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ARTICLE

Genome maps across 26 human populations reveal
population-specific patterns of structural variation
Michal Levy-Sakin1, Steven Pastor2, Yulia Mostovoy1, Le Li 3, Alden K.Y. Leung4, Jennifer McCaffrey2,

Eleanor Young2, Ernest T. Lam5, Alex R. Hastie5, Karen H.Y. Wong 1, Claire Y.L. Chung 4, Walfred Ma1,

Justin Sibert2, Ramakrishnan Rajagopalan2, Nana Jin4, Eugene Y.C. Chow4, Catherine Chu1, Annie Poon1,

Chin Lin1, Ahmed Naguib5, Wei-Ping Wang5, Han Cao5, Ting-Fung Chan 4,6, Kevin Y. Yip 3,6, Ming Xiao2,7 &

Pui-Yan Kwok 1,8,9

Large structural variants (SVs) in the human genome are difficult to detect and study by

conventional sequencing technologies. With long-range genome analysis platforms, such as

optical mapping, one can identify large SVs (>2 kb) across the genome in one experiment.

Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the

1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar

to those of single nucleotide variations in 86% of the human genome, while ~2% of the

genome has high structural complexity. We are able to characterize SVs in many intractable

regions of the genome, including segmental duplications and subtelomeric, pericentromeric,

and acrocentric areas. In addition, we discover ~60Mb of non-redundant genome content

missing in the reference genome sequence assembly. Our results highlight the need for a

comprehensive set of alternate haplotypes from different populations to represent SV pat-

terns in the genome.
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Among all classes of sequence variation, large structural
variants (SVs, >2 kb) are the least studied because they are
difficult to detect comprehensively across the genome1.

Whereas tens of thousands of individuals have been whole-exome
or whole-genome sequenced2–5, genome-wide SV data of only a
small number of individuals have been published. As short-read
sequencing dominates human genome analysis, large SVs are
mostly invisible to such analyses because of the presence of
numerous repetitive elements6. The diploid nature of the human
genome makes it even more difficult to detect large SVs in the
heterozygous state7. Long-read sequencing methods and other
long-range genome analysis platforms (such as optical mapping,
Strand-seq, and Hi-C) provide the means to study this previously
inaccessible class of sequence variation8,9. We have shown pre-
viously that optical mapping based on single-molecule analysis is
an efficient and reliable way to detect large SVs10 and, when
combined with long-read DNA sequencing, is useful in de novo
assembly of the human genome11. In this report, we describe the
large SV content of 154 individuals across 26 populations
sequenced in the 1000 Genomes Project (1KGP)3,12, the popu-
lation patterns of these SVs across populations from around the
world, the locations of large insertions and additional copies of
large copy number variants (CNVs), and the structure of regions
that are difficult to characterize (such as segmental duplications
(SDs), subtelomeric areas, pericentromeric areas, and acrocentric
chromosome p-arms).

Our results show that the reference genome represents only
one haplotype among many in the world population, and has
substantial missing content (~60Mb). We observe that the bulk
of the genome contains large SVs with phylogenetic population
patterns similar to those of single-nucleotide variations (SNVs).
However, ~2% of the genome consists of clusters of very large,
complex SVs comprising many distinct haplotypes; these loci
have substantial overlap with SDs and subtelomeric and peri-
centromeric regions. These results confirm previous observations
that SDs and parts of the genome with complex structural var-
iations behave differently from the rest of the genome13. Fur-
thermore, we are able to extend the genome maps into
subtelomeric, pericentromeric, and other regions with large tan-
dem repeats that are not characterized currently in the reference
genome sequence. Using linked-read sequence data from the 10x
Genomics (10xG) Chromium platform14 for 13 of the individuals,
we have validated many of the large SVs. Taken together, our
study shows the utility of genome-wide analysis of large SVs and
points to the need for an expanded set of alternate reference
haplotypes to capture the diversity in SVs across populations.

Results
Genome maps of diverse populations. We selected 156 samples
from 26 different populations collected by the 1KGP3,12. From
each population, genome maps were constructed for 6 biologi-
cally unrelated samples (3 males and 3 females) based on de novo
assembly of large single molecules (≥150 kb) fluorescently labeled
at Nt.BspQI nicking sites10. Mapping data were collected at 79×
average coverage with molecule length N50 of 262 kb. Two
samples failed at the data acquisition step, resulting in genome
maps for 154 samples, each with an average of 3427 contigs at
N50 size of 1.16 Mb (Supplementary Data 1).

We determined the portions of the reference genome that
could theoretically be mapped with the Nt.BspQI nicking enzyme.
One class of unmappable reference regions contain large
sequence gaps, providing no in silico nicking site information.
We explored some of these regions by analyzing maps aligned to
flanking regions (discussed below). Additional long sequences in
the genome (e.g. much of the centromere) lack Nt.BspQI motifs,

resulting in featureless DNA molecules. We defined reference
regions as inaccessible for mapping where the sequence-based
gaps were ≥50 kb (after removing gaps that were fully spanned
with mapping data; see Methods) or the stretches lacking Nt.
BspQI motifs were ≥100 kb (Fig. 1a, Supplementary Data 2).
Using these criteria, 2.87 Gb of the genome (93%) can be mapped,
with most inaccessible regions found in centromeric, pericen-
tromeric, and subtelomeric regions. The 154 de novo genome
assemblies aligned to an average of 2.53 Gb of hg38, with one
sample, NA19239, aligned to 2.85 Gb (covering ≥99% of the
mapping-accessible reference genome). Samples that aligned to
shorter lengths of hg38 had smaller de novo assemblies associated
with shallower molecule coverage depth and/or shorter molecule
length (Supplementary Data 1). In addition, assemblies contained
maps not aligned to the hg38 reference, totaling ~60Mb in
aggregate over the 154 samples (described below).

Linked-read genome assembly and hybrid assembly. For each of
the 13 subpopulations deemed most genetically distinct from one
another3, we selected one sample with a high-quality genome
map assembly to obtain whole-genome linked-read sequencing
data using 10xG Chromium sequencing libraries. These were
sequenced to ~60× average coverage, with a mean inferred
molecule length of 82 kb. Phased genome assemblies were gen-
erated using Supernova software (v1.1)15, yielding an average of
~1300 scaffolds (of >10 kb) totaling ~2.7 Gb, with N50s ranging
between 14.7 and 23.5 Mb for each assembly16.

In addition, we generated hybrid scaffolds where genome maps
were used to bridge the Supernova scaffolds. The hybrid
assemblies contained ~2.8 Gb in 188–265 scaffolds at N50s of
25–35Mb, with some of the scaffolds covering full chromosomal
arms (see Supplementary Fig. 1 and Supplementary Table 1).
Edges of scaffolds were typically near SDs.

