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This paper describes a method for pipelining of register-to-register netlists. 
We define algorithms for inserting latches in a data path, both inside· each unit 
and between the units as well as between control logic and the data path and 
for readjusting the state transition table. Experimental results on several bench­
marks show 30%-403 improvement in performance. 
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1. Introduction 

The micro-architecture of a chip or a portion of it is usually described by the 

register transfer netlists that contain register transfer components such as counters, 

registers, alus, multiplexers, multipliers and other random logic consisting of gates and 

flip-flops. In order to satisfy performance constraints such a netlist is usually optimized 

by reducing delays on all register-to~register critical paths. 

Two techniques are usually employed: retiming and pipelining. Retiming moves 

latches and storage elements in order to shorten long paths. These may result in more 

storage elements but improved performance [MaSi90] [MaSe90]. Pipelining method 

inserts new latches or registers on critical paths, thus shortening the clock period 

[McCa90] [NoCa90]. 

There are three possible places for insertion of pipeline latches. 

(1) large functional units such as multipliers, or :floating point adders can be 

pipelined in several stages 

(2) latches can be inserted between any two combinational operators or logic· 

partitions, and 

(3) latches can be inserted not only in the data path but also m the control 

portion of the design. 

All of the above methods require some restructuring of the design to make sure 

that original computation is preserved, that is, the arrival time of corresponding 

operations for each functional unit must stay the same. Thus if different number of 

registers are inserted on the convergent paths, control sequence must be denied, by 
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rescheduling operations into different control steps. 

high level synthesis VSS [LiGa89) 

latch insertion LIN 

rescheduling SPAC 

no enough performance ? 
yes 

generating a control logic BIF [DuHa89] 

logic synthesis MILO [VaGa88] 

Figure 1-1. Design flow 

Two resynthesis tools for pipelining register-transfer netlist are described in this 

paper. 

(i) The first tool LIN inserts latches in a data path, both inside each unit and 

between the units as well as between control logic and the data path 

(ii) The other tool SP AC readjusts the state transition table which contains 

conditional operations and jumps 

The design methodology using these new tools are shown in Figure 1-1. New 

pipelining tools, LIN ( Latch Insertion on Netlist) and SPAC ( SPlit And Compaction ) 

are incorporated with other UCI tools. 
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The rest of the paper is organized as follows: Latch insertion is discussed in Section 

2, while rescheduling is discussed in Section 3. Experiments and results are discussed in 

Section 4. Section 5 concludes this report. 
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2. Latch insertion 

2.1. Problem description 

Pipelining is a well known engineering method for performance enhancement. 

Ll 

L2 

Figure 2-1. Pipeline example 

data 

x y z 
A i----i-----t---"I 

x y 
B 

x c 

z 

y 

Figure 2-2. Parallel execution of pipeline 

z 

time 

Figure 2-1 shows a pipelined design that obtained by inserting latches 11 and 12 into 

an original register-transfer netlist that performs operations X, Y and Z on data A, B 

and C and deposits the result in register D. After inserting latches, operators X, Y and 

Z can be used simultaneously on different sets of data A, B, C, stored in S. Figure 2-2 

shows how computation X, Y and Z on data A, B, C is accomplished over time. 

The delay from S to D determines the clock period CP: 

CP = Tx + Ty + Tz + Tst 
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mux2 

Figure 2·3. Original circuit (clock period= 110) 

where Tx, Ty and Tz are delays of operations X, Y and Z, and Tst is the setup time of 

register D. By inserting latches Ll and 12 the pipelined clock period becomes CPP: 

CPP = max{Tx,Ty,Tz} + Tst 

Parallel operations and a reduced clock period increase a system throughput. 

Performance of a complete synchronous pipelined system is given by C * ( 1 / 

clock_period ) * ( pipeline_efficiency ) where C is a constant, and pipeline_e:ffi.ciency 

defines average concurrent use of available operators. The pipeline efficiency will be 

discussed in section 3 in detail. 

In an arbitrary register transfer netlist a clock period is equal to the largest 

propagation delay on all paths from any register to any register. Figure 2-3 shows a 
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s e 

next 

sae 

Figure 2-4. Design example with latches in the data path (clock period = 90) 

micro-architecture example. The longest path is from registers state or T to register C 

through units control, mux2 and add. Therefore the clock period is equal to 

CP = 40 + 20 + 50 + setup = 110 + setup 

Latches can be inserted in three different places which require different design 

adjustments. First, the latches can be inserted between two units. Figure 2-4 shows the 

original design with 2 latches inserted between muxl and shift units and between mux2 

and add units. The longest path is now from state/T to C through control and add. 

The clock period is reduced from 110 to 90. 

Second place for inserting latches is inside a functional unit. Using the first 

method the clock period can be only reduced to the delay of the slowest unit. Thus 

replacing units with multi stage pipes can reduce clock period further, to the delay of 
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the slowest stage of the pipelined units. Figure 2-5 shows the new design which 

obtained by replacing one adder with a 2-stage adder. The longest path is now from 

state/T to A through control and shift. The clock period has been reduced from 90 to 

70. 

The last place for inserting latches is between control logic and data path, since 

usually the longest path contains control logic. Figure 2-6 shows the design obtained by 

inserting latches 14, 15, 16 and L 7 between control logic and a data path in Figure 2-5. 

The longest is now from state/T to 14/15/16/17 or from D/E to T. The clock period 

is reduced from 70 to 40. 

Thus the main problem in pipelining arbitrary register-transfer netlists consists of 

inserting minimal number of latches to satisfy a. desired clock period. The cost of 

latches is computed as the sum of all bits in every latch. Therefore, inserting latches 

into buses with fewer bits is preferred. Thus we can define the pipelining problems as 

follows: 

given a micro-architectural design that includes control logic and a state register 

and desired clock period, insert minimal number of latch bits in such a way that any 

delay from a storage element to another storage element is smaller than the desired 

clock period and that number of latches is minimal. 

2.2. Algorithm 

We use a heuristic method to solve latch insertion problem. Linear programming 

method can be used for this problem also [NoCa90]. It only inserts latches between 

units. Our heuristic approach inserts latches between unit in the control and data path 
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Figure 2-5. Circuit example with 2 stage pipeline adder (clock period = 70) 
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Figure 2-6. Circuit example with latches in control path (clock period = 40) 



as well as inserts latches inside the functional units. Figure 2-7 shows a fl.ow chart of 

latch insertion algorithm. 

(i) If delay of a functional unit is greater tha.n a. given clock period, it is replaced 

with multi-stage units in which each stage delay is less or equal to a given clock period. 

