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Abstract 
 

Urban greenhouse gas emissions as observed using a high-density sensor network 
 

by 
 

Alexis A. Shusterman 
 

Doctor of Philosophy in Chemistry 
 

University of California, Berkeley 
 

Professor Ronald C. Cohen, Chair 
 
 
More than 70% of anthropogenic carbon dioxide emissions originate from cities, and that fraction 
is expected to grow with the increasing urbanization of the world population. Monitoring, 
reporting, and verification (MRV) of emission mitigation initiatives are complicated in urban areas 
by the combination of spatio-temporally heterogeneous landscapes of CO2 sources and poorly 
constrained turbulent fluid dynamics near the rough and irregular surfaces of urban topography.  
In this dissertation, I present a novel approach to MRV of urban emissions using a distributed 
network of near-surface ambient CO2 monitors stationed at 2 km intervals across an urban dome. 
The study area is the San Francisco Bay Area, a location characterized by a high density of 
disparate emission sources, irregular topography, as well as strong municipal and state level 
commitments to emission reductions. First, I describe the design, implementation, and evaluation 
of this unprecedented monitoring approach, hereafter the BErkeley Atmospheric CO2 Observation 
Network (BEACO2N). I demonstrate how the use of lower cost sensor technologies enables a high 
volume of monitors to be deployed at a cost competitive with conventional, non-spatially resolved 
monitoring approaches and find the lower cost monitors to be of sufficient accuracy and precision 
to capture typical urban CO2 phenomena. Second, I leverage this validated framework to provide 
the first high-resolution characterization of the neighborhood-to-neighborhood variability in local 
CO2 concentrations across the San Francisco Bay Area. I find significant differences even between 
nearby pairs of monitoring sites, leading to the derivation of a relatively short spatial correlation 
length scale for the study area and demonstrating a high degree of sensitivity to the unique emission 
sources local to each site. I determine these sensitivities to be capable of detecting changes in 
emission processes of policy-relevant magnitudes, providing a viable new constraint on 
regulations concerning, for example, fuel efficiency and vehicle electrification. Finally, I compare 
the CO2 concentrations measured at nine BEACO2N sites to those predicted by an ensemble of 
atmospheric transport models. I find large disagreements between the observations and the 
simulations, only a small portion of which can be explained by known measurement errors or the 
spread in plausible transport and emissions scenarios, highlighting the utility of high-density 
observations for the validation and improvement of conventional modeling frameworks. Taken 
together, this body of work demonstrates the promise of atmospheric observation networks based 
on moderate quality sensor technologies as a practicable approach to the challenge of monitoring 
urban greenhouse gas emission patterns and trends.
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Chapter 1 
 
Introduction 
 
1.1 Motivation and strategies for urban carbon dioxide monitoring 
 
Carbon dioxide (CO2) is a trace gas in the earth’s atmosphere that contributes to the warming of 
the planet’s surface via the greenhouse effect, or the absorption and bi-directional re-emission of 
longwave infrared radiation that would otherwise escape to space (Fourier, 1827; Foote, 1856). 
Natural variations in atmospheric CO2 levels over geological timescales correspond to gradual, 
long-term oscillations between ice age and interglacial climate extrema (Lorius et al., 1990), but 
recent accelerations in the rate of increase in atmospheric CO2 concentrations (Keeling, 1960) have 
led to concerns surrounding the ecological and sociological ramifications of more rapid alterations 
to global average temperatures and ocean chemistry. As a result, widespread efforts are underway 
on municipal to international scales (Rosenzweig et al., 2010) to identify and implement behavioral 
and technological interventions that will slow the release of additional carbon dioxide into the 
earth’s atmosphere. 
 
The vast majority of recent additions to the atmospheric carbon dioxide budget are anthropogenic 
in origin and attributable to combustion activities that oxidize hydrocarbons for the production of 
energy, e.g., the burning of fossil fuels for electricity generation, heating, and transportation 
(Stuiver and Quay, 1981). As such, reducing the volume of fossil fuel consumed by either 
abstaining from or increasing the energy efficiency of processes that rely on combustion are key 
targets for CO2 emission reduction strategies. Such strategies are often costly and/or disruptive to 
execute, thus there exists a strong motivation to identify and ensure compliance with the most 
effective initiatives. These efforts to optimize the efficacy of emission reduction strategies are 
broadly referred to as monitoring, reporting, and verification (MRV) activities and can be divided 
into two major categories: (1) activity-based approaches that produce detailed accountings of 
known CO2 emitting processes and scale their magnitude to estimate the resultant emissions, and 
(2) observation-based approaches that leverage ambient measurements of atmospheric species to 
infer underlying emission processes of known and unknown nature (Pacala et al., 2010). 
 
Numerous activity-based CO2 emission “inventories” have been produced at a myriad of spatio-
temporal scales by various collaborations between academic and governmental agencies. Cities 
are of primary interest, given that more than 70% of anthropogenic greenhouse gas emissions 
originate from urban centers (United Nations, 2011). Previous analyses have determined an 
inventory spatial resolution of 100–1000 m to be required to sufficiently represent city-scale 
emission processes, for example the sharp gradients in CO2 fluxes nearby major highways 
(McDonald et al., 2014; Liang et al., 2017). However, the necessary combustion activity data used 
to create these CO2 inventories are typically reported as county-, state-, or even nation-wide 
aggregates (e.g., total vehicle miles traveled in a given country in a given year), and the 
downscaling of these total quantities to higher spatio-temporal resolutions is an extremely labor-
intensive process. As a result, the production of highly resolved emission inventories for urban 
areas has thus far been a largely piecemeal effort, progressing one city at a time. 
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At the time of this writing, comprehensive, activity-based CO2 emission inventories have been 
produced at resolutions ≤2.5 km2 for the cities of Indianapolis, Indiana (Gurney et al., 2012), Paris, 
France (Bréon et al., 2015), Los Angeles, California (Newman et al., 2016), Salt Lake City, Utah 
(Patarasuk et al., 2016), San Francisco–San Jose, California, (Turner et al., 2016), Chennai, India 
(Kumar and Nagendra, 2016), Toronto, Canada (Pugliese et al., 2018), as well as the northeastern 
region of the United States (Gately and Hutyra, 2017). Additional high-resolution inventories that 
account only for CO2 emissions from mobile sources exist for the cities of Norwich, United 
Kingdom (Nejadkoorki et al., 2008), New York City, New York, Houston and Dallas–Fort Worth, 
Texas (McDonald et al., 2014), and, most recently, the entire United States (Gately et al., 2015). 
However, even these extant local-level inventories are only intermittently updated and are known 
to possess significant uncertainties associated with the proxies and assumptions used to reallocate 
the primary activity data to the desired spatio-temporal specificity (Miller and Michalak, 2017). 
There is a broad consensus that corroboration of activity-based inventories against ambient 
atmospheric observations is necessary to improve confidence in said inventories if they are to be 
used in potentially legally binding MRV applications (Duren and Miller, 2012). 
 
Historically, the observation-based field has been limited by the analytical challenge of providing 
quantitative measurements of an extremely dilute (<1000 ppm) trace gas in field conditions with 
variable meteorological parameters and interfering species (Fonselius et al., 1956). As such, most 
long-term ambient CO2 monitoring networks are spatially sparse, consisting of fewer than 10 sites 
spread across entire nations or continents, such that the available resources can be focused on the 
proper maintenance and calibration of a smaller number of instruments. In this vein, the National 
Oceanic and Aerospace Administration coordinates a worldwide network of tower-based 
greenhouse gas observation sites as part of their Global Greenhouse Gas Reference Network 
(Andrews et al., 2014). Similar networks exist in China (Fu et al., 2010), Switzerland (Oney et al., 
2015), and the United Kingdom (Stanley et al., 2018), and these mixing ratio measurements are 
supplemented by the Total Carbon Column Observing Network, a global web of 18 ground-based 
total column greenhouse gas observing sites founded in 2004 (Wunch et al., 2011). 
 
In the interest of cost effectiveness, these networks are often purposefully sited in remote areas 
well suited for characterizing biogenic carbon exchange (e.g., Fang et al., 2014) and/or 
constraining national emissions (e.g., Kou et al., 2015; Yadav et al., 2016; Kou et al., 2017; Liu et 
al., 2014). This ensures their measurements are representative of the greatest possible domain but 
leaves little opportunity for direct observation of individual cities. Intensive field campaigns 
involving shorter term installations of a larger number of instruments have been used successfully 
in the past to constrain brief snapshots of CO2 emissions without undue expense (e.g., Lauvaux et 
al., 2009; Miles et al., 2012; Lauvaux et al., 2013; Díaz-Isaac et al., 2018), but the limited duration 
of these studies precludes any understanding of the inter-annual trends most relevant to greenhouse 
gas emission mitigation. Space-based (e.g., Bovensmann, et al., 2010; Kort et al., 2012; Schneising 
et al., 2013; Kumar et al., 2014; Pillai et al., 2016; Nassar et al., 2017; Schwandner et al., 2017), 
aircraft-based (Lin et al., 2006; Lauvaux et al., 2009; Brioude et al., 2013; Cambaliza et al., 2014; 
O’Shea et al., 2014), and vehicle-based (e.g., Brondfield et al., 2012; Bush et al., 2015; Maness et 
al., 2015; Gately et al., 2017; Lee et al., 2017) monitoring techniques, although extreme opposites 
in terms of spatial scale, suffer from similarly limited temporal coverage. These “mobile” 
platforms revisit a given location very infrequently, inhibiting the analysis of temporal cycles 
and/or longitudinal trends without a much more substantial upfront data collection period. 
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The relatively recent introduction of commercially available cavity ring-down and other infrared 
spectroscopy equipment has significantly increased the feasibility of long-term ambient 
greenhouse gas monitoring within urban areas. Networks consisting of two or more CO2 observing 
sites have been installed in Boston, Massachusetts, (2 sites; McKain et al., 2015), Rotterdam, the 
Netherlands (2 sites; Super et al., 2017a; Super et al., 2017b), Cape Town, South Africa (2 sites; 
Nickless et al., 2018), Montreal, Quebec (3 sites; Bergeron and Strachan, 2011), London, United 
Kingdom (4 sites; Boon et al., 2016), Xi’an, China (4 sites; Wang et al., 2018), Toronto, Canada 
(4 sites; Pugliese et al., 2018), Salt Lake City, Utah (5 sites; Pataki et al., 2003), Paris, France (5 
sites; Bréon et al., 2015), Indianapolis, Indiana (12 sites; Richardson et al., 2017), Nagpur, India, 
(12 sites; Majumdar et al., 2017), and Los Angeles, California (16 sites; Verhulst et al., 2017).  
 
A common application of these urban networks is to use their measurements as observational 
constraints in inversion analyses that couple computational atmospheric transport models with 
activity-based, a priori estimates of the CO2 emissions in the surrounding domain (e.g., McKain et 
al., 2012; Bréon et al., 2015; Lauvaux et al., 2016; Staufer et al., 2016; Miles et al., 2017; Nickless 
et al., 2018). These models maximize the agreement between the simulated and observed CO2 
concentrations by systematically nudging the original emission estimate, either heterogeneously 
in space and time or with a single scale factor, thus arriving at an optimal posterior emission 
estimate for an urban area of interest (Ciais et al., 2010). With this approach, the aforementioned 
studies have reduced uncertainties in activity-based emission inventories by approximately 10–
50%. 
 
While it is generally thought that even greater error reductions might be achieved with higher 
density networks consisting of more urban monitoring sites (Staufer et al., 2016), the upfront price 
and ongoing maintenance costs associated with high-quality CO2 monitoring equipment prohibits 
the arbitrary expansion of observation networks based on such technologies. Often, higher network 
density is only possible through a compromise in instrument quality. This tradeoff between the 
quality and quantity of observations has been investigated by numerous theoretical studies using 
synthetic data produced by hypothetical observing systems as inputs into inversion analyses 
(Michalak et al., 2017). By omitting a subset of the observations or artificially introducing 
additional measurement errors, these analyses are able to quantify the reductions in emission 
uncertainties possible with different network configurations. While the optimal network design 
depends on the specific topography, meteorology, and emission landscape of a given domain (Wu 
et al., 2018), most studies have concluded that the benefits of greater observational density easily 
outweigh the lower quality of said observations (e.g., Kort et al., 2013; Turner et al., 2016; Wu et 
al., 2016; Lopez-Coto et al., 2017).  
 
High-resolution monitoring systems also offer the opportunity to directly observe individual CO2 
sources and sinks that are often otherwise compiled into sector- or citywide totals by atmospheric 
inversion analyses. While quantifying the integrated urban outflow is important to marking 
progress toward an overall mitigation goal, the majority of emission mitigation policies are 
typically comprised of dozens of rules and regulations targeting specific emission sources within 
the citywide total (e.g., Brown et al., 2014). These spatio-temporally heterogeneous phenomena 
are more faithfully captured by high density observing networks (Turner et al., 2016). Moreover, 
the resultant high-resolution record of CO2 tracer transport through the urban domain has the 
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potential to increase understanding of near-surface dispersion dynamics in the complex, built 
environment (Nehrkorn et al., 2013; Deng et al., 2017). Neighborhood-level observations of CO2 
may also be individually relevant to air quality and public health concerns; Bares et al. (2018) 
found excess CO2 above a given background concentration to be a reliable predictor of the 
presence of other, toxic gases. 
 
Prior studies have identified several low-cost commercial CO2 sensors as promising candidates for 
future high-density deployments (e.g., Rigby et al., 2008; Martin et al., 2017). However, despite 
demonstrated reliable in situ performance, subsequent applications of these technologies have 
involved only single monitoring sites (e.g., Sharma et al., 2011; Järvi et al., 2012).  
 
Here I present the design, implementation, and analysis of a major innovation in the realm of 
observation-based approaches to MRV of CO2 emission mitigation. The BErkeley Atmospheric 
CO2 Observation Network (BEACO2N) is a distributed web of moderate cost CO2 and air quality 
sensing “nodes” originating in Oakland, California in 2012 that has since spread across the San 
Francisco Bay Area and been replicated in New York City and Houston, Texas. With more than 
50 nodes in the Bay Area today, BEACO2N offers a unique tradeoff between sensor quantity and 
quality, enabling an unprecedented degree of spatial density that much more closely approaches 
the length scales of variability in urban CO2 sources and sinks. It is hypothesized that increased 
sensitivity to individual sources increases the ability to specifically characterize and therefore 
inform mitigation of said sources. What follows is an evaluation of this novel CO2 observation 
platform following its design, initial deployment, and subsequent iterations and expansions, 
including descriptions of its measurement capabilities as well as appropriate applications of the 
dataset to policy-relevant MRV tasks and opportunities to interface with computational 
atmospheric transport models. 
 
