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ABSTRACT: We present a general two-dimensional model of
conical intersection between metastable states that are vibronically
coupled not only directly but also indirectly through a virtual
electron in the autodetachment continuum. This model is used as a
test ground for the design and comparison of iterative solvers for
resonance dynamics in low-energy electron−molecule collisions.
Two Krylov-subspace methods with various preconditioning
schemes are compared. To demonstrate the applicability of the
proposed methods on even larger models, we also test the
performance of one of the methods on a recent model of
vibrational excitation of CO2 by electron impact based on three
vibronically coupled discrete states in continuum (Renner−Teller
doublet of shape resonances coupled to a sigma virtual state)
including four vibrational degrees of freedom. Two-dimensional electron energy-loss spectra resulting from electron−molecule
scattering within the models are briefly discussed.

■ INTRODUCTION
Despite a long history of investigations (see for example
reviews1−5), the collisions of low-energy electrons with
molecules still represent a fascinating and challenging field of
study. By low energy we mean here the energy below the
electronic-excitation threshold, i.e., the energy that does not
exceed few units of electronvolts. Even these low energies lead
to many interesting phenomena like the appearance of sharp
structures in cross sections5,6 or the possibility to select
dissociation into different anionic fragments by tuning the
energy.7,8 This topic is both interesting for practical
applications9 and challenging for the theory even for small
polyatomic molecules.10−16

In this paper, we will focus on the process of vibrational
excitation in collision of an electron e− with a molecule M
initially in a vibrational state |vi⟩

+ +e M v M e M v( ) ( )i f (1)

mediated by one or several metastable anion states M−. After
the process, the molecule is left in the final vibrational state |vf⟩.
The total energy E during the collision is conserved

= + = +E E Ei v f vi f (2)

where ϵ are electron energies and Ev the energies of vibrational
states of the molecule for the initial and final states before and
after the collision. This process is closely related to the process
of photodetachment of an electron e− from a molecular anion
M−

+ * +M M e M v( ) ( )f (3)

with initial energy E of the system defined now by the energy
of the photon γ shone on the anion to excite it to the state
(M−)*. The dynamics of both of these processes is driven by
potential energy of states of the negative molecular ion and
their widths for decay into electronic continuum channels.17

The energies of the released electrons are sensitive to the
relative position of the anion and the neutral molecular states,
and the selection rules are different than for the radiative
transitions.18−20

The goal of this paper is to advance the detailed theory of
the dynamics of electron detachment from anions in such
processes. In the development of the theoretical methods, we
keep in mind the description of experiments that study in
detail the energies of released electrons,17,21,22 and in
particular, we calculate the two-dimensional electron energy-
loss spectrum (2D EELS) for our model. The 2D electron loss
spectroscopy was pioneered by Currell and Comer23,24 and
further developed by Allan and collaborators.25 To date, a
dozen of high-resolution spectra for different molecules have
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been measured17,25−32 but the detailed understanding of such
spectra for polyatomic molecules is mostly lacking.
In this paper, we present and test a general scheme for

solving the nuclear dynamics of the negative ion formed in the
collision of an electron with a polyatomic molecule. The
scheme is tailored for a class of models that are inspired by the
pseudo-Jahn−Teller model of Estrada, Cederbaum, and
Domcke33 with modifications meant to make it a more
realistic model of real molecules. This approach combines a
model of vibronic coupling of several anionic states expanded
in low-order polynomials in vibrational coordinates close to
equilibrium geometry of the neutral molecule with a
projection-operator approach to include the interaction of
the anion discrete states with the electronic continuum. The
model is rather flexible in adding states and vibrational degrees
of freedom and the present scheme has been used to produce
the results in our previous works on CO2.

34−36 In these papers,
we did not explain the methods and their performance in
detail, a gap that is meant to be filled by this work.
We start the “Theory” section by reviewing the projection-

operator approach to the dynamics of vibrational excitation in
electron collisions with molecules. We then proceed by
reminding the model of Estrada et al.33 and propose its
generalization by including the vibronic coupling through the
electron continuum in addition to the direct vibronic coupling
present in the original model. This section is concluded by
explaining the representation of the wave function components
and the Hamiltonian in a basis constructed from neutral
vibrational states. In “Krylov-Subspace Iteration Methods“
section, we first briefly introduce (the details are in the
Appendix) used iteration methods and preconditioning
schemes, and then we discuss their performance for the
models. The section “Discussion of Resulting Spectra for Test
Models” is devoted to a brief description of the obtained 2D
spectra for the models, and we conclude by summarizing the
results in the “Conclusions” section.

■ THEORY
The vibrational and resonance dynamics in electron−molecule
collisions has been studied theoretically for a long time (see,
for example, one of the review papers2,4,37,38). The direct
brute-force approach is only tractable for small molecules39 or
for small deformations.40 A number of approximate schemes
have therefore been developed: Born approximation, adiabatic-
nuclei approximation, zero/effective range, or semiclassical
approaches. In the present work, we focus on the development
of the numerical schemes for the projection-operator approach
based on the existence of an intermediate anion state (or
states) that is responsible for the coupling of the electronic and
vibrational motion. The approach is often used in its
approximate form�the local complex potential approximation,
but it is known to fail in predicting interesting phenomena like
Wigner cusps or vibrationally excited Feshbach resonances.
The nonlocal approach is well-developed for diatomic
molecules4,41 but the attempts to use it for polyatomic
molecules are scarce (see for example the paper by
Ambalampitiya and Fabrikant42). In addition to bringing
more degrees of freedom, the polyatomic molecules also
exhibit interesting features like vibronic coupling of reso-
nances, conical intersections, and exceptional points.43,44 Here,
we follow the work of Estrada, Cederbaum, and Domcke33

(ECD86) and extend it to more general form of model
functions and vibronic coupling. We start by presenting basic

formulas resulting from the projection-operator formalism (for
comprehensive review of the approach, see the paper by
Domcke4). Then, we narrow the model to two vibrational
degrees of freedom and two vibronically coupled discrete
states.
Nonlocal Model for Multiple Discrete States in