We select the unit with minimal number of stages among all the units performing above 

condition. For example, a functional unit G in Figure 2-8 is replaced with B for given 

clock period of 20 since unit B ha.s less stages than C although, both B and C have 

stage delay, less than 20. 

(ii) Minimum number of latches -that satisfies given .clock period is computed for 

each register-to-register path. 

(iii) Pathes are sorted in descending order according to the number of latches. 

Procedure (iv) will be applied on pa.th by path because. minimizing latches on the 

longest path has priority over minimizing latches on other shorter paths. Operations of 

each original cycle are divided into stages the number of which is equal to the number 

of the longest path's stages. So, the procedure is applied on the longest path ar first. 

(iv) Latch insertion is considered for every path. Candidate edges for latch 

insertion are determined as follows: 

(a) insert latches from start to end as far apart as possible still 
. . . 

satisfying given clock period. Call those ALAP latches 

(b) insert latches from end to start as far apart as possible still 

satisfying given clock period. Call those ASAP latches 

( c) candidate edges are between ASAP and ALAP latches 
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no delay of unit> cycle period 

yes 

replace the unit with a multi-stage unit with 
max{each stage unit delay} <=cycle period 

yes 
any units left? 

no 

compute minimum no. of latches for each path 

select path with max no. of latches 

find candidate edges for latch insertion 

select the candidate with the lowest weight and smallest no. of bits 

yes 

remove path from the list 

update edge weight 

any paths remaining? 

no 

merge pipeline stages into single stage 
if total delay sorter than clock period 

Figure 2-7. Latch insertion argorithm 



START 

path 
ALAPedges 

ASAP edges 

candidate partition 

G 

A 

B 
c 

no. of stages delay of each stage pipeline delay 

1 30 30 

2 5,25 25 

2 15, 15 15 
3 10, 10, 10 10 

Figure 2-8. Multi stage unit example 

( b c d ) ( e ) ( f g ) 

Figure 2-9. Latch insertion candidate edges for cycle period 50 

Figure 2-9 shows a path with candidate edges for latch insertion for given clock 

period of .50. A1AP edges are d, e and g. ASAP edges are f, e and b. So, set. of 

candidate edges for the first latch is { b, c, d }, for the second latch is { e } and { f, g } 

for the third one. When there are multiple candidates for latch insertion, the one with 

the smallest edge weight and area cost is selected. 

Edge weight is computed as the max. number of latches of any path passing 

through the edge. For example, edges of all paths passing through edge (E,H) in Figure 

2-10-a have weight of 1. After insertion of 12 all edges on all paths that include 11 and 

12 have weight of 2. 
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a b c d 

e g 

Figure 2-10-a. Edge weights after insertion of L 1 

a b c d 

e g 

Figure 2-10-b. Edge weights after insertion of L2 
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3. Rescheduling 

3.1. Introduction 

When pipeline latches are inserted, the control sequence is changed due to 

different number of latches are inserted on different register-to-register paths. Thus a 

state transition table should be rewritten for this new micro architecture. 

In order to explain the control sequence adjustment, we will use a simple example 

of a straight line code. Figure 3-1 shows a design with two latches inserted while Figure 

3-2 shows its corresponding state transition table. The longest path in the original 

design was from. the state register through control, mux and adder/subtracter to 

registers a a.nd b. The clock period is computed to be 20 + 30 + 50 + setup time = 

100 + setup time. When clock period is reduced to 50 ns, the Ll a.nd 12 must be 

inserted. 

c 

sta e 

Figure 3-1. Example design for straight line code 
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To adjust the table for the pipelined design the state transition table in Figure 3-2 

is transferred into a graph shown Figure 3-3. This graph, called APG(Active Path 

Graph), is a sequence of graphs for each cycle. It contains all active paths in a 

particular control cycle. Active paths include all control signals except register/latch 

load signals. 

The control step graph starts and ends with registers. When latches are inserted, 

such a graph is split into smaller graphs at latch points. Figure 3-4 shows result of 

splitting of Figure 3-3 at latch points. 

If new table is generated from split graph, it will generate proper results. It can be 

compaeted however. Pipeline latches make possible executing independent operations 

in parallel. New transition table can be generated by compaction. Figure 3-5 shows 

the result of such compaction. 

Originally, the clock period was 100 ns and transition table in Figure 3-2 was 

executed in 3 cycles. Thus the total execution time was 300 ns before insertion of 

pipelined latches. After insertion, the clock period was reduced to 50 ns and execution 

takes 4 cycles after compaction. Thus, total execution time is 200 ns, or 33% reduction 

of the original execution time. 

3.2. Representation by APG 

When the state transition table is transferred into APG, the design model shown 

in Figure 3-6 is used. This model can handle both a conditional actions and conditional 

branches to next state. When there is a qmditional action, the path from outputs 

generating conditions in a data path to control logic is activated on APG. When there 
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state operation next 

0 a=a+c 1 

1 b = b- c 2 

2 b=a+c -

Figure 3-2. State transition table for design in Figure 3-1 

0 

2 

Figure 3-3. APG representation of Figure 3-1 and Figure 3-2 
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3 

Figure 3-4. APG of Figure 3-3 after splitting Figure 3-5. APG from Figure 3-4 after compacting 

sae 

condition 
:··················· ·····r···························· 

control -~-9.Qt:ltr.QL ••••• -oi data path 

I state I 

Figure 3-6. Design model for APG creation 
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is a conditional next state, the path from outputs of conditions to next logic is also 

activated. Active paths representing load signals of registers/latches are omitted 

because control signals directly connected with registers/latches are never latched. 

Control logic for load signals will . be generated from the result of splitting and 

compaction. 

state state condition T/F action next 

0 a <- shift(b) 1 

1 T <- (a<O) 2 

T b <- shift(a) 3 
2 T=1 

F b <- shift(b) 4 

3 a<- shift(b) 2 

state 4 a <- shift(a) -

Figure 3-7. Loop example Figure 3-8. State transition table for the loop example 

Figure 3-7 shows a circuit and Figure 3-8 shows a state transition table for an . 

example including loop operations. APG for the same example is shown in Figure 3-9. 
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c =control 
n =next 
m=mux 
s =shift 

Figure 3-9. Original scheduling APG for loop example 
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3.3. Splitting and Cbiq>action 

3.3.1. Rescheduling flow 

Figure 3-10 shows a fl.ow chart of rescheduling algorithm. 

(i) Conditional actions are converted into conditional next states and 

unconditional actions. A cycle including conditional actions are represented as mixed 

active paths of true paths, false paths and unconditional paths. Inserting latches into 

the active paths. generates multi stages inciuding conditional next states and 

unconditional actions. Sooner or later, conditional actions will be converted. Removing 

conditional actions before inserting latches is simpler than during inserting latches. 