1.2 Chapter 2: The BErkeley Atmospheric CO2 Observation Network: initial evaluation 
 
In Chapter 2, I describe the design of the BErkeley Atmospheric CO2 Observation Network and 
offer an initial evaluation of its laboratory and in situ performance using a framework of four 
criteria: cost, reliability, precision, and bias. Via comparisons with high-quality reference 
instruments and case studies of well-documented atmospheric phenomena, I develop a calibration 
technique that produces unbiased observations of sufficient precision and reliability to capture CO2 
signals with magnitudes relevant to typical urban processes without exceeding the cost of a one to 
two site network utilizing conventional, higher cost technologies. Finally, I also present descriptive 
statistics and preliminary results from the first year of BEACO2N’s pilot installation (28 sites) in 
Oakland, California. 
 
1.3 Chapter 3: Observing local CO2 sources using low-cost, near-surface urban monitors 
 
In Chapter 3, I introduce a procedure for decomposing the BEACO2N data record into a network-
wide, regional signal and site-specific local signals. I then characterize the degree of spatial 
heterogeneity represented in the local signals and illustrate the sensitivity of these local 
components to nearby emission activities using a case study of highway traffic flows. I also 
demonstrate a technique for isolating smaller signals from more distant processes using a multiple 
linear regression approach that is capable of removing the confounding effects of seasonality, 
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meteorology, and dynamics. I show that this technique allows for the detection of traffic-related 
emissions throughout the BEACO2N network domain, and that these source-specific signatures 
are sufficiently sensitive to resolve emission trends on scale with those mandated by upcoming 
vehicle fuel efficiency regulations. 
 
1.4 Chapter 4: High-resolution comparison of observed and simulated CO2 mixing ratios  
 
In Chapter 4, I present the results of a computational simulation based on a 1 km2 atmospheric 
transport model and activity-based emission inventory developed for the San Francisco Bay Area. 
I compare the modeled CO2 mixing ratios with those observed by nine BEACO2N sites to illustrate 
the tendency of the model to underrepresent the spatio-temporal heterogeneity of the urban CO2 
landscape and offer an initial analysis of the factors that contribute to this model–data mismatch: 
instrument, transport, emissions, and representation error. I find that the former three error terms 
are unable to account for the entire difference between simulated and observed CO2 
concentrations, highlighting either the significance of representation error and/or large 
underestimations in the other error terms. 
 
1.5 Chapter 5: Conclusions 
 
In Chapter 5, I summarize the conclusions contained herein and recommend possible directions 
for future work. 
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Chapter 2 
 
The BErkeley Atmospheric CO2 Observation Network: initial evaluation  
 
Adapted from Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., and Cohen, R. 
C., Atmos. Chem. Phys., 16, 13449–13463, 2016. 
 
2.1 Introduction 
 
As two-thirds of the human population stand to inhabit cities by 2050 (United Nations, 2014), 
developing a thorough understanding of urban greenhouse gas emissions is of ever-growing 
importance. International and local law-making bodies around the world are agreeing to caps on 
total emissions and enacting multi-faceted regulations aimed at achieving these caps (e.g., A.B. 
32, 2006; United Nations, 2015). As of yet there exists no mechanism for judging the efficacy of 
these individual rules or verifying compliance through direct observations of changes in CO2 at 
the scale of cities (Duren and Miller, 2012).  
 
Traditional strategies for assessing greenhouse gas emissions are limited to a small handful of 
monitoring instruments scattered sparsely across remote areas, mostly in developed nations (e.g., 
Worthy et al., 2003; Thompson et al., 2009; Andrews et al., 2014). These stations are capable of 
measuring regional average and some integrated urban concentrations with extreme accuracy and 
precision, but are purposefully distanced from and experience reduced sensitivity to urban signals, 
thus giving little to no spatially resolved information on emissions in the precise areas that the 
majority of greenhouse gas rules aim to regulate. 
 
The increasing significance of urban emissions combined with the proliferation of commercial 
cavity ring-down spectroscopic instrumentation have resulted in a recent trend towards network 
sensing approaches for constraining greenhouse gas emissions in cities. For example, Ehleringer 
et al. (2008) maintain a CO2 monitoring network in the Salt Lake City metropolitan area; the 
INFLUX network measures CO2, 14CO2, and total column CO2 across the city of Indianapolis 
(Turnbull et al., 2015); and NASA’s Megacities Carbon Project has established sensor networks 
in the pilot cities of Los Angeles (Kort et al., 2013) and Paris (Bréon et al., 2015). These ground-
based monitoring efforts are complemented by space-based observations from SCIAMACHY 
(Burrows et al., 1995), GOSAT (Yokota et al., 2009), and most recently the Orbiting Carbon 
Observatory-2 (OCO-2) launched in July 2014, which provides total column CO2 measurements 
over 1.29 by 2.25 km footprints once every 16 days (Eldering et al., 2012).  
 
Thus far, the urban surface projects have relied on a relatively small number of instruments 
(between 5 and 15) distributed with sensor-to-sensor distances of 5 to 35 km. Initial efforts suggest 
this approach may be effective at characterizing average citywide emissions over monthly to 
annual timescales (McKain et al., 2012), however it has yet to be used to identify and quantify 
specific emission activities at neighborhood scales. To resolve individual emission sources, much 
finer spatial resolution is needed. Simple Gaussian dispersion models with total reflection at the 
surface predict >95% of the one-dimensional footprint of a sensor 10 m above ground level to be 
within 1.1 km of the sensor under typical conditions (Seinfeld and Pandis, 2006) and prior studies 
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(e.g., Zhu et al., 2006; Beckerman et al., 2008; Choi et al., 2014) have observed e-folding distances 
of ~100 to 1000 m for urban pollutant plumes mixing into the local background. 
 
Here we propose an alternative approach that strikes a different balance between instrument quality 
and quantity than in previous CO2 monitoring efforts. The BErkeley Atmospheric CO2 Observation 
Network (BEACO2N) is a large-scale network instrument that aims to leverage low-cost sensing 
techniques in order to enable a spatially dense network of CO2 sensing “nodes” in and around the 
city of Oakland, California (Fig. 2.1 and 2.2). Using commercial CO2 instrumentation of moderate 
quality and a suite of low-cost trace gas sensors for additional source attribution specificity, 
BEACO2N is able to achieve an unprecedented spatial resolution of approximately 2 km–to our 
knowledge the only sensor network to date that monitors CO2 on scale with the heterogeneous 
patterns of urban sources and sinks (see Fig. 2.3 for examples of observed intracity CO2 flux 
gradients). We present an initial description and characterization of the instrument, beginning with 
a description of the nodes, their locations, and the development of various laboratory and in situ 
calibration techniques. We then evaluate the network in terms of four factors–cost, reliability, 
precision, and systematic uncertainty; described below–and conclude by demonstrating 
BEACO2N’s ability to resolve CO2 signals of significance to the urban environment. 
 
2.1.1  Cost 
 
In order to remain cost-competitive with other, less dense networks employing higher grade 
instrumentation, a high-density network must utilize sensors with a price 1–2 orders of magnitude 
lower. However, as sensor price often scales with quality, low-cost instrumentation may carry 
associated penalties in other domains, such as diminished precision, persistent bias, or the need for 
frequent maintenance and/or re-calibration. Thus, we seek to optimize the trade-off between cost 
and the other considerations.  
 
2.1.2  Reliability 
 
Network reliability consists of sensor uptime and continuity of the data stream and is crucial to 
enabling comparison and averaging across sites as well as improving the statistics of temporal 
analyses. Poor reliability also has an indirect impact on cost via the resources expended on repeat 
maintenance visits and/or replacement part purchases. 
 
2.1.3  Precision 
 
The precision requirements at each individual site versus for a network instrument as a whole vary 
depending on the phenomena of interest. Metropolitan regions produce <10 ppm CO2 
enhancements in the boundary layer (Pacala et al., 2010), requiring sensitivity to changes orders 
of magnitude smaller for the characterization of citywide integrated inter-annual trends, for 
example. More specifically, according to the First Update to the Climate Change Scoping Plan, 
the state of California would have to reduce its overall CO2 emissions by 4.7 million metric tons 
per year to achieve its goal of reaching 1990 emission levels by 2020 (Brown et al., 2014). 
Assuming a fraction of that total reduction is attributable to the San Francisco Bay Area in 
proportion to its population (~20% of the California total), this amounts to a change of -2.6 x 106 
kg CO2 day-1 for the San Francisco Bay Area. Given a residence time of air in the region of 1 day, 
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these emissions reductions spread evenly over the 22,681 km2 domain and through a 1 km 
boundary layer would lead to a 65 ppb annual decrease in the daily CO2 concentrations. If the goal 
is verification of regional inter-annual emission targets, we would therefore require 𝑁 instruments 
of sufficient individual sensitivity and spatial representativeness such that their combined signals 
allow us to detect annual changes of ~65 ppb year-1 with confidence. 
 
However, the true strength of the high-density approach lies in the individual sensors’ (or sub-
group of sensors’) sensitivity to intracity phenomena, which are orders of magnitude larger by 
virtue of their proximity to sources not yet diluted by advection. Larger signal sizes forgive poorer 
precision in the individual instruments, but demand sufficient temporal resolution to capture these 
anomalous, often unexpected, events of short duration on top of slowly varying domain-wide 
fluctuations in the background concentration. Because the BEACO2N instrument is unique in its 
sensitivity to these highly local processes, we will focus on this latter specification of the 
instrument precision in the characterization that follows. 
 
2.1.4  Systematic uncertainty 
 
Systematic uncertainties can be incurred somewhat abruptly during the initial field installation 
(bias) or accrued more gradually over time (drift). Systematic uncertainty in the sensor readings is 
of particular concern in a large-scale network deployment where onsite calibration materials such 
as reference gases are infeasible and frequent maintenance visits are undesirable. To ensure 
trustworthy observations, a given network sensing approach must demonstrate some combination 
of: (a) instrumentation that is reasonably robust against sudden or gradual introduction of 
systematic uncertainty, (b) a post hoc correction for systematic uncertainty in the data record, 
and/or (c) a procedure for identifying and replacing sensors whose systematic uncertainties cannot 
be remedied via the prior methods. 
 
2.2  Node design, calibration, and deployment 
 
Each BEACO2N node contains a non-dispersive infrared Vaisala CarboCap GMP343 sensor for 
CO2 as well as SGX Sensortech MiCS-4514 and MiCS-2614 metal oxide-based micro-sensors 
used to detect CO/NO2 and O3, respectively. Following a large-scale node refurbishment and 
upgrading effort in mid-2014, these core elements are now supplemented with a Sensirion SHT15 
and Bosch-Sensortec BMP180 sensor for measuring humidity (SHT15), pressure (BMP180), and 
temperature (both), a Shinyei PPD42NS nephelometric particulate matter sensor, and a suite of 
Alphasense B4 electrochemical trace gas sensors for O3, CO, NO, and NO2. A discussion of these 
latter, air quality-related technologies is presented in Kim et al. (2018). 
 
All sensors are assembled into compact, weatherproof enclosures as seen in Fig. 2.4. A Raspberry 
Pi microprocessor automates data collection via a serial-to-USB converter (for CO2, every ~2 
seconds) and an Arduino Leonardo microcontroller (for everything else, every ~10 seconds), then 
transmits data to a central server using either: (a) a direct onsite Ethernet connection, (b) a Ubiquiti 
NanoStation locoM2 Wi-Fi antenna, or (c) an Adafruit FONA miniGSM cellular module. The 
latter has the unintended consequence of introducing a significant amount of electrical noise into 
the system. We reduce the impact of this noise by limiting data transmission to 2 hours per day, 
on a rotating schedule such that no periods are disproportionately afflicted by elevated noise levels. 
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Battery-powered real time clock modules are also included to ensure timestamp accuracy during 
planned and unexpected hiatuses in internet connectivity. 
 
Airflow through the node is maintained by two 30 mm fans, one positioned in the “intake” 
orientation and the other in the “outflow” orientation. An additional, passive air outlet is located 
adjacent to the AC/DC power supply converter to prevent excessive heating inside the node. Node 
enclosures measure 90 mm by 160 mm by 360 mm and are made of corrosion-resistant die cast 
aluminum that minimizes meteorological and magnetic complications. Stainless steel fasteners and 
a weatherproof seal prevent water intrusion into the enclosure.  
 
Laboratory calibrations are performed on each CarboCap sensor upon receipt of the instrument 
from the supplier and repeated whenever nodes are retrieved from the field for maintenance, 
resulting in a re-calibration every 12–18 months. Reference cylinders of 0 ppm, 1000 ppm, and 
either 320 ppm or 370 ppm CO2 (±1%) are used for ~10-minute deliveries of each concentration 
to a chamber containing the sensor, which includes a built-in microprocessor that accepts the 
results of this multi-point calibration as input and automatically applies the appropriate corrections 
to the subsequent observations. The CarboCap microprocessor can also be configured to correct 
for the effects of oxygen, temperature, pressure, and humidity. The built-in oxygen compensation 
is utilized at a constant value of 20.95%, while the latter three compensations are turned off prior 
to sensor deployment. Instead, a post hoc correction is derived from the ideal gas law and Dalton’s 
law of partial pressures: 
 
[CO%]'() = [𝐶𝑂%]-./ ∗
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Here [𝐶𝑂%]H-I is the dry air mole fraction, or the amount of CO2 that would be measured if the 
observed air parcel was dried and brought to standard temperature and pressure. [𝐶𝑂%]-./, 𝑇, 𝑃LML, 
and 𝑃NEO are, respectively, the raw CO2 concentration output by the CarboCap software in ppm, 
the temperature measured by the internal thermometer of the CarboCap in K, the atmospheric 
pressure in hPa, and the partial pressure of water in hPa, derived from the dew point temperature 
(𝑇HP/, in oC) using the August-Roche-Magnus approximation of the Clausius-Clapeyron relation 
as indicated below: 
 
𝑃NEO = 6.1094	hPa ∗ 𝑒𝑥𝑝	(	 1\.]%5	=^_`

%a3.2ab=^_`
	)        (2.2) 

 
For post-2014 observations, we use the pressure and dew point temperature measured inside each 
node enclosure by the aforementioned BMP180 and SHT15 sensors, respectively. For data 
collected prior to 2014, Eq. (2.1) and (2.2) are calculated from the average sea level pressures 
(adjusted for altitude) and dew point temperatures measured within ~50 km of the BEACO2N 
domain by weather stations in the NOAA Integrated Surface Database 
(https://www.ncdc.noaa.gov/isd/).  
 
