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SUMMARY5

We present new numerical tools for geophysical inversion and uncertainty quantification6

(UQ), with an emphasis on blocky (piecewise-constant) layered models that can reproduce7

sharp contrasts in geophysical or geological properties. The new tools are inspired by an8

“old” and very successful inversion tool: regularized, nonlinear inversion. We combine Oc-9

cam’s inversion with total variation (TV) regularization and a split Bregman method to10

obtain an inversion algorithm that we call blocky Occam, because it determines the block-11

iest model that fits the data adequately. To generate a UQ, we use a modified randomize-12

then-optimize approach (RTO) and call the resulting algorithm RamBO (randomized blocky13

Occam), because it essentially amounts to running blocky Occam in a randomized parallel14

for-loop. Blocky Occam and RamBO inherit computational advantages and stability from15

the combination of Occam’s inversion, split Bregman and RTO, and, therefore, can be ex-16

pected to be robustly applicable across geophysics.17

Key words:18

Marine electromagnetics; inverse theory; Bayesian inference19
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1 INTRODUCTION20

Some geophysicists are lucky, and maps or images of their data carry meaningful information21

that is directly interpretable in terms of geological structure. Examples include maps of the22

gravity or magnetic field and seismic or radar reflection profiles. Those of us who work with23

electromagnetic (EM) methods are not so lucky, and from the beginning have had to use some24

sort of inverse method to extract models of electrical resistivity from otherwise obscure data25

(e.g. Parker (1970); Inman et al. (1973)). Of course, other geophysicists use inverse methods26

also, particularly those who seek the seismic velocity structure of the mantle, but as Sven Treitel27

(personal communication) pointed out, the electromagnetic community has made significant28

contributions to inverse methods because it needs them more than most.29

Model space is infinite, even for a one-dimensional resistivity function of depth, yet data are30

both finite and noisy. This means that the inverse problem is under-determined and ill-posed, and31

also non-unique; if one solution fits the data then an infinite number will. Early approaches to32

tackling these problems were to reduce the size of model space by inverting for the resistivities33

and thicknesses of a small number of layers (Inman et al. 1973) or by solving for averages over34

some kind of resolving kernel (Parker 1970). These early approaches had three problems: (i) the35

solutions depend on a priori choices; (ii) too many layers lead to instability; and (iii) nonlinear36

inversions had to be started fairly close to a solution.37

The introduction of a smoothing regularization algorithm called Occam’s inversion (Con-38

stable et al. 1987) solved all of these problems. Occam’s inversion collapses the infinite solution39

space onto a single, useful solution, by searching for the “smoothest model” that fits the data ad-40

equately. The result is a remarkably stable algorithm that is largely independent of the number of41

layers (i.e., using “too many” layers is not a problem) or initial guess (a half-space is sufficient42

and indeed desirable). Occam’s inversion was introduced for one dimensional (1D) problems,43

but it was readily scaled up to 2D (DeGroot-Hedlin & Constable 1990) and 3D (Siripunvaraporn44

& Sarakorn 2011) geometries.45

Smooth regularized inversion as introduced by the Occam algorithm has become ubiquitous46

in geophysics, but it has its problems.47
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(i) If Earth’s resistivity structure is not smooth, then Occam’s inversion can produce artifacts48

in the model and a bias in estimated depth of structure. This is not an “academic” problem49

– sharp resistivity contrasts can occur in the real world, such as edges of sedimentary basins,50

faults, and many other geological structures. This “Gibbs type” phenomenon (Gibbs 1899) of51

Occam’s inversion has been known since the introduction of the algorithm, but to the best of52

our knowledge never documented in print (see Section 2.1 for more detail).53

(ii) Creating a uniquely smoothest model makes it extremal. The resistivity contrasts are the54

minimum required to fit the data, not the most likely. A bounded model can be useful in many55

circumstances, but sometimes the best estimate of the actual rock resistivity is what is wanted,56

say for a porosity estimate.57

(iii) It is difficult to compute and uncertainty quantification (UQ) associated with the inver-58

sion. The method currently in vogue, Markov chain Monte Carlo (MCMC), must resort to using59

sparsely parameterized models in order to force stability and limit computational cost (see, e.g.,60

Malinverno (2002); Blatter et al. (2021) for applications of MCMC in EM geophysics).61

We create new computational tools that inherit all benefits of Occam’s inversion but that62

can recover sharp resistivity contrasts, generate a UQ, and give an estimate of the most probable63

models. We first consider a single inversion (no UQ) and search for a blocky model by swapping64

the smoothing regularization for a Total Variation (TV) regularization (Rudin et al. 1992). TV65

regularization had great successes in image deblurring and compressed sensing, and we incor-66

porate it into a nonlinear Occam-style inversion which we call “blocky Occam.” Blocky Occam67

follows the tried and true recipe of an Occam’s inversion. We linearize around the current model68

and obtain a linear TV-regularized problem. We then adjust the regularization strength to mini-69

mize misfit of the nonlinear model. These steps are iterated until convergence and once a target70

RMS is reached, we choose the largest regularization strength that achieves the desired target71

RMS (searching for the blockiest model that fits the data). Key to success here is our use of the72

split Bregman method (Goldstein & Osher 2009) to solve the linearized TV-regularized prob-73

lem at each iteration. Split Bregman is one of the fastest methods to solve linear TV-regularized74

inverse problems, but it has not been used within iterative, nonlinear inversion.75

