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Abstract

Probing Atomic-Scale Properties of Organic and Organometallic Molecules by Scanning
Tunneling Spectroscopy

by

Ryan Tsuyoshi Yamachika

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael F. Crommie, Chair

The study of molecular physics has become increasingly important from both a scientific
and technological viewpoint. The physical behavior of materials at nanometer length scales
holds many surprises and the potential technological applications of molecular science are
vast. This dissertation focuses on the fundamental physics of molecules adsorbed to metallic
and semiconducting surfaces.

Using a scanning tunneling microscope, four different molecular systems, C60, Gd@C82,
tetramantane, and tetracyanoethylene (TCNE), were studied. The main effects investi-
gated were (1) how can the properties of these molecules be atomically controlled, (2) how
do metal surfaces affect molecular properties, (3) how do electron-electron and electron-
vibration coupling influence molecular behavior, and (4) how do spins behave in molecule-
scale structures. For C60 we demonstrate a fine control of molecular properties such as
energy levels, electron-electron interactions, and electron-vibration interactions via potas-
sium doping. We also find that metal surfaces strongly influence the electronic screening
and ordering of adsorbed molecules. In Gd@C82 and tetramantane molecules, the spatial
distribution of the electron-vibration coupling is found to be very inhomogeneous at sub-
nanometer (< 10−9 m) length scales. In titanocene, we find that Au(111) induces molecular
dissociation, with titanocene fragments displaying a spin-induced Kondo effect. The fi-
nal molecule, TCNE, displays variable surface coupling and also enables tunable magnetic
exchange coupling between covalently bonded spin centers in Vx(TCNE)y complexes.
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1
Why Study Single Molecules?

In technology as well as in physics, we strive to push the limits of what is possible. One
particular limit is size. Semiconductor devices are getting smaller on a yearly basis, and
are nearing nanometer length scales (10−9 m). Physicists are also trying to delve deeper
into what happens at these tiny length scales, a regime where counter-intuitive quantum
effects dominate. Since this size regime is the length scale of single molecules, the study
and understanding of what happens to single molecules in a condensed matter environment
is becoming increasingly important for both science and technology. For this reason, the
study of single molecules at surfaces will be the main topic of this dissertation.

This chapter is devoted to introducing single molecule behavior from both the techno-
logical, as well as the physics viewpoints. Since new technology is based on new underlying
physics, an overview of single molecule devices will be described first, followed by a summary
of some underlying molecular physics. The chapter will close with an overview of this thesis.

1.1 Molecular Devices

One of the often cited laws in electronics is Moore’s law [148], published in 1965 by Gordon
Moore (who went to UC Berkeley as an undergrad). His law states that the number of
components on an integrated circuit will double every two years, implying that the size of
the components will shrink to improve performance. Moore’s law has held up well in the
last thirty years and will eventually lead us to nanometer sized circuit components.

At nanometer length scales, however, electrical devices are governed by quantum me-
chanical effects, such as electron tunneling, and will not behave as more familiar present-day
devices [155]. Current semiconductor technology will likely reach its speed and power ef-
ficiency limits before this size scale is reached. To advance beyond this will require new
technology, which in turn will require a new understanding of fundamental scientific issues.

Nanoscience is an emerging field of science that is concerned with these issues. This is
the science of materials structured at the nanometer scale. Nanoscience has the potential
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to transform our current technology since it points the way toward creating devices based
on the properties of nanometer-sized molecular structures instead of bulk semiconductors.
Many nanometer-size devices have already been realized [9], such as the C60 molecular
transistor [158], the nanotube radio [97], logic gates via molecular motion [78], and rotational
actuators [49]. In addition, molecule-based spintronics raises new possibilities for electronic
and magnetic devices [19, 90]. The promise and potential of such devices helps motivate
the research presented in this dissertation.

1.2 Molecular Physics Overview

At nanometer sizes, many bulk properties are transformed. This forces us to rethink the
underlying physics of devices in the single molecule regime. The physics of such devices are
affected drastically by properties such as molecule-molecule interactions, molecule-electrode
interactions, and electron-electron interactions.

Molecule-molecule interactions, for example, are typically much weaker than atom-atom
interactions in a bulk semiconductor device. Atoms in a molecule tend to arrange in a way
that saturates dangling bonds, causing molecules to interact weakly with other molecules.
This is unlike semiconductors which are comprised of atoms that interact strongly with
each other due to dangling bonds. For example, in bulk C60, the C60-C60 binding energy is
∼ 0.1 eV, about 10 times smaller than typical atomic binding energies [62]. The weak in-
teractions between molecules causes clusters or multilayers of molecules to have properties
similar to single molecule properties. This is unlike bulk semiconductors whose band prop-
erties deviate substantially from atomic properties due to strong atom-atom interactions.

In molecular devices, the molecules contact other substances, such as electrodes, and the
molecule-electrode interaction can differ from bulk semiconductor-electrode interactions.
Since molecules have discrete energy levels, these discrete states will interact with the con-
tinuum of states of electrodes, an effect which does not occur in semiconductor devices which
contain no discrete states. Understanding molecule-electrode interactions requires new the-
ories incorporating ideas such as the Fano-Anderson model (§4.4.1), and new experiments.

Electron-electron interactions in single molecules can also behave quite differently from
what is seen in solids. Electron-electron interactions (§3.4.2) are neglected in many solids
due to electronic screening (§9.2), but typically cannot be neglected in single-molecule-based
systems. Electron-electron interactions, for example, can lead to metal-insulator transitions
(§4.3, chapter 9), an effect not normally seen in semiconductor devices.

One of the most important classes of molecules for different applications are carbon-
based molecules, since this class of molecules is easily fabricated, has a wide range of useful
properties, and is potentially biologically compatible. This class of molecules will be the
focus of this dissertation. The next sections of this chapter provide a brief overview of the
physics of carbon-based molecules that is relevant for molecular nanostructures embedded
in a condensed matter environment. We will focus on three types of molecules: sp2 bonded
fullerenes, sp3 bonded diamondoids, and molecules having a magnetic component.
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1.2.1 Fullerenes and Diamondoids: Overview

The most useful molecules are those with many experimentally controllable interactions.
Fullerenes fit this prerequisite nicely since many of their interactions, such as electron-
electron interactions, are tunable via exohedral potassium (K) doping. This is why many of
the studies in this dissertation involve the fullerene C60.

A ball and stick model of C60 and a rough sketch of its energy levels are given in figure 1.1.
When we dope C60 with K, the K atom donates one of its electrons to C60. This electron

Figure 1.1: (a) Ball and stick model of C60. (b) Energy levels of C60 from [60].

then occupies one of the C60 LUMO states. This process of electron donation has a number
of consequences: it changes the energy of the molecular states relative to the chemical
potential (chapter 6), it changes the electron-electron interactions (chapter 9), and it can
modify the molecular electron-vibration interaction in the form of changes to the Jahn-Teller
effect (chapter 7).

The relative magnitudes of the various interactions in C60 are unusual in that electron-
vibration interactions, inter-molecular hybridization [207, 62], and electron-electron inter-
actions [3, 139] are all at the same energy scale (∼ 0.5–3 eV). These interactions compete
with each other to determine the properties of the system, and since they are all similar
in magnitude, small changes in any of these parameters can make one interaction win out
over another. This competition between interactions causes fullerene systems to display
a wide variety of behavior when the strengths of the interactions are modified via alkali
metal doping, such as metal-to-insulator transitions (chapters 7, 9), superconductivity and
magnetism in bulk compounds [75, 1], and novel electronic and orientational phases in thin
films (chapter 8, [189, 86, 207, 22, 156]).

The unusual combination of competing interactions in C60 can lead to electronic prop-
erties very analogous to those seen in high-TC superconductors. High-TC superconductors,
for example, are hole-doped Mott insulators where the mechanism of superconductivity is
still controversial. Since hole-doping KxC60 can be performed by removing one K per C60,
hole-doping the Mott insulator K4C60 (ref. [55]) gives a superconductor (K3C60), analogous
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to what is seen for high-TC materials. The qualitative phase diagrams in figure 1.2 of both
high-TC superconductors and C60 are strikingly similar. Since the physics behind high-TC

Figure 1.2: Phase diagrams of a high-TC superconductor and AxC60, where A = alkali metal,
from [209].

superconductors is unusual, the similarity between high-TC superconductors and fullerenes
helps to demonstrate the unusual physics that can happen in fullerene-based molecular
materials.

In addition to modifying the properties of fullerenes by exohedral K doping, they can
also be modified by endohedral doping. Gd@C82 (where a single Gd atom is inserted into
a C82 cage) is an example of this. The structure of Gd@C82 and a sketch of its electronic
energy levels, derived from [52, 128, 106], are given in figure 1.3. There is a 3 electron charge

Figure 1.3: (a) Ball and stick model of Gd@C82. (b) Electronic energy levels of Gd and C82

in a Gd@C82 fullerene.

transfer from Gd to C82 which can give rise to magnetism.
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While fullerenes are sp2 bonded carbon molecules, carbon can also form sp3 bonds,
the best known example being diamond. Molecules derived from sp3 bonded carbon, with
dangling bonds terminated with hydrogen, are known as diamondoids. They represent
another class of carbon molecules with potential interesting field emission [208], thermal,
and mechanical properties [137, 172].

1.2.2 Magnetic molecules: Overview

The growing field of molecule-based magnetism involves understanding magnetism at molec-
ular sizes. Here it is important to understand the influence of substrates on the properties
of magnetic molecules since molecular charge, spin, and magnetic anisotropy can change as
molecules come into contact with a surface [179, 14]. To study these effects, two magnetic
molecules, titanocene chloride dimers and tetracyanoethylene (TCNE), were studied in this
dissertation.

The titanocene chloride dimer, [Cp2TiCl]2 with Cp = C5H5, is known in chemistry for its
utility as an inexpensive reducing agent in organic synthesis [170, 54, 12, 6], but it also has
magnetic properties [101]. The magnetic properties originate from the anti-ferromagnetic
coupling between the spins of the two titanium atoms and make the molecule an interesting
choice for studying molecular magnetism.

Tetracyanoethylene (TCNE) is a strong π-electron acceptor with a large electron affin-
ity [33] that easily forms charge-transfer complexes where it pulls electrons from neighboring
metal atoms or molecules [50, 140]. For complexes of the form M(TCNE)x, where M is a
paramagnetic transition-metal ion, molecule-based ferromagnetism is present in these com-
plexes and the Curie temperatures can be high [136, 212, 146, 93]. Bulk V(TCNE)x (x ∼ 2),
for example, has a Curie temperature TC ∼ 400 K (references [136, 167, 185, 113]). How-
ever, the origin of the ferromagnetism is not well understood, making TCNE an interesting
candidate to explore molecule-based magnetism.

1.3 Dissertation Overview

This dissertation will focus on the fundamental physics of molecular nanostructures in con-
tact with a surface. Some of the outstanding questions that will be addressed are

1. How can we modify and control the properties of adsorbed molecules at the atomic
scale?

2. How do different substrates, such as metal electrodes, affect the properties of a molecule?

3. How do electron-electron, electron-vibration, and molecule-molecule interactions in-
fluence the properties of single molecules in a condensed matter environment?

Some of the main conclusions of this work are that the electronic properties of molecules can
be precisely modified and controlled at the atomic scale, a metallic surface can substantially
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change the energies and ordering of molecules, electron-electron and electron-vibration in-
teractions can induce metal to insulator transitions, and electron-vibration interactions are
inhomogeneous at molecular length scales.

To perform the studies described here, it is critical to utilize a local probe with sub-
nanometer resolution. This is why a scanning tunneling microscope (STM) is used in all the
experiments in this dissertation. The unique combination of high spatial resolution (. 1 Å)
and the ability to modify and manipulate molecules makes the STM ideal for studying the
properties of molecular nanostructures at surfaces.

This dissertation contains three main parts. The first part is an introduction to the
theory and experimental techniques necessary to understand the work performed here. This
is comprised of four chapters. The first (chapter 2) gives a simplified view of the theory of
tunneling. The second (chapter 3) presents a more general description with corrections to
many commonly made approximations. The third (chapter 4) describes much of the back-
ground physics of nanostructures used in the dissertation. The fourth (chapter 5) describes
the instrumental details of the scanning tunneling microscope and related equipment used
for all the experiments.

The second part of the dissertation describes specific experimental studies performed on
three carbon-based molecules: C60, Gd@C82, and diamondoids. The main results for C60 are
that metal surfaces substantially affect the electron-electron interactions in C60, and that
the properties of single C60 molecules and C60 films can be controlled via atomic doping with
K atoms. These properties include molecular energy levels, electron-phonon interactions,
electron-electron interactions, and local ordering. For the second molecule, Gd@C82, we
are able to spatially map out the strength of the electron-vibration interaction, and show
that it is spatially very inhomogeneous. In the last molecule, diamondoid tetramantane,
we see a very inhomogeneous electron-vibration interaction, but we also see very localized
HOMO orbital behavior and a large (> 5 eV) quasiparticle HOMO-LUMO gap, unlike C60

and Gd@C82.
The third part of this dissertation describes our studies of titanocene and TCNE molecules

on surfaces. Titanocene is seen to display fragmentation on Au(111). The fragments form
well-ordered phases where one type of fragment has a magnetic moment. The other magnetic
molecule, TCNE, exhibits variable substrate interaction with different metal surfaces. On
Ag(001), the TCNE-substrate interaction leads to strong charge transfer and the molecules
on this surface can be combined with vanadium via molecular manipulation with the STM
tip to form Vx(TCNE)y structures. Depending on the particular structure of the Vx(TCNE)y
complex and its orientation relative to the Ag(001) substrate, the strength of the TCNE-
mediated spin coupling between V atoms can be adjusted.
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2
Scanning Tunneling Microscopy Principles

This chapter will introduce a standard theory to describe scanning tunneling microscopy.
This theory will be used often in the dissertation to explain intuitively and quantitatively
what an STM measures. However, there are important corrections to the standard theory
that should be known, and these corrections will be discussed in the following chapter.

In scanning tunneling microscopy (STM), a sharp metal tip is placed very close (∼ 6 Å)
to a conducting sample that we wish to study (figure 2.2). Although the tip and sample are
not touching, when a voltage is applied to the tip relative to the sample, the electrons from
the tip may still move into the sample by a quantum mechanical process called tunneling.
Qualitatively, the probability for an electron to travel across the vacuum between tip and
sample depends exponentially on the tip-sample distance, which is what gives the STM its
high spatial resolution. Quantitatively, the formal mathematical theory of electron tunneling
in STM was given first by Bardeen [11] and then by Tersoff and Hamann in [186]. A slightly
different and more detailed derivation will be given in this section. The main results will be
the general equation for the tunneling current (2.2) and the simplified form for differential
conductance (2.5).

2.1 Tunneling

2.1.1 General expression for tunneling

To formally describe electron tunneling in STM, we would like to apply Fermi’s Golden Rule
to calculate the transition rate for electrons to move from the tip to the sample. This rate
of transition multiplied by the electron charge is the tunneling current measured in STM
experiments. Fermi’s Golden Rule states that if ψi and ψf are eigenstates of a Hamiltonian
H, then the transition rate W from state ψi to ψf due to the presence of a perturbing
Hamiltonian H ′ is

Wi→f =
2π

~

∣

∣〈ψf |H ′|ψi〉
∣

∣

2
ρf (Ei) (2.1)
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where ρf (Ei) is the density of states at the energy of the initial state ψi (page 332 in [174]).
The only problem to applying Fermi’s Golden Rule to tunneling is that the initial state |ψi〉
and final state |ψf〉 should be eigenstates of a single system, but for tunneling we like to
separate the initial state (a tip state) from the final state (a sample state) and treat the
initial and final states as existing on two different systems. Despite this problem, in the
case of tunneling we may still justify the use of Fermi’s Golden rule. This will be discussed
in §2.2 and in this section we will assume that Fermi’s Golden Rule can be applied.

Starting with Fermi’s Golden Rule, to describe electron tunneling in STM we will need
to make 5 additional assumptions. These additions will assume that the initial state is in
the STM tip and the final state is in the sample, as follows:

1. The tip states may form a continuum. In this case, we must multiply (2.1) by the
number of tip electrons that participate in tunneling ρt(Et) dEt. The transition rate
dWt→s of electrons from tip to sample due to states within an energy range dEt around
energy Et is

dWt→s =
2π

~

∣

∣〈ψs|H ′|ψt〉
∣

∣

2
ρs(Et)ρt(Et) dEt

where ψs and ψt represent the sample and tip wavefunctions respectively, while ρs and
ρt represent the sample and tip density of states, respectively.

2. An electron transition from a state ψt to ψs can only take place if ψt is occupied by
an electron and ψs is unoccupied. Since the electron occupancy is given by the Fermi-
Dirac distribution f(E) = [exp(E−µ

kT
) + 1]−1, we must multiply ρt by the probability

f(E) that the states are occupied and multiply ρs by the probability 1 − f(E) that
the states are unoccupied

dWt→s =
2π

~

∣

∣〈ψs|H ′|ψt〉
∣

∣

2
ρs(Et)

(

1 − f(Et)
)

ρt(Et)f(Et) dEt

3. When we apply a voltage difference Vt to the STM tip relative to the sample, we assume
we simply shift the density of states of the tip by −ecVt, where ec is the absolute value
of the electron charge. The Fermi-Dirac distribution also shifts since the voltage
changes the chemical potential by −ecVt. The shifted Fermi-Dirac distribution can be
written as f(E + ecVt) = [exp(E+ecVt−µ

kT
) + 1]−1 where µ is the chemical potential with

no applied voltage. The transition rate is now

dWt→s =
2π

~

∣

∣〈ψs|H ′|ψt〉
∣

∣

2
ρs(Et)

(

1 − f(Et)
)

ρt(Et + ecVt)f(Et + ecVt) dEt .

4. If the wavefunctions ψs,1, ψs,2, . . . , ψs,N(Et) on the sample give rise to N(Et) distinct
matrix elements at energy Et, we must sum over the N(Et) contributions from each
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different matrix element [174]

dWt→s =
2π

~

N(Et)
∑

n

∣

∣〈ψs,n|H ′|ψt〉
∣

∣

2
ρs,n(Et)

(

1 − f(Et)
)

ρt(Et + ecVt)f(Et + ecVt) dEt

where ρs,n now represents the number of states per energy on the sample with matrix
element 〈ψs,n|H ′|ψt〉.

5. We must take into account transitions from the sample states back to the tip states
at energy Et

dWs→t =
2π

~

N(Et)
∑

n

∣

∣〈ψt|H ′|ψs,n〉
∣

∣

2
ρs,n(Et)f(Et)ρt(Et + ecVt)

(

1 − f(Et + ecVt)
)

dEt .

We will subtract this off of dWt→s next.

Using the previous assumptions, the total electron transition rate between sample and
tip is then

W =

∫

(dWs→t − dWt→s)

=
2π

~

∫ ∞

−∞

N(Et)
∑

n

∣

∣〈ψs,n|H ′|ψt〉
∣

∣

2
ρs,n(Et)ρt(Et + ecVt)

[

f(Et) − f(Et + ecVt)
]

dEt

and the total tunneling current at voltage Vt is

I(Vt) = −ecW

=
2πec

~

∫ ∞

−∞

N(Et)
∑

n

∣

∣〈ψs,n|H ′|ψt〉
∣

∣

2
ρs,n(Et)ρt(Et + ecVt)

[

f(Et + ecVt) − f(Et)
]

dEt

(we have defined positive current to mean electrons tunnel from tip to sample). Normally in
STM, we express everything in terms of the sample bias which is the voltage of the sample
relative to the tip Vsample = −Vt. This is the convention even when we apply the voltage to
the tip. In terms of the sample bias Vsample = V ,

I(V ) =
2πec

~

∫ ∞

−∞

N(Et)
∑

n

∣

∣〈ψs,n|H ′|ψt〉
∣

∣

2
ρs,n(Et)ρt(Et− ecV )

[

f(Et− ecV )− f(Et)
]

dEt . (2.2)

This is a general first order expression for the tunneling current for non-interacting electrons.
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2.1.2 Simplified expression for tunneling

In order to simplify (2.2), a few standard approximations are used, as follows:

1. We assume in STM that the tip DOS is a constant, ρT .

2. We approximate the matrix elements using Bardeen’s matrix element expression (§2.2).
Tersoff and Hamann [186] have calculated the Bardeen matrix element assuming that
the wave functions at the end of the tip are s-waves centered at position ~r0. The
matrix element has the form A(φ,R)ψs,n(~r0) where φ is the work function, assumed to
be the same for both tip and sample, R is the radius of the potential at the end of the
tip, and A is a function which depends on both φ and R. Using these approximations,
the tunneling current at tip position ~r0 and sample voltage V is

I(~r0, V ) =
2πec

~
ρTA

2(φ,R)

∫ ∞

−∞

N(Et)
∑

n

∣

∣ψs,n(~r0)
∣

∣

2
ρs,n(Et)

[

f(Et − ecV ) − f(Et)
]

dEt

Usually, the differential conductance, dI/dV , at tip position ~r0 and sample voltage V
is a more useful quantity:

dI

dV
(~r0, V ) =

2πec
~

ρTA
2(φ,R)

∫ ∞

−∞

N(Et)
∑

n

∣

∣ψs,n(~r0)
∣

∣

2
ρs,n(Et)

∂f(Et − ecV )

∂V
dEt . (2.3)

3. Since most data is taken at low temperatures, ∂f(Et−ecV )/∂V ≈ ecδ(EF +ecV ), and
dI/dV takes a simpler form

dI

dV
(~r, V ) =

2πe2
c

~
ρTA

2(φ,R)

N(EF+ecV )
∑

n

∣

∣ψs,n(~r)
∣

∣

2
ρs,n(EF + ecV ) (2.4)

Equation 2.4 describes what an STM measures. It is slightly different from what is
normally written, e.g. in [186]. To see the usual form, we think of the sample density of
states ρs as being the sum over many delta functions, very closely spaced energetically:
ρs(E) =

∑

k δ(E − Ek). Since, in general, every wavefunction ψs,n of the sample has a
different matrix element, and since ρs,n is defined as the density of states with matrix
element 〈ψs,n|H ′|ψt〉, then ρs,n is just the density of states of the wavefunction ψs,n; i.e.,
ρs,n(E) = δ(E − En). The expression for dI/dV then simplifies to

dI

dV
(~r, V ) ∝

N(EF+ecV )
∑

n

∣

∣ψs,n(~r)
∣

∣

2
δ
(

(EF + ecV ) − En
)

= LDOS(~r, EF + ecV ) (2.5)

where LDOS stands for local density of states (defined by (4.1)) of the sample. This is the
familiar expression for dI/dV and is the fundamental equation that describes what an STM
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measures. All of the various STM measurement techniques described below will use the
result (2.5).

2.2 Tunneling matrix elements

Sometimes Fermi’s Golden Rule is used to calculate electron tunneling rates, but this is
not necessarily justified, as pointed out in [186]: Fermi’s Golden Rule describes transitions
between eigenstates of one system and not transitions between an eigenstate of one system
(the tip) and an eigenstate of another system (the sample). However, Fermi’s Golden Rule
can be extended so that it is applicable to tunneling. This section will discuss the extended
version of Fermi’s Golden Rule and how this extended rule can be applied to tunneling.
Then the tunneling matrix element in Fermi’s Golden Rule will be rewritten in the more
symmetric form known as the Bardeen matrix element.

2.2.1 Extended Fermi’s Golden Rule

Fermi’s Golden Rule is usually stated as the following: for a system with Hamiltonian H0

and eigenstates H0|ψn〉 = En|ψn〉, if a constant perturbation with Hamiltonian H ′ is applied
to the system, then after a long enough time, (2.1) may be applied to calculate the first order
transition rate between two eigenstates of the unperturbed system. From this statement,
we see that Fermi’s Golden Rule describes transitions between eigenstates |ψn〉 of H0 and
not transitions between an eigenstate |ψn〉 and an arbitrary state |α〉. While this restriction
that we only consider transitions between eigenstates of H0 is sufficient to prove Fermi’s
Golden Rule, we will see that it is not a necessary condition.

This is a statement of an extended version of Fermi’s Golden Rule. Suppose |ψn〉 are
eigenstates with energies En of the time-independent Hamiltonian H0 and

HP (t) =

{

0, for t < 0

H ′, for t ≥ 0

is a perturbing Hamiltonian as a function of time t. H ′ is a constant and the total Hamilto-
nian for the system is H = H0 +HP . If the time-independent normalized state |α〉 satisfies
the following conditions

(H0 +H ′)|α〉 = Eα|α〉 (2.6)

and 〈α|ψn〉 = 0 for all n. (2.7)

Then, in the limit t→ ∞, the transition rate from |ψI〉 to |α〉 is

WI→α =
2π

~

∣

∣〈α|H ′|ψI〉
∣

∣

2
ρf (EI) . (2.8)
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where ρf is the density of final states. This result means Fermi’s Golden Rule can be used
to calculate the transition rate between |ψI〉 and |α〉 as long as |α〉 satisfies (2.6) and (2.7).

To prove this result, we first assume that the system is in the state |Ψ(t)〉 = e−iEI t/~|ψI〉
for t < 0, which is an eigenstate of the total Hamiltonian H = H0 + HP = H0 for t < 0.
Then for t ≥ 0, the perturbing Hamiltonian causes |Ψ(t)〉 to not be an eigenstate of the total
Hamiltonian H = H0 +H ′ anymore. In general, |Ψ(t)〉 for t ≥ 0 will be in a superposition
of eigenstates

|Ψ(t)〉 = a(t)e−iEαt/~|α〉 +
∑

n

cn(t)e
−iEnt/~|ψn〉 .

Note that |a(t)|2 represents the probability of being in state |α〉 after time t. If we plug
|Ψ(t)〉 into the time dependent Schrödinger equation

(H0 +H ′)|Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉

we can simplify the result using (2.6) and H0|ψn〉 = En|ψn〉. After this simplification, we
can multiply the resulting equation on the left by 〈α| and simplify the result using 〈α|α〉 = 1
and (2.7) to get

d

dt
a(t) = − i

~

∑

n

cn(t)e
i(Eα−En)t/~〈α|H ′|n〉

This expression may be solved by successive approximation. For example, we take the right
hand side of the equation as the zeroth order approximation (to zeroth order, |Ψ(t)〉 is in
state I, so cn(t) = δn,I), then the resultant equation

d

dt
a(t) = − i

~
ei(Eα−EI)t/~〈α|H ′|I〉

determines the first order approximation to a(t). If we now look at the derivation of Fermi’s
Golden Rule in §5.6 in [174], we see that this result is exactly equation 5.6.17, and hence,
the rest of the steps leading to (2.8) will be exactly the same as those in §5.6 in [174].

2.2.2 Extended Golden Rule in tunneling

To justify using Fermi’s Golden Rule to describe electrons tunneling from an STM tip to
a sample, one must then argue why the sample eigenstates |ψs,n〉 satisfy conditions (2.6)
and (2.7). This is where the approximations of Bardeen come in. These are the approxima-
tions:

1. Assume that the potential for the sample is localized to the sample and potential for
the tip is localized to the tip. This is a reasonable approximation for tunneling.

2. Assume that all tip wavefunctions are localized to the tip and all sample wavefunctions
are localized to the sample. This should be a reasonable approximation for the bound
states.
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3. Assume that the tip and sample are sufficiently far apart so that there is little overlap
between tip and sample wavefunctions, and tip and sample are sufficiently far apart
so that the tip potential is zero in the region of space occupied by the sample and
sample potential zero in the region of space occupied by the tip.

A sketch of the potentials and wavefunctions under these approximations is given in fig-
ure 2.1.

Figure 2.1: Approximate potentials (solid lines) and wavefunctions (dashed lines) for the
STM tip and sample in Bardeen’s approximation. Only certain regions have non-zero po-
tential and non-zero wavefunctions.

We will now use these assumptions to show (2.6) and (2.7). Suppose

Hs =
~p2

2m
+ Us , Ht =

~p2

2m
+ Ut , with ~p =

~

i
∇ (2.9)

are the Hamiltonians for the sample and tip, respectively. The sample eigenstates are ψs,n
while the tip eigenstates are ψt,n. We then consider the sample potential Us as a perturbation
to the tip, so H0 = Ht and H ′ = Us. We want to show that ψs,n satisfies (2.6) and (2.7).

We first show (2.6). We want to show ψs,n satisfies (H0 + H ′)ψs,n = Es,nψs,n. Since
H0 +H ′ = p2/2m+ Ut + Us,

(H0 +H ′)ψs,n = (Hs + Ut)ψs,n = Es,nψs,n + Utψs,n .

To satisfy (2.6), we must show Utψs,n = 0. By assumption 1, the potential Ut is localized
to the tip while assumption 2 states ψs,n is localized to the sample; more precisely, by
assumption 3, Ut is zero in the sample while ψs,n is zero in the tip. Hence, Ut is zero
whenever ψs,n is non-zero and Ut is non-zero whenever ψs,n is zero. The product Utψs,n
must then be zero everywhere. We may also see that the product Utψs,n is zero from
figure 2.1. Therefore, (H0 +H ′)ψs,n = Es,nψs,n and (2.6) is satisfied.

Next, show (2.7). By assumption 3, the sample and tip wavefunctions have little overlap,
so that 〈ψs,n|ψt,n〉 ≈ 0. So (2.7) is satisfied approximately. This can also be seen in figure 2.1.
We have now shown that all conditions to apply Fermi’s Golden rule have been satisfied,
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which means we may apply (2.1) to electrons tunneling between tip and sample; i.e.,

Wt→s =
2π

~

∣

∣〈ψs,n|H ′|ψt,m〉
∣

∣

2
ρs(Et) ,

where ρs(Et) is the sample DOS at the energy Et of the state |ψt,m〉.

2.2.3 Bardeen’s matrix elements

From the derivation above, we see that the perturbing Hamiltonian is just the potential
energy of the sample H ′ = Us. In this case, one can simply write the matrix elements in
Fermi’s Golden Rule as

Mnm ≡ 〈ψs,n|H ′|ψt,m〉 = 〈ψs,n|Us|ψt,m〉 =

∫

V

ψ∗
s,n(~r)Usψt,m(~r) d~r

where the integral is taken over the volume V where Us 6= 0. In principle, this is all that must
be calculated to find the transition probabilities. However, by doing a few mathematical
manipulations, the matrix element can be written in a more symmetric form completely in
terms of the tip and sample wavefunctions.

One first rewrites ψ∗
s,nUs in the integral in terms of derivatives of ψ∗

s,n by using Hsψ
∗
s,n =

Es,nψ
∗
s,n (equation 2.9). One then has an integral with Es,nψt,m in it. One may rewrite this

term as Et,mψt,m since energy is conserved, so Es,n = Et,m, and one may then substitute
for Et,mψt,m using Htψt,m = Et,mψt,m (equation 2.9). Writing Ht explicitly in terms of

derivatives then allows us to use the derivative identity ∇·(f ~A) = f∇· ~A+∇f · ~A to rewrite
the matrix element as

Mnm =
~

2

2m

∫

V

∇ · (ψt,m∇ψ∗
s,n − ψ∗

s,n∇ψt,m) d~r +

∫

V

ψ∗
s,nUtψt,m d~r .

The second integral is zero since we integrate over the volume where Us 6= 0 and Ut = 0 in
that region (figure 2.1). Applying the divergence theorem to the remaining integral gives
the Bardeen matrix element

Mnm =
~

2

2m

∫

A

(ψt,m∇ψ∗
s,n − ψ∗

s,n∇ψt,m) · d ~A

where the integral is taken over any surface that separates tip from sample. More details
about the Bardeen matrix elements can be found in §2.2 of [29], while corrections to the
matrix elements can be found in chapter 3 of [29].
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2.3 STM Topography

We first define the plane of the sample’s surface to be the xy-plane and the direction per-
pendicular to the surface as the z direction (figure 2.2). In STM topography, we apply a
constant voltage to the tip or sample (figure 2.2 shows it applied to the tip, which is equiva-
lent to applying V = −Vtip to the sample) and move the tip in the xy-plane with a feedback
mechanism that controls the movement of the tip in the z direction so that the tunneling
current I(V ) is kept constant (figure 2.2). The plot of the change in the z position of the

Figure 2.2: Diagram showing the basic setup of an STM. A constant voltage Vtip is applied
to the tip while voltages are applied to piezos to move the tip in the x and y directions. The
tunneling current is measured by a current to voltage converter connected to the sample
and the tunneling current (after conversion to a voltage) enters feedback electronics which
applies a voltage to the z piezo to move the tip in the z direction so that the tunneling
current is kept constant.

tip as a function of x and y is a constant-current topograph. Since the current is given by

I(~r, V ) =

∫ V

0

dI

dV
(~r, V ) dV ∝

∫ V

0

LDOS(~r, EF + ecV ) dV
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the feedback adjusts the tip height to keep the integral of the LDOS from 0 to V constant.
What we then plot in a topograph is a surface where the integral of the LDOS is con-
stant. If the voltage is sufficiently small, then I(~r, V0) =

∫ V0

0
dI/dV dV ∼ dI(~r, V0)/dV ∝

LDOS(~r, EF+ecV0), so that the topograph shows a surface of constant LDOS near the Fermi
energy. Since LDOS(~r, EF + ecV ) ∼

∑

|ψ(~r)|2 what a low bias topograph shows is a surface
where the sum of the squares of the wavefunctions near EF is constant; i.e., it shows the
spatial distribution of the orbitals near EF.

2.4 Elastic Spectroscopy

In dI/dV spectroscopy (also simply called spectroscopy), we keep the tip at a fixed po-
sition ~r0 and measure dI/dV as we change the voltage. We normally do not numerically
differentiate I(V ); instead, we use a lock-in amplifier to measure dI/dV (appendix A).
Since dI(~r0)/dV ∝ LDOS(~r0, EF + ecV ), what we then measure is the sample’s LDOS
at position ~r0 as a function of energy. Since DOS(E) =

∑

n δ(E − En), we may think of
LDOS(~r, E0) =

∑

m|ψ(~r)|2δ(E−E0) roughly as the density of states at energy E0 multiplied
by the square of all wavefunctions with energy E0 at position ~r.

Since the dI/dV measures LDOS which is not the same as the DOS, to get a better
measure of the density of states of the sample, we may average dI/dV spectroscopy curves
taken at various positions over the sample. This gives a better measure of the DOS because
the integral of LDOS(~r, E) over all space is DOS(E) (§4.1); hence, by averaging spectroscopy
curves over different points in space, we are effectively integrating LDOS over space, and
the more positions in space we average over, the closer the average becomes to the integral,
and the closer the average dI/dV is to the DOS.

2.5 dI/dV maps

A dI/dV map is taken by keeping the tip voltage constant and scanning the surface in the
x and y directions while keeping the feedback on (so that I is constant). We then measure
dI/dV during this process and plot it as a function of (x, y). The resulting plot is called a
dI/dV map.

Since dI(~r, V0)/dV ∝ LDOS(~r, EF + ecV0) ∼ ∑

∣

∣ψ(~r)
∣

∣

2
where we sum over all orbitals

with energy ecV0, when we take a dI/dV map, we map out the values of the sum of the
squares of the orbitals at energy ecV0 at the position ~r. The position ~r is determined by the
current I since, as we scan, the feedback moves the tip to keep the current constant. This

means that a dI/dV map measures
∑

∣

∣ψ(~r)
∣

∣

2
along a surface where I is constant. This is

not the same as mapping out an orbital since an orbital is usually drawn as an isosurface,

a surface where
∑

∣

∣ψ(~r)
∣

∣

2
= C for some constant C. This distinction is important when

comparing data to calculations [129].
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2.6 Inelastic Spectroscopy

We normally assume that when electrons tunnel into a molecule, the electrons then hop
off the molecule onto the surface without losing energy. This is called elastic tunneling.
However, it is also possible for the electrons to lose energy in the molecule via some other
mechanism. Such a process is called inelastic tunneling. For example, the electron could
excite a molecular vibration. This would cause the electron to lose energy ~ω where ω is
the frequency of the vibrational mode. Since the electron must have energy E ≥ ~ω to
excite the vibration, we will see a sudden onset of current due to inelastic tunneling when
|E| ≥ ~ω. Normally, the additional inelastic current increases the total current, resulting in
a sudden rise in dI/dV at the energies E = ±~ω.

The change in the dI/dV signal due to the excitation of a vibration can be quantitatively
calculated as [58]

∆
dI

dV

∣

∣

∣

∣

ecV=~ω

∼
∣

∣

∣
〈ψEF

|Vel-ph|ψEF+~ω〉
∣

∣

∣

2

which can be written as

∆
dI

dV

∣

∣

∣

∣

ecV=~ω

∼
∣

∣

∣

∣

∣

∑

i

dEψEF

dQi

1√
ω

∣

∣

∣

∣

∣

2

(2.10)

where Qi represents the displacement of the ith atom in the direction of the molecular
vibration and the sum is taken over all atoms in the molecule.

When the atoms vibrate, the molecular energies will change slightly since the position of
the atoms are changing. Equation (2.10) tells us that the more the energy of the molecular
states near EF change due to the vibration mode, the larger d2I/dV 2 is. It also tells us that
larger frequency phonons have smaller d2I/dV 2.

2.7 d2I/dV 2 maps

For a d2I/dV 2 map, we keep V constant and keep the feedback on so that I is also constant.
We then scan the surface in the x and y directions and measure d2I/dV 2 as a function of
(x, y). A plot of d2I/dV 2 as a function of (x, y) is called a d2I/dV 2 map. Normally we
choose V so that ecV is the energy where strong inelastic tunneling occurs. In this case, a
d2I/dV 2 map plots the strength of the inelastic signal as a function of position.

For the case of a molecular vibrational mode, the dI/dV signal will again change suddenly
at V = ±~ω/ec due to the vibrational mode. The spatial dependence of the change in dI/dV
at this voltage is [58]

∆
dI

dV

∣

∣

∣

∣

ecV=~ω

(~r) =

∣

∣

∣

∣

∣

∑

i

〈dψEF

dQi

∣

∣

∣
~r
〉 1√

ω

∣

∣

∣

∣

∣

2

, (2.11)

where Qi has the same meaning as in (2.10).
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When the atoms in the molecule oscillate due to a vibrational mode, the wavefunc-
tions will change slightly since the positions of the atoms are changing. Equation (2.11)
means that the position with the largest d2I/dV 2 signal is the position where the molecular
wavefunctions near EF change the most due to the vibration.



20

3
Corrections to the STM Theory

The theory presented in chapter 2 is the basic theory of the scanning tunneling microscope,
and has been successfully used to explain qualitatively and quantitatively the STM data
of many samples, such as metal surfaces. Although it may be sufficient from a theoretical
viewpoint, for experiments the basic theory has approximations that do not always exist
in the real world. As a result, there are corrections to the theory that are important for
anyone interpreting STM data to know. This chapter will describe corrections to the basic
STM theory that are important to correctly interpret the experimental data presented in
this dissertation. The following is a list of corrections; each will be explained in more detail
in the next sections:

1. The basic theory assumes T = 0 K which is not true in experiments. The effect of
non-zero temperatures will be to broaden features in spectroscopy.

2. The tunneling matrix elements were derived assuming spherically symmetric wave-
functions on the tip, which is not always true. Atomic resolution cannot be explained
with spherically symmetric tip wavefunctions.

3. The tunneling matrix elements are not constant, which was assumed earlier. They
are a function of the voltage applied to the tip. This causes a non-constant tip DOS
(usually the tip DOS is assumed constant) to become noticeable at negative sample
biases. It also leads to negative differential resistance, which is most prominent when
the sample has localized states, such as a molecule on an insulating surface.

4. Whenever electrons tunnel from tip to sample or sample to tip, we are either adding an
electron or removing an electron from a sample which contains many electrons. This
means that we need to take into account many-body effects, such as electron-electron
interactions, which were not taken into account in chapter 2. In a metal, the electron-
electron interactions are usually screened, so we do not have to consider them. This
is not the case in a single molecule.
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3.1 Thermal broadening

3.1.1 Elastic tunneling

Instead of T = 0 K assumed before, consider elastic tunneling when T 6= 0 K. From (2.3), if
the tunneling matrix elements are constant, we see that the sample DOS is convoluted with
the derivative of the Fermi-Dirac distribution:

dI

dV
∝

∫

ρs(E)BT1(E − ecV ) dE ≡ ρs ∗BT1 with BT1 = −df(E)

dE
.

Since −f ′(E) = −df/dE is a peak with a maximum value of 1/4kBT at E = µ and a FWHM
given by 2kBT ln(3+2

√
2) ≈ 3.5kBT , the effect of non-zero temperatures is to convolute the

DOS with this peak. Effectively, this means that peaks in the STM-measured DOS will be
broader than peaks in the true DOS by about 3.5kBT , an effect called thermal broadening.

It is sometimes possible to remove the effect of this broadening to recover ρs. Since
dI/dV is a convolution between ρs and −f ′(E), we may deconvolute dI/dV from −f ′(E)
using the convolution theorem to get back ρs. Let FT[g(E)](y) ≡ FT[g(E)] denote the
Fourier transform as a function of y of the function g(E). Then FT[dI/dV ] ∝ FT[ρs∗−f ′] =
FT[ρs] FT[−f ′]. Since we know the temperature and µ = 0, we may then calculate FT[−f ′]
and divide this part out, yielding

ρs ∝ FT−1

[

FT[dI/dV ]

FT[−f ′]

]

,

where FT−1 represents the inverse Fourier transform. However, numerically this procedure
does not always work since FT[−f ′](y) is almost 0 for large values of y. We are then dividing
by a function which is almost 0 and the result tends towards ∞. Ideally, the numerator
FT[dI/dV ] would also go to 0 whenever FT[−f ′] does, but this is not the case due to noise
or other experimental errors.