(ii) Latches are inserted as functional units into positions selected by a latch 

insertion tool. 

(iii) Each cycle is split into stages at latch points. After splitting, latches become 

equivalent registers. Details of the splitting will be explained in the following section. 

(iv) New latches make more operations executable concurrently. Thus, each 

independent operation can be moved over control step boundaries. If a null step 

appears after moving all the operations out of step, it is removed. This process of 

moving operations upward is called compaction. Details will be explained later. 

(v) Conditional next states are reconverted into 'C;nditional actions to reduce the 

number of control steps if possible. For example, state transition table with no 

conditional actions, shown in Figure 3-11, could be converted into state transition table 

with conditional actions, shown in Figure 3-12. 
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remove conditional actions 

insert latches as function units 

split stages at latch points 

ompact by moving each operation up the graph 

regenerate conditional actions 

Figure 3-10. Rescheduling algorithm 

action next 

_state condition T/F action condition T/F next 

T k 
j a=a+b T=1 

F m 

k c = d -1 k+1 

m e = f - 1 m+1 

Figure 3-11. State transition table with no conditional actions 

action next . 
state condition T/F action condition T/F next 

a=a+b 
T c = d -1 T k+1 

j T=1 T=1 
F a=a+b F m+1 

e = f - 1 

Figure 3-12. State transition table with conditional actions 
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The APG of the loop example in Figure 3-9 is shown after procedure (i), (iii), (iv), 

(v) in Figure 3-13,Figure 3-14, Figure 3-15, Figure 3-16. State 3 in Figure 3-16 is an 

empty cycle which includes no data path operations but sets a control latch. 

3.3.2. Splitting 

A flow chart of splitting algorithm is shown in Figure 3-17. All graph tree routed 

m a destination register/latch in the same active path graph of a control step are 

independent. For example APG shown in Figure 3-18 has six independent operation 

trees as shown in Figure 3-19. 

We define ready time of an operation in a graph to be the time when all source 

operands are ready. Time is an integer number beginning with 0. It is increased by 1 

when a latch is reached by tracing from source registers to a destination register. 

Ready time basically shows the new stage number that an operation is to be 

rescheduled into. Figure 3-20 shows ready time of a single cycle APG example. Ready 

time is represented by integers 0,1 and 2 at inputs of each unit destinations. 

We also define read time of a source register to keep a correct time sequence ·of 

reading and writing to a register/latch. A register in a single cycle APG might be both 

a source and a destination. Such register should not be rewritten until its contents is 

last used. Read time is the time when data is used at last. Read time of a source 

register/latch is obtained by backward tracing from a destination to a source on a tree. 

Figure 3-21 shows read times of the same example in Figure 3-2. Read time is 

represented by integer 0, 1 and 2 within squares at outputs of ea.ch source. If certain 

register is both a source and a destination in a cycle, its ready time should be rewritten 
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Figure 3-13. APG after removing conditional actions 
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Figure 3-14. APG after splitting 
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Figure 3-15. APG after compacting Figure 3-16. APG after regeneration of conditional actions 
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set the ready time when all source data are ready 
on inputs of destination registers/latches 

set the read time when data is last used 
on outputs of source registers/latches 

select a register 

no 
register is both source and destination ? 

yes 

ready time <· read time 

yes 
any registers remaining ? 

ready time <· read time - 1 

yes '--------< any latches remaining? 

generate operations whoses destination ready time is stage 

stage <· stage + 1 

yes '---------< stage exists? 

Figure 3-17. Splitting algorithm 
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Figure 3-18. Single cycle APG 
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c b. e 

Figure 3-20. Ready time of a single cycle APG 

c e 

Figure 3-21. Read time in a single cycle APG 
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with the same time as its read time. For example source b of Figure 3-21 is used at time 

2, i.e. read time is 2, and current ready time of destination b is 0. Therefore, ready time 

of b is to be adjusted to be 2. 

In our approach latch data is to be read in a next of the cycle when data is set. So 

ready time of a latch is to be rewritten with read time - 1. 

Figure 3-22 shows rewriting ready time of b and Ll. Figure 3-23 shows a rewriting 

ready time of c caused by rewriting of Figure 3-22. Finally operations are sorted by 

ready time and rescheduled into each ready time stage. Figure 3-24 shows APG after 

splitting Figure 3-18. 

3.3.3. C-Orq:>action 

Figure 3-25 shows a flow chart of compaction algorithm. Compaction is performed 

within for each straight line code block. A cycle is selected one after another from 

second cycle to last one in each block. Each operation represented by a tree in a 

selected cycle is moved to the earlier cycle until data dependency is accountered. After 

an operation is moved to a cycle with dependency, it is moved to the next cycle until 

resource dependency does not exist any more. 
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c b e 

Figure 3-22. Ready and read time after adjusting b and L 1 

2 

c b e 

Figure 3-23. Ready and read time after adjusting c Figure 3-24. PAG after splitting 
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select one straight line block at a time 

cycle <- second cycle 

select an operation tree whoses destination is 
a register/latch in the cycle 

move it up until data dependency is accountered 

move it down until there are no resource dependency 

yes 
"------< any operation trees remaining ? 

no 

cycle <- next cycle 

yes------­'-----------< cycle exists ? 

no 
yes 

any straight line blocks left ? 

Figure 3-25. Compaction algorithm 



4. Exper~nts and results 

LIN and SPAC tools have been implemented on SUN4 running unix operating 

system 4,01. VHDL is used to describe micro-architecture in latch insertion tool LIN. 

BIF [DuHa89] is used to describe state transition table for the rescheduling program 

SPAC. A control logic is generated from a rescheduled state transition table. Control 

latches for pipeline operations are included not in data path but in control logic. 

Several examples were used to test our tools. 

Figure 4-1, Figure 4-2 and Figure 4-3 show shift-and-add multiplier [BrGa86] 

before, after pipelining without multi-stage units and after pipelining with multi-stage 

. unit~ .. 2-stage adder was added in the third case as shown in Figure 4-3. Figure 4-4, 

Figure 4-5 and Figure 4-6 shows an original state transition table, state transition tables 

of pipelined design with no multi-stage units and with 2-stage adder respectively. The 

results is summarized in Figure 4-7. The shift-and-add example shows that pipelining 

without multi-stage units will improve total execution time by 70.7% while adding a 2-

stage adder will reduce execution time to 59.1% of original time needed when shift-and­

add multiplexer was not pipelined. 