We equip blocky Occam with a UQ via a modified “randomize-then-optimize” (RTO) ap-76
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proach. RTO generates a UQ by repeatedly solving perturbed inverse problems and RTO has77

been used for decades under various names in various fields. In short, the RTO implies that78

we can re-purpose blocky Occam for UQ, by essentially running blocky Occam in a parallel79

for-loop on perturbed inverse problems. We call the resulting algorithm RamBO (randomized80

blocky Occam).81

Blocky Occam and RamBO are built on the robust framework of Occam’s inversion and,82

for that reason, inherit very desirable numerical characteristics:83

(i) the initial guess can be far from the solution and the optimization is stable (all numerical84

experiments start with a half-space, just as classical Occam’s inversion);85

(ii) the use of too many layers is inconsequential because the TV regularization suppresses86

unnecessary features;87

(iii) the iteration converges quickly so that computations are manageable (convergence is88

comparable to classical Occam’s inversion);89

(iv) the algorithms are largely tuning-free.90

Both RamBO and blocky Occam linearize the model and require that the Jacobian of the model91

is computable, either via adjoints or automatic differentiation. RamBO inherits additional com-92

putational efficiency from the RTO approach, so that very few samples (50 or so) are sufficient93

to obtain a reliable UQ (Blatter et al. 2022a,b), doing away with randomized and expensive94

searches characteristic of (trans-dimensional) MCMC.95

The rest of this paper is organized as follows. Section 2 reviews background materials on96

Occam’s inversion, randomize-then-optimize, the search for blocky models and split Bregman97

for linear TV regularized inversion. Blocky Occam and RamBO are explained in detail in Sec-98

tions 3 and 4. The use of blocky Occam and RamBO is illustrated on two EM data sets (Consta-99

ble et al. 1984; Gustafson et al. 2019) in Section 5, where we also compare the new inversions100

and UQ to Occam’s inversions and UQs obtained via trans-dimensional MCMC (Malinverno101

2002; Blatter et al. 2019). We end the paper with a summary of conclusions in Section 6.102
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2 BACKGROUND103

Regularized inversion remains the standard method for solving geophysical inverse problems.104

The basic idea is to define and subsequently optimize a cost function that combines data misfit105

and model regularization (see, e.g., Parker 1994). To set up the notation, we denote the data by106

the nd-dimensional vector d, the unknown model parameters (e.g. resistivities) of a discretized107

model are stored in the nm-dimensional vector m and the forward model that predicts the data108

(usually a sophisticated computer code) is denoted by F(m). Errors associated with the data109

are stored in a nd × nd (diagonal) matrix W (reciprocal error weights). A typical cost function110

can now be written as111

C(m) = ∥W (F(m)− d)∥2 + µ ∥Dm∥2 , (1)

where D is a finite differencing matrix and where two vertical bars denote the ℓ2-norm of a vec-112

tor, i.e., ∥x∥2 =
√∑

i x
2
i . Throughout, we will refer to the first term of the cost function as the113

“data-misfit” and the second term as the “regularization.” The “strength” of the regularization114

is controlled by the scalar µ > 0.115

2.1 Occam’s inversion116

Occam’s inversion (Constable et al. 1987) is an iterative algorithm that has been used for117

decades for regularized inversion. During the iteration, Occam’s inversion adjusts the regular-118

ization strength µ and finds the smoothest model that fits the data – the quadratic regularization119

term favors smooth models. The iteration of Occam’s inversion is as follows. At step k, the120

model is mk and we approximate the forward model via Taylor expansion:121

F(mk+1) ≈ F(mk) + Jk(mk+1 −mk), (2)

where Jk = ∂F/∂m is the Jacobian matrix, evaluated at mk. Using the linearization in (1),122

yields a quadratic cost function for mk+1123

C(mk+1) =
∥∥∥W (Jkmk+1 − d̂)

∥∥∥2

+ µ ∥Dmk+1∥2 , (3)

where124

d̂ = d−F(mk) + Jkmk, (4)
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is “a kind of data vector” that accounts for errors due to linearization. We can easily optimize the125

quadratic function (least squares) to find mk+1 and we do so for various regularization strengths126

µ. Once a regularization µ is selected, the process repeats until the iteration converged. During127

the iterations, we choose µ to minimize root mean squared error (RMS)128

RMS =
1
√
nd

∥W (F(m)− d)∥ , (5)

associated with the nonlinear model F(·). Once the iteration reached a target RMS, we chose129

the largest µ that achieves the target RMS. A good choice for a target RMS is one or slightly130

larger. Some implementations of Occam’s inversion, e.g., MARE2DEM (Key 2016), include a131

“fast Occam” option which dispenses with the line search minimization and accepts any µ that132

decreases misfit at a given iteration.133

We monitor convergence of Occam’s inversion via the “model roughness,” i.e., we stop the134

iteration (and declare convergence), when135

∆R =
∥Dmk+1∥ − ∥Dmk∥

∥Dmk∥
≤ tol., (6)

where tol is a small number (usually 10−2 or so).136

2.1.1 Gibb’s phenomenon in Occam’s inversions137

If smooth inversions are carried out for models that have sharp changes in resistivity one ob-138

serves a Gibbs type phenomenon (Gibbs 1899), in which the regularized inversion overshoots139

the resistivity jump. We illustrate this Gibbs phenomenon with a simple synthetic model study140

in which MT data with various error levels are inverted for a jump in resistivity (see Appendix A141

for details). The resulting models are displayed in Figure 1(a), showing that once the error is142

below 10% an overshoot develops on both sides of the resistivity jump, but more so on the re-143

sistive side (something that persists if the layers are swapped to make the top layer resistive).144

There is the danger that for more complicated models the spurious peaks in resistivity could145

be interpreted as real structure. Taking the midpoint of the resistivity change in the regularized146

models over-estimates the depth of the resistivity jump by about a factor of 2. We can verify that147

smooth inversions recover smooth models without such artifacts. In Figure 1(b) the step func-148
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Figure 1. Inversion of synthetically generated MT data with various levels of noise added. (a): Occam’s

inversions of a step increase in resistivity (“truth”, black). (b): Occam’s inversions of a smooth (sigmoid)

increase in resistivity. (c): Blocky Occam’s inversions of a step increase in resistivity. (d): Blocky Oc-

cam’s inversions of a smooth (sigmoid) increase in resistivity.

tion is replaced with a sigmoid function. No overshoot is observed as the error level is reduced,149

and all except inversions of the most noisy data recover the model faithfully.150