Continuum. The main idea of the nonlocal discrete state in
continuum model is the assumption that the coupling of the
electronic and vibrational degrees of freedom in the electron−
molecule collision is mediated by one or a few discrete states
and after their removal from the electronic continuum using
projection-operator formalism of Feshbach,45 the electronic
basis consisting of the discrete states and the orthogonalized
continuum is diabatic. The vibrational excitation or dissociative
attachment then proceeds through capture in the discrete state.
We define the projection operator

= | |d d
d (4)

as a sum over a set of discrete states |d⟩ and the
complementary operator

= I (5)

projecting on the background continuum. The basis in the
background part can be chosen as the states that solve the
background scattering problem

| = + |V, ( ) ,el 0 0 0 (6)

Here, V0(q⃗) is the potential energy surface of the neutral
molecule, i.e., the energy of the ground electronic state |Φ0⟩ as
a function of the positions of the nuclei q⃗. Since we consider
only low-energy electron scattering below the threshold for the
electronic excitation of the molecule, the state Φ0 is fixed, and
we will further omit it from the notation. The electron
continuum states |ϵμ⟩ are thus uniquely described by the
electron energy ϵ and some other quantum numbers
collectively denoted by μ (typically angular momentum). All
states |d⟩ and |ϵμ⟩ thus form an orthogonal basis

| =d d dd (7)

| =d 0 (8)

| = ( ) (9)

The electronic Hamiltonian in the -space is described by a
matrix

| | = +d d V Uel dd dd0 (10)

where all matrix elements depend on the molecular geometry,
i.e., positions of nuclei q⃗. The diagonal elements Vd(q⃗) = V0(q⃗)
+ Udd(q⃗) represent the diabatic discrete-state potentials and
the off-diagonal part Udd′(q⃗) the direct vibronic coupling
among the states. The coupling between the discrete state |d⟩
and the continuum |ϵμ⟩ is described by the coupling elements

| | =d V q( )el d (11)

These elements represent the vibronic coupling1 between the
discrete state and the continuum, and they also lead to the
second-order vibronic coupling among the discrete states
mediated by the continuum as described below.
This way, we parametrized the matrix elements given by eqs

6, 10, and 11 of the Hamiltonian el for the electron scattering
from the molecule for each fixed position of the nuclei q⃗ by
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functions V0(q⃗), Udd′(q⃗), and Vdϵ
μ (q⃗). To describe the electron

scattering from the molecule including the vibronic dynamics,
we start from the definition of the vibrational states |v⟩ of the
target neutral molecule

| = + | = |H v T V v E v( )N v0 0 (12)

where TN is the kinetic-energy operator for the nuclei and v is a
set of quantum numbers that uniquely determine the
vibrational states with energy Ev. It can be shown (see for
example the review of Domcke4) that the vibronic motion of
the anion is described by the effective Hamiltonian

= + +H H U Fef 0 (13)

which is the matrix in the indices d, d′ and the operator in the
space of vibrational degrees of freedom. In the equation above,
H0 is the Hamiltonian operator for the vibrations of the
molecule multiplied by unity matrix δdd′ in the discrete-state
indices, U is the matrix with the elements Udd′ defined above,
and the operator F describes the dynamical coupling of the
discrete-state space to the electronic continuum

= [ + ]F E H V q E H i

V q

( ) ( )

( )d

dd d

d

0
0

0
1

(14)

where η is a positive infinitesimal. This operator is also a matrix
in the discrete-state indices and a nonlocal operator in the
nuclear coordinate q⃗.
The discrete-state contribution to the T-matrix for vibra-

tional excitation by electron scattering in a continuum state
|ϵi μi⟩ from the initial vibrational state vi to final state vf and
leaving in continuum state |ϵf μf⟩ is given by33

= | [ ] |T v V E H V vv v
dd

f d ef dd d i
1

f f i i f

f

i
i

(15)

and is closely related to the integral cross section for the
vibrational excitation event

= | |T2
v v

i
v v

3
2

f i

i f

f f i i

(16)

Finally, to simulate the full 2D electron energy-loss spectra, we
have to collect vibrational excitation cross sections for all
accessible final states

=S( , ) ( ) ( )i
v

v v i v

f

f i f

(17)

where ρ(ϵ) is the resolution function of the spectrometer
(simulated here with a Gaussian function with full width at half
maximum equal to 10 meV, which is comparable to the values
in the ref 25). The energy loss Δϵv df

= Ev df
− Ev di

= ϵi − ϵf in each
term in eq 17 is fixed by the energy conservation. The function
S(ϵi, Δϵ) gives the full experimental information in the
electron energy-loss spectroscopy except for the angular
resolution that can also be included,36 but it is not of interest
in the present paper.
Pseudo-Jahn−Teller Model of Estrada et al. The model

by Estrada et al.33 assumes a molecule with an Abelian group of
symmetry. They consider two discrete states d = 1, 2 that
transform according to different irreducible representations of
the symmetry group and are coupled vibronically through a
nontotally symmetric vibrational mode qu. They also consider

excitation of another totally symmetric mode qg, so that the
geometry of the molecule within the model is described by a
vector q⃗ = (qg,qu). The symmetry then dictates the structure of
matrix U

=
+

+
U

E q q

q E q

g u

u g

1 1

2 2

i

k

jjjjjjjj
y

{

zzzzzzzz (18)

This is a completely general form of the dependence of matrix
U on coordinates when the terms are restricted up to the first
order in q⃗ and the symmetry requirements are taken into
account. Similarly, we can expand the matrix of the discrete-
state-continuum coupling. For simplicity, we consider only two
partial waves |ϵμ⟩ for μ = e, o, representing one even and one
odd linear combination of partial waves coupled to the
discrete-state space. In principle, we could consider more
partial waves but they could be decoupled from the problem by
a unitary transformation, thus grouping partial waves into
effective channels with the number of channels not exceeding
the dimension of the -space.46 Estrada et al.33 considered the
coupling matrix Vdϵ

μ independent of the nuclear coordinates
(we are going to lift this restriction in the next section). The
symmetry selection rules then forbid the coupling Vdϵ

μ between
the different symmetry of discrete state d and partial wave μ.
We therefore assume that the discrete state d = 1 has even
symmetry as the μ = e partial wave and d = 2 has the symmetry
of the odd partial wave μ = o. Using eq 14, we then see that
only the diagonal matrix elements F11(ϵ) and F22(ϵ) of the
level-shift operator are nonzero. They can be generated from
their imaginary parts (widths)