However, if one knows that ρs should be the function h(E), one may get around this
problem. In this case, what is normally done is to convolute h(E) with −f ′, then fit this
curve to dI/dV ; i.e., we fit h ∗−f ′ to dI/dV . The best fit then yields parameters which tell
us the function h(E) = ρs.

3.1.2 Inelastic tunneling

For inelastic tunneling, the thermal broadening of d2I/dV 2 is a little different [109]. In this
case, the measured second derivative is related to the true (unbroadened) second derivative
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by the convolution

[

d2I(V )

dV 2

]

measured

=

∫ ∞

−∞

[

d2I(V − E)

dV 2

]

true

BT2(E) dE =

[

d2I

dV 2

]

true

∗BT2

where BT2(E) =
1

kBT
ex

(x− 2)ex + x+ 2

(ex − 1)3
with x =

E

kBT

Since we have a convolution between two functions, in principle one may use the same
methods for elastic tunneling to remove the effect of thermal broadening.

3.2 Non-spherical tip states and atomic resolution

In general, the wavefunction of the atoms at the end of the STM tip is what should matter
the most. Usually W or PtIr tips are used in STM and these are transition metals with d
orbitals. These d orbitals are more localized than the valence s orbitals, so as long as the
tip-sample distance is large enough (& 4 Å, which is true for almost all experiments in this
dissertation), the spherically symmetric tip wavefunctions assumed in chapter 2 is a good
approximation.

However, spherically symmetric tip states may not be true for transition metal tips when
the tip-sample separation is ∼ 4 Å, as tunneling into the d orbital may be important in this
regime. Furthermore, theory predicts that one cannot get atomic resolution in STM images
from spherically symmetric tip states (§1.3, 6.3, chapter 7 in [29]). This is consistent with
the experimental observation that atomic resolution is easiest to achieve when molecules
with non-spherically symmetric states, such as CO, are on the tip.

To address this issue, the effect of other orbitals have been included (chapter 3 in [29])
to improve on the spherical-tip approximation, as well as tip-sample interactions (chapter
7 in [29]). These corrections give a better approximation to the tunneling matrix elements,
especially at close (∼ 4 Å) tip-sample separations. Atomic resolution, as well as other effects,
such as the inversion of topography images (bumps appear as dips and dips appear as
bumps) can be explained by including non-spherically symmetric tip states and tip-sample
interactions.

3.3 Tunneling matrix elements

3.3.1 Negative differential resistance

The tunneling matrix elements can also be affected by the voltage that is applied to the
STM tip. A simple one dimensional model based on the WKB approximation can be used
to estimate the magnitude of this effect [59]. Qualitatively, as we increase the STM sample
voltage, the effective tunneling barrier that the electrons see increases; hence, it is possible
to see the tunneling current decrease when the STM sample voltage is increasing. For
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voltages where I(V ) decreases as V increases, dI/dV < 0, so the differential conductance
is negative. A negative dI/dV is known as negative differential resistance (NDR) [59] (or
negative differential conductance). The lower panel in figure 3.2 shows a simulated dI/dV
spectrum with NDR around V ∼ 1.5 V and V ∼ 3.1 V. The details of the simulation are
discussed next.

3.3.2 Enhancement of tip states at negative bias

Figure 3.1 shows an energy diagram for tunneling when the sample bias V is negative and
positive. From figure 3.1a, we see that the electrons on the tip with lower energy will
see a larger tunneling barrier, and hence, will have a smaller probability of tunneling (the
length of the blue arrows in the diagram represents the relative probability of tunneling).
So at positive sample bias, the tunneling current (and also dI/dV ) will be dominated by
tunneling into the empty states of the sample with energy EF+ecV . Similarly, in figure 3.1b,
at negative sample bias, the tunneling current (and dI/dV ) will be dominated by DOS of
the tip at energy EF + ecV . Therefore, if the DOS of the tip is not constant, it will have a
large impact on the dI/dV at negative sample bias.

This qualitative result can be quantified for a one dimensional system. Starting from
equation (2.2), we use the Tersoff-Hamann approximation to Bardeen’s matrix elements
(§2.1.2), so that

∣

∣〈ψs,n|H ′|ψt〉
∣

∣

2 ∝
∣

∣ψs,n(~r0)
∣

∣

2
.

We then use the WKB approximation to calculate
∣

∣ψs,n
∣

∣

2
in the vacuum region, assuming

the energy barrier is a trapezoid (as in figure 3.1)

∣

∣ψs,n
∣

∣

2 ≈ exp

(

−2κ

∫ L

0

√

φ− E + ecV x/L dx

)

where κ =
√

2me/~2, φ is the work function, and L is the length of the vacuum region. In
this approximation, the tunneling matrix elements depend only on the energy, hence, they
may be taken out of the sum in (2.2). Everything else except for ρs,n may be taken out of
the sum as well, so the summation can be performed using

∑

n ρs,n = ρs. We further take
T = 0 K so that the Fermi functions become step functions. The tunneling current becomes
(with EF = 0)

I(V ) ∼
∫ ecV

0

exp

(

−2κ

∫ L

0

√

φ− E + ecV x/L dx

)

ρs(E)ρt(E − ecV ) dE . (3.1)

After plugging in the reasonable values φ = 5 eV and L = 5 Å, dI/dV may be calculated
numerically from this expression for a given ρs and ρt.

Figure 3.2 shows the results of a numerical simulation using (3.1). The top panel shows
the DOS for the tip and sample that was used to calculate the dI/dV curve shown in the
bottom panel. There are a few important features to note in the simulated dI/dV .
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Figure 3.1: Enhancement of tip DOS at negative sample bias. The blue shaded areas
under the tip and sample DOS curves represent states which are occupied by electrons. (a)
Tunneling at positive sample bias is dominated by tunneling into empty sample states. (b)
Tunneling at negative sample bias is dominated by tunneling into empty tip states. The
length of the blue arrows represent the relative size of the tunneling probability. Electrons
with higher energy have a higher probability of tunneling (since they see a smaller tunneling
barrier) and contribute the most to the tunneling current.

1. The dI/dV curve has NDR around V = 1.5 V and V = 3.1 V.

2. Although the sample DOS has peaks with the sample amplitude, the corresponding
peaks in dI/dV are not the same amplitude. The peak amplitudes at positive sample
bias are larger than those at negative sample bias.

3. The tip DOS is not constant, and this affects the dI/dV curve the most at negative
sample biases, which was explained qualitatively earlier.

3.4 Many-body corrections

When an electron tunnels from the STM tip into the sample, it can interact with other
particles in the sample, for example, phonons, plasmons, or other electrons. These extra
interactions which arise from the added electron will modify the DOS of the sample, so the
STM actually measures this modified DOS, and not the DOS ρs(E) in §2, which does not
include many-body interactions. So, to describe what STM measures, we need to describe
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Figure 3.2: The lower panel shows the simulated dI/dV spectrum obtained by using the tip
and sample DOS shown in the upper panel. Although the sample DOS has periodic peaks
of the same amplitude, the amplitude of the corresponding peaks in the simulated dI/dV
changes drastically. Also, the tip DOS has a substantial impact on the simulated dI/dV
when V < 0. NDR occurs when the sample bias is around V ∼ 1.5 V and V ∼ 3.1 V

how these many-body interactions affect the DOS. In general, to take into account many
body interactions, we may replace the tip and sample DOS in chapter 2 with tip and sample
spectral functions [5]. This is not always so simple since the spectral functions (§4.1.2) for
the tip and sample are not always known. Luckily, there still are simple models to help
describe many-body effects in terms of quasiparticles, and these will be discussed next.

3.4.1 Quasiparticles

It is usually difficult to consider how interactions with other particles affects the electron
DOS; it is easier to calculate the DOS for a system of non-interacting particles. So, normally
the combined system of electron added by STM + other particles the electron interacts with
is treated as a single particle called a quasiparticle, and if these electron quasiparticles are
defined cleverly, they can be treated as a non-interacting (or at least weakly interacting) sys-
tem of particles. When the quasiparticles are weakly interacting instead of non-interacting,
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we can apply perturbation theory to correct for the weak interactions. Since the quasiparti-
cles already include many-body interactions, their energy levels are the energy levels of the
electron including many-body interactions. Thus, to describe STM measurements, we need
to find the quasiparticle density of states. This is normally a difficult theoretical problem
which require techniques such as Green’s functions (§4.1.2), but sometimes simple models
can be used, such as the one that will be given in §3.4.2.

A common example of a quasiparticle in condensed matter physics is the particle which
consists of an electron + the lattice the electron is in. The interactions between the electron
and lattice are complicated, but this complex system can be treated as a new particle with
charge −ec and mass m∗, the effective mass of the electron. These quasiparticles are then
treated as almost non-interacting particles, and most electronic properties of the system are
calculated in terms of these non-interacting quasiparticles.

3.4.2 Electron-electron interactions

The main many-body effect to consider for the experiments presented in this dissertation
is the electron-electron interaction. This effect is significant in molecules such as C60 [130].
This section will describe how to define the effect of electron-electron interactions in single
molecules as quasiparticles and what the density of quasiparticle states is. We will find that
the quasiparticle DOS, which is the STM measured DOS, will have an energetic separation
between HOMO and LUMO which is larger than the HOMO-LUMO energetic separation in
the non-interacting electron DOS. This will be the main difference between the quasiparticle
DOS and the non-interacting electron DOS.

Quasiparticle HOMO-LUMO gap

Suppose that a molecule contains N electrons. The ith electron on the molecule will repel
the jth electron; call the electrostatic energy of these two electrons Uij ≥ 0. We define
average electron-electron repulsion energy, called the charging energy or on-site Coulomb
interaction, as U = 1

P

∑

i>j Uij, where P = 1+2+ · · ·+N − 1 = N(N − 1)/2 is the number
of distinct electron-electron pairs. Let ǫi represent the energy levels of the molecule without
electron-electron interactions, then the total electronic energy of the molecule including
electron-electron interactions is

EN =
N(N − 1)

2
U +

N
∑

i=1

ǫi . (3.2)

In STM, electrons are either tunneling from the tip to the molecule or from molecule to
tip. First consider an electron tunneling from the tip to an unoccupied state of the molecule,
the LUMO+n (the (n+ 1)th lowest unoccupied orbital). The LUMO+n is now occupied by
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an electron, so the total electronic energy of molecule is

ELUMO+n
N+1 =

(N + 1)N

2
U +

N
∑

i=1

ǫi + ǫN+n+1 = EN +NU + ǫLUMO+n .

where ǫN+n+1 = ǫLUMO+n. We assumed that both ǫi and U do not change much from the
addition of one electron.

We now define the electron quasiparticle as the added electron plus all other electrons
it interacts with. The energy of this quasiparticle will be the energy of the added electron
which includes the electron-electron interactions, and will be the energy we actually measure
in STM. We now need to define the quasiparticle’s energy. To understand how to define it,
consider first a simpler system. For any system of non-interacting electrons, if we calculate
the total electronic energy of the system after adding an electron and subtract this from the
neutral system’s ground state energy, we get the energy of the state the electron was added
to. Using this as a guide, we define the energy of the quasiparticle’s LUMO+n as

EQPLUMO+n = ELUMO+n
N+1 − EN = NU + ǫLUMO+n .

This expression makes sense since when we add an electron to the molecule, the other N
electrons already on the molecule will repel it. The repulsion from each electron on the
molecule adds an energy U . Hence, the actual energy that we measure for the LUMO+n,
the energy of the quasiparticle’s LUMO+n, is increased from ǫLUMO+n by NU .

Now consider the case when an electron tunnels from an occupied molecular state, the
HOMO−m (the (m + 1)th highest molecular orbital), to the tip. The HOMO−m now has
an electron missing, so the total electronic energy of the molecule is

EHOMO−m
N−1 =

(N − 1)(N − 2)

2
U +

N
∑

i=1

ǫi − ǫN−m = EN − (N − 1)U − ǫHOMO−m

with ǫHOMO−m = ǫN−m. Again, if we consider any system of non-interacting electrons, the
energy of the HOMO−m is the energy of the neutral system minus the energy of the system
after an electron has been removed from the HOMO−m. So we will define the energy of
the quasiparticle’s HOMO−m as

EQPHOMO−m = EN − EHOMO−m
N−1 = (N − 1)U + ǫHOMO−m .

Again, this makes sense since the electron in the HOMO−m is repelled by N − 1 other
electrons, each increasing ǫHOMO−m by U .

The difference in energy between the quasiparticle’s LUMO and HOMO (called the
quasiparticle HOMO-LUMO gap) is then

EQPgap = EQPLUMO − EQPHOMO = ǫLUMO − ǫHOMO + U . (3.3)
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We see that the effect of the electron-electron interactions is to increase the energy separation
between HOMO and LUMO by the charging energy U [130].

If we now calculate the difference in energy between any two unoccupied states, we get

EQPLUMO+i − EQPLUMO+j = ǫLUMO+i − ǫLUMO+j .

So the energetic separation between unoccupied states is the same whether we include
electron-electron interactions or not. Similarly, the energetic separation between any two
occupied states is independent of whether we include electron-electron interactions or not.
So the main effect of electron-electron interactions using this simple model is to increase the
non-interacting electron’s HOMO-LUMO gap by U . This quasiparticle HOMO-LUMO gap
is what we then expect to measure in STM experiments.

Experimentally determining the quasiparticle gap

It is possible to experimentally extract the value of EQPgap using two commonly measured
experimental quantities, the ionization energy and electron affinity. The ionization energy
is the minimum energy necessary to remove an electron from the neutral molecule; i.e., it is
the difference in energy between the molecule with one electron removed from the HOMO
and the neutral molecule with N electrons

IE = EHOMO
N−1 − EN = −EQPHOMO .

We have defined the potential energy of the electron removed from the HOMO to be zero
when the electron is infinitely far away from the molecule.

The electron affinity is the ionization energy of a singly negatively charged molecule. A
singly negatively charged molecule has an extra electron in the LUMO, so the minimum
energy necessary to remove an electron from the negatively charge molecule is the energy
necessary to remove the electron from the LUMO. This is the difference in energy between
the molecule with N electrons and the molecule with an extra electron in the LUMO

EA = EN − ELUMO
N+1 = −EQPLUMO .

The quasiparticle HOMO-LUMO gap can then be written as

EQPgap = IE − EA . (3.4)

So the ionization energy and electron affinity gives us an idea of how large we can expect
the STM measured gap EQPgap to be. The only problem with using (3.4) is that IE
and EA are normally measured for molecules in gas phase while in STM, we normally have
molecules on a conducting surface. On a conducting surface, U is smaller since electrons on a
molecule form image charges in the metal, and these positive image charges tend to attract
the electrons on the molecule together [151]. This tends to cancel the electron-electron
repulsion, effectively reducing U .
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4
Theoretical Background for Molecular Nanostructures

The purpose of this chapter is to both introduce the necessary theory to understand this
dissertation and to introduce important theoretical concepts and notation frequently en-
countered in publications in this field.

4.1 LDOS, PDOS, and DOS

One of the important quantities to understand in STM is the local density of states (LDOS)
since the STM directly measures it (chapter 2). However, different people will define the
LDOS in different ways, so a particular definition of LDOS in one publication may not
be exactly what an STM measures (e.g., the definition in §18.33 in [138]). This may be
especially confusing to those who are new to this field. To remove any potential confusion,
in this dissertation, the LDOS will be defined below so that it is always what the STM
measures. Another quantity called the projected density of states (PDOS) will be defined,
and all other definitions of LDOS seen in publications can be stated in terms of a PDOS.
The exact definitions of LDOS and PDOS, as well as how they are related to each other,
will be given in this section.

Furthermore, many theoretical results in many-body physics are stated in terms of
Green’s and spectral functions, and to compare these theoretical results to STM data, one
must understand how they are related to the LDOS and PDOS. For this reason, Green’s
and spectral functions will be introduced, and it will be shown how they are related to the
LDOS and PDOS.

4.1.1 Definitions

The LDOS of a system with Hamiltonian H and eigenstates ψn(~r) at position ~r and energy
E is defined as

LDOS(~r, E) ≡
∑

n

∣

∣ψn(~r)
∣

∣

2
δ(E − En) (4.1)
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where the sum is taken over all eigenstates (although only the terms with En = E actually
contribute to the sum). The LDOS of a system at energy E and position ~r can be thought
of as the value of the sum of the squares of all the system’s wavefunctions with energy E at
position ~r.

The LDOS is related to the DOS, which can be seen if we integrate the LDOS over all
space

∫

all space

LDOS(~r, E) dV =
∑

n

∫

all space

∣

∣ψn(~r)
∣

∣

2
δ(E − En) dV

=
∑

n

δ(E − En)

≡ DOS(E) .

So the LDOS integrated over all space is just the DOS for that system.
The PDOS is closely related to the LDOS. The PDOS for a system with eigenstates |n〉

projected onto the state |Φ〉 at energy E is defined as

PDOS
(

|Φ〉, E
)

≡
∑

n

∣

∣〈Φ|n〉
∣

∣

2
δ(E − En)

The PDOS of a system at energy E projected onto state |Φ〉 represents roughly the amount
of the system’s wavefunctions at energy E contained in the state |Φ〉. We can also think of
a PDOS at energy E roughly as LDOS(~r, E) integrated over the region of space taken up
by the wavefunction Φ(~r) = 〈~r|Φ〉, but this is only a rough way of thinking of the PDOS,
and is not always true.

To see how the PDOS and LDOS are related, let |~r〉 denote an eigenstate of the position
operator, then

PDOS
(

|~r〉, E
)

=
∑

n

∣

∣〈~r|n〉
∣

∣

2
δ(E − En)

=
∑

n

∣

∣ψn(~r)
∣

∣

2
δ(E − En)

= LDOS(~r, E)

where ψn(~r) = 〈~r|n〉 is the position space representation of the wavefunction. So we see
that the LDOS is just a special case of the PDOS.

4.1.2 Green’s and spectral functions

The Green’s function and spectral functions will be introduced briefly in this section, and
in the next section, it will be shown how they are related to the LDOS and PDOS.

One of the systematic and powerful ways of solving many-body problems is to use Green’s
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functions. Once we know the Green’s function for a system, we can calculate various prop-
erties of that system, such as the DOS. The problem of calculating various properties of a
system can then be boiled down to one problem: find the Green’s function for that system.

The Green’s function may be obtained from the Green’s operator. In general, the Green’s
operator for a linear differential operator D̂(t), which contains derivatives with respect to
the variable t, is the operator Ĝ(t) which satisfies

D̂(t)Ĝ(t) = δ(t) .

Since the Schrödinger equation Ĥ|ψ〉 = i~ ∂
∂t
|ψ〉 can be rewritten as

D̂S(t)|ψ〉 = 0 with D̂S(t) = i~
∂

∂t
− Ĥ ,

D̂S(t) is an important differential operator for quantum mechanics and condensed matter
physics. The Green’s operator in condensed matter physics is then defined as the Green’s
operator for the linear differential operator D̂S(t); this means that Ĝ(t) satisfies

D̂S(t)Ĝ(t) =
(

i~
∂

∂t
− Ĥ

)

Ĝ(t) = δ(t) . (4.2)

At this point, the usage of D̂S to construct the Green’s operator seems somewhat arbitrary.
We may have used other differential operators to define the Green’s operator, such as the
kinetic energy operator, but in the next section, we will see that using D̂S to define the
Green’s operator will allow us to calculate many quantities from it.

We may now explicitly construct Ĝ(t) for a time independent Hamiltonian. Since the

time evolution operator Û(t) = e−iĤt/~ satisfies D̂S(t)Û(t) = 0 (equation 2.1.25 in [174]),
Û(t) almost satisfies (4.2); it only does not satisfy the equation when t = 0. To satisfy (4.2)
at t = 0, note that the derivative of a step function θ(t) (defined below) is δ(t), so we may
construct the Green’s operator from θ(t) and Û(t). If we let Ĝ(t) = 1

i~
θ(t)Û(t), then a

quick calculation shows D̂S(t)Ĝ(t) = Û(t)δ(t) = Û(0)δ(t) = δ(t), so that Ĝ(t) satisfies (4.2).
Finally, the Green’s operator for a time independent Hamiltonian Ĥ is (§7.11 in [174])

Ĝ(t) =
1

i~
θ(t)e−iĤt/~ with θ(t) =

{

1 for x > 1

0 for x ≤ 0 .

Ĝ(t) defined in this way is called a retarded Green’s operator. We see that the Green’s
operator for a system is essentially the time evolution operator for that system.

The Green’s operator contains all the information about how a system evolves over
time. However, we normally want information related to the energy of the system. To
extract information about the energy of a system from the Green’s operator, it is more
convenient to convert Ĝ(t) to an operator that depends on energy. As a function of energy,



4.1. LDOS, PDOS, AND DOS 32

the Green’s operator is defined as the Fourier transform of Ĝ(t):

Ĝ(E) =

∫ ∞

−∞
ei(E+iα)t/~Ĝ(t) dt =

1

i~

∫ ∞

0

ei(E+iα−Ĥ)t/~ dt =
1

E + iα− Ĥ
.

The small imaginary part iα was added to the exponential in the integral in order for the
integral to converge. In the end, we will take α → 0.

Often, we must deal with many-body systems. For these systems, it is convenient to
express the many-body Hamiltonian Ĥ as

Ĥ = ĤSP + Σ̂

where ĤSP is a single particle Hamiltonian and Σ takes into account the interactions of a
single particle with all the other particles in the system. The term Σ is usually complex
and is called the self-energy since it takes into account the contributions to the total energy
of a system due to one part of a system interacting with another part of the same system.
With this notation, the Green’s operator becomes

Ĝ(E) =
1

E + iα− ĤSP − Σ̂
.

The Green’s function can finally be defined as the function which is the expectation of
the operator Ĝ(E) in the state |n〉

G(n,E) = 〈n|Ĝ(E)|n〉 .

This is the form of the Green’s function that is often used, such as in [133]. However,
sometimes the Green’s operator Ĝ(t) is called the Green’s function, even though it is an
operator. This convention appears in [138].

It will be convenient later to represent the Green’s operator in another form. If the
states |n〉 with energy En denote the eigenvalues of the total (many-body) Hamiltonian Ĥ,
then Ĝ(E) can be expressed using the identity operator Î =

∑

n|n〉〈n| as

Ĝ(E) = Ĝ(E)Î =
∑

n

|n〉〈n|
E + iα− En

. (4.3)

Another important operator which appears frequently in theoretical calculations is the
electron spectral operator Â(E) . This operator is proportional to the imaginary part of
Ĝ(E) (§3.3 in [133])

Â(E) = −2 Im
{

Ĝ(E)
}

. (4.4)

The spectral function is then the imaginary part of the Green’s function.
From the spectral operator or function, many measurable properties of a system can

be calculated. For example, two important quantities for STM, the local density of states
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(LDOS) and projected density of states (PDOS), can be obtained from the spectral operator.

4.1.3 LDOS and PDOS in terms of spectral functions

In this section, we will show how two important quantities, the LDOS and PDOS can be
derived from the Green’s and spectral operators and functions. We first write the LDOS in
terms of the spectral operator. Using (4.3) and (4.4), the spectral operator can be written
as

Â(E) = 2
∑

n

α

(E − En)2 + α2
|n〉〈n|

Since the coefficient of |n〉〈n| in the sum is just a Lorentzian, as α → 0, the Lorentzian
tends to πδ(E − En). If we now calculate 〈~r| limα→0 Â(E)|~r〉 we get

〈

~r
∣

∣ lim
α→0

Â(E)
∣

∣~r
〉

= 2
∑

n

〈~r|n〉〈n|~r〉πδ(E − En)

= 2π
∑

n

∣

∣ψn(~r)
∣

∣

2
δ(E − En)

= 2π LDOS(~r, E)

where ψn(~r) = 〈~r|n〉 denotes the representation of state |n〉 in position space. This implies

LDOS(~r, E) =
1

2π

〈

~r
∣

∣ lim
α→0

Â(E)
∣

∣~r
〉

Section 2.1 shows that the STM measures the LDOS of a system, hence the STM essentially
measures the spectral function in position space.

The PDOS is obtained from the spectral function in a similar way to the LDOS; the dif-
ference is that we use an arbitrary state |Φ〉 instead of the position eigenstate |~r〉. Following
a derivation similar to the derivation for LDOS, the PDOS can be written as

PDOS
(

|Φ〉, E
)

≡
∑

n

∣

∣〈Φ|n〉
∣

∣

2
δ(E − En) =

1

2π

〈

Φ
∣

∣ lim
α→0

Â(E)
∣

∣Φ
〉

Hence, as α → 0, the PDOS is proportional to the spectral function A(Φ, E) = 〈Φ|Â(E)|Φ〉.

4.2 Tight Binding

Since the wavefunctions in a solid arise from hybridization between atomic orbitals, one
would think that there is a way of deriving, or at least approximating, the wavefunctions
of a solid in terms of localized atomic orbitals. We would especially expect this when the
atomic orbitals on neighboring atoms do not overlap much, resulting in little hybridization
between atomic orbitals. In this regime, the wavefunctions for the solid should be similar
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to the atomic wavefunctions, and we may be able to write the solids’ wavefunctions simply
as linear combinations of atomic wavefunctions. This leads to the main idea behind what
is called tight binding : little overlap between neighboring atoms’ wavefunctions in a solid
leads to wavefunctions for the solid which can be expressed as linear combinations of the
atomic orbitals. This section will describe how this idea can be put into a more precise
mathematical form. The presentation here will be different from the presentation of tight
binding given in §8.4 in [138] and chapter 10 in [7], but the concepts will be the same.

To develop tight binding, start with a solid with N atoms located at positions ~Rn. Then
we may write the Hamiltonian for a single electron in this system as

Ĥ =
p2

2m
+

N
∑

i=1

U(~r − ~Ri)

where U(~r) = −Ze2/r is the coulomb potential for an atom with nuclear charge Z. Now

suppose each atom in the solid has one atomic state |i〉 which satisfies
(

p2

2m
+U(~r−Ri)

)

|i〉 =
E0|i〉. Then assume that the set of all atomic orbitals {|i〉} forms an orthonormal basis for
the wavefunctions of the solid. This is not necessarily true, but is a reasonable approximation
if the atomic orbitals of neighboring atoms do not overlap much, in which case we would
expect weak interaction between the neighboring atoms, and the wavefunctions for the solid
should be similar to the atomic wavefunctions. With this assumption, we can calculate the
matrix elements of the Hamiltonian using the {|i〉} basis

Hij =
〈

i
∣

∣

∣

p2

2m
+ U(~r − ~Rj)

∣

∣

∣
j
〉

+
〈

i
∣

∣

∑

n6=j
U(~r − ~Rn)

∣

∣j
〉

= E0〈i|j〉 +
〈

i
∣

∣

∑

n6=j
U(~r − ~Rn)

∣

∣j
〉

= E0δij +
〈

i
∣

∣

∑

n6=j
U(~r − ~Rn)

∣

∣j
〉

where δij is the Kronecker delta. The matrix H can be written simply as

H = E0I + t with tij = 〈i|∆U |j〉, ∆U =
∑

n6=j
U(~r − ~Rn) (4.5)

where I is the identity matrix. This is the tight binding Hamiltonian. From this matrix ex-
pression for H, we may then calculate the eigenvalues and eigenvectors for the Hamiltonian.
Since the first term E0I is a diagonal matrix, the eigenvalues En of H can be written as

En = E0 + Et
n (4.6)

where Et
n is the nth eigenvalue of t. Hence, the eigenvalues of H can be found from the

eigenvalues of the matrix t, and we may think of the eigenvalues of t as being corrections
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to the atomic energy E0 due to the presence of all the atoms. The matrix element tij when
i 6= j is also called the hopping integral while the matrix element tii is called the on-site
energy. The reason for this terminology will be more apparent when the Hamiltonian is
written in second quantized notation. The way one calculates the value of tij will be given
in §4.2.4.

If pairs of atomic eigenstates |i〉 and |j〉 contain significant overlap (i.e., 〈i|j〉 6= 0), then
the set of eigenstates {|i〉} is not truly orthogonal. Although we assumed an orthogonal basis
when deriving tight binding, this does not matter to first order, as discussed in appendix B
of [71].

4.2.1 Tight binding of H2

Although most textbooks apply tight binding to a periodic lattice, it may also be applied to
any system, even single molecules. As an example, consider the hydrogen molecule H2. We
will take the 1s orbitals as the basis. If we assume that the hopping matrix element between
the 1s orbitals on different atoms is t12 = t21 = ts while the on-site energy is t11 = t22 = ǫ,
then the Hamiltonian matrix is

H =

(

E1s 0
0 E1s

)

+

(

ǫ ts
ts ǫ

)

=

(

E1s + ǫ ts
ts E1s + ǫ

)

(4.7)

which has eigenvalues
E = E1s + ǫ± ts (4.8)

with eigenvectors
1√
2

(

|s, 1〉 ± |s, 2〉
)

where |s, 1〉 represents the 1s orbital on H atom 1 and |s, 2〉 is the 1s orbital on H atom
2. We see that the energy levels of H2 are offset from the energy of the 1s orbitals by the
amounts ǫ ± ts. Since ts is normally negative, tight binding predicts that the ground state
wavefunction of H2 is the bonding orbital (|s, 1〉 + |s, 2〉)/

√
2 with energy E0 = E1s + ǫ + t

while the anti-bonding orbital (|s, 1〉 − |s, 2〉)/
√

2 is higher than the energy of the bonding
orbital by 2ts; hence we see in this case that the hopping integral is also a measure of the
energetic splitting between orbitals.

4.2.2 Tight binding in second quantization

Any function or operator V which acts on single particles can be represented in second
quantized notation (§2.1 in [184] has a thorough introduction to second quantization) as

V =
∑

i,j

(

|i〉〈i|
)

V
(

|j〉〈j|
)

=
∑

i,j

〈i|V |j〉
(

|i〉〈j|
)

=
∑

i,j

〈i|V |j〉c†icj
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where the operators c†i and cj create an electron in state |i〉 and destroy an electron in state
|j〉 and the sum is taken over all possible values of i and j. Applying this to (4.5) gives the
tight binding Hamiltonian in second quantized notation

Ĥ = E0

∑

i,σ

c†i,σci,σ +
∑

i,j,σ

tijc
†
iσcjσ (4.9)

where c†iσ and ciσ create and destroy an electron with spin σ on atom i and tij is again the
hopping integral. From this expression, we see that the Hamiltonian represents destroying
an electron on atom i and then creating one on atom j with energy tij. Hence, the hopping
integral can be thought of as the energy gain when electrons are allowed to hop from one
atom to another in the solid. Delocalization of particles tends to reduce the kinetic energy
of the particles, so when electrons hop between different atoms, the electrons become more
delocalized, and that reduces the energy of the electrons. In addition, the potential energy
of the electron is lowered by the attractive Coulomb potential of all the atoms in the solid.
So combined, the kinetic and potential energies of the electron are lower in a solid than in
an isolated atom.

There are various other approximations that can be made to the tight binding Hamil-
tonian (4.9). The differing approximations lead to the different forms of the tight binding
Hamiltonian seen in the literature. A short list will given below of the various assumptions
made to (4.9) that appear in the literature, as well as the resulting Hamiltonians.

1. The first term is usually ignored since it only shifts all energies by a constant E0, and
we normally do not care about uniform shifts to the energies. The Hamiltonian is then

Ĥ =
∑

i,j,σ

tijc
†
iσcjσ . (4.10)

2. In addition to the previous assumption, the on-site energies, tii, are often the same
value for all i; i.e., tii = t0. To see why this may be true, consider a lattice with one
atom per unit cell. From the definition of tij in (4.5), we can interpret tii as the shift
in energy from first order perturbation theory of the atomic orbital energy on the ith

atom due to the potential of all other atoms. However, due to translational symmetry,
it cannot matter which atom we consider; the potential that atom 1 feels due to all
other atoms is the same as the potential that atom 10 feels due to all other atoms.
This means all matrix elements tii are the same. When all diagonal elements of t are
the same, all eigenvalues Et

n of t can be written as Et
n = t0 + E0

n, where E0
n are the

eigenvalues of t with tii = 0. Hence, we may take tii = t0 = 0 since any non-zero
t0 only shifts all eigenvalues by the constant t0, and we usually do not care about
constant shifts to the eigenvalues. The Hamiltonian in this case is

Ĥ =
∑

i6=j,σ
tijc

†
iσcjσ . (4.11)
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3. In addition to the previous assumptions, since hopping of an electron between atoms
that are a few lattice constants apart is unlikely, we normally restrict the sum to only
include hopping between nearest neighbors. The resulting Hamiltonian is

Ĥ =
∑

(i,j),σ

tijc
†
iσcjσ , (4.12)

where the notation (i, j) means that atoms i and j are nearest neighbors.

4. In general, tij = t∗ji. However, the matrix elements tij are sometimes real, hence tij =
tji. Assuming tij is real and assuming all the previous assumptions, the Hamiltonian
becomes

Ĥ =
∑

(i,j),σ

tij[c
†
iσcjσ + c†jσciσ] , (4.13)

however the sum is taken over distinct nearest neighbors pairs; i.e., if i and j are
nearest neighbors, then (i, j) appears in the sum, but not (j, i). The notation (i, j) in
this case is the same as the notation in (4.12), but the meanings are different. The two
meanings are used interchangeably in the literature, so one must infer the meaning
from the Hamiltonian.

5. Usually tij < 0, so the Hamiltonian (4.13) is sometimes written

Ĥ =
∑

(i,j),σ

−tij[c†iσcjσ + c†jσciσ] , (4.14)

where tij in this equation is defined as the negative of tij in the definition (4.5).

The various forms of the Hamiltonian (4.9), (4.10), (4.11), (4.12), (4.13) and (4.14) can be
seen in the literature.

4.2.3 Tight binding and perturbation theory

In tight binding, we start with a large number of degenerate atomic orbitals and construct
the t matrix using the degenerate atomic states, then calculate the eigenvalues of t to get
the corrections to the atomic energies, as mentioned earlier (equation (4.6)). This reminds
one of degenerate perturbation theory [57], where one has degenerate states and calculates
the matrix elements of a perturbation using the degenerate states, then finds the eigenvalues
of the resulting perturbation matrix, which gives the first order correction to the energies.
In the case of tight binding, the perturbation for the jth atom would be the potential
Uj =

∑

n6=j U(~r − ~Rn) from (4.5). However, this perturbation changes for each atom, so it
is not clear how to write the Hamiltonian in the form H = H0 + H ′ where H ′ is a single
perturbation to the solvable Hamiltonian H0.

Since there is still a strong similarity between tight binding and degenerate perturbation
theory, there may be some underlying reason for the similarity. The origin of the similarity
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can be seen from the Hamiltonian in second quantized notation, equation (4.9). If we write
the tight binding Hamiltonian as

H = H0 +H ′

H0 = E0

∑

i,σ

c†iσciσ

H ′ =
∑

i,j,σ

tijc
†
iσcjσ

then, for a single electron in the system described by this Hamiltonian, we can calculate
exactly the solutions of H0 (they are just the degenerate atomic states |i〉) and treat H ′ as a
perturbation. From degenerate perturbation theory, we first calculate the matrix elements
of H ′ using the degenerate states |i〉; they are just tij. Then we calculate the eigenvalues of
the matrix t to get the first order energy corrections to the atomic energies E0. This shows
that we may think of tight binding as the first order correction to the atomic energies to
get the energies of a solid.

The relationship between tight binding and perturbation theory will be useful since we
may then use perturbation theory to calculate higher order corrections to the energy. For
example, for the case of non-degenerate orbitals, the second order correction to the atomic
energies are

∆E2 =
∑

i6=j

|tij|2
Ej − Ei

. (4.15)

In this case, when hopping is between orbitals of differing energies, the hopping is called
virtual hopping.

4.2.4 Calculating the hopping integral

In the previous examples and equations, everything is written in terms of the hopping
integral tij and there is no explicit calculation of this matrix element. This is because in
tight binding, one does not calculate tij from first principles; i.e., one does not calculate

〈i|∑n6=j U(~r− ~Rn)|j〉 from the atomic potential U(~r). Instead, to calculate t, one normally
compares the tight binding expressions to experiment or another theoretical calculation and
chooses a value for t so that the tight binding results agree numerically with these other
methods.

For example, one can experimentally measure the difference in energy E∆ between the
H2 bonding and anti-bonding orbitals. Since, according to tight binding (4.8), this energy
difference must be 2ts, we can calculate that ts = E∆/2. Another common method for
calculating t is to calculate a band structure using DFT (§4.5), and calculate the band
structure for the same system using tight binding, then choose t so that the two band
structures are numerically similar.

This procedure for finding t may seem unusual, since we need to know the energies of a
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system from another calculation method or from experiment to calculate t, but if we already
have the energies for a system, then why do we need tight binding to calculate those same
energies? The reason is, once we have calculated t for one system, we may then use this
value for other systems. For example, once we know t for graphite, we may use the same
value for carbon nanotubes or C60.

4.2.5 Basis functions

In tight binding, we normally assume that the matrix elements tij are non-zero only for
nearest neighbors (e.g., in equation (4.12)). This assumption will be true as long as the
basis functions we use to calculate tij are localized at atomic sites, so they do not necessarily
have to be atomic orbitals. In the situation where the localized basis functions are taken as
atomic orbitals, tight binding is also called linear combination of atomic orbitals (LCAO).
Another possible localized basis is the set of Wannier functions since Wannier functions are
often (but not always) localized at the atomic sites and form an orthonormal basis (§8.4 in
[138]).

4.3 Mott-Hubbard insulators

The tight binding model is a simple model which can work well in many situations. How-
ever, for certain substances such as MnO, tight binding would predict it to be a conductor
when it is in fact an insulator. Tight binding completely fails to predict the electronic prop-
erties for this material. When a substance which should be a conductor according to single
particle theories, such as tight binding, is actually an insulator, it is called a Mott insulator.
One theory behind why this occurs is due to Hubbard and such insulators are sometimes
also called Mott-Hubbard insulators. Hubbard took the simple tight binding Hamiltonian
(equation (4.14)) and added a term which takes into account electron-electron repulsion
(§26.6 in [138]).

Ĥ =
∑

(i,j),σ

−tij[c†iσcjσ + c†jσciσ] + U
∑

j

c†j↑cj↑c
†
j↓cj↓ .

This Hamiltonian is called the Hubbard Hamiltonian. The term c†j↑cj↑c
†
j↓cj↓ is non-zero only

when state j has two electrons on it, one with spin ↑ and one with spin ↓. So the second
term in the Hamiltonian adds an additional energy U whenever an orbital has two electrons
on it. The energy U represents the electrostatic repulsion energy between two electrons in
the same state, and is sometimes called the Hubbard U (Hubbard argued that the repulsion
energy between an electron in one state and an electron in another state is ∼ 10 times
smaller, so did not include this effect in the Hamiltonian).

The addition of the Coulomb repulsion term to the tight binding Hamiltonian makes the
Hubbard Hamiltonian much harder to solve. However, one can still get a qualitative idea of
its behavior. For example, take the case where each atomic orbital contains one electron (so
that it is half filled) (figure 4.1). When an electron from one orbital hops to a neighboring
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Figure 4.1: In the Hubbard model, when an electron hops from one atom to another, it
reduces its energy by the amount tij, but increases in energy by U due to the Coulomb
repulsion between electrons

orbital, the tight binding term in the Hubbard Hamiltonian predicts that the energy of the
electron will change by −tij. However, since the neighboring orbital already has an electron,
the Coulomb repulsion between the electrons increases the energy of the hopping electron
by U . Hence, qualitatively, we see that if −tij + U < 0, it is energetically favorable for
electrons to move from one atom to another, and we have a conductor, but if −tij +U > 0,
it is energetically unfavorable for electrons to hop between atoms, and the electrons remain
immobile at their atomic sites, leading to an insulator.

Normally, the hopping matrix element tij is related to the bandwidthW ≈ tij (figure 4.2).
Therefore, when

U

W
≈ 1

we get a metal to insulator transition. When U/W > 1 we have an insulator while for
U/W < 1 we have a conductor. Figure 4.2 shows a qualitative sketch of the DOS for a
system when U/W < 1 and U/W > 1. For U/W > 1, we see two peaks; the lower energy
peak is called the lower Hubbard band while the higher energy peak is called the upper
Hubbard band. The Fermi energy lies between these peaks and DOS(EF) = 0, meaning we
have an insulator. For U/W < 1, the lower and upper Hubbard bands overlap, resulting in
a non-zero DOS at EF, implying the system is a conductor. In the limit U = 0, the lower
and upper Hubbard bands become a single peak; this is the limit where the electrons are
non-interacting. Hence, we see that the effect of electron-electron repulsion energy U is to
take single peaks in the non-interacting electron DOS and split them into two peaks.

There has been much theoretical work on Hubbard Hamiltonian, but not many exactly
solvable cases. A general review is given in [8]. An exact solution exists in one dimen-
sion [124]. Unfortunately, the intuitive model given above does not seem to apply in this
case since U = 0 gives a conductor while U > 0 gives an insulator. Other approximate
solutions also exist which predict a metal to insulator transition for U/W ≈ 1.15 (§13.2 in
[48]) or U/W ≈ 1.5 [98] for half filled bands.
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(a) The lower and upper Hubbard bands
are completely separated, resulting in an
insulator

(b) The lower and upper Hubbard bands
(dotted curves) overlap, so the total DOS
(solid curve) has states at EF, resulting
in a conductor

Figure 4.2: Variations in the DOS of a system due to the Hubbard U .

