
UC Irvine
ICS Technical Reports

Title
Pipelining of register transfer netlists

Permalink
https://escholarship.org/uc/item/2h66h51w

Authors
Kanehara, Kenichi
Gajski, Daniel D.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2h66h51w
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(TitJe 17 U.S.C.)

Pipelining of Register Transfer Netlists
,,,...-· ~

by

Kenichi Kanehara~
::;:;;;.-. --

Daniel D. Gajski

Technical Report 91-12

Information and Computer Science Department
University of California, Irvine

Irvine, CA. 92717

Abstract

011
/i) ?

(__ _,. ._)

This paper describes a method for pipelining of register-to-register netlists.
We define algorithms for inserting latches in a data path, both inside· each unit
and between the units as well as between control logic and the data path and
for readjusting the state transition table. Experimental results on several bench­
marks show 30%-403 improvement in performance.

TABLE OF CONTENTS

1. Introduction 1

2. Latch insertion 4

2.1. Problem description ... 4

2.2. Algorithm .. 7

3. Rescheduling .. 13

3 .1. Introduction .. 13

3.2. Representation by APG ... 14

3.3. Splitting and Compaction .. 19

3.3.1. Rescheduling flow .. 19

3.3.2. Splitting .. , ... 21

3.3.3. Compaction .. 27

4. Experiments and results ... 30

5. Conclusion ... 51

6. References .. 52

Papi

1. Introduction

The micro-architecture of a chip or a portion of it is usually described by the

register transfer netlists that contain register transfer components such as counters,

registers, alus, multiplexers, multipliers and other random logic consisting of gates and

flip-flops. In order to satisfy performance constraints such a netlist is usually optimized

by reducing delays on all register-to~register critical paths.

Two techniques are usually employed: retiming and pipelining. Retiming moves

latches and storage elements in order to shorten long paths. These may result in more

storage elements but improved performance [MaSi90] [MaSe90]. Pipelining method

inserts new latches or registers on critical paths, thus shortening the clock period

[McCa90] [NoCa90].

There are three possible places for insertion of pipeline latches.

(1) large functional units such as multipliers, or :floating point adders can be

pipelined in several stages

(2) latches can be inserted between any two combinational operators or logic·

partitions, and

(3) latches can be inserted not only in the data path but also m the control

portion of the design.

All of the above methods require some restructuring of the design to make sure

that original computation is preserved, that is, the arrival time of corresponding

operations for each functional unit must stay the same. Thus if different number of

registers are inserted on the convergent paths, control sequence must be denied, by

Page 1

rescheduling operations into different control steps.

high level synthesis VSS [LiGa89)

latch insertion LIN

rescheduling SPAC

no enough performance ?
yes

generating a control logic BIF [DuHa89]

logic synthesis MILO [VaGa88]

Figure 1-1. Design flow

Two resynthesis tools for pipelining register-transfer netlist are described in this

paper.

(i) The first tool LIN inserts latches in a data path, both inside each unit and

between the units as well as between control logic and the data path

(ii) The other tool SP AC readjusts the state transition table which contains

conditional operations and jumps

The design methodology using these new tools are shown in Figure 1-1. New

pipelining tools, LIN (Latch Insertion on Netlist) and SPAC (SPlit And Compaction)

are incorporated with other UCI tools.

Page2

The rest of the paper is organized as follows: Latch insertion is discussed in Section

2, while rescheduling is discussed in Section 3. Experiments and results are discussed in

Section 4. Section 5 concludes this report.

Page3

2. Latch insertion

2.1. Problem description

Pipelining is a well known engineering method for performance enhancement.

Ll

L2

Figure 2-1. Pipeline example

data

x y z
A i----i-----t---"I

x y
B

x c

z

y

Figure 2-2. Parallel execution of pipeline

z

time

Figure 2-1 shows a pipelined design that obtained by inserting latches 11 and 12 into

an original register-transfer netlist that performs operations X, Y and Z on data A, B

and C and deposits the result in register D. After inserting latches, operators X, Y and

Z can be used simultaneously on different sets of data A, B, C, stored in S. Figure 2-2

shows how computation X, Y and Z on data A, B, C is accomplished over time.

The delay from S to D determines the clock period CP:

CP = Tx + Ty + Tz + Tst

Page 4

sae

next

s e

·····: ., . . .
: t
' shift

....................... ··············

A

c

mux2

Figure 2·3. Original circuit (clock period= 110)

where Tx, Ty and Tz are delays of operations X, Y and Z, and Tst is the setup time of

register D. By inserting latches Ll and 12 the pipelined clock period becomes CPP:

CPP = max{Tx,Ty,Tz} + Tst

Parallel operations and a reduced clock period increase a system throughput.

Performance of a complete synchronous pipelined system is given by C * (1 /

clock_period) * (pipeline_efficiency) where C is a constant, and pipeline_e:ffi.ciency

defines average concurrent use of available operators. The pipeline efficiency will be

discussed in section 3 in detail.

In an arbitrary register transfer netlist a clock period is equal to the largest

propagation delay on all paths from any register to any register. Figure 2-3 shows a

Page 5

s e

next

sae

Figure 2-4. Design example with latches in the data path (clock period = 90)

micro-architecture example. The longest path is from registers state or T to register C

through units control, mux2 and add. Therefore the clock period is equal to

CP = 40 + 20 + 50 + setup = 110 + setup

Latches can be inserted in three different places which require different design

adjustments. First, the latches can be inserted between two units. Figure 2-4 shows the

original design with 2 latches inserted between muxl and shift units and between mux2

and add units. The longest path is now from state/T to C through control and add.

The clock period is reduced from 110 to 90.

Second place for inserting latches is inside a functional unit. Using the first

method the clock period can be only reduced to the delay of the slowest unit. Thus

replacing units with multi stage pipes can reduce clock period further, to the delay of

Page 6

the slowest stage of the pipelined units. Figure 2-5 shows the new design which

obtained by replacing one adder with a 2-stage adder. The longest path is now from

state/T to A through control and shift. The clock period has been reduced from 90 to

70.

The last place for inserting latches is between control logic and data path, since

usually the longest path contains control logic. Figure 2-6 shows the design obtained by

inserting latches 14, 15, 16 and L 7 between control logic and a data path in Figure 2-5.

The longest is now from state/T to 14/15/16/17 or from D/E to T. The clock period

is reduced from 70 to 40.

Thus the main problem in pipelining arbitrary register-transfer netlists consists of

inserting minimal number of latches to satisfy a. desired clock period. The cost of

latches is computed as the sum of all bits in every latch. Therefore, inserting latches

into buses with fewer bits is preferred. Thus we can define the pipelining problems as

follows:

given a micro-architectural design that includes control logic and a state register

and desired clock period, insert minimal number of latch bits in such a way that any

delay from a storage element to another storage element is smaller than the desired

clock period and that number of latches is minimal.

2.2. Algorithm

We use a heuristic method to solve latch insertion problem. Linear programming

method can be used for this problem also [NoCa90]. It only inserts latches between

units. Our heuristic approach inserts latches between unit in the control and data path

Page 7

Page 8

sae

next

s a e

T

-········· . . .