= = | |F V( ) 2Im 2 e
11 11 1

2 (19)

= = | |F V( ) 2Im 2 o
22 22 2

2 (20)

by means of the integral transform [ ]( )/2ii defined as
(compare eq 14)

[ ] =
+

f
f x
x i

x( )
( )

d
(21)

This transform can be worked out analytically for the assumed
form of the widths

= +a b( ) exp( )dd d
l

d
1/2d (22)

(see Berman et al.47). To complete the model description, we
must give the vibrational Hamiltonian H0 of the neutral
molecule. The model simply assumes harmonic vibrations

= +

= + +

H T V

q q
q q

1
2

1
2

1
2

1
2

N

g
g

u
u

g g u u

0 0
2

2

2

2
2 2

(23)

The vibrational eigenstates |v⟩ satisfying eq 12 with this
harmonic Hamiltonian can be numbered by two quantum
numbers ν = (ng, nu) and the vibrational energies are given by
standard harmonic oscillator formula

= + + +E n n
1
2

1
2g g u u

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

The numerical values of ωi and the parameters defining
direct coupling matrix U and discrete-state-continuum matrix
Ve for the model studied in Estrada et al.

33 and used here for
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testing are given in Table 1 (for dimensionless lengths and
energies in units of eV). Note that several variants of the model

were used by Estrada et al.33 Here, we study only the most
complex form of the model with the values of parameters, as
given in the table. To visualize the character of the model, we
show the one-dimensional sections through the model
potentials in Figure 1. The functions shown are V0(q⃗), Vd(q⃗)

= V0(q⃗) + Udd(q⃗), and the local complex potential
=V q E( ) R

i
Rloc 2
, obtained from the pole of the fixed-

nuclei K matrix, which has to be located iteratively.35 The
perspective view of the local complex potential Re Vloc colored
by values of −2 Im Vloc is also shown in Figure 2.

Generalized Model with Vibronic Coupling with
Continuum States. The vibronic model above assumes the
most simple structure of the discrete-state-continuum coupling
matrix Vϵ = {Vdϵ

μ } with row index d and column index μ

=V
V q V q

V q V q

( ) ( )

( ) ( )

e o

e o

1 1

2 2

i

k
jjjjjj

y

{
zzzzzz

(24)

where =V q( ) /2e
1 11 , =V q( ) /2o

2 22 , and V1ϵo (q⃗) =
V2ϵe (q⃗) = 0. We go one step beyond the approximation of the
coupling matrix by constant terms, and we expand the matrix
to the first order in the normal vibrational coordinates. This
generalization is very useful in the description of the
interaction of resonances through the electronic continuum
that is switched off in the equilibrium geometry but becomes
nonzero with deformation as, for example, in the pyrrole
molecule.48 This feature was also an important ingredient of
the model for the CO2 molecule.

34,35 We will further assume
that the dependence of Vdϵ(q⃗) = f(ϵ)g(q⃗) on the electron
energy ϵ and the normal coordinates is separable. Taking into
account the symmetry of the system, we get

=
[ + ]

[ + ]
V

f q f q

f q f q

( ) 1 ( )

( ) ( ) 1

e
g

o
u

e
u

o
g

1 1 1

2 2 2

i

k

jjjjjjjjj

y

{

zzzzzzzzz (25)

where the terms that couple a discrete state to the partial wave
of different symmetry must be odd functions of qu. We see that
half of the total number of 12 terms (up to first order in q⃗) in
the coupling matrix are zero due to the symmetry. For the
purposes of the testing of the numerical methods, we choose
the same form of the energy dependence as in the original
model

| | = +f a b2 exp( )d d
l

d
2 1/2d (26)

with the values of the parameters given in Table 2.

Using eq 14, we see that the structure of the nonlocal level-
shift operator F(E − H0) is much richer

= + [ ] + + [ ]

= [ ] + + [ ] +

= + [ ] + [ ] +

= [ ] + + + [ ]

F q f f q q f f q

F q f f q q f f q

F q f f q q f f q

F q f f q q f f q

(1 ) (1 )

(1 ) (1 )

(1 ) (1 )

(1 ) (1 )

g
e e

g u
o o

u

u
e e

u g
o o

g

g
e e

u u
o o

g

u
e e

g g
o o

u

11 1 1 1 1 1 1

22 2 2 2 2 2 2

12 1 1 2 1 2 2

21 1 2 1 2 1 2 (27)

Table 1. Values of the Parameters Describing the Pseudo-
Jahn−Teller Model of Estrada et al.33,a

parameter value parameter value

ωg 0.258 ωu 0.091
E1 2.45 E2 2.85
κ1 −0.212 κ2 0.254
λ 0.318
a1 0.086 a2 0.186
b1 0.833 b2 0.375
l1 2 l2 1

aThe dimension of ad is eV1/2−ld (ld is dimensionless), bd are in eV−1,
and the remaining parameters are in eV.

Figure 1. Sections through the potential energy surfaces in the qg = 0
(left) and qu = 0 (right) planes for the ECD86 model. Blue-shaded
areas give the position and width of the fixed nuclei electronic
resonance. See the text for more details.

Figure 2. Perspective view of the potential energy manifold for the
ECD86 model. The width (inverse lifetime) is marked by the color
scale.