4.4 Adsorbates on Surfaces

We would often like to study the intrinsic properties of molecules or atoms, but to study them
by STM, we must first place them on a conducting surface. So to understand the intrinsic
properties of the molecules we wish to study, we must first understand how the conduct-
ing surface modifies the electronic and magnetic properties of that molecule. This section
will present simple theories behind electronic and magnetic interactions between molecules
and surfaces. These theories are not exact solutions to the problem of molecule-substrate
interactions, so experiments are still needed to better understand molecule-substrate inter-
actions.

4.4.1 The Fano-Anderson model

When a molecule with discrete energy levels is placed on a surface with a continuous set of
energy levels, the molecular orbitals can hybridize with the surface orbitals to produce new
states. Theories treating the interaction between discrete states and continuum states as
a perturbation exist [53], and may be intuitively easier to grasp, but exact solutions which
neglect electron-electron interactions also exist. These exact solutions were derived by Fano
[47] and Anderson [2]. Their discrete state-continuum state interaction model will be called
the Fano-Anderson model here and will be discussed next.

A complete derivation of the result can be found in chapter 6 of [166] (by taking U = 0
in the Hamiltonian) and derivations can also be found in chapter 4 of [133] and in [152]. A
statement of the results will be presented here.

When an atom or molecule with a localized state |φ〉 with energy Eφ is placed in contact
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with a bulk metal, then the electronic states of the metal can interact with and hybridize
with the localized state to produce new states. If a† and a are the creation and destruction
operators for an electron on the initially localized state |φ〉 while c†~k and c~k are the creation

and destruction operators for a bulk metal electron with wavevector ~k and energy E~k, then
the Hamiltonian (§4.2 in [133]) for this system neglecting electron-electron interactions is

Ĥ = Eφa
†a+

∑

~k

[

E~kc
†
~k
c~k + V~kc

†
~k
a+ V ∗

~k
a†c~k

]

. (4.16)

The first term describes the energy of an electron on the localized state while the second
term describes the energy of the bulk metal electrons. The third and fourth terms describe
the energy gain V~k when an electron hops from the metal to the localized state or vice versa.

If the states |n〉 with energy En represent the solutions to this Hamiltonian, then the
expectation value of the Green’s operator (§4.1.2) for this system in the localized state |φ〉
can be calculated:

〈

φ
∣

∣ lim
α→0

Ĝ(E)
∣

∣φ
〉

= lim
α→0

∑

n

∣

∣〈φ|n〉
∣

∣

2

E + iα− En
=

1

E − Eφ − Σret(E)

where Σret(E) = ∆(E) + iΓ(E) is called the retarded self-energy with

Γ(E) = Im
{

Σret(E)
}

= π
∑

~k

∣

∣V~k
∣

∣

2
δ(E − E~k)

and ∆(E) is just the Hilbert transform (which is the same as the Kramers-Kronig transform)
of Γ(E)

∆(E) = Re
{

Σret(E)
}

=
1

π
P

∫

Γ(E ′)

E − E ′ dE
′

where P denotes the Cauchy principal value of the integral. This Green’s function leads to
the result

PDOS
(

|φ〉, E
)

=
1

π

Γ(E)
[

E − Eφ − ∆(E)
]2

+ Γ(E)2
. (4.17)

4.4.2 Electronic properties of adsorbates

To understand what the Fano-Anderson model implies for the electronic properties of ad-
sorbates on surfaces, take an example. Assume that Γ(E) is roughly independent of energy,
then ∆(E) ≈ 0, and (4.17) represents a Lorentzian centered at energy Eφ + ∆(E) ≈ Eφ
with width (FWHM) 2Γ(E). This means that when a localized state |φ〉 hybridizes with
states from a continuum, the new system they form contains hybridized states which resem-
ble |φ〉 within an energy range of 2Γ(E) around the localized state energy Eφ. Outside of
this energy range, the states of the new system are essentially the same as the continuum



4.4. ADSORBATES ON SURFACES 43

states before addition of the localized state. Hence, the hybridization happens in an energy
window of 2Γ(E) around Eφ.

A more mathematical way to interpret the PDOS in (4.17) comes from Fano [47]. The
states |ΨE〉 for the system consisting of the localized state hybridized with continuum can
be written as a linear combination of the localized state |φ〉 plus the metal states |ψE〉

|ΨE〉 = λE|φ〉 +

∫

bE,E′|ψE′〉 dE ′ .

Then Fano showed that

∣

∣λE
∣

∣

2
= PDOS

(

|φ〉, E
)

=
1

π

Γ(E)
[

E − Eφ − ∆(E)
]2

+ Γ(E)2
.

Since λE tells us the amount of the localized state |φ〉 in the total wavefunction |ΨE〉 for
the entire system, we see that the amount of the original wavefunction |φ〉 contained in the
total wavefunction |ΨE〉 is maximum at an energy ∆(E) above the original energy Eφ of the
localized state and the amount of |φ〉 in |ΨE〉 decreases quickly away from this maximum.
The average lifetime of an electron in the state |φ〉 is ~Γ(E)/2π from [47].

Although (4.17) is an exact solution to the Hamiltonian, there is still an unknown pa-
rameter V~k, which is an energy that measures how strongly the localized state interacts with
the continuum. If |V~k| is small compared to typical binding energies in a solid (∼ 3 eV), then
the interaction between localized state and continuum is weak and the adsorbate is said to
be physisorbed. There are no significant changes to the localized state in this regime, and
the adsorbate may be bonded to the surface only by weak Van der Waals forces. However,
if |V~k| is comparable to typical binding energies in a solid, then the interaction between
localized state and the continuum is large and the adsorbate is said to be chemisorbed. In
this regime, there may be significant changes to the localized state.

The Fano resonance

Fano also described the probability for an electron to be excited from an initial state |i〉
to either the hybridized impurity state

∣

∣Ψ
〉

or the unhybridized continuum state |ψ〉. If
the operator which describes transitions between states is T , then the ratio f(E) of these
transition probabilities is

f(E) =

∣

∣〈Ψ|T |i〉
∣

∣

2

∣

∣〈ψ|T |i〉
∣

∣

2 =
(ǫ+ q)2

ǫ2 + 1
with ǫ =

E − Eφ − ∆(E)

Γ(E)/2

and q is related to the relative strengths of transitions from |i〉 to |ψ〉 and from |i〉 to a
modified localized state (different from the hybridized localized state) described in [47]. The
line shape described by f(E) is called a Fano line shape or Fano resonance. The expression
for the Fano resonance can be generalized using self-energies to obtain other expressions of
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the Fano resonance [131].

4.4.3 Magnetic properties of adsorbates

Magnetic adsorbates can interact with surfaces in various ways, such as the RKKY inter-
action. Spin sensitive local probes, such as spin polarized STM, have the ability to obtain
local magnetic and spin properties of a system. However, even without a spin sensitive
probe, one may still access certain spin properties of a system.

One way to detect spin indirectly would be through inelastic excitation of one spin state
to another [83]. When the tunneling electrons’ energy exceeds the spin excitation energy,
then one may induce spin transitions.

Another way of detecting spins is through an effect known as the Kondo effect. When a
magnetic impurity such as a molecule or atom is placed in contact with a bulk metal, the
resistance of the sample begins to increase as the temperature is lowered below a certain
temperature, which is the opposite of what is normally expected (it usually decreases or
remains constant). In this situation, what is happening is that the spin of the impurity
interacts with the spins of the conduction electrons at low temperatures, forming a many-
body impurity-conduction electron ground state. This interaction between impurity spin
and conduction spins is known as the Kondo effect.

This effect can be described mathematically. Let a†σ and aσ be the creation and de-
struction operators for an electron on the localized state with spin σ and c†~kσ and c~kσ be

the creation and destruction operators for an electron with wavevector ~k and spin σ in
the continuum, then the Hamiltonian which describes the Kondo effect, called the Kondo
Hamiltonian, is given by (§7.1 in [166])

ĤK =
∑

~k,σ

E~kc
†
~k,σ
c~k,σ −

∑

~k,~k′

J~k~k′

~2

(

c†~k′↑ c†~k′↓

)

~S

(

c~k↑
c~k′↓

)

·
(

a†↑ a†↓

)

~S

(

a↑
a↓

)

where ~S = ~~σ/2 and the components of ~σ are the Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

The Kondo Hamiltonian can be derived from the more fundamental Fano-Anderson
model [2], but we need to add an extra term to the Hamiltonian (4.16) to describe the
electron-electron interactions and will explicitly include spin in the Hamiltonian (§6.2 in [133],
§26.5 in [138]). The more general Fano-Anderson Hamiltonian (normally called the Ander-
son Hamiltonian) is

Ĥ = Eφ[a
†
↑a↑ + a†↓a↓] + Ua†↑a↑a

†
↓a↓ +

∑

~kσ

[

E~kc
†
~kσ
c~kσ + V~kc

†
~kσ
aσ + V ∗

~k
a†σc~kσ

]

.
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This Hamiltonian can be transformed into the Kondo Hamiltonian using a similarity
transformation. Since similarity transformations do not change the eigenvalues of a Hamil-
tonian, this type of transformation is allowable. By using a similarity transformation called
the Schrieffer-Wolff transformation (chapter 11 in [184], chapter 7 in [166]), the Hamiltonian
above can be converted to a Hamiltonian

Ĥ ′ = ĤK + Ĥother

where ĤK is the Kondo Hamiltonian and Ĥother represents terms which do not involve single
occupancy of the impurity orbital. In the Kondo effect, we assume that we have magnetic
impurities, so that the impurity must have a singly occupied state, hence, Ĥother is not
relevant to describe the Kondo effect. So to second order in V~k, the Anderson Hamiltonian
leads to the Kondo Hamiltonian with a spin interaction energy given by

J~k~k′ = V~k′V~k

[

1

E~k′ − (Eφ + U)
+

1

E~k − (Eφ + U)
− 1

E~k − Eφ
− 1

E~k′ − Eφ

]

The relationship between the Kondo and Anderson Hamiltonians allows us to view the
Kondo effect in terms of virtual hopping of electrons on and off the impurity (chapter 7 in
[166]), where the electrons hopping from the continuum have opposite spin to the spin of
the impurity. Because of this anti-alignment of continuum and impurity spins, we can then
think of the continuum electrons as forming a singlet state with electron on the impurity
state.

The Kondo many-body singlet state can be characterized by a quantity known as the
Kondo temperature TK

TK =
1

kB
D

√

UΓ

|Eφ||Eφ + U | exp
(

−π |Eφ||Eφ + U |
2UΓ

)

.

where Γ = π|V |2ρ(EF) is the width of the hybridized localized state |φ〉 and D is the
bandwidth of the conduction band. The energy kBTK represents roughly the binding energy
of the Kondo singlet state, and hence, we will only see the Kondo singlet state below a
temperature TK .

To understand the effect of the Kondo resonance on the electronic properties of the
system, the PDOS of the localized impurity for T < TK can be calculated using Fermi
liquid theory [150]

PDOS(|φ〉, E) ≈ 1

π

1

Γ + γ(E, T )

with γ(E, T ) =
Γ

2

(

E

kBTK

)2

+ π2 Γ

2

(

T

TK

)2

where Γ ∼ 100 meV is the energy for electrons to hop on or off the localized state |φ〉. This
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PDOS is a Lorentzian with a FWHM of 2
√

(πkBT )2 + 2(kBTK)2 centered at E = 0 = EF.
This Lorentzian is known as the Kondo resonance. For low temperatures (T ≪ TK), the
FWHM is ∼ 2.8kBTK .

Often in STM, the Kondo resonance does not appear as a peak, but as various different
line shapes. This can be explained by electrons tunneling into two different possible states,
the hybridized magnetic impurity states, or the unhybridized conduction electron states.
This ability to tunnel into two different states gives rise to a Fano resonance instead of a
Lorentzian (§4.4.2). Near EF and for T < TK , the tunneling differential conductance can
be written in terms of the Fano line shape as [131]

dI(V )

dV
∝ (q + ǫ)2

1 + ǫ2
with ǫ =

ecV − E0

kBTK

where E0 is a parameter measuring the offset of the Fano resonance from EF and q represents
the relative strengths of tunneling into the modified localized state and the unhybridized
continuum states (§4.4.2). The STM dI/dV spectroscopy curves for the Kondo resonance
are usually fit to the Fano line shape with E0, q, and TK taken as fit parameters. Fitting
spectroscopy data to the Fano line shape is normally how one obtains the Kondo temperature
TK from STM data.

4.5 Density Functional Theory

It is usually difficult to include many-body interactions in a computation, since the com-
putational time grows quickly with the number of electrons. For example, for Ne electrons
and NB basis functions, we need to consider NB!/Ne!(NB − Ne)! Fock states; so when
we construct the Hamiltonian matrix from these states, it will be a square matrix with
NB!/Ne!(NB −Ne)! rows (§5.1 in [184]). With only 10 electrons and 50 basis functions the
Hamiltonian matrix has ≈ 1010 rows, while with 100 electrons and 200 basis functions, the
Hamiltonian matrix has ≈ 9 × 1058 rows. These are large matrices to diagonalize. To do
any calculation with a large number of electrons, for example Ne ≥ 100, we need a better
method than diagonalizing a Hamiltonian.

One of the important breakthroughs came in the 1960’s and 1970’s. Hohenberg and
Kohn proved an important theorem, that one only needs to calculate the ground state
electron number density n(~r) to get the ground state properties of a system (§5.1 in [184],
§9.3 in [138]). One does not need to calculate the wavefunction of every electron, just a
single function, the electron number density. This result dramatically reduces the amount
of computations necessary to calculate the ground state properties of a system.

From Hohenberg and Kohn’s theorem, it can be derived that there is a universal func-
tional F [n] such that when a potential energy U [n] for a particular system is added to it,
the function n which minimizes F [n] + U [n] is the ground state electron number density of
the system (§9.3 in [138]). This theory which relates ground state properties of a system to
minimization of functionals of electron densities is known as density functional theory. It
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has been extremely successful at predicting the properties of systems where other methods
such as Hatree-Fock fail and earned Kohn the Nobel prize in chemistry in 1998.

4.5.1 The Kohn-Sham equations

The functional F [n]+U [n] that we need to minimize is in general unknown, but can still be
written in a more explicit form. Since it is easier to solve for the wavefunctions for a system
of non-interacting particles, expressing F [n] + U [n] as a non-interacting particle equation
can make it easier to solve. This is done by first assuming the total number density n(~r) can
be written as the sum of N wavefunctions n(~r) =

∑N
j=1|ψj(~r)|2, but these wavefunctions are

not necessarily the electron wavefunctions. Kohn and Sham then derived that the functions
ψj which minimizes F [n] + U [n] must satisfy the Kohn-Sham equations

HKS[n]ψj(~r) = Ejψj(~r) (4.18)

with HKS[n] = − ~
2

2m
∇2 + Veff[n] (4.19)

and Veff[n] =
[

U(~r) +

∫

e2n(~r′)

|~r − ~r′|
d~r′ +

∂Exc[n]

∂n

]

. (4.20)

This is effectively like the Schrödinger equation for a single particle in the potential Veff

and the solutions ψj of the Kohn-Sham equations would allow us to calculate an exact
many-body ground state number density for the system. However, there are two important
differences between the Kohn-Sham equations and the Schrödinger equation. First, Veff

depends on n, and n depends on ψj, hence, we cannot find Veff unless we already know the
solutions to the Kohn-Sham equations. Second, everything unknown about F has now been
pushed into the functional Exc, called the exchange-correlation functional. The exact form
of this functional is unknown and is normally approximated. One approximate functional
commonly used in calculations is Exc = −( 3

π
n(~r))1/3 which is just the energy of a free

electron gas with density n(~r), however, in a free electron gas, the number density is a
constant whereas in general it is a function of position. Hence, this approximate functional
assumes that locally, the electrons behave like a free electron gas and the approximation
is called the local density approximation (LDA). Since a free electron gas does not include
interactions between electrons, a DFT calculation using LDA also does not correctly include
all electron-electron interactions.

4.5.2 DFT calculations

A DFT calculation is usually based on the Kohn-Sham equations (4.18). One first needs
an initial guess for n so that one knows HKS[n]. One also needs a complete basis set of
functions {|i〉}. Then the following steps are iterated.

1. The matrix elements 〈i|HKS[n]|j〉 are calculated to find HKS[n] in a matrix form.
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2. Once one constructs the matrix representation for HKS[n], then one can calculate its
eigenvalues, which are energies ǫj, and eigenvectors φj.

3. Once one has the functions φj, then n′(~r) =
∑

j|φj|2 can be recalculated and a new
Hamiltonian HKS[n

′] can be constructed.

4. The first step is now repeated with HKS[n
′].

Hopefully, at some point, n does not change with any more iterations, at which point we
have found the solution to (4.18). This iteration procedure is called a self-consistent field
(SCF) iteration.

The next parts below will describe the details of the various components of a DFT
calculation.

Basis functions and Exc

The main parameters that limit the accuracy of DFT calculations in theory are the basis
functions used to calculate the matrix elements of HKS[n] and the exchange-correlation
functional Exc. The basis functions limit the accuracy of the calculation since a complete
basis has an infinite number of functions, so a finite set of functions must be used in any
calculation. This finite set of functions is normally called the basis in DFT calculations.

Most DFT codes allow you to choose different sets of functions for a basis. A single
function in the basis which is localized on an atom is commonly called ζ (zeta), so sets of
basis functions are often defined in terms of ζ. For example, if one has a system with N
atoms and uses a set of basis functions where one basis function is localized on each atom
(N basis functions total), this set of basis functions would be referred to as a single-ζ or
single-zeta (SZ) basis. If one uses instead a set of functions with two functions localized on
each atom (2N basis functions total), this would be referred to as a double-ζ or double-zeta
(DZ) basis. Basis functions localized to atoms tend to be like atomic wavefunctions, so
they may be similar to atomic s or p orbitals. For example, a DZ basis may consist of two
functions per atom, one like a 1s orbital, and the other like a 2s orbital. If we take this DZ
basis and add yet another function for every atom to this basis, a p like orbital, this would
be referred to as including polarization, and the resultant basis would be called double-ζ
+ polarization (DZP). In general, adding polarization means one adds another atomic-like
wavefunction per atom to a set of basis functions, but the additional functions have higher
angular momentum then the functions already in the basis. For example if a basis consists
of one p orbital per atom, including polarization would mean adding one d orbital per atom.

The set of basis functions will influence the numerical solutions to the Kohn-Sham equa-
tions. For example, when using the SIESTA code to do a DFT calculation on a system with
N atoms, SIESTA uses basis functions which are localized to the positions of the atoms; i.e.,
the basis functions are zero beyond a certain distance away from the atoms. In general, this
basis can work well [66]. However, since the basis functions are localized, SIESTA cannot
reproduce delocalized wavefunctions well.
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One way of getting around artifacts due to the localized basis in SIESTA is to use another
program, such as VASP, which uses a plane wave basis. This basis will give more accurate
results for delocalized wavefunctions, but usually takes much longer to run a calculation.
Another way to get around a localized basis is to add ghost atoms . Ghost atoms are atoms
with negative atomic numbers, and SIESTA assumes such atoms have no charge, mass,
or electrons, so adding such atoms to a system does not change it. However, SIESTA
still takes these non-existent atoms into account when constructing the basis, so the code
includes atomic-wavefunction-like functions localized at the positions of ghost atoms in the
basis. This effectively increases the number basis functions as well as the spatial extent of
the set of basis functions.

The exchange-correlation functional Exc also limits the accuracy of DFT calculations
since its exact form is not known and one must always approximate it. In addition to LDA,
there are other approximate functionals for Exc such as GGA and BLYP (chapter 5 in [184]).
These functionals try to build on LDA by adding corrections to it, but are not necessarily
more accurate than LDA.

Pseudopotentials

We are normally interested in the electronic properties of systems near the Fermi energy.
Since these properties arise mainly from the valence orbitals and electrons of atoms, it is
not necessary to take into account the atoms’ core electrons in the calculation. Removing
the core electrons will reduce unnecessary calculations by a considerable amount. Removing
the core electrons is done by using a pseudopotential. A pseudopotential is a potential that,
when used as the potential energy in Schrödinger’s equation, would produces eigenstates
of the Schrödinger equation that mimic the valence wavefunctions of atoms correctly, but
not the core electron wavefunctions. They have been shown to reproduce many important
features of solids correctly [210].

Relaxation

Normally, the coordinates of the atoms in a system are not known exactly. Since DFT
can find the energy of a system as a function of the coordinates of the atoms, by finding
the positions of the atoms which minimizes the total energy of the system, we will find
the equilibrium position of the atoms. The process of finding the position of the atoms to
minimize the energy of the system is called relaxation. This process uses a numerical method
such as steepest descent or conjugate gradient [24] to iteratively move the atomic positions
from an initial starting point to find the positions of the atoms which minimize the total
energy. Since most numerical methods will only find a relative minimum in energy close
to the initial energy (except for Monte Carlo methods [121]), many DFT calculations will
also only find relative minima in energy, and not the absolute lowest energy configuration.
However, finding a relative minimum in energy instead of the absolute minimum is a problem
of the numerical technique used, not a problem of DFT.
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Many-body corrections

The Kohn-Sham equation (4.18) with LDA does not correctly take into account many-
body effects such as electron-electron interactions. These may be taken into account using
methods such as LDA+U [176], or the GW approximation [76]. In the LDA+U method
presented in [176], the effect of the electron-electron interaction in a molecule can be taken
into account by finding the on-site Coulomb repulsion U (§3.4.2). Once we find U , we
know the correction to the HOMO-LUMO gap (equation 3.3). In general, the Coulomb
repulsion energy U depends on which orbital we add an electron to. If we add an electron
to the LUMO+n, the Coulomb repulsion ULUMO+n to add an electron to this state may be
calculated by simply adding an electron to the LUMO+n and recalculating the LUMO+n
energy using DFT with LDA for Exc. The difference between the LUMO+n energy with one
electron in it and the LUMO+n energy with no electrons in it gives ULUMO+n/2. Similarly,
one may calculate the U for the HOMO−n with the same procedure, except we remove an
electron from the state instead of adding it. The quasiparticle HOMO-LUMO gap (§3.4.2) is
larger than the non-interacting HOMO-LUMO gap by UHOMO/2 + ULUMO/2. This method
is quite simple and can be done on a laptop in under an hour, even for molecules of 60
atoms.

However, if a molecule is near a metallic surface, then the image charge from the surface
can effectively reduce U . Effects from image charges are not correctly taken into account
when LDA is used in a DFT calculation since image charges are a result of electron-electron
interactions (an electron near a metal repels the nearby electrons in the metal, creating a net
positive image charge). Luckily, simple image charge models based on classical electrostatics
can take this into account [176, 151].

A more systematic approach to calculating many-body energy corrections is a first order
approximation called the GW approximation. In the name GW, G stands for the Green’s
function for the system while W is the screened Coulomb potential. One may take, for
example, W = Vext/ǫ, where Vext is the externally applied potential and ǫ is the Lindhard
dielectric function (equations (5.15) and (5.16) in [213]). The first order correction to the
self-energy is found from the product of G and W . In the GW approximation method,
one first finds the number density n from the Kohn-Sham equations with LDA. Then the
screened Coulomb potential W can be found from n, and G can be written in terms of W
and G (so G is expressed in terms of itself). To solve for G when it is defined in terms of
itself, it can be numerically calculated self-consistently, and once we know G, we can find
the electronic properties of the system (§4.1.2). However, this method is computationally
intensive and is usually done on a computing cluster, unlike LDA+U, which can be done on
a laptop.
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5
Instrumentation

5.1 Scanning Tunneling Microscope

The STM used for all the experiments is a home-built ultra-high vacuum (UHV) STM. The
base pressure is ∼ 1× 10−10 torr and base temperature ∼ 7 K. The original STM design and
construction was carried out by M. F. Crommie, W. Chen, and V. Madhavan. The details of
the STM used in the experiments have been presented in the theses of Wei Chen [31], Vidya
Madhavan [132], and Tiberiu Jamneala [95], and Michael Grobis [60]. Only an overview of
the system will be presented here. Modifications of the STM which are not included in the
previous theses will be given in §5.1.7. Details of how to build specific parts of the STM
will be given in appendix C.

An overview of the cryogenic UHV STM is shown in figure 5.1. The various parts of the
system can be broken down into the following categories:

1. UHV chambers

2. cryogenic system

3. vibrational isolation

4. STM scanner

5. electronics and software

A brief description will be given below for each category.

5.1.1 STM chambers

The chamber and pumping system allow for base chamber pressures at or below 1 ×
10−10 torr. The STM chambers are made from 304 stainless steel to allow for baking above
100◦C during initial pump down and for low outgassing once at UHV. A combination of a
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Figure 5.1: STM UHV chambers

500 l/s turbo pump and a diaphragm backed turbo pumping station is used to bring the
system from ambient conditions to high vacuum. The turbo pumping system also pumps
the system during bake-out, which lasts 3–5 days. During normal operation, the chambers
are pumped by two ion pumps (a 75 l/s pump in the transfer chamber and a 500 l/s pump in
the analysis chamber) and occasional running of the titanium sublimation pumps (TSPs).

5.1.2 Cryogenics

The microscope chamber sits inside an 80 liter liquid He dewar. The hold time for this
dewar is 12 days. A He exchange gas can separates the chamber from direct contact with
the liquid He. The He exchange gas is important for three reasons: (1) minimize vibrations
from He boil off, (2) avoid the Paschen effect; i.e., avoid pressure ranges (∼ 100 mTorr)
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where high voltage arcing (corona discharge) can occur, and (3) control desired operating
temperature. A series of radiation shields in the exchange gas can are employed to minimize
the thermal radiation from the transfer chamber, which is at room temperature, from getting
to the microscope chamber. All the wires in the exchange gas can that run from room
temperature down to the microscope chamber are stainless steel coaxial cables (Cooner wire
part #AS632-1SSF) to reduce heat loss since stainless steel has low thermal conductivity
(which means it has high electrical resistance). This cryogenic setup allows operation at a
base temperature of 7 K when the exchange gas pressure is ∼ 5 mTorr of He gas.

5.1.3 Vibration Isolation

Extensive care is taken to minimize vibrational coupling to the STM. The UHV chambers
are mounted on a dual stage optical table with vibrational isolation legs between each stage.
The microscope chamber is suspended by two bellows which allow for acoustic mismatch
between the transfer chamber and microscope chamber. The whole UHV system is enclosed
in a sound proof room to minimize acoustic disturbances. Under normal conditions, ambient
vibrational disturbances do not limit the noise. Though typically 3 mÅ rms of “vibrational”
noise can be seen on the tip, this noise is thought to be electronic in origin. Even with
this noise, high quality images can be readily achieved with 0.5 pA stabilization currents.
Images have also been obtained with lower currents, however, the Ithaco 1211 preamp is
only calibrated to an accuracy of 1 pA, so while stabilization currents as low as 5 fA have
been used, the accuracy of such a current cannot be guaranteed.

5.1.4 STM scanner

The main part of the STM where most experimental data is taken is the STM scan stage
(located in the microscope chamber), which is shown in figure 5.2. The STM scanner,
called the bug, consists of a series of carefully machined macor pieces (body and support),
piezoelectric (piezos) ceramics (coarse and fine motion), and a shielded metallic tip (shield
cannot be seen in the figure). Fine (50µm) gold wires bring electrical contact to the various
STM components. The STM bug rests on a piece called the walker plate. This plate consists
of a thin glass plate (75µm thick) below which reside a series of metallic electrodes, below
which lies another glass plate (not shown in figure 5.2). Details on the construction of the
walker plate is given in appendix C. The electrodes are used for (1) clamping the bug
electrostatically to the glass plate and (2) coarse motion of the bug along the glass plate.
The STM tip is made from either W or PtIr(80:20) wire (10 mil thick). Since a sharp tip
apex is desired, it is common practice to chemically etch the tips (§5.2.1).

5.1.5 STM electronics and software

The essential STM functionality is controlled by a combination of home built electronics
boxes (Z-Box, XY-Box, FE Box, Walker Box, Ground breaking box), commercial elec-
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Figure 5.2: STM stage and scanner. The X piezo lies directly behind the Y piezo in this
view and cannot be seen in the diagram. The sample receiver (the part that holds the
sample holder) is not shown in the diagram.

tronics (Ithaco 1211, Electronic Development Corporation 522, Data Precision 8200), and
computer DAQ boards (GPIB, NI PCI-6052E, NI PCI-MIO16XE) all controlled by a central
computer. In addition to the essential electronics, there is additional commercial electronics
to do spectroscopy (HP 33120A function generator, Princeton Applied Research 5210 lock-
in amplifier), an STM temperature controller (LakeShore 340), and a home built audio box
to aid with atomic/molecular manipulation (built by the UC Berkeley Physics Electronics
Shop, Job # 98-05).

The Z Box, XY Box, FE Box, and Walker Box were designed by Bill Earle at Boston
University and were built there. There are manuals for all these boxes. To help test if these
boxes are operating properly, there are, in addition, two electronics boxes that were built
at UC Berkeley. The first is a digital control word generator (figure 5.3) that can be used
to control the home built boxes in place of a computer (built by the UC Berkeley physics
electronics shop, job # 99-30). This box is useful for testing and repairing the home built
electronics (especially if the physics electronics shop does the repairing) since one would
need a computer with the STM software installed to control these boxes otherwise. The
new Z-Box (used from 2009 on) has its own digital signal generator (figure 5.3). The second
electronics box is an exponentiating box; it takes an input voltage and the output voltage
is the exponential of the input: Vout ∼ eVin . This box is used to check if the Z-Box feedback
is working properly since it simulates the exponential dependence of the tunneling current
on the -Z output voltage.

There are a few notes about the commercial electronics. The Data Precision 8200
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Figure 5.3: Electronics to generate the digital control words for the various STM home-built
electronics. The ruler in the pictures is in inches.

voltage calibrators that are used for the -X and -Y voltages are no longer made. Only
used/refurbished units can be bought. A spare one was purchased from REPCAL Test
equipment (www.repcaltestequip.com). However, the standard Data Precision 8200 has a
resistor that may burn out. This resistor is number R51 and is located near the rear panel,
next to the J301 output. It is normally a 68 kΩ ± 5%, 1

4
W carbon resistor and should

be replaced with a 68 kΩ ± 5%, 1 W carbon resistor. The spare Data Precision 8200 from
REPCAL has the standard R51 resistor which should be replaced before using it.

The second note about the commercial electronics is that the Ithaco 1211 input voltage
should not be larger than 15 V. A resistor can be placed directly onto the input to prevent
high voltages on the tip in FE mode from destroying the Ithaco 1211. After correspondence
with Ithaco about our setup in 2009, they recommended using a low noise 47 kΩ, 1 W resistor
such as Vishay Dale part # RN70E4702FB14 inside of a pomona aluminum box, pomona
part # 2391 (some of these specifications and part numbers are in the Ithaco manual, but
are listed incorrectly).

All of the electronics for the STM is controlled by home-written software. The original
version of the software was written in LabView, but since around 2002, newer versions
have been written in C++. Nate Jenkins wrote most of this software with help from Mike
Grobis. Yuri Zuev, Xiaowei Zhang, and I have corrected bugs and added new features to
the software.
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5.1.6 Coarse movement and approach

Coarse movement

Coarse motion is achieved by a sequence voltages applied to the body piezo and walker plate
electrodes. For example to move forward, one first clamps the rear of the body piezo by
applying high voltages to the two back electrodes. One then expands the body piezo (which
then expands forward since its back is clamped) by removing any high voltage across of the
piezo’s electrodes. Then one clamps the front of the body piezo by applying high voltages
to the front two electrodes and releases the rear of the body piezo by removing the high
voltages from the real electrodes. Next, one contracts the body piezo by applying a high
voltage across of its electrodes. This entire sequence is called one step. Typical step sizes at
T = 7 K vary between 0.1µm when the walking is not too good, to 1µm when the walking
is good. Moving by a sequence of these steps is called walking. To move the STM bug to a
desired location one then takes as many steps as necessary in the correct direction.

The coarse motion does not always work ideally. A number of different things can aid
the coarse motion. The stage can be tilted forward to help move the STM forward. The
step size also depends on where the STM bug is on the walker plate, so if the STM does
not walk backwards, for example, then moving left first and walking backwards next may
help it move backwards. If the STM gets stuck somewhere, then tapping on the sample tilt
feedthrough can help move the STM to a new area, and the walking may be better in that
area. It is also believed that the glass plates on the walker plate can charge up, effectively
creating a voltage between the glass plate and body piezo, making it harder for the STM
to move. Warming up the STM for a few hours at least to ∼ 40 K while the walker plate
electrodes are grounded seems to help remove the charge. Higher temperatures help more;
e.g., warming up the STM to room temperature seems to remove more charge. After cooling
the STM back down to ∼ 7 K, the walking is usually good again.

Field emission approach

The coarse movement step size (∼ 0.1µm to 1µm) is typically larger than the range of the
Z-piezo (. 0.1µm). This means that we can easily crash into the surface with one coarse
step forward if we do not know how close the STM is to the surface. To get a rough idea of
how close the STM tip is to a surface, we may apply a high voltage to the tip to get a small
current (a process called field emission), where the magnitudes of the current and voltage
gives us an idea of how far away the tip is from the surface. Typically, when Vtip ∼ −450 V
and I ∼ 1 nA, then the tip is ∼ 80µm from the surface. Field emission (FE) can be used
to help approach a surface. To use FE to approach a surface, one moves the STM tip
towards a sample with the coarse approach while applying a high voltage to the tip and the
feedback electronics in the Z-Box changes the voltage on the tip to keep the field emission
current (∼ 1 nA) constant. By monitoring the voltage applied to the tip, we have an idea
of how close the tip is to the sample. Typically, the initial voltage applied to the tip is the
maximum voltage ∼−450 V when the tip is far (a few mm) from the surface and I = 0 nA
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in this case. When the tip is ∼ 80µm from the surface, Vtip ∼ −450 V and I ∼ 1 nA. When
the tip voltage is around −30 V and I = 1 nA, the tip is a few hundred Ångstroms from the
sample, and one may use the z-piezo to move the tip towards the surface from that point
on.

Capacitance approach

Approaching a sample using field emission can destroy a sample due to the large voltages and
electric fields required. This is why another method of approaching the surface was necessary.
Since the tip and sample form a capacitor, by measuring the tip-sample capacitance, we get
an idea of how close the tip is to the surface. The tip-sample capacitance is measured by
applying an ac voltage (1 V, 1 kHz) to the tip and measuring the induced current in the
sample through the Ithaco 1211 current to voltage converter. Output of the Ithaco 1211
then goes to a lock-in, whose output is proportional to the tip-sample capacitance. When the
tip is several Ångstroms away from the sample, the typical R output of the lock-in (§A.1.2)
will be 70–80 mV when the Ithaco 1211 has a 10−10 A/V gain and 1 ms time constant.

5.1.7 Modifications

This section will describe some of the important changes to the STM as of December 2009
which are not in previous theses.

• Braces to level and guide the position of the optical floating tables when they are
not floated have been installed. The optical tables must be positioned correctly when
unfloated so that samples can be transferred in and out of the STM stage without
dropping them (which has happened in the past).

• There are small changes to the STM scanner; these will be discussed in detail in
appendix C.

• Starting in 2002, a newer version of the STM software, written in C++ instead of
LabView, has been used.

• We either ground or filter all lines that go into the exchange gas can with in-line RF
filters by Mini-circuits (part # BLP-1.9+).

• The Data Precision 8200 voltage supply used for the -X and -Y electrodes on the
X and Y piezos have a resistor that has been replaced, as described in the previous
section.

• There is a new home-built electronics box that is not essential, but is useful. This
box was built by Annie Endozo and allows us to measure the capacitance between the
body piezo and the walker plate electrodes (figure 5.2) using a computer instead of
by hand. This box allows us to quickly figure out the general position of the STM by
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measuring the capacitance between the body piezo bottom electrode and each of the
four electrodes on the walker plate.

• There is a second new home-built electronics box built by Yuri Zuev that prevents
the STM tip from crashing into the surface when the software crashes or when the
computer is restarted. This box is again not essential, but is useful. When a switch on
this box is turned on, this box keeps the body piezo and walker plate voltages turned
on, even if the computer is restarted (restarting the computer would normally cause
these voltages to turn off, making the tip crash).

• In the FE Box, the power supply that generates the high voltage for the tip in FE mode
burned out and was replaced with a 500 V power supply, so the maximum voltage that
can be applied to the tip in FE mode is now around 500 V instead of around 900 V.

• A new Z-box has been used starting in January 2009. This Z-box was designed by
Bill Earle and built at Boston University, like the old Z-box. There are many internal
changes in the new Z-box, but there are only a few changes relevant for the user.

1. The voltages on all outputs are set to 0 V when the new 2009 Z-box is first turned
on. The old pre-2009 Z-box would apply +200 V to −Z and −70 V to +Z when it
was turned on, which may cause the Z-piezo to depolarize when the Z-box turns
back on after a power outage.

2. The range of the −Z output can be controlled on the new 2009 Z-box. The range
can be set to ±400 V, ±200 V, ±100 V, or ±50 V. The old pre-2009 Z-box only
had one −Z range, ±200 V. Note that the maximum voltage range on the old
pre-2009 Z-box (400 V) is smaller than the maximum voltage range on the new
2009 Z-box (800 V). This means that the Z-piezo can expand twice as much with
the new Z-box as on the old one, allowing us to scan taller objects. However,
the larger voltage range on the new Z-box may also mean more noise and less
resolution, which is why smaller voltage ranges are also available.

3. The +Z voltage range is smaller on the new Z-box. It is around −70 V to around
+475 V instead of −70 V to +900 V on the old Z-box.

4. The Z-monitor gains are different on the new Z-box. They are 0.025, 0.05, 0.2, 1,
instead of 0.05, 0.2, 1, 10, on the old Z-box. Since we need to read the Z-monitor
into the computer and the computer card can only read voltages in the range
±10 V, this change was made so that the new −Z voltages ranges can be scaled
down to the ±10 V range.

We chose not to get proportional gain on the new Z-box since it would have added an
unknown amount of time and expense to the development of the new Z-box.

The new Z-Box also has its own digital control word generator (figure 5.3) so that
it may be controlled without a computer, which is useful when the electronics shop
needs to repair the new Z-Box.
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5.2 Tip Preparation

The STM tips used in the experiments were prepared outside of vacuum before inserting
them into the STM tip holder. The STM has no tip exchange mechanism; i.e., there is no
way of replacing the tip without venting the chamber. Since regaining UHV after venting
the chamber takes around 1 week, it would be very time consuming to replace the tip. So
once a tip is placed in the STM tip holder and the chambers are under UHV, any additional
tip preparation should be done in vacuum.

The STM tips used in the experiments were either W or PtIr. The W tips were 10 mil W
wire where one end was cut at an angle to create a pointed end. The PtIr tips were 10 mil
wire which were chemically etched to create a sharp, pointed end.

5.2.1 PtIr Tip etching

There are general methods to chemically etch a PtIr tip so that it has a sharp apex [173].
The PtIr tips used in our experiments were etched using a procedure from Katsumi Nagaoka.
There seems to be a better tip etching method given in [144] used by J. A. Stroscio with a
larger yield of sharper and smoother tips; Victor Brar knows the details of this method.

The PtIr tip used for all the experiments in this dissertation was etched in February
2003. The same tip was used for all the experiments. It was made using Katsumi Nagaoka’s
method, which will be described below.

PtIr wire (80% Pt, 20% Ir, 10 mil diameter) was purchased from Goodfellow. A Ni wire
with one end wound into a loop is placed in a 10 mL beaker and the PtIr wire, held by
tweezers, is placed through the Ni wire loop (figure 5.4). A hose clamp may be used to hold
the Ni wire in place. A 4 : 1 mixture of NaNO3 : NaCl by weight is placed in the beaker,
enough to cover the Ni wire loop. A hot plate (Thermolyne Cimarec 1 in this case) is needed
to heat the NaNO3 : NaCl mixture until is melts (∼ 300◦C). A glass funnel is placed over
the entire setup to trap hot air or else the temperature will not be high enough to melt the
NaNO3 : NaCl mixture.

After the NaNO3 : NaCl mixture melts, apply a DC voltage ∼+2 V to +3 V to the PtIr
wire relative to the Ni wire. This will cause the NaNO3 : NaCl to chemically eat away at
the PtIr around the area where the Ni wire loop is. After it looks like the NaNO3 : NaCl
has eaten through the entire wire near the Ni wire loop, remove the PtIr wire and rinse it
with distilled water. Sometimes the melted NaNO3 : NaCl becomes hard to see through as
the PtIr is being etched, so it may be hard to see when the PtIr wire has been eaten up by
the NaNO3 : NaCl. In this case, one may have to periodically pull the wire out to see if it
has been completely etched. The tip etching process takes a few minutes.

Sometimes, a small area near the tip apex have black residue on it due to the tip etching
procedure. This residue does not seem to be removed with HF. However, the tip may be
periodically rinsed in distilled water during the tip etching process to help prevent this black
residue from building up near the tip apex.

After the tips have been etched, they were further cleaned by annealing them in vacuum.



5.2. TIP PREPARATION 60

Figure 5.4: PtIr tip etching setup

However, annealing may also make the tip apex blunt, so this process need not be done for
tips etched in the future. The etched tips were annealed by spot welding the non-etched
end of the PtIr wire to a 12 mil W wire, then running ∼ 5.5 A through the W wire in high
vacuum (∼ 1 × 10−7 Torr) for around 10 hours. The PtIr wire may also be annealed before
the tip etching procedure (in addition to annealing it after), but this was not done on every
tip, and may not help much since the tips were annealed after etching anyway.