Classification of structurally complex regions. While SVs are
found throughout the genome, we sought to identify loci that
harbored multiple structurally distinct haplotypes with clusters of
large SVs (Supplementary Fig. 2). To guide this search, we
assembled the genome maps from all 154 samples into a single
consensus assembly that consisted of 1245 maps spanning 2.85
Gb, covering 99.3% of the mapping-accessible reference genome
and capturing the predominant SVs in the dataset (Supplemen-
tary Fig. 3). The vast majority of the accessible genome was well-
covered by individual genome maps and assembled into one
consensus scaffold per locus, reflecting low levels of structural
diversity (Fig. 1b, c). In contrast, 83 Mb were covered either by
multiple overlapping consensus scaffolds, or by no consensus
scaffolds despite being well-covered by individual genome maps,
reflecting loci too structurally diverse to represent with a single
consensus scaffold. These regions were manually curated using
our criteria of structural complexity: containing ≥3 different SVs
within the full dataset, including inversions, translocations,
CNVs, and insertions/deletions (indels) >10 kb. For loci con-
taining only indels, at least one of the indels had to be >100 kb.
Borders of each complex area were manually adjusted to exclude
structurally simple flanking areas. After this curation, 55 loci (67
Mb) were defined as structurally complex (Fig. 1a, d; Supple-
mentary Data 3), and 2.65 Gb was classified as having low
structural complexity. Features known to be predisposed to
structural complexity–subtelomeric and pericentromeric regions,
SDs, and long tandem repeats–were each overrepresented in the
complex regions compared to the entire accessible reference
genome (resampling p ≤ 5e-5). Many of the complex regions were
associated with pathogenic variation in the ClinVar17 and OMIM
databases18 (Supplementary Data 3).
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Structural variation identification and validation. We used a
modified version of OMSV19 to identify large (>2 kb) SVs from
each of the 154 samples (Supplementary Data 4–8; Supplemen-
tary Fig. 4). In total, we identified 15,601 unique high-confidence
large indel SVs (average size 11.2 kb, largest insertion at 381 kb,
Table 1). Each sample has a median of 1539 large indels that span
14.2 Mb. Among the large indels, 14,226 (91%) are in low-
complexity regions. Interestingly, while large indels generally
display a smooth size distribution, there is a clear peak ~6 kb
(Supplementary Fig. 5), corresponding to LINE1 elements. In
addition, we also detected 934 complex SVs, including inversions,
SDs, and loci with multiple large indels in close proximity
(Table 2; Supplementary Fig. 6).

We used three independent methods to evaluate the accuracy
of the large indels detected. First, we checked whether they could
also be found in the 10xG linked-read sequencing data from
13 samples (Methods; Supplementary Fig. 7). Among the ones
that could be examined, 78% (90% of the deletions and 69% of the
insertions) were confirmed by the 10xG contigs (Supplementary
Fig. 8). Further checking against the calls in Sudmant et al.12, 84%
of our large indel calls (95% of deletions and 76% of insertions)
were confirmed by either the 10xG data or the Sudmant study12

(see Supplementary Table 2).
Second, we generated genome map data from additional family

members for four samples, resulting in data for 4 trios

(Supplementary Table 3). We applied our pipeline to identify
large indels in these 12 samples independently and found that
95.4% of them were concordant with Mendelian inheritance
(Supplementary Table 3).

Third, we found that among the large indels identified from sex
chromosomes of female samples, only 0.1% were wrongly called
from the Y chromosome.

Taken together, these results confirm the high accuracy of the
large indels detected.

Among the samples in this study, 144 were also included in a
recent study by the 1000 Genomes Project12. For the 15,024 large
indels we identified from these samples, 3966 (26.4%) overlapped
those identified in that study (Fig. 2a). Most of the remaining
novel large indels were insertions (Fig. 2b, c), consistent with
previous reports that large insertions are difficult to detect by
short-read sequencing1,19,20. Importantly, many of these novel
insertions were independently detected in multiple samples, and
some of the inserted sequences were contained in alternative loci
in the hg38 reference (Supplementary Table 2), both supporting
the existence of these novel insertions. In all, 1647 (25%) of the
large indels identified in the 1KGP12 did not overlap our calls.
When we reduced the stringency of OMSV, 1252 of them were
recovered. We further investigated the remaining 395 calls and
found that approximately one-third of them (123) were in
inaccessible regions due to the nicking enzyme used for genome
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mapping. For the remaining 272 large indels (4% of the 6526 SVs
identified by the 1KGP12 from these 144 samples), the majority of
our genome maps aligned to these loci supported the reference
allele only.

We further compared our large deletions with those identified
in several large-scale studies12,21,22. Among the 8700 large
deletions we identified, 5762 were also found in these studies
(Fig. 2d), suggesting that the remaining 34% of our SVs were
novel. Of the 718 large deletions and 877 large insertions we
identified in the widely studied NA12878 sample, 562 deletions
and 383 insertions were also found in the previous studies with
SV data12,23–26, suggesting that 22% of our deletions and 44% of
our insertions were novel.

The novel deletions we identified were mostly rare variants
(found only in one sample, 63%), or found in samples not
included in the other studies, or missed by previous studies due to
low sequencing depth12. With 90% of our deletions called in one
sample supported by 10xG data in general, many of these novel
deletion calls are likely correct.

Population structure of large insertions/deletions. We explored
the population structure of large indels in the low-complexity
regions at three levels. At the super-population level, after elim-
inating effects due to sample number differences (Methods), we
investigated the specificity of the large indels (Fig. 3). In general,
30–44% of the large indels identified from each super-population
are shared by all five super-populations, 26–36% are shared by
some but not all super-populations, and 22–44% are unique to
one super-population, with the largest fraction of the uniquely
identified SVs found in Africans followed by East Asians.

At the population level, we performed a phylogenetic analysis
based on the occurrence of large indels in their samples of each
population (Fig. 3b). Populations from each super-population
largely clustered together, and the African cluster was first
separated from the other four super-populations. A similar

grouping of samples was also observed from a clustering analysis
of the populations (Supplementary Fig. 9).

At the individual sample level, we performed a principal
component analysis (PCA) of the SV allele counts (Fig. 3,
Supplementary Fig. 10). We found that the first PC almost
completely separated African samples from the other four super-
populations, while the second PC clearly separated European,
South Asian, and East Asian samples, with American samples
admixed with the European and South Asian clusters.

We also compared the SV sizes in different super-populations.
An analysis of variance led to 85 large indels with statistically
significant size differences among super-populations (called by at
least 10 samples, significance level of 0.05 with Bonferroni
correction; see Supplementary Data 9 and Supplementary
Fig. 11).

