−1(x)g(0)〉 ∼ (x2)−2h we can extract it as

h = −1

4
lim
ε→0

x∂x ln〈g−1(x)g(0)〉 (3.4.12)

Plugging in (3.4.11) we find

h =
C2(r)

2k
− C2(r)C2(G)

4k2
+O(k−3) (3.4.13)

in agreement with the expansion of (3.3.5) to this order.

3.4.2 Non-holomorphically factorized Wilson line

We can convert the bi-local primary operator considered above into a Wilson line type object

by using the identity

g−1(x2)g(x1) = P exp
{
−
∫ x2

x1

dyµ g−1(y)∂µg(y)
}
. (3.4.14)

This identity holds for any matrix-valued object g(x). In particular, if we compute the

expectation value of both sides we are guaranteed to get exact agreement even with a fi-

nite regulator in place. The computations of the previous section therefore establish that

perturbation theory will yield
〈
P exp

{
−
∫ x2
x1
g−1(y)∂µg(y)dyµ

}〉
∼ (x2

21)−2h; finiteness also

requires the multiplicative renormalization factor N(ε) that we will suppress.

We now write

〈g−1(x2)g(x1)〉 =
〈
P exp

{1

k

∫ x2

x1

dyµ Jµ(y)
}〉

(3.4.15)

where the “vector operator” Jµ is defined as

Jµ = −kg−1∂µg . (3.4.16)
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This is not a conserved current, ∂µJµ 6= 0. Its components are related to those of the

conserved currents Jµ and J̄µ as Jz = Jz, Jz̄ = g−1J̄z̄g. The computations we have performed

so far establish that, as ε→ 0,〈
P exp

{1

k

∫ x2

x1

dyµ Jµ(y)
}〉

=
〈
P exp

{α
k

∫ z2

z1

dy Jz(y)
}〉〈

P exp
{α
k

∫ z̄2

z̄1

dyJ̄z̄(y))
}〉

(3.4.17)

through at least O(1/k2). We note that the chiral Wilson lines on the right hand side

require vertex renormalization factors, while no such object is required on the left hand side,

as follows from the identity (3.4.14). Roughly speaking, we may surmise that the α factors

on the right compensate for the non-chiral correlators on the left.

To flesh this out a bit more, let us consider correlation functions involving the vector

operator Jµ. To order k0 we find the two-point functions

〈J a
z (x)J b

z (0)〉 =
d

2

(
d

2
− 1

)
k

z2
∆(x)δab ,

〈J a
z (x)J b

z̄ (0)〉 =

(
d

2
− 1

)2
k

zz̄
∆(x)δab +

(
d
2
− 1
)2

2(d− 1)
C2(G)

∆(x)2

zz̄
δab ,

〈J a
z̄ (x)J b

z̄ (0)〉 =
d

2

(
d

2
− 1

)
k

z̄2
∆(x)δab +

(
d

2
− 1

)
C2(G)

∆(x)2

z̄2
δab , (3.4.18)

where ∆(x) is the scalar propagator defined in (3.4.5). The fact that 〈JzJz〉 is uncorrected

at order k0 is consistent with the fact that this is the two-point function of the conserved

current Jz, and hence is unrenormalized. The mixed correlator in the second line, 〈JzJz̄〉 is

finite as ε→ 0, and this contributes to the non-chiral Wilson line expectation value at order

1/k2. The correlator in the last line 〈Jz̄Jz̄〉 diverges as ε → 0. We define the renormalized

operator J̃ a
z̄ ,

J a
z̄ =

(
1− C2(G)

kε

)
J̃ a
z̄ . (3.4.19)

After doing this and taking ε→ 0 we get

〈J a
z (x)J b

z (0)〉 =
k

z2
δab +O(ε) ,

〈J a
z (x)J̃ b

z̄ (0)〉 = O(ε) ,

〈J̃ a
z̄ (x)J̃ b

z̄ (0)〉 = A
k

z̄2
(zz̄)−

C2(G)
k δab +O(ε) , (3.4.20)
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for some constant A. J̃ a
z̄ has acquired scaling dimension (h, h) = (1 + C2(G)

k
, C2(G)

k
). Coming

back to the Wilson line, even if we rewrite it in terms of the renormalized vector operator

components (Jz, J̃z̄) it is not correct to omit the contributions from 〈JzJ̃z̄〉 even though this

correlator vanishes as ε → 0. This vanishing is compensated by 1/ε divergences, yielding a

finite result. Thus, there is no manifest factorization.

3.4.3 Comments on holomorphic factorization

The conclusion of the above analysis is that the expectation value of the non-holomorphic

Wilson line built out of Jµ agrees with (the square of) the holomorphic Wilson line as the

regulator is removed. The former thus exhibits factorization to the order we have considered,

but this comes out from detailed computation rather than being manifest from the start.

Here we add a few more comments regarding this state of affairs.

The classical WZW model exhibits holomorphic factorization in the following sense. The

Euler-Lagrange equations are ∂z̄(g
−1∂zg) = 0. The general solution of this equation takes

the factorized form g(z, z̄) = gL(z̄)gR(z), for arbitrary and independent (ignoring any reality

conditions) matrices gL(z̄) and gR(z). Formally, the quantum correlator of interest is then

〈g−1(z, z̄)g(0)〉 = 〈g−1
R (z)g−1

L (z̄)gL(0)gR(0)〉 . (3.4.21)

We can try to argue for factorization from either the path integral or operator perspectives.

In terms of the path integral, we can imagine independently integrating over gL and gR.

Inside the gL path integral g−1
L (z̄)gL(0) will be proportional to the unit matrix, and the

correlator thence factorizes. Of course, this argument is little more than handwaving as it

stands, since the fact that classical solutions take the factorized form does not imply that

we can perform independent path integrals over the two factors. On the other hand, writing

g(z, z̄) = gL(z̄)gR(z) makes more sense in the quantum theory if we work in the operator

formalism. In this case, the outstanding issue is that although the oscillator modes can be

uniquely associated to one of the two factors, the same is not true of the zero modes, which

couples the two together.

We should also mention the argument by Witten [80] establishing the holomorphic fac-
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torization of current correlators on arbitrary Riemann surfaces, which is formal in the sense

of ignoring UV divergences and anomalies. Starting from the WZW action S[g] one gauges

the current J by coupling to an external gauge field A,

S[g, A] = S[g] +
1

2π

∫
d2z TrAz̄g

−1∂zg −
1

4π

∫
d2z TrAz̄Az . (3.4.22)

The path integral over g defines a wavefunction

Ψ(A) =

∫
Dg e−kS(g,A) (3.4.23)

which serves as a generating function for current correlators. The main result is to then show

that the partition function, Z(Σ), of the WZW model on the Riemann surface Σ is equal to

the norm of the wavefunction, Z(Σ) = |Ψ|2, where |Ψ|2 = 1

V ol(Ĝ)

∫
DAΨ(A)Ψ(A). We might

contemplate extending this to our context by cutting holes in the Riemann surface with

prescribed holonomies to represent the primary operator insertions. Of course, one would

still need to confront what for us is the main issue, namely making precise sense of these

manipulations at the quantum level. We leave these questions for the future, and now return

to the main case of interest, the gravitational Wilson line.

3.5 Renormalization of gravitational Wilson lines

In this section we shall regularize and renormalize the matrix elements of the gravitational

Wilson line operator in two-dimensional conformal field theory in a perturbative expansion

in inverse powers of the central charge c. We focus on the scaling dimension h(j, c) of the

Wilson line operator, whose exact expression is predicted from the twisted SL(2,R) current

algebra representations of spin j as discussed in the Introduction. Using the regularization

and renormalization schemes developed here we shall calculate h(j, c) up to order 1/c3 and

find perfect agreement with the large c expansion to the same order of the exact expression

(3.1.4), which we repeat here

h(j, c) = −j − 6

c
j(j + 1)− 78

c2
j(j + 1)− 1230

c3
j(j + 1) +O(c−4). (3.5.1)
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As discussed in Section 3.2 the Wilson line is defined as a matrix element of

P exp

∫ z

0

dy

(
L1 +

6

c
T (y)L−1

)
. (3.5.2)

The first step in implementing 1/c perturbation theory is to rewrite this in a manner analo-

gous to what one does when passing to the interaction representation in quantum mechanical

problems. In the present case this amounts to using the identity

P exp

∫ z

0

dy

(
L1 +

6

c
T (y)L−1

)
= ezL1 P exp

∫ z

0

dy

(
6

c
X(y)T (y)

)
(3.5.3)

where X(y) is given by,

X(y) = L−1 − 2yL0 + y2L1. (3.5.4)

We shall consider matrix elements between states |j,m〉, with 2j+1 ∈ N and 0 ≤ j−m ≤ 2j,

which are the tensor product of a spin j representation state of SL(2,R) with the ground

state of the two-dimensional conformal field theory. In the infinite c limit, the Wilson line

operator reduces to ezL1 whose matrix element 〈j,−j|ezL1|j, j〉 = z2j gives the classical

scaling dimension −j, in agreement with the leading term in (3.5.1).

For large but finite c we shall use perturbation theory in powers of 1/c to expand the

Wilson line in terms of correlators which are polynomial in the stress tensor. Such corre-

lators may be evaluated on the two-dimensional plane using the conformal Ward identities

expressed, for example, in terms of the OPE of two stress tensors at points w, z ∈ C,

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w +O((z − w)0). (3.5.5)

The perturbative expansion of the matrix elements of the Wilson line operator is beset by

short distance singularities resulting from the first term in (3.5.5), and require regularization.