5.2.2 Tip preparation in vacuum

There are two general ways of modifying the tip in vacuum. The first involves field emission
(FE): A high voltage and high current is applied to the tip when it is far from the surface;
this is called field emitting the tip. This procedure is normally used when large changes to
the tip are desired; for example, after exposing the tip to air, FE should be used to clean the
tip. This procedure is done by going into FE mode and setting the set current to ∼ 10µA,
then moving the tip with the coarse approach until the voltage on the tip is around −400 V.

The second way of modifying the tip is by moving it into a metal substrate, then pulling
it out again, a process called tip poking. If the tip is very unstable, or if the tip apex is
very jagged instead of a smoothly tapering to a point, then poking using higher voltages
(∼±10 V) and high currents (∼ 50 nA) can help to stabilize the tip and make it less jagged,
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but it may also destroy a large area (50 nm × 50 nm) of the sample.
If larger tip changes are desired, then changing the current to voltage converter gain is

important when poking to get higher currents through the tip. If one leaves the gain at
10−9 A/V when poking the tip for example, then the current to voltage converter limits the
maximum current through the tip to ∼ 10 nA, and one cannot achieve the larger currents
necessary for large tip modifications.

In general, moving the tip in and out of the surface with a slower speed is less damaging
to the tip; i.e., it causes less tip changes and may give sharper tips.

Molecules tend to stick better at step edges, so if a molecule is stuck on the tip, then
moving the tip close to a step edge can get the molecule off.

5.3 Surface Preparation

Preparing clean and flat surfaces of substrates is critical for studying the intrinsic properties
of molecules since impurities on the substrates may affect the properties of the molecules
adsorbed on them. For this reason, substrates are cleaned and kept in ultra high vacuum
(UHV); the base pressure of the chambers is typically ∼ 2 × 10−10 Torr.

5.3.1 Sputtering and annealing

Cleaning the single crystal noble metal substrates (Ag, Au, Cu) used for all the experiments
follows standard procedures [149] which consists of Ar sputtering and annealing. Argon
sputtering is when the substrate surface is bombarded with Ar+ ions with a kinetic energy
between 0.5 keV and 2 keV. The sputtering knocks off impurities from the surface. The
sputtering is followed by annealing the substrate, which is heating the substrate to desorb
impurities from the surface and smoothens out the surface. Annealing is done by e-beam
heating, where we bombard the substrate with high energy (∼ 1 keV) electrons, which then
lose their energy in the substrate in the form of heat. The methods used for e-beam heating
are similar to the methods used for e-beam evaporation (§5.4.2).

5.3.2 Hydrogen artifacts and removal

After the sample is moved to the STM stage at 7 K, it can remain clean for around four
to five weeks. After that amount of time, the sample has accumulated significant amounts
of hydrogen, although it cannot be seen directly; there are no noticeable protrusions or
depressions on the surface in the STM images due to hydrogen. The evidence for hydrogen
accumulation comes from other sources:

1. The tunneling current becomes more noisy and images become more streaky.

2. Spectroscopy done in a −100 mV to 100 mV range can give curves that resemble that
of a superconductor [65].
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3. Spectroscopy within ±100 mV will depend strongly on tip lateral position and tip
height from the sample.

Figure 5.5: After the STM was not warmed up to ∼ 40 K for four weeks, the following spectra
were acquired. All spectra were taken with the same STM tip. Top panel: Spectroscopy
taken at one lateral position on the sample (over the center of a TCNE molecule) using initial
settings V = 50 mV, I = 0.5 nA, 0.5 mV rms ac modulation. Middle panel: Spectroscopy
taken with the same settings as the top panel, but at a different lateral position on the
sample (over the center of a nearby V(TCNE)2 complex). Bottom panel: Spectroscopy
taken at the same lateral position on the sample as the middle panel (center of the same
V(TCNE)2 complex), but with initial settings V = 100 mV, I = 0.5 nA, 1 mV (rms) ac
modulation.

Figure 5.5 shows the different types of spectra in a ±60 mV range on a sample that can
result after the sample has been in the STM stage for four weeks. These spectra are due to
accumulated hydrogen in the system [65], and are not due to the intrinsic properties of the
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sample. The graphs also demonstrate how sensitive the spectra are to tip lateral position and
tip height. The spectra in the top and middle panels were taken using the same stabilization
parameters (so the tip height above the sample is roughly the same), but the top spectrum
was taken over the center of a TCNE molecule while the middle taken over the center of
a V(TCNE)2. The middle and bottom graphs were taken at the same lateral position on
the surface (over the center of the same V(TCNE)2), but the stabilization parameters were
different, making the tip further away from the sample for the bottom graph.

To remove hydrogen from the system, standard tip preparation procedures in vacuum
(§5.2.2) do not work (at least, not for long); the STM must be warmed up to remove
hydrogen, usually to ∼ 40 K for a few hours. However, since warming up the microscope
chamber also desorbs adsorbed gas from the chamber walls, the desorbed gas contaminates
the sample, and the sample should be cleaned again.

Before the publication of [65], spectra such as those in figure 5.5 were known to be due to
artifacts, but the origin of the artifacts were unknown. Since such artifacts due to hydrogen
are sensitive to tip position and difficult to remove by tip preparation in vacuum, a tip
which displayed such artifacts was called a “tip from hell.”

5.4 Deposition Techniques

In our experiments, we need to deposit molecules or atoms onto a surface such that they
are separated from each other. This is usually accomplished by sublimating a macroscopic
quantity of the molecule or atom so that it forms a gas. When a substrate such as a Ag(001)
crystal is placed in this gas, individual molecules or atoms will hit and stick to the substrate’s
surface. By controlling the pressure of the gas, we can control the number of molecules or
atoms which hit the surface, and with a low enough pressure, we can get isolated molecules
or atoms on a surface. However, molecules and atoms are often mobile on a surface at room
temperature, so to keep them isolated, we need to cool the sample.

A device which allows us to sublimate molecules or atoms and control their sublima-
tion pressure is called an evaporator. There are four types of evaporators used for our
experiments.

5.4.1 Knudsen cell evaporator

All of the molecules studied except TCNE will sublimate in ultra high vacuum at temper-
atures above room temperature. This allows us to put the molecules in a quartz tube and
heat the tube by running current through a W wire to sublimate the molecules (figure 5.6).
This type of evaporator is called a Knudsen cell evaporator. The sublimated molecules then
hit the sample surface.

The temperature that we heat the quartz determines the pressure of molecules and is
used to control the amount of molecules deposited onto the surface. The temperature is
measured using a thermocouple.
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Figure 5.6: Knudsen cell evaporator

5.4.2 Electron beam evaporator

For depositing metals, which usually have much higher evaporation temperatures than
molecules (higher than the melting point of the quartz crucible in the Knudsen cell), a
Knudsen cell cannot be used. A different type of evaporator, called an electron beam evapo-
rator (e-beam evaporator), is required. For this evaporator, a high voltage (2 kV) is applied
to the metal which we want to deposit and a filament is placed near the high voltage metal
(figure 5.7a). The feedthrough is usually a TSP feedthrough. The filament is either thori-
ated W wire, which begins to glow when ∼ 2 A is passed through it, or a Granville-Phillips
ion gauge filament, which requires ∼ 5 A to glow. The metal is either directly attached to
a Mo rod by wrapping W wire around it and the Mo rod (figure 5.7a), or one end of a wire
(W, Mo, or Ta) is wrapped around and spot welded to the metal while the other end of the
wire is wrapped around and spot welded to the Mo rod (figure 5.7b). The second method
(figure 5.7b) of attaching the metal to the Mo rod has the advantage that there is less heat
loss to the Mo rod since there is no direct contact between the hot metal and the Mo rod,
which means we require less current through the filament to heat the metal and the Mo rod
will outgas less. However, this method has the disadvantage that when the metal and wire
get hot, they can bend and touch the shield, causing a short.

When the filament is heated by passing a current through it, thermally emitted electrons
are accelerated to the metal because of the high voltage applied to it, and when the electrons
hit the metal with high energy, they release their energy in the form of heat, rapidly heating
the metal. By controlling the current that flows from the filament to the metal through
vacuum (called the emission current) we can control the temperature of the metal. A shield
is also normally placed around the metal and filament for two reasons 1) It prevents metal
from being evaporated in all directions, which prevents the metal from contaminating other
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Figure 5.7: e-beam evaporator setup. (a) Complete schematic of an e-beam evaporator with
the metal directly attached to the Mo rod and the shield is drawn transparent. (b) A second
way of attaching the metal to the Mo rod by using a W, Mo, or Ta wire.

evaporators or covering viewports with metal. 2) It also changes the local electric field
around the metal that we evaporate. Since we apply a high voltage to this metal, the
evaporated metal atoms are charged and the electric fields can alter the direction the metal
atoms are flying. The shield can significantly alter the number of atoms that fly towards
the sample.

5.4.3 K getter evaporator

The deposition of K atoms is more difficult due to the high reactivity of K when exposed
to moisture in the air. For the deposition of K atoms, K getters were purchased from SAES
getters in Milan, Italy. To use these getters, a current of ∼ 5 to 8 A were passed through
the getter, which causes K atoms to be released.

5.4.4 Leak valve evaporator

Since TCNE sublimates at room temperature in UHV, a different method was used to
deposit this molecule. The molecules were placed as a solid in a small glass belljar which
was attached to a UHV leak valve (figure 5.8). The belljar was first pumped to rough
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vacuum (∼ 10 mTorr) and then filled with 1 atm of Ar gas. Since TCNE is toxic, when we
pump on it, we must make sure that the exhaust of the pump goes into the fume hood. This
process of pumping and flushing with Ar was repeated at least ten times. Then finally the
belljar is pumped to rough vacuum and the pump/flush valve is closed. The TCNE at room
temperature and in rough vacuum will sublimate, forming a gas of TCNE in the belljar and
leak valve. Opening the leak valve then allows this gas to hit the sample.

Since the TCNE gas can diffuse everywhere in the chamber, we must turn off ion gauges,
ion pumps, or anything else which has hot filaments or high energy electrons since these
may break the molecules. Any broken molecules may end up on the sample surface, con-
taminating the surface.

With leak valve evaporators, we want the distance between the leak valve and the sample
to be small (a few inches) so that most of the molecules which come out of the leak valve
will hit the sample surface. If the distance between leak valve and sample is large, many
molecules which come out of the leak valve will not hit the surface, so we will need a higher
pressure of TCNE gas in the chamber to get the same amount of molecules on the surface. A
higher pressure of TCNE in the chamber means more TCNE will contaminate the chamber
and the base pressure in the chamber will be worse. For this reason, because of the geometry
of our chamber, the setup used to deposit TCNE onto a sample at room temperature is
different from the setup used to deposit TCNE onto a sample at low temperature, which
will be explained below.

RT leak valve evaporator

To deposit TCNE onto a sample at room temperature, we must first turn off ion gauges and
ion pumps in the load lock so that they do not break the molecules. Then we can simple
move the sample into the sample-transfer load lock (figure 5.1). When the leak valve is
opened, the TCNE gas then hits the sample. The distance between leak valve and sample
is ∼ 3 in with this setup.

LT leak valve evaporator

To deposit TCNE molecules onto a sample that has been cooled below room temperature, we
cannot use the sample-transfer load lock since we cannot cool the sample in that load lock.
The sample can only be cooled in the transfer chamber (figure 5.1), and the distance between
the sample and the leak valve on the main chamber would be relatively large (around 12
inches). So to reduce the distance between the evaporator and sample, we attached a long
threaded tube to a modified double-sided blank flange which was attached to the leak valve
(figure 5.9). This modified double-sided blank flange (with knife edges on both sides) has
a hole drilled completely through it and one side of the hole has 1/8” NPT threads so that
we may screw a the threaded tube of pipe onto the end of it. The tube was made out of
stainless steel 304. This assembly was then attached to a linear motion feedthrough which
was attached to the deposition load lock (figure 5.1) on the main chamber. When the tube
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Figure 5.8: Leak valve evaporator setup for depositing TCNE onto a sample at room tem-
perature

is completely moved toward the sample, the distance between the end of the tube and the
sample is ∼ 5 in.

To deposit TCNE using this evaporator,

1. the sample is first moved into the STM at 7 K.

2. The load lock is normally baked with the gate valve closed until the base pressure
after the load lock has cooled to room temperature is ∼ 1 × 10−8 torr.

3. After the sample is cooled for a few hours, it is picked up using the vertical manipulator
(figure 5.1) and moved it into the main chamber.

4. The load lock gate valve is opened and the tube is moved toward the cold sample
using the linear motion feedthrough.

5. The leak valve is opened to deposit the molecules onto the surface.
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Figure 5.9: Leak valve evaporator for depositing TCNE onto a sample held at low tempera-
ture (∼ 80 K). The schematic shows the evaporator when the tube has been moved toward
the sample using the linear motion feedthrough. When the tube is moved sufficiently far
away from the sample, the end of the tube is in the load lock, so we may close the gate
valve.
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Part II

Fullerenes and Diamondoids
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6
Controllably Doping a Single C60 Molecule

A central technique for controlling the functionality of bulk semiconductor devices is the
ability to tune the electronic properties of semiconductors via charge doping atoms [183].
Now that semiconductor devices are shrinking down to nanometer length scales, questions
arise as to whether charge doping will have the same effect at these small length scales.
Progress has been made using new compounds [73] and electronic gating [158], but directly
attaching single dopant atoms to individual molecules has not been accomplished yet. This
chapter will present our progress towards accomplishing this goal by controllably doping
single C60 molecules through the attachment and/or removal of single potassium (K) atoms.
This study will address one of the central questions in this dissertation: how to modify and
control the properties of single molecules at the atomic scale. Although C60 has been doped
with K in the past [201, 45, 189, 207, 26], the experiments were not done on single C60

molecules, only molecules in bulk or monolayers.
To modify the properties of a single C60 molecule (i.e., an isolated adsorbed molecule at

a surface), we need to be able to control the molecule over nanometer length scales. Since
the development of the STM, such minute adjustments to structure are possible. The STM
has the impressive ability to manipulate and move nanometer-size structures, giving one the
capability to alter the characteristics of single molecules such as C60.

Sliding individual C60 molecules over K atoms with the STM causes the K atoms to
attach to the C60 molecule, which dopes the molecules with electrons donated from the K
atoms. This process causes the C60 molecular energy levels to rigidly shift in energy, as well
as to split degeneracies and induce a Kondo effect.

This chapter will discuss using the STM as both an experimental tool to construct indi-
vidual KxC60 complexes, as well as a measurement tool to analyze the electronic properties
of the created complexes. It is based on our published paper, ref. [205].

The experiments were performed with our home-built LT UHV STM (T = 7 K) with a
PtIr tip and a Ag(001) substrate. The Ag(001) single crystal was cleaned by sputtering and
annealing (§5.3), cooled to ∼ 80 K, then C60 molecules were deposited onto the substrate
from a Knudsen cell evaporator (§5.4.1). The C60/Ag(001) sample was then cooled to
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T = 7 K before deposition of K atoms from a K getter (§5.4.3).

6.1 Doping C60 by STM manipulation

By using the molecular manipulation capabilities of the STM [42, 100], we can construct
KxC60 individual complexes [205]. Initially, we had tried to move the K atoms on Ag(001),
but were unable to. So we moved the C60 molecules towards the K atoms. We then found
that the K atoms will attach themselves to the C60 molecule. This allows us to create KxC60

by simply moving the C60 to x K atoms, one at a time. Figure 6.1a shows this process.
K6C60 can easily be made using this method. More than six K atoms are difficult to attach
since the K6C60 complexes seem to repel K away. However, stoichiometries as high as K7C60

have also been made with this method.
The topograph of a KxC60 complex, in general, changes very little. Figure 6.1b shows

the average of many radial cross-sections taken on a K6C60 complex and a C60 molecule.
The K6C60 complex is shorter than C60 by 2%, but is wider by 21% at a height of 0.25 Å.

To study the electronic structure of KxC60, dI/dV spectroscopy was performed (§2.4).
Figure 6.1c shows the typical spectrum for KxC60 for 0 ≤ x ≤ 7. Each curve is the average
of spectroscopy performed on many different molecules at various points over the same
molecule. These curves demonstrate a few trends when C60 is doped with K atoms. (1) The
LUMO+1 resonance (around 1.7 V in C60) and LUMO resonances (around 0.5 and 0.05 V
in C60, [129]) shift closer to EF with increased K doping. (2) The LUMO resonance shape
changes substantially as the K doping increases. (3) The width of one LUMO resonance
narrows substantially with K doping. These changes were only observed when the K atoms
were close enough to the C60 molecule so that they were not resolvable from the C60 molecule.

To see the effect of K doping on the spatial distribution of C60 molecular orbitals, dI/dV
maps were done (figure 6.2). dI/dV maps of the LUMO+1 orbital on K6C60 and C60

(figures 6.2b and c) both reveal bright rings (figure 6.2a), which are known to appear near
the C60 pentagons [129]. dI/dV maps on K6C60 reveal three distinct states at around −0.4 V,
−0.1 V, and 0.03 V. The state at 0.03 V on K6C60 looks similar to the state on C60 at 0.5 V
(figure 6.2g). These dI/dV maps (figures 6.2f and g) both have a bright triangular center
surrounded by bright spots. These dI/dV maps show that, although K doping shifts the
energy of the states, it does not significantly alter the spatial distribution of C60’s molecular
orbitals. Differences in the dI/dV maps are likely due to different configurations of the
atoms at the end of the STM tip.

The doping process can also be reversed. Figure 6.3a shows the process where a K4C60 is
moved over an impurity to form K3C60. The impurity is likely oxygen or carbon monoxide.
These impurities also form stable complexes with K, and when the K4C60 is moved over
them, a single K atom sticks to them, creating K3C60. Spectroscopy (figure 6.3b) shows
that a single K atom was removed. This process has been used to reverse the doping levels
on KxC60 for x = 1 to 4.
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Figure 6.1: (a) STM constant current topographs (V = 2 V, I = 500 fA, 227 Å × 115 Å)
showing the construction of K4C60 by STM manipulation. The arrows show the direction
the molecule was moved using the STM tip. (b) Averaged radial cross-sections taken over
K6C60 and C60. (c) dI/dV spectra taken on KxC60, x = 0 to 7. Each spectrum is averaged
over many KxC60 complexes (except K7C60) and is normalized so the LUMO+1 has the
same height.
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Figure 6.2: dI/dV maps taken on C60 and K6C60 showing the spatial distribution of their
molecular orbitals. (a) Structural model showing the orientation of the C60 molecule in the
dI/dV maps. The pentagons are highlighted in blue. dI/dV maps taken at the LUMO+1
energy of (b) K6C60 at 1.35 V, (c) C60 at 1.55 V. dI/dV maps taken near EF on K6C60 at
(d) V = −0.4 V, (e) −0.1 V, (f) 0.03 V, and a dI/dV map on C60 at (g) 0.5 V. (h) dI/dV
spectra on K6C60 and C60.

6.2 Modeling KxC60

6.2.1 Charge Transfer

We can estimate the amount of charge transferred from K atoms to the C60 molecule using
a simple method which relates charge transfer to changes in the energetic position of the
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Figure 6.3: Reversing the doping process. (a) Topographs (V = 2 V, I = 0.5 pA,

285 Å × 75 Å) showing K4C60 being converted to K3C60 by moving it over an impurity.
(b) Spectroscopy on K3C60 before converting it to K4C60 (black curve), after conversion to
K4C60 (red curve), and after reversing it back to K3C60 (dotted green curve).

molecular resonances. This model is similar to the one presented in photoemission experi-
ments [85]. This model assumes that the DOS does not change with electron addition, only
the occupancy of the states change [26]. Changes to the molecular DOS with K doping
limit the accuracy of this model. Since the LUMO can accommodate 6 electrons (including
spin degeneracy), if the LUMO is completely filled, it must be completely below EF, while if
the LUMO is completely empty, it must be completely above EF. Therefore, if the LUMO
starts out as completely empty and we add 6 electrons to it, EF must increase by roughly
the width of the LUMO, which is 0.8 eV from the spectroscopy data. Since EF always cor-
responds to V = 0 in dI/dV spectroscopy, we should see the LUMO resonance (and all
other resonances) shift down by ∼ 0.8 V in the data when the LUMO is completely filled.
To calculate the charge transfer using this simple model, we then need to calculate the shift
in the C60 resonances with the addition of K atoms.

We use Gaussian fits of the KxC60 LUMO+1 resonances (figure 6.4) to track the shifts
of the molecular resonances since the LUMO+1 does not change its shape with K addition,
making it simpler to fit. A linear background was subtracted from the data before fitting
the resonance. An example of the fit quality is shown in figure 6.4a, which is a fit of the C60

LUMO+1. Fits for KxC60, x = 1 to 4 were of comparable quality. When the center of each
Gaussian is plotted as a function of number of K atoms added to C60 (figure 6.4), we see
that the centers of the Gaussians shift at a rate of 85 mV± 15 mV per added K atom. This
means that only 85 mV/800 mV = 11% of the LUMO is getting filled with the addition of
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Figure 6.4: Two-Gaussian fits to the LUMO+1 of KxC60. (a) Experimental C60 LUMO+1
resonance (black curve) after a linear background was subtracted. The best fit to the
LUMO+1 is the green curve and the two Gaussians that make up the best fit are the red
and purple dotted curves. (b) Voltages of the center of the two Gaussians in the best fit
plotted as a function of K doping level.

each K atom. This corresponds to a charge transfer of around 11% of 6 electrons, which is
∼ 0.6 electrons per K atom. This is less than what is seen in K doped bulk [201, 45] C60

and monolayer C60 [189, 207, 26] samples, where K donates an entire electron to C60. This
difference is likely because of differences in the local environment of each K atom: each K
atom is surrounded by C60 molecules in bulk and monolayer samples, but they are not in
single KxC60.

However, this simple charge transfer model does not explain the change in the line shapes
of the LUMO resonance under K doping and does not taken into account the effect of the K
atoms. To get a more quantitative idea of the electronic properties of KxC60, a combination
of DFT and NRG was used.

6.2.2 DFT and NRG

We use density functional theory (DFT) calculations to explain the effect of adding K atoms
to a C60 molecule on a Ag(001) surface. However, although DFT reproduces the shift of
electronic states and the observed LUMO degeneracy breaking well, it does not explain
the experimental appearance of the sharp resonance pinned at the Fermi energy for KxC60,
x > 4. To investigate this anomalous peak further, numerical renormalization group (NRG)
calculations were performed and show that one of the three split C60 LUMO states interacts
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with the surface in a way to produce a narrow resonance (the Kondo resonance, §4.4.3) near
EF.

The results of the DFT calculations are shown below. All calculations were performed
by Jeff Neaton, who was working in Steven Louie’s group at that time, using SIESTA (§4.5,
[180]) with norm-conserving pseudopotentials [190] and a double-ζ basis set [175] (s and
d orbitals for Ag, and s and p orbitals for C). The supercell contained a KxC60 molecule
(x = 0, 3, or 6), on 200 Ag atoms in 4 atomic layers. The C60 molecule is initially positioned
with a hexagon facing the surface, as experimentally observed, and the atomic positions of
all atoms, except the bottom two Ag layers, are relaxed until the force on each atom is less
than 0.025 eV/Å. The calculation was repeated for a C60 molecule positioned at different
adsorption sites, and in the calculated lowest-energy configuration, the molecule sits 1.85 Å
above a Ag(001) hollow site. The relaxed structures for K3C60 and K6C60 are plotted in
figure 6.5d. The K atoms in K3C60 form an equilateral triangle in a plane ∼ 3 Å above the
Ag(001) plane and lie near the centers of the C60 hexagons. The K atoms in K6C60 are also
nearly coplanar, but ∼ 0.1 Å higher off Ag(001) than in K3C60 and prefer to be next to the
centers of the C60 hexagons.

To compare the DFT results with the averaged experimental dI/dV spectra, the PDOS
was calculated for the atoms on the upper hemisphere of the C60 molecule (away from the
substrate). These results are presented in figure 6.5b for KxC60, x = 0, 3, 6 adsorbed on
Ag(001). (Similar results were obtained by integrating the LDOS onto the tails of wavefunc-
tions in a hemispherical spatial region 2 Å above the C60 molecule.) For all three dopant
levels, our calculations reveal broad LUMO-like molecular resonances near EF, and a sin-
gle, broadened LUMO+1 resonances centered ∼ 1.2 eV higher in energy, in agreement with
experiment and previous studies [129]. As the number of surrounding K atoms increases,
the LUMO resonances drift toward lower energies relative to EF, indicating a systematic
charge transfer to the molecule with increasing K. The LUMO+1 resonance also shifts to-
ward the Fermi level with increasing potassium concentration, in excellent agreement with
the experimental trend (figure 6.5a). The DFT energy of the LUMO+1 resonance relative to
the Fermi level is underestimated by about 0.5 eV compared with experiment because of the
usual errors associated with unoccupied states in DFT. Quasiparticle self-energy corrections
(§3.4.2) should better align these energies with experiment [87, 151, 176], but are beyond
the scope of this work.

With no K atoms attached to C60, our calculations (figure 6.5b) reveal two resonances
just above EF, one slightly weaker centered at ∼ 0.13 eV and another slightly stronger at
∼ 0.38 eV, in remarkable agreement with the experimental spectrum.

To better understand the origin of the calculated splitting, the C60 molecule is lifted off
the substrate by 1.5 Å (without subsequent relaxation). The recalculated PDOS is shown
in figure 6.5c, and the width of the molecular resonances and their splitting can be seen
to decrease with increasing molecule-substrate separation. The four-fold symmetric hollow
adsorption site breaks the t1u symmetry of the LUMO, which, in the gas-phase, has three-
fold orbital degeneracy. Thus, the hollow site symmetry results in three singly-degenerate
levels, two of which remain relatively close together. As the molecule is moved away from the
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Figure 6.5: DFT on KxC60 on Ag(001). (a) Experimental dI/dV spectra shown earlier.
(b) DFT calculated PDOS for KxC60, x = 0, 3, 6. (c) PDOS for C60 on Ag(001) for two
different heights above the Ag(001) plane. ∆z represents the increase in C60-Ag distance
from the relaxed C60-Ag distance. (d) DFT relaxed structures for K3C60 and K6C60.
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surface, the electronic coupling between the LUMO and the substrate diminishes, resulting
in a reduction of the magnitude of the splitting of the LUMO manifold.

Although the agreement between experiment and the DFT calculations is excellent for
C60 on Ag(001), the narrow peak appearing near EF for KxC60, x ≥ 4, is absent from the
DFT calculated PDOS. Due to the unusually narrow widths of the experimental peaks for
KxC60, x ≥ 4, which is not expected for molecules on surfaces, and the lack of any narrow
peaks in the DFT calculations, we conclude that the narrow resonance near EF must be
due to a correlated electronic excitation that is not captured by DFT. The fractional charge
state of KxC60 for x ≥ 4 calculated by DFT suggests that there is a partially filled orbital
which can lead to a Kondo effect: this is a strong correlation phenomenon which produces
narrow features near EF that DFT would not be expected to reproduce.

To explore further the possibility of a Kondo resonance for x ≥ 4, Noah Bray-Ali in
Joel Moore’s group performed numerical renormalization group (NRG) calculations [81] us-
ing a model Hamiltonian that best fits the information provided by experiment and our
DFT calculations. Our main assumption is that there is only one C60 resonance moving
through EF for KxC60, x ≥ 4. Because the substrate removes the three-fold LUMO de-
generacy, this approximation is acceptable. This is different from previous theories [39]
which assume degenerate LUMO states. The resulting single-orbital Anderson model con-
tains three parameters: the bare resonance energy Ed, the non-interacting (bare) level width
(∆ = 135 meV for all curves in the top panel in figure 6.6), and the intra-orbital interaction
energy (U = 405 meV for all curves in the top panel of figure 6.6).

The results of these calculations are shown in figure 6.6. The only adjustable parameter is
Ed, which is taken to move linearly with doping from 81.5 meV (x = 4) to −121.5 meV (x =
7). For these parameters, the number of electrons in the impurity orbital is intermediate
between zero and one; this range of parameters is referred to as the “mixed-valence” regime
of the Anderson model. Although the widths of the NRG spectral functions are slightly wider
than the observed widths, the energetic positions of the resonances agree with experiment.
Strong correlations slow down the motion of the center of the observed resonance with doping
as it nears the Fermi level from above and cause the resonance to narrow. The narrowing
of the density of states peak in the mixed-valence regime was previously obtained using the
NRG technique [81, 34]. A slightly improved fit to the data can be obtained by increasing
the number of fit parameters, but an adequate model of the evolution of the center orbital
with increasing K doping as a mixed-valence Kondo effect requires only a linearly decreasing
bare orbital energy, with all other parameters kept constant.

6.3 KxC60 Heterostructures

Once a KxC60 complex is created, it can be manipulated by STM towards a KyC60 complex.
These two complexes stick together forming a heterostructure. One important way these
structures deviate from the behavior of isolated KxC60 complexes is in the amount of charge
transfer between K and C60. K seems to donate more charge to C60 in these heterostructures
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Figure 6.6: Top panel: the bare resonances used for the NRG calculations. Middle panel:
NRG calculated PDOS. Lower panel: dI/dV spectra from experiment

than in isolated KxC60 complexes.
Figure 6.7a shows the topograph of a K6C60/C60 heterostructure. The K6C60 and C60

molecules are hard to distinguish in the topography. They are easier to distinguish in the
dI/dV map of the same heterostructure in figure 6.7b, where the K6C60 appears brighter
than the C60.
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Figure 6.7: A K6C60/C60 heterostructure. (a) Topograph of the heterostructure. (b) dI/dV
map of the same heterostructure taken at 1.2 V. (c) Spectroscopy of the K6C60 and C60

in the heterostructure compared to the spectroscopy of isolated K6C60 and C60 complexes.
K6/K0 in the caption refers to K6C60/C60.

dI/dV spectroscopy on the K6C60/C60 heterostructure (figure 6.7c) reveals that the
spectrum of a K6C60 complex in the K6C60/C60 heterostructure (blue curve) looks almost
identical to an isolated K6C60 spectrum (green curve), while the spectrum for a C60 molecule
in K6C60/C60 looks substantially different from the spectrum of an isolated C60 (black curve).

Since changes in the spectroscopy are related to charge transfer, the spectroscopy results
suggest that attaching C60 to K6C60 does not significantly alter the charge state of K6C60

but it does change the charge state of the isolated C60 appreciably. The amount of charge
transfer can be estimated from the position of the LUMO+1, as in §6.2.1. Since the energetic
position of the left LUMO+1 shoulder for C60 in K6C60/C60 is around 0.1 V lower than the
energetic position of the left LUMO+1 shoulder in isolated C60, the C60 in K6C60/C60 has
gained an additional charge of around 0.6 electrons after it is attached to K6C60. Hence,
the total electron charge on the heterostructure is larger than the charge on each molecule
when separated.

This effect may be due to the influence of the local environment of K on the K-C60

charge transfer. In K doped bulk C60 [201, 45] and monolayer C60 [189, 207, 26] samples,
K donates an entire electron to C60. Hence, if K is surrounded by numerous C60 molecules,
as it is in bulk and monolayer samples, then the charge transfer is different than the 0.6
electron charge transfer from K to C60 in isolated KxC60 complexes, where the K atoms
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are surrounded by only one C60. By adding a C60 molecule to K6C60, the K atoms in the
K6C60/C60 complex are now surrounded by more C60 molecules, causing the charge transfer
from K to C60 in K6C60/C60 to become more like the bulk and monolayer charge transfer
values. Since the bulk and monolayer charge transfers are higher than the isolated KxC60

charge transfers, the charge transfer from K to C60 in K6C60/C60 is also higher. The exact
mechanisms behind the additional charge transfer will require further study.

6.4 Conclusions

Using the STM, single C60 molecules have been reversibly doped with individual K atoms
on Ag(001). Experimental dI/dV spectra show that the main effect of this doping process
is to rigidly shift C60 molecular states with doping. In addition, other more subtle features
also appear in the experimental spectra, such as splittings, dips, and peaks near EF. DFT
calculations reproduce most of the essential features of the spectroscopy, except for the
sharp peak near EF in KxC60 for 4 ≤ x ≤ 7. This peak can be accounted for with NRG
calculations, which show it arises from a mixed-valence Kondo effect.

It is still not clear why the narrow resonance at EF is only seen in KxC60 when x ≥ 4.
One reason for the lack of a Kondo peak for x < 4 is that the Kondo temperature might be
too low to see a Kondo effect: instead a Coulomb-blockade dip appears at the Fermi level
at temperatures above the Kondo temperature. Alternately, the Fano-like dips that appear
for KxC60, x < 4, suggest that there might also be a Kondo effect at lower dopings, but
instead of a sharp resonance, we observe a Fano line shape caused by tunneling through
multiple channels. The underlying physics behind the lower doped C60’s is not completely
understood and requires further study.
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7
KxC60 Metal-to-Insulator Transitions

The interplay between molecular electronic and atomic structure is particularly important
in fullerenes, because of the unusual combination of large electron-vibration interaction and
large electron-electron interactions with small electronic bandwidths, causing all interactions
to be of comparable energies [207, 62]. Since the conductive characteristics of a system are
heavily influenced by the relative magnitude of these properties, small changes in these prop-
erties due to changes in interactions such as intermolecular hybridization, electron-electron
interactions, and structural distortions can tip these systems from one side of the metal-
insulator divide to the other. Metal-to-insulator transitions have been studied extensively
in C−

60 based systems [105, 41, 89, 21], but the role played by the structural distortions is
still under debate [21, 160, 46, 32, 69, 25, 38, 104].

The STM gives one the unique ability to simultaneously investigate local structural dis-
tortions and electronic properties of a system, allowing one to analyze the effect of structural
distortions on electronic properties, thus allowing one to determine the role these distortions
play in C60 metal-to-insulator transitions. This ability stems from the capability of STM to
measure the DOS, giving us electronic information, as well as from the capability of STM to
directly image electronic wavefunctions at various energies, giving us structural distortion
information, since the spatial distribution of wavefunctions are directly related to structural
distortions.

Our STM imaging of the wavefunctions of individual KxC60 complexes in a KxC60 mono-
layer (ML) on Au(111) gives strong evidence that a specific type of structural distortion
caused by the Jahn-Teller (JT) effect exists in this system and that this distortion plays a
crucial role in driving the KxC60 ML from a metal for x = 3 to an insulator at x = 4.

Since the JT effect is related to electron-vibration interactions, this chapter will address
one of the central questions in this dissertation: how do electron-vibration interactions
in single molecules affect their isolated and aggregate properties. It will discuss how the
electron-vibration induced structural JT distortions in KxC60 monolayers on Au(111) result
in a metal-to-insulator transition in this system. This chapter is based mainly on a paper
we published in ref. [191].
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7.1 The Jahn-Teller Effect

Symmetries are inevitably linked to degeneracies by Noether’s theorem. Structural sym-
metries are closely linked to electronic degeneracies with high structural symmetry leading
to large degeneracies in the electronic energy levels. Breaking the structural symmetry can
result in breaking the electronic degeneracy. For a molecule with degenerate orbitals, only
some of which are occupied by electrons, structural distortion of the molecule can lower
the energy of occupied electronic levels while raising the energy of empty ones, reducing
the molecular total electronic energy (figure 7.1). Hence, under the right circumstances, it

Figure 7.1: The JT distortion occurs when a system has degenerate orbitals, but only some
of the degenerate orbitals are occupied by electrons. This partial occupancy of degenerate
orbitals is usually achieved by adding or removing charge from a system; in this case K
atoms can donate electrons to C60, negatively charging it. The structure of the system then
distorts and breaks the electronic degeneracies, lowering the electronic energy.

will be energetically favorable to break structural symmetries. Structural symmetry break-
ing resulting in the lowering of electronic energy via degeneracy breaking is known as the
Jahn-Teller effect [92].

Jahn and Teller derived the conditions under which the JT effect occurs in the 1937 [92].
For molecules that are not linear, a structural distortion will cause degeneracy breaking in
any set of degenerate states whose degeneracy is not due to Kramer’s degeneracy. (Kramer’s
degeneracy occurs when the Hamiltonian H for a system commutes with the time reversal
operator Θ and the system has a half-odd integer spin. In this situation, any eigenstate |ψ〉
of H is degenerate with Θ|ψ〉). However, the magnitude of the energetic splitting between
the JT split states depends on the strength of the electron-vibration interaction, and may
be too small to observe in some molecules.

7.2 JT effect in KxC60 monolayers

The high symmetry (icosahedral) of C60 leads to large degeneracies, and this combined
with its strong electron-vibration interactions makes C60 a good candidate to observe the
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JT effect. Although the energetic splitting of degenerate C60 orbitals has been seen in
previous experiments, the JT split wavefunctions have not been imaged before, and it is
this additional information which links the electronic and structural properties.

The electronic wavefunctions at one particular energy in a JT distorted molecule are
directly impacted by the symmetry of the JT distortion since the JT splitting of degenerate
states leads to very different occupied and empty wavefunctions compared with undistorted
molecules. By comparing STM images of the molecular wavefunctions above and below EF,
we can determine the presence or absence of a JT splitting, and furthermore, with the aid
of theoretical analyses, can determine the structure which lead to the wavefunctions.

STM images above and below EF reveal that K4C60 has a JT distortion while dI/dV
spectroscopy shows it is an insulator. This provides evidence that the lack of DOS near EF

in K4C60, and hence its insulating behavior, is related to the JT splitting of the C60 orbitals,
since the JT splitting tends to reduce the energy of occupied states while increasing the
energy of unoccupied states, creating a lack of states in the DOS near EF. STM images on
K3C60, on the other hand, reveal the lack of a JT distortion while dI/dV spectroscopy on
K3C60 reveals it is metallic. This combination of results on both K4C60 and K3C60 strongly
suggests that the transition from metal to insulator in KxC60 monolayers when x changes
from 3 to 4 is related to the Jahn-Teller effect.

The JT effect only happens when not all orbitals in a degenerate set of orbitals are
filled, which is not the case in pure C60. To obtain the situation which makes the JT effect
possible, we added charge to the molecule. To accomplish this experimentally, we add K
atoms to C60. Since each K atom donates approximately one electron to the physisorbed C60

molecules, the charge state of C60 molecules in the KxC60 ML was controlled by controlling
the local K concentration [207, 189, 26].

All experiments were performed using a home-built UHV STM at T = 7 K with a PtIr tip.
The Au(111) surface was cleaned by sputtering and annealing (§5.3). C60 was then deposited
at coverages between 80% ML and 90% ML onto the clean Au(111) substrate cooled to 80 K.
C60 coverages were determined from STM images. K was deposited progressively from a
calibrated K getter (§5.4.3) onto the C60/Au(111) sample, followed each time by an anneal
at 490 ± 10 K for 15 min. K evaporators were calibrated by deposition of K onto a clean
Ag(100) substrate cooled to 80 K and counting single K atoms in topographic STM images
acquired at 7 K. dI/dV spectra acquired using standard lock-in techniques (§2.4).

Low-temperature STM studies were performed on KxC60 monolayers on Au(111) for
0 ≤ x ≤ 5. At lower K concentrations 0 ≤ x ≤ 3, the energetic position of the C60 states
rigidly shift to lower energies as the K concentration increases (figure 7.2). However, this
trend stops at x = 4 where the STM spectrum evolves from a metal at x = 3 to one that
is characteristic of an insulator at x = 4. This electronic transition is accompanied by a
dramatic orientational rearrangement of the C60 molecules. This data strongly suggests that
something special happens between x = 3 and 4.

We will now focus on KxC60 for x = 3 and 4. When the average x in KxC60 falls between
3 and 4, the system is an inhomogeneous mixture of two stoichiometries. The local phase
separation can be seen in figure 7.3. K3C60 exhibits a triangular lattice backbone with a
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Figure 7.2: Topography and dI/dV spectroscopy on KxC60 monolayers on Au(111). The
LUMO and LUMO+1 resonances for C60 shift to lower energies in K2C60 and K3C60. How-
ever, x ≥ 4, this trend stops. Individual C60 molecules are circled in red in the topographic
images.

“bright molecule” supermodulation (figure 7.4B), which may be a K-induced ordering. The
exact form of the supermodulation varies across the K3C60 surface and exhibits pronounced
disorder in some regions, whereas it disappears altogether in others. However, metallic
dI/dV spectra (figure 7.3) are observed regardless of the details of the supermodulation.
The KxC60 ML undergoes a dramatic restructuring from x = 3 to 4 that transforms the un-
derlying triangular supermodulation into a nearly rectangular structure with four molecules
per unit cell (figure 7.5A). This structure is free of supermodulation and contains much
larger ordered areas than the K3C60 structures. The dI/dV spectrum for K4C60 exhibits an
energy gap of 200 ± 20 mV that is roughly symmetrical about EF (figure 7.3).

The difference in electronic wavefunctions between the x = 3 and x = 4 phases can be
seen by comparing STM images of the filled and empty states straddling EF (figures 7.4
and 7.5). Constant current topographic images at V = −200 mV (filled states) and V =
+200 mV (empty states) for the same patch of K3C60 surface (figure 7.4A and B) show
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Figure 7.3: Phase separation in KxC60 for 3 ≤ x ≤ 4. The topograph (V = 0.5 V, I = 10 pA)
shows the two coexisting phases K3C60 and K4C60. The spatially averaged dI/dV spectrum
taken on only K3C60 shows metallic behavior, while the spatially averaged dI/dV spectrum
for K4C60 shows an energy gap at EF. A bare C60 spectrum is shown for comparison. All
spectra were normalized so that the highest peak has a maximum value of 1.

little change upon bias reversal. A collection of dI/dV spectra measured at different points
within a 4 Å × 4 Å region of the K3C60 ML (figure 7.4C) shows some variability, but all of
the spectra reveal a similar peak near EF (V = 0), indicative of a metal.