The "HAL" example [PaKG86) is shown in Figures 4-8 through 4-15. In case of 

HAL example pipelining with two 3-stage multiplexers decreased total execution time to 

63.4% of original. The pipelining of HAL design without multi-stage multiplier increased 

total execution time since clock period was not drastically reduced and the number of 

states increased from 6 to 9. The clock period was not reduced because of multiplier 

delay. The number of states increased since not much overlap of states was possible 

with latches inserted in front of multiplexers. 
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state RSelect_LSB Count PortB 

Const_16 

CMPl 

state 

Figure 4-1 . Shift-and-add design 

state RSelect_LSB Count PortB 

Const_16 

. 
L 1 : -~ ... 

state Done RegA PortM RSelect_LSB RegM RCMPl RegB 

Figure 4-2. Shift-and-add design without pipelined adder 
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RSelect_LSB RegB Count 

LS.ii .... 

RegA PortM RSelect_LSB RegM RCMPl RegB 

Figure 4-3. Shift-and-adder design with 2-stage adder 
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lsTATE I 
-----+ 

o I 
----+ 

1 

CONDITION 
T/F 

ACTION 

Count( COUNTER; OPS: clear ) 
Const_O( REG; OPS: clear ) 

I NEXT 

+----

1 1 

----+---
Muxl( MUX2; OPS: CO; INPS: PortA.00 ) 
RegA( REG; OPS: write; INPS: Muxl.00 ) 
RegB( REG; OPS: write; INPS: PortB.00 ) 
RegM( REG; OPS: clear ) 
Const_l( REG; OPS: set ) 
Mux5( MUX2; OPS: CO; INPS: Const_O.OQ ) 
Done( OUTPORT; OPS: write; INPS: MuxS.00 ) 
C.'IPl( COMPAR; OPS: lt; INPS: Count.00, Const_l6.0Q 
RCMPl( REG; OPS: load; INPS: CMPl.OLT) 

2 

-----+ +--
2 1RCMP1.0Q == 'l' 

-------------------------------+--
True Mux2( MUX2; OPS: CO; INPS: RegA.OQ ) I 3 

Select_LSB( SELECTl; OPS: select; INPS: Mux2.00 ) 
RSelect_LSB( REG; OPS: load; INPS: Select_LSB.00) 

+--
False Concatl( CONCAT2; OPS: concat; INPS:RegM.OQ,RegA.OQ)I 8 

PortM( OUTPORT; OPS: write; INPS: COncatl.00 ) 
MuxS( MUX2; OPS: Cl; INPS: Const_l.OQ ) 
Done( OUTPORT; OPS: wi:ite; INPS: Mux5.00 ) 

-----+-
3 RSelect_LSB.OQ ~ 'l' 

-----------------------+ 
True.· ALUl( ALU; OPS: add;- INPS: RegM.OQ, RegB.OQ 4 

· Mux4( MUX2; OPS: CO; INPS: ALUl.00 ) 
: RegM( REG; OPS: write; INPS: Mux4.00 ) 
• Mux2( MUX2; OPS: Cl; INPS: RegM.OQ ) 
-Select_LSB( SELECTl; ·oPS: select; INPS: Mux2.00) 
RSelect_LSB( REG; OPS_: load; INPS: Select_LSB.00) 

False·Mux2( MUX2; OPS: Cl; !NPS: RegM.OQ ) 
. Select_LSB( SELECTl;"OPS: select; INPS: Mux2.00 ) 
. RSelect_LSB( "REG; OPS: load; INPS: Select_LSB.00) 

4 

---+---.~· --------~ -------,----------+---
4 RSelect_LSB.OQ ~ '0' 

True :M_ux_3_<_M_ux_2_;_o_p __ s_:_c_o_;_r_NP_s~,-R-eg_A_.-oa-->-------+-----I s 
· Shiftl ( SHIFI'ER; OPS: shr; INPS: Mux3. 00 

... Muxl( MUX2; OPS: Cl;- INPS: ShiftLOO ) 
· RegA( REG; OPS: write; INPS: Muxl.00 ) 

-------·+-----
False" Mux3 ( MUX2; OPS: CO; INPS: RegA.OQ ) I 5 

"Shiftl( SHIFI'ER; OPS: shl; INPS: Mux3.00 
·Muxl( MUX2; OPS: Cl; INPS: Shiftl.00) 
'. RegA( REG; OPS: write; INPS: Muxl.00 ) 

-----+ +----
5 

I 
Mux3( MUX2; OPS: Cl; INPS: RegM.OQ ) 
Shiftl( SHIFTER; OPS: shr; INPS: Mux3.00 

I Mux4( MUX2; OPS: Cl; INPS: Shiftl.00 ) 
RegM( REG; OPS: write; INPS: Mux4.00 ) 

I 6 

I 
-----+-------------------------------------------+---

6 I Count ( COUNI'ER; OPS : inc ) I 7 
-----+----------------------------------------+--

7 I CMPl( COMPAR; OPS: lt; INPS: Count.OO, Const_l6.0Q ) \ 2 
RCMPl( REG; OPS: load; INPS: CMPl.OLT) 

'-----+----------------------------------+---
! s I empty· Is 
-----+--------------------------------------+----

Figure 4-4. Original state transition tablefor shift-and-add design 
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/
STATE I C:O~TION 
-----+---------------

' 

0 Muxl(MUX2; OPS: CO; INPS: PortA.00) 

ACTION I NEXT 

+--
1 

1-----+ 

I 1 I 
I 

Count(COUNI'ER; OPS: clear) 
Const_O(REG; OPS: clear) 
RegB(REG; OPS: write; INPS: PortB.00) 
RegM(REG; OPS: clear) 
Const_l(REG; OPS:' set) 
RegA(REG; OPS: write; INPS: Muxl.00) 

---------------+---
Mux5(MUX2; OPS: CO; INPS: Const 0.CQ) I 2 
CMPl(COMPAR; OPS: lt; INPS: couiit'.oo, Const_l6.CQ) 
Done(OUTPORT; OPS: write; INPS: MuxS.00) 
RCMPl(REG; OPS: load; INPS: CMPl.OLT) 

-----+------ +--
2 RCMPl.cx:l = 'l' 

True Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) 3 
Mux2(MUX2; OPS: CO; INPS: RegA.CQ) 
RSelect_LSB(REG; OPS: load; INPS: 5elect_LSB.00) 

+---
False Concatl(CONCAT2; OPS: concat; INPS: RegM.cx:l,RegA.CQ)I 9 

Mux5(MUX2; OPS: Cl; INPS: Const_l.OQ) 
.PortM(OUTPORT; OPS: write; INPS: Concatl.00) 
Done(OUTPORT; OPS: write; INPS: Mux5.00) 

----+- ----------·+--
) RSelect_LSB.OQ = 'l' 

---------+----

Mux2(MUX2; OPS: Cl; INPS: RegM.OQ) 
True select_LSB(SELECTl; OPS: select; INPS: Mux2.00) I 4 