The use of a Pauli-Villars regulator in [16] correctly reproduced the 1/c term in (3.5.1) and

the corresponding order 1/c2 term proportional to (ln z)2 in the expansion of the two point

function, but gave a 1/c2 correction that disagrees with the corresponding term in (3.5.1).

Dimensional regularization, and analytic continuation in ε = 2−d as applied to this problem

in [61], is more successful, as we now discuss.
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3.5.1 Dimensional regularization

No regulator of short distance singularities which preserves the infinite-dimensional confor-

mal symmetry in two-dimensional space-time is known to exist. In fact most regulators

will break the finite-dimensional conformal group and its dilation subgroup. However, di-

mensional regularization, in which the dimension of space-time is continued from two to

d = 2− ε dimensions, preserves dilation symmetry in dimension d in each Feynman diagram

contribution for all values of d where such diagrams are absolutely convergent. For this rea-

son, dimensional regularization and analytic continuation in ε appears perhaps better-suited

for regularizing correlators in scale invariant theories than other schemes. Unfortunately,

the Ward identity (3.5.5), by which all correlators polynomial in the stress tensor can be

computed on the two-dimensional plane, no longer holds and cannot be used to this end in

d 6= 2.

Therefore, we need a concrete quantum field theory representation or model for the

stress tensor which is valid for arbitrary dimension d and for arbitrary central charge c. Of

course, upon proper renormalization, the Wilson line expectation values are expected to be

independent of the model used to represent the CFT. To obtain an expansion for large c,

we may take c to be an integer, without loss of generality. A simple model is then provided

by the free field theory of c scalar fields φγ with γ = 1, · · · , c in d space-time dimensions.

Parametrizing space-time Rd by coordinates (z, z̄, ~z) where z, z̄ are the complex coordinates

for C and ~z ∈ Rd−2, we readily evaluate the normalized two-point function of the field ∂zφ
γ,

〈∂zφγ(z)∂wφ
γ′(w)〉 =

−V (d) δγγ
′
(z̄ − w̄)2(

|z − w|2 + (~z − ~w)2
) d

2
+1

. (3.5.6)

The normalization is given by V (d) = Γ(d
2

+ 1)/π
d
2
−1, but we shall soon see that its effect

may absorbed by a renormalization, and therefore we shall set V = 1. For two points in

the complex plane we have ~z = ~w = 0, and for two points on the real line the correlator in

d = 2− ε dimensions simplifies to the following formula we shall use throughout,

〈∂wφγ(z)∂zφ
γ′(w)〉 =

−δγγ′

|z − w|2−ε . (3.5.7)
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In this model, the holomorphic stress tensor T (z) for z ∈ C is defined as the Tzz component

of the d-dimensional traceless stress tensor for the free field φγ, which is given by,

T (z) = −1

2

c∑
γ=1

: ∂zφ
γ(z)∂zφ

γ(z) : (3.5.8)

where the normal ordering symbol :: instructs us to omit all self-contractions in the calcula-

tion of correlators of T (z). An equivalent definition in terms of the OPE of two fields ∂zφ
γ

may be given but will not be needed here.

Given the rules for calculating correlators in the free field theory model for the dimen-

sionally regularized conformal field theory, it is straightforward to compute the correlator of

the product of an arbitrary number of stress tensors, arranged at points yi along the real line.

Evidently, we have 〈T (y)〉 = 0. The Feynman diagrams for a correlator 〈T (y1) · · ·T (yn)〉 for

n ≥ 2 may be distinguished by the number of connected one-loop sub-diagrams. Each sub-

diagram may be labelled by a partition P into cycles of the set of points {y1, · · · , yn}, with

each cycle containing at least two points. Two partitions are equivalent if they are related

by cyclic permutations and/or reversal of orientation of the points in each cycle, and under

permutations of the cycles. This partitioning of a Feynman diagram into cycles is unique.

We shall denote a cycle of ordered points yi1 , · · · , yi` by a square bracket [i1, · · · , i`] and

the value of the corresponding one-loop diagram along this cycle by,

〈T 2〉[i1,i2] =
c/2

|yi1 − yi2|4−2ε
,

〈T `〉[i1,··· ,i`] =
c

|yi1 − yi2|2−ε|yi2 − yi3|2−ε · · · |yi` − yi1|2−ε
, ` ≥ 3 . (3.5.9)

The y-dependence of 〈T `〉[i1,··· ,i`] is indicated through the indices i1, · · · , i` in the labeling

of the cycle. The correlator is given by a sum over all possible inequivalent partitions

P = C1 ∪ C2 ∪ · · · ∪ Cp into p cycles, with Cs ∩ Cs′ = ∅ for s′ 6= s, of the set {y1, · · · , yn},

〈
T (y1) · · ·T (yn)

〉
=
∑
P

〈T n〉P , 〈T n〉P =

p∏
s=1

〈T `s〉Cs . (3.5.10)

The c-dependence of the contribution of P is given by cp. For the calculation of the matrix

elements of the Wilson line operator to order 1/c3, to be given in the next section, we shall
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need the correlators for n = 2, 3 given in (3.5.9), as well as those for n = 4 with one and two

cycles, for n = 5 with two cycles, and for n = 6 with three cycles, given as follows,

〈T (y1) · · ·T (y4)〉 = 〈T 4〉[12][34] + 〈T 4〉[13][24] + 〈T 4〉[14][23]

+〈T 4〉[1234] + 〈T 4〉[1342] + 〈T 4〉[1324],

〈T (y1) · · ·T (y5)〉 = 〈T 5〉[12][345] + 9 more partitions +O(c),

〈T (y1) · · ·T (y6)〉 = 〈T 6〉[12][34][56] + 14 more partitions +O(c2). (3.5.11)

The contributions from each partition is given by (3.5.10) and 〈T 4〉[12][34] = 〈T 2〉[12]〈T 2〉[34],

〈T 5〉[12][345] = 〈T 2〉[12]〈T 3〉[345], 〈T 6〉[12][34][56] = 〈T 2〉[12]〈T 2〉[34]〈T 2〉[56] and their permutations.

3.5.2 The regularized Wilson line matrix elements

We define the regularized matrix element of the Wilson line operator in dimension d = 2−ε,

Wε(z) = N(ε)〈j,−j|ezL1 P exp

{
6α(ε)

c

∫ z

0

dy X(y)T (y)

}
|j, j〉. (3.5.12)

X(y) was defined in (3.5.4) and the states |j,m〉 stand for the tensor product of the free

field theory ground state and the spin j representation state of SL(2,Z) of weight m. The

multiplicative renormalization factor N(ε) is required on general grounds for an exponential

operator, while the factor α(ε) renormalizes the coupling to the stress tensor.

It will be shown below that the parameters N(ε) and α(ε) may be chosen, order by order

in powers of 1/c, so as to cancel the poles in ε, and to define a renormalized matrix element

whose scaling dimension is h(j, c),

W (z) = lim
ε→0
〈Wε(z)〉 = z−2h(j,c) z > 0 (3.5.13)

up to order 1/c3 included. It will also be of interest to regularize and renormalize the matrix

elements of the Wilson line operator multiplied by a single stress tensor T (x) for x ∈ R,

TxWε(z) = N(ε)〈j,−j|T (x)|x|4−2ε ezL1 P exp

{
6α(ε)

c

∫ z

0

dy X(y)T (y)

}
|j, j〉. (3.5.14)

By inspecting the scaling behavior of the correlators involving T (x), it is clear that the

expectation value 〈TxWε(z)〉 tends to a finite limit as x→∞ and defines a matrix element

87



〈T∞Wε(z)〉 whose behavior is predicted from the dilation Ward identity,

lim
ε→0
〈T∞Wε(z)〉 = h(j, c) z2W (z). (3.5.15)

We verify that the parameters N(ε) and α(ε) required to renormalize W also renormalize

T∞W , as may be expected on the basis of the dilation Ward identity in dimension d = 2− ε.

3.5.3 Perturbative expansion

〈Wε(z)〉 may be evaluated by expanding the path ordered exponential in powers of α/c,

〈Wε(z)〉 = z2jN

∞∑
n=0

(6α)n

cn

∫ z

0

dyn · · ·
∫ y2

0

dy1Fn(z; yn, · · · , y1)
〈
T (yn) · · ·T (y1)

〉
(3.5.16)

where we have suppressed the ε-dependence of N and α, which will be understood through-

out. The SL(2,R) group theory factor Fn is defined by,

z2jFn(z; yn, · · · , y1) = 〈j,−j|ezL1X(yn) · · ·X(y1)|j, j〉. (3.5.17)

A recursive formula for Fn is obtained in Appendix 3.9, while the calculations of the stress

tensor correlators were given in the preceding section. To proceed further, it will be conve-

nient to organize the calculation of 〈Wε(z)〉 as follows,

〈Wε(z)〉 = z2jN
∞∑
n=0

αn znεW1···n (3.5.18)

where W0 = 1, W1 = 0 and the contributions for n ≥ 2 are given by,

W1···n =
6n

cn znε

∫ z

0

dyn · · ·
∫ y2

0

dy1Fn(z; yn, · · · , y1)
〈
T (yn) · · ·T (y1)

〉
. (3.5.19)

The factors of znε have been inserted to make the coefficients W1···n independent of z for any

value of ε. To see this, we recall from Appendix 3.9 that the combination znFn(z; yn, · · · , y1)

is a homogeneous polynomial in z, y1, · · · , yn of total degree 2n, while the correlator of n

stress tensors is homogeneous in y1, · · · , yn of total degree n(−2 + ε). Therefore W1···n is

homogeneous in z, y1, · · · , yn of total degree 0 and we may set z = 1 in the evaluation of W1···n

in (3.5.19) so that all z-dependence of Wε(z) resides in the coefficients znε in (3.5.16). The
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expansion of 〈T∞Wε(z)〉 proceeds analogously by replacing the correlator
〈
T (yn) · · ·T (y1)

〉
with

〈
T (x)|x|4−2εT (yn) · · ·T (y1)

〉
and then taking the x→∞ limit.