When these analyses were repeated for insertions and deletions
separately (Supplementary Fig. 12), the resulting trends remained
highly similar, with the only notable difference being a larger
proportion of super-population-specific deletions than insertions.

Population pattern of copy number variations. Complex CNVs
with large repeat units and numerous copies have been challen-
ging in genome analysis. Genome maps built from long molecules
can span large tandem repeat units and present an advantage in
characterizing such CNVs10,19. Using a multiple alignment
approach (see Methods), we performed quantitative analysis of
CNVs by aligning contigs of these regions across all 154 samples
(Supplementary Fig. 13). Once the consensus flanking regions of
a CNV are defined, it is possible to determine the exact copy
number in each sample. The results are summarized in Supple-
mentary Data 10. When analyzed across the population groups,
patterns were observed at several loci such as the pepsinogen
locus at chromosome 11q12.2 (Fig. 4). An average of 2.5, 2.1, 3.3,
1.6, and 2.4 copies of a 20-kb repeat unit were observed in the
Africans (AFR), Americans (AMR), East Asians (EAS), Eur-
opeans (EUR), and South Asians (SAS) super-populations,
respectively, with a significantly higher copy number (p < 0.05,
Tukey test) in the EAS super-population. We compared the list of
CNVs with functional categories including RefSeq gene annota-
tion27, SDs28, the ClinGen CNV database28, and the NHGRI-EBI
GWAS Catalog29 (Supplementary Table 4). We found that all
CNVs were associated with at least one of these features, sug-
gesting that these regions are hotspots for variation and some
could lead to the generation of pathogenic variants.

Characterization of complex regions. Our analysis of the con-
sensus and individual genome assemblies identified 55 large
complex regions, 27 of which were located around centromeres
and telomeres, regions that were poorly assembled in the human
reference genome. Genome maps built with long molecules from
multiple individuals can characterize many of these complex

Table 1 Number of large (>2 kb) insertions and deletions identified from the 154 samples

Type Total number
of unique SVs

Average size
(bp)

Maximum size
(bp)

Median number
per individual

Median SV allele
per individual

Median size (kb)
per individual

High-confidence list Insertions 6495 14,082 380,886 906 1513 6611
Deletions 9106 9160 259,478 633 1044 7568
Total loci 15,601 11,209 380,886 1539 2557 14,179

Filtered high-confidence
list with complex regions
removed

Insertions 5839 12,429 288,377 816 1367 5001
Deletions 8387 8036 225,078 524 848 3788
Total loci 14,226 9839 288,377 1340 2224 8893

SV structural variant

Table 2 Number of complex structural variations identified
from the 154 samples

Type Total number of unique SVs

Inversions 380
Duplications 47
Intra-chromosomal break ends 11
Inter-chromosomal break ends 25
Multiple insertions/deletions 458
Others 13

SV structural variant
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regions and fill in the gaps found in the reference genome. As an
example, we characterized a 1.3-Mb complex region near the
centromere of chromosome 21 (21p11.2; chr21:
9,500,000–10,800,000). We identified key differences in genome
structure between hg38 and our proposed structure informed by
multiple alignment analysis of 154 samples (Supplementary
Fig. 14). Figure 5 shows the region in hg38 starting from sub-
region C, followed by F2 and ending up with E (indicated by blue
arrows), separated by large unfilled gaps. Multiple alignment
analysis on the contigs aligned to these subregions suggested a
different genomic structure with a new order of subregions
(Fig. 5a, indicated by red arrows). A comparison of the genome
structure between hg38 and the one based on multiple alignment
is shown in Fig. 5b. Several subregions (A, B1, and B2) not
present in chr21 of hg38 were identified, with population-
associated haplotypes across the region. For example, the AMR
and EUR super-populations had much lower occurrence of D2
comparing to the other populations (Supplementary Fig. 15).

Characterization of SDs in subtelomeric regions. SDs con-
tribute to human evolution, adaptation, and genomic instability
but are poorly characterized30,31. SDs represent ~5% of the
genome and are frequently found near centromeres and telo-
meres32–34. Among 126Mb of known SDs (≥10 kb in length and

≥95% sequence identity), 49 Mb were in the complex regions, 36
Mb were in inaccessible or low-coverage regions, and the
remaining 41Mb were scattered across 2.65 Gb of low structural
complexity regions. On average, SDs in complex regions (median
82 kb) were significantly longer than SDs in low structural
complexity regions (median 32 kb) and had significantly higher
sequence identity (median 99.4% vs 97.4%). These long and
extremely similar SDs are intractable with most sequencing
technologies but can be reconstructed using long optical map
molecules.

Human subtelomeric regions contain inter-chromosomal
SDs35, including paralogy block 3, a 40-kb segment of DNA
found in subtelomeric regions on multiple human chromosome
arms. However, the hg38 reference does not extend to the block 3
region. The genome maps from long molecules consistently
extended beyond the ends of chromosomes in hg38, and detected
this block on 13 chromosome arms. Figure 6 shows the
paralogous blocks of subtelomeres combined differently on each
chromosome arm, and between haplotypes. Some contain blocks
missing from the hg38 reference or Stong assembly36. The
distribution of block 3 on 6p was highly variable. For 15q, the
majority of haplotypes contained block 3. For 7p, most of the
samples had extra blocks that were not present in the hg38
reference. HG00353 had blocks 1–9 (185 kb), while NA18986
contained an extra 90 kb, but lacked block 3. Chromosome arms
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3q, 6q, 15q, and 19p showed a heavy prevalence of block 3 in
>50% of the individuals, with similar frequency among super-
populations. Seven percent had block 3 in the 7p arm, and 64% of
those were from the African super-population. The distribution

in 16p and 16q arms behaved similarly, with 3 and 14% of all
individuals had block 3 in their 16p and 16q arms. Among those
individuals with block 3, 75% (16p) and 71% (16q) were from the
African super-population. Block 3 occurrence and patterns were

6p 3

0 0.05 M

65 kb

185 kb

50 kb

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6 8 9

102511 12 13

0.1 M 0.15 M 0.2 M 0.25M 0.3 M 0.35 M

4 5 6 7823 2532

Consensus maps

NA06986

HG01464

hg38

15q

Stong et. al. 2016

Stong et. al. 2016

Consensus maps
HG03115
NA12892

hg38

7p

Stong et. al. 2016

Consensus maps

HG00353
NA18986

hg38
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chromosome- and population-dependent. Our results support the
findings of a previous study of this paralogy block that signified
recent human divergence37.

Novel genome content not in the reference. We found 4063
consensus maps across 154 samples that could not be aligned to
the hg38 reference. In aggregate, ~60Mb of new genome content
was identified. To find the unique non-aligned consensus maps,
we used an all-against-all comparison and generated 53 unique
groups from 2224 non-aligned consensus maps. The remaining
1839 consensus maps were categorized as tandem repeats.