RSelect_LSB(REG; OPS: 1oad; INPS: 5elect_LSB.00) 
ALUl(ALU; OPS: add [CL); INPS: RegM.OQ, RegB.OQ) 
--------------------------------+----

False Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) I 6 
MUX2(MUX2; OPS: Cl; INPS: RegM.OQ) 
RSelect_LSB(REG; OPS: load; INPS: 5elect_LSB.00) 

-----+------------- . +----
4 J L2(REG; OPS: load; INPS: ALUl.00) J 5 

-----+ +----

s I 1 6 
: Mux4(MUX2; OPS: CO; !NPS: L2.Q) 
: RegM(REG; OPS: write;- INPS: Mux4.00) 

---+----· -..,.---------------+--
6 RSelect_LSB.OQ - '0' 

True· Muxl(MUX2; OPS: Cl;· INPS: Shiftl.00) 
. Shiftl(SHIFTER; OPS: :Shr; INPS: Mux3.00) 

. ·Mux3(MUX2; OPS: CO; INPS: RegA.OQ) 
. RegA(REG; OPS: write7INPS: Muxl.00) 

False:Muxl(MUX2; OPS: Cl; INPS: Shiftl.00) / 
. Shiftl(SHIFTER; OPS: shl; INPS: Mux3.00) 

7 

7 

i / Mux3(MUX2; OPS: CO; INPS: RegA.OQ) / 

/--~--+----- :~;f:::;~o::~,~~~e;~~s:;e:~~~~-----------+--8-
Mux4(MUX2; OPS: Cl; INPS: Shiftl.00) 
Shiftl(SHIFTER; OPS: shr; INPS: MuxJ.00) 
Count(COUNTER; OPS: inc) 
ReqM(REG; OPS: write; INPS: Mux4.00) 

-----+-----------------------------------+----
8 I CMPl(C:OMPAR; OPS: lt; INPS: Count.OO, Const_l6.0Q) I 2 

, RCMPl(REG; OPS: load; INPS: CMPl.OLT) 
----+----------- -+--

9 I empty I 9 
-----+ 

Figure 4-5. State transition table for shift-and-adder without multi-stage units 
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STATE CONDITION 
T/F 

ACTION I NEXT 

0 

-----+ 
1 I 

·~-~~--~~~---~~-----+-----

Count(COUNI'ER; OPS: clear) 
Const_O(REG; OPS: clear) 
RegB(REG; OPS: write; INPS: PortB.00) 
RegM(REG; OPS: clear) 
const_l(REG; OPS: set) 
CMPl(COMPAR; OPS: lt [CL];INPS:Count.00,Const_l6.0Q) 
Mux5(MUX2; OPS: CO [CL]; INPS: Const_O.OQ) 
Muxl(MUX2; OPS: co [CL]; INPS: PortA.00) 

RegA(REG; OPS: write; INPS: Muxl.00) 
Done(OUTPORT; OPS: write; INPS: Mux5.00) 
RCMPl(REG; OPS: load; INPS: CMPl.OLT) 

1 

+---

1 2 

----+ ---+---
2 RCMPl.OQ == 'l' 

----------------------------------------+----
True Mux2(MUX2; OPS: CO [CL]; INPS: RegA.OQ) I 3 

----------------------------------+--

! 
False Concatl(CONCAT2; OPS: concat; INPS: RegM.OQ,RegA.OQ)I 14 

PortM(OUTPORT; OPS: write; INPS: Concatl.00) 
Mux5(MUX2; OPS: Cl [CL]; INPS: Const_l.OQ) 

-----+-------------------------------------+---) I Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) I 4 
RSelect_LSB(REG; OPS: load; INPS: Select_LSB.00) 

-----+-------------------------------------+---
4 RSelect_LSB.OQ == 'l' 

------------------------------+----
True ALUl(ALU; OPS: add [CL, CP 2]; INPS:RegM.OQ,RegB.OQ) j 5 

Mux2(MUX2; OPS: Cl [CL]; INPS: RegM.OQ) 

False Mux2(MUX2; OPS: Cl [CL]; INPS: RegM.OQ) 8 
---+--

5 I 
---+ 

6 I 

Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) 
RSelect_LSB(REG; OPS: load; INPS: Select_LSB.00) I 

6 

--------+--
L3(REG; OPS: load; INPS: ALUl.00) j 7 
Mux4(MUX2; OPS: CO [CL]; INPS: L3.Q) 

·~--+----- -----·-----------+--
7 

8 

RegM(REG; OPS: write; INPS: Mux4.00) 

Select_LSB(SELECTl; OPS: select; INPS: Mux2.00) 
RSelect_LSB(REG; OPS: load; INPS: Select_LSB.00) 

---+-
9 RSelect_LSB.OQ = '0' 

True Mux3(MUX2; OPS: co [C!i]; INPS: RegA.OQ) 
Shiftl(SHIFTER; OPS: shr [CL]; INPS: Mux3.00) 
Muxl(MUX2; OPS: Cl .[CL]; INPS: Shiftl.00) 

Fals~·Mux3(MUX2; OPS: CO [CL]; INPS: RegA.OQ) 
Shiftl(SHIFTER; OPS: shl [CL]; INPS: Mux3.00) 
Muxl(MUX2; OPS: Cl [CL]; INPS: Shiftl.00) 

! 8 

9 

+---
1 

10 

11 

-----+ -+---
10 I RegA(REG; OPS: write; INPS: Muxl.00) I 12 
----+------------------------------------

11 I RegA(REG; OPS: write; INPS: Muxl.OO) I 12 
---+-----------------------------------+----

12 Count(COUNTER; OPS: inc) 13 
Mux3(MUX2; OPS: Cl [CL]; INPS: Re'jM.OQ) 
Shiftl(SHIFTER; OPS: shr [CL]; INPS: Mux3.00) 
Mux4(MUX2; OPS: Cl [CL]; INPS: Shiftl.00) 
CMPl(COMPAR; OPS: lt [CL];INPS:Count.00,Const_l6.0Q) 

-----+----------------------------------+---
13 I RegM(REG; OPS: write; INPS: Mux4.00), j 2 

RCMPl(REG; OPS: load; INPS: CMPl.OLT) 
-----+------------------------------------+----

!
! 14 I Done(OUTPORT; OPS: write; INPS: Mux5.00) I 15 
----+-----------------------------------· ---+---
15 I empty I 15 

-----+ 

Figure 4-6. State transition table for shift-and-adder with 2 stage adder 



shift-and-adder design no. of latches clock period(nsec) no. of states clock • states o/o 

without 0 316 9 2844 100.0 
pipelining 

without 2 201 10 2010 70.7 
multi-stage units 

with 10 105 16 1680 59.1 
multi-stage units 

Figure 4-7. Comparison of pipelining shift-and-add design 
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U6:LT •• U8:SUB 

L2+. -U-19 .... :MUL--T-

R3 R8 

Figure 4-8. Pipelined Hal example without multi-stage units 

A_port 

US:SUB 

R3 

. . . 
1--...--...Jl ........ . ......... . 