Table 2. Values of the Parameters Describing the
Generalization of the Modela

parameter value parameter value

a1e 0.07 a2e 0.1
b1e 0.25 b2e 0.5
l1e 0 l2e 0
a1o 0.186 a2o 0.15
b1o 0.375 b2o 0.8
l1o 1 l2o 1
λ1 0.2 λ2 0.1

aThe dimension of adμ is eV1/2−ld
μ
(ldμ is dimensionless), bdμ are in eV−1,

and the remaining parameters are in eV.
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where we used the integral transform (21) again. The ordering
of the terms that depend on qi with respect to ( ) must be
kept because we substitute the operator ϵ = E − H0, which
does not commute with the normal coordinates. The off-
diagonal terms like F12 and F21 that introduce coupling of the
discrete states through the continuum have been studied
before in the local complex potential approximation (see for
example refs 49−51) among resonances of the same symmetry.
A coupling of resonances of different symmetry requires
dependence on vibrational coordinates. To the best of our
knowledge, our work is the first one to include the full nonlocal
form.
The potentials for the new generalized model are visualized

in Figures 3 and 4. Note that the structure of such conical

intersections in continuum has been investigated by
Feuerbacher et al.43,44 In accordance with their findings, the
potential manifolds shown in Figures 2 and 4 do not intersect
in a single point like regular conical intersections but in a line
segment bounded by two exceptional points, where not only
the real but also the imaginary part of the two potentials is
identical. The form of our model as given by eq 27 is more
general than the expansion investigated by Feuerbacher et
al.43,44 because they studied a linear coordinate expansion of
the width function Γ whereas we prescribe the linear expansion
of the coupling matrix Vϵ, which is more natural for the
subsequent treatment of the dynamics. In our case, the linear
form of the coupling matrix also produces quadratic terms in
widths in eq 27. When the quadratic terms are omitted, we
recover the form used in Feuerbacher et al.43,44 However, we

cannot omit these terms in the dynamics since it would distort
the unitarity of the S matrix.
Numerical Representation of the Dynamics. For the

numerical solution of the dynamics, we expand wave function
components in the harmonic oscillator basis |ν⟩ = |ng, nu⟩
associated with the model Hamiltonian of the neutral molecule
(23). We first rewrite eqs 15 and 16 for the cross section as

= | | |2
v v

i
v v

3
2

f i

i f

f
f

i
i

(28)

where we defined auxiliary wave functions |Φv
μ⟩ with

components

= | |n n V v,d n n
v

g u d, ,g u (29)

and with energy according to the conservation law (2), i.e., ϵ =
E − Ev. The anion wave function |Ψvdi

μi⟩ satisfies

| = |E H( )ef v vi
i

i
i (30)

In the harmonic oscillator basis, this equation represents a
system of linear equations for unknown components of the
discrete-state wave function

= | |d n n,d n n g u v, ,g u i
i

(31)

where we introduced a compound index α ≡ (d, ng, nu). Using
this notation, the matrix of this system Aα,α′ reads

= | |A n n E H n n, ( ) ,g u ef dd g u, (32)

and the scalar product in eq 28 can be written as the sum over
the components of Φα

vfμf and Ψα

| = * *
v v

v

d n n
d n n
v

d n n
,

, , , ,f
f

i
i f f

g u

g u g u

(33)

We cut off the basis in each dimension, keeping the states |ng⟩
for ng = 0,1, ···, Ng−1 and |nu⟩ for nu = 0,1, ···, Nu−1. The states
Ψα are thus represented by N = 2NgNu component vectors and
A is a N × N matrix. Typical values used in the following
calculations, Nu = 100, Ng = 50, result in converged cross
sections, as we checked by varying these parameters.
For the solution of eq 30 in the original model, Estrada et

al.33 devised a specially tailored method based on the block-
tridiagonal structure of matrix A. Our aim in this paper is to
develop a more general method capable of solving a larger class
of models and test it both on the original model and on our
generalization. Matrix A is large but sparse. From the character
of the problem, it is also complex symmetric but not
Hermitian. The structure of matrix A depends on the order
of the basis vectors as illustrated in Figure A1 of the appendix
for the generalized model.

■ KRYLOV-SUBSPACE ITERATION METHODS
The Krylov-subspace iteration methods (see Appendix for
details) are ideally suited for the solution of the system of
equations with sparse matrices, since they are based on
expansion of the solution in the basis produced by repeated
multiplication of the right-hand side b with matrix A. This
matrix multiplication can be coded very efficiently (see
Appendix). In this section, we test two methods: COCG
(Conjugate orthogonal conjugate gradient) method and
GMRES (generalized minimal residual) method well-known
in numerical linear algebra. The following convergence test of

Figure 3. Sections through the model potentials in the qg = 0 (left)
and qu = 0 (right) planes for the new model. See Figure 1 for more
details.

Figure 4. Perspective view of the potential energy manifold for the
new model, colored by the width of the resonance.
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the two iteration methods shows the convergence of the
residuum rn = b − Axn → 0 for the approximation xn of the
solution Ψα in the nth iteration. We discuss the convergence
for different methods in terms of the number of iterations
needed to obtain the residuum on the order of 10−5. The
computational time is not given since it depends on details of
both hardware and software tools used in the calculation, but
as a rule of thumb, we can say that we need tens of minutes on
desktop PC to get one 2D spectrum consisting of hundreds of
energies in the case of the ECD86 model and its generalization
but a computational cluster was needed for the calculation of
the spectrum for CO2. In that case, solving the linear system
took up to 10 h for one initial electron energy on a single CPU
core and, in addition, a large amount of memory (∼20 GB)
was necessary to store the matrix of the preconditioner. Note
that the calculation can be easily parallelized over the initial
energies since the claculations for different initial energies are
independent of each other.
Before discussing the individual tests, we would like to point

out that the essential ingredient of the iteration methods is the
preconditioning. It is based on modification of matrix A →
M−1 A(MT)−1 (see Appendix), where M is easily invertible
approximation to A. In the following, we discuss the
preconditioning by matrix M consisting of the block-diagonal
part of A for different ordering of basis vectors. We show small
blocks Mdg, Mdu, and Mgu of the sizes Nu, Ng, and 2,
respectively, and the larger blocks Md, Mg, and Mu of sizes
Ng Nu, 2Nu, and 2Ng. For technical details, we refer again to the
Appendix.
Numerical Testing. We applied the methods GMRES and

COCG described above to solve system (30) with matrix (32)
for the original ECD86 model and for our generalization of the
model. The performance of each method for different
preconditioning is discussed separately for the two models in
the next two paragraphs. The last paragraph also discusses the
performance of the COCG method for a realistic model that
describes inelastic electron scattering from the CO2 molecule.
Note that the convergence properties (number of iterations)
are independent of the size of the basis (Nu, Ng) used once the
size is large enough to achieve the convergence, although the
computational costs of the single iteration depend on these
parameters.