The coefficients W1···n may be decomposed into a sum over inequivalent partitions P of

the set of n points {y1, · · · , yn} by decomposing the correlator of n stress tensors in (3.5.19)

into a sum over P using (3.5.10),

W1···n =
∑
P

WP , WP =
6n

cn

∫ 1

0

dyn · · ·
∫ y2

0

dy1Fn(1; yn, · · · , y1)〈T n〉P . (3.5.20)

The expression for WP may be simplified using the scaling and translation properties of 〈T n〉P
and the polynomial nature of the function Fn(1; yn, · · · , y1) to resolve the nested ordering of

the integrals. We change variables from (yn, · · · , y1) to (xn, u, αn−1, · · · , α1),

yk = xn − uαn−1 − uαn−2 · · · − uαk 1 ≤ k ≤ n− 1,

yn = xn (3.5.21)

subject to 0 ≤ u ≤ xn ≤ 1 and 0 ≤ αi as well as αn−1 + · · ·α1 = 1. Using the observation

that the integration range of the variables u, xn is independent of the integration range of

the variables αi, we rearrange the integrations as follows,

WP =
6n

2p2cn−p

∫ 1

0

dαn−1 · · ·
∫ 1

0

dα1 δ

(
1−

n−1∑
k=1

αk

)
Nn(α1, · · · , αn−1)

DP (α1, · · · , αn−1)
. (3.5.22)

The function DP is given in terms of the contribution to the stress tensor correlator arising

from the partition P and is given explicitly by,

〈T n〉P =
cp

2p2
u−2n+nε

DP (α1, · · · , αn−1)
(3.5.23)

where p is the total number of cycles in P and p2 is the number of 2-cycles in P . The function

Nn is defined as follows,

Nn(α1, · · · , αn−1) =

∫ 1

0

du u−n−2+nε

∫ 1

u

dxn Fn(1; yn, · · · , y1) (3.5.24)

where y1, · · · yn are given in terms of xn, u, α1, · · ·αn−1 by (3.5.21). Since Fn(1; yn, · · · , y1)

is polynomial in yi, the integral Nn is polynomial in αi as well, with coefficients which are

rational functions of ε. Finally, one of the αk-integrals in (3.5.22) may be carried out by

satisfying the δ-function, so that the number of non-trivial integrals left over is n− 2.
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3.5.4 Evaluation of W1···n

The details of the calculation of the functions WP and their sum W1···n are presented in

Appendix 3.10. They include the list of the denominator functions DP and the evaluations

of some of the integrals over the parameters αi, but we do not give the functions Fn or

Nn whose length grows rapidly with n and were handled by MAPLE. The result may be

summarized as follows. The contribution W12 is of order 1/c and is required up to order ε2,

the contribution W123 is of order 1/c2 while W1234 = W
(2)
1234 +W

(3)
1234 has contributions of order

1/c2 and 1/c3 and both are required to order ε0,

cW12 =
6j(j + 1)

ε
+ j(10j + 4) +

j

3
(74j + 98)ε+

j

9
(418j + 196)ε2,

c2W123 = −96j(j + 1)

ε2
+

24j

ε
(2j2 − 9j − 5) + 16π2j(j + 1) + 6j(18j2 − 143j − 203),

c2W
(2)
1234 =

18

ε2
j(j + 1)(j2 + j + 2) +

3

ε
j(20j3 + 16j2 + 49j + 29)

+2j(99j3 + 132j2 + 436j + 460)− 24j(j + 1)π2,

c3W
(3)
1234 =

1296

ε3
j(j + 1) +

648

ε2
j(−2j2 + 5j + 3) +

216

ε
j(2j3 − 11j2 + 89j + 132)

+
72

5
j(4j3 + 8j2 − 39j − 43)π2. (3.5.25)

Finally, the contributions W12345 and W123456 are required to order 1/ε and to order 1/c3,

for the calculation of the dimension h(j, c) to order 1/c3,

c3W12345 = −576

5ε3
j(j + 1)(5j2 + 5j + 11) +

96j

5ε
j(1 + j)(5j2 + 5j + 79)π2

+
48j

5ε2
(30j4 − 205j3 − 152j2 − 634j − 387)

+
4j

5ε
(1410j4 − 12341j3 − 18640j2 − 58776j − 62077),

c3W123456 =
36j

ε3
(j + 1)(j2 + j + 2)(j2 + j + 4)− 48j

ε
(j + 1)(3j2 + 3j + 13)π2

+
6j

ε2
(30j5 + 36j4 + 201j3 + 210j2 + 361j + 202)

+
2j

ε
(372j5 + 468j4 + 3873j3 + 5967j2 + 10100j + 8684). (3.5.26)

The calculation of 〈T∞Wε(z)〉 is analogous. The results are given in the Appendix 3.12.3.
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3.5.5 Renormalization of Wε(z) and T∞Wε(z) to order 1/c3

To order 1/c3, the regularized matrix element 〈Wε(z)〉 of the Wilson line operator is given by

(3.5.18), (3.5.25), and (3.5.26), as well as by the parameters N and α. We seek to determine

N and α by requiring that 〈Wε(z)〉 obey as renormalization conditions the scaling relation

(3.5.13) to order 1/c3. By inspecting the expansion of 〈Wε(z)〉 in terms of the coefficients

W1···n it is far from obvious that such a scaling relation can indeed be secured. However,

once it has been, the parameter N is trivially fixed as follows,

〈Wε(1)〉 = 1. (3.5.27)

This leaves the parameter α at our disposal to enforce the scaling relation (3.5.13) by re-

quiring that the function ln〈Wε(z)〉 be linear in ln(z),

ln〈Wε(z)〉 = −2h(j, c) ln z +O(ε) (3.5.28)

where h(j, c) is to be determined in the process. By inspecting the relation between the

order of expansion in powers of 1/c and the order of the pole in ε, we find that for order

1/cm the maximal order is 1/εm, thereby producing a polynomial in ln(z) of degree m in

ln〈Wε(z)〉, up to corrections of order O(ε). Therefore, to order 1/c, the scaling condition is

automatic, while to orders 1/c2 and 1/c3 the scaling condition imposes respectively two and

three conditions. These conditions are satisfied by a function α given as follows,

α = 1 +
1

c

(
6

ε
+ 3 + εa1

)
+

1

c2

(
30

ε2
+

55

ε
+ a2 + εa3

)
+O(c−3, ε2). (3.5.29)

The contributions proportional to a1, a2 and a3 are not determined by the renormalization

scaling conditions, and neither are higher order terms in 1/c or ε to this order in the expan-

sion. The scaling dimension resulting from the renormalization of W is given by,

hW (j, c) = −j − j(j + 1)

(
6

c
+

78

c2
+

60a2 − 360a1 + 2450 + 192π2(3j2 + 3j − 1)

5c3

)
(3.5.30)

up to contributions of order 1/c4 and ε. While the result for hW (j, c) to the orders 1/c and

1/c2 are uniquely determined by the renormalization procedure and precisely agree with the
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predictions of SL(2,R) current algebra in (3.5.1), the order 1/c3 is determined only once the

particular combination a2 − 6a1 of the coefficients a1 and a2 is known.

The missing information may be obtained from the renormalization of the matrix element

T∞Wε(z). Its detailed calculation is given in the Appendix. Using the same renormalization

parameters N and α as we used for Wε(z), the prediction of the scaling dimension derived

from 〈T∞Wε(z)〉 is obtained via (3.5.15) and is given by,

hTW (j, c) = −j − 6j(j + 1)

c
− j

c2

(
78j +

49

3
+

16

5
π2
(
3j(j + 1)− 1

)
− 6a1 + a2

)
.(3.5.31)

Matching the orders in 1/c2 gives the following result for the combination,

a2 − 6a1 =
185

3
− 16π2

5

(
3j(j + 1)− 1

)
(3.5.32)

which upon substitution in the 1/c3 term of hW (j, c) leads to perfect agreement with the

predictions of (3.5.1) to order 1/c3.

We note that renormalization of the gravitational Wilson line matrix elements consis-

tent with the conformal Ward identities has forced us to make the vertex renormalization

parameter α(ε) dependent on j in the order 1/c3 contribution to the Wilson line, and to

order 1/c2 in α(ε). This j-dependence of α(ε) is a new phenomenon that was absent at lower

orders in 1/c, and raises two issues. First, in terms of renormalization theory, it suggests

that the gravitational Wilson line operator as originally defined cannot be renormalized at

the operator level, since a dependence on the states governing its matrix elements enters. A

slight modification of the original definition of the Wilson line can remedy this obstacle by

promoting α(ε) itself to an operator which involves the quadratic Casimir of SL(2,R). Sec-

ond, to satisfy (3.5.32), we actually have a choice: setting a1 = 0 we require a j-dependent

renormalization at order 1/c2, while setting a2 = 0 we can get away with a renormalization

at order 1/c of an evanescent operator which, given its proportionality to ε, would vanish at

the classical level as ε→ 0. The role of such evanescent operators remains to be understood.
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3.6 Regularization scheme in two dimensions

Instead of “changing the theory” by extending the free field model for a conformal field

theory with central charge c from two dimensions to d = 2− ε dimensions, we shall attempt

in this section to keep conformal invariance intact in d = 2, and regularize and renormalize

the operator W in this exactly conformal theory. As we shall show below, for the particular

though natural regulator we choose, this attempt will ultimately fail.