However, empty and filled state images of K4C60 shows a striking difference (measured
at V = −200 mV and V = +200 mV, respectively). Filled-state images (figure 7.5A) show
that each C60 molecule is bisected by a single nodal line (i.e., a dark stripe), while empty-
state images (figure 7.5B), display an additional nodal line on each molecule that is rotated
by 90◦ with respect to the node seen in the filled-state image. This prominent difference in
topography for filled and empty states does not exist in K3C60. dI/dV spectroscopy on the
K4C60 phase (figure 7.5C) shows that instead of a peak at EF, a 200 mV energy gap exists,
indicating that K4C60 is an insulator.

The dramatic difference in the filled- and empty-state topography of figure 7.5 can be
attributed to a JT distortion. When four K atoms are added to C60, the molecule receives
four extra electrons, and a C60 molecule is expected to undergo a JT distortion whereby the
three degenerate LUMO states split (figure 7.1) into a group of twofold orbitally degenerate
levels at lower energy and one orbital at higher energy [27, 112, 134]. The four extra electrons
reside in the two lower energy levels, making the distortion energetically favorable.
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Figure 7.4: K3C60 ML on Au(111). (A) Constant current STM topograph of K3C60 on
Au(111) at V = −0.2 V, I = 20 pA, showing occupied electronic states near EF. (B)
Topograph of the same region at V = +0.2 V, I = 20 pA, showing empty electronic states
near EF. Single molecules are circled in red. (C) dI/dV spectroscopy on K3C60 taken on a
3 × 3 grid of equally spaced points with a 2 Å spacing between points.
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Figure 7.5: K4C60 ML on Au(111). (A) Constant current STM topograph of K4C60 on
Au(111) at V = −0.2 V, I = 10 pA, showing occupied electronic states near EF. The
topography does not change over the bias range −0.10 V to −0.7 V. (B) Topograph of the
same region at V = +0.2 V, I = 10 pA, showing empty electronic states near EF. Single C60

molecules are circled in red. The topography does not change over the bias range +0.10 V
to +0.6 V. (C) dI/dV spectroscopy on K4C60 taken at various points.
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7.3 DFT calculations on K4C60

The effect of a small molecular distortion can be thought of as adding a perturbing Hamilto-
nian H ′ to an undistorted molecule’s Hamiltonian, and by degenerate perturbation theory,
H ′ will split degenerate states, like the C60 LUMO, in a way that diagonalizes H ′. Differ-
ent distortions will yield different perturbations H ′, which then lead to different splittings.
This implies an intimate relation between the electronic orbitals and the specific type of
distortion induced by the JT effect. To determine that relation, we compared our STM
topographic images with calculated molecular LDOS by using the density functional theory
(DFT) code SIESTA with ab initio pseudopotentials, a local orbital basis, and the local den-
sity approximation for the exchange-correlation functional. The calculations were performed
by Khoonghong Khoo in Steven Louie’s group. Different locally stable distorted structures
for isolated C4−

60 were found by total energy minimization. Their electronic LDOS’s were
then compared to our STM topography and the distorted structure which best reproduced
the experimental images was selected. Figure 7.6 shows two views of the best-fit structure,
which has D2h symmetry, where the atomic displacements have been exaggerated by a factor
of 30. Apart from using an improved basis set [102], a finer real space grid (0.1 Å mesh),
and excluding the surface, details of the calculation method are similar to those in [130].

Figure 7.6: Two views of the JT distorted C4−
60 structure whose LDOS best reproduces

experimental images. This structure has D2h symmetry. The Au(111) surface would lie in
the xy-plane if one compares this to experiment. The distortion has been exaggerated by a
factor of 30 to make it visible.

To calculate the various stable structures, the molecule was given a small initial distortion
having either D2h, D3d, or D5d symmetry, and then allowed to relax to minimize the energy.
These distortions were chosen by symmetry considerations [27, 112, 134]. The resulting
displacements can be expressed in terms of phonon modes within the Hg and Ag even
symmetry classes. The lowest energy deformation having D2h, D3d, or D5d symmetry each
show an essentially identical total energy reduction from the undistorted structure of 0.3 eV
per molecule. In all three cases, the molecular JT distortion splits the 3-fold degenerate
LUMO by 0.11 eV into doubly degenerate occupied levels and a single unoccupied level.
However, only the D2h distortion results in electronic wave functions that match the STM
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images above and below EF; see figure 7.7 for the calculated wavefunctions with D3d and
D5d symmetry. Therefore, we believe that the D2h distortion is stabilized in the K4C60 ML
on Au(111), possibly due to the K-C60 interaction or Au-C60 interaction, which were not
included in the calculation. The calculated D2h distortion of the C60 cage (figure 7.6) creates

Figure 7.7: DFT calculated C4−
60 JT distortions having D3d or D5d symmetry. The red circles

mark the position of a single C60 molecule. (A) Theoretical 2-D projection of a D3d distorted
C4−

60 molecule isosurface and simulated unit cell showing empty state wavefunctions. (B)
HOMO wavefunctions for the D3d JT split levels. Isosurfaces are about 3 Å outward from
carbon centers. All single molecule projected isosurfaces have an orientation such that a
horizontal 6-6 bond would be in the center of the structural model. Regions within black
dashed circles are preferentially imaged in monolayer topographs due to finite tip size.
(C) and (D): same as (A) and (B), but for a D5d distorted C4−

60 . (E) Experimental STM
topography for the K4C60 ML unit cell empty states and (F) filled states.

an oblate spheroid, with the short axis along the y direction of the figure. Most of the bond
distortion occurs in the equatorial xz plane.

The isosurfaces of the LDOS (plot of the set {~r :
∑

n

∣

∣Ψn(~r)
∣

∣

2
= C}, where ~r is the

position vector, Ψn(~r) is an eigenstate, n ranges over degenerate eigenstates at a particular
energy, and C is a real constant) of the energy-split states for the D2h distorted C4−

60 can be
seen in figure 7.8A and B, for the unique orientation that fits our experimental data (here
the Au surface lies in the xy plane of the figure).

The most pronounced feature in the calculated C4−
60 HOMO wavefunctions (figure 7.8B)
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Figure 7.8: Comparison between the DFT calculated D2h JT distorted C4−
60 and experiment.

The Au(111) surface lies parallel to the xy plane of the figure. (A) Two-dimensional pro-
jection of the C4−

60 isosurface showing the wavefunction for the highest filled-state and (B)
wavefunctions for the lowest empty states at ∼ 3 Å outward from carbon centers. Regions
within the dashed circles are preferentially imaged by STM in ML topographs because of
finite tip size. The regions within the dashed circles are repeated and arranged in (C) and
(D) to simulate the experimental unit cell. Nodal lines are marked in purple and green
and single molecules are circled in red. (E) and (F) are experimental K4C60 unit cells for
comparison.

is a strong linear depression that bisects the highest region (red regions) into two areas. The
highest regions of the LUMO wavefunction (figure 7.8A) are similar to the highest regions of
the occupied wavefunctions, except for the addition of a pronounced linear depression that
lies at an angle of 90◦ from the linear depression seen in the occupied wavefunctions. This
new node lies exactly in the xz equatorial plane, where the greatest JT-induced changes in
bond length occur, thus marking the spatial location of the JT distortion in the molecular
wavefunction. By taking the regions enclosed by dashed circles in figures 7.8A and B,
and repeating and arranging them, simulated ML topographs (figure 7.8C and D) have
been constructed, and are in good agreement with experimentally observed K4C60 filled
and empty state topography. Empty-state imaging of the K4C60 ML thus allows us to
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directly determine the spatial location where the largest structural distortion occurs for
each individual C60 molecule.

7.4 Conclusions

Our combined DFT and STM results provide strong evidence that the JT distortion plays
a central role in the metal-to-insulator transition from K3C60 MLs to K4C60 MLs. In par-
ticular, the JT effect and the intra-molecular Coulomb interaction act cooperatively. For
an even number of electrons, the JT effect suppresses intermolecular electron hopping (via
Pauli exclusion) and hence reduces metallicity. Less metallicity causes worsened screen-
ing which enhances intra-molecular Coulomb interaction [62, 130, 80] and thus enhances
electron localization. Increased electronic localization, in turn, favors JT distortion (by re-
ducing electron-number fluctuation on each molecule). Both Coulomb and JT interactions
cooperatively contribute towards the insulating K4C60 ML ground state.

A better understanding of the details in KxC60 spectroscopic features will likely have to
include interaction of the molecules with the K ions and with the Au substrate, as well as
quasiparticle effects that go beyond DFT in the standard local-density approximation.
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8
KxC60 Monolayer Orientational Ordering

The previous chapter focused on the electronic properties of KxC60 monolayers, but did not
discuss the mechanisms that drive the ordering of the molecules. This chapter will discuss
the possible underlying mechanisms causing C60 molecules to order in KxC60 monolayers
(3 ≤ x ≤ 5). It will address one of the main themes in this dissertation: how do molecule-
molecule interactions influence the properties (in this case orientational ordering) of the
constituent molecules. It is based mainly on our published paper, ref. [197].

8.1 Orientational Ordering

Unlike atoms, molecules have various distinct orientations, which leads to an additional
type of ordering not possible in atoms: orientational ordering. In a lattice consisting of one
type of molecule, orientational ordering is when the orientations of the molecules repeat in
a pattern. Like the Jahn-Teller effect, orientational ordering also originates from symmetry
breaking, but this time it is the broken symmetry of the environment of the molecule. When
the molecular environment is not perfectly symmetric, the interaction between the molecule
and the environment will cause certain molecular orientations to have a lower energy than
others, creating preferred molecular orientations.

The high (icosahedral) symmetry of a C60 molecule makes monolayers of potassium
doped C60 ideal systems for studying new orientational phases [77]. Orientational order also
plays a vital role in shaping the rich electronic phase diagram of the fullerides that involves
superconducting, metallic, insulating, and magnetic phases [62]. For example, the effect
of molecular orientation on electronic structure was seen in angle-resolved photoemission
experiments that reveal significant differences between metallic K3C60 MLs on Ag(111) and
Ag(001) [22].
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8.2 KxC60 Pinwheels

By performing STM experiments on KxC60 MLs on Au(111), we find that K4+δC60 MLs
with 0.1 < δ < 0.5 exhibit C60 molecules that retain the JT-split K4C60 states (chapter 7),
but display a new, complex 7-sublattice pinwheel-like orientational ordering. At x = 5 the
system reenters a metallic phase (chapter 9) that exhibits a novel orientational structure
markedly similar to the x = 3 metallic phase. In the JT-insulating KxC60 MLs (x ∼ 4), an
intermolecular electron virtual hopping mechanism is proposed to be a crucial driving force
for the cross and pinwheel phases. In the metallic phases x = 3, 5 the dominant mechanism
for orientational ordering is the maximization of the overlap of partially occupied electron
wave functions, resulting in direct intermolecular electron hopping.

Our experiments were conducted in UHV at T = 7 K with a PtIr tip. C60 thin films
were made by evaporating C60 molecules onto a clean Au(111) surface from a Knudsen cell
evaporator (§5.4.1). Appropriate amounts of K atoms were dosed onto the C60 films from a
SAES Getter (§5.4.3). The evaporation rates of the K and C60 evaporators were calibrated
by depositing them separately onto a clean metal substrate, followed by directly counting
the number of K atoms and C60 molecules per area in the STM images. This calibration was
used to calculate the value of x in a KxC60 monolayer. The KxC60 monolayers were annealed
at 200◦C for 20 minutes before being cooled to 7 K for the experiments. Progressive doping
was obtained by adding more K atoms onto the existing film followed by re-annealing. We
found that in the highly doped samples (x > 4), the K content may be decreased by 200◦C
annealing; therefore, a lower annealing temperature of 140◦C was used in this regime to
avoid K loss. dI/dV spectra were measured through lock-in detection (§2.4) of the a.c.
tunneling current driven by a 450 Hz, 1–10 mV (rms) signal added to the sample bias with
the feedback off.

Figure 8.1a shows a typical STM image of the new “pinwheel” phase that occurs in
K4+δC60 (0.1 < δ < 0.5) MLs. An average K content in the range 4 < x < 5 induces a
rearrangement of the C60 molecules that destroys the long-range “cross” phase previously
observed in K4C60 MLs (figure 7.5), leading to a new locally ordered pinwheel-like structure
(each pinwheel is highlighted in purple). dI/dV spectroscopy of the pinwheel molecules (fig-
ure 8.1b) reveals a DOS very similar to that of the insulating K4C60 cross phase, suggesting
that the C60 molecules in K4+δC60 still retain the C4−

60 charge state seen in the stoichiometric
K4C60 cross phase [191]. The difference between the cross and pinwheel phases lies purely
in the C60 lattice structure and intermolecular orientational order.

As shown in figure 8.2b, each pinwheel consists of six “wheel” C60 molecules arranged
hexagonally around a central “pin” molecule (each wheel molecule is rotated by ∼ 60◦

relative to its neighboring wheel molecule). The seven molecules in a pinwheel sit on a
close-packed triangular lattice, which is a denser packing (by ∼ 5%) than the more open
cross phase. Figure 8.2a shows an ordered domain of the 7-sublattice pinwheels forming a√

7 ×
√

7R40.9◦ hexagonal superstructure. This suggests that the pinwheels are the struc-
tural unit of a new phase rather than merely defects. Both the number and size of the
domains grow continuously as the average K content increases from x ∼ 4.1 to 4.5, with a
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Figure 8.1: K4+δC60 pinwheels and K5C60. (a) Topography (V = −0.2 V, I = 5 pA) on
a K4+δC60 ML showing pinwheels colored in purple. (b) dI/dV spectroscopy on K4+δC60

(red curve) compared with K4C60 spectroscopy (black curve). (c) K5C60 topography (V =
−0.2 V, I = 5 pA) and (d) spectroscopy. Flower centers are the bright molecules and flower
petals are the dim molecules. Single C60 molecules are circled in red in the topographs.

maximum of ∼ 10% of the ML covered with pinwheels. This is accompanied by the growth
of small C60-free voids containing only K atoms on Au(111). Figure 8.3 shows an image
with C60-free voids and the inset shows a zoom-in on the edge of a void.

The orientation of the center pin molecule reveals another novel aspect of the pinwheel
structure. Because of the threefold rotational symmetry of the underlying triangular lattice
and the symmetry of the C60 molecule, the pin molecules are free to choose among three ori-
entations. Experimentally, the three possible orientations are uniformly distributed among
the pin molecules. This equivalency among different structures and orientation disorder
it induces is a hallmark of geometric frustration for orientational ordering on a triangular
lattice.

When the K content is increased further to x ∼ 5, a new metallic phase emerges, as shown
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Figure 8.2: Structure of a K4+δC60 pinwheel. (a) Topography of an ordered domain of
pinwheels (V = −0.2 V, I = 10 pA). (b) Zoom in on a single pinwheel (V = −0.2 V
I = 5 pA). (c) Structural model of the pinwheel. The red line represents the dark line node
in the topographic image.

by the ordered domain of bright molecules in figure 8.1c. dI/dV spectra (figure 8.1d) reveals
that the JT-insulating C4−

60 state disappears and a non-zero DOS exists at EF, indicating
a metallic ground state. This indicates that C60 molecules in this new phase are in a C5−

60

charge state where the fifth electron occupies an upper JT split band, as illustrated in
figure 8.4b.

The K5C60 molecules form a triangular lattice with a prominent 2 × 2 superstructure
composed of bright molecules resembling a three pointed star, referred to here as a tri-
star. Each tri-star molecule and its nearest neighbors form a “flowerlike” structural unit,
where the tri-star (flower center) exhibits a C60 molecule with a hexagon facing up and
the surrounding molecules (flower petals) exhibit C60 molecules with a 6-6 bond facing up
(figure 8.4c) [129]. The orientational ordering of K5C60 closely resembles that found in the
metallic K3C60 ML (figure 8.4a) in which C60 molecules form a

√
3 ×

√
3 superstructure of

bright molecules [191]. Figure 8.4c presents models of the orientational structure of K3C60,
K4C60, and K5C60. In both metallic phases (K3C60 and K5C60), the C60 molecules form
a triangular lattice with all neighboring C60 molecules (except the central “bright” ones)
contacting each other through their equatorial pentagons (blue regions).
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Figure 8.3: Constant current topograph (V = 1 V, I = 5 pA) of K4+δC60 on Au(111) showing
C60 free voids and pinwheels colored in blue. The inset is a zoom-in of the edge of a void,
showing the K atoms residing in the void.

8.3 Ordering mechanisms

C60 molecules will order in a way that minimizes their configurational energy. In general,
there are two contributions to the electronic energy, potential and kinetic. Since molecules
like C60 in a molecular solid tend to interact weakly, we may consider only the potential and
kinetic energy of electrons in C60 due to interactions with the molecule’s local surroundings.
The local surroundings of a C60 molecule in KxC60 MLs on Au(111) are the nearest K atoms,
the nearest C60 molecule neighbors, and the Au(111) surface. The change in C60 energy due
to interactions with K and Au(111) vary from ∼ 10 meV to ∼ 100 meV [194, 62]. The K-C60

interaction is difficult to take into account since the exact locations of the K atoms in KxC60

are unknown. The effect of the Au(111) surface is also difficult to calculate.
However, the energy of the C60-C60 interaction is straightforward to calculate and can

be done quantitatively. This section will focus on the potential and kinetic contributions to
the C60-C60 energy. The potential energy is due to mainly electrostatic interactions while
the kinetic interaction energy is mainly due to delocalization of electrons.

We will find that an important mechanism for all KxC60 orientational phases is the
minimization of electron kinetic energy by maximizing the overlap of relevant molecular
orbitals. For the JT-insulating cross and pinwheel phases (4 ≤ x < 5) the HOMO and
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Figure 8.4: Orientation ordering found in KxC60 for x = 3, 4, 5. (a) Topography of K3C60

(V = 0.4 V, I = 20 pA), K4C60 (V = −0.1 V, I = 10 pA), K5C60 (V = −0.2 V, I = 5 pA).
(b) Energy diagrams showing electron hopping between C60 LUMO orbitals on neighboring
C60 molecules. The 3-fold degenerate LUMO in K3C60 splits in K4C60 and K5C60. (c)
Structural models of KxC60. The blue regions mark equatorial pentagons.

LUMO orbitals maximize overlap to maximize virtual hopping of an electron between the
HOMO of one C4−

60 to the LUMO of a neighboring C4−
60 . In the x = 3 and 5 phases, the

LUMO orbitals maximize overlap to maximize direct electron hopping.
First, consider the x = 3 and 5 phases. These phases contain partially filled LUMO

orbitals (figure 8.4b), between which electrons can directly hop. DFT calculations show
these orbitals tend to be localized on the C60 pentagons [129, 63], so if we highlight the
pentagons in blue (figure 8.4c), we see that the experimentally observed ordering tends to
maximize overlap of the partially occupied C60 LUMO wavefunctions, thereby maximizing
kinetic energy reduction by maximizing electron hopping.

Next, consider the potential and kinetic energies for the x = 4 phase. For the K4C60

molecules in this phase, the potential energy is caused by electrostatic interactions. The
leading order multipole moment of this molecule is the quadrupole moment, hence the
electrostatic C60-C60 interaction will be dominated by quadrupole-quadrupole interactions
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between the C60 molecules in K4C60. DFT calculation indicates that JT distorted C4−
60 has

a quadrupole moment of order 1ec Å
2
, where ec is the absolute value of the electron charge.

The orientation ordering of K4C60 seen in figure 8.4a is reminiscent of orderings arising
from electrostatic quadrupole interactions [17], which was proposed for other systems [211,
119, 70]. However, the energy difference between the observed structure and other metastable
structures is small (on the order of 1 meV per molecule) and extensive computer simulations
cannot reproduce the experimentally observed structures using only quadrupole interactions.

The other contribution to the C60-C60 interaction energy is the kinetic energy arising
from electron delocalization. This mechanism originates in the anisotropic electronic overlap
integral between molecules [62, 63]. Because the HOMO orbitals peak near the C60 pen-
tagons, one might expect pentagons on neighboring molecules to align so that intermolecular
electron hopping can occur. However, for the K4C60 and K4+δC60, the HOMO states are
completely occupied, and direct hopping cannot occur. Virtual hopping (§4.2), on the other
hand, can occur in these insulating systems. To get an idea of the effect of virtual hopping,
tight binding calculations were performed.

8.4 Virtual hopping energies

From second order perturbation theory in tight binding (§4.2), the energy for an electron
to hop from an occupied orbital to a neighboring unoccupied orbital is [63]

E = −2
∑

i occupied

∑

j unoccupied

∣

∣tij
∣

∣

2

Ej − Ei

where the factor of 2 takes into account spin degeneracy and tij is the hopping integral
(§4.2). Since the denominator is the smallest for the HOMO and LUMO states, the energy
is approximately given by

E ≈ −2
∑

∣

∣tHOMO,LUMO

∣

∣

2

ELUMO − EHOMO

(8.1)

where the sum is taken over degenerate HOMO and LUMO orbitals. tHOMO,LUMO ≡ tHL is
the hopping integral between HOMO and LUMO, which depends on the overlap between the
HOMO and LUMO of adjacent molecules, and thus depends on their relative orientations.

Tight binding calculations were also used to calculate the HOMO and LUMO wavefunc-
tions from which tHL is found. The coordinates of the C atoms in C4−

60 were obtained from
previous DFT calculations [191]. From previous C60 tight binding calculations [135, 188],
only the pz of the sp2 bonded carbon atoms contribute to the HOMO and LUMO or-
bitals (page 8258 in [188]). Then the tight binding wavefunctions for the HOMO and
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LUMO states can be written in terms of φi, the pz orbital located on atom i,

ψHOMO =
60

∑

i=1

aiφi, ψLUMO =
60

∑

j=1

bjφj.

The coefficients ai and bj are found by diagonalizing the tight binding Hamiltonian in the φi
basis, taking the electron hopping between neighboring C atoms to be tc = −2.3(0.145 nm/d)2 eV,
where d is the distance between nearest neighboring C atoms ([188], §4.2). The calculated
wavefunctions from tight binding are shown in figure 8.5. They seem reasonable since they
agree well with the DFT calculated wavefunctions shown below them.

Figure 8.5: Comparison of the C4−
60 HOMO and LUMO wavefunctions calculated by tight

binding and DFT. The HOMO wavefunctions is an isosurface plot of
∣

∣ψHOMO 1

∣

∣

2
+

∣

∣ψHOMO 2

∣

∣

2

while the LUMO wavefunctions are isosurface plots of
∣

∣ψLUMO

∣

∣

2
.

The intermolecular hopping tHL can be calculated from these expressions and from its
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definition (equation (4.5))

tHL = 〈ψHOMO|∆U |ψLUMO〉

=
〈

60
∑

i=1

aiφi

∣

∣

∣
∆U

∣

∣

∣

60
∑

j=1

bjφj

〉

=
60

∑

i,j=1

a∗i bj〈φi|∆U |φj〉

=
60

∑

i,j=1

a∗i bjpij .

The matrix element pij = 〈φi|∆U |φj〉 represents electron hopping between pz orbitals on
atoms i and j on neighboring C60 molecules. We take the following semi-empirical form for
it [188]

pij =







V0
rij
d0

e−(rij−d0)/λ for 0 ≤ rij ≤ d0,

0, for rij > d0.

where rij = |~ri − ~rj|, ~ri is the position of atom i, λ = 0.45 Å, d0 = 1.54 Å, V0 = 6.2 eV, and
dc = 6.5 Å [21].

The energy (8.1) was calculated between the two closest molecules in the unit cell of the
x = 4 cross structure. We summed the contributions to the energy from the two HOMO
wave functions. Energy from hopping between HOMO states of molecule 1 and the LUMO
state of molecule 2 (figure 8.6) was summed with energy from hopping between HOMO states
of molecule 2 and the LUMO state of molecule 1. ELUMO − EHOMO = ∆JT + U = 200 meV
(the experimental HOMO-LUMO gap) was used. Molecule 1 was rotated in plane from the
experimentally observed orientation by an amount ∆θ1 and molecule 2 was rotated in plane
from its experimentally observed orientation by ∆θ2. The total virtual hopping energy of the
two molecule system is plotted in figure 8.6 as a function of ∆θ1 and ∆θ2. (∆θ1,∆θ2) = (0, 0)
(the experimentally observed orientations) is found to be in the trough of a local minimum
in energy, with a value of −15 meV. This represents a significant energy gain for the cross-
phase structure, and is much larger than the estimated quadrupole interaction (∼ 1 meV).
We take this level of agreement as an encouraging sign for the virtual hopping mechanism
for orientational ordering.

In K4+δC60, the K-C60 interaction becomes important. The C4−
60 charge state seems more

energetically favorable since the increase in K concentration causes the C60 packing density
to increase over that of the more open K4C60 cross phase, creating a C4−

60 charge state, even
though more K atoms are present. The extra added K atoms reside in the C60-voids created
when the C60 molecules pack closer (figure 8.3). The new pinwheel ordering arises from
this increase in C60 packing density. Adding K atoms to the K4C60 ML thus has essentially
the same effect as applying an external pressure, compressing the ML, which is a common
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Figure 8.6: Tight binding calculations on C4−
60 . (a) Ball and stick model of the relative ori-

entations of C4−
60 molecules observed experimentally. (b) HOMO and LUMO wavefunctions

of C4−
60 from tight binding for the orientations of molecules shown in part (a). (c) Tight

binding calculated −t2/(∆JT + U) as a function of the angles ∆θ1 and ∆θ2 shown in part
(a). (∆θ1,∆θ2) = (0, 0) corresponds to the experimentally observed orientation.

driver for structural phase transitions.

8.5 Conclusions

We find that KxC60 MLs undergo a metal-insulator-metal transition as x is varied from 3
to 5. Each electronic phase has a novel orientational ordering associated with it, including
a highly complex, 7-sublattice pinwheel orientational structure in the insulating K4+δC60

phase and flower type of ordering in the x = 3 and 5 phases. Direct electron hopping or
virtual electron hopping plays an important role in the orientational ordering of the phases
and highlight the close interplay between orientational order and electronic structure in the
fullerides.
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9
Tuning Strong Correlations in KxC60

One type of many-body interaction, the electron-electron interaction, is relatively strong
(∼ 3 eV) in C60 [3, 139]. Strong electron-electron interactions, also called strong correlations,
can have a substantial affect on the properties of substances. For example, it is known that
strong electron-electron interactions can cause a metal to become an insulator, known as a
Mott-Hubbard insulator (§4.3).

The effects of electron-electron interactions are theoretically difficult to predict, and
remain a subject of substantial research. Experiments where one can tune the strength of
the interaction and analyze the resultant effects on the electronic properties of the system
are of considerable importance to better understand both this interaction and many-body
interactions in general. This chapter will discuss experimentally controlling the strength
of the electron-electron interaction in KxC60 multilayers on Au(111), and discuss how this
leads to the transition of KxC60 multilayers from metals to insulators. It addresses two of
the principal topics in this dissertation: how do electron-electron and molecule-substrate
interactions affect the properties of adsorbed molecules and molecular aggregates. Most of
these results are presented in our published paper, ref. [198].

9.1 KxC60 multilayers

The complexity of fulleride properties stems from the existence of many competing inter-
actions, such as electron-electron repulsion, electron-vibration coupling and intermolecular
electron hopping. The exact role of each interaction is controversial due to the difficulty
of experimentally isolating the effects of a single interaction. Here, we isolate the effect of
electron-electron interactions in KxC60 ultrathin films experimentally through precise con-
trol of the layer thickness and accurate doping concentrations. We observe by STM a series
of electronic and structural phase transitions as the fullerides evolve from two-dimensional
monolayers to quasi three-dimensional multilayers. These results demonstrate the system-
atic evolution of fulleride electronic structure and molecular ordering by varying the KxC60
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film layer thickness, and provide essential information about the electron-electron interac-
tions in these systems.

Our experiments were conducted in UHV at T = 7 K with a PtIr tip. C60 thin films with
desired thickness were made by evaporating C60 molecules onto a clean Au(111) surface from
a Knudsen cell evaporator (§5.4.1). Appropriate amounts of K atoms were dosed onto the
C60 films from a SAES Getter (§5.4.3). The evaporation rates of the K and C60 evaporators
were calibrated by depositing them separately onto a clean metal substrate, followed by
directly counting the number of K atoms and C60 molecules per area in the STM images.
This calibration was used to calculate the value of x in a KxC60 multilayer. The KxC60 thin
films were annealed at 200◦C for 20 minutes before being cooled to 7 K for the experiments.
Progressive doping was obtained by adding more K atoms onto the existing film followed
by re-annealing. We found that in the highly doped samples (x > 4), the K content may
be decreased by 200◦C annealing; therefore, a lower annealing temperature of 140◦C was
used in this regime to avoid K loss. dI/dV spectra were measured through lock-in detection
(§2.4) of the a.c. tunneling current driven by a 450 Hz, 1–10 mV (rms) signal added to the
sample bias with the feedback off.

The ability to tune interactions in the fullerides arises from our ability to grow well-
controlled heterogeneous molecular films. Here, we describe measurements on KxC60 ultra-
thin films having variable thickness from one to three layers (layer index i = 1, 2, and 3)
for four specific doping concentrations (x = 0, 3, 4, and 5). Figure 9.1a shows an STM
topograph of a representative KxC60 multilayer on Au(111) (x = 4 in this particular image),
where the color scale highlights the different layer indices. Narrow slivers of C60-free voids
containing only K atoms (purple) exist between continuous patches of KxC60. Islands of
second layer (blue) and third layer (red) KxC60 can be seen residing on top of the first KxC60

layer (green). The average layer thickness measured by STM is ∼ 9.9 Å for KxC60 (x = 3,
4, 5) while for C60 it is only 8 Å [59].

Figure 9.1: KxC60 multilayer thin film on Au(111). (a) STM topograph of a KxC60 multilayer
thin film (x = 4 for this image) on Au(111) (V = 1 V, I = 5 pA). The C60-free voids are
purple, the first layer green, second layer blue, and third layer red. (b) Schematic side view
of the multilayer (the actual position of the K atoms are unknown). The distances between
the center of a C60 in each layer and the Au surface are d1, d2, and d3.
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We begin by describing our results for a C60 multilayer with no K (figure 9.2). dI/dV
spectroscopy on the first layer shows the shoulder of the HOMO in the first layer around
−1.7 V. This shoulder turns into a split peak centered at −2.5 V for the second layer and
−2.7 V for the third layer. The LUMO of the first layer is centered around 0.8 V. This peak
increases to 1.5 V and 1.7 V in the second and third layers. Similarly the LUMO+1 peak
increases in voltage, from 2.0 V to 3.0 V to 3.4 V for the first, second and third layers. The
second and layers also show negative differential resistance (NDR) around 2.2 V, but this is
due to the voltage dependence of the tunneling barrier [59]. Topography on the first and
second layer shows C60 molecules with various orientations.

Figure 9.2: C60 multilayers on Au(111). (a) dI/dV spectroscopy on three different layers of
C60 on Au(111). Each spectrum has been normalized so that the maximum dI/dV of the
LUMO+1 is one. (b) Schematic diagram showing the STM measured HOMO-LUMO gap
due to a combination of the real HOMO-LUMO gap ∆HL and U . (c) Topography of the
first layer showing a locally ordered area (V = 2.8 V, I = 10 pA). (d) Topography of the
second layer showing more orientational variation (V = 3 V, I = 10 pA).

Next is the metallic K3C60 multilayer system. Layer-dependent electronic structure in
K3C60 can be seen in figure 9.3a, which shows spatially averaged dI/dV spectra measured
for three different layer indices. Within each layer, the spectrum is highly uniform with no
sign of spatial inhomogeneity such as that found in the surface of bulk fullerides [177]. The
first layer dI/dV exhibits a wide peak at the EF, arising from the half filled LUMO-derived
C60 band. In contrast, the second-layer spectrum shows a sharp dip at EF, indicating the
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emergence of an energy gap that tends to split the band in two. The gap-like feature
persists in the third layer. The width of the gap-like feature (measured between adjacent
local maxima) is ∼ 0.2 eV, a much larger value than the superconducting gap 2∆SC ∼ 6 meV
found in bulk K3C60 (ref. [61]). The spectra at energies far above EF, on the other hand,
are nearly identical in all three layers. As these higher-energy features, such as the position
of the LUMO+1 resonance, are sensitive to the doping level of KxC60 (ref. [205]), this shows
that there is no significant difference in K content for the different layers.

The orientational ordering of C60 molecules also changes markedly with layer index.
The first layer of K3C60 (figure 9.3c) exhibits a complex

√
3 ×

√
3 superstructure of bright

molecules having different orientations from their dimmer nearest neighbors [191]. However,
in the second layer (figure 9.3d), C60 molecules form a very simple hexagonal lattice (lattice
constant a ∼ 10.5 Å) with all molecules in the same orientation. The third-layer topograph
(not shown) is the same as that of the second layer.

The insulating KxC60 with x = 4 multilayer system exhibits a trend similar to K3C60.
Figure 9.4a shows dI/dV spectra measured on a K4C60 for layer indices i = 1 to 3. First
layer spectra (i = 1) exhibit an insulating energy gap ∆ ∼ 0.2 eV that is induced by the
molecular Jahn-Teller (JT) distortion [191]. As the layer index increases from i =1 to 3,
the energy gap increases continuously (by layer 3, the gap has well-defined edges and a flat
bottom). The gap widths observed here are estimated to be ∆ ∼ 0.6 eV and 0.8 eV for
layers 2 and 3 respectively. As seen in the metallic x = 3 system, the geometric structure of
the insulating x = 4 system simplifies as the layer index is increased. Complex ‘cross-phase’
orientational ordering observed in the K4C60 first layer [191] (figure 9.4c) evolves to a much
simpler hexagonal lattice (figure 9.4d) for higher layers. Layers 2 and 3 for the x = 4 film
exhibit featureless C60 molecules with little discernible orientational ordering.

As doping is increased to x = 5, KxC60 multilayers show metallicity for layer 1 (ref. [197])
and an evolution to insulating behavior by layer 3. At this doping level, the upper JT-split
LUMO is only partially filled and the first-layer spectrum (figure 9.5a) exhibits a finite
(although suppressed) electronic DOS at EF. The DOS at EF is suppressed further in the
second layer, and develops into a pronounced energy gap ∆ ∼ 0.4 eV by the third layer. As
with the x = 3 and x = 4 doping levels, complex structural ordering in the first layer of
K5C60 (the 2×2 superstructure in figure 9.5c) evolves into a much simpler hexagonal lattice
in the second layer (figure 9.5d) and third layer (not shown).

9.2 Electron screening

Taken collectively, the experimental results clearly show that, for a fixed doping level, in-
creasing film thickness suppresses metallicity and enhances the insulating tendency of KxC60

thin films on Au(111). We propose that this trend arises from electron-electron Coulomb
repulsion, characterized by the Hubbard U (§4.3). In fullerides, U is of the same order as
the narrow bandwidth W (ref. [62]). The fullerides thus exist at the verge of a Mott insu-
lator phase transition (§4.3) and small perturbations to the strength of U may significantly
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Figure 9.3: Electronic and structural properties of K3C60 multilayers on Au(111). (a) Spa-
tially averaged dI/dV spectra measured on three different layer indices of K3C60. The
first-layer spectrum has a peak at EF, whereas the second- and third-layer spectra show
a sharp dip having a width of ∼ 0.2 eV. (b) Schematic diagram showing the effect of the
Hubbard U on the electronic structure of K3C60. A small Ueff in the first layer (left) has
negligible effect on the DOS, but a larger Ueff in higher layers (right) causes a dip around
EF. (c) K3C60 first-layer topograph (V = −0.1 V and I = 20 pA) shows a

√
3 ×

√
3 super-

structure. Each red circle represents one C60 molecule. (d) Topograph of the second layer
(V = −0.1 V and I = 10 pA) shows a simple hexagonal lattice with no superstructure.

alter their electronic ground state [28, 127, 64, 46, 68]. The metal to insulator transition
observed here can be shown to result from changes in U caused by changes in the local
screening environment.

Electron screening or screening refers to the attraction of positive charges around elec-
trons in a material. Since positive charges attract other electrons, their presence around
electrons reduces the electrostatic repulsion between electrons in the material. We now ex-
amine the effect of screening on electron-electron interactions in KxC60 molecular films. For
an isolated single C60 molecule, the bare Hubbard U (denoted by U0) has been estimated to
be approximately 3.0 eV (refs. [35, 3, 139, 125]). When C60 molecules form a solid, the value
of U can be greatly reduced by screening from neighboring molecules. In our KxC60 mul-
tilayers, screening originates from three distinct sources: the metal substrate, surrounding
polarizable molecules, and itinerant charge carriers.
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Figure 9.4: Electronic and structural properties of K4C60 multilayers on Au(111). (a) dI/dV
spectra of the JT-insulating K4C60 measured on three different layers. The observed gap
∆ increases from 0.2 eV in layer 1 to 0.6 eV and 0.8 eV in layers 2 and 3. (b) Schematic
DOS of K4C60. Larger Ueff in layer 3 (right) leads to a much wider gap than that in layer
1 (left). (c) Topograph of K4C60 layer 1 (V = −0.2 V and I = 10 pA) shows a ‘cross’-like
orientational ordering. (d) Topograph of K4C60 layer 2 (V = −0.4 V and I = 10 pA) shows
a simple hexagonal lattice with orientational ordering different from that of layer 1.

The first two screening mechanisms can be treated using simple electrostatics. As dis-
cussed by Hesper et al. [80], the change in U due to a nearby metal can be modeled using
an image charge potential as

δUS =
1

4πǫ0

e2c
2d

(9.1)

where d is the distance from the center of a C60 molecule to the metal substrate (fig-
ure 9.1b) and ec is the magnitude of the electron charge. The screening from nearby polar-
ized molecules, which arises from induced molecular dipole moments, can be expressed as
the electrostatic energy of two dipoles

δUP =
1

4πǫ0

zαe2c
R4

(9.2)

where z is the number of nearest neighbors, α is the molecular polarizability, and R is the
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Figure 9.5: Electronic and structural properties of K5C60 multilayers on Au(111). (a) dI/dV
spectra of K5C60 measured at three different layer indices. (b) Schematic electronic structure
of K5C60. In layer 1 (left), Ueff causes a small suppression of DOS near EF, but in layer
3 (right), the larger Ueff induces an energy gap around EF. (c) Topography of layer 1
(V = −0.2 V and I = 5 pA) shows complex orientational ordering with a 2×2 superstructure.
(d) K5C60 layer 2 shows a simpler hexagonal lattice (V = +0.2 V and I = 5 pA).
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Figure 9.6: Screening of U . (a) Screening from the metallic substrate arising from the
formation of an image charge. (b) Screening from neighboring molecules arising from the
molecular polarization.

intermolecular distance [125]. The third mechanism, the change in U by itinerant electrons
(δUe), depends sensitively on the doping concentrations of the fullerides and is a more
complex term [3, 139, 164, 118, 143]. The total change in the isolated molecule U0 due to
the molecular environment is the sum of the three terms:

δU = δUS + δUP + δUe (9.3)

and Ueff = U0 − δU is the final effective Hubbard U in the KxC60 multilayer system. These
relations show how varying the number of layers in our KxC60 ultrathin films can provide
a systematic technique to control electron-electron interactions (Ueff) by changing both the
distance to the metal substrate (d) and the number of nearest neighbors (z).

This is seen most clearly in the insulating K4C60 multilayers. The K4C60 monolayer was
found to be an insulator [191] since the strong Jahn-Teller effect at filling level x = 4 splits
the degenerate C60 LUMO states and opens an energy gap in the DOS at EF (figure 3b;
ref. [69]). This implies Ue = 0 since there are no itinerant charge carriers. Assuming that
the Jahn-Teller splitting remains unchanged with varied layer index, the layer dependence
of Ueff in K4C60, and hence the layer dependence of the gap in the DOS around EF (§3.4.2),
is accounted for completely by equations (9.1) and (9.2). As the layer index increases
from i = 1 to 3, δUS (substrate screening) decreases from 1.5 eV to 0.3 eV according to
equation (9.1). In contrast, z increases from 6 in the first layer to 9 for both the second and
third layer (for molecules not at the edge of a layer), causing δUP to increase from 0.6 eV

to 0.9 eV via equation (9.2) (here we use α = 90 Å
3
, the value for undoped C60) [74]. The

total reduction in Ueff due to screening (equation (9.3)) is thus δU = 2.1, 1.4 and 1.2 eV for
i = 1, 2 and 3, respectively, leading to an increase in Ueff from 0.9 eV to 1.8 eV as i increases
from 1 to 3. The calculated relative increase of Ueff by 0.7 eV (from i = 1 to 2) and 0.2 eV
(from i = 2 to 3) is in reasonable agreement with the relative increase of the experimentally
observed gap by 0.4 eV (from i = 1 to 2) and 0.2 eV (from i = 2 to 3). This agreement
becomes much better if we use a larger α value for K4C60 (a reasonable assumption). We note
that some factors, such as screening from the STM tip, the effect of intermolecular electron
hopping on the bandwidth, and correlations between different screening mechanisms are not
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included in our simple phenomenological model. Nevertheless, the agreement between the
observed experimental trend and the semi-quantitative analysis demonstrates that stronger
electron-electron interactions in higher layers is responsible for the observed layer-dependent
increase of gap in K4C60.