Figure 2.5 compares 1-minute mean CO2 dry air mole fractions calculated as described above with 
readings from a custom cavity ring-down reference instrument based on the Picarro G2301 
analyzer system co-located with an in-field CarboCap over the course of 2 weeks in January 2016. 
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The ratios between the CarboCap and Picarro observations are then shown in Fig. 2.6 as a function 
of temperature, total pressure, and the partial pressure of water. Although most of the impact of 
these environmental variables is removed by the ideal gas law-based correction in Eq. (2.1), slight 
dependencies on each variable remain, likely due to their influence on the vibrational spectra of 
CO2 via pressure broadening, etc. Performing similar analyses on observations from in situ co-
locations with other reference instruments (see LI-COR LI-820 in Sect. 2.3.4) reveals the 
temperature and water dependence to vary in sign and magnitude between individual sensors, 
while the pressure dependence is found to be quite robust. We therefore apply the following 
empirical correction to all CO2 observations with coincident, onsite pressure measurements (i.e., 
post-2014 data sets): 
 
[𝐶𝑂%]cM--PcLPH = [𝐶𝑂%]H-I ∗ (−0.00055	𝑃LML + 1.5)      (2.3) 
 
The effect of this correction is shown in the histogram of CarboCap–Picarro differences in Fig. 2.5 
(gray bars). The offset between the two instruments is reduced from -1 ppm to ~0 ppm and the 
standard deviation of their differences is tightened from ±1.5 ppm to ±1.4 ppm. This still exceeds 
the ±1.0 ppm precision one would expect under average conditions given the form of Eq. (2.1) and 
(2.2) and the manufacturer’s specifications for the meteorological sensors (see Sect. 2.3.5), the 
CarboCap, and the Picarro (Sect. 2.3.3), suggesting that the combined effect of the lingering 
temperature and water biases with any unknown factors is ±0.4 ppm. 
 
Calibrated nodes are installed on trailers and buildings 2–111 m above ground level (6–476 m 
above sea level), mounted to existing infrastructure or weighted industrial tripods. Rooftop 
position and intake orientation are chosen to optimize wireless connectivity (if applicable), 
maximize air exchange with the surrounding area, and minimize sampling of extremely local 
emission sources (e.g., rooftop ventilation ducts). BEACO2N nodes are sited on an approximately 
2 km square grid across the Oakland metropolitan area (see Fig. 2.1 and 2.2 and Table 2.1), often 
on top of schools and museums, which possess roughly the desired spatial density and also serve 
the educational and outreach goals of the project (see http://beacon.berkeley.edu). The 2 km 
spacing is chosen to ensure an approximately 1 km proximity to any significant CO2 source or sink 
in the metropolitan area, maximizing coverage without undue overlap between neighboring 
footprints. Additional sites outside the 2 km grid are also included for sensitivity to potential 
emission sources of interest, for co-location with useful reference instruments, or as pilots for 
network expansion.  
 
This largely opportunistic siting approach avoids the logistical and financial obstacles associated 
with tall tower sampling mechanisms, although it does present additional challenges for the 
quantification of network-wide phenomena in that no low-lying instrument can singlehandedly 
provide sensitivity to the entire domain. Installing sensors near the surface and/or built 
environment does ensure heightened sensitivity to individual, ground-level emission phenomena, 
but it is currently unknown whether a well-reasoned combination of these locally sensitive signals 
from a high volume of sensors could nonetheless yield reliable information about the integrated 
region. A full exploration of this possibility is beyond the scope of this study; the following 
analyses focus instead on establishing BEACO2N as a viable platform for investigating such 
hypotheses. 
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2.3  Node Performance 
 
2.3.1  Cost 
 
The Vaisala CarboCap GMP343 CO2 sensor in this study is used in its 0 to 1000 ppm measurement 
range and “diffusion sampling” mode, such that representative air samples passively diffuse into 
the path of the infrared light beam. With these specifications, each CarboCap costs approximately 
$2,800 USD. Although less expensive technologies are available, the CarboCap design has a clear 
advantage in that the unit contains a digitally controlled Fabry-Perot interferometer to switch on 
(4.26 µm) and off (3.9 µm) of the asymmetric stretching mode of CO2, generating a baseline 
intensity measurement for each observation that compensates for variability in the light source. 
 
Additional sensors, ancillary hardware, and labor then bring the total cost per node to ~$5,500 
USD, or $154,000 USD for the entire 28 node BEACO2N instrument. For comparison, a single 
commercial cavity ring-down analyzer is priced around $60,000 USD, and the total equipment 
cost can exceed $85,000 USD after accounting for pumps, data loggers, etc.  
 
2.3.2 Reliability 
 
Table 2.2 gives the percent uptime for nine representative BEACO2N nodes over the course of 
2013, calculated as the fraction of total minutes in the year during which a given node collected 
valid data. All nine nodes exhibit uptimes in excess of 50% via either hardwired Ethernet 
connections or Wi-Fi antennas, with six collecting data >80% of the time. Maintenance visits to 
these sites beginning in mid-2014 revealed little to no incidence of hardware failure. Instead, 
external issues, such as interruptions in the electricity or Wi-Fi connectivity, are found to be the 
limiting factors in determining sensor uptime. Transplanting nodes to sites with more dependable 
electricity supplies and increasing implementation of cellular modules (which are immune to 
interruptions in onsite Wi-Fi networks) continue to enhance network reliability over time. For 
example, the nine most reliable nodes during the January 2015–April 2016 period all exhibit 
uptimes >80%, with five collecting data and transmitting it within the next 48 hours ~100% of the 
time via either Ethernet or cellular data communication. 
 
2.3.3  Precision 
 
From a qualitative perspective, the Vaisala CarboCap GMP343 demonstrates exceptional 
sensitivity to CO2 enhancements on scales typical of an urban environment. Figure 2.7 compares 
the 1-minute mean CO2 dry air mole fractions measured at two nearby in-field BEACO2N nodes 
(EXB and EXE in Fig. 2.1) during 1 week in early October 2015. As these sensors are not precisely 
co-located (one is stationed approximately 13 m above roadside in downtown San Francisco, while 
the other sits ~200 m back from the road, near the bay), an exact correlation is not expected. The 
two sensors nonetheless demonstrate remarkable agreement; while typical diurnal CO2 variations 
during the same period are on the order of 20–60 ppm, the CarboCaps simultaneously detect CO2 
events as small as 8 ppm, providing preliminary evidence of the suitability of these sensors for 
high-density urban deployment.  
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More quantitatively, Vaisala advertises the CarboCap as possessing a response time of 75 seconds 
and a precision of ±3 ppm at 2-second measurement frequency. Here we present our own 
characterization of the sensors’ precision via comparison to: (a) in-laboratory reference gases and 
(b) a co-located in situ reference instrument.  
 
After exposing an ensemble of CarboCaps to a constant stream of reference gas, we find the 1-
minute mean dry air mole fractions to exhibit 1σ precision between ±1.2 and ±2.0 ppm, roughly 
in keeping with the ±2 ppm precision observed by Rigby et al. (2008). Figure 2.5 shows the results 
from our aforementioned co-location with a Picarro G2301 reference instrument, demonstrating 
near perfect correlation (R2 = 0.9999), slope ≅1, and an offset of approximately 0 ppm after 
meteorological corrections. In this case the 1σ precision of the 1-minute averages is ±1.4 ppm, 
given by the standard deviation of the differences between the minute-averaged CarboCap and 
Picarro observations and the Picarro’s precision (±0.1 ppm at 5-second measurement frequency). 
This presents a slight improvement over the ±2.18 ppm in situ precision recorded by van Leeuwen 
et al. (2010), although still greater variability than would be expected given the manufacturer’s 2-
second specifications and a 1-minute averaging time (3	𝑝𝑝𝑚/√30 = 0.55	𝑝𝑝𝑚). Nonetheless, the 
agreement between the time series of the Picarro and CarboCap measurements demonstrates this 
noise level to be effectively negligible on the scale of ambient urban CO2 fluctuations.  
 
Also presented in Fig. 2.5 is a time series of the running 1-hour means of the differences between 
the minute-averaged CarboCap and Picarro observations, demonstrating a short-term drift incurred 
on approximately hourly timescales found to range between 0.01 and 2.9 ppm during any given 6-
hour period of the co-location. The upper bound exceeds the ±1 ppm manufacturer-specified 6-
hour short-term stability as well as the 1.5 ppm maximum short-term drift observed by Rigby et 
al. (2008), but in many cases longer averaging times can be used to reduce the influence of short-
term drift to well below 1 ppm. Some modeling studies, for example, utilize time steps of 6 hours 
or more (e.g., Bréon et al., 2015; Wu et al., 2016), and average diurnal cycles can often be assessed 
across several days. Although some applications require finer temporal resolution, these are 
typically plume-based analyses that rely on rapidly varying enhancements above recent 
background concentrations, essentially eliminating concerns about short-term drift. 
 
2.3.4  Systematic uncertainty 
 
Given the limited access to validation and calibration infrastructure, a major concern for a long-
term field deployment is systematic uncertainty resulting from a combination of gradual temporal 
drift (𝑈LPmnM-.o, in ppm day-1) and constant biases or offsets from the “true” value (𝑈.LPmnM-.o, in 
ppm), perhaps incurred abruptly upon installation. The measurement at a given site ([𝐶𝑂%]pMHP, in 
ppm) is therefore the sum of the real regional and local influences at said site ([𝐶𝑂%]q.crs-MtpH 
and [𝐶𝑂%]oMc.o, respectively), as well as these systematic uncertainties: 
 
[𝐶𝑂%]pMHP = [𝐶𝑂%]q.crs-MtpH + [𝐶𝑂%]oMc.o + 𝑈.LPmnM-.o + u𝑈LPmnM-.o 	× 	𝑑𝑎𝑦𝑠{  (2.4) 
 
To derive post hoc corrections for 𝑈.LPmnM-.o and 𝑈LPmnM-.o  at a given site, we first remove the 
[𝐶𝑂%]q.crs-MtpH signal from the data record by subtracting off the weekly minimum CO2 
concentrations recorded at a reference site within the network domain. BEACO2N’s unique 
location near the Pacific coast results in a relatively consistent wind direction from largely 
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unpolluted over-ocean origins, such that the weekly minima can be assumed to reflect both the 
seasonal and synoptic variations in network-wide baseline CO2 concentrations while avoiding the 
influence of shorter term variability in local sources and sinks. This assumption is supported by 
preliminary analyses comparing observations from a LI-COR LI-820 non-dispersive infrared CO2 
gas analyzer with a smoothed, three-dimensional “curtain” of surface CO2 Pacific boundary 
conditions produced by NOAA’s Global Greenhouse Gas Reference Network (Jeong et al., 2013). 
The LI-COR, positioned at sea level between the EXB and EXE nodes (see Fig. 2.1), is maintained 
by NOAA’s Pacific Marine Environmental Laboratory and calibrated against compressed gas 
(400–500 ppm CO2) prior to every hourly measurement and is assumed to have negligible bias. 
Despite a proximity to local surface-level emissions and complex boundary layer dynamics, the 
LI-COR’s weekly minima are found to generally follow variations in the Pacific curtain, with an 
average residual of ~2 ppm.  
 
Once the [𝐶𝑂%]q.crs-MtpH	term is removed, effectively de-seasonalizing the observations, we re-
calculate the weekly minima of this new data record and fit the result as a (piecewise, if necessary) 
linear function of time, the slope of which gives the value of 𝑈LPmnM-.o. This linear fit is then itself 
subtracted from the de-seasonalized data record, yielding a remainder comprised of only the 
[𝐶𝑂%]oMc.o and 𝑈.LPmnM-.o terms. While the [𝐶𝑂%]oMc.o component varies rapidly over several 
orders of magnitude, the contribution of 𝑈.LPmnM-.o is, by definition, constant in time, so we once 
again compute the weekly minima of the new data record and define the mean weekly minimum 
as 𝑈.LPmnM-.o. Having obtained values for 𝑈LPmnM-.o  and 𝑈.LPmnM-.o, we simply subtract these 
components from the original data record to generate the unbiased observations at each site. 
 
Table 2.3 gives the results from one iteration of the correction procedure outlined above executed 
using the ELC BEACO2N node (see Fig. 2.1) as the reference site needed to calculate 
[𝐶𝑂%]q.crs-MtpH. Only sites that enable at least 3 months of comparison to the ELC node are 
included; multiple values at a single site correspond to the piecewise linear fits employed when 
𝑈LPmnM-.o exhibits discontinuities over the data record. Because we universally define Day 1 to be 
1 January 2013 and 𝑈.LPmnM-.o  is strongly influenced by the intercept of the linear fit used to 
characterize the temporal drift, it should be noted that the magnitude of 𝑈.LPmnM-.o does not 
necessarily represent the actual bias present at a node on its deployment date (which may be before 
or after 1 January 2013), but rather an extrapolation of this initial bias forwards or backwards in 
time. Uncertainties in 𝑈LPmnM-.o and 𝑈.LPmnM-.o  shown in Table 2.3 are calculated given ±1.4 ppm 
random error in the 1-minute averages, ±2.9 ppm short-term drift, and ±2 ppm agreement with the 
reference site’s weekly minima, assumed to add in quadrature. Mapped onto the observations, 
these uncertainties result in a mean 1-minute error of ±4 ppm. This is the assumed cumulative error 
used in this study, although longer averaging times could be used to reduce this figure. 
 
To evaluate the efficacy of this procedure, we compare the weekly minima of both the raw and 
corrected data records to the weekly minimum CO2 concentrations measured by the 
aforementioned LI-COR LI-820. The results of said comparison are shown in Fig. 2.8, 
demonstrating significantly improved agreement (3.7 vs. 9.8 ppm mean residuals) with the LI-
COR weekly minima after correction. This is likely a conservative estimate of the uncertainty 
reduction achievable with this method, as the ELC node we use to compute our [𝐶𝑂%]q.crs-MtpH 
value is not itself an uncertainty-free reference. Although the raw ELC data record demonstrates 
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the least systematic uncertainty of all the BEACO2N nodes in an initial comparison with the LI-
COR, its observations are nonetheless afflicted by some unknown nonzero drift and/or atemporal 
bias. Direct in situ calibration of the reference instrument would allow us to constrain systematic 
uncertainties even further.  