3.6.1 A two-dimensional regulator for the Wilson line

We introduce a regulator, order by order in the 1/c expansion of the matrix elements of the

Wilson line operator, in which the correlator of stress tensors 〈T n〉1···n is regularized by,

〈T n〉1···n = 〈T (y1) · · ·T (yn)〉
∏

1≤i<j≤n

|yj − yi|ε (3.6.1)

and the correlator 〈T (y1) · · ·T (yn)〉 is evaluated using the OPE for the stress tensor of (3.5.5)

of a conformal field theory with central charge c, valid strictly in two dimensions. We have

chosen the regulator to be symmetric under permutations of the points y1, · · · , yn just as

the stress tensor correlator is, to be invariant under translations of the variables yi, and to

have good scaling behavior similar to, but different from, dimensional regularization. In the

α̃/c expansion, and with the regularization defined above, the Wilson line correlator may be

presented as a sum over contributions with a definite number of T -insertions,3

〈W̃ε(z)〉 = z2jÑ

∞∑
n=0

α̃n z
1
2
n(n−1)ε W̃1···n . (3.6.2)

The factors of z
1
2
n(n−1)ε have been extracted in order to make the coefficients W̃1···n inde-

pendent of z, using arguments analogous to the ones used for Wε(z). The decomposition

of the correlator into a sum over contributions arising from inequivalent partition cycles P

proceeds as with dimensional regularization, and we have,

W̃1···n =
∑
P

W̃P , W̃P =
6n

cn

∫ 1

0

dyn · · ·
∫ y2

0

dy1Fn(1; yn, · · · , y1)〈T n〉P (3.6.3)

3Throughout this section, we shall use a tilde for the quantities defined with the regulator of (3.6.1) in
order to distinguish them from those defined in the preceding section with dimensional regularization.
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where 〈T n〉P is defined by (3.6.1) for the partition P .

Using the change of variables (3.5.21) we recast the expression for W̃P as follows,

W̃P =
6n

2p2cn−p

∫ 1

0

dαn−1 · · ·
∫ 1

0

dα1 δ

(
1−

n−1∑
k=1

αk

)
Ñn(α1, · · · , αn−1)

D̃P (α1, · · · , αn−1)
(3.6.4)

where D̃P and ÑP are defined by,

〈T n〉P =
cp

2p2
u−2n+ 1

2
n(n−1)ε

D̃P (α1, · · · , αn−1)
,

Ñn(α1, · · · , αn−1) =

∫ 1

0

du u−n−2+ 1
2
n(n−1)ε

∫ 1

u

dxn Fn(1; yn, yn−1, · · · , y1) (3.6.5)

with 〈T n〉P given in (3.6.1), p and p2 are respectively the total number of cycles and the

number of two-cycles in P .

3.6.2 Calculation of the coefficients W̃12, W̃123 and W̃1234

The coefficient W̃12 coincides with the coefficient W12 computed in dimensional regularization

after letting 2ε→ ε, while W̃123 = W123, and are given by,

cW12 =
12j(j + 1)

ε
+ j(10j + 4) +

j

6
(74j + 98)ε+O(ε2),

c2W123 = −96j(j + 1)

ε2
+

24j

ε
(2j2 − 9j − 5) +O(ε0). (3.6.6)

To order 1/c2, the coefficient W̃1234 receives contributions from the partitions [12][34], [13][24]

and [14][23], whose denominator functions are given by,

D̃[12][34] = α4−ε
1 α−ε2 α4−ε

3 (α1 + α2)−ε (α2 + α3)−ε,

D̃[13][24] = α−ε1 α−ε2 α−ε3 (α1 + α2)4−ε (α2 + α3)4−ε,

D̃[14][23] = α−ε1 α4−ε
2 α−ε3 (α1 + α2)−ε (α2 + α3)−ε. (3.6.7)

The function Ñ4(α1, α2, α3) is a polynomial in its variables, with coefficients which are ra-

tional functions of ε with simple poles. We satisfy the δ-function constraint by solving for

94



α2 = 1− α1 − α3, and decompose the polynomial Ñ4 in the following, equivalent ways,

Ñ4(α1, 1− α1 − α3, α3) =
2∑

A,B=0

M(1)
AB α

A
1 α

B
3 =

2∑
A,B=0

M(2)
AB (1− α1)A(1− α3)B

=
4∑

A=0

2∑
B=0

M(3)
AB (1− α1)A(1− α1 − α3)B. (3.6.8)

The expansion reduces the integrals to sums over basic families of integrals Q(i)
ε for i = 1, 2, 3

given and evaluated in Appendix 3.12.4,

c2 W̃[12][34] =
64

4

2∑
A,B=0

M(1)
ABQ(1)

ε (A− 3, B − 3),

c2 W̃[13][24] =
64

4

2∑
A,B=0

M(2)
ABQ(2)

ε (A− 3, B − 3),

c2 W̃[14][23] =
64

4

4∑
A=0

2∑
B=0

M(3)
ABQ(3)

ε (A+ 1, B − 3). (3.6.9)

The results are as follows,

c2 W̃[12][34] =
56

ε2
j2(j + 1)2 +

2

15ε
j(j + 1)(776j2 − 1924j + 273),

c2 W̃[13][24] = −16

ε2
j(j + 1)(j2 + j − 1)− 2

15ε
j(466j3 + 1292j2 − 21j − 487),

c2 W̃[14][23] =
8

ε2
j2(j + 1)2 +

4

3ε
j(j + 1)(29j2 + 119j − 69) (3.6.10)

giving a combined contribution of

c2 W̃1234 =
16

ε2
j(j + 1)(3j2 + 3j + 1) +

4j

3ε
(60j3 − 96j2 − 113j + 7). (3.6.11)

Expanding the parameter α̃ in powers on 1/c,

α̃(ε) = 1 +
1

c

(
ã1

ε
+ ã2

)
+O(c−2), (3.6.12)

setting 〈W̃ε(1)〉 = 1 and collecting all remaining contributions, we find,

ln〈W̃ε(z)〉 = 2j ln z +
12

c
j(j + 1) ln z +

24

c2 ε
j(j + 1)(6j2 + 6j − 8 + ã1) ln z

+
4j

c2
(60j3 − 240j2 − 412j − 76 + 5jã1 + 6jã2 + 2ã1 + 6ã2) ln z

+
12

c2
j(j + 1)(60j2 + 60j − 12 + ã1)(ln z)2 +O(ε). (3.6.13)
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To obtain a finite result, we must cancel the pole in ε and thus set ã1 = 8−6j(j+1). Having

done so, the value of the coefficient of (ln z)2 becomes 24j(j + 1)(27j2 + 27j − 2) and no

further adjustment of Ñ or α̃ is available to cancel this obstruction to the scaling behavior

of (3.5.13) for 〈W̃ε(z)〉.

3.7 Discussion and Outlook

The main result of the paper is the computation of the expectation value of the gravitational

Wilson line to order 1/c3. To deal with the short-distance singularities which arise in the

integrations over stress tensor correlators, we have used a version of dimensional regular-

ization to dimension d = 2 − ε combined with a non-trivial analytic continuation in ε, and

effectively treated the stress tensor as having dimension d = 2 − ε. Renormalization of the

gravitational Wilson line matrix elements consistent with the conformal Ward identities was

found to require, to order 1/c3 included, an overall multiplicative factor N(ε) and a “ver-

tex renormalization” factor α(ε). The multiplicative factor N(ε) depends on ε and j in an

expansion in powers of 1/c. The vertex renormalization α(ε) is independent of j to orders

1/c and 1/c2 but requires dependence on j through its Casimir value j(j + 1) to order 1/c3.

This result suggests that, to sufficiently high order in 1/c, the renormalization of the Wilson

line operator depends on the matrix element considered. Deepening the understanding of

this dependence is left for future work.

From a purely diagrammatic point of view, the emergence of a bi-local conformal primary

operator from the gravitational Wilson line matrix elements appears to be based on the

magic of remarkable relations between contribution at different orders in 1/c. For example,

a simple fact about the anomalous dimension (3.1.4) is that it depends on j only through

the SL(2,R) Casimir eigenvalue j(j + 1). Yet each diagram by itself does produce higher

powers of j which do not form a polynomial in j(j + 1). No regularization scheme appears

to be known in which each contribution is polynomial in j(j + 1).

As a simpler example, we have computed the expectation values of Wilson line operators

of holomorphic currents appearing in theories with level k current algebra symmetry to order

96



1/k3. The computations are relatively simpler in this case but still retain a lot of the features

of the gravitational case. We have also performed a more standard field theoretic perturbative

calculation of the expectation value of a Wilson line for non-holomorphic currents using the

WZW model to order 1/k2. The results of the two approaches are consistent; however the

connection between the two calculations remains to be fully elucidated.

A promising approach towards a more geometrical understanding of the bi-local and

conformal primary nature of gravitational Wilson lines is via Hamiltonian reduction, which

produces Virasoro symmetry from SL(2,R) current algebra symmetry (see [14] for details).