A

........ ~ · .. ;
..... ! .. , .

...__ __ ____,·~ : :
I I ••••••••••••••••• ••••••••••••
: t
: shift ·············-

pipelined adder

c

comp

T

Figure 2-5. Circuit example with 2 stage pipeline adder (clock period = 70)

sae c

next

control latches comp

sae A T

Figure 2-6. Circuit example with latches in control path (clock period = 40)

as well as inserts latches inside the functional units. Figure 2-7 shows a fl.ow chart of

latch insertion algorithm.

(i) If delay of a functional unit is greater tha.n a. given clock period, it is replaced

with multi-stage units in which each stage delay is less or equal to a given clock period.

We select the unit with minimal number of stages among all the units performing above

condition. For example, a functional unit G in Figure 2-8 is replaced with B for given

clock period of 20 since unit B ha.s less stages than C although, both B and C have

stage delay, less than 20.

(ii) Minimum number of latches -that satisfies given .clock period is computed for

each register-to-register path.

(iii) Pathes are sorted in descending order according to the number of latches.

Procedure (iv) will be applied on pa.th by path because. minimizing latches on the

longest path has priority over minimizing latches on other shorter paths. Operations of

each original cycle are divided into stages the number of which is equal to the number

of the longest path's stages. So, the procedure is applied on the longest path ar first.

(iv) Latch insertion is considered for every path. Candidate edges for latch

insertion are determined as follows:

(a) insert latches from start to end as far apart as possible still
. . .

satisfying given clock period. Call those ALAP latches

(b) insert latches from end to start as far apart as possible still

satisfying given clock period. Call those ASAP latches

(c) candidate edges are between ASAP and ALAP latches

Page9

Page 10

no delay of unit> cycle period

yes

replace the unit with a multi-stage unit with
max{each stage unit delay} <=cycle period

yes
any units left?

no

compute minimum no. of latches for each path

select path with max no. of latches

find candidate edges for latch insertion

select the candidate with the lowest weight and smallest no. of bits

yes

remove path from the list

update edge weight

any paths remaining?

no

merge pipeline stages into single stage
if total delay sorter than clock period

Figure 2-7. Latch insertion argorithm

START

path
ALAPedges

ASAP edges

candidate partition

G

A

B
c

no. of stages delay of each stage pipeline delay

1 30 30

2 5,25 25

2 15, 15 15
3 10, 10, 10 10

Figure 2-8. Multi stage unit example

(b c d) (e) (f g)

Figure 2-9. Latch insertion candidate edges for cycle period 50

Figure 2-9 shows a path with candidate edges for latch insertion for given clock

period of .50. A1AP edges are d, e and g. ASAP edges are f, e and b. So, set. of

candidate edges for the first latch is { b, c, d }, for the second latch is { e } and { f, g }

for the third one. When there are multiple candidates for latch insertion, the one with

the smallest edge weight and area cost is selected.

Edge weight is computed as the max. number of latches of any path passing

through the edge. For example, edges of all paths passing through edge (E,H) in Figure

2-10-a have weight of 1. After insertion of 12 all edges on all paths that include 11 and

12 have weight of 2.

Page 11

END

a b c d

e g

Figure 2-10-a. Edge weights after insertion of L 1

a b c d

e g

Figure 2-10-b. Edge weights after insertion of L2

Page 12

3. Rescheduling

3.1. Introduction

When pipeline latches are inserted, the control sequence is changed due to

different number of latches are inserted on different register-to-register paths. Thus a

state transition table should be rewritten for this new micro architecture.

In order to explain the control sequence adjustment, we will use a simple example

of a straight line code. Figure 3-1 shows a design with two latches inserted while Figure

3-2 shows its corresponding state transition table. The longest path in the original

design was from. the state register through control, mux and adder/subtracter to

registers a a.nd b. The clock period is computed to be 20 + 30 + 50 + setup time =

100 + setup time. When clock period is reduced to 50 ns, the Ll a.nd 12 must be

inserted.

c

sta e

Figure 3-1. Example design for straight line code

Page 13

To adjust the table for the pipelined design the state transition table in Figure 3-2

is transferred into a graph shown Figure 3-3. This graph, called APG(Active Path

Graph), is a sequence of graphs for each cycle. It contains all active paths in a

particular control cycle. Active paths include all control signals except register/latch

load signals.

The control step graph starts and ends with registers. When latches are inserted,

such a graph is split into smaller graphs at latch points. Figure 3-4 shows result of

splitting of Figure 3-3 at latch points.

If new table is generated from split graph, it will generate proper results. It can be

compaeted however. Pipeline latches make possible executing independent operations

in parallel. New transition table can be generated by compaction. Figure 3-5 shows

the result of such compaction.

Originally, the clock period was 100 ns and transition table in Figure 3-2 was

executed in 3 cycles. Thus the total execution time was 300 ns before insertion of

pipelined latches. After insertion, the clock period was reduced to 50 ns and execution

takes 4 cycles after compaction. Thus, total execution time is 200 ns, or 33% reduction

of the original execution time.

3.2. Representation by APG

When the state transition table is transferred into APG, the design model shown

in Figure 3-6 is used. This model can handle both a conditional actions and conditional

branches to next state. When there is a qmditional action, the path from outputs

generating conditions in a data path to control logic is activated on APG. When there

Page 14

state operation next

0 a=a+c 1

1 b = b- c 2

2 b=a+c -

Figure 3-2. State transition table for design in Figure 3-1

0

2

Figure 3-3. APG representation of Figure 3-1 and Figure 3-2

Page 15

3

Figure 3-4. APG of Figure 3-3 after splitting Figure 3-5. APG from Figure 3-4 after compacting

sae

condition
:··················· ·····r····························

control -~-9.Qt:ltr.QL ••••• -oi data path

I state I

Figure 3-6. Design model for APG creation

Page 16

is a conditional next state, the path from outputs of conditions to next logic is also

activated. Active paths representing load signals of registers/latches are omitted

because control signals directly connected with registers/latches are never latched.

Control logic for load signals will . be generated from the result of splitting and

compaction.

state state condition T/F action next

0 a <- shift(b) 1

1 T <- (a<O) 2

T b <- shift(a) 3
2 T=1

F b <- shift(b) 4

3 a<- shift(b) 2

state 4 a <- shift(a) -

Figure 3-7. Loop example Figure 3-8. State transition table for the loop example

Figure 3-7 shows a circuit and Figure 3-8 shows a state transition table for an .

example including loop operations. APG for the same example is shown in Figure 3-9.

Page 17

Page 18

0

{
2

3

4

c =control
n =next
m=mux
s =shift

Figure 3-9. Original scheduling APG for loop example

False

3.3. Splitting and Cbiq>action

3.3.1. Rescheduling flow

Figure 3-10 shows a fl.ow chart of rescheduling algorithm.