The electronic behavior of the K3C60 multilayers is quite different from the insulating
K4C60 multilayers above due to itinerant charge carriers. The Jahn-Teller effect is much
weaker at an uneven filling level x = 3, leading to a metallic ground state in bulk K3C60

(refs [68, 69]) and itinerant charge carriers. In K3C60 multilayers, the itinerant electron
screening term (δUe) becomes important, although the layer dependent DOS is still caused
by layer dependence in U . How to determine the itinerant electron screening contribution
to the renormalized Ueff in K3C60 is quite controversial [62, 3, 164, 143]. Various theoretical
calculations in bulk K3C60 (z = 12) produce a combined screening strength (δUe+δUP ) that
ranges widely from 2.2 to 3.2 eV (refs [62, 118]). Using a mean value of (δUe+δUP ) = 2.7 eV,
and including Au(111) substrate screening (δUS) through equation (9.1), we find that the
effective U becomes Ueff = U0 − δU = 0.2, 0.5, and 0.7 eV for i = 1, 2 and 3. However,
note that since K3C60 is metallic, the lower layers act as a metal substrate for the higher
layers, so the distance of a C60 molecule to the metal substrate is no longer the distance to
the Au(111) surface. This means that the substrate screening should be the same in the
second and third layers since the distance to the metallic K3C60 layer directly below them
is the same. For i = 1, Ueff is too small compared with the bandwidth W to open a gap,
whereas in layers 2 and 3, we expect a small gap of the same magnitude to begin opening as
Ueff becomes comparable to W (figure 9.3b). This explains the appearance of the gap-like
structure in the K3C60 LDOS in figure 9.3a.

K5C60 is an intermediate case between K4C60 and K3C60. It is not insulating like K4C60,
but it is not as good of a metal like K3C60. Here, the odd doping level makes the Jahn-Teller
effect is weaker than in K4C60, and hence it is not insulating [69], but the high doping level
also makes the effective bandwidth narrower than in K3C60, making it less metallic [111].
We thus expect the layer-dependent Ueff for K5C60 to lie between the two extremes. This
is indeed the case, as we see a relatively small suppression of electronic DOS in layer 1
(figure 9.5a), but by layer 3, a well-defined gap of width ∆ ∼ 0.4 eV has emerged. This
gap is about 0.4 eV smaller than that of the i = 3 layer in K4C60, (due to the reduced
Jahn-Teller effect and enhanced metallic screening), while it is about 0.2 eV larger than the
gap observed in the i = 3 layer of K3C60 (due to the narrower bandwidth in K5C60).

9.3 Orientational ordering

The layer-index-dependent change in ordering seen for the three doping levels (x = 3, 4,
and 5) as the index increases above i = 1 is less a direct result of electronic screening and
more likely due to substrate-molecule interactions and intermolecular electron hopping via
the overlap of molecular orbitals [22, 197, 63]. The complex structures found in layer 1 of
KxC60, x = 3–5 (figures 9.3c, 9.4c and 9.5c) are characteristic of geometric frustration of
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molecular orientational ordering in a two-dimensional (2D) lattice [171]. As the layer index
is increased, the lack of interaction between the molecules and the Au(111) substrate, as
well as further interaction with adjacent C60 molecules in the lower layers leads to quasi-3D-
like intermolecular interactions. This creates a more isotropic local molecular environment
and creates less geometric frustration, limiting the possibility of exotic molecular ordering.
Therefore, the much simpler and more homogeneous spatial structures found in the higher
layers of KxC60 (figures 9.3d, 9.4d, and 9.5d) can be seen as a natural consequence of reduced
frustration due to dimensional crossover from the 2D limit to the quasi-3D bulk regime.

9.4 Conclusions

Using accurately fabricated KxC60 ultrathin films, we have demonstrated how electron corre-
lation strength, a key factor in determining the properties of fullerides, can be experimentally
controlled by varying the thickness of the layers and doping level. These results support
the notion of tuning molecular electronics by controlling the layer structure and distance
to metal contacts, and opens new routes towards engineering novel molecular devices and
controlling electronic phases in strongly correlated molecular materials.
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10
Mapping Electron-Vibration Coupling in Gd@C82

Modification of fullerenes can be achieved by exohedral doping, such as in the KxC60 exper-
iments presented in the previous chapters, but can also be done endohedrally. The fullerene
C82 with D2h symmetry with a Gd atom inside, called Gd@C82, is such an endohedral
fullerene.

Gd@C82 should have a net spin due to charge transfer from the Gd atom to the C82 [52,
128, 106]. However, in our STM experiments on this molecule, we were not able to see any
magnetic effect. Instead, we imaged the molecular orbitals and saw a C82 vibrational mode
in IETS, as well as mapped out the spatial distribution of the IETS signal, which is also an
important result. Comparison of DFT calculated electron-vibration coupling to the STM
measured IETS shows that one vibrational mode of C82 dominates the IETS spectrum. The
spatial distribution of the IETS signal is very inhomogeneous, and shows that the strongest
IETS signal occurs where the LUMO wavefunction is modified the most due to the vibration,
and not where the vibration has its largest amplitude of vibration (§2.6). This study verifies
that the d2I/dV 2 map is a map of electron-vibration coupling when the IETS signal arises
from a molecular vibration. These results help us answer one of the fundamental questions
in this dissertation: how do electron-vibration interactions affect molecular properties. Most
of this work is based on our published paper, ref. [58].

The substrate used for the experiments was Ag(001) and the STM tip was W or PtIr.
The surface was cleaned by sputtering and annealing (§5.3). The Ag substrate was then
cooled to ∼ 80 K prior to depositing Gd@C82 onto the surface. The Gd@C82 molecules
were synthesized by H. Kato and H. Shinohara. A small amount of C60 was simultaneously
deposited with Gd@C82. The Gd@C82 and C60 molecules were deposited from a Knudsen
cell evaporator (§5.4.1) onto the Ag surface and the Ag substrate was placed into the 7K
STM. All sample preparation was done in UHV and experiments performed at 7 K. Over
50 Gd@C82 molecules were studied.

Figure 10.1 shows a typical STM image of two Gd@C82 molecules next to a C60 molecule.
The C60 molecule was used as a reference to check the condition of the STM tip. Repro-
ducible topographs and spectra on Gd@C82 molecules were achieved only when the same
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tip gave C60 topographs and spectra similar to those in [129]. The spectroscopy and dI/dV
maps taken on Gd@C82 can be found in [58].

Figure 10.1: Constant current topographs (65 Å× 65 Å) of two Gd@C82 and a C60 molecule
at step edges on Ag(001). (a) V = 2.0 V, I = 1 nA and (b) V = 0.1 V, I = 1 nA.

d2I/dV 2 spectra (figure 10.2 were obtained in the ±100 mV range by numerically dif-
ferentiating dI/dV spectra taken in the same voltage range. The d2I/dV 2 spectrum on
Gd@C82 reveals three main inelastic peaks at 43, 60, and 70 mV (±1 mV) not present on
the Ag(001) surface.

Figure 10.2: Inelastic spectroscopy on Gd@C82. (a) d2I/dV 2 measured on Gd@C82 as well
as on the Ag surface. (b) d2I/dV 2 map of Gd@C82 at V = 60 mV. (c) d2I/dV 2 map taken
at V = 80 mV.

d2I/dV 2 maps taken at the voltage of the largest peak (60 mV) reveals the spatial local-
ization of the inelastic signal (figure 10.2b). This image shows that the strongest d2I/dV 2

signal (red region) occurs only on one small area of the molecule. A second d2I/dV 2 map
taken at 80 mV does not show the same features, indicating that the features seen in the
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Gd@C82 d
2I/dV 2 map are due solely to the IETS signal and not other factors, such as tip

trajectory.
It is unexpected that the main Gd@C82 vibrational mode produces such a spatially

localized IETS signal, since molecular vibrations tend to be more delocalized. IETS images
of simpler molecules, such as acetylene [182] and oxygen [67], typically reflect the spatial
extent of the measured vibrational modes. In order to understand the localized behavior
seen here, the inelastic theory presented in §2.6 combined with density functional theory
was used. The calculations were done by K. H. Khoo in Steven G. Louie’s group.

The details of the calculation are described in [130]. To simplify the computation,
calculations on a free C82 with no interior Gd atom were done. Only the charge transfer
from Gd to C82 was considered. Neglecting the inner Gd atom is justified by noting that
(1) electronic cage states near EF are only weakly perturbed by the inner atom [128, 178]
and (2) our observed vibrational energies are in the range of bare C82 vibrational energies,
indicating that C82 phonons are responsible for the inelastic signal [114]. Hence, the presence
of the Gd atom should be only a small perturbation of C82 vibrations in our energy range.
Charge transfer to the C82 cage from the Gd atom and substrate was treated as a single
fitting parameter. The best theoretical fits were obtained for a molecular charge state of
−4.01 ≈ −4. This, as well as the molecular orientation on the surface, was determined
by comparison of STS spectra, dI/dV maps, and electronic wavefunction symmetries. The
charge state determines which molecular state is at EF. The −4 charge state is reasonable
since Gd is known to donate three electrons to the C82 cage [153] and Ag substrates are
expected to donate charge to fullerenes [130].

The theoretical vibrational spectrum for an isolated C4−
82 is shown in figure 10.3(a), with

each vibrational mode shown as a black vertical line. The theoretical d2I/dV 2 as a function
of energy (red lines) was obtained by calculating the electron-vibration coupling of each
molecular vibrational mode to the C82 electronic states at EF using equation 2.10. Only a
few of the vibrational modes in this energy window show appreciable coupling to the C82

state at EF, and in particular, there is one dominant mode, similar to the experimental
d2I/dV 2 where one vibrational mode dominates the spectrum. The relative strength of the
electron-vibration coupling of these modes is in reasonable agreement with the experimental
d2I/dV 2 spectrum and indicates that the C82 mode with the theoretical energy of 52 meV
is responsible for the dominant experimental inelastic tunneling channel.

To understand the origin of the spatial localization of the d2I/dV 2 signal, the spatial
dependence of the electron-vibration coupling for the 52 meV mode was calculated using
equation (2.11). A simulated STM constant current surface was used, as in [129]. The
resulting theoretical d2I/dV 2 map shown in figure 10.3(b) shows that the strongest d2I/dV 2

signal (red region) is localized to the upper half of the molecule, in good agreement with
the experimental d2I/dV 2 map [figure 10.2(b)]. The small deviation between calculated
and experimental vibrational energies is likely due to effects of the substrate [108] and inner
atom [106], which were not directly included in the calculation; they were only used to
determine the charge state of C82. However, the general agreement between theory and
experiment suggests that these effects do not strongly influence the qualitative behavior of
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Figure 10.3: Gd@C82 theory. (a) DFT calculated vibrational mode energies (black lines)
and strength of the electron-vibration coupling (red lines). The experimental d2I/dV 2 curve
(dashed) is shown for comparison. (b) DFT calculated spatial distribution of the electron-
vibration coupling of the 52 meV vibrational mode to simulate an experimental d2I/dV 2

map. Red = large electron-vibration coupling, blue = small. (c) Magnitude of the atomic
displacements for the DFT calculated vibrational mode at 52 meV which has the largest
electron-vibration coupling. Red = large atomic displacement, blue = small.

electron-vibration coupling in Gd@C82.
When we compare the spatial dependence of the molecular electron-vibration coupling at

52 meV with the spatial distribution of atomic displacement magnitudes for the C82 vibra-
tional mode at 52 meV [figure 10.3(b) vs figure 10.3(c)], we see that regions of large atomic
displacement (red regions) are nearly anti-correlated with the regions of large d2I/dV 2 (red
regions). This occurs since the spatial distribution of inelastic tunneling is determined by
the amount electronic wave functions change due to molecular vibrations (§2.6). Regions
where the wavefunction changes the most will have the largest inelastic tunneling signal
and these regions need not be where the atoms have the largest displacement. This can
produce a surprising localization in the inelastic tunneling, as seen in Gd@C82. Localization
may explain the larger number of vibrational modes detected in molecular film transport
measurements compared to IETS measurements. Molecular films contain a large number of
molecular configurations and transport measurements on such films are thus more likely to
average over many configurations with the resulting inelastic signal containing vibrational
signals due to many different parts of the molecule.

In this chapter, we have demonstrated how IETS can be used to spatially map the
strength of the electron-vibration interaction of a single molecule. By using DFT, we found
that the strong localization of the electron-vibration interaction can be explained by changes
in the LUMO wavefunction due to the oscillation of a vibration. The parts of the LUMO
wavefunction which change the most due to a particular vibrational mode will show the
strongest IETS signal. For this particular molecule, Gd@C82, it was also found that the



CHAPTER 10. MAPPING ELECTRON-VIBRATION COUPLING IN Gd@C82 117

inner Gd atom did not significantly affect the electron-vibration coupling.
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11
Electronic Properties of Molecular Diamond

sp2 bonded carbon molecular materials have unique and useful properties due to the influ-
ence of delocalized π-bond networks, as demonstrated in the previous chapters. Here we
describe our studies of sp3-bonded carbon molecular structures, where novel behavior arises
from a very different source: tetrahedrally arranged carbon σ-bonds. These molecules are
nanometer-sized pieces of diamond with dangling bonds terminated with hydrogen, and are
called diamondoids. There are many types of diamondoids; the one we studied is called
[121]tetramantane. Figure 11.1a has a ball and stick model of this molecule. The [121]tetra-
mantane diamondoid studied here consists of four diamond cages face-fused into a straight
rod with a chemical formula C22H28 (ref. [36]). The 28 surface dangling carbon bonds are
all saturated by hydrogen atoms.

In this chapter, the atomic-scale properties of tetramantane will be investigated. In the
sp3 bonded tetramantane, we find a number of differences from the sp2 bonded fullerenes.
The topographs of tetramantane were almost featureless at negative biases while they showed
much structure at positive biases, unlike fullerenes which show topographic features at both
polarities. This difference was directly due to the sp3 bonding: the HOMO orbital is localized
between atoms and is difficult to image since the STM tip is a few Ångstroms above the
molecule, while the LUMO orbital extends very far away from the molecule and contains
much structure due to the CH2 bonds that do not exist in fullerenes. The spectroscopy
on tetramantane showed no resonances (unlike fullerenes which show many resonances),
which is due to the large gap in sp3 bonded materials, as well as the localization of the
HOMO between atoms in sp3 bonded materials. However, like Gd@C82, there was strong
electron-vibration coupling in tetramantane which was spatially localized. These results
will help us understand two main topics of this dissertation: how do electron-vibration and
molecule-substrate interactions affect molecular properties? Most of the results presented
in this chapter are based on our published paper, ref. [196].

The molecules were provided by Jeremy E. Dahl and Robert M. K. Carlson at Chevron
Technology Ventures. The [121]tetramantane molecules were extracted from petroleum
and isolated and purified to a white crystalline powder with purity greater than 99% by
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weight. Purification procedures included distillation, thermal processing and both size- and
shape selective high-performance liquid chromatography, as described in [37]. Tetramantane
molecules were thermally evaporated from a Knudsen cell evaporator (§5.4.1) onto a clean
Au(111) substrate held at room temperature in ultrahigh vacuum. The sample was then
placed into the STM at T = 7 K and all data was taken at that temperature. Topography
was performed in constant-current mode, and dI/dV spectra and images were measured
through lock-in detection of the a.c. tunneling current driven by a 450 Hz, 1-10mV (rms)
signal added to the sample bias (§2.4). The molecular manipulation method used here is
the ‘sliding’ technique [42], with typical manipulation parameters V = 5 mV and I = 1 nA.

11.1 Tetramantane Electronic Structure

Tetramantane self assembles into an ordered overlayer on Au(111). Figure 11.1b shows
an STM topograph taken of a sub-monolayer of tetramantane on Au(111) where the oval-
shaped tetramantane molecules form a close-packed structure with lattice constants 11.4 Å×
8.3 Å (see red arrows) and an apparent height of 3.3 Å. The Au(111) surface herringbone
reconstruction has negligible effect on the molecular ordering. Long-range ordering at room
temperature implies high molecular mobility and weak bonding between the diamondoids
and the Au(111) surface.

Figure 11.1: (a) Ball and stick model of [121]tetramantane. (b) Ordered layer of tetraman-
tane on Au(111). (c) individual tetramantane at −2 V and (d) same molecule at V = +2 V.

To study single isolated molecules, individual tetramantane diamondoids were manip-
ulated from the edge of an island onto an empty Au(111) terrace at T = 7 K using the
STM tip (ref. [42]). Figures 11.1c,d show STM topographs of the same individual dia-
mondoid taken with different sample biases. The image taken at sample bias V = +2 V
(figure 11.1c), shows pronounced line nodes across the molecular surface, while the image
taken at V = −2 V (figure 11.1d) is smoother, showing a much weaker spatial dependence
of the occupied electronic states.

Individual tetramantane molecules were found to have a number of different orienta-
tions on Au(111). Figure 11.2a shows STM topographs of three individual tetramantane
molecules on Au(111) with different orientations, as seen by the different line node patterns.
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Figure 11.2: (a) Experimental topographs of three different orientations of individual tetra-
mantane molecules on Au(111). (b) DFT simulated topographs of the same three orienta-
tions shown in (a). (c) Ball and stick models corresponding to the topographs shown in (b).
(d) DFT calculated HOMO and (e) DFT calculated LUMO. The values of the isosurfaces
are the same for both states.

Figure 11.3 shows that individual tetramantane molecules can be switched between different
orientations by dragging and rotating the molecules with the STM tip.

STS was used to examine the local electronic properties of tetramantane. Figure 11.4a
shows the dI/dV spectrum of the bare Au(111) substrate (black curve), the spatially aver-
aged dI/dV spectrum of an individual tetramantane molecule on Au(111) (green curve), and
the difference between these two spectra (red curve). The red curve shows that the diamon-
doid makes a small contribution to the total surface electronic LDOS. The molecular elec-
tronic LDOS (red curve) is quite low in the energy range from −2.5 eV to +2.5 eV, consistent
with an insulating ground state having an energy gap > 5 eV around EF (refs [40, 203, 202]).
Although no sharp resonances related to the HOMO or the LUMO were observed, the gen-
tle increase of subtracted dI/dV (red curve) above EF may represent the end of a broad
resonance arising from hybridization between the LUMO and the Au states.
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Figure 11.3: Constant current topographs showing the same individual tetramantane
molecule (a) before and (b) after rotation with the STM tip. The images have been differ-
entiated in the horizontal direction.

Figure 11.4: (a) dI/dV Spectroscopy of tetramantane in a ±2.5 V range shows no features
different from spectroscopy on Au(111). (b) dI/dV spectroscopy in a ±450 mV range shows
inelastic features at ±356 mV which can be seen as a dip at −356 mV and a peak at 356 mV
in d2I/dV 2. (c) DFT calculations of the energy levels of tetramantane. (c) Tetramantane
DFT DOS compared with the experimental LDOS.
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11.2 Tetramantane Electron-Vibration Coupling

dI/dV spectroscopy in the low bias range (±450 mV) reveals a V-like feature centered at EF

and two sudden jumps in dI/dV at ±356 mV (upper panel in figure 11.4b). The numerical
derivative of this curve (d2I/dV 2) correspondingly shows a narrow dip at −356 mV and a
narrow peak at +356 mV (lower panel in figure 11.4b). This is the signature of inelastic elec-
tron tunneling spectroscopy (IETS), in which electronic excitations opens a new tunneling
channel, which causes a sudden increase in dI/dV (ref. [181]). In this case, the excitation
is a vibration since the energy 356 meV corresponds with the known vibrational energy
of a C-H bond stretch mode, as has been observed in numerous other hydrocarbons [84].
The V-like feature in dI/dV between ±200 mV might also be related to inelastic tunneling
of electrons, where the electrons excite the quasi-continuous, low-frequency vibrations of
tetramantane [107].

To understand the spatial dependence of the electron-vibration coupling across the sur-
face of an individual tetramantane, we performed d2I/dV 2 maps on the molecules [182, 67,
58]. We find that the pronounced inelastic signals at ±356 mV only exist on certain parts of
the molecules, and become negligibly small elsewhere. Figure 11.5a shows d2I/dV 2 maps of
the inelastic signal at 356 mV for three individual diamondoids having different orientations,
demonstrating unambiguously that the vibronic coupling strength is strongly localized to
narrow slices on the molecular surfaces. Comparing the d2I/dV 2 maps of the tetramantane
molecules with their respective topographs directly below (figure 11.5b) reveals an anti-
correlation between the topography and d2I/dV 2 maps: the IETS signal is the strongest at
the depressions in topography.

Such localization of the inelastic signal is unexpected because the 28 C-H bonds sur-
rounding the tetramantane form a dense and nearly uniform surface which one might expect
to give rise to a spatially uniform inelastic signal. Moreover, it might naively be expected
that regions with a higher topography also have larger inelastic tunneling (as there is then
more electron density in those regions and thus a higher probability for electrons to excite
vibrations) [126], opposite to the anti-correlation observed here.

11.3 DFT Calculations of Tetramantane

To understand the anti-correlation between topography and d2I/dV 2 maps, ab initio pseu-
dopotential density functional theory (DFT) calculations within the local density approxi-
mation (LDA) were performed on a [121]tetramantane molecule on Au(111) by Emmanouil
Kioupakis in Steven Louie’s group. Calculations were first done by using a plane-wave
pseudopotential (PW-PP) code (60 Ry cutoff, 40 × 40 × 50 grid in units of Bohr radii)
to obtain the properties of isolated tetramantane without the Au(111) surface [88]. The
Au(111) surface was then added to the molecule as three layers of 56 gold atoms each (in a
supercell geometry) and the properties of the combined diamondoid/Au(111) system were
calculated using the SIESTA code [180], which uses a localized double-ζ+polarization ba-
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Figure 11.5: IETS on Tetramantane. (a) Experimental d2I/dV 2 maps taken at V = +36 mV
on three individual tetramantane molecules in different orientations. (b) Topographs of the
same molecules shown in (a).

sis set, because the use of plane waves for the combined calculation would be much more
expensive (§4.5). We expect that the PW-PP code will reproduce states which extend far
away (> 4 Å) from the molecule better than the SIESTA code due to the localized basis used
in SIESTA (see §4.5). To ensure that the SIESTA results reproduce states which extend
far away from the molecule accurately, the SIESTA results for an isolated molecule were
checked to be consistent with the plane-wave code when a grid of ghost atoms (§4.5) were
introduced that were spaced 4 Bohr radii apart, with 2 s-like orbitals per ghost atom.

Figure 11.4c shows the schematic energy diagram of the tetramantane-Au(111) system.
The theoretical Kohn-Sham HOMO-LUMO gap of the isolated molecule (no Au surface) is
found to be 5.2 eV, which is an underestimation of the true quasiparticle HOMO-LUMO
gap (§3.4.2, §4.5 and [87]). The electron affinity (EA) and ionization energy (IE) for iso-
lated molecules (no Au surface) were obtained by computing the total energy of singly
negatively and positively charged molecules, and were calculated to be −0.3 eV and 7.6 eV
respectively. This implies a quasiparticle HOMO-LUMO gap of 7.9 eV (§3.4.2). The values
of the Kohn-Sham HOMO-LUMO gap and the quasiparticle gap calculated from IE and
EA agree well with quantum Monte Carlo calculations reported previously for the larger
diamondoid C29H35 (ref. [40]). We find that diamondoids have an intrinsic negative elec-
tron affinity, as first pointed out in [40], which means that an electron in the LUMO is not
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stable there and will readily leave the molecule, releasing an energy 0.3 eV. This makes di-
amondoids promising candidates for electron-emission devices. Recent photoemission data
have indeed demonstrated strong monochromatic low-kinetic-energy electron emission from
functionalized diamondoid monolayers on Au(111) (ref. [208]).

Figure 11.4d shows the DFT-calculated electronic DOS of a tetramantane molecule on
Au(111). The calculated HOMO and LUMO levels are approximately at −1.0 eV and
+3.9 eV relative to EF, leading to a reduced Kohn-Sham HOMO-LUMO gap of 4.9 eV due
to screening from the metal substrate. The LDOS of the LUMO is energy-broadened due to
interaction with the surface (§4.4.1), and extends into the HOMO-LUMO gap as a shallow
tail, consistent with the experimental LDOS (the dI/dV curve). However, the theoretical
HOMO LDOS resonance at −1.0 eV is not observed in the experimental LDOS, even down
to −2.5 eV.

This discrepancy can be understood by calculating the spatial distribution of the HOMO
and LUMO wavefunctions ψHOMO and ψLUMO. Figures 11.2d and e show the calculated
isosurfaces of |ψHOMO|2 and |ψLUMO|2 at an isosurface where 50% of |ψ|2 for each state
is contained within the isosurface. The calculations were done for an isolated tetraman-
tane molecule with the molecular orientation shown in figure 11.2d. The HOMO orbital is
concentrated on the centers of the C-C bonds, reflecting the spatial localization of the sp3

bonding orbitals. Such confined states are difficult for STM to detect (with the tip at several
angstroms above the molecule), which explains the featureless negative-bias topographies
and the absence of the HOMO resonance in the dI/dV spectrum of tetramantane. The cal-
culated LUMO orbital, on the other hand, is much more delocalized in space and exhibits
pronounced line nodes similar to those seen experimentally. The LUMO state has previously
been shown to be responsible for the negative electron affinity and anomalous quantum size
effect of the diamondoids [40].

Closer comparison of the tetramantane LUMO isosurface and its corresponding molecular
structure uncovers an intriguing trend: the strong line nodes in the LUMO orbitals is closely
related to the surface hydrogen terminations. The large, delocalized LUMO wavefunction
exists only at the 12 singly hydrogenated CH sites, and the LUMO wavefunction forms a
continuous region in these CH-rich areas. The 8 doubly hydrogenated CH2 sites (circled by
red dashed lines in figure 11.2c), in contrast, exhibit little wavefunction density and form
line nodes in the LUMO isosurface plot. This is can be explained by a simple tight binding
model. The LUMO orbital on the CH2 sites is constructed by a linear combination of the
anti-bonding wavefunctions formed between the two canted carbon sp3 orbitals and between
the two hydrogen s orbitals [99]. The derived CH2 wavefunction, called the σ∗

CH2
orbital,

has a pronounced node on the mirror plane that bisects the H-C-H complex.
This behavior can be seen better in figure 11.2b, which shows calculated LUMO STM

topographs of isolated tetramantane molecules in three different orientations (Au surface
not included in calculation). The schematic top views in figure 11.2c reveal that the three
molecules lie on the Au substrate so that the substrate [111] direction is parallel to the
diamond crystallographic [111], [110] and [100] directions, respectively (from left to right).
These simulated topographs agree well with the essential features (the line nodes) of the
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corresponding STM topographs taken at +2.0 V (figure 11.2a). The agreement between
theory and experiment demonstrates that the pronounced nodal features found in the tetra-
mantane STM images result from the suppressed LUMO wavefunction density at the CH2

sites.
Next, we turn to IETS. The strength of electronic coupling to the C-H stretch mode

has been evaluated using DFT by calculating the change of the molecular electronic energy
eigenvalues with respect to displacements along the canonical phonon coordinates [58, 126].
Out of the 28 C-H stretch modes, we have identified three that interact strongly with
electrons within 15 meV of the experimental signal at 356 meV. Simulations of the spatial
distribution of the IETS signal, however, did not reproduce the experimental d2I/dV 2 maps,
so the question remains as to why the experimental IETS signal is enhanced in the CH2-
terminated regions of tetramantane and suppressed in the CH regions. One possibility this
occurs is because the CH2 region has a denser concentration of C-H bonds, and hence a
higher probability of electronic interactions with the C-H stretch mode compared with the
singly hydrogenated CH region.

11.4 Conclusions

The sp3 bonded tetramantane shows distinct differences from the sp2 bonded fullerenes.
Both the electronic as well as the vibrational properties of the diamondoid depend sub-
stantially on the type of hydrogen termination. The LUMO contains nodes at the CH2

sites, and the strongest electron-vibration coupling happens at exactly these same sites.
This information is potentially useful for molecular electronics since substitution of other
atoms for hydrogen may significantly alter the electronic and vibrational properties of the
diamondoids, allowing one to control the functionality of a specific device incorporating
diamondoids.
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Part III

Magnetic Molecules
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12
Molecular Dissociation of Titanocene

The titanocene chloride dimer, [Cp2TiCl]2 with Cp = C5H5 (figure 12.1a), is known for its
utility as an inexpensive reducing agent in organic synthesis, as well as for its magnetic
properties. Its various uses in synthesis include catalysis of radical ring opening in epox-
ides [170], reduction and pinacol coupling of carbonyls [54], and an agent in single electron
transfer [12, 6]. Its magnetic properties stem from the anti-ferromagnetic coupling between
the spins of the two titanium atoms and makes the molecule a promising candidate for
studying magnetism at nanometer length scales [101].

One goal of this study was to measure intra-molecular exchange coupling through spin
excitations caused by inelastic tunneling. Unfortunately, we did not see spin excitations
in our experiments, but we did discover new molecular orderings on the gold surface, and
strong ordering-dependent electronic structure. This result is important since potential nan-
otechnological applications of this molecule (e.g., single molecule transistors) would involve
attaching it to conducting surfaces, which requires precise control and detailed knowledge of
molecule-surface chemistry [159, 122, 187]. Since the influence of metal substrates on the ad-
sorption and catalytic properties of titanocene chloride dimers is currently not well-known,
and previous studies on other molecules have shown that the metal substrate may have a
substantial influence on the molecular properties [82, 141, 13], the results here are poten-
tially useful for future applications of this molecule, and will address one of the important
themes of this dissertation, the impact of a metal substrate on molecular properties.

To investigate the impact of a metal substrate on the behavior of titanocene chloride
dimers, we used a combination of STM and DFT methods to study titanocene chloride
dimer molecules on Au(111). Our STM topographs reveal isolated molecules at gold step
edges for low molecular coverages, as well as two different coexisting phases at higher cov-
erages closer to a monolayer. The LDOS of both the isolated molecules and the higher
coverage monolayer phases were experimentally studied via dI/dV spectroscopy. Large and
reproducible differences in dI/dV spectra were observed between the different molecular
morphologies. To explain this behavior, the DOS of an isolated (gas phase) titanocene chlo-
ride dimer was calculated using DFT. The calculated properties of a dimer, however, do not
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account for all of the experimental spectra. One possible explanation for the unaccounted
for spectra (which include a spin-induced Kondo resonance) is the coexistence of Cp2Ti and
Cp2TiCl2 monomers in one of the monolayer phases, suggesting that a fraction of titanocene
chloride dimers split into monomers on Au(111). This chapter will describe the influence
of the Au(111) substrate on the properties of titanocene chloride dimers, most of which is
published in our paper, reference [206].

12.1 Various titanocene phases

All experimental data presented here were taken in UHV at 7 K with a PtIr tip. Titanocene
chloride molecules were synthesized by using the second method provided by Green and
Lucas [56], and further purified by sublimation. The single-crystal Au(111) substrate was
cleaned in UHV prior to deposition of titanocene chloride dimers from a Knudsen cell at
85◦C onto a room temperature substrate. The dI/dV spectra were measured with a lock-in
(§2.4) using a 451 Hz, 1–10 mV (rms) signal added to the sample bias with feedback off.

We first used an Omicron VT-STM to scan titanocene on Au(111). These experiments
showed substantial molecular ordering on Au(111). However, when we did these experiments
on the home built LT STM, we saw very disordered structures on the surface. Spectroscopy
on these disordered structures showed inelastic effects and the Kondo effect, but these effects
were not reproducible. We eventually found that the lack of ordering in the home built LT
STM experiments was due to the FE coarse approach which is why we now use mainly
the capacitance approach (§5.1.6). The high voltages used during the FE approach was
destroying either the molecules or the molecular ordering. The Omicron VT-STM does not
use the FE coarse approach.

Isolated titanocene chloride dimer molecules preferentially stick at Au(111) step edges
(figure 12.1b). Individual molecules appear as slightly asymmetrical protrusions with an
apparent height of 2.2 Å, measured at V = 1.0 V and I = 20 pA. The molecular shape
remains mostly featureless when imaged at different biases in a (1.5 V window). The exact
orientation of the molecule on the surface cannot be determined from STM topographs, but
little variation was observed between different isolated molecules. The dI/dV spectrum of
single molecules (figure 12.1c) clearly shows a LUMO resonance around 0.8 V.

When greater than ∼ 10% of a monolayer of titanocene is deposited onto Au(111), two
new phases were discovered to coexist, here referred to as phase 1 and phase 2 (figure 12.2a).
Topographs of phase 1 (figure 12.2b) reveal a periodic network of protrusions having varying
shapes and heights. When imaged with V = −1.0 V, dim protrusions in this phase appear
elongated while brighter protrusions are circular (seven dim protrusions surround each bright
one). The morphology of phase 2 is quite different, as the shapes of all protrusions here
appear more circular, and the molecular arrangement has a honeycomb-like structure (every
phase 2 bright protrusion is surrounded by three bright and three dim protrusions, when
imaged at V = −0.5 V). Attempts to match the experimentally observed two-dimensional
structures to surface terminations of known bulk geometries of [Cp2TiCl]2 were unsuccess-
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Figure 12.1: (a) Titanocene chloride dimer ball and stick model, as calculated by DFT
(b) Topograph of single titanocene at narrow terraces on Au(111) (V = 1.0 V, I = 20 pA,
T = 7 K). (c) dI/dV spectroscopy of isolated titanocene averaged over many molecules.
The LUMO resonance appears around 0.8 V.

ful [101, 16, 115] implying that the Au(111) surface induces a new two-dimensional molecular
ordering.

The LDOS of phase 1 and phase 2 monolayers was measured by dI/dV spectroscopy.
dI/dV spectra of phase 1 (figure 12.3a) reveal peaks at different energies and peak ampli-
tudes that depend on the spatial location of the spectrum. Spectra taken over the brighter
phase 1 protrusions (circled in red in figure 12.3b) show two distinct peaks, a LUMO at
about 0.5 V and a HOMO at about −1.0 V as well as a shoulder around 1.3 V. However,
spectroscopy on the dimmer regions (circled in green) show only one distinct resonance at
around 1.3 V. The slight dip in both curves is due to the Au(111) surface state. Spec-
troscopy at higher voltages was not possible since it caused irreversible damage to the
monolayer phases.

dI/dV spectroscopy on monolayer phase 2 (figure 12.4a) again shows resonant peaks,
but at different energies than those seen in phase 1. The brighter protrusions (circled in red
in figure 12.4b) display one significant peak at −0.3 V while the dimmer regions (circled in
green) display two peaks at −1.1 V and 0.3 V. The spectrum in the dimmer region stops at
0.3 V since the dI/dV signal becomes unstable at larger biases. If we zoom in on V = 0 V
in the dim region spectrum, a Kondo peak can be seen (figure 12.4a, inset). Such a peak
is only seen in phase 2 and never seen in phase 1. Fitting the Kondo resonance to a Fano
line shape (including thermal deconvolution [150], §3.1) yields a line width of Γ = 8.6 meV,
from which a Kondo temperature of T = 50 K is derived ([81], §4.4.3).
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Figure 12.2: Titanocene monolayer phases. (a) Topograph of the two coexisting titanocene
monolayer phases with patches of clean Au(111) (V = 1.0 V, I = 5 pA, T = 7 K). (b)
Topography of phase 1 (V = −1.4 V, I = 10 pA) and (c) topography of phase 2 (V = −0.2 V,
I = 4 pA).

12.2 DFT on titanocene

To understand the wide range of experimental spectra, Mark Pederson performed first-
principles DFT calculations on free titanocene chloride dimers using the NRLMOL code [161,
169]. Effects of the surface can be important, but were not included since we do not know
the exact molecular arrangement from experiment and performing a calculation for every
one of the many possible arrangements is prohibitively expensive. However, free molecule
calculations can still give a qualitative understanding of the experimental data. All atoms
in the calculation were treated within an all-electron approach (no pseudopotentials) [161],
§4.5. The basis sets used in these calculations are roughly equivalent to triple-ζ or bet-
ter [168]. The generalized gradient approximation (PBE-GGA) was used to approximate
the exchange-correlation functional [165]. The free molecules were relaxed until all forces
were below 0.01 eV/Å.

Roughly, the two Cp rings attached to a Ti atom each suck up one electron, while each
Cl atom sucks up around 1

2
of an electron from Ti. This means each Ti is in a Ti(III)

state; i.e., each Ti has a net charge of +3. As each neutral Ti atom has four valence
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Figure 12.3: Spectroscopy on titanocene monolayer phase 1. (a) The green curve is the
spatial average of dI/dV spectra taken over different dim regions, while the red curve is
the spatial average of spectra taken at different bright regions. (b) Topograph (V = 0.5 V,
I = 10 pA) of phase 1 showing the dim regions (green circles) and red regions (red circles).

Figure 12.4: Spectroscopy on titanocene monolayer phase 2. (a) Both curves are the spatial
average of dI/dV spectroscopy taken over different regions in the phase 2 monolayer. Green
curve = average over dim regions, red curve = average over brighter regions. A Kondo
resonance (inset) appears only in the dim regions of phase 2. (b) Topograph of phase 2
(V = −0.5 V, I = 5 pA) showing both dim regions (green circles) and brighter regions (red
circles).

electrons, the Ti(III) atom then has only one valence electron. The DFT calculated ground
state of [Cp2TiCl]2 is found to have anti-ferromagnetic coupling between the two Ti(III)
atoms’ spins with a singlet-to-triplet transition energy of 13.3 meV, consistent with previous
bulk measurements [101]. Figure 12.5a (lower panel) shows the DOS calculated for a free
titanocene chloride dimer. The calculated DOS has been rigidly energetically shifted to



12.2. DFT ON TITANOCENE 132

Figure 12.5: DFT on free titanocene. (a) The upper panel shows again the experimental
dI/dV spectra for the isolated molecules and phase 1 monolayer on Au(111), but each
spectrum has been multiplied by a factor so that the highest point has the value 1. The
lower panel i the broadened DFT calculated DOS for a free titanocene chloride dimer. The
elements with the most significant contribution to the DOS in an energy range is written
the curve. (b) The upper panel shows again the experimental dI/dV spectrum for the phase
2 monolayer, but the spectrum has been normalized as in part (a). The lower panel shows
the broadened DFT calculated DOS for the two free monomers Cp2TiCl2 and Cp2Ti. The
curves are vertically offset for clarity.

align the energetic positions of the theoretical HOMO/LUMO peaks with our experimental
HOMO/LUMO peaks since the precise location of the Fermi energy is not well defined for
a free molecule with a wide HOMO-LUMO gap. As seen in figure 12.5a (top panel) the
calculated peaks line up reasonably well with the experimental peaks for both the isolated
dimer molecules as well as the phase 1 monolayer. This suggests that the experimentally
observed isolated molecules and phase 1 monolayer molecules are both titanocene chloride
dimers. However, the peak positions and magnitudes of the isolated molecule and phase 1
monolayer spectra differ. These variations are likely due to differing molecular orientations
on the surface. The specific orientations are difficult to determine from STM topographs
and a wide number of possible structures could potentially fit our data.

The peaks seen in the experimental spectra for phase 2 molecules show a dramatic de-
parture from the isolated molecule and phase 1 behavior, which the DFT dimer calculations
do not account for. We also note that the phase 2 topographic molecular features are
more circular in comparison to the elongated features of phase 1 molecules. As a result of
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these spectroscopic and topographic differences between phase 1 and phase 2, we propose
that phase 2 does not consist of titanocene chloride dimers; it is composed of dissociated
titanocene dimers (titanocene monomers). Molecular dissociation may happen during the
thermal evaporation process, or may occur on the surface, which is known to occur for
other metallocenes [20]. A well-known stable fragment of the titanocene chloride dimer
is titanocene dichloride (Cp2TiCl2). Since Cp2TiCl2 + Cp2Ti = [Cp2TiCl]2, the presence
of titanocene dichloride on the Au(111) surface suggests the simultaneous existence of the
non-chlorinated titanocene monomer (Cp2Ti).

This interpretation is supported by comparisons of our measured dI/dV spectra with
DFT calculations of the DOS of Cp2TiCl2 and Cp2Ti. The lower panel of figure 12.5b shows
the calculated DOS for both free Cp2TiCl2 and Cp2Ti monomers (these results are also
consistent with previous total DOS calculations [195, 51]). The element which contributes
the most to the DOS in a specific energy window is written above the DOS. The Fermi energy
of a free molecule is not well defined; it can be anywhere in the HOMO-LUMO gap. So, to
compare the free molecule calculations with the experimental LDOS (with a well defined EF),
we may energetically shift the theoretical spectrum of Cp2TiCl2 rigidly within the HOMO-
LUMO gap to align the calculated and experimental peaks. The calculated free molecule
Cp2Ti DOS, on the other hand, has a more well-defined EF since the HOMO-LUMO gap
here is small, and so its energy alignment is pinned. Both types of monomers are seen to
have new states near EF in the calculated DOS that do not exist in the dimer calculations,
consistent with experimental phase 2 spectra, and thus supporting the proposal that phase
2 consists of titanocene monomers instead of dimers. The calculated Cp2TiCl2 spectrum,
for example, has filled states similar to filled state features seen in the experimental spectra
for phase 2 bright regions (figure 12.5b, top panel) while the calculated spectrum for Cp2Ti
has unoccupied states near EF, similar to the unoccupied states in dim regions of phase
2. This suggests that the bright regions in phase 2 are Cp2TiCl2 monomers while the dim
regions are Cp2Ti monomers. The experimentally observed Kondo peak in the phase 2 dim
regions is consistent with magnetism predicted in the calculations for Cp2Ti (S = 1), while
the lack of a Kondo peak in phase 2 bright regions is consistent with the non-magnetic S = 0
ground state of Cp2TiCl2 from the calculations [51]. The exact molecular orientations and
adsorption sites of the two monomers in this phase could not be uniquely determined from
STM topographs, so the Au(111) surface was not included in the calculation for the same
reasons stated above regarding phase 1. We also note that the experimental ratio of Cp2Ti
to Cp2TiCl2 is 1:2, which deviates from the expected 1:1 ratio. This is possibly due to
a smaller sticking probability for Cp2Ti on Au(111) at room temperature, which causes a
fraction of them to desorb from the Au(111) surface.