The constraints we need to impose on the SL(2,R) currents Ja(z) are given by J−(z) = k

and J0(z) = 0. Under these constraints, the current algebra Wilson line reduces to the

gravitational Wilson line (with central charge c = 6k)

JaT a −→ L1 +
6

c
L−1 . (3.7.1)

Further, it was shown in [3], that the geometric action can be obtained from the chiral WZW

action by the same reduction. The geometric action is written in terms of the function

f(z) appearing in (3.2.11) and (3.2.12), and is the right object to compute stress tensor

correlators. Note that the same reduction is done in the bulk Chern-Simons theory when

we impose asymptotically AdS boundary conditions. As a consequence, at least formally,

the expectation value of the gravitational Wilson line can be obtained by reduction of the

SL(2,R) current algebra Wilson line∫
Dg e−SWZW[g] W (z) −→

∫
Df e−SG[f ] W (z) . (3.7.2)

All this suggests that understanding the current algebra Wilson line might be sufficient

to understand the gravitational case. However, the transformation from g to f in (3.7.2)

remains formal. Addressing the subtle issues of regularization and renormalization of the

transformation, and the emergence of conformal symmetry, are left for future work as well.

Recently, the connection between the geometric action and AdS3 gravity was carefully

studied in [27]. The authors used the geometric action and certain bi-local operators to

calculate various quantities, such as the sphere and torus partition functions and corrections

97



to Virasoro blocks. The bi-local operators used in [27] are simply the Wilson line operators

we consider (compare equation 6.9 there with (3.2.12) here). It would be interesting to see

if their methods could be used to understand our problem better.

The advantage of our regulator over, for example, the Pauli-Villars type regulator used in

[16] is that it is dimensionless. This greatly constrains the form of the divergences and allows

a simple prescription to subtract divergences. Another natural dimensionless regulator was

considered in section 3.6. Surprisingly, we found that it is not possible to restore conformal

invariance in this case, as we take the regulator away. Understanding why dimensional

regularization is superior might shed some light onto the renormalization problem.

By computing the Wilson line anchored on the boundary, we are computing the boundary

to boundary scalar two point function in AdS3 with graviton loop corrections (up to 3 loops).

A conventional calculation would be quite complicated as we would have to use the bulk to

bulk graviton propagator and involves integrating vertices over all of AdS. The Wilson

line calculation is manifestly holomorphically factorized and needs only one integration per

vertex. This is much simpler. It would be interesting to see if we could reduce the standard

Witten diagram computation to the Wilson line one.

Ultimately, we are interested in finding a formalism that allows us to exploit Virasoro

symmetry to understand non-perturbative gravity corrections in AdS3. We believe that

understanding the renormalized Wilson line better is a step towards this direction.

Appendices

3.8 SL(2,R) representations as functions on unit disk

In the bulk of this paper we based the Wilson line on finite dimensional spin j represen-

tations of SL(2,R). These representations are convenient to work with, but since they are

non-unitary one must analytically continue in j at the end of any computation to obtain

result valid for unitary representations. Alternatively, one can work directly with unitary
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representations, for example by realizing SL(2,R) in terms of functions of the complex vari-

able u defined on the unit disk D = {u ∈ C, |u| < 1}. We write

L1 = ∂u , L0 = u∂u + h , L−1 = u2∂u + 2hu . (3.8.1)

The SL(2,R)-invariant inner product between functions f(u) and g(u) is defined as an

integral over the unit disk D,

〈f |g〉 =

∫
D

d2u

(1− uu)2−2h
f(u)g(u) . (3.8.2)

This is defined to respect the relations L†n = L−n between adjoint operators.

As reviewed in section 3.2, the Wilson line was built on SL(2,R) states obeying

L−1|h; in〉 = 0 , L0|h; in〉 = −h|h; in〉
L1|h; out〉 = 0 , L0|h; out〉 = h|h; out〉 , (3.8.3)

These states therefore correspond to the functions

|hin〉 → u−2h , |hout〉 → 1 . (3.8.4)

The Wilson line is then given by

W [z2, z1] = 〈h; out| exp

{∫ z2

z1

dz(L1 +
6

c
T (z)L−1)

}
|h; in〉 . (3.8.5)

It is easy to see that order-by-order in 1/c this gives the same result as working with spin j

representations and then setting j = −h at the end.

3.9 SL(2,R) matrix elements

In this appendix, we derive a recursion relation for the SL(2,R) group theory factors which

enter into the calculation of the large c expansion of matrix elements of the gravitational

Wilson line operator. The factors of interest are the functions Fn defined by,

z2jFn(z; yn, · · · , y1) = 〈j,−j|ezL1X(yn) · · ·X(y1)|j, j〉 (3.9.1)
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where X(y) = L−1 − 2yL0 + y2L1. Furthermore, |j, j〉 denotes the highest weight state of a

representation of SL(2,R) with finite dimension 2j + 1 ∈ N and thus satisfies L−1|j, j〉 = 0.

Choosing unit norm for |j, j〉 sets F0(z) = 1. To obtain a recursion relation for the matrix

elements Fn we recursively define the states Sn by,

Sn(yn, · · · , y1) = X(yn)Sn−1(yn−1, · · · , y1), S0 = |j, j〉, (3.9.2)

or equivalently Sn(yn, · · · , y1) = X(yn) · · ·X(y1)|j, j〉. Commuting the operators L−1 and

L0 in each X-factor to the right and evaluating the result on |j, j〉 shows that Sn is a linear

combination of states Lk1|j, j〉 with coefficients S
(k)
n ,

Sn(yn, · · · , y1) =
n∑
k=0

S(k)
n (yn, · · · , y1)Lk1 |j, j〉. (3.9.3)

Implementing the recursion relations on the states Sn given by (3.9.2) produces the following

recursion relations on the coefficients S
(k)
n ,

n+1∑
k=0

S
(k)
n+1L

k
1 |j, j〉 =

n∑
`=0

S(`)
n

(
`(`− 2j − 1)L`−1

1 − 2yn+1(j − `)L`1 + y2
n+1L

`+1
1

)
|j, j〉. (3.9.4)

Assuming that j is large enough, namely for n+ 1 < 2j, the states Lk1|j, j〉 for 0 ≤ k ≤ n+ 1

will all be linearly independent. Identifying their coefficients on both sides gives the following

recursion relations for 0 ≤ k ≤ n+ 1,

S
(k)
n+1 = y2

n+1 S
(k−1)
n − 2(j − k)yn+1S

(k)
n + (k + 1)(k − 2j)S(k+1)

n (3.9.5)

where S
(0)
0 = 1 and we set S

(k)
n = 0 whenever k < 0 or k > n. The truncations S

(k)
n = 0 which

arise for n ≥ k > 2j, follow automatically from the recursion relations for j. Finally, we

derive the formula for Fn in terms of S
(k)
n by using the matrix elements 〈j,−j|ezL1|j, j〉 = z2j

and their z-derivatives,

Fn(z; yn, · · · , y1) =
n∑
k=0

Γ(2j + 1)z−k

Γ(2j + 1− k)
S(k)
n (yn, · · · , y1). (3.9.6)

By construction, the combination znFn(z; yn, . . . , y1) is a homogeneous polynomial in the

variables z, y1, . . . , yn of combined degree 2n.
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3.10 Gravitational Wilson line computations

In this appendix we discuss the calculations of the coefficients W1···n and WP required to

evaluate Wε(z) in (3.5.22). The numerator functions Nn are given by (3.5.24) in terms

of the functions Fn computed in Appendix 3.9. They are polynomials in α1, · · ·αn−1 with

coefficients which have simple poles in ε. Their expressions rapidly become lengthy as n

increases, and were handled by MAPLE. The denominator functions DP will be listed below.

3.10.1 Computation of W12 and W123

The denominator functions for n = 2, 3 are given as follows,

D12 = 1, D123 = (1− α2)2−εα2−ε
2 . (3.10.1)

The integration over α1 may be carried out by using the δ-function, and we have,

W12 =
62

2c
N2(1), W123 =

63

c2

∫ 1

0

dα2
N3(1− α2, α2)

α2−ε
2 (1− α2)2−ε (3.10.2)

which leads to the results on the first two lines of (3.5.25). Since N3(1−α2, α2) is polynomial

in α2, the only integrals required to evaluate W123 are of the Euler type given in (3.12.1).

3.10.2 Calculation of W1234

For n = 4 the different partitions give the following denominator functions,

D[12][34] = α4−2ε
1 α4−2ε

3 α2

D[13][24] = (α1 + α2)4−2ε(α2 + α3)4−2ε α2

D[14][23] = α4−2ε
2 α3

D[1234] = α2−ε
1 α2−ε

2 α2−ε
3 α3

D[1324] = (α1 + α2)2−εα2−ε
2 (α2 + α3)2−ε α2

D[1342] = α2−ε
1 (α1 + α2)2−ε(α2 + α3)2−εα2−ε

3 α2 (3.10.3)

where the right column lists a convenient choice of variable to be eliminated with the help

of the δ-function. Since N4 is polynomial in α1, α2, α3, the integrals required to evaluate
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W[12][34],W[13][24] and W[14][23] are of the Euler beta function type of (3.12.1). They may be

readily evaluated and produce the results on the third line of (3.5.25).

The evaluation ofW[1234] proceeds analogously. ForW[1324], however, a set of non-standard

integrals is required. They are denoted by Kε(a, b, c) and are calculated in Appendix 3.12.2.