(i) Conditional actions are converted into conditional next states and

unconditional actions. A cycle including conditional actions are represented as mixed

active paths of true paths, false paths and unconditional paths. Inserting latches into

the active paths. generates multi stages inciuding conditional next states and

unconditional actions. Sooner or later, conditional actions will be converted. Removing

conditional actions before inserting latches is simpler than during inserting latches.

(ii) Latches are inserted as functional units into positions selected by a latch

insertion tool.

(iii) Each cycle is split into stages at latch points. After splitting, latches become

equivalent registers. Details of the splitting will be explained in the following section.

(iv) New latches make more operations executable concurrently. Thus, each

independent operation can be moved over control step boundaries. If a null step

appears after moving all the operations out of step, it is removed. This process of

moving operations upward is called compaction. Details will be explained later.

(v) Conditional next states are reconverted into 'C;nditional actions to reduce the

number of control steps if possible. For example, state transition table with no

conditional actions, shown in Figure 3-11, could be converted into state transition table

with conditional actions, shown in Figure 3-12.

Page 19

remove conditional actions

insert latches as function units

split stages at latch points

ompact by moving each operation up the graph

regenerate conditional actions

Figure 3-10. Rescheduling algorithm

action next

_state condition T/F action condition T/F next

T k
j a=a+b T=1

F m

k c = d -1 k+1

m e = f - 1 m+1

Figure 3-11. State transition table with no conditional actions

action next .
state condition T/F action condition T/F next

a=a+b
T c = d -1 T k+1

j T=1 T=1
F a=a+b F m+1

e = f - 1

Figure 3-12. State transition table with conditional actions

Page 20

The APG of the loop example in Figure 3-9 is shown after procedure (i), (iii), (iv),

(v) in Figure 3-13,Figure 3-14, Figure 3-15, Figure 3-16. State 3 in Figure 3-16 is an

empty cycle which includes no data path operations but sets a control latch.

3.3.2. Splitting

A flow chart of splitting algorithm is shown in Figure 3-17. All graph tree routed

m a destination register/latch in the same active path graph of a control step are

independent. For example APG shown in Figure 3-18 has six independent operation

trees as shown in Figure 3-19.

We define ready time of an operation in a graph to be the time when all source

operands are ready. Time is an integer number beginning with 0. It is increased by 1

when a latch is reached by tracing from source registers to a destination register.

Ready time basically shows the new stage number that an operation is to be

rescheduled into. Figure 3-20 shows ready time of a single cycle APG example. Ready

time is represented by integers 0,1 and 2 at inputs of each unit destinations.

We also define read time of a source register to keep a correct time sequence ·of

reading and writing to a register/latch. A register in a single cycle APG might be both

a source and a destination. Such register should not be rewritten until its contents is

last used. Read time is the time when data is used at last. Read time of a source

register/latch is obtained by backward tracing from a destination to a source on a tree.

Figure 3-21 shows read times of the same example in Figure 3-2. Read time is

represented by integer 0, 1 and 2 within squares at outputs of ea.ch source. If certain

register is both a source and a destination in a cycle, its ready time should be rewritten

Page 21

0

{
{

3

4

5

6

Figure 3-13. APG after removing conditional actions

Page 22

7

~
)!L~1

s

f(Q
s L1 L1

T

Figure 3-14. APG after splitting

·""!""'·:· .. - ••• ·.-·--

{

{ {
{ {
{ {

{ T=1

{
9 7

Figure 3-15. APG after compacting Figure 3-16. APG after regeneration of conditional actions

Page 23

Page 24

set the ready time when all source data are ready
on inputs of destination registers/latches

set the read time when data is last used
on outputs of source registers/latches

select a register

no
register is both source and destination ?

yes

ready time <· read time

yes
any registers remaining ?

ready time <· read time - 1

yes '--------< any latches remaining?

generate operations whoses destination ready time is stage

stage <· stage + 1

yes '---------< stage exists?

Figure 3-17. Splitting algorithm

l
• L.

(fl':
"•r"'• I

I '• I
I • .. ,,

: I f3 "1 : ' , .. · . . ·"· c b e

(1) Tree for L 1

fl

c

Page 25

c

Figure 3-18. Single cycle APG

·?:· 1· . -. . .
......... , :.f6}

°! f'" I ., •• I,,....,, ~2 \ .,
.. _!_J1 .
\~
\ : :nJ ·. : _, ___ _

·.:~3
·'-~

: f5 ! , ..
b e

(5) Tree for b

Figure 3-19. Six graph trees

4
=:==.·· .~: f· .1: (f2 l t.. (f6)

.. f.tl\ l\ \f :jk 2

I I I 1 I · ... ,.,.\. : ', :
I "•. I

1
': 3 : .. ,..... , J \¥) :.:~)

c b e

(3) Tree for L3

~· .-.
{f6) ·., ..
~ 1 • .-.
: ni
·'···· 3

2

c b. e

Figure 3-20. Ready time of a single cycle APG

c e

Figure 3-21. Read time in a single cycle APG

Page 26

with the same time as its read time. For example source b of Figure 3-21 is used at time

2, i.e. read time is 2, and current ready time of destination b is 0. Therefore, ready time

of b is to be adjusted to be 2.

In our approach latch data is to be read in a next of the cycle when data is set. So

ready time of a latch is to be rewritten with read time - 1.

Figure 3-22 shows rewriting ready time of b and Ll. Figure 3-23 shows a rewriting

ready time of c caused by rewriting of Figure 3-22. Finally operations are sorted by

ready time and rescheduled into each ready time stage. Figure 3-24 shows APG after

splitting Figure 3-18.

3.3.3. C-Orq:>action

Figure 3-25 shows a flow chart of compaction algorithm. Compaction is performed

within for each straight line code block. A cycle is selected one after another from

second cycle to last one in each block. Each operation represented by a tree in a

selected cycle is moved to the earlier cycle until data dependency is accountered. After

an operation is moved to a cycle with dependency, it is moved to the next cycle until

resource dependency does not exist any more.

Page 27

c b e

Figure 3-22. Ready and read time after adjusting b and L 1

2

c b e

Figure 3-23. Ready and read time after adjusting c Figure 3-24. PAG after splitting

Page 28

Page 29

select one straight line block at a time

cycle <- second cycle

select an operation tree whoses destination is
a register/latch in the cycle

move it up until data dependency is accountered

move it down until there are no resource dependency

yes
"------< any operation trees remaining ?

no

cycle <- next cycle

yes------­'-----------< cycle exists ?

no
yes

any straight line blocks left ?

Figure 3-25. Compaction algorithm

4. Exper~nts and results

LIN and SPAC tools have been implemented on SUN4 running unix operating

system 4,01. VHDL is used to describe micro-architecture in latch insertion tool LIN.

BIF [DuHa89] is used to describe state transition table for the rescheduling program

SPAC. A control logic is generated from a rescheduled state transition table. Control

latches for pipeline operations are included not in data path but in control logic.

Several examples were used to test our tools.