Performance of the Methods for the ECD86 Model. The
performance is shown in Figures 5 and 6. Each of the figures is
devoted to one of the methods comparing different
preconditioning schemes. The top graph summarizes the
number of iterations needed for convergence for all energies,
and bottom two graphs demonstrate the decrease of the
residuum norm for two selected energies ϵi = 2 and 4 eV. The
different preconditioning methods are shown with different
colors. The curves of the same color correspond to two
different right-hand sides, μi = o, e in eq 30.
Let us first focus on the graphs at the top of Figure 5

showing the performance of the GMRES method. The method
converges rather well (less than 700 iterations) even without
any preconditioning. The convergence is extremely fast below
2 eV (several dozens of iterations) but gets slower above this
energy with maximum around 4 eV. This is related to the
spectrum of the anion. The electron with energy below 2 eV
does not have enough energy to populate vibrational states of
the anionic potential. The process of the electron scattering is
therefore almost elastic, which means that the wave function is
not much perturbed with respect to the initial state used for

starting the iterations. Above this energy, the dynamics is much
richer, which is reflected in the increased number of iterations
needed to reach the converged wave function. For the most of
the energies in the range of interest, the preconditioning

Figure 5. Convergence of the GMRES method for the model of
Estrada et al.33 for various preconditioners. Number of iterations
needed for each electron energy (top) and convergence of residuum
for ϵi = 2 and 4 eV (bottom two panels). The top part shows results
for both right-hand sides μ = e, o of the linear system; the bottom two
parts display just μ = e.
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reduces the number of iterations considerably. The least
efficient preconditioning matrices Mdg and Mgu (overlapping
curves in Figure 5) include only a diagonal portion of matrix A
and are therefore numerically very cheap to implement. The
preconditioner Mdu includes also terms proportional to
coupling constants κ1 and κ2. For the ECD86 model, there
are no terms in matrix A added by increasing the size of the
preconditioner to Md and Mu, and the convergence curves thus

overlap for these three preconditioners. The best results are
obtained with the preconditioning matrix Mg, which has blocks
of size 2Nu × 2Nu and includes terms proportional to λ in eq
18. The convergence of the residuum norm in the lower part of
Figure 5 shows a difference in the behavior of different
preconditioned methods. While the best method with the Mg

preconditioner converges exponentionally for all energies,
there is a kind of plateau in the other methods, and the
iterations without preconditioning can even surpass some
preconditioned methods.
The behavior of the COCG method (Figure 6) is different

in several aspects. The overall number of iterations is
approximately three times larger (for unpreconditioned
iterations), but we have to keep in mind that the COCG
method is much simpler with computational demands constant
over the course of the iterations. For GMRES, the computa-
tional demands for one iteration grow quadratically with the
number of iterations. The COCG method does not have the
minimization property (40). This is reflected in the shape of
the convergence curves (two bottom graphs in Figure 6).
Unlike in similar curves for GMRES, here the residuum can
locally grow, although in general it finally converges to zero.
The efficiency of the different preconditioning schemes is
similar like in GMRES, although for higher energies only the
Mg preconditioner is useful.

Performance of the Methods for the Generalized Model.
The generalized model has a more complicated structure (27)
of the level-shift operator F(E), which is reflected in a more
complicated structure of matrix A; see Figure A1. Surprisingly,
the iteration methods converge more quickly with this matrix.
There are no clear criteria rigorously relating the structure of
the matrix to the speed of convergence. We believe that the
faster convergence here may be related to the fact that operator
F in the generalized model increases diagonal elements of
matrix A. Apart from a little bit faster convergence, the graphs
in Figure 7 for the GMRES method in the new model look
qualitatively similar to those for the ECD86 model. The norm
of the residuum is monotonously decreasing for all methods,
and the preconditioner Mg is again the most efficient. The
individual preconditioners now lead to different convergence
rates because all choices of the diagonal blocks are distinct for
the richer structure of A. The exception is the equivalence of
Mdu and Mu preconditioning. This can be nicely understood
from the structure of matrix A depicted in Figure A1. We see
that the large and small black diagonal boxes in the bottom
right matrix differ by a blank area of zero matrix elements.
The faster convergence for the new model is even more

apparent for the COCG method in Figure 8. Now, all
preconditioning schemes except forMdg andMgu are faster than
direct iterations.
To conclude the numerical experiment section, we add a few

notes on the implementation. Even without utilizing the
structure of matrix A, we have got by 1 order of magnitude
faster calculation of the spectra utilizing the Krylov-subspace
iteration methods as compared to a direct solver. Optimizing
the matrix-vector multiplication using the structure of matrix A
explained at the beginning of the Appendix leads to another
order of magnitude speed up. From the previous examples, we
see that the proper choice of preconditioning leads to the
decrease of the number of iterations needed for convergence
by another 1 order of magnitude for both models and both
methods.

Figure 6. Convergence of the COCG method for the model of
Estrada et al.;33 see also the caption of Figure 5 for details.
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Performance for the Model of e− + CO2. In the final part of
this section, we discuss our earlier work34−36 on the electron
collisions with the carbon dioxide (CO2) molecule in the
context of the present paper. The vibronic coupling model for
the e + CO2 system

35 follows the general approach presented
here in Section “Generalized Model with Vibronic Coupling
with Continuum States”; however, the model is more complex.
We considered the nuclear motion within the full four-

dimensional vibrational space in combination with three
electronic states (2Σg

+ virtual state and two components of
the 2Πu shape resonance), which are coupled upon bending of
the molecule. The Hamiltonian is thus a 3 × 3 matrix in the
electronic space and we did not restrict its elements only to the
first order in the normal coordinates (some of the elements
were expanded up to the fourth order). Additionally, the three
discrete states were coupled to four electron partial waves. The

Figure 7. Convergence of the GMRES method for the generalized
model; see also the caption of Figure 5 for details.

Figure 8. Convergence of the COCG method for the generalized
model; see also the caption of Figure 5 for details.
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vibrational dynamics is described analogously to the scheme
given in Section “Numerical Representation of the Dynamics”
but there are four vibrational indices instead of two. The
vibrational basis was constructed from products of eigenfunc-
tions of 1D harmonic oscillators for symmetric and stretching
modes and eigenfunctions of the 2D harmonic oscillator
expressed in polar coordinates for the two-dimensional
bending mode.
Using the COCG method without any preconditioning, the

number of iterations needed to reach the convergence with the
stopping criterion of 10−3 (sufficient to obtain converged cross
sections) rapidly grows with the electron energy; see Figure 9.
For energies above 3 eV, even 2 × 105 iterations were
insufficient to reach the convergence; therefore, a suitable
preconditioning is essential.