Similarly, for W[1342] another set of non-standard integrals is required which are denoted

Jε(a, b) and evaluated in Appendix 3.12.1. Here and below, the nature of these non-standard

integrals is dictated by the structure of the denominator functions.

3.10.3 Calculation of W12345

For n = 5 the denominator functions are given by,

D[12][345] = α4−2ε
1 α2−ε

3 (α3 + α4)2−εα2−ε
4 α2

D[13][245] = (α1 + α2)4−2ε(α2 + α3)2−ε(α2 + α3 + α4)2−εα2−ε
4 α3

D[14][235] = (α1 + α2 + α3)4−2εα2−ε
2 (α2 + α3 + α4)2−ε(α3 + α4)2−ε α3

D[15][234] = α2−ε
2 α2−ε

3 (α2 + α3)2−ε α4

D[23][145] = (α1 + α2 + α3)2−εα4−2ε
2 α2−ε

4 α3

D[24][135] = (α1 + α2)2−ε(α2 + α3)4−2ε(α3 + α4)2−ε α4

D[25][134] = (α1 + α2)2−ε(α1 + α2 + α3)2−ε(α2 + α3 + α4)4−2εα2−ε
3 α2

D[34][125] = α2−ε
1 (α2 + α3 + α4)2−εα4−2ε

3 α4

D[35][124] = α2−ε
1 (α1 + α2 + α3)2−ε(α2 + α3)2−ε(α3 + α4)4−2ε α2

D[45][123] = α2−ε
1 (α1 + α2)2−εα2−ε

2 α4−2ε
4 α3 (3.10.4)

The integrals required for the coefficients W[12][345],W[15][234],W[23][145],W[34][125],W[34][125], and

W[45][123] may be reduced to integrals of the Euler type in (3.12.1) using judicious choices of

variables. For example, in W[45][123] we integrate over α3, keep the variable α4, and change

variable from α1, α2 to t, β with α1 = (1−α4)tβ and α2 = (1−α4)t(1−β), so that 0 ≤ t, β ≤ 1.

In terms of these variables, and letting α4 → 1− α4, the integral becomes,

c3W[45][123] =
65

2

∫ 1

0

dα4

∫ 1

0

dt

∫ 1

0

dβ
N5(α4tβ, α4t(1− β), α4(1− t), 1− α4)

α4−3ε
4 (1− α4)4−2ε t5−3ε β2−ε(1− β)2−ε . (3.10.5)
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To evaluate the decoupled integrals we expand the numerator N5 into powers of α4, t, β,

N5(α4tβ, α4t(1− β), α4(1− t), 1− α4) =
4∑

A=0

6∑
B=0

2∑
C=0

αA4 t
B βCMA,B,C (3.10.6)

and use, ∫ 1

0

dα4

∫ 1

0

dt

∫ 1

0

dβ
αA4 t

B βC

α4−3ε
4 (1− α4)4−2ε t5−3ε β2−ε(1− β)2−ε

=
Γ(A− 3 + 3ε)Γ(−3 + 2ε)Γ(C − 1 + ε)Γ(−1 + ε)

(B − 4 + 3ε)Γ(A− 6 + 5ε)Γ(C − 2 + 2ε)
. (3.10.7)

The integrals for the remaining partitions W[13][245], W[35][124], W[14][235], W[25][134] are

closely related to one another. They may be evaluated in terms of nested integrals Lε(a, b, c, f)

computed in the Appendix 3.12.3. For example, in W[13][245] we integrate over α3 with the

help of the δ-function, and change variables from α2 to β = α1 + α2,

W[13][245] =
65

2

∫ 1

0

dα1

∫ 1−α1

0

dα4

∫ 1−α4

α1

dβ
N5(α1, β − α1, 1− β − α4, α4)

β4−2ε(1− α1)2−ε(1− α1 − α4)2−εα2−ε
4

.(3.10.8)

The polynomial N5 is a quadratic in each variable α1, α4, β. Expanding in powers of β, for

fixed α1, α4, we obtain,

65

2
N5(α1, β − α1, 1− β − α4, α4) =

2∑
B=0

βBMB(α1, α4) (3.10.9)

where the functions MB(α1, α4) are quadratic polynomials in α1 and α4. The integral over

β may now be performed term by term in powers of β,

W[13][245] =
2∑

B=0

W
(4)
B −W

(1)
B

B − 3 + 2ε
(3.10.10)

where,

W
(1)
B =

∫ 1

0

dα1

∫ 1−α1

0

dα4
MB(α1, α4)

α3−B−2ε
1 (1− α1)2−ε(1− α1 − α4)2−εα2−ε

4

,

W
(4)
B =

∫ 1

0

dα1

∫ 1−α1

0

dα4
MB(α1, α4)

(1− α1)2−ε(1− α1 − α4)2−εα2−ε
4 (1− α4)3−B−2ε

.(3.10.11)

In the integral for W
(1)
B , we decouple the integrations by changing variables from α4 to

α4 = (1− α1)t, and then perform the integrations using (3.12.1). The evaluation of W
(4)
B is
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considerably more complicated. We expand MB is powers of (1− α1) and (1− α4),

MB(α1, α4) =
2∑

A=0

2∑
C=0

(1− α1)A (1− α4)CM(4)
A,B,C

W
(4)
B =

2∑
A,C=0

M(4)
A,B,C Lε(A− 1,−1, B + C − 2,−1) (3.10.12)

where the family of integrals Lε(a, b, c, f) is defined and evaluated in Appendix 3.12.3.

3.10.4 Calculation of W123456

Finally, the denominator functions for n = 6 are given by,

D[12][34[56] = α4−2ε
1 α4−2ε

3 α4−2ε
5 α4

D[12][35[46] = α4−2ε
1 (α3 + α4)4−2ε(α4 + α5)4−2ε α2

D[12][36[45] = α4−2ε
1 (1− α1 − α2)4−2εα4−2ε

4 α5

D[13][24[36] = (α1 + α2)4−2ε(α2 + α3)4−2εα4−2ε
5 α4

D[13][25[46] = (α1 + α2)4−2ε(1− α1 − α5)4−2ε(α4 + α5)4−2ε α3

D[13][26[45] = (α1 + α2)4−2ε(1− α1)4−2εα4−2ε
4 α5

D[14][23[56] = (α1 + α2 + α3)4−2εα4−2ε
2 α4−2ε

5 α4

D[14][25[36] = (α1 + α2 + α3)4−2ε(1− α1 − α5)4−2ε(α3 + α4 + α5)4−2ε α3

D[14][26[35] = (α1 + α2 + α3)4−2ε(α3 + α4)4−2ε(1− α1)4−2ε α5

D[15][23[46] = (1− α5)4−2εα4−2ε
2 (α4 + α5)4−2ε α3

D[15][24[36] = (1− α5)4−2ε(α2 + α3)4−2ε(1− α1 − α2)4−2ε α4

D[15][26[34] = (1− α5)4−2εα4−2ε
3 (1− α1)4−2ε α4

D[16][23[45] = α4−2ε
2 α4−2ε

4 α5

D[16][24[35] = (α2 + α3)4−2ε(α3 + α4)4−2ε α5

D[16][25[34] = (α2 + α3 + α4)4−2εα4−2ε
3 α5 (3.10.13)

The integrals required for the coefficients W[12][34][56], W[12][35][46] = W[13][24][56], W[12][36][25],

W[13][25][46], W[13][26][45], W[14][23][56], W[15][23][46], W[16][23][45], W[16][24][35], W[16][25][34] may be eval-

uated using judicious variables and the Euler formula of (3.12.1). The integrals required
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for the coefficients W[14][25][36], W[14][26][35], W[15][24][36], W[15][26][34] may be evaluated using the

family of integrals with K2ε evaluated in Appendix 3.12. Putting everything together we get

the result reported in the first line of (3.5.26).

3.11 Calculation of 〈T∞Wε(z)〉

The calculation of 〈T∞Wε(z)〉 is parallel to the calculation of 〈Wε(z)〉 already given. The

expansion of the path ordered exponential (3.5.14) may be organized as follows,

〈T∞W (z)〉 = z2j+2

∞∑
n=0

αn z(n−1)ε TWx1···n(z) (3.11.1)

where the coefficients TWx1···n are independent of z and given by,

TWx1···n(z) =
6n

cn

∫ 1

0

dyn · · ·
∫ y2

0

dy1Fn(1; yn, · · · , y1)〈T∞T n〉x1···n (3.11.2)

where we use the following notation,

〈T∞T n〉x1···n = lim
x→∞

(
x4−2ε〈T (x)T (y1) · · ·T (yn)〉

)
. (3.11.3)

The symbol x used in the subscript to TWx1···n and 〈T∞T n〉x1···n stands for a place-holder

indicating the position of the operator T (x) in the correlator.

The stress tensor correlators are evaluated using the same decomposition into partitions

of one-loop cycles that we have used for the calculation of W1···n, and the relevant correlators

are given as follows. Evidently we have 〈T∞T 0〉x = 0 and 〈T∞T 1〉x1 = c
2
, as well as the

following formula for cycles of arbitrary length n+ 1,

〈T∞T n〉[x1···n] =
c

|y1 − y2|2−ε|y2 − y3|2−ε · · · |yn−1 − yn|2−ε
. (3.11.4)

The correlators we need are as follows,

〈T∞T 3〉x123 = 〈T∞T 3〉[x1][23] + 〈T∞T 3〉[x2][31] + 〈T∞T 3〉[x3][12]

+〈T∞T 3〉[x123] + 〈T∞T 3〉[x132] + 〈T∞T 3〉[x213],

〈T∞T 4〉x1235 = 〈T∞T 4〉[x1][234] + 3 more partitions

+〈T∞T 4〉[x12][34] + 5 more partitions,

〈T∞T 5〉x12345 = 〈T∞T 5〉[x1][23][45] + 14 more partitions. (3.11.5)
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The contribution from a partition P is given by the product of the contributions of all the

cycles in the partition, just as in (3.5.10), but including now also the point x.