We ran the same inversions using “blocky Occam,” as described below, with results shown151

in Figure 1(c)-(d). Blocky Occam improves depth estimation without producing unreliable re-152

sults for the smooth model and practically eliminates the Gibbs phenomenon. The synthetic153

tests further illustrate that blocky Occam can capture smooth transitions when needed (see Fig-154

ure 1(d)).155
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2.2 Uncertainty quantification via randomize-then-optimize156

The popular approach to uncertainty quantification (UQ) is via Bayes’ theorem, which states157

that158

p(m|d) ∝ p(d|m)p(m), (7)

where p(m|d) is the probability of the model given the data (the posterior probability), p(m) is a159

prior probability of the model (often taken to be Gaussian), and where p(d|m) is the likelihood,160

connecting the model m to the data d via the forward model F . The symbol ∝ denotes propor-161

tionality, i.e., the quantity to the left differs from the quantity to the right by a multiplicative162

constant. In Bayes’ theorem, the missing constant is the probability of the data, p(d), which is163

called the “evidence.” The evidence is not so relevant for UQ, but it can be useful for model164

selection (Sambridge et al. 2006).165

There are many connections between regularized inversion and Bayesian UQ (see, e.g.,166

Blatter et al. 2022a). For example, we can interpret an Occam-style optimization (with a cost167

function as in equation (1)) as the search for the model that maximizes the posterior probability168

p(m|y) ∝ exp

(
−1

2

(
∥W (F(m)− d)∥2 + µ ∥Dm∥2

))
. (8)

Connections between a Bayesian posterior distribution and optimization can be exploited to169

yield efficient and scalable, but approximate sampling methods for UQ. Specifically, one can170

sample the posterior distribution by solving perturbed optimization problems171

argmin
m

(
∥W (F(m)− (d+ η))∥2 + µ ∥Dm+ ξ∥2

)
, (9)

where η and ξ are Gaussian random variables that represent perturbations to the data (η) and172

to the regularization (ξ). 8More specifically, the data perturbations η are mean zero Gaussians173

and their covariance is matrix is (W TW )−1, which is representative of the assumed errors in174

the data. The perturbations ξ are mean zero Gaussian with covariance matrix (1/µ)I , where I175

is the nm × nm identity matrix. Both perturbations (data and regularization) are needed or else176

variances may be underestimated (see Blatter et al. 2022a).177

The above optimization-based sampling process has been invented and re-invented in many178

fields. It is called RTO (randomize-then-optimize, Bardsley et al. (2014); Blatter et al. (2022a))179
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in the mathematical community, “ensemble of data assimilation” in numerical weather predic-180

tion (Isaksen et al. 2010), it goes by the name of “randomized maximum likelihood” in the oil181

and gas industry (Oliver et al. 1996; Chen & Oliver 2012), and is referred to as “parametric182

bootstrapping sampling” in hydrology (Kitanidis 1995; Lee & Kitanidis 2013; Gunning et al.183

2010). The process is thus well-understood and known to scale to large models and large data184

sets. RTO is exact only if the forward model is linear, but it has proven to be very useful for185

solving nonlinear problems in a large number of very different applications (see Blatter et al.186

(2022a) for more details).187

2.3 Blocky models188

The philosophy behind Occam’s inversion is to construct models devoid of features not required189

by the data, achieved by finding the smoothest model (in some sense). However, many, perhaps190

even most, geological features of interest are associated with rapid, not smooth, changes in191

physical properties. Examples include the interface between sedimentary and igneous or vol-192

canic rocks, groundwater tables, edges of magmatic reservoirs, fault structures, and many oth-193

ers. Occam models are useful in such circumstances because the interpreter understands that194

sharp boundaries will be smoothed by the inversion algorithm, but the actual boundary in ques-195

tion is not localized in space, and the physical property contrast (e.g. electrical resistivity) is196

smaller than it is in the true Earth (see Section 2.1.1 for a simple illustration).197

One way forward is to move from quadratic (Tikhonov) regularization to ℓ1-norm regu-198

larization, which produces “blocky” (piecewise constant) models. Indeed, smooth and blocky199

inversions have competed with each other for decades (see, e.g., Portniaguine & Zhdanov 1999;200

Farquharson & Oldenburg 1998), and variations of the idea have been pondered over for many201

years, (see, e.g., Guitton & Symes 2003; Theune et al. 2010; Lee & Kitanidis 2013; Sun &202

Li 2014; Wang et al. 2017; Fournier & Oldenburg 2019; Tang et al. 2021; Wei & Sun 2021).203

But the methods have never really found their way to mainstream applications. We suspect that204

the reasons include that some methods are computationally expensive, while others are awk-205

wardly described or unnecessarily complicated. Moreover, some methods do not address the206

required search over the “nuisance” parameter µ and a UQ has rarely (if ever) been attempted.207
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We address these issues and port ℓ1 regularization ideas to the well-known, robust and efficient208

framework of Occam’s inversion. We then further equip our inversions with an efficient UQ,209

implemented via a modified RTO approach.210

2.4 Split Bregman211

Before describing our nonlinear inversion algorithms, we take a short detour and discuss the212

solution of linear inverse problems with total variation (TV) regularization via split Bregman213

(Goldstein & Osher 2009). Specifically, we wish to minimize214

C(x) = ∥Jm− d∥2 + µ |Dm| , (10)

where m and d are vectors of size mn and md, J is a nd × nm matrix, D is a finite difference215

matrix and µ > 0 is a (given) scalar; here | · | denotes the ℓ1-norm, i.e., for a nx-dimensional216

vector217

|x| =
nx∑
i=1

|xi|. (11)

The regularization |Dm|, i.e., the ℓ1 norm applied to the derivative of the unknown m, is often218

called total variation (TV) regularization (Rudin et al. 1992).219

The split Bregman method, applied to this problem, introduces the auxiliary variable u =220