2.3.5  Performance of Ancillary Sensor Technology 

According to manufacturer documentation, the Sensirion SHT15 provides relative humidity 
measurements to 0.05% resolution, with an advertised accuracy of ±2.0%, a repeatability of 
±0.1%, an 8 second response time, and a long-term drift of <0.5% per year. Its temperature 
measurements are provided to 0.01 oC resolution, with an advertised accuracy of ±0.3 oC, a 
precision of ±0.1 oC, a response time of 5 to 30 seconds, and a long-term drift of <0.04 oC per year. 
The Bosch-Sensortec BMP180 provides pressure measurements to 0.01 hPa resolution, with an 
advertised accuracy of ±0.12 hPa, a precision of ±0.05 hPa, and a long-term drift of ±1.0 hPa per 
year. Its temperature measurements are provided to 0.1 oC resolution, with an advertised accuracy 
of ±1.0 oC. An independent verification of these performance specifications is not attempted here. 
However, the temperature observations from both sensors closely follow the structure of those 
detected by the internal temperature sensor of the CarboCap, although the CarboCap’s readings 
are consistently slightly elevated, as expected given the heat produced by the instrument itself. 
 
The BMP180 and SHT15 are not intended to reflect local meteorological conditions, but rather to 
provide a representative picture of conditions inside the node. These internal conditions are 
integral to various posterior corrections applied to the observations (see Sect. 2.2). 
 
2.4  Initial Field Results 
 
The BEACO2N field campaign is a long-term, ongoing monitoring effort. Here we provide a time 
series of data collected from 16 BEACO2N sites between January 2013 and April 2016 (Fig. 2.9) 
and some initial descriptive statistics of the bias-corrected dry air CO2 mole fractions at nine 
representative sites in 2013 (Table 2.2). 
 
Figure 2.9 demonstrates the volume and diversity of urban CO2 concentrations sampled, exhibiting 
extreme short-term variability superimposed on a slower, seasonal fluctuation in the minimum 
values. For clarity, the bottom panels depicting month- and week-long samples of the overall time 
series show data from six representative sites. Network-wide, daytime (1100–1800 LT) means 
between 408 and 442 ppm are observed, with maximum values between 500 and 820 ppm and 
minima between 384 and 396 ppm. Standard deviations are seen to range from 9.57 to 22.4 ppm, 
all of which are lower than the corresponding nighttime (2200–0400 LT) standard deviations due 
to the reduced convective mixing in the shallow nocturnal boundary layer. Similarly, the majority 
of nighttime means and maxima exceed the daytime values at the same location, with the exception 
of three sites: FTK, LAU, and KAI. The dampened or inverted diurnal trends at these sites may be 
due to unique boundary layer dynamics at those locales or unusually large daytime CO2 sources 
nearby. Daytime and nighttime minima do not differ as significantly. 
 
Individual BEACO2N nodes are observed to capture a number of patterns and cycles typical of 
ambient CO2 monitoring. Figure 2.10 shows the monthly minimum CO2 concentrations at six 
select sites in 2013, as the difference from their July value (defined as 0 ppm at each site). A 
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distinct seasonal cycle is observed, with wintertime minima exceeding summertime values by 7 to 
24 ppm. For reference, the gray curve presents a similar treatment of the aforementioned Pacific 
boundary curtain. At many sites, the BEACO2N minima are seen to exhibit a seasonal variation of 
a magnitude roughly in keeping with that observed in the curtain, while other sites demonstrate a 
more exaggerated summer–winter contrast, as might be expected within an urban dome. 
 
Figure 2.11 shows representative diurnal cycles in the bias-corrected CO2 dry air mole fractions at 
three different BEACO2N nodes in September 2013. We observe elevated concentrations at night 
corresponding to a shallow nocturnal boundary layer, significant enhancements around the 
morning rush hour when emissions are increasing faster than boundary layer height, and midday 
minima reflecting mixing into the largest volume of air before the boundary layer collapses again 
at sunset. However, within this qualitatively well-understood average behavior remains a degree 
of intra-network variability that allows us to discover and probe local scale phenomena of 
unknown origin. At FTK, for example, concentrations are seen to decrease after an initial rush 
hour peak (~0800 LT) but remain somewhat elevated until sunset, never achieving the much more 
pronounced afternoon minimum observed at PAP, 13.5 km away. 
 
Such intracity heterogeneities are difficult to capture accurately using atmospheric transport 
models alone. We simulate hourly CO2 concentrations (𝒚}) at each site in the network using the 
Stochastic Time-Inverted Lagrangian Transport model (STILT; Lin et al., 2003) coupled to the 
Weather Research and Forecasting model (WRF; Skamarock et al., 2008).  The coupled model is 
known as “WRF-STILT” (Nehrkorn et al., 2010) and the setup used here follows that of Turner et 
al. (2016; see their Sect. S1 for details of the WRF setup). WRF-STILT advects an ensemble of 
500 particles 3 days backwards in time, each with a small random perturbation, from the spatio-
temporal locations of the BEACO2N observations using the meteorological fields from WRF. The 
trajectories of these 500 particles are then used to construct “footprints” for each observation that 
represent the sensitivity of the observation to a perturbation in emissions from a given location. 
The footprints can be represented in matrix form (𝑯) and multiplied by a set of gridded emissions 
(𝒙, from the high-resolution, bottom-up CO2 inventory in Turner et al., 2016) to compute the CO2 
enhancement at each site (∆𝒚) due to local emissions: 
 
∆𝒚 = 𝑯𝒙           (2.5) 
 
We then add this local enhancement to a background concentration (𝒚𝑩, from the aforementioned 
Pacific boundary curtain) to obtain a model estimate of the BEACO2N observations shown as 
black squares in Fig. 2.11: 
 
𝒚} 	= ∆𝒚 + 𝒚𝑩 = 𝑯𝒙 +	𝒚𝑩         (2.6) 
 
While the model captures midday conditions at FTK and evening levels at PAP, the presence of 
both over- and under-estimations at other times suggests a need to re-examine the bottom-up 
emission inventory as well as the model’s treatment of boundary layer dynamics. BEACO2N 
provides the ground truth necessary to identify such deficiencies and potentially improve upon 
them via inverse modeling, data assimilation, etc. 
 
Comparison of diurnal cycles during noteworthy local scale emission events with averages such 
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as those seen in Fig. 2.11 gives further insight into the potential application of BEACO2N 
observations to CO2 source attribution. Figure 2.12 offers one such comparison using hourly 
averages collected from a BEACO2N node positioned on top of Oakland High School (OHS in 
Fig. 2.1 and Table 2.1) during a weather-related school closure that occurred on 11 December 
2014. Clear reductions in CO2 concentrations are observed relative to what is typical at this site 
(and indeed network-wide, although to a lesser extent), as is expected in the absence of emissions 
related to students’ commutes and presence on campus. The sensing technology implemented in 
the BEACO2N nodes therefore proves adequate to resolve not only CO2 patterns typical of an 
urban environment, but also short-term deviations during anomalous emission events, positioning 
BEACO2N as an essential tool for the characterization of current urban conditions as well as the 
verification of subsequent emission reductions. 
 
2.5  Discussion & Conclusion 
 
We have described the design, implementation, and initial observations from a novel high-
resolution CO2 surface monitoring network instrument. We demonstrate that low-cost 
instrumentation enables an unprecedented level of spatial density, and describe a calibration 
protocol with post hoc bias corrections that permits the network to operate precisely and reliably 
enough to characterize variations in ambient concentrations with magnitudes relevant to 
metropolitan life.  
 
Our preliminary analysis of the first ~3 years of CO2 observations provides evidence of the 
expected diurnal and seasonal cycles as well as an encouraging sensitivity to short-term changes 
in local emission events. Furthermore, we show significant qualitative and quantitative differences 
among the diurnal cycles at individual nodes on spatial scales that cannot yet be accurately 
captured by atmospheric transport models, confirming the necessity of a high-density approach 
when attempting to faithfully represent the variability of a complex urban environment. 
 
Although BEACO2N demonstrates sensitivity to both highly local fluctuations as well as slowly 
varying hemispheric cycles, how best to bootstrap the network’s measurements into the analysis 
of intermediary mesoscale phenomena remains to be determined. Future work will focus on 
constructing inferred emission patterns and trends at this scale from the body of observations. In 
an initial effort in this regard, Turner et al. (2016) constructed and applied a WRF-STILT inverse 
model to synthetic observations with density similar to BEACO2N. For an area source the size of 
the Oakland metropolitan area, emissions were estimated to within 18% accuracy; for a freeway-
sized line source to within 36%; and to within 60% for the sum of six industrial point sources–
consistently outperforming a smaller hypothetical network (three sites) with significantly better 
precision. Using week-long averages, the BEACO2N-like network was able to further reduce the 
uncertainty in the integrated urban area source to <2%, a significant improvement over the 
citywide emission estimates provided by real and proposed ~10 site sensor networks described by 
Lauvaux et al. (2016) (25% uncertainty in 5-day averages), Kort et al. (2013) (>10% uncertainty 
in monthly averages), and Wu et al. (2016) (11% uncertainty in monthly totals). These other studies 
use more conservative estimates of the combined instrument, model, and representativeness error 
(≥3 ppm, as opposed to ±1 ppm). These combined error budgets are typically dominated by 
transport (model) error, which potentially explains why models based on BEACO2N-like networks 
perform comparably to or better than those based on sparser networks of higher quality sensors, 
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for which instrument error may be reduced but accurately representing transport between 
observation sites is of greater importance. Further work is needed to fully assess the efficacy of 
inverse methods based on the BEACO2N approach.  
 
In addition, further characterization of the trace gas and particulate matter sensors will allow for 
more specific source attribution via the exploitation of emission factors unique to various 
combustion activities (e.g., Ban-Weiss et al., 2008; Harley et al., 2015), while providing public 
health-relevant air quality information as well. There is also potential for fine-grained verification 
of space-based observations or even of personal sensors when their inherent mobility brings them 
within the geographical area well represented by the fixed BEACO2N network.  
 
This work constitutes a promising initial infrastructure upon which further advances in high-
density atmospheric monitoring can be built, capable of providing research, regulatory, and 
layperson communities with greenhouse gas and air toxics information on the scale at which 
emissions and personal exposure actually occur. Expansion of the validated pilot network into the 
neighboring locales of San Francisco and Richmond, California will allow for the characterization 
of other emissions sources, such as oil refining facilities. These efforts will be complemented by 
modeling studies comparing different sampling resolutions (i.e., 2 km vs. 4 km sensor spacing) 
and spatial configurations, yielding general network optimization principles that will facilitate 
future implementations of high-resolution CO2 monitoring networks in diverse locations. 
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Figure 2.1. Map of the BEACO2N domain (a) in the context of the western United States and (b) 
showing individual node locations. Inset in panel (b) shows the pair of nodes stationed in Sonoma 
County. Map data © 2016 Google. 
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Figure 2.2. North-facing schematic of Fig. 2.1 indicating a representative vertical distribution of 
BEACO2N node sites (circles) over the topography of Oakland, CA. Cloud marks the altitude and 
thickness of a typical marine fog layer; bridge delineates the height of the San Francisco-Oakland 
Bay Bridge. Horizontal placement of nodes has been skewed for visual clarity. 
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Figure 2.3. A sample high-resolution, bottom-up emission inventory for the Bay Area adapted 
from Turner et al. (2016). 
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Figure 2.4. BEACO2N node design used in this study. 
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Figure 2.5. One-minute mean results from a 2-week co-location of a Vaisala CarboCap GMP343 
and a custom cavity ring-down reference instrument based on the Picarro G2301 system: (a) 
representative 5-day time series, (b) 1-hr running mean of the differences over the same 5-day 
period, (c) direct comparison, (d) histogram of the differences. CarboCap observations are dry air 
mole fractions calculated using Eq. (2.1) and subsequently pressure corrected with Eq. (2.3). 
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Figure 2.6. Ratio of 1-minute mean CO2 dry air mole fractions presented in Fig. 2.5, shown as a 
function of temperature (a), pressure (b), and the partial pressure of water (c). 
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Figure 2.7. Representative weeklong time series of observations collected at or near two nearby 
in-field BEACO2N nodes (EXB and EXE in Fig. 2.1; ~200 m apart) in October 2015: (a) 
temperature and pressure averaged to 1 minute, (b) wind speed and direction collected once every 
6 minutes, (c) drift- and bias-corrected CO2 dry air mole fractions averaged to 1 minute. 

  

20
25
30
35
40

T 
(o C

)
(a)

990
1000
1010
1020
1030

P 
(h

Pa
)T

P

0
5

10
15
20

W
in

d 
Sp

d 
(m

 s
-1

)

(b) 0
90
180
270
360

W
in

d 
D

ir.
 (o )

WD
WS

Sep 30 Oct 1 Oct 2 Oct 3 Oct 4 Oct 5 Oct 6 Oct 7
400

420

440

460

480

500

C
O

2 (p
pm

)

(c)

EXB
EXE



 25 

 
 
Figure 2.8. Weekly minimum CO2 concentrations measured by a LI-COR LI-820 reference 
instrument compared with weekly minima calculated from the BEACO2N data record before and 
after correction for systematic uncertainties. 
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Figure 2.9. Time series of drift- and bias-corrected CO2 dry air mole fractions collected over the 
course of ~2.5 years at 16 BEACO2N sites (top), 1 month at six representative sites (middle), and 
1 week at the same six sites (bottom). The hiatus around 23 August corresponds to a largescale 
hardware refurbishment effort that began in mid-2014.  
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Figure 2.10. Monthly minimum drift- and bias-corrected CO2 dry air mole fractions observed 
during 2013 at the same six BEACO2N sites shown in the bottom panels of Fig. 2.9, plotted as the 
enhancement above the July value. Bold gray curve shows a similar treatment of the surface level 
Pacific Ocean empirical boundary curtain values for 38o N. 
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Figure 2.11. Diurnal variation in drift- and bias-corrected CO2 dry air mole fractions observed and 
modeled at three representative BEACO2N sites during September 2013. Error bars indicate the 
standard error of the mean (instrument error is negligible at this timescale); thick shaded curves 
indicate standard deviation. 
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Figure 2.12. Comparison of diurnal variation in drift- and bias-corrected CO2 dry air mole 
fractions observed at Oakland High School (OHS in Fig. 2.1) during a rain-related school closure 
on 11 December 2014 vs. the mean variation observed on other Tuesdays, Wednesdays, and 
Thursdays during December 2014 when the school was operating normally. Mean values from 
five other BEACO2N sites operational during these time periods are also shown for reference. 
Error bars indicate standard error (instrument error is negligible at this timescale). 
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CODE FULL SITE NAME LAT LON ELEV (m asl) ELEV (m agl) 
BEL Burckhalter Elementary School 37.775 -122.167 97 8 
BOD Bishop O'Dowd High School 37.753 -122.155 82 8 
CHA Chabot Space & Science Center 37.819 -122.181 476 11 
CPS College Preparatory School 37.849 -122.241 102 4 
EBM W. Oakland EBMUD Monitoring Stn. 37.814 -122.282 6 2 
ELC El Cerrito High School 37.907 -122.294 49 13 
EXB Exploratorium (Bay) 37.802 -122.397 13 9 
EXE Exploratorium (Embarcadero) 37.801 -122.399 13 5 
FTK Fred T. Korematsu Discovery Acad. 37.737 -122.173 16 6 
HRS Head Royce School 37.809 -122.204 114 5 
KAI Kaiser Center 37.809 -122.264 115 111 
LAU Laurel Elementary School 37.792 -122.196 74 6 
LBL Lawrence Berkeley Nat’l Lab, Bldg. 70 37.876 -122.252 246 11 
LCC Lighthouse Community Charter School 37.736 -122.196 9 5 
MAR Berkeley Marina 37.863 -122.314 6 2 
MON Montclair Elementary School 37.830 -122.211 193 4 
NOC N. Oakland Community Charter School 37.833 -122.277 24 6 
OHS Oakland High School 37.805 -122.236 49 7 
OIN International Community School 37.779 -122.231 19 6 
PAP PLACE at Prescott Elementary 37.809 -122.298 12 6 
PDS Park Day School 37.832 -122.257 39 7 
PHS Piedmont Middle & High School 37.824 -122.233 86 10 
POR Port of Oakland Headquarters 37.796 -122.279 35 32 
ROS Rosa Parks Elementary School 37.865 -122.295 22 10 
SET Stone Edge Farms (near turbine) 38.289 -122.503 54 2 
SEV Stone Edge Farms (in vineyard) 38.291 -122.506 61 3 
SHS Skyline High School 37.798 -122.161 359 3 
STL St. Elizabeth High School 37.779 -122.222 28 11 