The slow rate of convergence or no convergence at all is
caused by the coupling of the discrete states through the
bending mode. The stretching modes do not affect the
convergence much since we found that the COCG method
converges badly even for the case where we did not consider
the stretching modes.2 Thus, taking a block-diagonal
preconditioner where blocks contain discrete states and two-
dimensional bending was a natural choice. Such a precondi-
tioner is analogous to the preconditioner Mg that performs the
best for the ECD86 model and its generalization. In the case of
CO2, around 200 iterations were sufficient to reach the
convergence for an initial electron energy of 3 eV; see Figure 9.

■ DISCUSSION OF RESULTING SPECTRA FOR TEST
MODELS

It is not the purpose of this paper to study in detail the
calculated spectra and their interpretation. This will require a
detailed analysis of the final-state distribution and shape of the
individual components of the wave function in the coordinate
representation and its relation to the shape of potentials and
also study of the dependence of the results on the model
parameters. It is a quite voluminous work that deserves a

separate paper. We also identify specific molecules that can be
treated with the model of the current setup or a proper
generalization. We already published the generalization of the
model35 needed to describe the resulting spectra for the CO2
molecule34 and performed the detailed analysis36 including the
final-state distribution, the wave functions, and decomposition
of spectra due to the contribution of components of different
symmetry.
In the following, we show and briefly describe the 2D

spectra for the ECD86 model (which were not the subject of
the original paper) and for our new generalization of the
model. We also separate the contribution of the two right-hand
sides in eq 30 corresponding to the gerade and ungerade
symmetry, and finally we study the energy dependence of the
cross section for excitation of the fundamental modes.
2D Spectrum for the ECD86 Model. The calculated 2D

spectrum for the ECD86 model is shown in Figure 10. The

intensity given by eq 17 is plotted as a function of both energy
loss Δϵ and initial electron energy ϵi in a color logarithmic
scale. It is fully converged result, i.e. it is independent of the
method used to calculate it. Interestingly enough, the spectrum
is qualitatively quite similar to the 2D spectrum for the CO2
molecule24,34 in the region of the Πu resonance. The bulk of
the spectrum is located at energies of the incident electron
between 2 and 4 eV. This is a consequence of the shape of the
anion potential manifold (Figures 1 and 2) and its location
relative to the potential of the neutral molecule. The
understanding of the detailed shape is not trivial. For small
electron energy losses, the spectrum is discretized by
vibrational frequencies whose ratio is approximately 3:1. But

Figure 9. Number of iterations needed to solve the Schrödinger
equation for the e + CO2 system using the COCG method without
and with preconditioning. In the latter case, the curve is multiplied by
a factor of 10.

Figure 10. 2D electron energy-loss spectrum for the ECD86 model
(top) and its decomposition to the gerade and ungerade symmetries
(bottom). The intensity of spectrum is shown in a logarithmic scale.
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since this ratio is not exact, the spectrum becomes quasi-
continuous for energies above 1 eV. At the same time, we see
that there is some selection mechanism that singles out
narrower structures close to the diagonal threshold line. There
are also diagonal rays appearing in the structure of the
spectrum (better apparent in the decomposition of the
spectrum according to symmetries). Both of these features
were present in the case of CO2, where we performed the
detailed analysis.36

2D Spectrum for a New Model. We proposed the new
model above to consistently introduce the vibronic coupling in
the level-shift operator in the ECD86 model and to test the
iteration schemes to solve the dynamics in this model. The
choice of the model parameters was guided by our experience
with the diatomic molecules but apart from that, the choice is
completely random. To our surprise, the resulting spectrum
(see Figure 11) has a quite interesting intricate structure,

which is furthermore similar to experimental data for some
molecules, like benzene and its derivatives.52 Particularly, we
are talking about the wedge-shaped structure marked in Figure
11. The origin of this structure is not clear and since it is quite
common in experimental data, we will dedicate the future
study to this phenomenon. It indicates some selection
mechanism in the dynamics that forces the system to skip
through a region with small energy losses to large losses.52

Vibrational Excitation Integral Cross Sections. To
better understand the role of the conical intersection in the
vibrational excitation process, we show the individual cross

sections σvdf ← vdi
for the elastic channel vf = (0, 0) and for the

excitation of one quantum of the two modes, vf = (1, 0) and (0,
1) as the function of the initial electron energy ϵi in Figure 12.

Further, we tested the effect of the off-diagonal couplings F12
and F21 of the discrete states through the continuum on the
dynamics. The dashed curves in Figure 12 are the results of the
calculation where these two terms were switched off by setting
the parameters a1o and a2e (see Table 2) to zero. First of all, we
observe that the nonlocal coupling has a little effect on the
elastic cross section except for the energies in the vicinity of
the position of the conical intersection (around 2.5 eV), where
the presence of this additional coupling terms increases the
cross section by ∼30%.
The data nicely reflect the fact that the discussed coupling

terms are proportional to the coordinate qu of the nontotally
symmetric mode and thus have a larger influence on the
excitation of the ungerade mode vf = (0,1). The cross section
from the fully coupled model for this state peaks around ϵi =
3.0 eV, while the dashed curve exhibits a triple maximum close
to ϵi = 2.3 eV, which can be understood by examining the
width of the adiabatic states. The width of the upper branch of
the conical intersection gets wider as the coordinate qu
increases (see the left panel of Figure 3), while the width
nearly vanishes in the lower branch close to the intersection.
This enhances the cross section of the (0,1) excitation above
the intersection energy of 2.5 eV and suppresses it below this
point. The width on the lower branch gets broader again close
to the crossing with the potential energy surface of the neutral
state, which is reflected by the fact that the cross section for the
full calculation again exceeds the dashed curve at small
energies. Also note that the potential energy curves of the
limited model (not shown) are very similar to those of the
original ECD86 model (see Figures 1 and 2). The peaks close
to ϵi = 2.3 eV in the dashed blue curve can thus be traced to
the minima in the potential energy surface of the anion similar
to those in the left panel of Figure 1.