Figure 4-9. Pipelined Hal example with a 2-stage multiplier 

RS 



state A_port 

control ·oe> 

: L 11 

U6:LT .. U7:ADD 

. : ----.... : . 
'---....----'' '·········· .......... .: 

state R3 RS 

Figure 4-10. Pipelined Hal example with a 3-stage multiplier 
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1 
STATE ; co~~;noN .:\CTION I NEXT I 
------+-~---------~---~---~---~---~---~---~---------------+---~ 

0 i R3 ( REGI; OPS: WRITE; INPS: 06. 00) 1 1 
· U6(ALU; OPS: LT; IciPS: Rl.OO, A_PORT.OO) I 

------+-----------------~---~--------~---~--------~----------+---~ 

1 'R3.00 ~ 'l' 
-----------~---~---~-------------~---~---~-----+---~ 

True R9(REGI; OPS: WRITE; INPS: U9.00) 2 
U9(ALU; OPS: MULT; INPS: MUX18.00, :1UX17 .00) 
:10Xl8(XUX2;0PS:Cl; INPS: RB.00) 
MUX17(MUX2;0PS:CO; INPS: DX_PORT.00) 
UlO (ALU; OPS: MULT; INPS: MUX16.00, MUX19.00) 
:1CX19 (MUX4 ;OPS: Cl; INPS: RS. 00) 
MUX16(MUX2;0PS:CO; INPS: Rl.00) 
Rl(REGI; OPS: WRITE; INPS: U7.00) 
U7(ALU; OPS: ADD; INPS: MUX17.00, MUX16.00) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 
~----~---~---~---~---~---~---~---~---~-----+---~ 

False empty I 5 
---~-+-~---~----~---~---~-~~---~---~---~---~---~~---+---~ 

2 RlO(REGI; OPS: WRITE; INPS: Ul0.00) 3 
UlO(ALU; OPS: MULT; INPS: MUX16.00, MUX19.00) 
MUX16(MUX2;0PS:Cl; INPS: R9.00) 
MUX19(MUX4;0PS:CO; INPS: Rl0.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 
U9(ALU; OPS: MULT; INPS: MUXlB.00, MUX17 .00) 
MUXlB(MUX2;0PS:CO; INPS: R6.00) 
MUX17(MUX2;0PS:Cl; INPS: R7.00) 
U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) 
RJ(REGI; OPS: WRITE; INPS: U6.00) 

---~-+-~---~----~---~---~---~~-~---~---~---~---~-----+---~ 

3 RB(REGI; OPS: WRITE; INPS: UB.00) 4 
UlO(ALU; OPS: MULT; INPS: MUX16.00, MUX19.00) 
MUX19(MUX4;0PS:C2; INPS: DX_PORT.00) 
XUX16(MUX2;0PS:Cl; INPS: R9.00) 
U8(ALU; OPS: SUB; INPS: RB.OD, Rl0.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 
U9 (ALU; OPS: MULT; INPS: MUXlB. 00, MUXl 7. 00) 
MUX1B(MUX2;0PS:Cl; INPS: RB.OD) 
MUX17(MUX2;0PS:CO; INPS: DX_PORT.00) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 

---~-+-~---~----~---~---~---~--------~---~---~---~-----+---~ 

4 I R7(REGI; OPS: WRITE; INPS: U7 .00) 1 
j U7 (ALU; OPS: ADD; INPS: XUXl 7 .00, MUX16 .00) 

I 
MUX17(MUX2;0PS:Cl; INPS: R7.00) 
MUX16(MUX2;0PS:Cl; INPS: R9.00) 
RB(REGI; OPS: WRITE; INPS: UB.00) 
UB(ALU; OPS: SUB; INPS: R8.00, RJ.0.00) 

------+-~---~----~---~---~---~---~---~--------~---~-----+-----

: s I empty I s 

Figure 4-11. Original state transition table for HAL example 
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I STATE I CONDITION ACTION I NEXT 
T/F 

-----+----------------------------------+--
0 f . U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 1 

f R3(REGI; OPS: WRITE; INPS: U6.00) 
-----+-----------------------------------+--

1 R3.00 - 'l' 
-------------------------------------+--

True MUX16(MUX2; OPS: CO; INPS: Rl.00) 2 
MUX19(MUX4; OPS: Cl; INPS: RS.00} 
MUX18(MUX2; OPS: Cl; INPS: R8.00) 

. MUX17(MUX2; OPS: CO; INPS: DX PORT.00) 
UlO(ALU; OPS: MULT (CL); INPS:- L3.Q, L4.Q) 
U9(ALU; OPS: MULT (CL); INPS: LS.Q, L6.Q) 
L3(REG; OPS: load; INPS: MUX16.00) 
L4(REG; OPS: load; INPS: MUX19.00) 
LS(REG; OPS: load; INPS: MUX18.00) 
L6(REG; OPS: load; INPS: MUX17.00) 
------------------------------+---

False empty I 8 
-----+ +---

2 U7 (ALU; OPS : ADD; INPS: L6 . Q, L3 . Q) 3 
MUX18(MUX2; OPS: CO; INPS: R6.00) 
MUX17(MUX2; OPS: Cl; INPS: R7.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 
Rl(REGI; OPS: WRITE; INPS: U7.00) 
U9(ALU; OPS: MULT (CL); INPS: LS.Q, L6.Q) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 
LS(REG; OPS: load; INPS: MUX18.00) 
L6(REG; OPS: load; INPS: MUX17.00) 

-----+--------'---------------------------------+---
) U6 (.ALU; OPS: LT; INPS: Rl. 00, A_PORT. 00) 4 

MUX16(MUX2; OPS: Cl; INPS: R9.00) 
MUX19(MUX4; OPS: CO; INPS: Rl0.00) 
R3(REGI; OPS: WRITE; INPS: U6.00) 
UlO(ALU; OPS: MULT (CL); INPS: L3.Q, L4.Q) 
L3(REG; OPS: load; INPS: MUX16.00) 
L4(REG; OPS: load; INPS: MUX19.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 