To determine if the ~60Mb of new content is found in other
published genome assemblies, we constructed in silico nick-
labeled sequence maps from several genome sequence assemblies
for comparison. We examined the hg38 Alternative, Random, and
Uncharacterized (decoy) sequences38, the Chinese genome
assembly (HX1)39, the Korean genome assembly (AK1)11, and
11 primate reference genomes (Callithrix jacchus
(GCA_000004665.1), Chlorocebus sabaeus (GCA_000409795.2),
Gorilla gorilla (GCA_000151905.3), Macaca fascicularis
(GCA_000364345.1), Macaca mulatta (GCA_000772875.3), Nasa-
lis larvatus (GCA_000772465.1), Nomascus leucogenys
(GCA_000146795.3), Pan paniscus (GCA_000258655.2), Pan
troglodytes (GCA_002880755.3), Papio anubis
(GCA_000264685.2), and Pongo abelii (GCA_002880775.3)) and
found that ~36.5 Mb of our non-aligning content are not found in
these assemblies. Specifically, 14 of the 16 HX1 maps not aligned
to the reference were found in our content. Overall, 6.8 Mb of the
new content aligned to the HX1 genome. For the AK1, 4.6 Mb of
its non-aligned content matches our content. We also found that
2.1 Mb of the new content could be mapped to at least one of the
11 primate genomes (see Supplementary Fig. 16 and Supplemen-
tary Table 5).

Comparing the non-aligned content of the probands of two
trios (Han Chinese-HG00514 and CEPH-NA12878) to their
respective parents, we found that 15/20 and 15/17 non-aligned
maps from the Chinese and CEPH probands, respectively, aligned
to parental maps.

The newly identified maps of the p-arm of the acrocentric
chromosomes are part of this content (see below). There is no
evidence that the non-aligned content is from viral or bacterial
contamination (and we accounted for the Epstein-Barr viral
genome in the immortalized cell lines we used in this study).

Identification of unique acrocentric chromosome patterns.
Non-aligned maps were analyzed for specific patterns, and it was
found that the most abundant non-aligned contigs could belong
to the p-arms of acrocentric chromosomes. Figure 7 illustrates the
most abundant, unique non-aligned maps. These maps shared a
40-kb region with a unique nicking pattern (Fig. 7a, red bar). This
segment was flanked by variable counts of ~6 kb tandem repeat
units (50–220 kb). The 40-kb segment nicking pattern was
identical to one found on the chromosome 4p arm in hg38, and
corresponded to an SD shared by subtelomeres of chromosome
4p and 4q. Youngman et al. sequenced 27-kb homologs (blue
teeth in Fig. 7a) from acrocentric subtelomeres, which also shared
this distinct pattern40. Further evidence for the localization of
these maps to the ends of chromosomes was obtained through a
CRISPR-Cas9 labeling technique, which specifically tagged the
telomeric repeats41. CRISPR-Cas9-labeled single DNA molecules
(Fig. 7a) indicated that telomeric repeats, denoted by the bright
green ends, were immediately upstream of the 40-kb segment.

Using the aforementioned features, seven unique acrocentric
patterns were discovered (Fig. 7b). These patterns were observed

consistently in non-aligned consensus maps across all genomes
and were the most abundant patterns found in non-aligned maps.
Aside from the 40-kb segment and tandem repeats, these maps
contained three additional unifying features, shown in Fig. 7c, for
a total of five features we used to define an acrocentric map. Each
contained the required 40-kb segment, two sets of tandem
repeats, and two separate label distribution groups, which may
vary between molecules within a genome. The primary variation
of these maps between and within genomes were the copy
numbers of the first tandem repeat pattern (TR1). Whole-genome
molecule alignments provided evidence of the existence of at least
one of the seven acrocentric maps in all genomes with any
variation observed in the copy number of labels in TR2.
Currently, we cannot localize the acrocentric patterns to specific
chromosome arms.

Characterization of reference N-gaps. The reference genome
contains 603 N-gaps predicted to span 151Mb, much of which is
found in heterochromatin regions (93% by length). To determine
which gaps could be better characterized with genome map data,
the assembly-to-reference alignment for each sample was eval-
uated to identify reference gaps that were spanned by contigs.
Ninety-two such gaps (3.1 Mb by reference length) were identi-
fied, and their map-based gap size was determined (Supplemen-
tary Table 6). Most of these gaps (90% by reference length) were
found in euchromatin, closing 28% of the euchromatin predicted
gap length. The map-based gap lengths were correlated to the
reference gap lengths (Pearson’s correlation r= 0.56, p= 9e-9)
(Supplementary Fig. 17). Map-based gap lengths ranged from
−182 kb, representing a deletion including the gap’s flanking
sequence, to 428 kb, with a median length of 977 bp.

A complementary analysis was performed using 10xG sequen-
cing data from 13 samples, yielding a total of 113 distinct closed
reference gaps with a median length of 375 bp (Supplementary
Data 11). As with the genome map data, most of the closed gap
length belonged to euchromatin (66% by reference length).
Among the assembled gap sequence content, 67% was composed
of Ns, likely due to the repetitive nature of gap-containing regions
that make them challenging to assemble. Nonetheless, 85 of the
assembled gaps contained non-N sequence in at least one sample.
Using RepeatMasker42 on assembled gap sequences, annotations
were applied to 66% of the non-N sequence, with the largest
proportion (34% by length) annotated as satellite DNA,
consistent with the centromeric and pericentromeric locations
of many gaps. Other frequent annotations included tandem
repeats (24%), LINE1 elements (20%), and long terminal repeats
(10%). To gauge the accuracy of assembled gap sizes, we
compared the lengths of gaps spanned with both 10xG and
genome map data (Supplementary Fig. 18). The two datasets
closed 39 of the same gaps, which showed a strong correlation
between the genome map and 10xG lengths (Pearson’s correla-
tion r= 0.76, p= 1.5e-8).