Figure 11. Same data as in Figure 10 but for the new model. The
black dotted lines in the top figure indicate a triangle containing the
feature discussed in the text. This feature extends between the
horizontal and diagonal lines almost all the way toward zero energy
loss.

Figure 12. Integral cross sections for the elastic channel and the
excitation of the two vibrational modes. The dashed curves are the
data for a model with the off-diagonal coupling though the continuum
switched off.
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In contrast to this behavior, the cross section for the
excitation of the symmetric mode (1,0) is not very sensitive to
the presence of the additional terms, and both the solid and
dashed curves follow the same behavior with similar
magnitudes.
We expect that the off-diagonal coupling will be even more

important for the behavior of the differential cross sections
because the involvement of different partial-wave components
of the electron continuum in the matrix of the coupling
amplitudes Vϵ is subjected to selection rules, as discussed
above. Each partial wave contributes to the angular depend-
ence of the differential cross section in a different way as we
discussed in detail for the CO2 molecule.

34−36 In this series of
papers, we found that the detailed analysis of the spectra and
differential cross sections requires also the investigation of the
wave functions and the variation of various parameters of the
model. This goes beyond the scope of this paper, which
focuses on the derivation and numerical solution of the model.
However, it will be the subject of a future study that will focus
on the interpretation of 2D EELS spectroscopy in terms of the
potential energy curves of the discrete states and their widths
and couplings to different continuum channels.

■ CONCLUSIONS
We derived a generalization of the model of conical
intersection in electronic continuum proposed originally by
Estrada et al.33 by including terms linear in the vibrational
coordinates also in the term that couples the two discrete states
of the original model to two partial waves of the electronic
continuum. The generalization thus produces linear and
quadratic terms in the nonlocal level-shift operator F(E) that
describes the dynamics of the vibrational excitation of the
molecule by collision with an electron. The dependence on the
nontotally symmetric vibrational coordinate also allows
indirect coupling of the two discrete states of different
symmetries through the electron continuum.
To solve the vibronic dynamics, we implemented two

Krylov-subspace iteration methods, GMRES and COCG,
which are ideally suited for this kind of model that produces
a sparse-matrix representation of the Schrödinger equation.
Essential for the efficiency of these methods is the choice of a
suitable preconditioner. We tested both methods in detail, and
we provided guidelines for the choice of the preconditioner.
We also briefly analyzed the resulting two-dimensional

electron energy-loss spectra and the energy dependence of the
integral cross sections. These spectra exhibit a surprisingly
complex structure, and their full understanding will require a
more detailed study with the inspection of the wave functions
and perhaps also time-dependent calculations. Here, we show
that the separation of the contribution of different irreducible
representations to the dynamics disentangles the complex
pattern to some degree. Another insight was gained by
inspection of the energy dependence of cross sections for some
final states. The elastic cross section and the excitation of the
symmetric mode are not very sensitive to the presence of the
indirect coupling through the continuum except in the vicinity
of the energy of the conical intersection. On the other hand,
the excitation of the nontotally symmetric vibrational mode is
strongly influenced by this coupling. This aspect may be
important for many molecules with a nontrivial symmetry
group.
We believe that the methods tested here can be used for

more complicated molecules to get a better understanding of

the 2D electron energy-loss spectroscopy. We plan a more
extensive parameter study to obtain a deeper understanding of
the results. The proposed method is conceptually simple and
can be further generalized in a straightforward way to include
more anion states, more vibrational degrees of freedom, and
higher-order polynomial functions. A more challenging
generalization will be needed to also include dissociative
channels and anharmonicity of the neutral molecule.

■ APPENDIX

Details of the Computational Methods
The Krylov-subspace iteration methods (see for example
monographs53,54) are well-suited for solving eq 30. The main
idea of all of the Krylov-subspace methods is that they solve a
linear system

=Ax b (34)

iteratively producing a sequence x0, x1, x2, ···, xn of
approximations of the solution vector x in the Krylov-subspace,
i.e., in the space

= { }A r r A r A r( ; ) span , Ar , , ...,n
n

0 0 0
2

0
1

0 (35)

where r0 = b − Ax0 denotes the initial residual vector. The
methods differ by the definition of the ”ideal” approximation of
the solution xn within the Krylov subspace and usually proceed
by application of simple recursive formulas. To produce the
Krylov subspace, we only need to implement the matrix
multiplication Aw for an arbitrary vector w. The choice of the
harmonic basis is very convenient for the implementation of
this matrix multiplication. From eqs 13, 18, and 27, we can see
that the multiplication by matrix A can be decomposed to
successive multiplications by energy-dependent diagonal
factors, for example

[ ] =E H w E E w( ) ( )n n d n n0 , , ,g u g u (36)

[ ] =E H w E E w( ) ( )n n d n n0 , , ,g u g u (37)

and by operators of the coordinates qg and qu
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g u g u (38)

These operations can be implemented very efficiently. Note
that all energy factors and square roots can be precalculated
and stored before starting the iteration process. Compared to a
matrix-vector multiplication, which requires O(N2) operations
for full matrices, the above procedure requires only O(N)
operations (with the operation count being approximately
three times larger for the generalized model due to a more
complicated structure of the operator F). The efficiency of the
method of solution of eq 30 is then given by the rate of
convergence of the sequence xn to the solution, which is
judged by monitoring the size of the norm of the residuum
∥rn∥ = ∥b − Axn∥. In the following tests, we stop the iterations
when the value ∥rn∥ < 10−5 ∥b∥ is reached.
Methods of Interest
Saad and Schultz55 developed the generalized minimal residual
(GMRES) method, one of the most widely used Krylov-
subspace methods. This method constructs an orthonormal
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basis v1, v2, ···, vn of the nth Krylov subspace A r( ; )n 0 using
the Arnoldi algorithm that can be written in the matrix form as

= = [ | |···| ]+AV V H V v v v,n n n n n1 1 2 (39)

where + ×Hn
n n( 1) is an upper Hessenberg matrix. The

approximation xn of the solution in each step is given by the
condition that the residual vector rn = b − Axn satisfies the
optimality property

=
+

r b Axminn
x x A r

n
( ; )n n0 0 (40)