Figure 4-1, Figure 4-2 and Figure 4-3 show shift-and-add multiplier [BrGa86]

before, after pipelining without multi-stage units and after pipelining with multi-stage

. unit~ .. 2-stage adder was added in the third case as shown in Figure 4-3. Figure 4-4,

Figure 4-5 and Figure 4-6 shows an original state transition table, state transition tables

of pipelined design with no multi-stage units and with 2-stage adder respectively. The

results is summarized in Figure 4-7. The shift-and-add example shows that pipelining

without multi-stage units will improve total execution time by 70.7% while adding a 2-

stage adder will reduce execution time to 59.1% of original time needed when shift-and­

add multiplexer was not pipelined.

The "HAL" example [PaKG86) is shown in Figures 4-8 through 4-15. In case of

HAL example pipelining with two 3-stage multiplexers decreased total execution time to

63.4% of original. The pipelining of HAL design without multi-stage multiplier increased

total execution time since clock period was not drastically reduced and the number of

states increased from 6 to 9. The clock period was not reduced because of multiplier

delay. The number of states increased since not much overlap of states was possible

with latches inserted in front of multiplexers.

Page 30

state RSelect_LSB Count PortB

Const_16

CMPl

state

Figure 4-1 . Shift-and-add design

state RSelect_LSB Count PortB

Const_16

.
L 1 : -~ ...

state Done RegA PortM RSelect_LSB RegM RCMPl RegB

Figure 4-2. Shift-and-add design without pipelined adder

Page 31

RSelect_LSB RegB Count

LS.ii

RegA PortM RSelect_LSB RegM RCMPl RegB

Figure 4-3. Shift-and-adder design with 2-stage adder

Page 32

Page 33

lsTATE I
-----+

o I
----+

1

CONDITION
T/F

ACTION

Count(COUNTER; OPS: clear)
Const_O(REG; OPS: clear)

I NEXT

+----

1 1

----+---
Muxl(MUX2; OPS: CO; INPS: PortA.00)
RegA(REG; OPS: write; INPS: Muxl.00)
RegB(REG; OPS: write; INPS: PortB.00)
RegM(REG; OPS: clear)
Const_l(REG; OPS: set)
Mux5(MUX2; OPS: CO; INPS: Const_O.OQ)
Done(OUTPORT; OPS: write; INPS: MuxS.00)
C.'IPl(COMPAR; OPS: lt; INPS: Count.00, Const_l6.0Q
RCMPl(REG; OPS: load; INPS: CMPl.OLT)

2

-----+ +--
2 1RCMP1.0Q == 'l'

-------------------------------+--
True Mux2(MUX2; OPS: CO; INPS: RegA.OQ) I 3

Select_LSB(SELECTl; OPS: select; INPS: Mux2.00)
RSelect_LSB(REG; OPS: load; INPS: Select_LSB.00)

+--
False Concatl(CONCAT2; OPS: concat; INPS:RegM.OQ,RegA.OQ)I 8

PortM(OUTPORT; OPS: write; INPS: COncatl.00)
MuxS(MUX2; OPS: Cl; INPS: Const_l.OQ)
Done(OUTPORT; OPS: wi:ite; INPS: Mux5.00)

-----+-
3 RSelect_LSB.OQ ~ 'l'

-----------------------+
True.· ALUl(ALU; OPS: add;- INPS: RegM.OQ, RegB.OQ 4

· Mux4(MUX2; OPS: CO; INPS: ALUl.00)
: RegM(REG; OPS: write; INPS: Mux4.00)
• Mux2(MUX2; OPS: Cl; INPS: RegM.OQ)
-Select_LSB(SELECTl; ·oPS: select; INPS: Mux2.00)
RSelect_LSB(REG; OPS_: load; INPS: Select_LSB.00)

False·Mux2(MUX2; OPS: Cl; !NPS: RegM.OQ)
. Select_LSB(SELECTl;"OPS: select; INPS: Mux2.00)
. RSelect_LSB("REG; OPS: load; INPS: Select_LSB.00)

4

---+---.~· --------~ -------,----------+---
4 RSelect_LSB.OQ ~ '0'

True :M_ux_3_<_M_ux_2_;_o_p __ s_:_c_o_;_r_NP_s~,-R-eg_A_.-oa-->-------+-----I s
· Shiftl (SHIFI'ER; OPS: shr; INPS: Mux3. 00

... Muxl(MUX2; OPS: Cl;- INPS: ShiftLOO)
· RegA(REG; OPS: write; INPS: Muxl.00)

-------·+-----
False" Mux3 (MUX2; OPS: CO; INPS: RegA.OQ) I 5

"Shiftl(SHIFI'ER; OPS: shl; INPS: Mux3.00
·Muxl(MUX2; OPS: Cl; INPS: Shiftl.00)
'. RegA(REG; OPS: write; INPS: Muxl.00)

-----+ +----
5

I
Mux3(MUX2; OPS: Cl; INPS: RegM.OQ)
Shiftl(SHIFTER; OPS: shr; INPS: Mux3.00

I Mux4(MUX2; OPS: Cl; INPS: Shiftl.00)
RegM(REG; OPS: write; INPS: Mux4.00)

I 6

I
-----+---+---

6 I Count (COUNI'ER; OPS : inc) I 7
-----+--+--

7 I CMPl(COMPAR; OPS: lt; INPS: Count.OO, Const_l6.0Q) \ 2
RCMPl(REG; OPS: load; INPS: CMPl.OLT)

'-----+----------------------------------+---
! s I empty· Is
-----+--------------------------------------+----

Figure 4-4. Original state transition tablefor shift-and-add design

Page 34

/
STATE I C:O~TION
-----+---------------

'

0 Muxl(MUX2; OPS: CO; INPS: PortA.00)

ACTION I NEXT

+--
1

1-----+

I 1 I
I

Count(COUNI'ER; OPS: clear)
Const_O(REG; OPS: clear)
RegB(REG; OPS: write; INPS: PortB.00)
RegM(REG; OPS: clear)
Const_l(REG; OPS:' set)
RegA(REG; OPS: write; INPS: Muxl.00)

---------------+---
Mux5(MUX2; OPS: CO; INPS: Const 0.CQ) I 2
CMPl(COMPAR; OPS: lt; INPS: couiit'.oo, Const_l6.CQ)
Done(OUTPORT; OPS: write; INPS: MuxS.00)
RCMPl(REG; OPS: load; INPS: CMPl.OLT)

-----+------ +--
2 RCMPl.cx:l = 'l'

True Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) 3
Mux2(MUX2; OPS: CO; INPS: RegA.CQ)
RSelect_LSB(REG; OPS: load; INPS: 5elect_LSB.00)

+---
False Concatl(CONCAT2; OPS: concat; INPS: RegM.cx:l,RegA.CQ)I 9

Mux5(MUX2; OPS: Cl; INPS: Const_l.OQ)
.PortM(OUTPORT; OPS: write; INPS: Concatl.00)
Done(OUTPORT; OPS: write; INPS: Mux5.00)

----+- ----------·+--
) RSelect_LSB.OQ = 'l'

---------+----

Mux2(MUX2; OPS: Cl; INPS: RegM.OQ)
True select_LSB(SELECTl; OPS: select; INPS: Mux2.00) I 4