-----+------------------------------------------+----
4 MUX16(MUX2; OPS: Cl; INPS: R9.00) 5 

MUX19(MUX4; OPS: C2; INPS: DX_PORT.00) 
MUX17(MUX2; OPS: CO; INPS: DX_PORT.00) 
MUX18(MUX2; OPS: Cl; INPS: R8.00) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 
UlO(ALU; OPS: MULT (CL); INPS: L3.Q, L4.Q) 
U9(ALU; OPS: MULT (CL); INPS: LS.Q, L6.Q) 
L3(REG; OPS: load; INPS: MUX16.00) 
L4(REG; OPS: load; INPS: MUX19.00) 
LS(REG; OPS: load; INPS: MUX18.00) 
L6(REG; OPS: load; INPS: MUX17.00) 

-----+------------------------------------------+----
5 I US(ALU; OPS: SUB; INPS: R8.00, Rl0.00) I 6 

R8(REGI; OPS: WRITE; INPS: U8.00) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 

-----+------------------------------------------------+----
6 US(ALU; OPS: SUB; INPS: R8.00, Rl0.00) 7 

MUX16(MUX2; OPS: Cl; INPS: R9.00). 
MUX17(MUX2; OPS: Cl; INPS: R7.00) 
RS(REGI; OPS: WRITE; INPS: US.00) 
LJ(REG; OPS: load; INPS: MUX16.00) 

------+------------------------------------------------+----
? I U7(ALU; OPS: ADD; INPS: L6.Q, L3.Q) I 1 

R7(REGI; OPS: WRITE; INPS: U7.00) 
-----+-----------------------------------------------+----

8 I empty I s 

Figure 4-12. State transition table for pipelined HAL example with no multi stage unit 



1STATE I 
----+ 

0 I 
----+ 

CONDITION 
T/F 

ACTION 

U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) 
R3(REGI; OPS: WRITE; INPS: U6.00) 

I NEXT 

+--

1 1 
+---

1 R3.00 .- 'l' 
+----

T:rue MUX16(MUX2; OPS: CO; INPS: Rl.00) 2 
MUX19(MUX4; OPS: Cl; INPS: RS.00) 
MUX17(MUX2; OPS: CO; INPS: DX_PORT.00) 
UlO(ALU; OPS: MULT [CL, CP 2); INPS: LS.Q, L6.Q) 
U9(ALU; OPS: MULT [CL, CP 2); INPS: L7 .Q., L7 .Q) 
LS(REG; OPS: load; INPS: MUX16.00) 
L6(REG; OPS: load; INPS: MUX19.00) 

. L7(REG; OPS: load; INPS: MUX17.00) 
. LB (REG; OPS: load; INPS: MUXl 7 .00) 

---------- ------+---
False empty ! 10 

-----+ +---
2 U7 (ALU; OPS: AOO; INPS: LB .Q, LS .Q) 3 

MUX17(MUX2; OPS: Cl; INPS: R7.00) 
. Rl(REGI; OPS: WRITE; INPS: U7 .00) 
. U9(ALU; OPS: MULT [CL, CP 2); INPS: L7 .Q, L7 .Q) 

L7(REG; OPS: load; INPS: MUX17.00) 
-----+--------,--------------------------+----) I U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 4 

. R9(REGI; OPS: WRITE; INPS: U9.00) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 
R3(REGI; OPS: WRITE; INPS: U6.00) 

-----+-----· -------------------------------+----
4 MUX16(MUX2; OPS: Cl; INPS: R9.00) 5 

MUX19(MUX4; OPS: CO; INPS: Rl0.00) 
UlO(ALU; OPS: MULT [CL, CP 2]; INPS: LS.Q, L6.Q) 
LS(REG; OPS: load; INPS: MUX16.00) 
L6(REG; OPS: load; INPS: MUX19.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 

-----+------------------------------------+---
5 MUX16(MUX2; OPS: Cl; INPS: R9.00) 6 

MUXI9(MUX4; OPS: C2; INPS: DX_PORT.00) 

-----+ 
6 I 

-----+-

7 I 

MUXI7(MUX2; OPS: CO; INPS: DX_PORT.00) 
UlO(ALU; OPS: MULT [CL, CP 2]; INPS: LS.Q, L6.Q) 
U9(ALU; OPS: MULT [CL, CP 2]; INPS: L7.Q, L7.Q) 
LS(REG; OPS: load; INPS: MUX16.00) 
L6(REG; OPS: load; INPS: MUX19.00) 
L7(REG; OPS: load; INPS: MUX17.00) 

RlO(REGI; OPS: WRITE; INPS: Ul0.00) 

UB(ALU; OPS: SUB; INPS: R8.00, Rl0.00) 
RB(REGI; OPS: WRITE; INPS: UB.00) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 

+--
1 7 
+----

1 8 

-----+-----------------------------------------------+----
B UB(ALU; OPS: SUB; INPS: RB.00, Rl0.00) 9 

MUX16(MUX2; OPS: Cl; INPS: R9.00) 
MUX17(MUX2; OPS: Cl; INPS: R7.00) 
RB(REGI; OPS: WRITE; INPS: UB.00) 
LS(REG; OPS: load; INPS: MUX16.00) 
LB(REG; OPS: load; INPS: MUX17.00) 

-----+-----------------------------------------------+---
9 I U7(ALU; OPS: ADD; INPS: . L8.Q, 15.Q) I 1 

R7(REGI; OPS: WRITE; INPS: U7.00) 
-----+--------------------------------------+---

10 I empty I lo 

Figure 4-13. State transition table for pipelined HAL example with 2-stage multipliers 
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STATE I CONDITION 
T/F 

ACTION I NEXT 

---+·------------- ·------------+----
0 I ·. U6 (ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 1 

R3(REGI; OPS: WRITE; INPS: U6.00) 
-----+-·----· +--

1 R3.00 ~ 'l' 

-----+ 
2 

---+ 

3 I 
---+ 

4 I 
----+ 

5 

-----------------------·+----
TrUe MUX19(MUX4; OPS: Cl; INPS: R5.00) 2 

MUX18(MUX2; OPS: Cl; INPS: R8.00) 
MUX16(MUX2; OPS: CO; INPS: Rl.00) 
MUX17(MUX2; OPS: CO; INPS: DX_PORT.00) 
15(REG; OPS: load; INPS: MUX19.00) 
16(REG; OPS: load; INPS: MUX18.00) 
17(REG; OPS: load; INPS: MUX16.00) 
18(REG; OPS: load; INPS: MUX17.00) 
UlO(ALU; OPS: MULT .[CL, CP 3]; INPS: 17.Q, 15.Q) 
U9(ALU; OPS: MULT [CL, CP 3]; INPS: 18.Q, 16.Q) 
U7(ALU; OPS: ADD [CL]; INPS: 18.Q, 17.Q) 