If we write xn = x0 + Vnyn, this condition leads to the (n + 1) ×
n least-square problem for yn

= || || || ||y r e H yarg min ( )n
y

n0 1
n (41)

which has to be solved in every iteration.
An advantage of the GMRES method is that it can be used

for any matrix A with no other special properties required than
the regularity. On the other hand, each new basis vector at
every iteration step has to be orthogonalized to all previous
vectors. Thus, the size of the matrix Vn grows during the
iteration process and if the method does not converge quickly,
the storage space and the time needed for each step grow
significantly. Note that matrix A of our system of equations is
complex-symmetric (i.e. not Hermitian). For this reason, the
conjugate gradient method (which, unlike the GMRES
method, uses short-term recurrences to construct the basis of
the Krylov subspace, making it much less computationally
demanding) cannot be used to solve it. It is known56 that for
nonnormal matrices, it is not possible to define an “optimal”
iterative process (i.e. a process that minimizes the residual or
certain norm of the error over the Krylov subspace) that
constructs the basis of Krylov subspace using short-term
recurrences.54 For complex symmetric matrices, van der Vorst
and Mellisen57 presented an alternative way to define an

iterative process based on three-term recurrences and derived
the conjugate orthogonal conjugate gradient (COCG)
method. Setting v0 = r0 = b−Ax0, the basis of the Krylov
subspace is constructed using the recursive formula

= + ++v Av v vn n n n n n1 1 (42)

where αn and βn follow from the conditions ⟨vn+1|vn⟩S = 0 and
⟨vn+1|vn−1⟩S = 0. These conditions are analogous to those that
define the conjugate gradient method, in which, however, we
have replaced the standard scalar product with the
symmetrized bilinear form

| = *|a b a b a b, ,S
N

(43)

Note that the complex conjugation in the left argument cancels
the complex conjugation in the standard definition of the scalar
product. The bilinear form ⟨·|·⟩S is not therefore positive-
definite but it preserves the symmetry of matrix A. This process
ensures that vectors v0, v1, ···, vn satisfy the conjugate
orthogonality property (vectors a b, N are conjugate-
orthogonal if ⟨a|b⟩S = 0). The whole iterative process is thus
analogous to the conjugate gradient method but the
convergence after N steps (N being the dimension of matrix
A) is not guaranteed in the exact arithmetic. In addition, the
iterations do not have to converge at all since the symmetrized
product can be zero (or very small) even for nonzero vectors.
In practice, however, the convergence is usually achieved.
Moreover (especially with proper preconditioning), it is often
rather fast.
Preconditioning
In this paper, by preconditioning we understand the trans-
formation of the original linear system Ax = b into an
equivalent problem (see for example the paper by Saad53)

= =M A M y M b y M x( ) , forT T1 1 1
(44)

Figure A1. Structure of matrix A of the generalized model depending on the ordering of the basis, where the order is given by three letters d, g, and
u representing the discrete states and vibrational modes qg and qu. The first index changes the fastest. The size of the matrix elements is represented
by the color in a logarithmic scale. The block-diagonal parts used for preconditioning are shown by the squares. The size of the basis for this
visualization is Nu = 9, Ng = 5, for clarity, i.e., much smaller than in the actual calculations
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with a regular matrix M. This way, the preconditioning
preserves the symmetry of matrix A. As a rule of thumb, a good
preconditioner M is represented by some fast invertible
approximation of the original matrix A, but there are no
exact guidelines for choosing the ideal matrix M ensuring a fast
convergence for the transformed problem. There is a large
variety of preconditioners known in the literature but usually
they are proposed for specific problems with matrices A having
some special properties. We tested some of the precondition-
ing options but we found that the most simple methods work
best for the present problem;58,59 see footnote3. In the
following, we discuss different possibilities of block-diagonal
preconditioning. For this choice, we define the matrix M as a
block-diagonal section of the original matrix A. Depending on
the structure of the blocks, the individual blocks can either be
inverted directly to construct M−1 or a banded structure of the
blocks can be used. The exact structure of the blocks depends
on the ordering of the basis (see Figure A1). We thus define
three different preconditioners Mdg, Mgu, and Mdu with small
diagonal blocks of sizes Nu × Nu, 2 × 2, and Ng × Ng,
respectively, and three preconditioners Md, Mg, and Mu with
large blocks of sizes NgNu × NgNu, 2Nu × 2Nu, and 2Ng × 2Ng.
To be more specific, in the (dug) ordering of the basis
functions, the small-block preconditioning matrixMug has NuNg
blocks M(nu,ng) of the size 2 × 2 with the matrix elements

=M Ad d
n n

d n n d n n,
( , )

( , , ),( , , )
u g

g u g u (45)

and the large-block preconditioning matrix Mg has Ng blocks
M(ng) of the size 2Nu × 2Nu with the matrix elements

=M Adn d n
n

d n n d n n,
( )

( , , ),( , , )u u

g

g u g u (46)

To apply the preconditioning, we need to act with M−1 on a
vector w with components wd,ndg,n du

. This can be done block by
block; for example, to apply the preconditioner Mu, we invert
each block M(nu) using the LLT (or LDLT) decomposition and
act on the section of wd,ndg,n du

vector for this fixed nu

[ ] = [ ]M w M wn
d n n

d n

n
dn d n d n n

( ) 1
, ,

,

( ) 1
, , ,

u
g u

g

u
g g g u

(47)

This is repeated for each nu. Note that the inverting of the
preconditioning matrices M(nu) should be done just once and
stored before starting iterations. Moreover, in practice, the L
(and D) matrix is stored in memory instead of M(nu)−1.
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■ ACKNOWLEDGMENTS
The authors acknowledge the financial support provided by the
Czech Science Foundation Project (GAČR) No. 19-20524S
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■ ADDITIONAL NOTES
1Note that we consider Vdϵ

μ to be real quantities. This is a
reasonable assumption since the coupling can be made real for
a single q⃗ by phase conventions and the dependence on q⃗ is
supposed to be weak (diabaticity of the basis).
2We can easily freeze a vibrational mode by considering only
the ground state as the basis within this mode and setting all
relevant model parameters to zero.
3In these references, we also discussed some other methods of
solution not discussed here.
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