RSelect_LSB(REG; OPS: 1oad; INPS: 5elect_LSB.00)
ALUl(ALU; OPS: add [CL); INPS: RegM.OQ, RegB.OQ)
--------------------------------+----

False Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) I 6
MUX2(MUX2; OPS: Cl; INPS: RegM.OQ)
RSelect_LSB(REG; OPS: load; INPS: 5elect_LSB.00)

-----+------------- . +----
4 J L2(REG; OPS: load; INPS: ALUl.00) J 5

-----+ +----

s I 1 6
: Mux4(MUX2; OPS: CO; !NPS: L2.Q)
: RegM(REG; OPS: write;- INPS: Mux4.00)

---+----· -..,.---------------+--
6 RSelect_LSB.OQ - '0'

True· Muxl(MUX2; OPS: Cl;· INPS: Shiftl.00)
. Shiftl(SHIFTER; OPS: :Shr; INPS: Mux3.00)

. ·Mux3(MUX2; OPS: CO; INPS: RegA.OQ)
. RegA(REG; OPS: write7INPS: Muxl.00)

False:Muxl(MUX2; OPS: Cl; INPS: Shiftl.00) /
. Shiftl(SHIFTER; OPS: shl; INPS: Mux3.00)

7

7

i / Mux3(MUX2; OPS: CO; INPS: RegA.OQ) /

/--~--+----- :~;f:::;~o::~,~~~e;~~s:;e:~~~~-----------+--8-
Mux4(MUX2; OPS: Cl; INPS: Shiftl.00)
Shiftl(SHIFTER; OPS: shr; INPS: MuxJ.00)
Count(COUNTER; OPS: inc)
ReqM(REG; OPS: write; INPS: Mux4.00)

-----+-----------------------------------+----
8 I CMPl(C:OMPAR; OPS: lt; INPS: Count.OO, Const_l6.0Q) I 2

, RCMPl(REG; OPS: load; INPS: CMPl.OLT)
----+----------- -+--

9 I empty I 9
-----+

Figure 4-5. State transition table for shift-and-adder without multi-stage units

Page 35

STATE CONDITION
T/F

ACTION I NEXT

0

-----+
1 I

·~-~~--~~~---~~-----+-----

Count(COUNI'ER; OPS: clear)
Const_O(REG; OPS: clear)
RegB(REG; OPS: write; INPS: PortB.00)
RegM(REG; OPS: clear)
const_l(REG; OPS: set)
CMPl(COMPAR; OPS: lt [CL];INPS:Count.00,Const_l6.0Q)
Mux5(MUX2; OPS: CO [CL]; INPS: Const_O.OQ)
Muxl(MUX2; OPS: co [CL]; INPS: PortA.00)

RegA(REG; OPS: write; INPS: Muxl.00)
Done(OUTPORT; OPS: write; INPS: Mux5.00)
RCMPl(REG; OPS: load; INPS: CMPl.OLT)

1

+---

1 2

----+ ---+---
2 RCMPl.OQ == 'l'

--+----
True Mux2(MUX2; OPS: CO [CL]; INPS: RegA.OQ) I 3

----------------------------------+--

!
False Concatl(CONCAT2; OPS: concat; INPS: RegM.OQ,RegA.OQ)I 14

PortM(OUTPORT; OPS: write; INPS: Concatl.00)
Mux5(MUX2; OPS: Cl [CL]; INPS: Const_l.OQ)

-----+-------------------------------------+---) I Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) I 4
RSelect_LSB(REG; OPS: load; INPS: Select_LSB.00)

-----+-------------------------------------+---
4 RSelect_LSB.OQ == 'l'

------------------------------+----
True ALUl(ALU; OPS: add [CL, CP 2]; INPS:RegM.OQ,RegB.OQ) j 5

Mux2(MUX2; OPS: Cl [CL]; INPS: RegM.OQ)

False Mux2(MUX2; OPS: Cl [CL]; INPS: RegM.OQ) 8
---+--

5 I
---+

6 I

Select_LSB(SELECTl; OPS: select; INPS: Mux2.00)
RSelect_LSB(REG; OPS: load; INPS: Select_LSB.00) I

6

--------+--
L3(REG; OPS: load; INPS: ALUl.00) j 7
Mux4(MUX2; OPS: CO [CL]; INPS: L3.Q)

·~--+----- -----·-----------+--
7

8

RegM(REG; OPS: write; INPS: Mux4.00)

Select_LSB(SELECTl; OPS: select; INPS: Mux2.00)
RSelect_LSB(REG; OPS: load; INPS: Select_LSB.00)

---+-
9 RSelect_LSB.OQ = '0'

True Mux3(MUX2; OPS: co [C!i]; INPS: RegA.OQ)
Shiftl(SHIFTER; OPS: shr [CL]; INPS: Mux3.00)
Muxl(MUX2; OPS: Cl .[CL]; INPS: Shiftl.00)

Fals~·Mux3(MUX2; OPS: CO [CL]; INPS: RegA.OQ)
Shiftl(SHIFTER; OPS: shl [CL]; INPS: Mux3.00)
Muxl(MUX2; OPS: Cl [CL]; INPS: Shiftl.00)

! 8

9

+---
1

10

11

-----+ -+---
10 I RegA(REG; OPS: write; INPS: Muxl.00) I 12
----+------------------------------------

11 I RegA(REG; OPS: write; INPS: Muxl.OO) I 12
---+-----------------------------------+----

12 Count(COUNTER; OPS: inc) 13
Mux3(MUX2; OPS: Cl [CL]; INPS: Re'jM.OQ)
Shiftl(SHIFTER; OPS: shr [CL]; INPS: Mux3.00)
Mux4(MUX2; OPS: Cl [CL]; INPS: Shiftl.00)
CMPl(COMPAR; OPS: lt [CL];INPS:Count.00,Const_l6.0Q)

-----+----------------------------------+---
13 I RegM(REG; OPS: write; INPS: Mux4.00), j 2

RCMPl(REG; OPS: load; INPS: CMPl.OLT)
-----+------------------------------------+----

!
! 14 I Done(OUTPORT; OPS: write; INPS: Mux5.00) I 15
----+-----------------------------------· ---+---
15 I empty I 15