The integrals in (3.11.2) may again be simplified with the help of the change of variables

used for W in (3.5.21), and we obtain the following final formula,

TWP =
6n

2p2cn−p

∫ 1

0

dαn−1 · · ·
∫ 1

0

dα1 δ

(
1−

n−1∑
k=1

αk

)
T Nn(α1, · · · , αn−1)

T DP (α1, · · · , αn−1)
(3.11.6)

where p is the total number of cycles in the partition P and p2 is the number of 2-cycles.

The function T Nn is given by,

T Nn(α1, · · · , αn−1) =

∫ 1

0

du u−n+(n−1)ε

∫ 1

u

dxn Fn(1; yn, yn−1, · · · , y1). (3.11.7)

Note that the integrand of T Nn differs in the variable u from the one for Nn used in the

calculation of W . The function T DP is given in terms of the stress tensor correlators by,

〈T∞T n〉P =
cp

2p2
u−(2−ε)(n−1)

T DP (α1, · · · , αn−1)
. (3.11.8)

One of the αk-integrals may be carried out by satisfying the δ-function, so that the number

of non-trivial integrals left over is n− 2.

3.11.1 Calculation of TWx1···n

Since TWx involves the expectation value of a single stress tensor, it vanishes. One also

readily shows that TWx1 = −j. For higher values of n, the expressions for T Nn rapidly

become lengthy and the corresponding calculations have been carried out using MAPLE.

The α-integrals involved are less exotic than the ones that were needed for the calculation

of Wε(z), and may easily be worked out. To orders 1/c and ε the coefficients are given by,

c TWx12 =
12j

ε
− j(18j + 13) +

j

12
(162j + 259)ε,

c TW
(1)
x123 = −6j(j2 + j + 1)

ε
− 2j(5j2 − 4j − 5)− j

3
(74j2 + 128j + 107)ε. (3.11.9)
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To order 1/c2 we have the following contributions,

c2 TW
(2)
x123 = −144j

ε2
+

48j

ε
(9j + 8)− 48π2j

5
(j2 + j − 2)− 8j(36j2 + 144j + 131),

c2 TWx1234 =
24j

ε2
(7j2 + 7j + 8)− 2j

ε
(78j3 − 75j2 + 279j + 274)

−j
6

(1242j3 − 10863j2 − 21717j − 15880)− 16π2j(j2 + j + 4),

c2 TWx12345 = −18j

ε2
(j2 + j + 1)(j2 + j + 3)− 3j

ε
(20j4 − 8j3 + 25j2 − 55j − 59)

−2j(99j4 + 102j3 + 753j2 + 1065j + 622) + 24π2j(j2 + j + 2) (3.11.10)

where TWx123 = TW
(1)
x123 + TW

(2)
x123.

3.12 Non-standard integrals

The most basic integral we use throughout is Euler’s beta function formula,∫ 1

0

dααs−1(1− α)t−1 =
Γ(s)Γ(t)

Γ(s+ t)
. (3.12.1)

Next, we evaluate various non-standard integrals, needed in an expansion in powers of ε.

3.12.1 The Jε(A,B) integrals

The integrals are defined by,

Jε(A,B) =

∫ 1

0

dα

∫ 1−α

0

dβ
αAβB

α2−ε(1− α)2−εβ2−ε(1− β)2−ε (3.12.2)

for integers A,B in the range 0 ≤ A,B ≤ 2. In view of the symmetry of the integration

under the interchange of α and β, we have Jε(A,B) = Jε(B,A), reducing the number of

integrals needed from 9 to 6. We begin by evaluating the following auxiliary integrals,

Ia,b(s, t) =

∫ 1

0

dα

∫ 1−α

0

dβ(1− 2α)a(1− 2β)bαs−1(1− α)s−1βt−1(1− β)t−1 (3.12.3)

for positive integers a, b. Clearly, we have Ia,b(s, t) = Ib,a(t, s) and the integrals Jε(A,B) are

linear combinations of the integrals Ia,b(ε− 1, ε− 1) for various values of a, b. In view of the

identity (1− 2α)2 = 1− 4α(1− α) and its analogue for β, we have the following relations,

Ia+2,b(s, t) = Ia,b(s, t)− 4Ia,b(s+ 1, t),

Ia,b+2(s, t) = Ia,b(s, t)− 4Ia,b(s, t+ 1) (3.12.4)
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allowing us to restrict the range to 0 ≤ a, b ≤ 1. In view of these symmetries and relations,

the remaining integrals may be evaluated using (3.12.1), and we have I1,1(s, t) = 0 as well

as,

I0,0(s, t) =
Γ(s)2 Γ(t)2

2 Γ(2s) Γ(2t)
, I0,1(s, t) =

Γ(s+ t)2

tΓ(2s+ 2t)
. (3.12.5)

Explicit expressions for the required Jε(A,B) in terms of Ia,b(s, t) are given as follows,

Jε(0, 0) = I0,0(ε− 1, ε− 1),

Jε(1, 0) = −1

2
I1,0(ε− 1, ε− 1) +

1

2
Jε(0, 0),

Jε(2, 0) = −I0,0(ε, ε− 1) + Jε(1, 0),

Jε(1, 1) = Jε(1, 0)− 1

4
Jε(0, 0),

Jε(2, 1) =
1

2
I0,1(ε, ε− 1) + Jε(1, 1) +

1

2
Jε(2, 0)− 1

2
Jε(1, 0),

Jε(2, 2) = Jε+1(0, 0) + 2Jε(2, 1)− Jε(1, 1). (3.12.6)

3.12.2 The Kε(a, b, c) integrals

We shall also need integrals of the following form,

Kε(a, b, c) =

∫ 1

0

dα

∫ 1−α

0

dβ (1− α)a−1+ε(1− β)b−1+ε(1− α− β)c−1+ε. (3.12.7)

for several sets of integers a, b, c. Clearly we have Kε(a, b, c) = Kε(b, a, c). We use the identity

(1 − α) + (1 − β) − (1 − α − β) = 1, and integration by parts in α and in β to find the

following formulas,

(a+ b+ c+ 3ε)Kε(a+ 1, b, c) = (a+ ε)Kε(a, b, c) +
1

a+ c+ 2ε
, (3.12.8)

(a+ b+ c+ 3ε)Kε(a, b+ 1, c) = (b+ ε)Kε(a, b, c) +
1

b+ c+ 2ε
,

(a+ b+ c+ 3ε)Kε(a, b, c+ 1) = −(c+ ε)Kε(a, b, c) +
1

a+ c+ 2ε
+

1

b+ c+ 2ε
.

To initialize the recursion relations in all three integers a, b, c it suffices to compute Kε(a, b, c)
at a point in the domain of the variables a, b, c, ε where it is given by a convergent integral.

For example, Kε(1, 1, 1) is given by an absolutely convergent integral for −1 < Re (ε), and
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admits a convergent Taylor expansion in ε around ε = 0. To order ε2, it is given as follows,

Kε(1, 1, 1) =
1

2
− 5

4
ε+

11

8
ε2 +

π2

12
ε2 +O(ε3). (3.12.9)

The expressions for Kε(a, b, c) for the values −1 ≤ a, b ≤ 1 and c = −1 needed for the

evaluation of W[1324] are obtained using the recursion relations through MAPLE.

3.12.3 The Lε(a, b, c, f) integrals

The integrals are defined by,

Lε(a, b, c, f) =

∫ 1

0

dα

∫ 1−α

0

dβ (1− α)a−1+εβb−1+ε(1− β)c−1+2ε(1− α− β)f−1+ε(3.12.10)

for integer values of a, b, c, f . A first pair of recursion relations on the indices a, b, c, f is

obtained by inserting the identities (1− α) + (1− β)− (1− α− β) = 1 and β + (1− β) = 1

into the integrand, while a second set is obtained by evaluating the α and β-derivatives of

the integrand, in each case expressing the result in terms of Lε-functions. We may solve this

linear system to obtain four one-step recursion relations, given by,

ZLε(a, b+ 1, c, f) = (Z − c− 2ε)Lε(a, b, c, f)−R, (3.12.11)

ZLε(a, b, c+ 1, f) = (c+ 2ε)Lε(a, b, c, f) +R,

(a+ f + 2ε)ZLε(a+ 1, b, c, f) = (a+ ε)(Z − c− 2ε)Lε(a, b, c, f) + (Z − a− ε)R,

(a+ f + 2ε)ZLε(a, b, c, f + 1) = −(f + ε)(Z − c− 2ε)Lε(a, b, c, f) + (Z + f + ε)R.

where we have used the following abbreviations,

Z = a+ b+ c+ f − 1 + 5ε, R =
Γ(b+ ε)Γ(c+ f + 3ε)

Γ(b+ c+ f + 4ε)
. (3.12.12)

The recursion relations may be initialized by the absolutely convergent integral Lε(1, 1, 1, 1)

for ε near 0, in an expansion in powers of ε,

Lε(1, 1, 1, 1) =
1

2
− 9

4
ε− π2ε2

12
+

53

8
ε2 +O(ε3). (3.12.13)

The expressions for Lε(a, b, c, f) for the other required values of a, b, c, f are obtained using

the recursion relations through MAPLE.
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3.12.4 Evaluating the integrals Q(i)(a, b) for i = 1, 2, 3

The integrals are defined as follows,

Q(1)
ε (a, b) =

∫ 1

0

dα

∫ 1−α

0

dβ αa−1+εβb−1+ε(1− α)ε(1− β)ε(1− α− β)ε,

Q(2)
ε (a, b) =

∫ 1

0

dα

∫ 1−α

0

dβ αεβε(1− α)a−1+ε(1− β)b−1+ε(1− α− β)ε,

Q(3)
ε (a, b) =

∫ 1

0

dα

∫ 1−α

0

dβ αε(1− α)a−1+εβε(1− β)ε(1− α− β)b−1+ε. (3.12.14)

The integrals are absolutely convergent for ε > −1 and Re (a), Re (b) > −ε. We shall

be interested in evaluating these integrals in a small neighborhood of ε = 0, where they

are absolutely convergent for Re (a), Re (b) > 0. Beyond their ranges of convergence, the

integrals need to be analytically continued.