 
Table 2.1. List of site names, abbreviated codes, geo-coordinates, and elevations used in this study. 
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SITE 
CODE 

UPTIME 
(%) 

MEAN 
(ppm) 

STD 
(ppm) 

MAX 
(ppm) 

MIN 
(ppm) 

CPS 94.6 416 21.6 589 385 

  423 24.3 730 384 

ELC 90.1 411 18.5 581 387 

  415 21.3 567 388 

FTK 91.2 415 17.7 609 387 

  418 26.4 567 383 

HRS 69.1 410 14.7 506 384 

  428 18.4 514 398 

LAU 91.2 429 22.4 687 392 

  421 26.4 603 381 

KAI 83.1 442 21.8 820 396 

  418 24.7 604 382 

NOC 87.3 411 18.4 560 387 

  428 50.5 724 384 

PAP 55.5 403 9.57 500 387 

  411 19.1 548 388 

STL 59.1 417 17.5 586 389 

  421 36.9 616 383 
 
Table 2.2. Descriptive statistics for the drift- and bias-corrected CO2 dry air mole fraction 
measured at nine representative sites during 2013. Upper row for each site gives the daytime 
(1100–1800 LT) statistics; lower row gives the nighttime (2200–0400 LT). The ELC node is used 
as the reference site in Sect. 2.3.4 and so is presented here without correction for systematic 
uncertainties. 
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SITE CODE Utemporal day-1 (ppm day-1) Uatemporal (ppm) 

BEL 0.03 ± 0.02 -3 ± 1 

CPS -0.014 ± 0.002 3.1 ± 0.5 

FTK 0.02 ± 0.01 6.1 ± 0.8 

HRS -0.12 ± 0.01 1.2 ± 0.8 

LAU 0.10 ± 0.01 -26.9 ± 0.8 

KAI 0.04 ± 0.01; -0.08 ± 0.05 -23 ± 1; 6 ± 4 

NOC -0.11 ± 0.02; 0.030 ± 0.006 22 ± 1; -2.7 ± 0.7 

PAP -0.092 ± 0.005 8.7 ± 0.7 

STL -0.03 ± 0.01 9 ± 1 
 
Table 2.3. Results from drift- and bias-correction analysis at sites for which at least 3 months of 
observations are available for comparison with the ELC BEACO2N node. 
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Chapter 3 
 
Observing local CO2 sources using low-cost, near-surface urban monitors 
 
Adapted from Shusterman, A. A., Kim, J., Lieschke, K. J., Newman, C., Wooldridge, P. J., and 
Cohen, R. C., Atmos. Chem. Phys. Discuss., 2018. 
 
3.1 Introduction 
 
Initiatives to curb greenhouse gas emissions and thereby reduce the extent of climate change-
related damages are gaining momentum from city to global scales (United Nations, 2015). To 
support this effort, there is a clear need for monitoring, reporting, and verification (MRV) 
strategies capable of describing emission changes and attributing those changes to the relevant 
policy measures (Pacala et al., 2010). Currently, an estimated 70% of global CO2 emissions are 
urban in origin and this fraction is expected to grow as migration to urban areas continues and 
intensifies with the industrialization of developing nations (United Nations, 2011). However, cities 
also present the largest MRV challenge in that many disparate emission sources combine with 
complex topography. 
 
A considerable amount of MRV-related work has been invested in the development of activity-
based emission inventories for selected metropolitan areas, such as Indianapolis (Gurney et al., 
2012), Paris (Bréon et al., 2015), Los Angeles (Newman et al., 2016), Salt Lake City (Patarasuk 
et al., 2016), and Toronto (Pugliese et al., 2018), as well as other inventories constructed and 
maintained by individual air management agencies for internal use. These inventories, when 
updated regularly, offer the possibility of direct source attribution without the use of 
computationally intense and/or heavily parameterized atmospheric transport models; they do, 
however, typically rely on interpolations, generalizations, or proxies to generate the necessary 
input activity data. The Fuel-based Inventory for Vehicle Emissions (FIVE) developed by 
McDonald et al. (2014), for example, uses a representative 7 days of highway traffic flow 
measurements to drive the weekly cycle of CO2 emissions from mobile sources on roads of all 
sizes year round. While traffic patterns as well as residential and commercial energy usage are 
known to vary by day of week (Harley et al., 2005), the specific timing and magnitude of these 
variations are likely to be heterogeneous in space and time. Mobile emission estimates constructed 
using an average week of highway observations therefore neglect the impact of anomalous events 
as well as the variety of vehicle fleets, commute practices, and congestion patterns that occur at 
the neighborhood level. As knowledge of emission factors and fuel efficiency grows, activity data 
will become one of the largest sources of uncertainty in bottom-up inventory products. 
 
Ambient atmospheric measurements offer the opportunity to observe nuanced variations in CO2 
emission activities directly without generalizing across space and time. In order to document 
baseline conditions in and upcoming changes to urban greenhouse gas emissions, surface-level 
monitoring campaigns in cities using varied approaches are being pursued (e.g., Bréon et al., 2015; 
Chen et al., 2016; McKain et al., 2012; McKain et al., 2015; Shusterman et al., 2016; Turnbull et 
al., 2015; and Verhulst et al., 2017). These networks, typically consisting of 2–15 instruments, 
attempt to constrain and supplement activity-based emission inventories with observation-based 
estimates. Most previous work on observation-based emission estimates has focused on domain-
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wide emission totals over monthly to annual timescales (e.g., Kort et al., 2013). This emphasis on 
integrated signals has led to site selection and data analysis techniques that minimize sensitivity to 
local emissions, thus discarding a large portion of the information contained in the datasets 
collected at individual measurement sites and the differences between them (Shusterman et al., 
2016; Turner et al., 2016).  
 
We hypothesize that, if trends in the specific, small-scale CO2 sources implicated in most 
mitigation strategies are to be resolved from atmospheric monitoring datasets, site-to-site 
heterogeneity must be sought out and retained. Here we present an initial characterization of the 
degree of spatial heterogeneity present in an urban monitoring dataset and offer these direct 
observations of intracity heterogeneities as a possible strategy for providing direct constraints on 
CO2 emissions from individual sectors. We provide an initial approach to quantifying changes in 
the mobile sector and separating the influence of that sector from other emissions.  
 
3.2 Measurements 
 
3.2.1 The BErkeley Atmospheric CO2 Observation Network 
 
The BErkeley Atmospheric CO2 Observation Network (BEACO2N; see Shusterman et al., 2016) 
is an ongoing greenhouse gas and air quality monitoring campaign operating in the San Francisco 
Bay Area since late 2012. The current network is comprised of ~50 “nodes” stationed on top of 
schools and museums at approximate 2 km intervals (Fig. 3.1). The nodes contain a variety of 
commercially available, low-cost sensor technologies: a Vaisala CarboCap GMP343 for CO2, a 
Shinyei PPD42NS for particulate matter, a suite of Alphasense B4 electrochemical devices for O3, 
CO, NO, and NO2, as well as meteorological sensors for pressure, temperature, and relative 
humidity. Data is collected every 2–10 s and transmitted wirelessly or via an onsite Ethernet 
connection to a central server, where it is made publicly available in near real time. The distributed 
low-cost dataset is supplemented by a “supersite” at the RFS location featuring a Picarro G2401 
cavity ring-down spectroscopy analyzer for CO2, CO, and H2O, a TSI Optical Particle Sizer 3330 
for particulate matter, a ThermoFisher Scientific 42i-TL NOx analyzer for NO and NO2, a Teledyne 
703E photometric calibrator for O3, a Pandora spectrometer system for total column O3 and NO2, 
a Lufft CHM 15k ceilometer for cloud and aerosol layer height, as well as various instruments for 
meteorological measurements (i.e., a Vaisala WXT520 weather transmitter, a Campbell Scientific 
CS500 temperature and relative humidity probe, and a Davis Vantage Pro2 system with a Davis 
6410 anemometer and Davis 6450 solar radiation sensor). This high-cost, reference-grade 
instrumentation is calibrated using gas standards calibrated relative to World Meteorological 
Organization (WMO) scales (Zhao and Tans, 2006) and therefore serves as a high-accuracy anchor 
point within the network domain. Atmospheric boundary conditions are monitored by the Bay 
Area Air Quality Management District’s Greenhouse Gas Measurement Program, which maintains 
its own reference instruments at four background sites to the northwest, east, southeast, and south. 
A description of the design, deployment, and evaluation of the BEACO2N approach can be found 
in Shusterman et al. (2016) and Kim et al. (2018).  
 
Here we utilize CO2 observations from the 20 BEACO2N sites operating most consistently during 
the summer and/or winter of 2017 (Table 3.1), defined as 1 June 2017 through 30 September 2017 
and 1 November 2017 through 31 January 2018, respectively. The raw 2-second CO2 
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concentrations are averaged to 1-minute means, which are subsequently converted to bias-
corrected dry air mole fractions using site-specific meteorological observations and in-network 
reference measurements (see Shusterman et al., 2016). The processed 1-minute averages are 
assumed to have an uncertainty of less than ±4 ppm, or ±0.5 ppm at the hourly temporal resolution 
discussed most often hereafter. 
 
3.2.2 Traffic counts 
 
Traffic count data is collected by the California Department of Transportation as part of the 
Caltrans Performance Measurement System (PeMS; http://pems.dot.ca.gov/). Hourly passenger 
vehicle flow data (in vehicles per hour) are obtained from the road monitors nearest to the relevant 
BEACO2N site with >50% directly observed (as opposed to modeled) data and are summed across 
all lanes and directions. Due to limited data coverage, in some cases it is necessary to sample road 
monitors upstream or downstream of the desired roadway segment; here we assume the sampled 
traffic conditions to be reasonable approximations of those on the desired segment. The specific 
monitor IDs used in each analysis are given in Table 3.1.  
 
3.3 Results & Discussion 
 
To quantify the spatial heterogeneity present across the network, we examine the degree of 
correlation between every possible pairing of sites in a given season as a function of the distance 
between them (Figs. 3.2 and 3.3), borrowing from a similar analysis used by McKain et al. (2012). 
For straightforward comparison with the McKain et al. results, we first average to 5-minute 
resolution and allow for up to a ±3 h lag between the two time series before performing a linear 
regression and choosing the optimal r2 value.  
 
In the summer months, there appears to be some relationship between the proximity of the sites 
and the correlation of their observations at all hours, with higher correlations between neighboring 
sites decaying into more modest, but still significant, correlations at longer inter-site distances. 
The characteristic length scale of this correlation is 2.9 km (defined as the e-folding distance of 
the exponential fits in Fig. 3.2; 3.6 km during the day and 2.2 km at night). The winter months 
meanwhile exhibit lower pairwise correlations overall and shorter correlation lengths (2.4 km; 2.6 
km during the day and 2.1 km at night). Some portion of the summer–winter differences may be 
attributable to seasonal differences in dominant wind patterns, although this effect is difficult to 
disentangle from the slightly different collection of sites sampled during the two seasons; the 
winter sample, for example, contains fewer pairs with separation lengths less than 5 km, which 
affects the perceived overall trend. In either season, the correlation lengths are considerably longer 
than the ~100 to 1000 m e-folding distances of urban pollutants derived by previous studies (e.g., 
Zhu et al., 2006; Beckerman et al., 2008; Choi et al., 2014), however, the correlation length 
observed here does validate the original choice of 2 km as the desirable inter-site separation in the 
design of the BEACO2N instrument.  
 
The 24-hour findings (top panels of Figs. 3.2 and 3.3) compare well to those presented by McKain 
et al., who also documented a decaying but nevertheless persistent correlation with increasing site 
separation. However, whereas McKain et al. saw very little correlation after restricting their 
analysis to daytime hours, even at very short (<5 km) inter-site distances, we observe moderate to 
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high correlations during the day. This suggests that the data record at a particular BEACO2N site 
contains information about both local and regional emissions and transport phenomena. Figure 3.4 
demonstrates these dual scales of influence by providing a spatial visualization of the correlation 
coefficients at four representative sites. PER, for example, is well correlated with its neighbors 
only, suggesting the presence of local phenomena that do not affect other parts of the network. 
LCC, however, also exhibits relationships with more distant sites, indicating a sensitivity to more 
regional-scale influence(s). Meanwhile, HRS and OHS each possess a few near neighbors with 
whom they are poorly correlated, perhaps due to hyperlocal events specific to those sites. While 
the region-wide phenomena can be characterized using sparser networks of high-cost, 
conventional monitoring equipment, the ability to capture these local processes is unique to the 
high-density approach. 
 
We posit that the true strength of a high-density, surface-level monitoring network lies in its 
characterization of hyperlocal phenomena unique to a given site or subset of sites. In order to 
directly examine signals attributable to these specific, local CO2 emission processes, we separate 
each site’s observations into a “regional” and “local” component. The regional component is, by 
definition, the same at all sites network-wide, calculated from the bottom 10th percentile of all 
BEACO2N readings collected during the surrounding 1-hour window. The bottom 10th percentile 
is chosen (rather than the absolute minimum) to account for measurement error (see Shusterman 
et al., 2016) as well as any near-field draw down from the local biosphere; negative values in the 
local signals are likely attributable to some combination of these effects. While many different 
sites contribute to this bottom 10th percentile over the course of the data record, some sites located 
in close proximity to emission sources are never represented in the bottom 10th percentile and 
always exhibit some enhancement (i.e., a non-zero local component) over the regional background 
signal. The regional component is allowed to vary throughout the data record and will therefore 
reflect domain-wide changes in response to day of week, synoptic weather events, etc. 
 