Genome distribution of variable number tandem repeat/min-
isatellite sequences. It is likely that many of the large SVs in the
genome (especially those 2–20 kb in size) are associated with
variable number tandem repeats. We examined the 13 samples
for which we had 10xG data and found that almost a quarter of
the 4922 SVs identified by optical mapping (23.9% of the inser-
tions and 23.5% of the deletions) are within 20 kb of SDs, telo-
meres, centromeres, or gaps, rendering the 10xG data not useful
for comparison because the SV calls in these regions are
unreliable43.
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For the remaining SVs (1863 insertions and 1893 deletions),
76.8% and 89.0% of the insertions and deletions, respectively, are
supported by 10xG sequencing data. Based on the breakpoints
identified by the sequencing data, we used RepeatMasker to
classify the SVs and their flanking sequences (see Methods and
Supplementary Figs 19–21). We found that interspersed
sequences were highly enriched in proximity to SVs, with
87.1% of the insertions and 96.4% of the deletions within 500
bp of repeats/transposable elements (TE) at one or both
breakpoints. More than half of the deletions were within 500 bp
of LINEs and about 40% of the SVs were within 500 bp SINEs
(Supplementary Fig. 19). In the majority of the SVs, TE were
found at both ends of the SV, with LINE/LINE the most common
combination for deletions and SINE/SINE the most common for
insertions (Supplementary Fig. 21). Combinations of mobile
elements from two different families such as LINE/SINE were
also observed. In addition, we found that a small subset of the SVs
could be linked to retro transposition activity, resulting in
integration (or deletion) of processed mRNA in the form of
pseudogenes (see Methods and Supplementary Figs 19–21).

Y chromosome analysis. We generated Y chromosome contigs
from 77 male samples that covered the highly duplicated regions of
the Y chromosome (Supplementary Fig. 22) and bridged across the
many discontinuous segments of the complex repeated structure.
Samples with higher coverage depth had a more contiguous

assembly (p= 1.05e-15; Pearson’s correlation r= 0.76) than those
with lower depth, with a median assembly size of 11.2Mb across all
samples. When we analyzed the samples with >100× genome-wide
molecule coverage (26% of the sample cohort), the median size of
the Y chromosome assembly increased to 18.2 Mb. We identified
a total of three deletions, two insertions, two inversions, and two
CNVs (Supplementary Table 7) in these samples. Two out of the
three deletions corresponded to two large gaps in the primary
hg38 assembly and the corrected sequences were found in the fix
patches recently submitted (Scaffold ID: KZ208923.1 and
KZ208924.1). All other SVs showed a wide range of allele fre-
quencies both within and between population groups (Supple-
mentary Fig. 23 and Supplementary Table 8). In addition, we
detected two CNVs in regions that contained four genes in the
RBMY1 family. The first locus harbors RBMY1A1 and RBMY1B
while the second one harbors RBMY1D and RBMY1E. The mean
population copy number for the loci were 4 and 2, respectively.
This combination of copy number (4 and 2) was the most pre-
valent in our dataset, representing 45% of the total samples we
analyzed (Supplementary Fig. 24). While technology such as array
comparative genomic hybridization (aCGH) can provide the
overall sum of RBMY1 copy number, aCGH cannot distinguish
the count and the orientation of the specific genes. Overall, these
results suggest that the optical mapping strategy can be used to
ascertain SVs even in the complex repeated structure of the Y
chromosome. However, optical mapping (and other long-read
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sequencing platforms) requires unique anchors to place the reads/
molecules in the proper orientation in order to characterize near-
identical repeats. Because of this limitation, much of the Y
chromosome remains unresolved and the discovery rate of this
study is lower than expected as we took a very conservative
approach to Y chromosome SV identification.

Discussion
This study extends the comprehensive analyses of large SVs
across populations previously published by others13,22,44. With
6 samples derived from each of 26 populations comprising the
1KGP, and linked-read sequencing data from 13 samples repre-
senting the key populations, our dataset allows us to examine
large SVs across the genome and across populations. Genome
mapping identified 8.5 times more large insertions than pre-
viously reported by the 1KGP from the same samples and 35%
more deletions. Not surprisingly, many of the large insertions and
deletions were flanked by repetitive elements (such as LINE1)
that short-read sequencing cannot sequence across. The bulk of
the SVs display an almost identical phylogenetic tree (and very
similar population patterns based on PCA) as those derived from
SNVs. However, there are 55 complex regions in the genome with
variable population patterns and high levels of SV, often con-
sisting of several types of SVs occurring in the same locus (i.e.,
insertions, deletions, and inversions in different combinations
clustered in the same region). The large number of samples from
many populations in this study allows us to define the major
haplotypes in these regions, and it is clear that the reference
genome assembly is but one haplotype of many. Without a
comprehensive set of alternate haplotypes representing the var-
iation within and across populations, aligning short-read
sequences to the complex regions will lead to errors in analysis.

Based on a saturation analysis45,46, we estimate the total
number of large SVs in the low-complexity regions of human
genomes to be around 27,900, and our current dataset has cov-
ered around half of the estimate (Supplementary Fig. 25a). We
expect to identify 37.7 new large SVs for each additional sample
with genome mapping, which is almost twice as many as the 20.9
new large SVs per sample found by sequencing (Supplementary
Fig. 25b), demonstrating the power of genome mapping in dis-
covering large SVs.

Multiple alignment of genome maps can help reconstruct a
more comprehensive genome assembly and discover new
genome patterns. Our study demonstrates how this
approach applies to the poorly assembled region at 21p11.2.
Notably, large-scale structural features were also spotted at
21p11.2, where individuals carried different types of patterns (B1/
B2, D1/D2, and F1/F2) with varying population frequencies.
Moreover, two of the genomic regions (B and D) were not pre-
viously part of the hg38 assembly. Taken together, genome
mapping not only characterizes population patterns of large SV,
but also characterizes regions even where the reference is
incomplete.

In characterizing CNVs, observed population patterns suggest
accelerated evolution in these regions. CNVs play key roles in
genome evolution, as they provide raw materials for gene dupli-
cation and gene family expansion. They account for phenotypic
diversity and variable disease susceptibility. Genome maps facil-
itate the characterization of CNVs commonly found in hotspots
of genomic rearrangement. One variable CNV we characterized
affects serum pepsinogen level, a practical predictor of gastric
cancer47,48. Interestingly, higher copy number in the EAS super-
population echoes the high prevalence of gastric cancer in this
ethnic group49.

Genome mapping also identified novel genome content not
found in the hg38 reference genome sequence. Because these
maps are found in multiple samples, there is high confidence that
they are real, though absent in the DNA donors of the reference
genome. When the new content is sequenced, the non-reference
unique insertions can be added to the human genome reference at
the correct chromosomal locations, thereby enhancing its use-
fulness by reducing the fraction of short-read sequencing data
discarded because they cannot be mapped back to the human
genome reference16.

Genome mapping data can drive further targeted analyses. For
example, one can refine SV breakpoints using linked-reads or
other long-read sequencing technologies, although some variants,
such as those in highly repetitive regions with repeat units longer
than the read length of the sequencing platform, may remain
intractable.