3.12.4.1 Recursion relations for Q(1)
ε (a, b) and Q(2)

ε (a, b)

The integrals Q(1)(a, b) and Q(2)(a, b) satisfy the symmetry relation,

Q(i)
ε (b, a) = Q(i)

ε (a, b) i = 1, 2. (3.12.15)

To obtain recursion relations for Q(1)(a, b) we consider the following identity,∫ 1

0

dα

∫ 1−α

0

dβ
∂

∂α

(
αa+εβb−1+ε(1− α)1+ε(1− β)ε(1− α− β)1+ε

)
= 0, (3.12.16)

and its β-derivative counterpart, and express the individual contributions in terms ofQ(1)(a, b).

As its turns out, Q(2)(a, b) satisfies the same recursion relations, and we have for i = 1, 2,

(a+ ε)Q(i)
ε (a, b) = (2a+ 2 + 4ε)Q(i)

ε (a+ 1, b) + (a+ ε)Q(i)
ε (a, b+ 1) (3.12.17)

−(a+ 2 + 3ε)Q(i)
ε (a+ 2, b)− (a+ 1 + 2ε)Q(i)

ε (a+ 1, b+ 1),

(b+ ε)Q(i)
ε (a, b) = (2b+ 2 + 4ε)Q(i)

ε (a, b+ 1) + (b+ ε)Q(i)
ε (a+ 1, b)

−(b+ 2 + 3ε)Q(i)
ε (a, b+ 2)− (b+ 1 + 2ε)Q(i)

ε (a+ 1, b+ 1).

The integrals we need (in a short series expansion in ε) are for a, b ≥ −3. The above recursion

relations do not proceed by single-steps, and are considerably more complicated than those
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for the earlier integrals. In particular, they cannot be initialized at a single pair (a, b).

Instead, the above recursion relations allow us to express Q(i)
ε (a, b) for integer a, b ≥ −3 as

a linear combination of Q(i)
ε (a, b) with a ≥ −3 and b ≥ 1. These relations are relatively

involved and were handled with MAPLE.

3.12.4.2 Recursion relation for Q(3)
ε (a, b)

Contrarily to Q(1)
ε (a, b) and Q(2)

ε (a, b), the function Q(3)
ε (a, b) is not symmetric in its argu-

ments a, b. By expressing the vanishing of the integral over partial derivatives with respect

to α and β in terms of Q(3)
ε (a, b), we obtain two recursion relations,

0 = (a+ 1 + 2ε)Q(3)
ε (a+ 1, b+ 1)− (a+ ε)Q(3)

ε (a, b+ 1)

+(b+ ε)Q(3)
ε (a+ 2, b)− (b+ ε)Q(3)

ε (a+ 1, b),

0 = (2b+ 2 + 4ε)Q(3)
ε (a+ 1, b+ 1)− (b+ 1 + 2ε)Q(3)

ε (a, b+ 1)

−(b+ 2 + 3ε)Q(3)
ε (a, b+ 2)

−(b+ ε)Q(3)
ε (a+ 2, b) + (b+ ε)Q(3)

ε (a+ 1, b). (3.12.18)

The last lines of both equations are the only terms whose second argument is b. Adding the

equations eliminates those terms. Shifting the resulting equation by b + 1→ b, shifting the

first equation by a+ 1→ a, and eliminating Q(3)
ε (a+ 1, b) we obtain a formula for Q(3)

ε (a, b)

in terms of functions with second argument b+ 1, and thus a recursion relation in b,

Q(3)
ε (a, b) = Q(3)

ε (a, b+ 1) +
a+ 2b+ 1 + 6ε

(b+ ε)(b+ 1 + 3ε)

(
(a+ 2ε)Q(3)

ε (a, b+ 1)

−(a− 1 + ε)Q(3)
ε (a− 1, b+ 1)

)
.(3.12.19)

Applying this recursion relation, the required quantities Q(3)
ε (a, b), for b = −3,−2,−1, 0 may

be obtained from Q(3)
ε (a, 1), which we evaluate by convergent series.

3.12.4.3 Initializing Q(1)
ε (a, b)

To evaluate the integrals Q(1)
ε (a, b) for a ≥ −3 and b ≥ 1 near ε = 0, we change variables

from α to t by setting α = (1−β)t for 0 ≤ t ≤ 1, expand the factor (1− (1−β)t)ε in powers
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of (1− β)t, and use the Euler relation (3.12.1) to evaluate the decoupled integrals over β, t.

It will be convenient to recast the result as follows,

Q(1)
ε (a, b) =

a∑
k=0

Γ(k − ε)
Γ(−ε) k!

Γ(b+ ε)Γ(k + a+ 1 + 3ε)

Γ(k + a+ b+ 1 + 4ε)

Γ(1 + ε)Γ(k + a+ ε)

Γ(k + a+ 1 + 2ε)
(3.12.20)

−ε
∞∑

k=a+1

Γ(k − ε)Γ(b+ ε)Γ(1 + ε)Γ(k + a+ 1 + 3ε)Γ(k + a+ ε)

k! Γ(1− ε)Γ(k + a+ b+ 1 + 4ε)Γ(k + a+ 1 + 2ε)

where a = max(0,−a). The finite sum is readily expanded in powers of ε. The summand

of the infinite series grows as k−2−b−3ε for large k. Therefore the series converges absolutely

and uniformly in ε for b + 3Re (ε) > −1 which allows for Re (ε) > −2/3 in view of the

assumption b ≥ 1. The region of convergence includes the neighborhood of ε = 0 needed

here, so that the expansion of Q(1)
ε (a, b) is obtained by expanding the series term by term.

3.12.4.4 Initializing Q(2)
ε (a, b)

The expansion for Q(2)
ε (a, b) for b ≥ 1 may be obtained by the same methods and is similar,

but not identical, to the one for Q(1)
ε (a, b). Starting with its definition in (3.12.14), we change

variables from β to t with β = (1− α)t for 0 ≤ t ≤ 1, expand the factor (1− t(1− α))b−1+ε

in powers of t(1− α), and perform the decoupled integrals using Euler’s formula. It will be

convenient to recast the result as follows,

Q(2)
ε (a, b) =

b∑
k=0

Γ(k − b+ 1− ε)
Γ(−b+ 1− ε) k!

Γ(1 + ε)2Γ(k + a+ 1 + 3ε)Γ(k + 1 + ε)

Γ(k + a+ 2 + 4ε)Γ(k + 2 + 2ε)
(3.12.21)

+
∞∑

k=b+1

Γ(k − b+ 1− ε)
Γ(−b+ 1− ε) k!

Γ(1 + ε)2Γ(k + a+ 1 + 3ε)Γ(k + 1 + ε)

Γ(k + a+ 2 + 4ε)Γ(k + 2 + 2ε)

where b = max(b − 1,−a − 1). The summand of the infinite series grows as k−2−b−3ε for

large k and therefore the series converges absolutely and uniformly in ε for b ≥ 1 and ε near

zero. The expansion of Q(2)
ε (a, b) in powers of ε is obtained as it was for Q(1)

ε (a, b).

3.12.4.5 Initializing Q(3)
ε (a, b)

The recursion relation for Q(3)
ε (a, b) is initialized by the value of the integrals Q(3)

ε (a, 1). To

evaluate it, we change variables from β to t with β = (1 − α)t for 0 ≤ t ≤ 1, expand the
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factor (1− t(1−α))ε in powers of t(1−α), and perform the integrals using Euler’s formula.

The result is conveniently presented as follows,

Q(3)
ε (a, 1) =

a′∑
k=0

Γ(k − ε)
Γ(−ε) k!

Γ(1 + ε)2 Γ(k + a+ 1 + 3ε)Γ(k + 1 + ε)

Γ(k + a+ 2 + 4ε)Γ(k + 2 + 2ε)

−ε
∞∑

k=a′+1

Γ(k − ε)
Γ(1− ε) k!

Γ(1 + ε)2 Γ(k + a+ 1 + 3ε)Γ(k + 1 + ε)

Γ(k + a+ 2 + 4ε)Γ(k + 2 + 2ε)
(3.12.22)

where a′ = max(0,−a − 1). The summand behaves as k−3−3ε for large k and the infinite

series is absolutely and uniformly convergent in the neighborhood of ε = 0, and may be

expanded in ε.
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