The diel profiles of the regional signal measured in summer and winter 2017 are shown in Fig. 3.5, 
reflecting the typical convolution of background concentrations, emission processes, and dynamics 
experienced across the entire BEACO2N domain. In both seasons, we see an increase in the 
regional signal beginning around 0400 local time (LT), followed by a decrease in concentrations 
at 0800 LT in the winter months and 1100 LT in the summer, and another increase in early to late 
afternoon depending on the season. This diurnal profile corresponds well with known patterns in 
traffic emissions–which are largely consistent across seasons–superimposed on diel fluctuations 
in boundary layer height that vary in timing and magnitude according to the season. Namely, the 
nighttime boundary layer in the BEACO2N domain appears to be shallower during the winter 
months, producing a larger regional increase in response to rush hour traffic. The wintertime layer 
also expands and re-contracts earlier in the day than the summertime layer, resulting in both an 
earlier minimum and an earlier rise in afternoon–evening concentrations. An analysis of the 
regional signals calculated for similar periods in 2013 revealed qualitatively similar results (Fig. 
3.6), although it should be noted that the 2013 analysis uses observations from a significantly 
different subset of sites in the BEACO2N network. 
 
We isolate the local signals by subtracting the network-wide regional component from the data 
record at each site. Median 1-minute local CO2 signals range from 0.3 to 40.2 ppm during the day 
(1100–1800 LT) and 1.1 to 38.5 ppm at night (2100–0400 LT) during the summer months, 
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although the distributions are skewed, with the 10th to 90th percentile ranges stretching from -2.4 
to 69.0 ppm during the day and -2.0 to 45.0 ppm at night. During the winter months, the daytime 
medians range from 3.6 ppm to 34.8 ppm (-7.0 to 90.8 ppm 10th to 90th percentile range) and -0.8 
ppm to 58.7 ppm (-15.0 to 90.6 ppm 10th to 90th percentile range) at night. A full picture of the 
overall distributions is shown in Figs. 3.7 and 3.8, confirming a much greater frequency of high 
CO2 concentrations during the winter months. In both seasons, the distribution of the local 
enhancements is typically unimodal with a heavy right-hand tail, although some sites exhibit more 
complex bi- or multi-modal distributions. 
 
By definition, we expect these local signals to represent a unique combination of emission sources 
and atmospheric dynamics specific to a given site. Mobile sources are estimated to comprise 
approximately 40% of the San Francisco Bay Area’s annual CO2 emissions (Claire et al., 2015) 
and are likely to represent an even larger fraction within the urban core, where electricity and co-
generation sources are less abundant. However, as noted in the discussion of the regional signals 
above, direct observation of the magnitude and variation of traffic emissions via ambient CO2 
concentrations is complicated by the coincident variation in turbulent mixing and boundary layer 
height as the earth’s surface warms and cools at sunrise and sunset (Fig. 3.9). 
 
In order to more directly examine the relationship between highway traffic flow and urban CO2 
concentrations, we begin by analyzing the subset of observations collected between 0400 and 0800 
LT at the LAN site, located less than 40 m from Interstate 880. During this period, traffic emissions 
are high, but the boundary layer is relatively shallow, thus increasing the sensitivity of the surface-
level monitor to the traffic signal. The resultant strong positive correlation between rush hour 
traffic flow and local CO2 concentrations is shown in Fig. 3.10, along with the median CO2 
concentrations observed in each 500 veh h-1 traffic flow increment and the linear regressions 
through these binned medians. (An alternative analysis using traffic density–obtained by dividing 
the traffic flow by the average vehicle speed–yields almost identical results.) We observe a factor 
of 2 difference in local CO2 between congested vs. free-flowing conditions, similar to that 
observed by a previous on-road mobile monitoring study by Maness et al. (2015). The uncertainty 
in the slope of the linear regression is 17%, indicating that this analysis of a single site could be 
used to detect 17% changes in average emissions per vehicle. For reference, under the Corporate 
Average Fuel Economy standards, the state of California aims to achieve a fleet-wide average fuel 
economy of 54.5 miles per gallon by the year 2025 (US EPA, 2012), corresponding to a 35% 
decrease in emissions relative to the 35.5 miles per gallon economy of 2012–2016 model year 
vehicles.  
 
In addition to this first-order sensitivity to vehicle emissions at the near-roadway LAN site, we 
find that policy-relevant emission changes can also be detected using nodes stationed greater 
distances from the highway by controlling for the impacts of dispersion. To do so, we decompose 
the CO2 signals into terms that represent the influence of meteorology and emissions separately 
via a multiple linear regression approach analogous to that described by de Foy (2018). Briefly, 
linear coefficients describing the relationship of a site’s CO2 signal to temperature, specific 
humidity, wind, boundary layer height, time of day, day of week, and time of year are derived in 
an iterative, compounding fashion, with the variable leading to the greatest increase in the square 
of the Pearson correlation coefficient being added to the regression until the addition of a new 
variable no longer increases the r2 value by at least 0.005. Temperature, specific humidity, wind 
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speed, and wind direction are taken from the Port of Oakland International Airport weather station 
maintained by the NOAA Integrated Surface Database (https://www.ncdc.noaa.gov/isd/) and 
boundary layer heights are provided by the ECMWF’s ERA-Interim model (Dee et al., 2011; 
http://apps.ecmwf.int/datasets/). The nonlinear relationship between CO2 concentrations and wind 
or boundary layer height is captured by dividing these meteorological datasets into quartiles and 
deriving a linear coefficient for each subset. The wind speed quartiles are further subdivided by 
wind direction before fitting.  
 
For this analysis, we use hourly total CO2 concentrations (the sum of the local and regional 
components) measured at five sites between 15 February 2017 and 15 February 2018; a 
representative comparison of the observed and modeled results at the LCC site is shown in Fig. 
3.11. The intercept of the multiple linear regression provides an estimate of the average 
background CO2 concentration observed at a given site over the entire analysis period; here we 
find a mean intercept of 426 ppm across the five sites. This is considerably higher than the average 
407 ppm regional signal calculated for the summer months using the bottom 10th percentile 
method described above, but in good agreement with the average wintertime regional signal (425 
ppm).  
 
Multiple linear regression coefficients are derived for each hour of the day during five types of 
days of the week (Mondays, Tuesdays through Thursdays, Fridays, Saturdays, and Sundays); for 
clarity, Fig. 3.12 shows the regression coefficients for Tuesdays through Thursdays and Sundays. 
These MLR “factors” signify the average CO2 enhancement or depletion (in ppm) uniquely 
associated with a particular hour of a particular day of the week. The dependencies on time of day 
and day of week derived via this method primarily reflect the changes in emissions, as the influence 
of the coincident changes in atmospheric dynamics has been at least partially controlled for. 
Indeed, we do observe some intuitive patterns in the linear regression coefficients, such as higher 
coefficients on weekday mornings corresponding to higher rush hour traffic emissions on those 
days. As expected, the weekday enhancement is larger at the sites located close to a freeway (e.g., 
520% at FTK) but is less pronounced at LBL (70%), which is farther away from major mobile 
sources. For reference, the 1 km by 1 km FIVE mobile emission inventory developed for the San 
Francisco Bay Area by McDonald et al. (2014) predicts a ~210% weekday enhancement on 
average, peaking around 0500 LT, much earlier in the day than is observed here. When we examine 
the relationship between these multiple linear regression coefficients and morning traffic flow as 
we did at LAN (Fig. 3.13), we find positive correlations enabling the detection of 11–30% changes 
in emissions. This is sufficient sensitivity to detect and monitor future increases in the fuel 
efficiency of the California passenger vehicle fleet with a record as short as 2–3 years.  
 
It is likely that even greater sensitivity could be achieved with more accurate meteorological 
datasets. While the single weather station and relatively coarse (0.125o by 0.125o) reanalysis 
product we use here may be adequate to represent the meteorological conditions across some 
domains, the San Francisco Bay Area is at the high end of complexity in terms of terrain and 
microclimatology. Higher resolution boundary layer heights and neighborhood-specific wind 
observations may improve the results of our multiple linear regression, but these types of 
measurements are rarely available on the spatial scale of the BEACO2N instrument and are difficult 
to simulate with accuracy (Jiménez et al., 2013; Banks et al., 2016). In future work, high-density 
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networks like BEACO2N may therefore be useful not just in source attribution but also in providing 
a much needed observational constraint on our understanding of near-surface transport.  
 
Future work will also make use of the ancillary datasets provided by the BEACO2N platform, such 
as the concurrent NOx and CO concentrations. The ratio of these species to CO2 provides a unique 
signature for each different CO2 source (e.g., Ban-Weiss et al., 2008; Harley et al., 2005), allowing 
“plumes” or other subsets of the data record to be directly attributed to specific (e.g., mobile) 
source types and allowing the relationship between these specific activities and CO2 mixing ratios 
to be derived more precisely. With such a precise methodology for converting between emissions 
and concentrations, subtler inter-annual trends in emissions could be detected, for example 
changes in vehicle emissions following construction of new housing.  
 
3.4 Conclusions 
 
We have described the heterogeneity measured at the individual sites of a high-density, surface-
level urban CO2 monitoring network. Networkwide, correlation length scales are found to be 
slightly longer during daytime during the summer, and generally shorter during winter months, but 
falling in the range of values reported previously based on other stationary observation networks 
and mobile monitoring campaigns. High near-field correlations are thought to be driven by shared 
sensitivity to local emission events, while moderate far-field correlations reflect regional episodes, 
suggesting that a given site’s data record is likely a convolution of both phenomena. We therefore 
present a methodology for separating the observed CO2 concentrations into local and regional 
components and observe distinct distributions (i.e., unimodal vs. bimodal) of local CO2 
enhancements within single neighborhoods. A clear relationship is seen between morning rush 
hour traffic counts and local CO2 concentrations, allowing for the detection of changes in vehicle 
emissions within 2–3 years, if those changes proceed at a rate consistent with policy objectives.  
 
Prior publications (e.g., McKain et al., 2012; Kort et al., 2013; Wu et al., 2018) have favored 
sparser networks of high-quality instruments, criticizing high-density, low-cost approaches as 
either: (a) providing redundant constraints on total urban emissions, (b) offering information on 
CO2 sources in their immediate surroundings only, or (c) possessing insufficient accuracy to 
resolve small emission trends. The ideal trade-off between measurement quality and instrument 
quantity has been investigated previously using an ensemble of observing system simulations by 
Turner et al. (2016), who found BEACO2N-like observing systems to outperform smaller, higher 
quality networks in estimating regional as well as more localized emission phenomena. While 
Turner et al. saw significant benefits to achieving an instrument precision of 1 ppm, further 
increases in measurement quality offered little advantage in constraining emissions, especially 
those from line and point sources. 
 
This work thus provides an important data-based verification of the conclusions of Turner et al.’s 
theoretical analysis. Not only do we demonstrate the ability of low-cost sensors to sufficiently 
constrain policy-relevant trends in line source (i.e., highway traffic) emissions, but we do so 
without the use of computationally intense and heavily parameterized atmospheric transport 
models. Furthermore, we show that a multiple linear regression analysis allows the signature of 
highway traffic to be extracted from sites located throughout the network, enabling trends in 
mobile emissions to be quantified without specially situated, roadside monitors. This is an 
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important result, as deriving and implementing a particular, a priori network layout is a non-trivial 
task. Domain-specific transport patterns prevent the development of general principles of optimal 
sensor placement, and, even if ideal locations can be identified, cooperation from facilities in the 
area cannot be guaranteed. By establishing for the first time that an ad hoc, opportunistic sensor 
siting approach can nonetheless provide sensitivity to emission sources of interest, we thus 
improve the prospects for widespread adoption of distributed monitoring systems in the future. 
 
Progress toward evaluating the capabilities and proper use of low-cost sensors has particular 
relevance for nations with rapidly developing economies, where CO2 emissions are increasing 
much faster than the resources needed to monitor them by conventional means. Domestically, 
citizen science and environmental justice groups are also adopting these technologies (Snyder et 
al., 2013) as an economically accessible means of advocating for greater public health and 
ecological wellbeing. While the specific correlation lengths and emission estimates we derive here 
are unique to the San Francisco Bay Area domain, the sensor performance capabilities and data 
analysis techniques we outline provide guidance more generally to any future studies attempting 
to interpret similar datasets around the world. High-resolution surface networks enabled by low-
cost technologies offer a unique opportunity to provide ground truth constraints on difficult-to-
model near-surface dynamics as well as on the individual CO2 sources and sinks that comprise the 
strategic backbone of greenhouse gas mitigation regulation. 
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Figure 3.1. Map of BEACO2N node locations (black dots). Nodes used in this study are labeled. 
Map data © 2017 Google. 
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Figure 3.2. Optimal correlation coefficients for every possible pairing of summer 2017 sites as a 
function of their separation distance during all hours (top), daytime hours (1100–1800 LT, middle), 
and nighttime hours (2100–0400 LT, bottom). Solid lines show exponential decay of the 
correlation coefficients. 
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Figure 3.3. Optimal correlation coefficients for every possible pairing of winter 2017 sites as a 
function of their separation distance during all hours (top), daytime hours (1100–1800 LT, middle), 
and nighttime hours (2100–0400 LT, bottom). Solid lines show exponential decay of the 
correlation coefficients. 
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Figure 3.4. Optimal correlation coefficients representing network-wide correlation with 5-minute 
mean total CO2 concentrations measured at four representative sites during all hours of winter 
2017. Yellow spot (r2 = 1) on each subplot shows the location of the site with which the correlation 
is examined.  
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Figure 3.5. Hourly median values of the network-wide, regional CO2 signals calculated for 
summer (orange) and winter (blue) periods in 2017. Lighter colored curves indicate the standard 
error; note the difference in y-scale. 
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Figure 3.6. Hourly median values of the network-wide, regional CO2 signals calculated for 
summer (orange) and winter (blue) periods in 2013. Lighter colored curves indicate the standard 
error; note the difference in y-scale. 
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Figure 3.7. Normalized distributions of local CO2 concentrations observed during summer 2017. 
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Figure 3.8. Normalized distributions of local CO2 concentrations observed during winter 2017. 
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Figure 3.9. Hourly network-wide median local CO2 and traffic flows observed during summer 
2017. Lighter colored curves indicate standard error. 
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Figure 3.10. Morning (0400–0800 LT) local summertime CO2 concentrations at LAN shown as a 
function of nearby highway traffic flow. Darker points indicate the median CO2 concentration 
observed in each 500 veh h-1 traffic flow increment; black solid line indicates the linear regression 
through the binned medians (equation given above plot) and gray dashed lines show the 
uncertainty in the regression slope. 
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Figure 3.11. Representative month of total CO2 concentrations observed (thick gray curve) and 
modeled (thin orange curve) at LCC site using a multiple linear regression approach based on de 
Foy (2018). 
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Figure 3.12. Multiple linear regression coefficients for five sites derived for each hour of the day 
on Tuesdays through Thursdays (orange solid line) and Sundays (blue dashed line) between 15 
February 2017 and 15 February 2018. 
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Figure 3.13. Morning (0400–0800 LT) multiple linear regression coefficients shown as a function 
of summertime traffic flow; black solid lines indicate the linear regression through the MLR 
factors (equations given above each subplot) and gray dashed lines show the uncertainty in the 
regression slope. 
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SITE 
CODE 