-----+

Figure 4-6. State transition table for shift-and-adder with 2 stage adder

shift-and-adder design no. of latches clock period(nsec) no. of states clock • states o/o

without 0 316 9 2844 100.0
pipelining

without 2 201 10 2010 70.7
multi-stage units

with 10 105 16 1680 59.1
multi-stage units

Figure 4-7. Comparison of pipelining shift-and-add design

Page 36

state

state

state

, state

Page 37

U6:LT •• U8:SUB

L2+. -U-19 :MUL--T-

R3 R8

Figure 4-8. Pipelined Hal example without multi-stage units

A_port

US:SUB

R3

. . .
1--...--...Jl

Figure 4-9. Pipelined Hal example with a 2-stage multiplier

RS

state A_port

control ·oe>

: L 11

U6:LT .. U7:ADD

. : ----.... : .
'---....----'' '··········:

state R3 RS

Figure 4-10. Pipelined Hal example with a 3-stage multiplier

Page 38

Page 39

1
STATE ; co~~;noN .:\CTION I NEXT I
------+-~---------~---~---~---~---~---~---~---------------+---~

0 i R3 (REGI; OPS: WRITE; INPS: 06. 00) 1 1
· U6(ALU; OPS: LT; IciPS: Rl.OO, A_PORT.OO) I

------+-----------------~---~--------~---~--------~----------+---~

1 'R3.00 ~ 'l'
-----------~---~---~-------------~---~---~-----+---~

True R9(REGI; OPS: WRITE; INPS: U9.00) 2
U9(ALU; OPS: MULT; INPS: MUX18.00, :1UX17 .00)
:10Xl8(XUX2;0PS:Cl; INPS: RB.00)
MUX17(MUX2;0PS:CO; INPS: DX_PORT.00)
UlO (ALU; OPS: MULT; INPS: MUX16.00, MUX19.00)
:1CX19 (MUX4 ;OPS: Cl; INPS: RS. 00)
MUX16(MUX2;0PS:CO; INPS: Rl.00)
Rl(REGI; OPS: WRITE; INPS: U7.00)
U7(ALU; OPS: ADD; INPS: MUX17.00, MUX16.00)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)
~----~---~---~---~---~---~---~---~---~-----+---~

False empty I 5
---~-+-~---~----~---~---~-~~---~---~---~---~---~~---+---~

2 RlO(REGI; OPS: WRITE; INPS: Ul0.00) 3
UlO(ALU; OPS: MULT; INPS: MUX16.00, MUX19.00)
MUX16(MUX2;0PS:Cl; INPS: R9.00)
MUX19(MUX4;0PS:CO; INPS: Rl0.00)
R9(REGI; OPS: WRITE; INPS: U9.00)
U9(ALU; OPS: MULT; INPS: MUXlB.00, MUX17 .00)
MUXlB(MUX2;0PS:CO; INPS: R6.00)
MUX17(MUX2;0PS:Cl; INPS: R7.00)
U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00)
RJ(REGI; OPS: WRITE; INPS: U6.00)

---~-+-~---~----~---~---~---~~-~---~---~---~---~-----+---~

3 RB(REGI; OPS: WRITE; INPS: UB.00) 4
UlO(ALU; OPS: MULT; INPS: MUX16.00, MUX19.00)
MUX19(MUX4;0PS:C2; INPS: DX_PORT.00)
XUX16(MUX2;0PS:Cl; INPS: R9.00)
U8(ALU; OPS: SUB; INPS: RB.OD, Rl0.00)
R9(REGI; OPS: WRITE; INPS: U9.00)
U9 (ALU; OPS: MULT; INPS: MUXlB. 00, MUXl 7. 00)
MUX1B(MUX2;0PS:Cl; INPS: RB.OD)
MUX17(MUX2;0PS:CO; INPS: DX_PORT.00)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)

---~-+-~---~----~---~---~---~--------~---~---~---~-----+---~

4 I R7(REGI; OPS: WRITE; INPS: U7 .00) 1
j U7 (ALU; OPS: ADD; INPS: XUXl 7 .00, MUX16 .00)

I
MUX17(MUX2;0PS:Cl; INPS: R7.00)
MUX16(MUX2;0PS:Cl; INPS: R9.00)
RB(REGI; OPS: WRITE; INPS: UB.00)
UB(ALU; OPS: SUB; INPS: R8.00, RJ.0.00)

------+-~---~----~---~---~---~---~---~--------~---~-----+-----

: s I empty I s

Figure 4-11. Original state transition table for HAL example

Page 40

I STATE I CONDITION ACTION I NEXT
T/F

-----+----------------------------------+--
0 f . U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 1

f R3(REGI; OPS: WRITE; INPS: U6.00)
-----+-----------------------------------+--

1 R3.00 - 'l'
-------------------------------------+--

True MUX16(MUX2; OPS: CO; INPS: Rl.00) 2
MUX19(MUX4; OPS: Cl; INPS: RS.00}
MUX18(MUX2; OPS: Cl; INPS: R8.00)

. MUX17(MUX2; OPS: CO; INPS: DX PORT.00)
UlO(ALU; OPS: MULT (CL); INPS:- L3.Q, L4.Q)
U9(ALU; OPS: MULT (CL); INPS: LS.Q, L6.Q)
L3(REG; OPS: load; INPS: MUX16.00)
L4(REG; OPS: load; INPS: MUX19.00)
LS(REG; OPS: load; INPS: MUX18.00)
L6(REG; OPS: load; INPS: MUX17.00)
------------------------------+---

False empty I 8
-----+ +---

2 U7 (ALU; OPS : ADD; INPS: L6 . Q, L3 . Q) 3
MUX18(MUX2; OPS: CO; INPS: R6.00)
MUX17(MUX2; OPS: Cl; INPS: R7.00)
R9(REGI; OPS: WRITE; INPS: U9.00)
Rl(REGI; OPS: WRITE; INPS: U7.00)
U9(ALU; OPS: MULT (CL); INPS: LS.Q, L6.Q)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)
LS(REG; OPS: load; INPS: MUX18.00)
L6(REG; OPS: load; INPS: MUX17.00)

-----+--------'---------------------------------+---
) U6 (.ALU; OPS: LT; INPS: Rl. 00, A_PORT. 00) 4

MUX16(MUX2; OPS: Cl; INPS: R9.00)
MUX19(MUX4; OPS: CO; INPS: Rl0.00)
R3(REGI; OPS: WRITE; INPS: U6.00)
UlO(ALU; OPS: MULT (CL); INPS: L3.Q, L4.Q)
L3(REG; OPS: load; INPS: MUX16.00)
L4(REG; OPS: load; INPS: MUX19.00)
R9(REGI; OPS: WRITE; INPS: U9.00)

-----+--+----
4 MUX16(MUX2; OPS: Cl; INPS: R9.00) 5

MUX19(MUX4; OPS: C2; INPS: DX_PORT.00)
MUX17(MUX2; OPS: CO; INPS: DX_PORT.00)
MUX18(MUX2; OPS: Cl; INPS: R8.00)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)
UlO(ALU; OPS: MULT (CL); INPS: L3.Q, L4.Q)
U9(ALU; OPS: MULT (CL); INPS: LS.Q, L6.Q)
L3(REG; OPS: load; INPS: MUX16.00)
L4(REG; OPS: load; INPS: MUX19.00)
LS(REG; OPS: load; INPS: MUX18.00)
L6(REG; OPS: load; INPS: MUX17.00)

-----+--+----
5 I US(ALU; OPS: SUB; INPS: R8.00, Rl0.00) I 6

R8(REGI; OPS: WRITE; INPS: U8.00)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)
R9(REGI; OPS: WRITE; INPS: U9.00)

-----+--+----
6 US(ALU; OPS: SUB; INPS: R8.00, Rl0.00) 7

MUX16(MUX2; OPS: Cl; INPS: R9.00).
MUX17(MUX2; OPS: Cl; INPS: R7.00)
RS(REGI; OPS: WRITE; INPS: US.00)
LJ(REG; OPS: load; INPS: MUX16.00)