Parts of the genome remain inaccessible where the molecules
cannot be mapped or assembled because they are devoid of
nicking sites or unique nicking site patterns for the nicking
enzyme (Nt.BspQI) used. Adding another nicking enzyme (such
as Nb.BssSI) might result in unique nicking pattern signatures
within the previously inaccessible regions. Additionally, one can
use custom CRISPR/CAS9 labeling to target a region that is
devoid of nicking sites from any existing commercially available
enzyme41. Labeling the telomeric repeats with CRISPR-Cas9
nick-labeling, we defined the nicking patterns at the end of the p-
arms of acrocentric chromosomes. Future studies will benefit
from use of new technologies including the novel Bionano
labeling chemistry (Direct Label and Stain) which enables flor-
escent labeling of long molecules with a greater label density than
previously available enzymes and without the introduction of
systematic fragile site breaks50. These improvements allow effi-
cient genome-wide interrogation of variants down to 500 bp.

Our study confirms the abundance of large SVs in the genome
and the presence of population-specific SV patterns. It also
extends the current genome assembly and identifies additional
haplotypes found in complex regions. SV maps from different
populations will be very useful in resolving complex regions and
provide better references for genome analysis in groups not
represented by the DNA donors of the human genome reference
sequence assembly. High-speed, cost-effective genome mapping
employed in this study makes population-scale genome SV pro-
filing feasible. A major limitation of optical mapping is its lack of
sequencing data, such that it does not have single basepair
resolution. However, when combined with high-throughput
sequencing, genome mapping lays the foundation for haplo-
type-resolved, structurally accurate medical grade genomes for
full genome analysis in the era of precision medicine.

Methods
Sample collection. In all, 156 samples from 26 different populations were studied.
From each population, 6 non-related samples (based on pedigree information from
the 1KGP), 3 males and 3 females, were chosen (http://www.internationalgenome.
org/cell-lines-and-dna-coriell). The corresponding lymphoblastoid cell lines (LCLs)
were obtained from the Coriell Cell Repository.

Data generation and processing. High-molecular-weight DNA was extracted,
nicked, and labeled using the enzyme Nt.BspQI (New England Biolabs (NEB),
Ipswich, MA, USA), and imaged using the Bionano Genomics Irys system (San
Diego, CA, USA) to generate single-molecule maps for assembly and structural
variation analysis.

Bionano whole-genome mapping. For high-molecular-weight DNA extraction,
cells from the LCLs were washed with phosphate-buffered saline, resuspended in
cell resuspension buffer, and embedded into low-melting-point agarose gel plugs
(BioRad #170-3592, Hercules, CA, USA). Plugs were incubated with lysis buffer
and proteinase K for 4 h at 50 °C. The plugs were then washed, melted, and then
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solubilized with GELase (Epicentre, Madison, WI, USA). The purified DNA was
subjected to 4 h of drop-dialysis. DNA concentration was determined using Quant-
iTdsDNA Assay Kit (Invitrogen/Molecular Probes, Carlsbad, CA, USA), and the
quality was assessed based on visual inspection of clarity and viscosity, plus pulsed-
field gel electrophoresis.

For DNA labeling, the high-molecular-weight DNA was labeled according to
commercial protocols using the IrysPrep Reagent Kit (Bionano Genomics).
Specifically, 300 ng of purified genomic DNA was nicked with 7 U nicking
endonuclease Nt.BspQI (NEB) at 37 °C for 2 h in NEB Buffer 3. The nicked DNA
was labeled with a fluorescent-dUTP nucleotide analog using Taq polymerase
(NEB) for 1 h at 72 °C. After labeling, the nicks were repaired with Taq ligase
(NEB) in the presence of dNTPs. The backbone of fluorescently labeled DNA was
stained with YOYO-1 (Invitrogen).

For data collection, automated electrophoresis of the labeled DNA into the
nanochannel array of an IrysChip (Bionano Genomics), followed by automated
imaging of the linearized DNA was performed by the Bionano Irys instrument. The
DNA backbone (outlined by YOYO-1 staining) and locations of fluorescent labels
along each molecule were detected using an in-house image detection software. The
set of label locations of each DNA molecule defines an individual single-molecule
map.

10xG linked sequencing. High-molecular-weight genomic DNA extraction,
sample indexing, and partition barcoded libraries were done according to 10X
Genomics (Pleasanton, CA, USA), Chromium Genome User Guide and as pub-
lished previously15.

Bionano whole-genome mapping assembly pipeline. Raw single-molecule maps
were de novo assembled into consensus maps using Bionano IrysSolve assembly
pipeline with default settings, using pipeline versions 4555 and 4618 (the latter
introduced minor bug fixes but no changes to the assembly algorithms).

The assembly pipeline included an implementation of the overlap-layout-
consensus algorithm. An initial assembly graph was constructed based on a
complete pairwise comparison of single-molecule maps passing a length filter of
150 kb. The graph was then pruned. Spurious edges were removed, and redundant
paths collapsed. Draft consensus genome maps representing longest paths from the
assembly graph were output. The maps were refined, extended, and merged
iteratively in order to generate a set of final consensus maps, which we used as
input for hybrid scaffolding with 10xG assemblies and structural variation analysis.

10xG assembly pipeline. 10xG raw reads were assembled using the company’s
Supernova software version 1.1 with default parameters. Output fasta files of the
phased supernova assemblies were generated using all possible styles: raw, mega-
bubble, pseudohap, and pseudohap2.

Bionano and 10xG hybrid assembly pipeline. Pseudohap2 fasta files and Bionano
assembled consensus maps were used to generate hybrid assemblies using the
Bionano Hybrid Scaffold tool with the following parameters: -N 1 –B 2. To evaluate
the quality of the hybrid assemblies, we aligned each hybrid assembly to hg38 using
nucmer from the MUMmer package51 and Assemblytics52.

Consensus assembly pipeline. Assembled consensus maps from each individual
were converted to the BNX file format and merged together using Bionano’s
RefAligner “merge” function (with the following parameters: -merge -bnx
-bnxversion 1.2 -randomize). This merged file was then used as input to the
Bionano assembly pipeline with default settings to generate the consensus
assembly.

Genome classification. We classified the genome into distinct categories using the
criteria described in Supplementary Fig. 2. First, to determine the genome coverage
of the individual assemblies and the meta assembly, we re-aligned these contigs to
the reference using RefAligner with the following parameters: -res 2.9 -FP 0.6 -FN
0.06 -sf 0.20 -sd 0.0 -sr 0.01 -extend 1 -outlier 1e-14 -endoutlier 1e-13 -PVen-
doutlier -deltaX 12 -deltaY 12 -xmapchim 12 5000 -nosplit 0 -biaswt 0 -T 1e-12 -S
-1000 -indel -PVres 2 -rres 0.9 -MaxSE 0.5 -MinSF 0.15 -HSDrange 1.0 -outlierBC
-outlierLambda 20.0 -outlierType1 0 -xmapUnique 12 -AlignRes 2. -outlierExtend
12 24 -Kmax 12 -resEstimate -M 1 -f -BestRef 0. These parameters output the best
single alignment for each area of the assembly while allowing chimeric alignments,
especially important for complex regions. We extracted the genome coverage from
the resulting alignments.