·-------------+----
False empty 

MUX18(MUX2; OPS: CO; INPS: R6.00) 
MUX17(MUX2; OPS: Cl; INPS: R7.00) 
Rl(REGI; OPS: WRITE; INPS: U7.00) 
16(REG; OPS: load; INPS: MUX18.00) 
U9(ALU; OPS: MULT [CL, CP 3]; INPS: 16.Q, 18.Q) 

: 18(REG; OPS: load; INPS: MUX17.00) 

! 12 
+--

3 

+---
U6(ALU; OPS: LT; INPS: Rl.00, A_PORT.00) I 4 
R3(REGI; OPS: WRITE; INPS: U6.00) 

-------·----·+---
U9.00) 

Ul0.00) ! 5 
.R9(REGI; OPS: WRITE;. INPS: 

. RlO(REGI; OPS: WRITE; INPS: 
-----------~--

MUX19(MUX4; OPS: CO; INPS: Rl0.00) 
MUX16(MUX2; OPS: Cl; INPS: R9.00) 

: UlO(ALU; OPS: MULT [CL, CP 3]; INPS: 17.Q, 15.Q) 
. 15(REG; OPS: load; INPS: MUX19.00) 

17(REG; OPS: load; INPS: MUX16.00) 
R9(REGI; OPS: WRITE; INPS: U9.00) 

6 

----+----· --·-----·---------· 
6 ·MUX18(MUX2; OPS: Cl; INPS: R8.00) 

:MUX17(MUX2; OPS: CO; INPS: DX_PORT.00) 
. 16(REG; OPS: load; INPS: MUX18.00) 
U9(ALU; OPS: MULT [CL, CP 3]; INPS: 16.Q, 18.Q)° 
18(REG; OPS: load; INPS: MUX17.00) 

7 

---+ -+----
7 MUX19(MUX4; OPS: C2; INPS: DX_PORT.00) 8 

MuXl6(MUX2; OPS: Cl; INPS: R9.00) 
15(.REG; OPS: load; INPS: MUX19.00) 
UlO(·ALU; OPS: MULT [CL, CP 3]; INPS: 17 .Q, 15.Q) 
17(REG; OPS: load; INPS: MUX16.00) 

-----+--------------------------------. ----+--
8 I RlO(REGI; OPS: WRITE; INPS: Ul0.00) 1· 9 

US(ALU; OPS: SUB [CL]; INPS: R8.00, Rl0.00) 
-----+---------------------------------------+---

9 I RB(REGI; OPS: WRITE; INPS: US.00) I 10 
R9(REGI; OPS: WRITE; INPS: U9.00) 

----+-----------------------------------+----
10 I MUX16(MUX2; OPS: Cl; INPS: R9.00) 11 

MUX17(MUX2; OPS: Cl; INPS: R7.00) 
RlO(REGI; OPS: WRITE; INPS: Ul0.00) 

I 
17(REG; OPS: load; INPS: MUX16.00) 
U7(ALU; OPS: ADD [CL]; INPS: 18.Q, 17.Q) 
U8(ALU; OPS: SUB [CL] i. INPS: RB.00, Rl0.00) 
18(REG; OPS: load; INPS: MUX17.00) 

----+----------------------------------------+---
11 I R7(REGI; OPS: WRITE; INPS: U7.00) I 1 

RB(REGI; OPS: WRITE; INPS: US.00) 
-----+-----------------------------------+--

12 I empty . I i2 

Figure 4-14. State transition table for pipelined HAL example with 3-stage multipllels 



HAL example no. of latches clock period (nsec) no. of states clock • states % 

without 
pipelining 

0 685 6 4110 100.0 

pipeining without 
6 9 5400 131.4 

multi-stage units 600 

pipelining with 
8 300 11 3300 80.3 

2-stage multiplier 

pipelining with 12 200 13 2600 63.4 
3 stage multiplier 

Figure 4-15. Performance comparison for HDL example 
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The "Elliptic" example (KuWK85] is shown in Figures 4-16 through 4-21. This 

experiment shows that insertion of pipelined operation units improves performance from 

28% to 323. Inserting latches between multiplexers and operation units may result in 

decrease of performance. This was the case for design with no pipelined adder and 2-

stage multiplier. 

There are special operations for pipeline represented by "CL" and "CP n" in an 

operation field of a state transition table. "CL" means the operation is control latched. 

"CL" operation in state N causes setting of a control latch in state N and executfon 

with a function unit in state (N + 1 ). "CP n" means the operation is done with n stage 

pipeline unit. "CP n" operation in state N completes at the end of stat~ {N+ n - 1). 
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state 

control ••OC. 

state 

Figure 4-16. Pipelined Elliptic example without multi-stage units 
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state 

control ··-

state 

Figure 4-17. Pipelined Elliptic example with 2-stage multiplier with no mux output latch 
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state 

L4 

control ••me> 

state 

Figure 4-18. Pipelined Elliptic example with 2-stage multiplier and mux output latch 
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state 

control ••oe> 

l Adder1-2 l . . . . •........ . ....... . 

...... ..... . ..... . . 
l Adder1-1 ! . . . . 
: LS : . . 
i Adder1-2 i . . . . '········ ......... . 

Figure 4-19. Pipelined Elliplitic example with 4-stage multiplier, 2-stage adder and no mux output latch 
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state 

LS L9 

conirol ••oe> 

·····: . . . . .____, _ __.: . . ----i 

Figure 4-20. Pipelined Elliplitic example with 4-stage multiplier, 2-stage adder and mux output latch 
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Elliptic filter design no. of latches clock period (nsec) no. of states clock • states % 

without 
495 19 9405 pipelining 0 100.0 

no multi stage unit, 

mux output latch 
2 400 23 9200 97.8 

2 stage multiplier, 1 295 23 6785 72.1 
no mux output latch 

2 stage multiplier, 7 201 40 8040 85.5 
mux output latch 

2 stage adder, 
5 195 4 stage multiplier, 46 8970 95.4 

no mux ou!Q_ut latch 
2 stage adder, 
4 stage multiplier, 11 101 63 6363 67.7 
mux output latch 

Figure 4-21. Performance comparison of Elliptic example 
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5. Conclusion 

A resynthesis method for pipelining register-to-register netlists has been proposed. 

Latch insertion and rescheduling tools have been developed and are available in UCI 

suite of synthesis tools. Experiments have shown that such pipelining can reduce total 

execution time by 29% - 41 %. 

Area cost increased by a latch insertion has not been studied. It is expected that 

inserted latches and routing will increase total chip area but not substantially. If 

dynamic charge latches are used instead of flip-flops, the area cost will be even smaller. 

Routing for inserted latches might also change propagation delays and reduce the 

throughput gain. It also requires further study. 

Current state transition table compaction is only applied to straight line code 

segments. If compaction is applied beyond branches, pipeline efficiency will be increased 

even further. 
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