------+--+----
? I U7(ALU; OPS: ADD; INPS: L6.Q, L3.Q) I 1

R7(REGI; OPS: WRITE; INPS: U7.00)
-----+---+----

8 I empty I s

Figure 4-12. State transition table for pipelined HAL example with no multi stage unit

1STATE I
----+

0 I
----+

CONDITION
T/F

ACTION

U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00)
R3(REGI; OPS: WRITE; INPS: U6.00)

I NEXT

+--

1 1
+---

1 R3.00 .- 'l'
+----

T:rue MUX16(MUX2; OPS: CO; INPS: Rl.00) 2
MUX19(MUX4; OPS: Cl; INPS: RS.00)
MUX17(MUX2; OPS: CO; INPS: DX_PORT.00)
UlO(ALU; OPS: MULT [CL, CP 2); INPS: LS.Q, L6.Q)
U9(ALU; OPS: MULT [CL, CP 2); INPS: L7 .Q., L7 .Q)
LS(REG; OPS: load; INPS: MUX16.00)
L6(REG; OPS: load; INPS: MUX19.00)

. L7(REG; OPS: load; INPS: MUX17.00)
. LB (REG; OPS: load; INPS: MUXl 7 .00)

---------- ------+---
False empty ! 10

-----+ +---
2 U7 (ALU; OPS: AOO; INPS: LB .Q, LS .Q) 3

MUX17(MUX2; OPS: Cl; INPS: R7.00)
. Rl(REGI; OPS: WRITE; INPS: U7 .00)
. U9(ALU; OPS: MULT [CL, CP 2); INPS: L7 .Q, L7 .Q)

L7(REG; OPS: load; INPS: MUX17.00)
-----+--------,--------------------------+----) I U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 4

. R9(REGI; OPS: WRITE; INPS: U9.00)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)
R3(REGI; OPS: WRITE; INPS: U6.00)

-----+-----· -------------------------------+----
4 MUX16(MUX2; OPS: Cl; INPS: R9.00) 5

MUX19(MUX4; OPS: CO; INPS: Rl0.00)
UlO(ALU; OPS: MULT [CL, CP 2]; INPS: LS.Q, L6.Q)
LS(REG; OPS: load; INPS: MUX16.00)
L6(REG; OPS: load; INPS: MUX19.00)
R9(REGI; OPS: WRITE; INPS: U9.00)

-----+------------------------------------+---
5 MUX16(MUX2; OPS: Cl; INPS: R9.00) 6

MUXI9(MUX4; OPS: C2; INPS: DX_PORT.00)

-----+
6 I

-----+-

7 I

MUXI7(MUX2; OPS: CO; INPS: DX_PORT.00)
UlO(ALU; OPS: MULT [CL, CP 2]; INPS: LS.Q, L6.Q)
U9(ALU; OPS: MULT [CL, CP 2]; INPS: L7.Q, L7.Q)
LS(REG; OPS: load; INPS: MUX16.00)
L6(REG; OPS: load; INPS: MUX19.00)
L7(REG; OPS: load; INPS: MUX17.00)

RlO(REGI; OPS: WRITE; INPS: Ul0.00)

UB(ALU; OPS: SUB; INPS: R8.00, Rl0.00)
RB(REGI; OPS: WRITE; INPS: UB.00)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)
R9(REGI; OPS: WRITE; INPS: U9.00)

+--
1 7
+----

1 8

-----+---+----
B UB(ALU; OPS: SUB; INPS: RB.00, Rl0.00) 9

MUX16(MUX2; OPS: Cl; INPS: R9.00)
MUX17(MUX2; OPS: Cl; INPS: R7.00)
RB(REGI; OPS: WRITE; INPS: UB.00)
LS(REG; OPS: load; INPS: MUX16.00)
LB(REG; OPS: load; INPS: MUX17.00)

-----+---+---
9 I U7(ALU; OPS: ADD; INPS: . L8.Q, 15.Q) I 1

R7(REGI; OPS: WRITE; INPS: U7.00)
-----+--------------------------------------+---

10 I empty I lo

Figure 4-13. State transition table for pipelined HAL example with 2-stage multipliers

Page 41

Page 42

STATE I CONDITION
T/F

ACTION I NEXT

---+·------------- ·------------+----
0 I ·. U6 (ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 1

R3(REGI; OPS: WRITE; INPS: U6.00)
-----+-·----· +--

1 R3.00 ~ 'l'

-----+
2

---+

3 I
---+

4 I
----+

5

-----------------------·+----
TrUe MUX19(MUX4; OPS: Cl; INPS: R5.00) 2

MUX18(MUX2; OPS: Cl; INPS: R8.00)
MUX16(MUX2; OPS: CO; INPS: Rl.00)
MUX17(MUX2; OPS: CO; INPS: DX_PORT.00)
15(REG; OPS: load; INPS: MUX19.00)
16(REG; OPS: load; INPS: MUX18.00)
17(REG; OPS: load; INPS: MUX16.00)
18(REG; OPS: load; INPS: MUX17.00)
UlO(ALU; OPS: MULT .[CL, CP 3]; INPS: 17.Q, 15.Q)
U9(ALU; OPS: MULT [CL, CP 3]; INPS: 18.Q, 16.Q)
U7(ALU; OPS: ADD [CL]; INPS: 18.Q, 17.Q)

·-------------+----
False empty

MUX18(MUX2; OPS: CO; INPS: R6.00)
MUX17(MUX2; OPS: Cl; INPS: R7.00)
Rl(REGI; OPS: WRITE; INPS: U7.00)
16(REG; OPS: load; INPS: MUX18.00)
U9(ALU; OPS: MULT [CL, CP 3]; INPS: 16.Q, 18.Q)

: 18(REG; OPS: load; INPS: MUX17.00)

! 12
+--

3

+---
U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 4
R3(REGI; OPS: WRITE; INPS: U6.00)

-------·----·+---
U9.00)

Ul0.00) ! 5
.R9(REGI; OPS: WRITE;. INPS:

. RlO(REGI; OPS: WRITE; INPS:
-----------~--

MUX19(MUX4; OPS: CO; INPS: Rl0.00)
MUX16(MUX2; OPS: Cl; INPS: R9.00)

: UlO(ALU; OPS: MULT [CL, CP 3]; INPS: 17.Q, 15.Q)
. 15(REG; OPS: load; INPS: MUX19.00)

17(REG; OPS: load; INPS: MUX16.00)
R9(REGI; OPS: WRITE; INPS: U9.00)

6

----+----· --·-----·---------·
6 ·MUX18(MUX2; OPS: Cl; INPS: R8.00)

:MUX17(MUX2; OPS: CO; INPS: DX_PORT.00)
. 16(REG; OPS: load; INPS: MUX18.00)
U9(ALU; OPS: MULT [CL, CP 3]; INPS: 16.Q, 18.Q)°
18(REG; OPS: load; INPS: MUX17.00)