To define regions of the genome with gaps that affect our analysis, we identified
N-gaps in the hg38 reference spanning at least 50 kb, as well as regions in the
reference where gaps between in silico predicted BspQI labels spanned at least 100
kb. Since gap sizes in the reference genome are typically estimates, we empirically
calculated sizes for a subset of gaps using genome maps (see above), and removed
gaps from this set of inaccessible regions if they were able to be sized in at least 25%
of samples (Supplementary Data 2).

To build a preliminary list of putative complex regions, we next looked at
consensus assembly genome coverage and identified areas covered by two or more
meta scaffolds. Genome regions covered by no consensus scaffolds were added to
the list if they also had individual assembly coverage of at least 92× (or 46× on chr
Y), i.e. at least 60% of samples; these regions were unable to be assembled into a
consensus meta scaffold despite high assembly rates in individual samples,
suggesting a high rate of structural variation between individuals. Regions with low
individual assembly coverage (<92×, or 46× for chr Y) were classified as low
coverage. These regions had two primary causes: (1) the region overlapped fragile
sites, i.e. areas where BspQI sites were close together on opposite strands and
therefore led to frequent breakage of the DNA molecules; and (2) the reference
genome differed substantially from individual assemblies, due to either reference
assembly errors or very high polymorphism rates, resulting in assembled contigs
that did not align to the reference in these areas.

The portion of the genome covered by exactly one consensus scaffold was
sorted into two categories depending on its individual assembly coverage. Regions
with individual assembly coverage below 92×, or 46× for chr Y, were classified as
low coverage, while the remaining regions with high individual assembly coverage
were classified as low complexity.

The preliminary list of putative complex regions was manually curated and
edited as follows. Each region was visualized in OMView from the OMTools
package53 with the individual assemblies from all 154 samples aligned to the
reference with parameters -res 2.9 -FP 0.6 -FN 0.06 -sf 0.20 -sd 0. 0 -sr 0.01 -extend
1 -outlier 1e-14 -endoutlier 1e-13 -PVendoutlier -deltaX 12 -deltaY 12 -xmapchim
12 5000 -nosplit 0 -biaswt 0 -T 1e-12 -S -1000 -PVres 2 -rres 0.9 -MaxSE 0.5
-MinSF 0.15 -HSDrange 1.0 -outlierBC -outlierLambda 20.0 -outlierType1 0
-xmapUnique 12 -AlignRes 2. -outlierExtend 12 24 -Kmax 12 -resEstimate -M 1 -f
-BestRef 1. The region was considered complex if it contained at least three
different SVs including inversions, translocations, CNVs, and indels, but not
including SVs that appeared only once in the dataset. Indels were only considered if
they were longer than 10 kb, and regions containing only indels needed to contain
at least one that was over 100 kb to be considered complex. For regions that passed
the filter, their boundaries were adjusted to capture the complex area and exclude
flanking areas with low structural complexity. In cases where parts of the complex
regions overlapped with the inaccessible or low-complexity regions (e.g. where a
gap or region with low structural complexity was flanked by complex SVs that were
merged into a single complex region), those regions were removed from the latter
classifications.

Complex regions were annotated with genomic features, ClinVar17, and
OMIM18 entries with which they overlapped (Supplementary Data 3). Genomic
features included SDs28 (filtered by length ≥ 10 kb, percent identity ≥ 0.95),
tandem repeats28 (filtered by score > 2000), N-gaps, alternate haplotypes in hg38,
and telomeric, centromeric, subtelomeric (within 7 Mb of the telomeres), and
pericentromeric (within 9 Mb of the centromere) regions. ClinVar entries were
included if they were pathogenic/likely pathogenic, not SNVs, and under 10 Mb.
OMIM entries were similarly filtered to only include those under 10 Mb.

To determine whether complex regions were overrepresented in different
genomic features, we performed 10,000 permutations of the complex regions across
the genome using Bedtools54 shuffle, with the inaccessible regions excluded. For
each genomic feature listed above except for N-gaps, we counted the number of
overlaps with the permuted complex regions, and determined an empirical p value
based on where the real number of overlaps fell in the list of 10,000 permuted
values.

Overview of multiple alignment algorithm. A detailed description of the multiple
alignment algorithm for optical mapping is described elsewhere (Leung et al.
(manuscript under review), https://github.com/TF-Chan-Lab/OMTools). Briefly,
the multiple alignment analysis pipeline contains three stages: block construction,
block sorting, and block merging. The pipeline computes segment matching
information from pairwise-alignment results to cluster matching segments into the
same group and create a series of collinear blocks. The blocks are then ordered to
minimize rearrangement between blocks. Finally, adjacent collinear blocks are
merged if their sizes are similar.

Multiple alignment for selected regions. Assembled OM contigs were first
aligned to a given selected region of interest on the reference hg38 using
OMBlast55. Next, pairwise alignment of contigs aligning to the selected region was
performed; the segment matching information was used to construct the multiple
alignment. All multiple alignments employed the same multiple alignment para-
meters except for analysis in copy number variations where the merging step was
skipped. Finally, the multiple alignment was manually refined.

Structural variation detection pipelines. We used a modified version of OMSV19

to identify large (>2 kb) SVs of various types including indels, inversions, dupli-
cations, and translocations. We also used Bionano’s pipeline for detecting inver-
sions, which were integrated with the OMSV inversions to form a more
comprehensive inversion list.
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The modified OMSV pipeline for identifying SVs from optical maps. The
modified version of OMSV identified SVs by comparing the nicking site patterns
on the optical maps and the aligned loci of the reference sequence. Three types of
comparisons were performed (Supplementary Fig. 4), namely: (1) direct compar-
ison between optical maps of individual DNA molecules with the reference (MR),
(2) assembly of the individual optical maps into contigs, followed by comparison of
these contigs with the reference (CR), and (3) indirect comparison between the
optical maps of individual molecules and the reference by aligning the molecules to
the contigs and aligning the contigs to the reference (MCR). The CR and MCR
modules were newly added to OMSV in this study. The contigs assembled from
individual optical maps spanned longer regions and thus contained more nicking
sites for an accurate alignment with the reference. They helped identify large or
complex SVs that made direct alignment of optical maps to the reference difficult.
The MR module, on the other hand, did not rely on the accuracy of optical map
assembly. These several modules were thus complementary to each other. To
minimize SV calling errors due to alignment errors, we considered only alignments
with a confidence score higher than 9.

Definition of the in silico reference map. Both the MR and MCR modules
involved the alignment of optical maps to the reference. This reference was
produced by in silico digestion, i.e., recording the occurrence locations of all
instances of the nicking enzyme motif (5′-GCTCTTC-3′ of NT.BspQI in this
study) in the reference genome hg38, including the motif occurrences on both
strands.