12.3 Conclusions

We have studied the behavior of titanocene chloride dimers on Au(111) using STM and
DFT. Isolated molecules and two new monolayer phases were experimentally observed on
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the Au(111) surface. DFT calculations of free molecules suggest that titanocene chloride
dimers, as well as dissociated dimers, the non-magnetic Cp2TiCl2 and magnetic Cp2Ti,
coexist on Au(111). The molecular adsorption geometries could not be uniquely determined
by STM, so effects of the surface were not included in the calculations. The agreement
between experimental spectroscopy and theoretical DOS can be improved if effects of the
surface (such as surface hybridization, relaxation, and charge transfer) and overlap between
tip and molecule wave functions were included in future calculations.
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13
Spin Coupling Mediated by TCNE

Magnetic molecule-based spintronics raises new possibilities for electronic and magnetic de-
vices [19, 90]. In this field, molecules based on transition metal atoms and cyano-organic
molecules show much promise due to their high Curie temperatures. An important cyano-
organic molecule is tetracyanoethylene (TCNE) since Vx(TCNE) with x ∼ 2 has an unusu-
ally high Curie temperature of around 400 K [136, 167, 185, 113]. The structure of TCNE
is shown in figure 13.1. However, the mechanisms which cause the high Curie temperature
are not well understood, mainly due to the disordered growth of bulk TCNE compounds.
Experimental probes to determine the spin interactions, such as XMCD and XPS, have not
been conclusive [167, 72, 185].

Figure 13.1: Structure of the TCNE molecule from DFT calculations.

To address this problem, a local probe such as an STM is ideal. Using the molecular
manipulation capabilities of an STM, we can manipulate TCNE to vanadium atoms and can
control both the stoichiometry and structure of VxTCNEy complexes. We can then study
the electronic and magnetic properties of these structures while knowing precisely what the
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structure of the complexes are. This work sheds light on a number of important themes in
this dissertation—how can we control properties of single molecules at atomic scales, and
how do molecule-substrate and molecule-atom interactions affect molecular properties.

We will see that the TCNE-substrate interaction is largely determined by the lattice
structure of the noble metal substrate. We will also see evidence for controllable spin
coupling through TCNE in Vx(TCNE)y structures created by STM manipulation, suggesting
that spin coupling can be controlled at atomic length scales. These results are based on our
published papers, refs. [199, 200].

13.1 TCNE-Substrate Interactions

The first step in this work was to find a suitable substrate to do the experiments on, since
there is not much previous work exploring TCNE on different substrates [43, 44, 157].
TCNE molecules were deposited onto various substrates at room temperature using a room
temperature leak valve evaporator (§5.4.4). Three noble metal single crystal substrates were
used, Au(111), Ag(001), Cu(001). All substrates were cleaned according to §5.3. The TCNE
molecules had a purity of 99% and were prepared before evaporation according to §5.4.4.
All substrates were at room temperature during the deposition of TCNE.

On Au(111), the TCNE molecules saturated the step edges and formed small islands
in the fcc corners of the Au(111) Herringbone reconstruction [204]. Most of the surface
displayed disordered arrangements of TCNE except for small ordered islands. Each molecule
appears as a 6 Å × 9 Å kidney-bean shaped protrusion with an apparent height of ∼ 1.2 Å
(figure 13.2). The molecules do not seem to stick to the Au(111) surface very strongly since

Figure 13.2: TCNE deposited onto Au(111) at RT and imaged at T = 7 K. (a) Topography
of a small island of TCNE (V = 0.1 V, I = 5 pA). A single TCNE molecule is circled in
red. (b) dI/dV spectroscopy of TCNE on Au(111), showing the HOMO and LUMO. The
feature around −0.5 V is due to the Au(111) surface state.

we need low currents to image them (∼ 1 pA). Manipulation performed with settings around
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50 mV, 3 nA would usually pick the molecules off the surface.
dI/dV spectroscopy was also performed on the molecules in the islands (figure 13.2).

The spectrum shows two peaks which are the HOMO at around −1.5 V and LUMO around
2.5 V. There is little difference between dI/dV maps taken at different energies.

For TCNE on Ag(001) (figure 13.3), the molecules also saturate the step edges, but exist
as isolated molecules on terraces at low coverages. At higher coverages, the molecules can
exist either as isolated molecules or as ordered islands. The isolated molecules appear as an
oval with dark stripes around it. dI/dV spectroscopy on the isolated molecules shows only

Figure 13.3: TCNE on Ag(001). (a) Topography at V = −0.6 V, I = 10 pA. (b) dI/dV
spectroscopy of TCNE on Ag(001), showing the HOMO resonance at V = −0.6 V. (c)
Topography of four TCNE molecules (V = −0.6 V, I = 30 pA). (d) dI/dV map at V =
−0.6 V (the HOMO energy). (e) Structural model of the images in (c) and (d).

one molecular state, a HOMO at around −0.6 V. dI/dV maps of the isolated molecules
taken at the energy of the HOMO shows the spatial distribution of the HOMO (§2.5).

TCNE on Cu(001) forms long ordered chains (figure 13.4), unlike TCNE on Ag(001) or
Au(111). Topographs of these long chains have a different structure from TCNE on Ag(001).
At low biases, we can see a central oval shaped protrusion, but a few of these protrusions
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have additional circular protrusions around them. dI/dV spectroscopy on TCNE on Cu(001)

Figure 13.4: TCNE on Cu(001). (a) Topography (V = 1 V, I = 5 pA. (b) Topograph of a
small island (V = 10 mV, I = 5 nA. (c) Topograph of a chain (V = 1 mV, I = 5 nA. (d)
Structural model of part of the image in (c). The green circle around the buckled Cu atom
in the model corresponds to the green circle in (c).

shows no distinct peaks within ±2 eV of EF.
The behavior of TCNE on the different noble metals can be explained in terms of the

different metals’ work functions, as well as the TCNE electron affinity. Since TCNE has a
high electron affinity, 3.1 eV [33], it likes to suck up electrons. The work function gives us
an idea of how much the metal is willing to give up its electrons. So lower work function
metals are more likely to donate electrons to TCNE and create an ionic bond. The work
functions for Au(111), Ag(100), and Cu(100) are 5.3 eV, 4.6 eV, and 5.1 eV [123]. We would
then expect the ionic bonding between TCNE and Au to be the weakest while the ionic
bonding between TCNE and Cu to be weak while the bonding between TCNE and Ag to
be the strongest.

We would then naively expect the behavior of TCNE on Ag(001) and Cu(001) to be
opposite of what is experimentally observed: TCNE should cause larger interactions with
Ag than with Cu, but that is not the case. To explain the discrepancy, we must also take
into account the differing lattice constants of Ag and Cu, as well as the differing binding
energies between Ag atoms and Cu atoms.

Since the lattice constant of Cu is 2.55 Å, the nitrogen atoms of TCNE are all close to a
Cu atom; the distance between Cu and N is 2.37 Å from the structural model. This is similar
to the distance between transition metals and TCNE in metal-TCNE complexes [72, 79, 103,
147]. However, Ag has a larger lattice constant and so the distance between Ag and N would
be 3.13 Å, which is substantially larger than for Cu. Hence, due to a better structural fit
with the lattice, we expect the interaction between Cu and TCNE to be stronger than the
interaction between Ag and TCNE.

We must also consider the Ag-Ag and Cu-Cu binding energies, since the metal with a
smaller binding energy is more likely to buckle. These energies may be found from the heat
of vaporization. We find that the Cu-Cu binding energy is actually larger than the Ag-Ag
binding energy. So it seems that the lattice matching between TCNE and Cu plays the
dominant role in determining the lattice buckling.
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Figure 13.5: DFT calculated isosurfaces for the HOMO and LUMO of TCNE and TCNE2−,
with the experimental dI/dV map of the HOMO in the middle for comparison.

Another possibility for Cu atoms attached to the TCNE molecules on Cu(001) is from
adatom diffusion. Since we deposit TCNE onto a Cu(001) substrate at room temperature
and Cu atoms are diffusing on the surface at room temperature, it is possible that the diffus-
ing TCNE and Cu hit each other and grow into ordered structures. There is experimental
and theoretical evidence, however, that this is not the case. Experimentally, the height of
the observed circular protrusions are small, . 0.3 Å (imaged at V = 0.01 V, I = 10 pA),
much smaller than the 0.7 Å to 1.2 Å heights of Cu adatoms or small Cu clusters on other
Cu substrates [154, 116, 117], suggesting that the observed protrusions are not Cu adatoms.
Also, we experimentally observe holes near the circular protrusions, suggesting that they
are Cu atoms that have been pulled out of the surface. Theoretically, DFT calculations that
support the buckling model and not the adatom diffusion model have been done [15].

13.2 DFT Calculations on TCNE

To model the observed molecular orbital, DFT calculations were performed using SIESTA.
A double-ζ + polarization basis was used and the local density approximation was used for
the exchange-correlation functional (§4.5). The free TCNE molecule was relaxed until all
forces were less than 0.001 eV/Å.

The energy eigenvalues of the free TCNE molecule were calculated and the HOMO and
LUMO wavefunctions were also calculated. The agreement between the dI/dV HOMO
images and the calculated free molecule HOMO do not agree well (figure 13.5). However,
if one or two negative charges are added and the calculation repeated, we find that the
HOMO wavefunction does indeed look like the experimental dI/dV images (figure 13.5).
This implies that the TCNE absorbs electrons from the Ag(001) surface, which is likely
since TCNE is known to have a high electron affinity (∼ 3 eV).
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13.3 Vx(TCNE)y Complexes

Once we found that Ag(001) works the best for manipulation, we created various VxTCNEy

structures on Ag(001). The main structures that were built were V(TCNE), V2(TCNE),
and V(TCNE)2. Although direct (atom-atom) and substrate-mediated (atom-substrate-
atom) magnetic coupling between atomic spin centers has been measured previously using
STM-based techniques [30, 94, 83, 192, 142], precisely controlling the spin coupling through
a single molecular linker (atom-molecule-atom) in an artificial molecular structure has not
yet been performed.

After depositing TCNE from a leak valve evaporator (§5.4.4) onto a Ag(001) single
crystal held at room temperature, the Ag(001) was moved to the STM until it cooled
down to 7 K. Vanadium atoms were then deposited from an e-beam evaporator (§5.4.2).
Figure 13.6 shows the surface after the deposition of TCNE and V.

The V atoms cannot be manipulated on the Ag(001) surface, but the TCNE molecules
can be moved towards the V atoms using the sliding technique [42]. After TCNE is moved
towards a V atom, it spontaneously combines with it to form V(TCNE) (figure 13.6b,e).
This V(TCNE) complex can then be manipulated as a single unit towards another V to
create V2(TCNE) (figure 13.6f). A TCNE molecule can also be moved towards V(TCNE)
to create V(TCNE)2 (figure 13.6c).

Figure 13.6: Construction of Vx(TCNE)y on Ag(001) using molecular manipulation. (a)–
(c): formation of V(TCNE)2 (V = 1 V, I = 5 pA). (d)–(f): formation of trans-V2(TCNE)
(V = 1 V, I = 10 pA).
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There are many different structures which can be built by manipulation (13.7). However,
there are also various different stable isomers for each Vx(TCNE)y. A particular isomer can
sometimes be obtained by carefully controlling the manipulation process, but often one
constructs an undesired isomer instead. This lack of complete control makes it difficult to

Figure 13.7: 4 nm×4 nm topographs of V2(TCNE)2 (V = 0.1 V, I = 30 pA) and V3(TCNE)3

(V = 0.1 V, I = 30 pA).

reproducibly create large Vx(TCNE)y structures, and makes it harder to get good statistics
on each structure. However, for the smaller Vx(TCNE)y structures, there are less possible
ways a V atom can attach to the V(TCNE), making it easier to get reproducibility.

The structures that we were able to get good statistics on were V(TCNE), linear V(TCNE)2,
cis-V2(TCNE), trans-V2(TCNE)@27◦ and trans-V2(TCNE)@11◦. The angle in the names
of the two trans-V2(TCNE)s denotes the different orientations with respect to the [100]
direction of the Ag(001) surface. The first orientation has the line joining the two V atoms
rotated 27◦ counterclockwise from the [100] direction while the second orientation has the
line joining the V atoms rotated by 11◦ from the [100] direction. By analyzing the molecular
resonances and Kondo effect in these various structures, and by comparison with DFT cal-
culations, we can draw some conclusions about the magnetic interactions in these structures.

Figure 13.8 shows STM topographs, as well as structural models derived from atomic
resolution images of these structures. Atomic resolution was achieved by getting adsorbates
on the tip (§3.2).

Spectroscopy done at higher biases (±1 V) on V-TCNE, V(TCNE)2, trans-V2(TCNE),
and cis-V2(TCNE) is shown in figure 13.9. The main feature in the spectroscopy in this
energy range is the peak at around −0.2 V. This peak exists on both the V and TCNE in
V-TCNE, but only on V in V(TCNE)2.

Figure 13.10 shows spectroscopy in the low bias ±80 mV range for TCNE, V-TCNE, and
V(TCNE)2. Data for V2(TCNE) will be presented later. TCNE shows a sharp decrease in
dI/dV near −30 mV and a sharp rise in dI/dV near +30 mV (figure 13.10a). These features
are easier to see in d2I/dV 2, where they appear as a dip and a peak. In V-TCNE, a sharp
resonance around 0 V and additional faint features appear at ±45 mV on V and ±30 mV
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Figure 13.8: Topographs and structural models of (a) V-TCNE (1 V, 10 pA), (b) V(TCNE)2

(1 V, 5 pA), (c) trans-V2(TCNE)@27◦ (1 V, 50 pA), (d) trans-V2(TCNE)@11◦ (1 V, 5 pA),
and (e) cis-V2(TCNE) 1 V, 5 pA.

on TCNE. These faint features in dI/dV are more apparent in d2I/dV 2, where they appear
as dips at −45 mV (on V) and −30 mV (on TCNE) and peaks at 45 mV (on V) and 30 mV
(on TCNE). On V(TCNE)2, there is a sharp peak near 0 V, and again faint features in
d2I/dV 2 at ±30 mV on TCNE. The peak near 0 V in V-TCNE and V(TCNE)2 is likely due
to a Kondo effect (§4.4.3). The dips and peaks in dI/dV 2 in all spectra are are inelastic
features (§2.6) which are likely due to molecular vibrations. The IETS feature at 30 mV is
likely the known wagging or rocking mode of TCNE from DFT and optical spectroscopy
measurements [145, 23]. The inelastic feature at 45 mV is likely due to V-N vibrations since
the V-N stretch mode of other structures lies at this energy [10]. The existence of this mode
only when V is attached to TCNE shows that a true covalent bond is being formed between
V and TCNE.

The final types of structures we analyzed in detail are the trans-V2(TCNE)@27◦ and
trans-V2(TCNE)@11◦ complexes shown in figure 13.8. In V2(TCNE)@27◦, spectroscopy in
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Figure 13.9: Spectroscopy on (a) V-TCNE, (b) V(TCNE)2, and (c) a comparison of spec-
troscopy between V-TCNE, trans-V2(TCNE), and cis-V2(TCNE). The state believed to
arise from the V d-orbital is labeled with Ed.

Figure 13.10: dI/dV and d2I/dV 2 spectra for (a) TCNE, (b) V-TCNE, (c) V(TCNE)2. The
arrows mark the position of either IETS signals caused by molecular vibrations (labeled
Evib) or the Kondo resonance. The Ag(001) spectroscopy curve (green curve in (a)), was
subtracted from all other dI/dV spectra to help deconvolute the non-constant tip DOS from
the spectra (appendix B).

the ±1 V range shows a resonance around −0.15 V on both V and TCNE, although the
resonance on TCNE is broader (figure 13.11a). In the ±80 mV range, a narrow resonance
appears near EF (figure 13.11c).

In V2(TCNE)@11◦, spectroscopy in the ±1 V range looks very similar to the spectroscopy
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Figure 13.11: High bias dI/dV spectroscopy on (a) V2(TCNE)@27◦, (b) V2(TCNE)@11◦,
and low bias spectroscopy on (c) V2(TCNE)@27◦, and (d) V2(TCNE)@11◦. The Ag back-
ground was subtracted from the spectra in (c) and (d) to deconvolute the non-constant tip
DOS (appendix B). The state believed to arise from the V d-orbital is labeled Ed.

on trans-V2(TCNE)@27◦ in the same voltage range—there is a resonance around −0.15 V
on both V and TCNE, and the resonance on TCNE is broader. However, at lower biases,
unlike spectroscopy on trans-V2(TCNE)@27◦, spectroscopy on trans-V2(TCNE)@11◦ reveals
no narrow resonance near EF.

To help explain the data, SP-DFT calculations by Tunna Baruah and Mark Pederson
were done using NRLMOL [162, 91, 163, 161]. The basis functions were similar to triple-ζ
and PBE-GGA was used for the exchange-correlation functional [165].

Calculations were performed on free V(TCNE) and V2(TCNE). The substrate was not
included in the calculations, but we suspect that an electron is donated from the surface to
Vx(TCNE), so the structures were singly negatively charged. V atoms on Ag(001) are found
to be neutral. It is assumed that they acquire no additional charge from the substrate in
Vx(TCNE) complexes. The DFT LDOS of these structures reveal a resonance at ∼−0.2 V,
which is due to a singly occupied V atom d-state (figure 13.12). This is in good agreement
with the experimentally observed peak at ∼−0.2 V in both V(TCNE) and V2(TCNE). The



13.3. Vx(TCNE)y COMPLEXES 145

agreement between experiment and theory only occurs when the Vx(TCNE) structures are
singly negatively charged; neutral and twice negatively charged structures do not have the
strong resonance near −0.2 V.

Figure 13.12: V-TCNE and V2(TCNE) SP-DFT calculations. The state believed to arise
from the V d-orbital is marked with Ed.

Since the resonance near 0 V is has a narrow width ∼ 20 mV, it is much narrower than
expected for molecular orbitals hybridized with a surface. This suggests that the resonance
near 0 V is a Kondo resonance (§4.4.3, [120, 131]). We expect that the spatial distribution
of the Kondo state is the same as the molecular orbital which leads to it. Since the narrow
resonance near 0 V has the same spatial distribution as the resonance near −0.2 V for all
Vx(TCNE)y structures, it is likely that the Kondo resonance is caused by the single electron
in the V d-orbital.

Since the Kondo effect is a many body effect due to the interaction between the Vx(TCNE)y
complex and the surface, DFT cannot reproduce this effect correctly. However, we may still
explain qualitatively why V2(TCNE)@27◦ has a Kondo while V2(TCNE)@11◦ does not. We
first note that the distance between V atoms is around 1 nm, which is much larger than
expected for coupling through the surface [30, 192]. Hence, we expect coupling through
the TCNE molecule. We then note that the distance between V atoms in V2(TCNE)@11◦

is ≈ 1 Å smaller than in V2(TCNE)@27◦. This means that the V atoms will interact
more strongly with TCNE in V2(TCNE)@11◦. SP-DFT predicts that the singly charged
V2(TCNE) will have a single spin on each V atom that interacts ferromagnetically, and
hence the ferromagnetic interaction will be stronger in V2(TCNE)@11◦. It is known that
ferromagnetic interactions between spins can lower the Kondo temperature [96], and hence,
V2(TCNE)@11◦ has no Kondo resonance due to its lower Kondo temperature.

The Kondo temperature may also change due to changes in the energy of the d-state,
changes in the hybridization, or changes in the Coulomb energy U . However, changes in
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these variables are not likely since the d-state energy and width are the same for both
V2(TCNE) structures, according to the data. The lowering of the Kondo temperature due
to ferromagnetic interaction is then supported by the data.

13.4 V(TCNE) on NaCl

Magnetic structures on a metallic surfaces can interact with the electrons of the surface,
altering its intrinsic magnetic properties. To overcome this problem, a thin insulating layer
can be grown on a metallic surface. NaCl is an easily grown insulator which was used to
accomplish this. Figure 13.13 shows topography of TCNE on second and third layers of
NaCl. Spectroscopy shows a LUMO around 1.5 V for TCNE on a second layer NaCl and
1.8 V for TCNE on a third layer of NaCl. Unfortunately, after depositing V and manipulating
TCNE molecules and V atoms together (only TCNE could be manipulated controllably on
NaCl), we did not see any evidence of spin in V(TCNE) and we were not able to manipulate
V(TCNE) or V to create larger structures.

13.5 Conclusions

This chapter discussed both the interactions between TCNE and noble metal substrates,
as well as controlling the TCNE-mediated spin coupling between electrons on different V
atoms via STM molecular manipulation. We found that the ionic binding between TCNE
and noble metals, as well as any TCNE-induced surface reconstruction, is more strongly
influenced by the lattice structure of the metal surface than by the surface work functions of
the different metals. We also found that Vx(TCNE)y complexes on Ag(001) can be created
with STM molecular manipulation, and in trans-V2(TCNE), there is evidence suggesting
that the TCNE-mediated coupling of spins between the two V atoms can be controlled by
changing the distance between V and TCNE.

This concludes part III of this dissertation. Following this chapter are extensive technical
appendices describing the experimental techniques in greater detail.
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Figure 13.13: Topograph of TCNE on NaCl (a) Large area showing mainly second layer NaCl
islands with isolated TCNE colored brown on it (V = 1.4 V, I = 1 pA). (b) Zoom in on a
second layer NaCl island with isolated TCNE molecules colored brown. (c) Spectroscopy
on TCNE on the second and third layer NaCl islands. The NDR around 2.4V is likely due
to the voltage dependence of the tunneling barrier (§3.3.1).
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A
The Lock-in Amplifier

When we calculate dI/dV , we may simply numerically differentiate I(V ) with respect to
V . However, to take a numerical derivative, we need I(V ) to be very noise-free, since any
noise in I(V ) will become much larger in its derivative. Since I(V ) contains noise at many
different frequencies, its derivative dI/dV will also contain much noise. To calculate dI/dV
with little noise, we need a way of removing the noise at various frequencies. The lock-in
amplifier allows us to do that, and it does it with a much better quality factor than a typical
band-pass filter.

We will see that if we apply a small oscillating voltage with angular frequency ω0 to
the STM tip and measure the tunneling current with a lock-in amplifier, the output of the
lock-in amplifier will be proportional to dI/dV (§A.3). However, the noise in dI/dV will be
due to only the noise at frequency ω0 and no other frequency, so the lock-in amplifier allows
us to eliminate most of the noise from dI/dV .

A.1 The Ideal Lock-in

Here we describe the theoretical basis of the ideal lock-in amplifier. If we have a voltage
signal f(t) that oscillates with periodicity T , we may write it as a Fourier series

f(t) =
B0

2
+

∞
∑

n=1

An sin(nω0t) +Bn cos(nω0t) . (A.1)

where ω0 = 2π/T . An and Bn are called the Fourier coefficients.
Often, we want to find An and Bn. To calculate the Fourier coefficients An or Bn by

hand, we would multiply f(t) by sinnω0t or cosnω0t and integrate over a complete period
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T = 2π/ω0, then multiply the result by ω0/π. Mathematically, this is

An =
ω0

π

∫ t0+2π/ω0

t0

f(t) sinnω0t dt (A.2)

Bn =
ω0

π

∫ t0+2π/ω0

t0

f(t) cosnω0t dt (A.3)

where t0 is any real number.
A lock-in amplifier (or simply, a lock-in) is a device that allows us to extract the Fourier

coefficients from the periodic signal f(t) by doing something very similar (via analog or
digital electronics) to the process described above: it takes the input signal f(t), multiplies
it by another signal sin(nωreft+ φn), integrates over a complete period, then multiplies the
result by ω0/(π

√
2). Mathematically, the process that the ideal lock-in performs can be

written as

Videal =
ω0

π
√

2

∫ t0+2π/ω0

t0

f(t) sin(nωreft+ φn) dt . (A.4)

This expression leads to a voltage which is proportional to the voltage on one of the outputs
of the lock-in.

When we compare the mathematical procedure for calculating Fourier coefficients [equa-
tion (A.2)] with the procedure the lock-in performs [equation (A.4)], we see that they are
very similar; they only differ in three places: ωref instead of ω0, an additional phase φn in the
sine, and an overall extra factor of

√
2. Since ωref and φn are user-adjustable parameters, if

we set ωref = ω0 and φn = 0, then the lock-in will calculate the voltage An/
√

2. Hence, the
lock-in allows us to measure the Fourier coefficients of a periodic signal.

This was a brief introduction to what an ideal lock-in is supposed to do and how it
does it. The next sections will describe in greater detail the inputs, outputs, and adjustable
parameters of an ideal lock-in.

A.1.1 Inputs

A lock-in amplifier generally takes two input signals. One input signal is the experimental
signal, which is a periodic signal f(t) [equation (A.1)] from which we want to extract Fourier
coefficients from, and the other is called the reference signal Vref(t) = sin(ωreft+φ) (in units
of volts), which normally comes from a function generator. Sometimes the lock-in has a
built-in function generator, so the reference signal is an internal signal in the lock-in, and
the reference signal input is not used. As discussed above, normally we choose ωref = ω0.

A.1.2 Outputs

A lock-in has two output signals (this assumes we have a dual-phase lock-in); the value of
these signals depends on what output mode the user selects. The most common output
signals are called X, Y , R, and θ, and the user can select any two of these four to output.
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Different lock-in’s will have different ways of selecting these outputs; for example, on a PAR
5210, one must select XY -mode to get outputs X and Y , or Rθ-mode to get R and θ.

X and Y

This is how the lock-in calculates the values of the X and Y outputs. If we input the two
signals, f(t) [equation (A.1)] and Vref(t) = sin(ωreft + φ) into the lock-in, the lock-in first
internally multiplies the reference signal frequency by an integer factor n and changes the
phase of it to φn (both n and φn are chosen by the user as described in the next section).
The phase φn is not necessarily the same as the reference voltage phase φ. The modified
reference signal is then Ṽref(t) = sin(nωreft+ φn).

The procedure to calculate the X output then follows that given in deriving (A.4): we
multiply f(t) by Ṽref(t), integrate the result over a complete period T = 2π/ω0, and multiply
that result by ω0/π

√
2. The Y output has the exact same procedure, except we shift the

phase of Ṽref(t) by 90◦ before multiplying with f(t).
This procedure yields voltages, which are normally displayed on the front panel of the

lock-in. With ωref = ω0, they are

Vx =
ω0

π
√

2

∫ t0+2π/ω0

t0

f(t) sin(nω0t+ φn) dt (A.5)

Vy =
ω0

π
√

2

∫ t0+2π/ω0

t0

f(t) cos(nω0t+ φn) dt . (A.6)

By plugging in f(t) [equation (A.1)] and performing the integral, these expressions simplify
to

Vx =
1√
2
(Bn sinφn + An cosφn) (A.7)

Vy =
1√
2
(Bn cosφn − An sinφn) (A.8)

The number n [which denotes the nth term in the Fourier series of f(t)] is also referred to
as the nth harmonic, so, for example, n = 2 would be the second harmonic.

The actual voltages on the output of the lock-in are different than the numbers displayed
on the front panel. The actual output voltages are proportional to Vx and Vy

Vout 1 = C Vx

Vout 2 = C Vy

where the constant of of proportionality C is determined by the settings of the lock-in
and may be different for different lock-in’s. One must read the manual for the lock-in to
determine its value. Alternatively, to determine C, one may apply a signal f(t) = V0 sin(ωt)
with a known amplitude V0 to the input of the lock-in and compare the two output voltages
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of the lock-in to the values Vx and Vy.

R and θ

If we consider the two voltages Vx and Vy of the lock-in as the x and y components of a 2-D
vector in Cartesian coordinates ~r = (Vx, Vy), then this vector would have polar coordinates

R =
√

V 2
x + V 2

y

θ = tan−1 Vy

Vx

These values of R and θ are the values displayed on the lock-in front panel. The actual
output voltages are proportional to the R and θ values, with the same proportionality
factor C as for the X and Y outputs.

A.1.3 Adjustable parameters

The ideal lock-in also has two adjustable parameters, the harmonic number n, and the
phase φn, which are chosen based on what we want to measure (§A.3.4, §A.4.2 discuss how
to choose the phase to measure dI/dV and d2I/dV 2). Normally we set n = 1 or 2, and
φn = 0.

For example, if we want to measure the Fourier coefficients of the signal f(t) at the
frequency ω0 (the first harmonic), we set n = 1 and adjust the phase φ1 = 0, so that the
lock-in will display the voltages

Vx = A1/
√

2

Vy = B1/
√

2 .

If we set n = 1 and adjust the phase so that φ1 = 90◦, the lock-in will display B1/
√

2 and
−A1/

√
2.

This is all that is really needed to know to use a lock-in. However, to truly understand any
measurement using a lock-in, it is important to understand how the real lock-in computes
the Fourier coefficients An and Bn.

A.2 The Real Lock-in

The real lock-in has the same inputs and outputs as the ideal lock-in. The difference comes
in how it calculates the Fourier coefficients. The non-ideal behavior of the lock-in will also
force us to have additional adjustable parameters described in §A.2.3, which help us optimize
the lock-in performance.
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A.2.1 Calculating the Fourier coefficients

The main point of this section is to show that the way the ideal lock-in calculates Fourier
coefficients is a good approximation to the way a real lock-in does it.

The real lock-in uses a slightly different method to measure Fourier coefficients than the
ideal lock-in. It first multiplies the signal f(t) given by (A.1) by Ṽref(t) = sin(nω0t + φn),
like the ideal lock-in, but then it passes this signal through a low-pass filter instead of
actually integrating the signal. By working through all the mathematical details, we will
see next that the low pass filter is a good approximation to integrating over a complete
period. Consider how the real lock-in calculates the X output for the nth harmonic.

1. As stated earlier, the lock-in multiplies the frequency of the reference signal by n to
get the modified reference signal Ṽref(t) = sin(nω0t + φn), where φn is a phase which
depends on n and is not necessarily the same as the original reference signal phase φ.

2. The lock-in then multiples f(t) by Ṽref(t) to get f(t) sin(nω0t + φn). The resulting
function may be expanded in a series as

f(t) sin(nω0t+ φn) =
1

2

∞
∑

m=−∞
Bn−m sin(mω0t+ φn) + An−m cos(mω0t+ φn) (A.9)

where we define A−m = −Am (which implies A0 = 0) and B−m = Bm. This can be
rewritten in terms of a constant part (the m = 0 term) and oscillating parts

f(t) sin(nω0t+ φn) =
1

2
(Bn sinφn + An cosφn)

+
1

2

∞
∑

m=−∞
m6=0

Bn−m sin(mω0t+ φn) + An−m cos(mω0t+ φn)

So the Fourier coefficients that we want, An and Bn, are proportional to the constant
part of f(t) sin(nω0t + φn), or equivalently, it is proportional to the DC part of the
oscillating signal f(t)(sinnω0t+ φn).

3. So after the lock-in multiplies f(t) by sin(nω0t + φn), it passes the result through a
low pass filter to recover 1

2
(Bn sinφn +An cosφn), the DC part of f(t) sin(nω0t+ φn).

In reality, the low pass filter is not ideal. If the gain of the low pass filter at frequency
ω is G(ω, ωc) where ωc is an adjustable parameter (§A.2.3) called the cutoff frequency
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of the filter, then the actual output of the low pass filter will be

1

2
(Bn sinφn + An cosφn)

+
1

2

∞
∑

m=−∞
m6=0

G(|mω0|, ωc)
[

Bn−m sin(mω0t+ φn) + An−m cos(mω0t+ φn)
]

4. The lock-in then multiplies the result of part 3 by 2/
√

2 to give us a voltage Vx. The
value of this voltage is normally displayed on the front panel of the lock-in.

Voltage Vx for a real lock-in can then be written as

Vx =
1√
2
(Bn sinφn + An cosφn)

+
1√
2

∞
∑

m=−∞
m6=0

G(|mω0|, ωc)
[

Bn−m sin(mω0t+ φn) + An−m cos(mω0t+ φn)
]

(A.10)

Ideally, the low pass filter will only allow the DC part of the signal to get through, so
that Vx ≈ 1√

2
(Bn sinφn + An cosφn). To get an idea of how good an approximation this

is, consider a typical filter, a second order Butterworth filter. A second order Butterworth
low pass filter has a slope of 12 dB/octave and gain G(ω, ωc) = (1 + (ω/ωc)

4)−1/2 , and
typically we adjust ωc so that ωc = ω0/10 (§A.2.3). With this filter, the amplitude of every
AC term in the Fourier series (A.10), will be reduced by at least 102. Hence, to a good
approximation, we may filter out the AC components of the signal (A.10), and we will
recover its DC component, 1√

2
(Bn sinφn + An cosφn).

So finally, when a signal f(t) given by (A.1) with period T = 2π/ω0 is put into a lock-in,
we see that to a good approximation, the voltage Vx displayed on the lock-in front panel
will simply be 1√

2
(Bn sinφn + An cosφn), which is exactly the same as the ideal lock-in

expression for Vx, equation (A.7). We may then use the ideal lock-in equations (A.5) and
(A.7) to calculate Vx

Vx ≈ 1√
2
(Bn sinφn + An cosφn) =

1√
2

ω0

π

∫ t0+2π/ω0

t0

f(t) sin(nω0t+ φn) dt (A.11)

=
1√
2

ω0

π

∫ t0+2π/ω0

t0

f(t)Ṽref(t) dt . (A.12)

This is a useful approximation that will be used often in the next sections.
To calculate the actual voltage on output 1 from the displayed voltage Vx, one must
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multiply by the constant C, as discussed in §A.1.2

Vout 1 = C Vx

≈ C√
2

ω0

π

∫ t0+2π/ω0

t0

f(t) sin(nω0t+ φn) dt .

A.2.2 Effects of noise

In the preceding section, the signal was assumed to be periodic with period T . However,
if there is noise in the signal, the noise need not be periodic, and this is where the real
lock-in output will deviate from the approximate lock-in output given by (A.11). From the
preceding section, we can get an idea of how noise on the input to the lock-in will affect the
output.

Suppose that the noise has angular frequency γ and amplitude A(γ), so that the noise
can be written as N(t) = A(γ) sin γt. Following the steps in the preceding section, output
1 of the lock-in due to this noise will be

Vout 1 = C
A(γ)√

2

[

G(nω0 − γ, ωc) cos(nω0 − γ)t−G(nω0 + γ, ωc) cos(nω0 + γ)t
]

Since G(ω, ωc) ≈ 1 for ω ≤ ωc and is approximately zero otherwise, from this expression
for Vout 1, we see that by choosing ωc < ω0, we can always make the second term vanish.
However, no matter how small ωc is, for frequencies γ which satisfy |nω0 − γ| ≤ ωc (or
equivalently nω0 − ωc ≤ γ ≤ nω0 + ωc), the first term will still contribute to the output of
the lock-in. So the lock-in does not filter out noise at frequencies within ωc of nω0. The
smaller we adjust ωc in the low pass filter (§A.2.3), the more noise we will filter out.

A.2.3 Additional adjustable parameters

The real lock-in has many parameters in addition to the parameters of the ideal lock-in.
The two most important are the output range (usually called the sensitivity) and the time
constant mentioned in §A.2.1. If the output voltage of the lock-in will only be between
−100 mV to 100 mV, we should set the output voltage range to 100 mV. This will optimize
the signal-to-noise ratio of the lock-in output voltages.

The cutoff frequency ωc of the low pass filter described in the previous sections can be
adjusted. The parameter that controls it is called the lock-in time constant. The lock-in
time constant τ is related to ωc by τ = 2π/ωc. As mentioned in §A.2.1, if we want to
measure the Fourier coefficient at frequency nω0, we must adjust the time constant properly
so we effectively filter out the effect of all frequencies not at nω0. However, in addition,
there is usually noise at various frequencies, and a larger time constant means we filter out
more of that noise (§A.2.2). So choosing a larger time constant is always better to achieve
lower noise on the lock-in output. The only drawback to a longer time constant is that the
lock-in takes a few time constants (∼ 3τ) to adjust its output voltage to its final value. This
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means that a larger time constant means we have to wait longer before the voltage displayed
on the front panel on the lock-in is at the value given by (A.11).

Typically we have τ = 30 ms and ω0 = 2π(451 Hz) ≈ 2834 Hz, so that ωc = 2π/τ ≈
209 Hz ≈ ω0/14.

A.3 dI/dV Measurements

To measure dI/dV with a lock-in, we first add a small oscillating voltage ∆V = δV sinω0t
to the DC voltage V on the STM tip, so that the tunneling current becomes I(V +∆V ). We
then pass the tunneling current through a current to voltage converter to get I(V +∆V )/G
where G is the gain of the current to voltage converter; typically G = 10−9 A/V. Next, the
output of the current to voltage converter is put into a lock-in to measure the rms amplitude
of its first harmonic (the rms Fourier component of I(V + ∆V )/G at the frequency ω0 and
phase φ1 = 0). We will see below [equation (A.16)] that the X output voltage of the lock-in
is proportional to dI(V )/dV in the limit of small δV , and hence the lock-in can be used the
measure dI/dV . Furthermore, equation (A.14) will show exactly how the lock-in broadens
dI/dV when δV is non-zero.

To see why the first harmonic of I(V +∆V ) is ∝ dI/dV qualitatively, expand I(V +∆V )

in a Taylor series to first order I(V + ∆V ) ≈ I(V ) + dI(V )
dV

∆V = I(V ) + dI(V )
dV

δV sinω0t.
To first order, the tunneling current is then sinusoidal with frequency ω0, and if we use the
lock-in to find the Fourier component at frequency ω0, then the X output of the lock-in will
be proportional to dI(V )/dV .

A.3.1 dI/dV measured by a lock-in

For the situation mentioned above, the X output voltage Vx displayed on the front panel
of the lock-in can be calculated with (A.11). With φn = 0, f(t) = I(V + ∆V )/G =
I(V + δV sinω0t)/G, t0 = − π

2ω0
, and x = −δV sinω0t, (A.11) can be partially written in

terms of x as

Vx(V ) =
1

G

ω0

π
√

2

∫ t=3π/2ω0

t=−π/2ω0

I(V − x)
x

δV

dx

δV ω0 cosω0t
dx

To completely write the integral as a function of x, substitute

cosω0t =







√

1 − x2

δV 2 for − π
2ω0

≤ t < π
2ω0

−
√

1 − x2

δV 2 for π
2ω0

≤ t < 3π
2ω0

(A.13)
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and split the integral into two parts,
∫ π/2ω0

t=−π/2ω0
+

∫ 3π/2ω0

t=π/2ω0
, using the appropriate substitution

of cosω0t for each part. These two parts are equal to each other so their sum gives

Vx(V ) = − 1

G

1√
2

2

πδV 2

∫ δV

−δV
I(V − x)x

(

1 − x2

δV 2

)−1/2

dx

Applying integration by parts to this expression gives

Vx(V ) =
1

G

δV√
2

∫ δV

−δV

dI(V − x)

dV

2

πδV 2

√
δV 2 − x2 dx

which can be written as the convolution

Vx(V ) =
1

G

δV√
2

(

dI

dV
∗BL1

)

=
1

G

δV√
2

∫ ∞

−∞

dI(V − x)

dV
BL1(x) dx (A.14)

with BL1(x) =

{

2
πδV 2

√
δV 2 − x2 for |x| < δV

0 for |x| ≥ δV .
(A.15)

Hence, we see that voltage Vx displayed on the front of the lock-in will be dI/dV convoluted
with the broadening function BL1. BL1(x) is sketched in figure A.1.

Figure A.1: Lock-in dI/dV broadening function BL1(x). It has a height 2/πδV and FWHM
1.7δV .
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In the limit δV → 0, the broadening function BL1(x) → δ(x), and hence,

lim
δV→0

Vx
G

δV/
√

2
=
dI(V )

dV
.

This means that for small δV , we may calculate dI/dV as

dI(V )

dV
≈ G

Vx

δVrms

(A.16)

where δVrms = δV/
√

2, and G is again the current to voltage converter gain in A/V. This
equation shows that the X output of the lock-in when we apply a voltage V + δV sinω0t to
the tip is proportional to dI(V )/dV .

To relate this result to the actual voltage output of the lock-in Vout 1, we must divide
this result by the constant C, as discussed in §A.1.2

dI(V )

dV
≈ G

Vx

δVrms

=
G

C

Vout 1

δVrms

.

This equation gives us dI/dV with the correct units in terms of the output voltage of the
lock-in.

A.3.2 dI/dV broadening from the lock-in

Equation (A.14) gives us a way to think about how the lock-in measured dI/dV , [dI/dV ]lock-in =
GVx/δVrms, deviates from the true dI/dV , call it [dI/dV ]true. It shows that peaks in
[dI/dV ]lock-in are broadened relative to peaks in [dI/dV ]true. For example, if G = 1 A/V
and [dI/dV ]true is an infinitely sharp delta-function peak, [dI(V )/dV ]true = δ(V ) (in arbi-
trary units), then

[

dI

dV

]

lock-in

=
Vx

δVrms

= BL1(V ) .