7

---+ -+----
7 MUX19(MUX4; OPS: C2; INPS: DX_PORT.00) 8

MuXl6(MUX2; OPS: Cl; INPS: R9.00)
15(.REG; OPS: load; INPS: MUX19.00)
UlO(·ALU; OPS: MULT [CL, CP 3]; INPS: 17 .Q, 15.Q)
17(REG; OPS: load; INPS: MUX16.00)

-----+--------------------------------. ----+--
8 I RlO(REGI; OPS: WRITE; INPS: Ul0.00) 1· 9

US(ALU; OPS: SUB [CL]; INPS: R8.00, Rl0.00)
-----+---------------------------------------+---

9 I RB(REGI; OPS: WRITE; INPS: US.00) I 10
R9(REGI; OPS: WRITE; INPS: U9.00)

----+-----------------------------------+----
10 I MUX16(MUX2; OPS: Cl; INPS: R9.00) 11

MUX17(MUX2; OPS: Cl; INPS: R7.00)
RlO(REGI; OPS: WRITE; INPS: Ul0.00)

I
17(REG; OPS: load; INPS: MUX16.00)
U7(ALU; OPS: ADD [CL]; INPS: 18.Q, 17.Q)
U8(ALU; OPS: SUB [CL] i. INPS: RB.00, Rl0.00)
18(REG; OPS: load; INPS: MUX17.00)

----+--+---
11 I R7(REGI; OPS: WRITE; INPS: U7.00) I 1

RB(REGI; OPS: WRITE; INPS: US.00)
-----+-----------------------------------+--

12 I empty . I i2

Figure 4-14. State transition table for pipelined HAL example with 3-stage multipllels

HAL example no. of latches clock period (nsec) no. of states clock • states %

without
pipelining

0 685 6 4110 100.0

pipeining without
6 9 5400 131.4

multi-stage units 600

pipelining with
8 300 11 3300 80.3

2-stage multiplier

pipelining with 12 200 13 2600 63.4
3 stage multiplier

Figure 4-15. Performance comparison for HDL example

Page 43

The "Elliptic" example (KuWK85] is shown in Figures 4-16 through 4-21. This

experiment shows that insertion of pipelined operation units improves performance from

28% to 323. Inserting latches between multiplexers and operation units may result in

decrease of performance. This was the case for design with no pipelined adder and 2-

stage multiplier.

There are special operations for pipeline represented by "CL" and "CP n" in an

operation field of a state transition table. "CL" means the operation is control latched.

"CL" operation in state N causes setting of a control latch in state N and executfon

with a function unit in state (N + 1). "CP n" means the operation is done with n stage

pipeline unit. "CP n" operation in state N completes at the end of stat~ {N+ n - 1).

Page 44

state

control ••OC.

state

Figure 4-16. Pipelined Elliptic example without multi-stage units

Page 45

state

control ··-

state

Figure 4-17. Pipelined Elliptic example with 2-stage multiplier with no mux output latch

Page 46

state

L4

control ••me>

state

Figure 4-18. Pipelined Elliptic example with 2-stage multiplier and mux output latch

Page 47

state

control ••oe>

l Adder1-2 l •........

......
l Adder1-1 !
: LS : . .
i Adder1-2 i '········

Figure 4-19. Pipelined Elliplitic example with 4-stage multiplier, 2-stage adder and no mux output latch

Page 48

state

LS L9

conirol ••oe>

·····:____, _ __.: . . ----i

Figure 4-20. Pipelined Elliplitic example with 4-stage multiplier, 2-stage adder and mux output latch

Page 49

Elliptic filter design no. of latches clock period (nsec) no. of states clock • states %

without
495 19 9405 pipelining 0 100.0

no multi stage unit,

mux output latch
2 400 23 9200 97.8

2 stage multiplier, 1 295 23 6785 72.1
no mux output latch

2 stage multiplier, 7 201 40 8040 85.5
mux output latch

2 stage adder,
5 195 4 stage multiplier, 46 8970 95.4

no mux ou!Q_ut latch
2 stage adder,
4 stage multiplier, 11 101 63 6363 67.7
mux output latch

Figure 4-21. Performance comparison of Elliptic example

Page 50

5. Conclusion

A resynthesis method for pipelining register-to-register netlists has been proposed.

Latch insertion and rescheduling tools have been developed and are available in UCI

suite of synthesis tools. Experiments have shown that such pipelining can reduce total

execution time by 29% - 41 %.

Area cost increased by a latch insertion has not been studied. It is expected that

inserted latches and routing will increase total chip area but not substantially. If

dynamic charge latches are used instead of flip-flops, the area cost will be even smaller.

Routing for inserted latches might also change propagation delays and reduce the

throughput gain. It also requires further study.

Current state transition table compaction is only applied to straight line code

segments. If compaction is applied beyond branches, pipeline efficiency will be increased

even further.

Page 51

6. References

[BrGa86] F. D. Brewer, D. D. Gajski, "An Expert System Paradigm for Design", 23rd
DAC, 1986.

[DuHa.89] Nikil D. Dutt, Tedd Hadley, Daniel D. Gajski, "BIF: A Behavioral
Intermediate Format For High Level Synthesis", Technical Report 89-03,
Department of Information and Computer Science, University of California.
Irvine, January 1989.

[KuWK85] S. Y. Kung, H. J. Whitehouse and T. Kailath, "VLSI and Modern Single
Processing", Englewood Cliffs, NJ: Prentice Hall. 1985, pp.258-264

[LiGa89] Joseph S. Lis, Daniel D. Gajski, "VHDL SYNTHESIS USING
STRUCTURED MODELING", 26th DAC, 1989, pp.606-609

[MaSe91] Sharad Malik, Ellen M. Sentovich, Robert K. Brayton, Alberto Sagiovanni­
Vincentelli, "Retiming and Resynthesis: Optimizing Sequential Networks
with Combinational Techniques", IEEE Trans. Computer-Aided Design,
vol. 10, No. 1, January 1991, pp.74-84.

[MaSi90] Sha.rad Malik, Kanwar Jit Singh, R. K. Brayton, Alberto Sagiovanni­
Vincentelli, "Performance Optimization of Pipelined Circuits", ICCAD,
1990, pp.410-413.

[McCa90] Kristen N. McNall, Albert E. Casavant, "Automatic Opera.tor
Configuration in the Synthesis of Pipelined Architectures", 27th AC, 1990,
pp.174-179.

[NoCa90] Stefaan Note, Francky Catthoor, Gert Groossens, Hugo De Man, "
Combined Hardware Selection and Pipelinning in High Performance Data.­
Path", ICCD, 1990, pp.328-331.

[PaKG86] P. G. Paulin, J. P. Knight, E. F. Girczyc, "HAL: A Multi-Paradigm
Approach to Automatic Data Path Synthesis", 23rd DAC, 1986.

[VaGa88] Nels Vander Zanden, Daniel Gajski, "MILO: A Microarchitecture and Logic
Optimizer", 25th DAC, 1988, pp.403-408.

Page 52