To match the data resolution of optical maps, all adjacent motif occurrences
within 450 bp were merged and represented by a single occurrence at their middle
location on the in silico reference map.

The molecule-reference module. The MR module in the modified OMSV pipe-
line was the same as the one in the original OMSV pipeline19. Briefly, the optical
maps were first aligned to the reference map by combining OMBlast55 and
RefAligner56 alignments. Then for every pair of adjacent nicking sites on the
reference or an optical map, the distances between them on the reference and all
optical maps aligned to this locus were compared. Specifically, suppose the distance
on the reference was d0, and on the n aligned optical maps, the distances were d1,
d2, …, dn, the ratios d1/d0, d2/d0, …, dn/d0 would be used to compute the like-
lihoods of different hypotheses:

● Null hypothesis H0 that there were no insertions or deletions between the two
sites

● Hhom that there was a homozygous indel between the two sites

● HðinsÞ
het that there was a heterozygous insertion between the two sites

● HðdelÞ
het that there was a heterozygous deletion between the two sites

● Htri that there were two indels between two sites on mating chromosomes, i.e.
two different insertions, two different deletions, or one deletion and one
insertion

An SV would be called if one of the four alternative hypotheses had a large
likelihood ratio to the null, using the default cutoff value of OMSV.

The contig-reference module. The CR module compared the contigs assembled
from individual optical maps to the reference map. Both the optical map assembly
and SV calling were performed using a pipeline by Bionano as described in the
corresponding sections. This pipeline did not determine the zygosity of each SV.

The molecule-contig-reference module. Since the CR module identified SVs by a
direct comparison between contigs and reference without further considering the
individual optical maps that supported the SVs, the MCR module supplemented it
by using the statistical SV calling method of MR but having optical maps aligned to
the reference indirectly through the contigs. Specifically, if nicking site i was aligned
to nicking site j on a contig, and j was aligned to nicking site k on the reference
using OMBlast, i and k would be aligned indirectly. To ensure the uniqueness of
alignment, for each optical map we only considered the contig that the optical map
aligned to with the highest assembly score.

The complex SV detection module. We also developed a module for identifying
three types of complex SVs, namely inversions, translocations, and duplications. Here
we use an inversion case to depict the steps of our method in Supplementary Fig. 6.

First, we used the alignments between the contigs and the reference to spot
candidate SV regions, and then looked for support of single optical maps from the
two-step alignments (MCR) and direct alignments (MR). Specifically, split-
alignment allows different parts of a single optical map to be separately aligned to
different locations with arbitrary orientations, and the corresponding locations on
the reference at which the split alignments start/end are considered breakpoints of
candidate SVs:

● Inter-translocations: optical maps are split-aligned to different chromosomes
● Intra-translocations: optical maps are split-aligned to different locations on

same chromosomes with distance > 5Mb
● Inversions: optical maps are split-aligned to the same chromosomes within

5Mb (Supplementary Fig. 6)
● Duplications: alignments of different segment of the same optical map are

(partially) overlapped

Compared with single molecules, the consensus maps are longer and therefore
the split alignments of them are more reliable.

For each candidate SV, the molecules supporting the consensus maps with split
alignments and the molecules rejecting the SV (supporting the wild type around
the breakpoints) were extracted to estimate its score. In both MCR and MR
alignments, we selected the molecules around the breakpoints being partially
aligned as supporting molecules and the molecules fully aligned with the aligning
regions across the breakpoints as rejecting molecules. We define the supporting/
rejecting score of a molecule as follows:

SM ¼ min
nmi

nmi
þ lmi

log nmi

� �
;

nmiþ1

nmiþ1
þ lmiþ1

log nmiþ1

� � !
; ð1Þ

where mi and mi+1 are the adjacent split maps of molecule M, nmi
is the number of

mapping sites on the split map mi, and lmi
is the number of extra or missing sites

on the split map mi. The rejecting molecules (supporting reference) do not have
split maps in the alignment and we presume that they are split at the
breakpoints. After scoring, both sets of molecules are de-duplicated by only
keeping one record with the largest score for each molecule, and the molecules
being considered as both supporting and rejecting are classified to the side with
higher scores. The support scores and rejections of all molecules are simply
accumulated as total support Ss and total rejection Sr. The candidate is
discriminated as true SV if Ss > Sr.

Data normalization. We originally planned to produce optical maps for
156 samples, involving 6 samples from each of the 26 populations. Genome maps
produced from two samples (NA21097 and NA21135) subsequently failed to
assemble and were discarded, leading to the final list of 154 samples. These
154 samples had good map coverage in general (Supplementary Data 1).

We used two strategies to reduce any bias caused by unequal data coverage in the
different samples, namely bootstrap aggregating (bagging) and loose threshold. In the
bagging strategy, conceptually for each sample with less than one million aligned
optical maps, we repeatedly sampled from the set of aligned genome maps (with
replacement) and finally added all of them back such that the sample had around one
million aligned optical maps. In our actual implementation, to make the whole
procedure more efficient, for each candidate SV we sampled from the molecules
aligned to the SV locus only until the number of aligned molecules proportionally
corresponded to having one million aligned molecules in total. In the loose threshold
strategy, we lowered the minimum number of molecules supporting each SV from 10
(default value) to 6. While both strategies could remove potential bias due to unequal
data coverage in the different samples, they could also increase the false positive rate.
Comparing the two strategies, the bagging strategy seemed to produce more false
positives. Therefore, in the definition of the high-confidence list of SVs, we used only
the loose threshold strategy and applied it only to the MCR alignments, which had the
highest accuracy among the three sets of alignments. In the full list for explaining the
SVs called by 1KGP but missed by our high-confidence list, we applied the bagging
strategy to the MR and MCR alignments.

Inversion detection pipeline. We also called inversions between the de novo-
assembled maps and hg38 using the Bionano Solve 3.1 pipeline. They were obtained
by first aligning the assembled maps to the reference using a Multiple Local
Alignment algorithm with a maximum likelihood model for evaluating alignments.
The resulting alignments were analyzed for inversion signatures.

Inversion breakpoint calls involved neighboring alignments with opposite
orientations. Inversions larger than 5Mb were called as intra-chromosomal
translocation breakpoints. To improve detection of small inversions whose inverted
regions contain at least four labels, the pipeline searched in a limited space for
potential inverted alignments.

The inversions detected by Bionano Solve 3.1 pipeline were combined with the
inversions called by the OMSV complex SV detection pipeline to generate a more
comprehensive list of inversions.

Data availability
Genome map and sequencing read data, as well as hybrid assemblies, can be accessed via
NCBI under BioProject PRJNA418343 [https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA418343].
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