Dm and the Bregman variable b to reformulate the cost function as221

CBreg(m,u) = ∥Jm− d∥2 + µ|u|+ γ∥u−Dm− b∥2 (12)

where γ is a second Lagrange multiplier (but γ = 2µ is a robust choice). The above cost function222

is optimized by iterating the following three steps, which updates m, u as an approximation of223

Dm, and the Bregman variable b sequentially:224

(i) For a given uk and bk, minimize CBreg over m by solving the least squares problem225

mk+1 = argmin
m

(
∥Jm− d∥2 + γ∥uk −Dm− bk∥2

)
(13)

(ii) Given bk and mk+1, minimize CBreg over u by solving the optimization problem226

uk+1 = argmin
u

(
µ|u|+ γ∥u−Dmk+1 − bk∥2

)
. (14)
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The solution is a soft-thresholding so that227

uk+1 = ST(Dmk+1 + bk; 2µ/γ), (15)

where228

ST(x;α) = sign(x)max (|x| − α, 0) (16)

is the soft-thresholding function (applied element-wise to the vector in (15)).229

(iii) The third step updates the Bregman variable230

bk+1 = bk + (Dmk+1 − uk+1). (17)

The above three steps are iterated until we reach convergence. Note that all three steps are easy231

to implement and scalable: step (i) is a least squares solve; step (ii) is a simple soft-thresholding;232

and step (iii) is a simple updating (vector addition and matrix-vector multiplication). Indeed,233

split Bregman is arguably the fastest and most robust method (Goldstein & Osher 2009) for234

minimizing the TV regularized cost function (10) and, has been very successfully applied to235

various large scale linear inverse problems.236

In the numerical illustrations in Section 5 we set the additional Lagrange multiplier γ = 2µ237

(as recommended) and use a simple convergence criteria to stop the iteration if238

∥mk+1 −mk∥
∥mk∥

≤ tolSB, (18)

with tolerance tolSB = 10−4, or if a maximum number of iterations (kmax = 300) is reached.239

Split Bregman is summarized as an algorithm in Appendix B.240

3 BLOCKY OCCAM241

We now describe “a kind of” Occam’s inversion which we call blocky Occam. Blocky Occam242

discovers the blockiest model that fits the data with the fewest changes in resistivity. To find243

blocky models, we swap the quadratic regularization in (1) with a total-variation (TV) regular-244

ization (Rudin et al. 1992)245

C(m) = ∥W (F(m)− d)∥2 + µ |Dm| , (19)
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where | · | denotes the ℓ1-norm. The TV regularization (µ |Dm|) enforces sparsity of the deriva-246

tive of the model, by applying the sparsity-promoting ℓ1-norm to it. For these reasons, TV247

regularization promotes piece-wise constant, blocky models as desired.248

We mimic Occam’s inversion and set up an iteration. Linearizing (see equation (2)) around249

the current iterate mk gives250

C(mk+1) =
∥∥∥W (Jkmk+1 − d̂)

∥∥∥2

+ µ |Dmk+1| , (20)

where, as in Occam’s inversion, Jk is the Jacobian of the forward model and d̂ = d−F(mk) +251

Jkmk (compare the above equation with (3)). In Occam’s inversion, one obtains a least squares252

problem after linearization (which is easy to solve). Linearization in blocky Occam leads to a253

linear TV-regularized inverse problem. This problem can be solved efficiently with split Breg-254

man (see Section 2.4) for a range of regularization parameters µ. Once we chose a µ, we can255

proceed with the iteration. During the iterations, we either chose µ to minimize RMS (of the256

nonlinear model) or, if RMS is below the target RMS, we use the largest µ that results in257

the target RMS (generating the blockiest model that fits the data adequately). One may con-258

sider adapting ideas of fast Occam (Key 2016) to the TV-regularized problem. Convergence of259

blocky Occam is assessed via the model roughness as in Occam’s inversion (see Section 2.1).260

We summarize blocky Occam in Algorithm 1.261

Blocky Occam inherits the robustness and numerical efficiency from Occam’s inversion:262

(i) The regularization strength is adjusted automatically during the iteration, which enhances263

robustness of the iteration and almost always results in quick convergence (rarely divergence).264

The only tunable parameter in blocky Occam is the desired target RMS and the initial model,265

which is usually a half space (constant resistivity).266

(ii) Just as in Occam’s inversion, one does not need to worry about the layer thickness or,267

more generally, the grid of the forward model. The TV regularization enforces blocky models268

with few resistivity changes independently of the underlying grid (“too many” layers are not a269

concern, blocky Occam will find the simplest, blockiest model that fits the data).270

(iii) One can create a blocky Occam code with only minor modifications to an existing Oc-271

cam code. The only difference is that we swap the least squares solves after linearization with a272
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Algorithm 1 Blocky Occam
while k ≤ kmax do

Compute the Jacobian Jk and the modified data vector d̂ = d−F(mk) + Jkmk

for µ ∈ [µmin, µmax] do

Apply split Bregman to solve the optimization problem

argmin
mk+1

∥∥∥W (Jkmk+1 − d̂)
∥∥∥2

+ µ |Dmk+1| ,

Compute RMS of the optimizer using the nonlinear model F(·)

end for

if RMS ≤ RMStarget then

Pick largest µ that leads to an RMS below the target

else

Pick µ to minimize RMS

end if

Compute the relative change in roughness:

∆R =
∥Dmk+1∥ − ∥Dmk∥

∥Dmk∥
,

if k > kmax or ∆R < 10−2 then

break

end if

mk ← mk+1

end while

split Bregman method, which is also easy to implement and scalable (almost like least squares).273

The additional Lagrange multiplier that occurs during split Bregman is adjusted automatically274

and in accordance with the regularization strength µ.275

4 RANDOMIZED BLOCKY OCCAM276

It is desirable and increasingly important to not only invert for one model, but to equip the277

inversion with an estimate of associated uncertainties in the model. We use a randomize-then-278

optimize (RTO) approach (Bardsley et al. 2014), originally proposed by Kitanidis (1995); Oliver279
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Algorithm 2 Randomized blocky Occam (RamBO)
for k ≤ kmax do

Draw a sample ηk from η ∼ N (0, (W TW )−1) and a sample νk from ν ∼ L(0, 1/µ).