LAT 
(o N) 

LON 
(o E) 

TRAFFIC  
MONITOR ID 

DISTANCE FROM  
HIGHWAY (m) 

ALB* 37.896 -122.292 401052, 402062 1390 
BAM 37.788 -122.391 402815, 404920 170 
BOD* 37.754 -122.156 401857, 401858 300 
CHA 37.819 -122.181 400302, 400308 1720 
COL 38.002 -122.289 401230, 401269 510 
CPS* 37.848 -122.240 402201, 402202 220 
DEJ† 37.933 -122.338 400361, 400445 950 
EXB† 37.802 -122.397 402815, 404920 1570 
EXE 37.801 -122.399 402815, 404920 1580 
FTK 37.737 -122.173 JJAS: 400442, 400955 

NDJ: 400608, 400793 
1350 

HRS* 37.809 -122.205 400302, 400308 700 
LAN† 37.794 -122.263 400835, 408138 40 
LBL 37.876 -122.252 400176, 400728 3090 
LCC 37.736 -122.196 JJAS: 400442, 400955 

NDJ: 400608, 400793 
220 

MAD† 37.928 -122.299 400819, 401558 1850 
MAR† 37.863 -122.314 400176, 400728 950 
MTA 37.995 -122.335 400538, 400976 2040 
NOC* 37.833 -122.276 401211, 401513 750 
NYS† 37.928 -122.359 400359, 400734 380 
OHS* 37.804 -122.236 400261, 401017 160 
PDS* 37.831 -122.257 400224, 401381  800 
PER 37.943 -122.365 400639, 400738 1790 
PTL 37.920 -122.306 400819, 401588 970 
RFS 37.913 -122.336 400202, 400675 760 
RHS† 37.953 -122.347 401228, 406660 1530 
SHL 37.967 -122.298 416774, 416790 2030 
SPB* 37.960 -122.357 401894, 401895 2280 
STW† 37.990 -122.291 400313, 400902 500 

 
Table 3.1. List of site geo-coordinates, relevant traffic monitor IDs, and approximate distances 
from a highway. Asterisks indicate sites with data available in winter 2017 only; daggers indicate 
sites with data available in summer 2017 only. 
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Chapter 4 
 
High-resolution comparison of observed and simulated CO2 mixing ratios 
 
4.1 Introduction 
 
In 2011, it was estimated that more than 70% of the world’s fossil fuel CO2 emissions originated 
in cities (United Nations, 2011). With the urban population expected to continue to grow in the 
coming decades, so does the importance of constraining and mitigating these associated urban 
greenhouse gas emissions. However, urban areas present a unique challenge with respect to 
protocols for monitoring, reporting, and verifying (MRV) emissions reductions in that a variety of 
disparate emitters covered under disparate regulations reside in close proximity to one another, 
complicating the attribution of observed trends to any particular policy or action. 
 
Much recent work to this end has centered on the construction of high-resolution, bottom-up 
emission inventories for several major metropolitan areas (e.g., Bréon et al., 2015; Gurney et al., 
2012; Newman et al., 2016; Patarasuk et al., 2016; and Pugliese et al., 2018). However, concerns 
surrounding the accuracy of these inventories remain, given the uncertainties associated with 
downscaling national inventories (Gately et al., 2013; Gately et al., 2015) and their reliance on 
non-representative chassis dynamometer studies (Yanowitz et al., 2000) as well as self-reporting 
by possibly disingenuous stakeholders (US EPA, 2015). Forward and time-inverted atmospheric 
models have been implemented in an effort to constrain and supplement these inventories using 
top-down observations (e.g., Bréon et al., 2015; Kort et al., 2013), but these techniques are strongly 
influenced by assumptions regarding the magnitude and covariance of the various sources of error 
involved (Lauvaux et al., 2016).  
 
Turner et al. (2016) identify three types of error contributing to the “total mismatch” between 
observed mixing ratios and those simulated using atmospheric transport models: instrument error, 
model error, and representation error. Instrument error is unique to the particular measurement and 
calibration technique, ranging in order of magnitude from 0.15 ppm (Newman et al., 2013) to 4 
ppm (Shusterman et al., 2016). The error associated with a given type of instrumentation and the 
calibration thereof is inversely correlated with cost, such that there exists for every application an 
optimal trade-off between instrument quality and quantity that must be considered. Model (i.e., 
transport) error is known to be significant when modeling the dynamics of urban boundary layers, 
where variable topography, street canyons, and heterogeneous surface roughness combine to create 
complex, turbulent flows. Many modeling studies therefore limit their analyses to afternoon hours 
(e.g., 1100–1700 LT; see Kort et al., 2014), when the planetary boundary layer is thought to be 
well-mixed and therefore more likely to be captured accurately by transport models. Even so, the 
magnitude of most models’ transport error and the structure of its spatial correlation across a given 
urban domain are not entirely understood (Wu et al., 2018). Representation error refers to the 
inaccuracies that result from using averages across regularly shaped and spaced model grid cells 
to simulate conditions observed at discrete locations, which may or may not be well-represented 
by said averages (Turner and Jacob, 2015). While it is generally thought that the representativeness 
of a model is enhanced by the use of smaller grid cells (e.g., Valin et al., 2011), modeling 
atmospheric conditions at arbitrarily high spatio-temporal resolution requires significant 
computation time and power.  
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Prior studies have focused primarily on reducing the instrument and transport error terms (e.g., 
Deng et al., 2017; Wu et al., 2018), likely because these are the most straightforward to address, 
not necessarily because they are known to be the most important. Indeed, little is known about the 
magnitudes of each of these error terms relative to the error present in a given activity-based 
emission inventory. Here we present a comparison of CO2 mixing ratios observed using a high-
density sensor network (BEACO2N; see Shusterman et al., 2016) in the San Francisco Bay Area 
over 2 weeks in August and September 2013 with those simulated using a high-resolution emission 
inventory for the region developed by McDonald et al. (2014) and Turner et al. (2016). By 
systematically varying the emission estimates as well as the boundary layer parameterization of 
the transport model, we assess the relative magnitudes of the instrument, transport, representation, 
and emission error terms.  
 
4.2 Methods 
 
4.2.1 Emission inventory 
 
A detailed description of the CO2 emission inventory utilized in this study is given in Turner et al. 
(2016). Briefly, we construct an hourly, 1 km2 bottom-up inventory for the San Francisco Bay 
Area by combining point source and residential fuel usage data from the Bay Area Air Quality 
Management District (Mangat et al., 2010) with representative hourly traffic emissions from the 1 
km2 Fuel-based Inventory for Vehicle Emissions (FIVE) developed by McDonald et al. (2014). 
The result is believed to account for 95.8% of the anthropogenic CO2 emissions in the domain and 
is further supplemented with 3 hourly, 1o x 1o biogenic, ocean, and fire emissions from the 
CarbonTracker CT2013B product (Peters et al., 2007), interpolated to hourly, 1 km2 intervals. A 
representative time step from the inventory is shown in Fig. 4.1. 
 
In addition to this best estimate (hereafter referred to as the “baseline” inventory), we also construct 
two alternate emission inventories with all traffic emissions scaled by 50% (i.e., the “minus-50” 
inventory) or 150% (“plus-50”). These adjusted inventories provide a conservative upper and 
lower bound on sources of error present in current inventory estimation techniques related to 
factors like real-world engine performance (Yanowitz et al., 2000), congestion (Barth and 
Boriboonsomsin, 2008), and the availability and representativeness of traffic flow data (McDonald 
et al., 2014). These scalings also allow for the exploration of possible future changes to the baseline 
emission inventory resulting from upcoming tighter fuel efficiency standards (US EPA, 2012) 
and/or increased electrification of the passenger vehicle fleet (Brown, 2016). 
 
4.2.2  Model simulations 
 
We use the aforementioned emission inventories as inputs for a custom version of the Weather 
Research and Forecasting/Chemistry (WRF-Chem) mesoscale model (Grell et al., 2005) with 1 
km2 and 6 s resolution, outputting every hour. WRF-Chem is not by default configured to treat 
CO2 specifically, so for our purposes the CO2 emission rates and mixing ratios are intentionally 
mislabeled “CO,” an acceptable substitution given that the atmospheric lifetime of CO assumed 
by the model chemistry (2 months) is much longer than the lifetime of air in the model domain (<1 
day). Boundary conditions are given by the three-dimensional Pacific “curtain” produced by 
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NOAA’s Global Greenhouse Gas Reference Network (Jeong et al., 2013), interpolated to the 
native MOZART resolution and also temporarily labeled “CO.” 
 
We repeat each simulation with five different combinations of boundary and surface layer 
parameterizations to create an ensemble of model predictions representing the variety of plausible 
transport schemes: 

• Model A: Mellor-Yamada-Janjic boundary layer, 5-layer surface diffusion land surface 
• Model B: Mellor-Yamada-Janjic boundary layer, Noah land surface 
• Model C: Yonsei University boundary layer, 5-layer surface diffusion land surface 
• Model D: Yonsei University boundary layer, Noah land surface 
• Model E. Pleim-Xiu boundary layer, Pleim-Xiu land surface 

These configurations are summarized in Table 4.1. The result is a continuous field of CO2 
concentrations across the San Francisco Bay Area that allows us to examine domain-wide trends, 
although for direct comparison with the surface monitoring sites, we examine only the modeled 
concentrations in the corresponding individual grid cells.  
 
4.2.3  The BErkeley Atmospheric CO2 Observation Network 
 
The BErkeley Atmospheric CO2 Observation Network (BEACO2N) is an ensemble of more than 
50 CO2 and air quality monitoring “nodes” distributed at roughly 2 km intervals throughout the 
San Francisco Bay Area. A full description and characterization of the instrument is given in 
Shusterman et al. (2016) and Kim et al. (2018). Briefly, each BEACO2N node is equipped with a 
suite of moderate cost, commercially available sensor technologies: a Vaisala CarboCap GMP343 
non-dispersive infrared sensor for CO2, a Shinyei PPD42NS nephelometric particulate matter 
sensor, a suite of four Alphasense B4 electrochemical sensors for O3, CO, NO, and NO2, and a 
meteorological sensor (Bosch Sensortec BME280) for temperature, pressure, and humidity. Data 
is transmitted to a central repository and made publicly available online 
(http://beacon.berkeley.edu/) in near real time.  
 
Here we use 1 min mean dry air mole fractions collected at 9 sites (Fig. 4.1) between 25 August 
and 8 September 2013 for comparison with the CO2 concentrations simulated using the various 
emission inventories and boundary layer schemes described in Sect. 4.2.1 and 4.2.2. The 
observations are corrected for meteorological dependencies, temporal drift, and systematic 
uncertainty as described in Shusterman et al. (2016) and subsequently averaged to 5-minute 
windows centered at each model output time. This averaging approach accounts for the fact that 
the model output represents instantaneous conditions, while also providing some allowance for 
random error in the BEACO2N measurements or slight offsets in timing of events.  
 
4.3 Results & Discussion 
 
Observed and simulated median diel cycles generated over the 2-week study period using the 
baseline emission estimates are shown in Fig. 4.2. We see that at least one of the model simulations 
captures the diel cycles observed at some sites (e.g., CPS, ELC, and PAP) remarkably well. 
However, even when using five different model configurations, the ensemble of simulations 
consistently underestimates the magnitude of both the inter-site variability as well as the intra-site 
variability over the course of the 24-hour cycle. Specifically, while all of the models predict 
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generally low concentrations interrupted by a modest morning rush hour peak (and sometimes an 
even smaller evening peak), in the observations we find a much greater diversity of diel patterns, 
with some sites exhibiting midday or afternoon maximum CO2 concentrations (e.g., LAU, KAI, 
FTK, and STL) and others exhibiting significantly elevated nighttime concentrations (HRS).  
 
Díaz-Isaac et al. (2018) previously analyzed the accuracy of the meteorologies simulated by an 
ensemble of different WRF parameterization permutations and found the specific land surface and 
boundary layer schemes used in each model run to have a considerable impact on CO2 
concentration estimates. They were unable, however, to identify a single land surface or boundary 
layer scheme that would result in consistently superior performance across all meteorological 
variables investigated and/or across the entire modeling domain (the US Midwest). Here we find 
our results to be relatively insensitive to the choice of land surface parameterization (e.g., compare 
the CO2 levels in Fig. 4.2 predicted by Models A and B, which share a boundary layer scheme and 
differ in land surface model only), likely due to the lack of soil moisture in our predominantly 
urban domain. However, we are similarly unable to recommend a particular boundary layer 
parameterization that appears to reduce the model–data mismatch at all sites. A previous 
investigation into the relative merits of various boundary layer dynamics schemes for simulating 
the meteorology of the San Francisco Bay Area in particular found the Pleim-Xiu parameterization 
(Model E) to produce the most accurate results (BAAQMD, 2017), although it should be noted 
that the Mellor-Yamada-Janjic scheme used in Models A and B was not included in that analysis. 
In Fig. 4.3 we see that Models A and B yield better agreement with afternoon boundary layer 
heights derived from radiosondes released at the Oakland International Airport. (We do not 
compare morning boundary layer heights, as the negligible surface heating and mixing observed 
at those hours complicates the calculation of a boundary layer height; see Fig. 4.4.) We cannot, 
however, characterize domain-wide model performance from comparison with sparse observations 
made at a single location.  
 