So [dI/dV ]lock-in in this case is not a infinitely sharp peak, it is the broadening function BL1

shown in figure A.1. Since the FWHM of BL1(V ) is δV
√

3, we see that peaks in [dI/dV ]true

are broader in [dI/dV ]lock-in by about δV
√

3 = 1.7δV = 2.4δVrms.
However, the effect of broadening is not always so intuitive. For example, if G = 1 A

V

and I(V ) is quadratic, I(V ) = V 2, then [dI/dV ]lock-in calculated from (A.14), will be the
exact first derivative

[

dI

dV

]

lock-in

=
Vx

δVrms

= 2V =

[

dI

dV

]

true

.

However, if I(V ) = V 3, then [dI/dV ]lock-in will be

[

dI

dV

]

lock-in

=
Vx

δVrms

= 3V 2 +
3

4
δV 2 =

[

dI

dV

]

true

+
3

4
δV 2 .
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So [dI/dV ]lock-in in this case is not really a broadened [dI/dV ]true; it is shifted from [dI/dV ]true

by the constant 3δV 2/4.

A.3.3 Deconvoluting the lock-in broadening

Since (A.14) represents the convolution of dI/dV with the function BL1, in principle, we may
recover dI/dV from the lock-in signal by deconvolution. We use the convolution theorem
to express the true dI/dV in terms of the Fourier transforms of [dI/dV ]lock-in = GVx/δVrms

and BL1
[

dI(V )

dV

]

true

= FT−1

[

FT
[

dI
dV

]

lock-in

FT[BL1]

]

. (A.17)

Although in principle we may deconvolute BL1 from dI/dV , in reality, the function
FT[BL1] is a Bessel function with many zeros, and whenever FT[BL1] = 0, the right hand
side of (A.17) goes to ∞, unless the numerator is also zero. The numerator is rarely zero
because of noise or offsets in the data. One way to overcome this problem is to deconvolute
only a certain range of values in [dI/dV ]true, where we limit the deconvolution to the range
where FT[BL1] is not zero.

Figure A.2 shows the result of using (A.17) where the modified function

F̃T[BL1] =







FT[BL1] for FT[BL1] > max
{

FT[BL1]
}

/5

max
{

FT[BL1]
}

/5 otherwise.

was used instead of FT[BL1]. This modified function effectively limits the range of data that
is deconvoluted to the range where FT[BL1] is not too small. The black curve in figure A.2
is a spectrum taken on Au(111) with an rms modulation voltage of δVrms = 20 mV. The
red curve is the deconvolution of the black curve. The green curve is a spectrum taken
at the exact same location and using the exact same settings as the black curve, but the
rms modulation voltage was δVrms = 2 mV. Ideally, the red and green curves would look
the same, and there are features like the two peaks around −0.4 V in the red curve that
look like the features in the green curve. These features are not visible in the black curve,
so the deconvolution worked to remove the broadening in the black curve and make these
peaks resolvable. However, there are artifacts around ±1 V in the red curve that make this
method not always reliable.

Another more reliable method of deconvolution is the same as the one presented in §3.1,
but one must know the exact functional form of [dI/dV ]true for this method to work. In
this scheme, one fits the convolution [dI/dV ]true ∗ BL1 to the data [dI/dV ]lock-in. The best
fit then yields parameters that tells one what [dI/dV ]true is.
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Figure A.2: Deconvoluting the broadening due to a non-zero modulation voltage from a
dI/dV signal. The black curve is a spectrum taken with an rms modulation voltage of
δVrms = 20 mV. The red curve is the black curve with the modulation induced broadening
removed. The green curve was taken using the same settings as the black curve, except
δVrms = 2 mV.

A.3.4 Adjusting the Phase

When we measure dI/dV with a lock-in, we need to adjust the phase difference φ1 between
the reference signal and the modified tunneling current so that φ1 = 0; the modified tunnel-
ing current is the tunneling current after it has passed through electronics, like the current to
voltage converter, before entering the lock-in. The phase difference φ1 is complicated since
it depends on all the electronics that the tunneling current passes through before reaching
the lock-in.

There is also another complication in a dI/dV measurement. To measure dI/dV , we need
to apply a small oscillating voltage to the STM tip and measure the oscillating tunneling
current. The tip and sample are two conducting materials that are placed close together,
so they are also a capacitor. Any change in voltage on the tip will induce a current in the
sample, purely due to the tip-sample capacitance. When we apply an oscillating voltage
to the tip, we want to only measure the contribution to the current due to the oscillating
tunneling current, not from the tip-sample capacitance current.

Both issues of determining the phase φ1 and removing the tip-sample capacitance current
can be dealt with using a procedure which will now be explained. The tunneling barrier
acts as a resistor, so the tunneling current is the current through a resistor, which is in
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phase with any oscillating voltage applied to the tip. The current due to the tip-sample
capacitance is 90◦ behind any oscillating voltage applied to the tip, which means it is also 90◦

behind the oscillating tunneling current. If we can first find the phase of the capacitance
current (after it has passed through all the electronics between the sample and lock-in)
relative to the reference signal, we can then adjust that phase by 90◦ to get the phase of
the modified tunneling current (the current after it has passed through the same electronics
as the capacitance current) relative to the reference signal. Once we know the phase of the
modified tunneling current relative to the reference signal, we can then adjust the lock-in
phase so that the reference signal is in phase with the modified tunneling current (φ1 = 0),
which is the phase we need. When the reference signal and modified tunneling current are in
phase, the X output of the lock-in (the output used to measure dI/dV ) will be determined
solely by the tunneling current, since any signal 90◦ out of phase with the reference signal
(like the capacitance current) will not contribute to the lock-in X output signal; this can
be derived from equation (A.11).

To summarize, once we determine the phase of the capacitance current relative to the
reference signal, we can adjust the phase so that the reference signal and the tunneling
current are in phase (φ1 = 0), which eliminates the capacitance current from the X output
of the lock-in, and since the X output is the one we use to measure dI/dV , the dI/dV signal
contains no contribution from the capacitance. Hence, once we determine the phase of the
capacitance current relative to the reference signal, we can eliminate the two problems of
adjusting the lock-in to the correct phase and removing the capacitance current from the
dI/dV measurements.

The procedure above relies on finding the phase of the tip-sample capacitance current
relative to the reference signal. To find this phase,

1. we first position the tip so that we have a tunneling current.

2. Then we move the tip a few Ångstroms away from the surface, so that there is no
tunneling current.

3. We apply an oscillating voltage to the tip. The current is converted to a voltage using
the same current to voltage converter that we use to measure the tunneling current.
The current we measure will be mainly due to the tip-sample capacitance.

4. The output voltage from the current to voltage converter goes into the lock-in. (The
other input to the lock-in is the reference signal at the same frequency as the oscillating
tip voltage). We then “autophase” the lock-in. It does not matter what output mode
(§A.1.2) we are in when we do this. “Autophase” will adjust the lock-in reference
signal phase to maximize the X output voltage (§A.1.2) of the lock-in (and the Y
output will be 0). The lock-in can display what this phase is; call it θc. θc represents
the phase that must be added to the reference signal so that the reference signal is in
phase with the tip-sample capacitance current.
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Once we know the phase θc, if we subtract 90◦ from it, we get the phase θI = θc − 90◦,
which is the phase that must be added to the reference signal so that it is in phase with
the tunneling current. We can then set the lock-in phase equal to θI , which will add θI
to the reference signal, making it in phase with the tunneling current, and eliminating the
tip-sample capacitance current from dI/dV , as mentioned earlier.

A.4 d2I/dV 2 Measurements

There are different ways of calculating d2I/dV 2: one can numerically differentiate dI/dV ,
or one can use a lock-in amplifier. For the first method, one needs to average over many
dI/dV curves to get a curve sufficiently low in noise to take a numerical derivative since
noise from random fluctuations decreases like 1/

√
N [18].

Measuring d2I/dV 2 with a lock-in is similar to measuring dI/dV , we first add a small
oscillating voltage ∆V = δV sinω0t to the DC voltage V on the STM tip, so that the
tunneling current becomes I(V + ∆V ). We then pass the tunneling current through a
current to voltage converter to get I(V + ∆V )/G where G is the gain (in A/V) of the
converter. Next, the output of the current to voltage converter is put into a lock-in, but
instead of measuring the n = 1 first harmonic, we set the lock-in to measure the n = 2 second
harmonic. The X output voltage then gives us the Fourier component of I(V + ∆V )/G at
the frequency 2ω0.

In addition, we must be sure that we choose the frequency ω0 such that we do not filter
out the signal at 2ω0 with our other electronics, e.g. the current to voltage preamplifier. We
must also adjust the phase between the reference signal and the input signal to the lock-in
correctly, as described in §A.4.2.

We will see below [equation (A.20)] that the X output voltage of the lock-in in this
situation is proportional to d2I(V )/dV 2 in the limit of small δV , and hence the lock-in can
be used the measure d2I/dV 2. Furthermore, equation (A.18) will show exactly how the
lock-in broadens d2I/dV 2 when δV is non-zero.

A.4.1 d2I/dV 2 measured by a lock-in

To show how the second harmonic is related to d2I/dV 2, we may again use equation (A.11).
However, by equation (A.26), we need to adjust the phase φ2 so that φ2 = −π/2. The
modified reference signal in this case is Ṽref(t) = sin(2ω0t + φ2) = − cos 2ω0t. With this
phase, we detect the coefficient −B2 in the Fourier expansion (A.1). It will be shown below
that −B2 is proportional to d2I/dV 2.

With φ2 = −π/2, the voltage Vx of the lock-in [equation (A.11)] is then, with f(t) =
1
G
I(V + δV sinω0t), n = 2, and t0 = − π

2ω0
,

Vx = −B2√
2

= − 1

G

ω0

π
√

2

∫ t=3π/2ω0

t=−π/2ω0

I(V + δV sinω0t) cos 2ω0t dt
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Like the calculation of dI/dV , partially rewrite the above integral in terms of the new
variable x by using the substitutions x = −δV sinω0t and cos 2ω0t = 1 − 2 sin2 ω0t =
1 − 2x2/δV 2

Vx = − 1

G

ω0

π
√

2

∫ t=3π/2ω0

t=−π/2ω0

I(V − x)

(

1 − 2
x2

δV 2

)

dx

−δV ω0 cosω0t
.

Using the same procedure as for the calculation of dI/dV , the integral will be split into

the sum of two parts
∫ π/2ω0

t=−π/2ω0
and

∫ 3π/2ω0

t=π/2ω0
. Using the appropriate substitution for cosω0t

[equation (A.13)] for each part gives

Vx = − 1

G

2

π
√

2

1

δV

∫ δV

−δV
I(V − x)

(

1 − 2
x2

δV 2

) (

1 − x2

δV 2

)−1/2

dx .

Applying integration by parts once gives

Vx = − 1

G

√
2

πδV 2

∫ δV

−δV

dI(V − x)

dV
x
√
δV 2 − x2 dx

and applying integration by parts again gives

Vx =
1

G

√
2

3πδV 2

∫ δV

−δV

d2I(V − x)

dV 2
(δV 2 − x2)3/2 dx

This last result can be written as the convolution [109]

Vx(V ) =
1

4G

δV 2

√
2

(

d2I

dV 2
∗BL2

)

=
1

4G

δV 2

√
2

∫ ∞

−∞

d2I(V − x)

dV 2
BL2(x) dx (A.18)

with BL2(x) =

{

8
3πδV 4 (δV

2 − x2)3/2 for |x| < δV

0 for |x| ≥ δV
(A.19)

A sketch of BL2 is given in figure A.3.
In the limit δV → 0, BL2(x) → δ(x), so

lim
δV→0

Vx
4G

√
2

δV 2
=
d2I(V )

dV 2

For small δV , we may then approximate d2I/dV 2 as

d2I(V )

dV 2
≈ 2

√
2G

Vx

(δVrms)2
(A.20)

To express d2I/dV 2 in terms of the actual output voltage Vout 1 of the lock-in, we must again
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Figure A.3: Lock-in d2I/dV 2 broadening function BL2(x). It has a height of 8/3πδV and
FWHM 1.2δV .

divide this result by the constant C, as described in §A.1.2.
Like dI/dV , equation (A.18) implies that the effect of the lock-in is to convolute the

true d2I/dV 2 with a broadening function. Like the discussion after equation (A.14), the
convolution will broaden peaks in the true d2I/dV 2, but with a different broadening function,
BL2. The FWHM of BL2 is 2

√
1 − 2−2/3δV = 1.22δV = 1.72δVrms, so peaks in d2I/dV 2 will

appear broadened in the lock-in output by ∼ 1.72δVrms.

A.4.2 Adjusting the phase

For d2I/dV 2 measurements, we do not have to worry about the tip-sample capacitance cur-
rent since it does not contribute to d2I/dV 2: I = V/(iωC0) for a capacitor with capacitance
C0, so that d2I/dV 2 = 0 for a capacitor. This is unlike dI/dV measurements, where we
must take into account the tip-sample capacitance current (§A.3.4). Since the capacitance
makes no contribution to d2I/dV 2, when we measure d2I/dV 2 by measuring the second
harmonic, we only get a contribution from the tunneling current.

The correct phase φ2 for d2I/dV 2 measurements is still complicated because of all the
electronics which alters the phase of the tunneling current before it reaches the lock-in.
However, finding the correct phase can be done by simply adjusting the lock-in phase to
maximize or minimize the second harmonic lock-in X output signal Vx. To determine
whether the signal should be a maximum or minimum, we must look at dI/dV at some
arbitrary voltage V0 where dI/dV 6= 0 (the phase is independent of voltage, so any voltage
V0 can be used). If dI/dV is increasing at voltage V0, then we should adjust the phase so
that the second harmonic lock-in output is maximum at voltage V0. If dI/dV is decreasing
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at V0, the phase is adjusted to minimize the second harmonic lock-in output at V0.
The justification for the procedure to determine the phase φ2 comes from equations (A.28)

and (A.11). Equation (A.28) implies that when we apply the oscillating voltage V0 +
δV sin(ω0t) to the tip, the second harmonic in the tunneling current only contains a term
proportional to cos 2ω0t (no sin 2ω0t term). So if we expand the tunneling current I(V0 +
δV sinω0t) in a Fourier series [equation (A.1)], the Fourier coefficient of sin 2ω0t, which is
A2, must be zero. From equation (A.11) with n = 2 and A2 = 0, Vx = 1√

2
B2 sinφ2. Note

that, if we vary the phase φ2, the phase that we want, φ2 = −π/2 (from §A.4), will minimize
Vx if B2 > 0 and maximize Vx if B2 < 0. By §A.4, since B2 ∝ −d2I/dV 2, the phase that we
want will maximize Vx when d2I/dV 2 > 0 or minimize Vx when d2I/dV 2 < 0.

Figure A.4 shows how Vx varies with phase for a EG&G Princeton Applied Research
5210 lock-in. From the graph, the phases which will maximize the second harmonic 2F

Figure A.4: Second harmonic measured from output 1 on a PAR 5210 lock-in in XY -mode.

signal occur at θ ≈ 70◦ and θ ≈ 115◦. We may set these phases manually, or alternatively,
we can simply press “Autophase” on the lock-in and it will automatically adjust the phase
to maximize the second harmonic signal.



APPENDIX A. THE LOCK-IN AMPLIFIER 165

A.5 dnI/dV n Measurements

When a small modulation voltage ∆V = δV sinω0t is applied to the tunneling voltage V ,
the tunneling current I(V +∆V ) will also oscillate. In general, if we use a lock-in to measure
the nth harmonic of the oscillating current, the output will be proportional to dnI/dV n. To
see this, first expand I(V + ∆V ) in a Taylor series around V

I(V + ∆V ) =
∞

∑

m=0

1

m!

dmI(V )

dV m
(∆V )m (A.21)

=
∞

∑

m=0

1

m!

dmI(V )

dV m
(δV )m sinm ω0t (A.22)

= I(V ) +
dI(V )

dV
δV sinω0t+

1

2

d2I(V )

dV 2
(δV sinω0t)

2 + . . . (A.23)

We may substitute for sinn ω0t using the general expression for sinm θ

sinm θ =

{

(−1)m/2

2m−1 cosmθ − ∑(m−2)/2
k=0 ak cos(2kθ) for even m

(−1)(m−1)/2

2m−1 sinmθ − ∑(m−3)/2
k=0 bk sin(2k + 1)θ for odd m

(A.24)

where ak and bk are some coefficients. (The expression (A.24) can be derived using deMoivre’s
Theorem (cos θ + i sin θ)m = cosmθ + i sinmθ and the binomial theorem.) From the Tay-
lor expansion of I(V + ∆V ), we see that the nth term in the Taylor series expansion for
I(V +∆V ), which contains the term sinn ω0t, actually contains the term sinnω0t or cosnω0t
by (A.24). Therefore, if we use a lock-in to measure the nth harmonic, the main contribution
will come from the nth term in the Taylor series, which is proportional to dnI(V )/dV n.

However, by (A.24), the proportionality constant may be negative, and we want a positive
proportionality constant. This can be accomplished by adjusting the phase φn of the lock-in
so that the modified reference signal (§A.1.2) is

Ṽref(t) = sin(nω0t+ φn) =

{

(−1)n/2 cosnω0t for even n

(−1)(n−1)/2 sinnω0t for odd n,
(A.25)

which implies the phase is

φn =







(−1)n/2
π

2
for even n

π

2
− (−1)(n−1)/2π

2
for odd n.

(A.26)

It is good to note that the nth term in the Taylor series is not the only term which
contributes to the nth harmonic; i.e., it is not the only term which contains sinnω0t or
cosnω0t. If we write out the sum in equation A.24 explicitly, we will see that sinn+2 θ,
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sinn+4 θ, etc., also contain the nth harmonic. Hence, the (n+2)th, (n+4)th, . . . terms in the
Taylor series (A.22) will also contain the nth harmonic, but since these terms are higher in
the Taylor series, they are typically orders of magnitude smaller than the nth term, and can
be neglected. Therefore, when we measure the nth harmonic, the largest contribution comes
from the nth term in the Taylor series (A.22), which is proportional to dnI/dV n.

So if we want to measure dnI(V )/dV n, we add ∆V = δV sinω0t to the tip voltage V , pass
the tunneling current through a current to voltage converter with gain G (in units of A/V),
measure the nth harmonic of the output of the current to voltage converter I(V + ∆V )/G
with a lock-in, and adjust the phase φn according to (A.26), then the X output of the lock-in
will be proportional to the rms coefficient of the nth term in the Taylor series of I(V + ∆V )

Vout 1 = CVx ≈ C

G
√

2

1

2n−1n!
(δV )n

dnI

dV n
(A.27)

which is proportional to dnI/dV n. The constant C is discussed in §A.1.2.
As an explicit example, take n = 2. Since sin2 ω0t = (1 − cos 2ω0t)/2, we get that

I(V + ∆V ) = I(V ) +
dI(V )

dV
δV sinω0t+

1

4

d2I(V )

dV 2
(δV )2 − 1

4

d2I(V )

dV 2
(δV )2 cos(2ω0t) + . . .

(A.28)
So when we use a lock-in amplifier to measure the second harmonic (the coefficient of
cos 2ω0t), the main contribution to the signal is proportional to d2I/dV 2.

Although d2I/dV 2 is proportional to cos 2ω0t, it is not the only term in (A.22) propor-
tional to cos 2ω0t. Since sinm ω0t = cos 2ω0t + · · · + (−1)m/221−m cosmω0t whenever m is
even (from (A.24)), every term in (A.22) with even m ≥ 2 also contains a term proportional
to cos 2ω0t. So we can only say that d2I/dV 2 is the leading contribution to the second
harmonic.
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B
Tip DOS Deconvolution by Subtracting Spectra

Whenever we take a dI/dV spectrum of a sample, what we measure is the convolution of
the tip DOS with the sample DOS [equation (2.2)]. We usually assume that the STM tip
DOS is constant, so that a dI/dV spectrum tells us the sample DOS. However, in practice, a
constant tip DOS rarely occurs, and much tip preparation work is needed to get a constant
tip DOS. In fact, for spectra taken at low biases, it is very difficult to get constant tip
DOS. We then need a method of deconvoluting the tip DOS from a dI/dV spectrum to
recover the sample DOS. General methods to deconvolute the tip DOS from dI/dV spectra
using Volterra equations are given in §14.5 in [29]. However, having a simple method which
allows one to extract the sample DOS from a spectrum when the tip DOS is non-constant
will be helpful as it allows one to roughly extract the deconvoluted spectrum by eye, and
it gives us an easy way to check the results of general deconvolution methods. The simple
deconvolution method will be presented here.

The main result will be that, at low biases, if we take a dI/dV spectrum over an adsorbate
and take another spectrum over the metallic surface, deconvoluting the tip DOS from the
adsorbate dI/dV spectrum is approximately the same as subtracting the adsorbate and
surface dI/dV spectra. This has been shown in [193] and will be re-derived here.

First, we will approximate the general expression for an STM tunneling current (2.2) for
low biases and low temperatures. We may assume for low biases that the matrix element is
a constant and at low temperatures

f(E − ecV ) − f(E) =

{

1 for 0 < E < ecV

0 otherwise,

so that (2.2) may be written as

I(V ) = M

∫ ecV

0

ρt(E − ecV )ρs(E) dE . (B.1)
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where M is independent of energy, but depends on the settings used to take the dI/dV
spectrum and the object the spectrum is taken over. ρt and ρs are again the tip DOS and
sample DOS.

We will use (B.1) to express dI/dV spectra taken on an adsorbate and on a metallic
surface. If we do spectroscopy on a metallic surface at low voltages, we can assume that the
surface DOS, ρsurf, is constant. Doing a change of variables E ′ = E − ecV , combined with
the fundamental theorem of calculus d

dx

∫ x

a
f(u) du = f(x), we can calculate dI/dV for the

surface from (B.1) using ρs(E) = ρsurf

dIsurf(V )

dV
= Msurfρsurf

d

dV

∫ 0

−ecV

ρt(E
′) dE ′ = Msurfρsurfecρt(−ecV ) . (B.2)

We now calculate the dI/dV spectrum taken on the adsorbate from (B.1) by using
ρs(E) = ρads(E). Using the chain rule

d

dV
G(x, y) =

∂G

∂x

dx

dV
+
∂G

∂y

dy

dV

and the fundamental theorem of calculus, one can compute dI/dV using

G(x, y) =

∫ x

0

ρt(E − y)ρads(E) dE

with x = y = ecV to get

dIads(V )

dV
= ecMadsρt(E − ecV )ρads(E)

∣

∣

∣

∣

∣

E=ecV

+ecMads

∫ ecV

0

∂

∂y
ρt(E − y)ρads(E) dE .

Since ∂
∂y
ρt(E − y) = − ∂

∂E
ρt(E − y), we get

dIads(V )

dV
= Madsecρt(0)ρads(ecV ) − ecMads

∫ ecV

0

d

dE
ρt(E − ecV )ρads(E) dE .

What we want is ρads. We may solve for ρads if we expand the ρads inside the integral
(but not the ρads outside the integral) in a Taylor series around E = 0, ρads = ρads(0) +
ρ′ads(0)E+· · · and keep the zeroth order (constant) term. Then we may evaluate the integral
and solve for ρads(ecV ), using (B.2) to express ρt in terms of dIsurf/dV

ρads(ecV ) = C1

(

dIads(V )

dV
− C2

dIsurf(V )

dV
+
dIads(0)

dV

)

where C1 =
ρsurfMsurf

Mads
dIsurf(0)
dV

and C2 =
dIads(0)
dV

dIsurf(0)
dV
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This equation implies that if we simply multiply dI/dV taken on the surface by the nor-
malization constant C2, then subtract it from dI/dV taken on the adsorbate, we will get an
expression which is approximately proportional to the adsorbate density of states (ρads(ecV ))
offset by a constant. The major assumption was that the surface DOS is constant, which is
usually a valid assumption at energies within 100 mV of EF.

To get an idea of the accuracy of this subtraction procedure, comparisons between this
simple subtraction of spectra method to a true deconvolution of the tip DOS from dI/dV
spectra have been done in [193]. From these results, one sees that the simple subtraction
method works quite well, and gives some justification for its use in our data. This method
also allows one to simply look at the data and quickly get a rough idea of what features in
the data may be due to the tip DOS.
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C
Building the STM Walker Plate and Scanner

This appendix will describe building some of the important parts of the STM that are
used for the coarse approach and scanning: the walker plate, the body piezo, and the bug.
Figure 5.2 shows a drawing of these various components on the STM stage.

C.1 The walker plate

The walker plate consists of a thick glass slide (a microscope slide cut in half) with electrodes
deposited onto it and another 3 mil thin glass slide over the electrodes. A side view of part
of a generic walker plate is shown in figure C.1.

The walker plates that are currently being used with the STM, and have been used for
at least the last 7 years, were made in UC Berkeley. Although these plates work, sometimes
the coarse movement is not always great, as described in §5.1.6. To attempt to improve the
coarse movement, we considered making a new walker plate, and contacted Gabriel Zeltzer
in Hari Manoharan’s group at Stanford University, who was also building an STM similar
to ours. We found from Gabriel that the Stanford Nanofabrication Facility had better
equipment for making the walker plate, so walker plates built there may be better than
the ones built at Berkeley. We have two walker plates that were made using the Stanford
facilities, both of which have never been used in our system. Figure C.2 has a photo of
walker plates made at Berkeley and at Stanford.

This section will describe how to build walker plates at Berkeley and at Stanford. The
general procedure to build the walker plate are the same at Berkeley and Stanford; it is only
the facilities and equipment used that differ. The general procedure is

1. Cut a microscope slide in half. Only half the slide is necessary for one walker plate.
The other half may be used to build another walker plate.

2. Clean the 1
2
-microscope slide and a thin glass slide (1 in× 1 in× 3 mil, from Ace Glass

Inc.) with nitric acid or piranha (3H2SO4 : H2O2) to remove any metals from the
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Figure C.1: Side view of the STM walker plate (not to scale).

Figure C.2: Photo of walker plates built at Berkeley (left) and Stanford (right). The ruler
is in inches.

surface.

3. Then clean the 1
2
-microscope slide and thin glass slide with tricholoroethane (or tika-

pur), acetone, and methanol, so that it is clean for UHV.

4. In vacuum, deposit a thin layer (30 nm thick) of titanium on the 1
2
-microscope slide

through a shadow mask, then deposit a thick layer (300 nm thick) of aluminum through
the shadow mask on the titanium. This step makes the electrodes of the walker plate.
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It is necessary to deposit Ti first onto the glass since it sticks better to the glass.
However, since Ti is hard to evaporate, it would be difficult to grow a thick electrode
with only Ti, so only a thin layer of Ti is evaporated and then a thick layer of Al
(which is easier to evaporate) is deposited on the Ti.

5. Anodically bond the thin glass slide onto the electrodes. Anodic bonding is a process
where we apply a high voltage between glass and another substance at high temper-
ature, which causes the glass and substance to bond. A general review of anodic
bonding and the mechanisms behind it are in [110].

The specific details of the equipment and procedures used to build the Berkeley and
Stanford walker plates for each of the steps listed above will be given below.

C.1.1 Berkeley walker plates

All steps to build the walker plate listed above up to step 3 can be done in our lab using
our chemicals in the fume hood. The walker plate currently in the STM chamber may not
have been cleaned with nitric acid (step 2 above), but if walker plates are made at Berkeley
in the future, they should be.

For step 4, the electrodes were deposited using an evaporation chamber from the Séamus
Davis group, which probably no longer exists. The shadow mask used is shown in figure C.3.
The 30 nm of Ti was evaporated onto the microscope slide by placing Ti in a tungsten boat

Figure C.3: Shadow mask used when depositing the electrodes onto the walker plate glass.
The ruler is in inches.

and running ≈ 70 A through the boat. The 300 nm of Al was deposited by placing Al in a
W boat and running ≈ 20 A running through the W boat.

For step 5, the anodic bonding was done manually. Following figure C.4, we place metal
on a flat glass microscope slide on the thin glass slide. Then we apply 350 V for 1 hour at
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300◦C. The metal piece on the glass slide should also have enough weight so that it pushes
down on the thin glass slide, causing the thin glass slide to make good contact with the
electrodes.

Figure C.4: Setup to anodically bond the thin glass slide to the metal electrodes

C.1.2 Stanford walker plates

The Stanford Nanofabrication Facility at Stanford University has commercial equipment
to build the walker plates. The Stanford facilities has the chemicals to clean the glass
slides (steps 2 and 3), metal deposition systems to deposit the electrodes (step 4), and an
Electronic Visions 501 Bonder to anodically bond the metal to glass (step 5). The anodic
bonder bonds the thin glass slide to the electrodes very uniformly, making a flatter glass
surface than the Berkeley plates, and should help the bug to move across the thin glass slide
without getting stuck.

C.2 The bug

The STM bug consists of insulating macor parts that were machined in the physics depart-
ment machine shop, as well as piezoelectrics that were purchased from Staveley Sensors
(now EBL Products, Inc.). The parts are glued together using Torr-Seal from Varian. A
picture of the bug is given in figure C.5.

AutoCAD drawings and photos of all the bug parts, except for the body piezo, are given
in figures C.6 and C.7. The AutoCAD drawings of these parts will be used later to pictorially
describe how to build the bug.

There are also special tools to help build the bug. They are shown in figure C.8. There
are also AutoCAD files for all the tools in figure C.8.

The general steps to build the bug are

1. Attach the Z-piezo to the cylinder.
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Figure C.5: Picture of the STM bug. The ruler is in inches; each small division is 1/16”.

2. Attach the front plug to the Z-piezo.

3. Attach the back plug to the cylinder.

4. Attach the tip holder/tip shield to the front and back plugs.

5. Attach the X and Y piezos to the cylinder and foot.

6. Attach the body piezo to the foot.

The next figures will describe each step in the building process above, except for the last
step, which will be described in another section due to its complexity. There are many spare
or broken bug parts that can be used to practice building the bug.
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Figure C.6: AutoCAD drawings and photos of the various bug parts. The top row of
bug parts have cross-sectional views for the AutoCAD drawings, while the the AutoCAD
drawings for the bottom two bug parts are not cross-sectional views. The dots on the piezos
in the photos marks their + side. The ruler in all photos is in inches with 1/16” divisions.
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Figure C.7: Drawing of the STM tip holder and tip shield with a photo of it above. The
ruler in the photo is in inches with 1/16” divisions.

Figure C.8: AutoCAD cross-sectional views, with photos above them, of the various special
parts used to help build the bug. The ruler in all the photos is in inches with 1/16” divisions.
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(a) Put Z-piezo in the base with the
+ side down. The plus side is usually
marked with a + or a dot. Put dowel
1 into the base through the hole in
the Z-piezo. Apply some Torr-seal
to the end of the cylinder. Note that
the two ends of the cylinder are not
the same, so apply Torr-seal to the
correct end.

(b) Put the cylinder on the Z-piezo
and put the weight on the cylin-
der. Remove most of the excess Torr-
seal from the Z-piezo (we have to
glue wires to the Z-piezo later, so
it can’t be covered with Torr-seal).
Also make sure there is not too much
Torr-seal inside the cylinder, or else
the dowel may become glued to the
cylinder. Methanol removes excess
Torr-seal well. Let the Torr-seal
harden.

Figure C.9: Step 1: Attaching the Z-piezo.
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(a) Remove the weight and dowel,
then flip the cylinder upside down.
Put dowel 1 in the base and place the
cylinder through dowel 1 on the base,
as shown. Apply Torr-seal to the z-
piezo in the area where the front plug
will touch it.

(b) Put the front plug on the Z-piezo
and put the weight on the front plug.
Remove any excess Torr-seal, espe-
cially on the inside of the cylinder,
or else the dowel may become glued
to the Z-piezo. Allow the Torr-seal
to harden.

Figure C.10: Step 2: Attaching the front plug.
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(a) Remove the weight and dowel,
then flip the cylinder upside down
again. Now put dowel 2 (not dowel
1) in the base and put the cylinder
on the base. Apply Torr-seal to the
rim of the cylinder; i.e., apply Torr-
seal to the area that will touch the
back plug shown in the next step.

(b) Put the back plug on the cylinder
and put the weight on the back plug.
Remove excess Torr-seal from the in-
side and outside of the cylinder and
allow the Torr-seal to harden.

Figure C.11: Step 3: Attaching the back plug.
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Figure C.12: Step 4. After the Torr-seal hardens, remove the dowel and remove the partially
built bug from the base. Put the tip shield and tip holder through the front and back plugs.
Then apply Torr-seal between the tip shield and front plug and between the tip shield and
back plug. Move the tip holder/tip shield back and forth a little so that some of the Torr-seal
goes into the holes in the front and back plugs. Let the Torr-seal harden.

(a) Glue the longer edge of the X
and Y piezos into the slots in the
cylinder with Torr-seal with the
positive sides of the piezos fac-
ing outward. The positive side
is usually marked with a + or
a dot. Do not let the Torr-seal
harden.

(b) Then put a little Torr-seal into the slots
in the bug foot. Note the orientation of the
foot in the figure. Slide the cylinder and X/Y
piezos into the slots on the foot. Then add
more Torr-seal around the foot slots to glue
the X and Y piezos to the foot. Try to position
the cylinder so that the X and Y piezos look
perpendicular. Allow the Torr-seal to harden.

Figure C.13: Step 5: Attaching the X and Y piezos.
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C.2.1 The body piezo

The final step in building the bug is to attach the body piezo. It is more involved since it
first requires modification of the body piezo.

Modifying the body piezo

The body piezos were made by EBL Products, Inc. (formerly Staveley Sensors). They are
discs 0.75 in in diameter and 16.5 mil thick, made from EBL #2 with Ni electrodes. Usually
the positive side of the piezo is marked with a + or a dot. Figure C.14 is a photo of the
body piezo with a dot marking the + side.

Figure C.14: Photo of the body piezo. The dot marks the + side of the piezo. The ruler is
in inches with 1/16” divisions.

These are the steps to modify the body piezo.

1. As shown in the next figure, with the edge of a diamond file, make a small notch on
the negative polarity side of the body piezo (the side without the + or dot). Once a
notch is made with the diamond file, one can shape it more precisely with a scalpel or
a dentist pick.
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2. Glue a 2 mil annealed Au wire in the grove using Epotek H20E silver epoxy, as shown
in the next figure. The Au wire was annealed in atmosphere by running a few amps
of current through it until it turned red (which took a few seconds).

Figure C.15: The 2 mil annealed Au wire is glued into the grove with H20E silver epoxy.
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3. Using the outline below as a guide,

place small amounts of H20E epoxy on the negative side of the body piezo at two
additional points so that the additional epoxy, together with the epoxy in the groove,
lie at the corners of an equilateral triangle, as shown in the next figure. The epoxy at

Figure C.16: Epoxy tripod on the negative polarity side of the body piezo. The sizes of the
clumps of epoxy in the bottom view are exaggerated; they should be around half the length
and half the width.

the three points of the triangle form the legs of a tripod, and when the bug is completed,
it will touch the walker plate only at these three points, making it mechanically stable.

4. Next, place the body piezo in the vacuum oven. Then pump out the vacuum oven
and vent it with nitrogen. Then heat the oven to 100◦C for 1 hour. Do not heat the
piezo when the oven is under vacuum, since the epoxy will expand under vacuum and
baking it under that condition makes it flaky when hardened.

5. While looking at the body piezo through an optical microscope, file down the hardened
H20E epoxy with a diamond file until the epoxy is only around 1–2mil high, as in the
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front view in figure C.17. Use a micrometer to measure the height, and make sure all
epoxy tripod legs are the same height.

6. Next, flip the piezo over and attach, using H20E epoxy, another annealed 2 mil Au wire
to the + side of the piezo, at a point directly above the epoxy on the negative piezo
side, as shown in the next figure. The wire should be glued at a position directly over
the epoxy that is adjacent clockwise from the wire for the negative piezo electrode.

Figure C.17: Top of body piezo after filing down the tripod and attaching another Au wire
to the positive electrode.

7. In addition to the epoxy for the Au wire, place another small amount of epoxy on
the + piezo side, directly above the epoxy on the negative piezo side, as shown in
figure C.17. This epoxy will be used later as a marker to help align the body piezo
with the rest of the bug. One may alternatively scratch the surface a little where the
epoxy would go instead of actually placing epoxy since the only purpose of the epoxy
is to mark the surface of the piezo.

8. Bake the piezo in the oven at 100◦C for 1 hour under nitrogen to harden the epoxy.

9. After the epoxy has hardened, pole the piezo by applying 350V across of it while
heating it at 120◦C for 1 hour. The current through the piezo during poling is typically
less than 0.1 mA. To stop the poling process, first cool down the piezo to room
temperature, then reduce the voltage to zero.
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Attaching the body piezo

After the body piezo has been modified following the steps in the previous section, it may be
attached to the rest of the bug. It is not necessary to build the rest of bug before attaching
the body piezo, but it is easier to align the body piezo with the macor bug foot when the
rest of the bug is already built, so its better to attach the body piezo as the last step.

In the past, we would take a completely built bug that was not walking well and replace
only the body piezo, hoping that would improve the walking. This is probably not necessary
anymore since the problems with coarse approach are usually fixed by warming up the STM
stage while keeping the walker plate electrodes grounded.

However, if there is any reason why only the body piezo needs to be replaced on a bug
that is already completely built, there a few steps to remove the old body piezo.

1. First break off the body piezo with tweezers, cutters, etc.

2. Then sand the bottom of the bug foot so that both the macor tripod and center stump
are even. The next figure identifies which parts of the foot are the tripod and stump.

Figure C.18: Stump and tripod of the bug foot.

3. Once the foot tripod and center stump are even, using a diamond file, make the stump
around 1–2 mil shorter than the tripod, as shown in figure C.19. One can measure the
height of the stump with a micrometer or by trying to slide a 2 mil Au wire under the
stump.

After the steps given above, the new body piezo can be attached.
The next steps below deal with attaching the body piezo to the macor bug foot. These

steps are the same whether one is only replacing the body piezo, or building a completely
new bug.

To attach the body piezo to the bug foot, one first needs Epotek H20E silver epoxy to
glue the piezo to the bug foot and a special tool to hold the piezo against the bug foot while
the epoxy hardens. A picture of the tool, called the piezo bower, is shown in figure C.20.
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Figure C.19: Correct height of the stump relative to the foot tripod. Drawing not to scale.

Figure C.20: Tool, called the piezo bower, to help attach the body piezo to the macor bug
foot. The ruler is in inches.

Using this tool, the steps to attach the body piezo to the foot are

1. Place the new body piezo on the center of the piezo bower, centered on the domed
region, with the + side of the piezo facing up, being careful not to break any Au wires
on the piezo.

2. Put a little H20E epoxy on the foot stump. This epoxy will be used to attach the
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body piezo to the bug foot. The body piezo will be attached to the bug foot only at
the stump so that the body piezo can expand and contract in all directions.

3. Place the foot on the body piezo and align the foot and body piezo so that the foot is
centered on the piezo and the STM tip is directly over the small amount of epoxy on
the + side of the body piezo, as shown in the next figure.

Figure C.21: Alignment of the piezo bower, bug, and body piezo.

4. Place the metal strip between the X and Y piezos as shown in the next figure, and
recheck the alignment between foot and body piezo.

Figure C.22: The metal strip is placed between the X and Y piezos.
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5. Tighten the screws clamping the metal strip so that the strip bends a little, as shown
in the next figure. The ends of the strip should be around 2 to 3 mm above the piezo
bower base. Pushing the metal strip against the bug foot forces the bug foot against

the body piezo. Since the stump of the bug foot is slightly shorter than the bug foot
tripod (figure C.19), the body piezo will bend slightly under this force. This slight
bowing of the body piezo makes it rigidly attached to the bug foot, making the entire
bug more mechanically stable.

6. Put everything in the oven for 90 minutes at 80◦C.

7. After everything has cooled down, remove the bug from the piezo bower and test the
coarse movement with a spare walker plate and test the body piezo capacitance.

Frequency characterization of the body piezo

When we bend the piezo, we do not want to bend it so much that it may crack or break. To
indirectly test the amount of stress on the body piezo, we measured the piezo impedance
as a function of frequency while differing amounts of bowing was applied by the piezo
bower. Figure C.23 shows a graph of the frequency dependence of the impedance of the
body piezo, showing the resonant dip at ∼ 107 kHz and the anti-resonant peak at ∼ 126 kHz
(reference [4]). The black curve is when there is no bowing. The green curve is obtained
when the amount of bowing is similar to the amount used to attach the body piezo to the
bug foot. The red curve is obtained when the piezo is bowed more than the amount used
to obtain the green curve.

From the graph, we see that the amount of stress applied to the piezo when we attach it
to the bug foot alters the piezo impedance some, but not as much as the amount of stress
used to obtain the red curve. So the amount of stress applied to the piezo during attachment
to the bug foot is less likely to damage the piezo than the amount of stress used to obtain
the red curve. This is how we chose the amount of bowing to use when attaching the body
piezo to the bug foot.
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Figure C.23: Impedance of the body piezo as a function of frequency for different amounts
of stress.
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[190] N. Troullier and José Luriaas Martins. Efficient pseudopotentials for plane-wave cal-
culations. Physical Review B, 43(3):1993–2006, Jan 1991.

[191] A. Wachowiak, R. Yamachika, K. H. Khoo, Y. Wang, M. Grobis, D.-H. Lee, Steven G.
Louie, and M. F. Crommie. Visualization of the molecular Jahn-Teller effect in an
insulating K4C60 monolayer. Science, 310(5747):468–470, 2005.
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