Use blocky Occam with fixed µ to solve the perturbed optimization problem

argmin
m

∥W (F(m)− (d+ ηk))∥2 + µ |Dm+ νk| ,

end for

et al. (1996) and extended to TV regularized problems by Lee & Kitanidis (2013). The RTO280

approach entails solving perturbed optimization problems with perturbed cost functions281

C(m) = ∥W (F(m)− (d+ η))∥2 + µ |Dm+ ν| , (21)

where, as before, η is Gaussian with mean zero and covariance matrix (W TW )−1 and where282

ν ∼ L(0, 1/µ) has a Laplace distribution with scale parameter 1/µ (Lee & Kitanidis 2013).283

We can optimize the perturbed cost functions using blocky Occam, but with fixed regularization284

strength µ. The implementation is easy and only requires that we replace the data d in the285

cost function (19) by the perturbed data (d + η) and that we account for the perturbation ν in286

split Bregman (which we describe in the Appendix B). The resulting procedure, which we call287

“randomized blocky Occam” (RamBO), is summarized in Algorithm 2 and essentially amounts288

to running blocky Occam within a (parallel) for-loop. For numerical efficiency, we initialize all289

optimizations during RamBO with the result of a blocky Occam (but initializing with a half-290

space gives comparable results at a larger computational cost).291

Note that the blocky Occams within RamBO do not automatically adjust the regularization292

strength µ. For that reason, the optimization can be less stable and we introduce a stepsize293

α ∈ (0, 1] so that the model in the next iteration is a linear combination of the model we found294

via split Bregman and the current model, i.e., the “replace” step in Algorithm 1 becomes295

mk ← αmk+1 + (1− α)mk, (22)

where mk is chosen along with a regularization strength µ to either minimize RMS, or, if the296

target RMS is reached, along with the largest µ that yields the target RMS (blockiest model).297

The remaining question is: If RamBO does not automatically adjust the regularization298
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strength µ, how should µ be determined? One way forward is to adopt a hierarchical approach299

and sample models m and regularization strengths µ jointly from the posterior distribution300

p(m,µ|d). This strategy is used in the RTO-TKO (Blatter et al. 2022a,b), and this technol-301

ogy could be adapted to TV regularized problems. An easier and more efficient way forward is302

to pick a relatively small value for µ, e.g., we pick µ = 0.1 in the numerical illustrations in Sec-303

tion 5. The reason is that by choosing a small µ, we compute the most uncertain blocky models304

(another use of Occam’s principle). The value µ = 0.1 may not be universal and we recommend305

to first run a blocky Occam (which one may be tempted to do anyways) and monitor the range306

of regularization strength encountered during blocky Occam.307

Finally, we note that Wang et al. (2017) explored ℓ1 regularization in the context of RTO via308

a clever invertible change of variables. The TV regularization we need here for blocky models,309

however, makes the change of variables not invertible and, hence, not applicable (see also (Lee310

2021)).311

4.1 RamBO and trans-dimensional MCMC312

A common approach to UQ in geosciences is trans-dimensional Markov chain Monte Carlo313

(trans-D MCMC) (see, e.g., Sambridge et al. 2013, 2006; Malinverno 2002). Layered models, as314

discussed here, are parameterized by layer thicknesses and their resistivity. In trans-D MCMC,315

the number of layers is an unknown, and the trans-dimensional formulation induces a natural316

parsimony to favor models with a small number of layers over models with a large number of317

layers (Sambridge et al. 2006). Numerical solution via trans-D MCMC entails a randomized318

search over the number of layers, their thicknesses, and their resistivities.319

RamBO achieves parsimony via TV regularization, which enforces that the number of320

“blocks” is as small as possible (and if smooth parts of the model are required by the data321

the inversion will allow that also, see Figure 1(d)). The models used in RamBO are parameter-322

ized by a known (large) number of layers of fixed thickness, and optimization is used to generate323

samples of layer resistivity.324

We expect that RamBO and trans-D MCMC give somewhat similar results when applied to325

invert the same data because both algorithms are designed with the same goal in mind – finding326
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blocky models that fit the data. RamBO and trans-D MCMC only differ in how these models327

are obtained numerically and RamBO has some computational advantages.328

(i) Trans-D MCMC is slow to converge and, therefore, requires a large number of forward329

model evaluations. RamBO can generate a reliable UQ from a few samples (50 or so, see nu-330

merical examples below).331

(ii) The implementation of trans-D MCMC is cumbersome and problem dependent – there is332

no “general purpose” trans-D MCMC sampler available that can be straightforwardly applied.333

RamBO is easy to apply, especially if an Occam-style code is already available.334

On the flipside, RamBO relies on the Jacobian for fast convergence since one sample re-335

quires the solution of an optimization problem, but derivatives are not needed for trans-D336

MCMC.337

5 NUMERICAL ILLUSTRATIONS338

We illustrate the use of blocky Occam and RamBO on two data sets. The Schlumberger data339

set collected at Wauchope station in central Australia (Constable et al. 1984) to study crustal340

resistivity, and a marine magnetotelluric (MT) data set that was more recently collected off-341

shore New Jersey (Gustafson et al. 2019) to understand low salinities observed in wells in342

nearby areas. For the marine MT data set, we note that the relatively shallow waters in the343

region (20–100 m) were insufficient to attenuate high frequencies (1–100 Hz), and this allowed344

resolving upper subsurface structures. Following Blatter et al. (2021), we consider station N05345

and invert for 1D resistivity models.346

We first perform blocky Occam inversions in Section 5.1 and compare the blocky models to347

smooth models obtained via Occam’s inversion. In Section 5.2, we compute uncertainties using348