In the absence of a clearly superior strategy for sub-grid cell parameterization, we endeavor to 
quantify the probable magnitude of the modeled transport error and its relative contribution to the 
total model–data mismatch observed here. For this purpose, we define transport error as the 
standard deviation across the CO2 concentrations predicted by the five model configurations at a 
given location and model time step. Meanwhile, the instrument error is known to be ±1.8 ppm at 
5 min resolution, given by the combination of the random error, short-term drift, and systematic 
uncertainty corrections derived by Shusterman et al. (2016). Finally, an upper bound on the 
emissions error is derived from the mean difference between the CO2 concentrations predicted 
using the minus-50 and plus-50 emission inventories under each of the various meteorological 
schemes. We calculate the fractional contribution of a given error term 𝑋 to the total model–data 
mismatch (𝜎LML.o) according to the equation below:  

𝑓𝑟𝑎𝑐� = 	
��
E

�;<;��
E           (4.1) 

The mean contributions of the three error terms described above to the total model–data mismatch 
at each site are shown in Fig. 4.5. We see that, at all sites, the instrument error makes the smallest 
or nearly the smallest contribution to the overall error budget, while the transport error typically 
comprises the second largest fraction. While the relative importance of transport error has been 
documented previously (e.g., Lauvaux et al., 2016; Deng et al., 2017), the relative unimportance 
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of instrument error is noteworthy, given the lower quality monitoring equipment in use in this 
study. These results support the conclusion of Turner et al. (2016) that use of moderate cost sensor 
technologies does not significantly compromise the integration of ambient observations with 
model simulations. They also highlight, however, the importance of improving simulated 
transport–whether via advances in model parameterizations, data assimilation, or hyperparameter 
estimation–in order to best take advantage of these measurements.  
 
Figure 4.5 also demonstrates that the quality of the prior emission inventory makes the most 
significant contribution to the overall error in the simulated CO2 concentrations at all sites. This is 
a somewhat unsurprising result, given that many urban modeling studies are conducted with the 
express purpose of improving greenhouse gas emission estimates. It is possible that the dominance 
of the emissions error term is partially attributable to the magnitude of perturbation introduced to 
the emission inventory; indeed, error sums exceeding 100% at NOC, PAP, and STL indicate that 
±50% error may be an overestimation of the true uncertainty in the prior mobile emission estimate. 
However, previous studies of urban greenhouse gas inventories have indicated that scale factors 
of up to 1.5 to 1.8 may be necessary to bring prior emission estimates into agreement with 
observations (e.g., McKain et al., 2012). Furthermore, the remaining six sites (LAU, KAI, CPS, 
FTK, HRS, and ELC) possess error sums far below 100% of the total model–data mismatch, 
suggesting either an underestimation of one of the error terms included in said sum or the presence 
of a significant contribution from representation error. If we define the representation error as the 
remainder of the model–data mismatch after instrument, transport, and emissions error have been 
accounted for, we calculate that representation error contributes an average of 67% of the total 
mismatch at these six sites.  
 
It should also be noted that estimation of emissions error via a uniform scale factor assumes that 
all uncertainty in the emission inventory is contained in the magnitude of the emissions, rather 
than their spatio-temporal distribution. Indeed, the FIVE inventory on which our mobile emission 
estimates are based (McDonald et al., 2014) imposes the same diel cycle on highway emissions 
throughout the domain, which does not reflect the heterogeneity in traffic flows observed across 
the highway system (see Fig. 4.6). Thus the true value of the emissions error contains contributions 
from errors in magnitude as well as timing.  
 
The uncertainty in our emissions error estimate means that our derived representation error value 
should not be overinterpreted as a precise quantification, as this would require a negative 
representation error at NOC, PAP, and STL. Rather than implying a nonphysical representation 
scenario, this result likely indicates that either: (a) the CO2 simulations for these three sites are 
particularly sensitive to changes in mobile emissions, and/or (b) the emissions from highway 
segments in their footprint of influence are already accurate to within much better than ±50% in 
the prior inventory. In order to investigate these two possibilities, we decompose the modeled 
change in CO2 concentrations (𝜕𝐶 𝜕𝑡⁄ , in µmol m-3 s-1) into four contributing terms: 
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Here, 𝑄 is the CO2 flux (in µmol m-2 s-1) in the emission inventory grid cell that contains a given 
BEACO2N site, ℎ is the height of the planetary boundary layer (in m) in said cell calculated by the 
transport model, 𝐶� is the CO2 mixing ratio in the first model layer above said boundary layer 
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height (in µmol m-3), 𝑢 is the east–west component of the modeled wind speed (in m s-1) in the 
site’s grid cell, and 𝑣 is the north–south component. We assume constant wind speeds across a 
grid cell, which simplifies the spatial derivatives to gradients in CO2 concentration alone. These 
are calculated by subtracting the surface CO2 concentration in the upwind grid cell from that in the 
cell of interest and dividing that difference by the grid size (1000 m). Finally, 𝐻 is the Heaviside 
function with the argument 𝜕ℎ 𝜕𝑡⁄  that sets the entrainment term to zero whenever the boundary 
layer height is decreasing. 
 
Reading the righthand side of Eq. (4.2) from left to right, we refer to each addend as the emissions, 
entrainment, u-advection, and v-advection contributions to the total modeled CO2, respectively. 
The mean fractional contribution of each of these terms to 𝜕𝐶 𝜕𝑡⁄  calculated using a separate 3-
day (18–20 May 2013) simulation run at 10-minute time resolution is shown in Fig. 4.7. Even 
when a different time period is used, we see that the sites that depend significantly on the emissions 
term (NOC, PAP, and STL) are the same sites with especially large emissions errors in Fig. 4.5. 
At the remaining six sites, more than half of the simulated CO2 concentration changes are dictated 
by the u-advection term, uncertainties in which may contribute to both transport and representation 
error. Previous studies have thoroughly documented the Weather Research and Forecasting 
model’s inability to accurately simulate horizontal wind speeds (e.g., Díaz-Isaac et al., 2018); sites 
whose modeled concentrations are particularly dependent on advection may be especially 
vulnerable to such inaccuracies. Equation (4.2) therefore provides a useful first-order indication of 
which sites (or proposed sites) in a given observation network are best positioned to constrain 
urban emissions (i.e., those with dominant emissions terms) vs. urban dynamics (those with 
dominant advection terms). Depending on the intent of the analysis, an optimal network or data 
subset could then be designed or selected appropriately.  
 
4.4 Conclusion 
 
Here we present one of the first validations of simulated urban CO2 concentrations against a high-
resolution, surface-level greenhouse gas monitoring network. We discover a much higher degree 
of diel and inter-site variability to be present in the observations than is predicted by the mesoscale 
atmospheric transport model and present an initial analysis of the error terms that contribute to this 
model–data mismatch, namely: instrument error, transport error, emissions error, and 
representation error. We find the error budget to be dominated by emissions error, while instrument 
error is seen to be a small contributor to the overall error budget, indicating that future work could 
potentially use less precise instruments with negligible impacts on the overall error budget. 
Transport error is on average more significant, although not substantial enough to account for the 
magnitude of model–data mismatch observed here. At some sites, introducing a ±50% mobile 
emissions error is more than enough to close the error budget, but this finding is limited to sites 
whose simulated CO2 concentrations are dominated by the emissions in their local model grid cell. 
The remaining majority of sites possess yet unexplained portions of their model–data mismatch, 
pointing to significant contributions from representation error and/or some underestimation of the 
other error terms. 
 
This finding has important implications for future analyses pairing surface-level observing systems 
with transport models to constrain emission estimates. In the past, these analyses have typically 
attempted to resolve the entirety of the model–data mismatch through changes to the emission 
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estimate alone, assuming other error terms to be negligible and/or relegating these uncertainties to 
poorly understood error covariance matrices (Lauvaux et al., 2016). However, we see here that 
even significant perturbations of the emission inventory cannot account for even half of the model–
data mismatch at some sites, suggesting that other sources of error must also be carefully 
considered.  
 
Inversion analyses used to constrain emissions under fixed meteorological conditions would 
therefore benefit greatly from an initial evaluation of modeled meteorology (which influences 
transport as well as representation error) to ensure the best possible simulation of near-surface 
dynamics. Unfortunately, many of the relevant meteorological variables are monitored only 
infrequently, if at all, and virtually never at the spatial resolution implemented in these mesoscale 
inversion studies. Dilution and dynamics can vary across very short spatial scales, as evidenced 
here by the anti-correlated diel profiles observed at LAU and HRS, located only 2 km apart. In 
addition to increased frequency and density of meteorological observations and improved 
modeling techniques, CO2 records from difficult-to-model, near-surface sites present extremely 
valuable sources of information for constraining these sub-grid cell atmospheric dynamics. Future 
work will leverage BEACO2N CO2 observations more rigorously as passive tracers of urban 
surface layer dynamics and as potential candidates for data assimilation techniques that allow 
meteorological fields to be updated in tandem with emission estimates.  
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Figure 4.1. Sample time step of baseline emission inventory with locations of BEACO2N sites 
used in this study labeled as white stars. 
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Figure 4.2. Median diel cycles in CO2 concentrations observed and simulated using baseline 
emission estimates. 
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Figure 4.3. Boundary layer heights observed at the Oakland International Airport and simulated 
at the nearby FTK site. 
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Figure 4.4. Mean vertical profiles in potential temperature measured by radiosondes released at 
Oakland International Airport at 0400 and 1600 LT during the study period.  



 66 

 
 

Figure 4.5. Mean fractional contribution of error terms to the total model–data mismatch. 
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Figure 4.6. Median diel cycles in estimated mobile emissions (left) and observed traffic flow 
(right; courtesy of the Caltrans Performance Measurement System, http://pems.dot.ca.gov/) at or 
near three representative sites during the study period. 
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Figure 4.7. Fractional contribution of emissions, entrainment, and advection terms to the time 
derivative of the simulated CO2 concentrations. 
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MODEL BOUNDARY 
LAYER 

LAND 
SURFACE 

A MYJ MM5 
B MYJ Noah 
C YSU MM5 
D YSU Noah 
E PX PX 

 
Table 4.1. Boundary layer and land surface parameterization combinations used to create the five 
transport model configurations considered in this study.  
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Chapter 5 
 
Conclusions 
 
5.1 Summary 
 
In this dissertation, I presented the first high-resolution urban CO2 observing system based on low-
cost sensor technology: the BErkeley Atmospheric CO2 Observation Network (BEACO2N). In the 
previous three chapters, I rigorously characterized the in situ performance of the BEACO2N 
platform, established its sensitivity to policy-relevant trends in CO2 emissions from specific 
roadways, and demonstrated its potential as a tool for validating simulations based on state-of-the-
art atmospheric transport models and activity-based emission inventories. By constructing this 
novel network and thoroughly characterizing the first 5 years of BEACO2N’s operation, I have 
introduced an important proof of concept for low-cost, high-density observation techniques and 
established a rigorous body of baseline observations against which ongoing developments can be 
compared, thus demonstrating that we are well on the way towards the continuous monitoring of 
CO2 emissions at high spatio-temporal resolution within an urban domain. 
 
5.2 Future directions 
 
As the longitudinal strength of the BEACO2N data record continues to grow, future analyses 
should take advantage of this long-term continuity to characterize inter-annual trends in CO2 
emissions and concentrations. These are the timescales on which regulatory and sociological 
change take place, and low-cost platforms that are economically feasible to maintain over long 
time periods are uniquely situated to document these changes. The San Francisco Bay Area in 
particular has been the site of many significant emission reduction initiatives since BEACO2N’s 
foundation in 2012 (e.g., the electrification of the Port of Oakland), and the network will be crucial 
in evaluating the outcomes of those initiatives in the long term.  
 
Moreover, once a significant observational record has been established in BEACO2N’s secondary 
locations (New York City and Houston), an inter-city analysis should be conducted to compare 
the suitability of the BEACO2N approach to differently configured urban areas. It is highly 
possible that the different topographies, dominant meteorologies, and emission profiles of the three 
cities each require a unique observing system design. For example, it has been hypothesized that 
emissions from Indianapolis, Indiana are sufficiently constrained by fewer, higher quality 
monitoring sites because: (1) Indianapolis is a relatively small city that produces correspondingly 
subtle enhancements in CO2 concentrations, perhaps requiring high-quality instrumentation to 
detect, and (2) the topography is mostly flat and surrounded on all sides by rural areas, perhaps 
necessitating fewer observation sites to characterize the entire urban footprint (Wu et al., 2018). 
Houston is similar to Indianapolis in the simplicity of its topography but features more complex 
boundary conditions, with the Gulf of Mexico and an accompanying shipping port to the southeast 
and other significant urban centers to the west and north. New York City, meanwhile, is even more 
heavily urbanized than the San Francisco Bay Area, with skyscrapers introducing a variety of 
emission heights and dramatic street canyon dynamics. Understanding the ability of low-cost 
sensors to characterize emission activities in these two cities is crucial to the potential future 
expansion of the BEACO2N framework to other urban centers. 
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In this vein, a more thorough investigation of the representativeness of a given near-surface 
monitoring site should be performed. The work I have presented here suggests a significant 
discontinuity between the resolution at which most atmospheric transport models are run and the 
spatial footprint represented by a single BEACO2N measurement. Recent mobile monitoring 
campaigns in the San Francisco Bay Area (e.g., Apte et al., 2017) provide a unique opportunity to 
probe the spatial extent captured by each stationary observing site in extremely high resolution. A 
rigorous understanding of the irregular localities encoded in the BEACO2N dataset would not only 
improve the accounting of representation error in ongoing modeling studies but also inform the 
ideal siting of new monitoring stations. 
 
Finally, future analyses of the BEACO2N data record should leverage the wealth of other available 
observations not touched upon here. Since 2014, some subset of the network has also possessed 
equipment for the measurement of ancillary trace gases (CO, NO, NO2, and O3) as well as 
particulate matter. Highly relevant to air quality and therefore public health interests in their own 
right, these species are also co-emitted with CO2 in ratios indicative of the precise fuel and 
combustion processes involved. These instruments have recently been validated for in-field use 
(Kim et al., 2018), and their analysis alongside the primary CO2 instrumentation offers the 
opportunity for greater specificity of source attribution and quantification. 
 
The meteorological sensors included in the BEACO2N sensor package might also be repurposed 
for analyses beyond the calibration applications described here. The measurements could allow 
for the high-density validation of near-surface temperature, humidity, and pressure predicted by 
atmospheric transport models. These meteorological constraints, in combination with a treatment 
of CO2 as a passive tracer species, could aid in the selection of optimal model parameterizations 
for a given urban area and further improve understanding of boundary layer dynamics.  
 
The development of MRV strategies that inform effective mitigation of greenhouse gas emissions 
is a task of great societal as well as scientific importance. Successful efforts will require an 
unprecedented degree of synergy between activity-based and observation-based initiatives across 
all spatial scales and geopolitical boundaries. The continued study of low-cost, high-density 
monitoring approaches constitutes an important piece of this multifaceted endeavor and will be 
crucial to confronting the challenges presented in this dissertation and beyond.  
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