RamBO, and we compare our results to the trans-D MCMC inversions of Malinverno (2002)349

(for Schlumberger) and Blatter et al. (2019) (for marine MT). In our inversions and UQ, we350

use the standard deviations reported as part of the Schlumberger and marine MT data sets to351

construct the weighting matrix W in the cost functions (1) and (19). The model Jacobians are352

computed via finite-differences, but a more careful implementation should use adjoints or auto-353
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matic differentiation to reduce the number of required forward model evaluations – we use finite354

differences here to keep the code clean and because the 1D forward models are computationally355

inexpensive.356

5.1 Blocky Occam inversions357

We apply blocky Occam to invert the Schlumberger and marine MT data sets and compare the358

results to Occam’s inversions that generate smooth models. All inversions start with a half-space359

model and both inversion algorithms are given a range of regularization strengths and a target360

RMS (which we set to one).361

For the Schlumberger data set, Occam’s inversion converges in 5 iterations, while blocky362

Occam requires 10 iterations, leading to RMS values of 0.97 (Occam’s inversion) and 0.90363

(blocky Occam). The resistivity models obtained by blocky Occam and Occam’s inversion are364

shown in Figure 2(a) and the fits to the data are shown in the supplementary Figure A1(a) in365

Appendix C. As expected and as desired, the blocky Occam models looks like blocky versions366

of the smooth models obtained via Occam’s inversion. More specifically, we find that Occam’s367

inversion reveals two main features: a conductive zone beneath a 2 m dry surface layer and a368

deeper resistive zone. Because Occam’s inversion generates the smoothest model that fits the369

data, the transition between the conductive and resistive zones is blurry and not well-defined.370

In comparison, blocky Occam provides a more distinct separation between the conductive and371

resistive layers, particularly the base of the conductive layer at approximately 200 m depth.372

Some model smoothness is still required by the data, however.373

For the marine MT data set, Occam’s inversion converges in 22 iterations, while blocky374

Occam requieres 9 iterations. The inversions lead to RMS values of 0.98 for Occam’s inversion375

and 1.01 for blocky Occam. The resistivity models are illustrated in Figure 2(b) and the data376

fits can be found in supplementary Figures A1(b)-(c). The smooth model obtained via Occam’s377

inversion shows two distinct peaks that correspond to resistive and conductive features. The378

resistive zone between 40 m to 160 m is associated with sediments hosting low salinity water.379

The conductive feature at about 400 m suggests sediments hosting seawater. The smooth model380

shows oscillations around 300 m, where the transition between low and high resistivity zones381
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Occam’s Inversion: RMS = 0.98
Blocky Occam: RMS = 1.01

Occam’s Inversion: RMS = 0.97
Blocky Occam: RMS = 0.90
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Figure 2. Blocky Occam compared to Occam’s inversion. Shown are the resistivities as a function of

depth for (a) the Schlumberger data set and (b) the marine MT data set. Blocky Occam (pink) and

Occam’s inversion (gray) lead to nearly identical RMS and the blocky Occam solution looks like a

blocky version of the Occam’s inversion as desired and as expected.

occurs. These oscillations appear because the smooth inversion should really be blocky or in382

other words, we have sharp changes in resistivity, and for that reason, we observe a Gibbs-type383

phenomenon in the transitions in smooth models (see Section 2.1.1). In contrast, the blocky384

Occam model defines a simpler boundary between the high and low resistivity zones. A base-385

ment layer at a depth of about 1,100 m is more clearly defined by blocky Occam than classical386

Occam.387

Finally, we note that blocky Occam applies the split Bregman iteration within the linearizing388

“outer loop” of an Occam’s inversion. The overall computational cost of blocky Occam thus de-389

pends on how fast split Bregman converges. Here, convergence of split Bregman is assessed by390

equation (18) and we chose a small tolerance to obtain very blocky models. The split Bregman391

iteration converges faster if we use a larger tolerance, but then the resulting models are not re-392

ally blocky. With our choices, split Bregman converges on average within 181 iterations for the393

Schlumberger data set and within 268 iterations for the marine MT data set. We acknowledge394



19

that the number of iterations is quite large, which may result in high computational costs in 2D395

or 3D problems for which the linear algebra of solving least squares problems is more involved396

than in our 1D test cases (step (i) of split Bregman, see Section 2.4). Our experiments with397

1D electromagnetic data thus suggest that split Bregman generates a computational overhead398

compared to Occam’s inversion, but this overhead is needed to obtain truly blocky models. We399

are unaware of numerical techniques that are more efficient than split Bregman. All other ideas400

we tried, including approximating ℓ1 norms via Eckblom norms or Huber losses, interior point401

methods for ℓ1 convex optimization (see, e.g., Nocedal & Wright 2006), or trans-dimensional402

MCMC, were computationally more expensive, led to smoother models, or both. The search403

for blocky models may always be computationally more expensive than searching for smooth404

models: the TV-regularized inverse problem (19) is inherently more difficult to solve than the405

nonlinear least squares problem in (1).406

5.2 UQ with RamBO407

We now apply RamBO to the Schlumberger and marine MT data sets to compute an uncertainty408

quantification. RamBO amounts to running blocky Occam, with a fixed regularization strength409

µ = 0.1 in a parallel for-loop. We obtain similar results with similar µ, but if we choose µ to410

large (e.g., µ = 2), then the uncertainty bounds are very narrow due to the large influence of411

the Laplacian prior. If µ is too small (e.g, µ = 0.01), the optimization is unstable. In general,412

one should adjust µ for blocky Occam to be as small as possible to compute the largest possible413

uncertainty. A range of possible regularization strength values is often apparent after inspecting414

the results of blocky Occam or Occam’s inversion.415

Since the 1D inversions are inexpensive, and since competing trans-D MCMC codes usually416

require a very large number of forward model evaluations, we draw a large number of samples417

(104) for comparison with trans-D MCMC. For both data-sets, the optimization of RamBO418

occasionally leads to a large RMS > 2 or fails. We filter out these failed attempts and are then419

left with 8574 samples for the Schlumberger data set and 9774 samples for the marine MT data420

set. We use these samples in Figure 3 to create histograms of resistivity (log-scale) as a function421

of depth, similar to Figure 12 in Malinverno (2002) and Figure 10(b) in Blatter et al. (2019).422
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Figure 3. Uncertainty quantification for the Schlumberger data set (a) and marine MT data set (b). Shown

are histograms of resistivity (log-scale) as a function of depth. Warmer colors (green and yellow) indicate

higher probability and cool colors (blues) indicate low or no probability (dark blue). The brown lines

indicate 5% and 95% quartiles and the pink lines correspond to the blocky Occam results described

above.

For the Schlumberger data set (Figure 3(a)), we find an uncertain but resistive surface layer423

to a depth of 2 m, followed by three similarly conductive layers (3.5–10 m, 10–30 m and 30–424

100 m). Between 170 m and 4500 m we detect a resistive layer where the most probable models425

are nearly an order of magnitude larger than either the smooth or blocky Occam models. These426

results are in good agreement with the trans-D MCMC results reported by Malinverno (2002)427

and, to a lesser extent, also with the results of Blatter et al. (2022b), which uses a quadratic428

regularization (compare Figure 3 with Figure 1 in Blatter et al. (2022b) and Figure 12 in Malin-429

verno (2002)). Both studies result in large posterior uncertainties in the resistivities and interface430

depths of the deeper layers, and the posterior density estimates obtained via RamBO are consis-431

tent with the established results. Moreover, resistivity changes identified by the trans-D MCMC432

are comparable to those of RamBO (Compare Figure 3a to Figure 12 of Malinverno (2002)),433

but RamBO obtains these results at a much reduced computational cost.434
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In addition, we note that uncertainty is not symmetric about the blocky Occam model (pink435

line in Figure 3(a)). This is to be expected because the blocky Occam model is an extreme436

model – the steps between blocky regions are still the smallest that fit the data.437

For the marine MT data set, RamBO defines a resistive layer (40–200 m) and a conductive438

layer (400–500 m). Below 500 m, the uncertainty is rather large, which is in good agreement439

with the trans-D results reported by Blatter et al. (2019). These results highlight three major440

changes in resistivity (0-100 m, 200 – 400 m and 400-600 m) , consistent with results obtained441

via RamBO (see Figure 3b). Again, the uncertainty is not symmetric around the blocky Occam442

solution (as expected). The blocky Occam solution rather picks out the least resistive model that443

is rendered likely by RamBO when the data are informative (above 400 m), which makes sense444

since MT is more sensitive to thin conductors than thin resistors (e.g. Key et al. (2006)).445

The data fits of models generated by RamBO for the Schlumberger and marine MT data446

sets are shown in Figures A2(a,c,d) in Appendix C. Histograms of RMS of models generated447

by RamBO are shown in Figures A2(b,e). RamBO explores many models that fit the data well448

and the distribution of RMS is near one for both data sets.449

In summary, RamBO generates a UQ that is comparable to what other methods have pro-450

duced. Compared to trans-D MCMC, however, RamBO has two advantages:451

(i) The UQ can be computed at a reduced computational cost.452

(ii) RamBO relies on optimization and can be implemented with only minor modifications453

of an existing Occam’s inversion code. Trans-D MCMC, on the other hand, is usually tailor-454

made for each problem and trans-D MCMC codes are not easily portable from one inversion to455

another.456

The computational advantage of RamBO compared to trans-D MCMC is more apparent457

if we constrain the number of samples. With RamBO, about 50 models may be sufficient to458

get an idea of the uncertainty of the inversion, provided the posterior distribution is unimodal459

(Blatter et al. 2022b). We illustrate this idea in Figure 4, where we show a “spaghetti plot” of460

50 samples of RamBO. The 50 samples are sufficient to eyeball regions of large or small un-461

certainty and the 5% and 95% quartiles are already comparable to those obtained from O(104)462
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Figure 4. Spaghetti plots of 50 samples obtained by RamBO (purple) for the Schlumberger data set (a)

and the marine MT data set (b). Shown in pink is the blocky Occam model

samples. RamBO inherits the computational efficiency for UQ from RTO, which was already463

reported and discussed at length in the context of inverting EM data by Blatter et al. (2022a,b).464

MCMC in general, and trans-D MCMC in particular, routinely require thousands or millions465

of forward solves due to slow convergence (and the convergence becomes slower with dimen-466

sion/the number of layers). As an illustration, trans-D MCMC routinely requires 106 (or more)467

samples, each one requiring one forward solve. One sample of RamBO requires an optimiza-468

tion, which requires about 10 iterations (conservatively speaking), each requiring one forward469

and one adjoint solve. Assuming forward and adjoint solves are comparable, we can estimate470

the cost of one RamBO sample to about 20 forward solves, so that 50 RamBO samples require471

103 forward solves, which is reduces the cost by three orders of magnitude compared to trans-D472

MCMC. Thus, RamBO may be a computationally efficient and more robustly applicable alter-473

native to trans-D MCMC.474
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6 SUMMARY AND CONCLUSIONS475

We present new computational tools for geophysical inversion that can recover sharp (resis-476

tivity) contrasts and generate an uncertainty quantification (UQ). Specifically, we incorporate477

total variation (TV) regularization within an Occam’s inversion and we call the resulting in-478

version algorithm blocky Occam. Blocky Occam determines the blockiest model that fits the479

data adequately. A modified randomize-then-optimize (RTO) approach allows us obtain a UQ480

by essentially running blocky Occam in a parallel for-loop on perturbed optimization problems.481

The resulting UQ algorithm is called RamBO (randomized blocky Occam).482

Blocky Occam and RamBO are built upon the robust foundation of an Occam’s inversion,483

and, for that reason, they are:484

(i) largely tuning-free;485

(ii) insensitive to the number of layers or starting guess;486

(iii) fast to converge.487

Moreover, blocky Occam can be obtained from an existing Occam code with only minor mod-488

ifications and RamBO is easy to implement once a blocky Occam code is available. Key to the489

efficiency of blocky Occam is that we use split Bregman, one of the fastest methods for solv-490

ing linear TV regularized problems, within an Occam-style nonlinear inversion. Crucial for the491

efficiency of RamBO is the RTO approach, which implies that a reliable UQ can be obtained492

from a small number of samples (50 or so are sufficient).493

We demonstrated the use of blocky Occam and RamBO on 1D electromagnetic (EM) data494

sets. Our blocky models display the same structures found using Occam’s inversion, but with495

sharper transitions and clearer distinctions between resistivity contrasts. A UQ generated by496

RamBO is comparable to one obtained by trans-dimensional MCMC, but RamBO is easier to497

implement and requires fewer forward model evaluations. In the future, we expect we or others498

will apply blocky Occam and RamBO to 2D and perhaps 3D problems, but our 1D formulation499

may still prove useful in some aspects of geophysics. For example, the hugely popular SkyTEM500

system (Sorensen & Auken 2004) uses hundreds of stitched 1D inversions as an interpretation501
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product, and might benefit from the combination of better depth resolution and minimal tuning502

of blocky Occam.503

As explained in the introduction, we are motivated by the desire to interpret electromag-504

netic data, but neither blocky Occam or RamBO know nothing of the physics in the forward505

problem and can be deployed widely in geophysics. RamBO in particular may turn out to be506

a computationally inexpensive and easy-to-implement alternative to trans-D MCMC (for lay-507

ered models), doing away with expensive, randomized models searches and custom-codes, and508

likely extended to 2D and even 3D problems.509
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APPENDIX A: PARAMETERS USED TO CREATE FIGURE 1601

A total of 50 MT amplitudes and phases logarithmically spaced between 100 Hz and 100,000 s602

were computed for a simple one dimensional model of a 300 m thick 1 Ωm layer underlain603

by a 50 Ωm half-space and also a model replacing the step with a sigmoid function centered604

on 500 m depth. The data were perturbed with normally distributed noise and inverted using605

a standard Occam approach. The inverted model consisted of 100 layers increasing exponen-606

tially in thickness from 1 m to 1,000 km. Regularization was a first difference between each607

layer, unweighted by layer thickness or depth. Noise was set to 0.3%, 1%, 3%, and 10% of lin-608

ear apparent resistivity and propagated into log10(apparent resistivity) and linear phase, which609

were the inverted data. We carried out 20 inversions for each noise level to capture variations610

associated with the noise statistics, all converging to a root-mean-square misfit of 1.0.611

APPENDIX B: SPLIT BREGMAN WITH OR WITHOUT PERTURBATIONS612

We wish to minimize the cost function613

C(x) = ∥Jm− d∥2 + µ |Dm+ ν| , (B.1)

with split Bregman. The perturbation ν is needed for RamBO. For blocky Occam, we simply614

set ν = 0.615

The auxiliary and Bregman variables are as in Section 2.4 and the reformulated optimization616

problem becomes:617

CBreg(m,u) = ∥Jm− d∥2 + µ|u+ ν|+ γ∥u−Dm− b∥2. (B.2)

The reformulated optimization problem is solved by iterating the following three steps.618

(i) For a given uk and bk, minimize CBreg over m by solving the least squares problem619

mk+1 = argmin
m

∥Jm− d∥2 + γ∥uk −Dm− bk∥2 (B.3)

(ii) Given bk and mk+1, minimize CBreg over u by solving the optimization problem620

uk+1 = argmin
u

µ|u+ ν|+ γ∥u−Dmk+1 − bk∥2. (B.4)
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via soft-thresholding:621

sk+1 = ST(ν +Dmk+1 + bk; 2µ/γ), (B.5)

uk+1 = sk+1 − ν (B.6)

(iii) Update the Bregman variable622

bk+1 = bk + (Dmk+1 − uk+1 − ν). (B.7)

We summarize split Bregman with perturbations ν in Algorithm 3, where we set the Lagrange623

multiplyer γ = 2µ, as recommended by Goldstein & Osher (2009). The algorithm for split624

Bregman without perturbations, as used in the blocky Occam of Section 3, can be obtained by625

setting ν = 0.626

APPENDIX C: ADDITIONAL FIGURES627
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Algorithm 3 Split Bregman
Initialize: u = 0, b = 0

while k ≤ kmax do

Solve the least squares problem

mk+1 = argmin
m

∥Jm− d∥2 + γ∥uk −Dm− bk∥2

Use soft-thresholding to find uk+1

sk+1 = ST(ν +Dmk+1 + bk; 2µ/γ),

uk+1 = sk+1 − ν

Update the Bregman variable

bk+1 = bk + (Dmk+1 − uk+1 − ν).

if convergence then

break

end if

mk ← mk+1

uk ← uk+1

bk ← bk+1

end while
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Figure A1. Blocky Occam compared to Occam’s inversion. Panel (a) shows apparent resistivity

(logspace) as a function of electrode spacing (AB/2) for the Schlumberger data set, along with error

bars and the data fits of blocky Occam (pink) and Occam’s inversion (gray). Panels (b) and (c) show

apparent resistivity (logspace) and phase as a function of period, along with error bars. The data fits for

blocky Occam and Occam’s inversion are shown in pink and gray. In all panels, Occam’s inversion is

partially hidden by blocky Occam.
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Figure A2. (a) Data fits of 500 models generated by RamBO for the Schlumberger data set. (b) His-

togram of RMS corresponding to the models generated by RamBO (Schlumberger). (c,d) Data fits of

500 models generated by RamBO for the marine MT data set. (e) Histogram of RMS corresponding to

the models generated by RamBO (marine MT).
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