
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Automatic Term-Level Abstraction

Permalink
https://escholarship.org/uc/item/2h54t3gt

Author
Brady, Bryan

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2h54t3gt
https://escholarship.org
http://www.cdlib.org/


Automatic Term-Level Abstraction

by

Bryan Brady

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Sanjit A. Seshia, Chair
Professor Robert K. Brayton

Professor Alper Atamtürk

Spring 2011



Automatic Term-Level Abstraction

Copyright 2011
by

Bryan Brady



1

Abstract

Automatic Term-Level Abstraction

by

Bryan Brady

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Recent advances in decision procedures for Boolean satisfiability (SAT) and Satisfiability
Modulo Theories (SMT) have increased the performance and capacity of formal verification
techniques. Even with these advances, formal methods often do not scale to industrial-size
designs, due to the gap between the level of abstraction at which designs are described
and the level at which SMT solvers can be applied. In order to fully exploit the power
of state-of-the-art SMT solvers, abstraction is necessary. However, applying abstraction to
industrial-size designs is currently a daunting task, typically requiring major manual efforts.
This thesis aims to bridge the gap between the level at which designs are described and the
level at which SMT solvers can reason efficiently, referred to as the term level.

This thesis presents automatic term-level abstraction techniques in the context of formal
verification applied to hardware designs. The techniques aim to perform abstraction as auto-
matically as possible, while requiring little to no user guidance. Data abstraction and func-
tion abstraction are the foci of this work. The abstraction techniques presented herein rely on
combining static analysis, random simulation, machine learning, and abstraction-refinement
in novel ways, resulting in more intelligent and scalable formal verification methodologies.

The data abstraction procedure presented in this work uses static analysis to identify
portions of a hardware design that can be re-encoded in a theory other than the theory
of bit vectors, with the goal of creating an easier to reason about verification model. In
addition, the data abstraction procedure can provide feedback that can help the designer
create hardware designs that are easier to verify.

The function abstraction procedures described in this work rely on static analysis, ran-
dom simulation, machine learning, and counterexample-guided abstraction-refinement to
identify and abstract functional blocks that are hard for formal tools to reason about.
Random simulation is used to identify functional blocks that will likely yield substantial
performance increases if they were to be abstracted. A static analysis-based technique,
ATLAS, and a separate technique, CAL, based on a combination of machine learning and
counterexample-guided abstraction-refinement, are then used to compute conditions under
which it is precise to abstract. That is, functional blocks are abstracted in a manner that
avoids producing spurious counterexamples.
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Experimental evidence is presented that proves the efficacy and efficiency of the data
and function abstraction procedures. The experimental benchmarks are drawn from a wide
range of hardware designs including network-on-chip routers, low-power circuits, and mi-
croprocessor designs.
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Chapter 1

Introduction

Computer systems are ubiquitous in the world today. They are used in a variety of
applications from personal communication devices to mission critical systems such as au-
tomotive and avionic control systems. Depending on the application, an error could be a
minor inconvenience or a major catastrophe, possibly endangering lives. Therefore, there is
an ethical and moral obligation to correctly design and implement computer systems.

Design and verification engineers have an arsenal of tools with which they can verify
computer systems. These verification tools come in two main flavors: simulation and formal.
Simulation-based verification involves simulating a design with input vectors and comparing
the output against known results for those same input vectors. In formal verification, a
mathematical model of the design is created along with properties that the design must
satisfy and automated reasoning techniques are then used to determine whether the design
satisfies the properties in all situations.

Consider the classic example of an elevator design, where the elevator is not supposed
to move when the doors are open. To verify this elevator design with simulation-based
verification would require simulating the elevator many times and checking in each case if
the doors are ever open while the elevator is moving. At the end of this verification process,
we know that the elevator never moves when the doors are open for all of the individual
test cases that we tested. In small designs, it might be possible to test every possible case.
However, in most realistic cases there are far too many combinations of inputs to test the
entire input space. Simulation-based techniques can be helpful in finding bugs, but not
proving their absence. Various techniques exist that attempt to quantify the amount of the
search-space tested by the simulation vectors by computing what is known as a coverage
metric. A coverage metric is a measure of confidence that the system is correct.

In situations where absolute guarantees of correctness are required, design and verifica-
tion engineers turn to formal verification. Formal techniques are able to not only find bugs,
but prove the absence of bugs. However, formal methods don’t always scale well to large
designs and often require hand-crafted abstractions, which can be tedious and error-prone
to create. This dissertation focuses on increasing the scalability of formal techniques by au-
tomatically applying abstraction to portions of designs that are hard for formal techniques
to reason about.
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1.1 Formal Verification

Formal verification involves mathematically proving properties about designs. While
there are many variations of formal verification, such as model checking and equivalence
checking, each variant shares the following three requirements: (i) a mathematical model of
the design; (ii) the property to be verified, and (iii) a model of the environment in which
the design will be operating. We present below three formal verification techniques that we
use in the remainder of this thesis.

Model checking. The goal of model checking is to determine whether a design D satisfies
a property P , typically expressible in temporal logic, while operating in environment E. In
model checking, the design, property, and environment are modeled symbolically. The model
checking algorithm attempts to prove that design D satisfies property P in all states. This
is accomplished by computing the set of reachable states S0, S1, ... and checking that each
state in Si satisfies property P . In the absence of a counterexample, the set of reachable
states are computed until a fix-point is reached (i.e., Si = Si+1), at which point it has been
proven that design D satisfies property P . Computing the set of reachable states is a major
challenge for model checking algorithms. A weaker form of model checking, where it is not
necessary to compute the entire set of reachable states, is bounded-model checking (BMC).
In BMC, the design is initialized to some known state and is then unrolled for a bounded
number of cycles. For a design to pass BMC, it must satisfy the property in each time
frame.

Equivalence checking. Equivalence checking involves proving that two designs have
equivalent functionality. There are two types of equivalence checking: combinational and
sequential. Combinational equivalence checking involves proving that two designs produce
the same output for any input. Sequential equivalence checking involves proving that two
designs produce the same output for any sequence of inputs. In either case, there are two
versions of a design, with the same symbolic inputs connected to both designs, and the goal
is to prove that the designs always produce the same output. If two designs are equiva-
lent, they can be used interchangeably. Equivalence checking is a process used frequently
throughout the design of hardware systems. Hardware is typically described using a high-
level hardware description language (HDL) such as Verilog or VHDL. Next, a variety of logic
synthesis algorithms, such as retiming and technology mapping are applied to the high-level
HDL. After each synthesis step, it is necessary to ensure that the functionality of the design
hasn’t changed. Equivalence checking is typically performed after each step of synthesis.

Correspondence checking. Correspondence checking, introduced by Burch and Dill [31],
is a formal verification technique used to verify the control logic of pipelined microprocessor
designs. In correspondence checking, a pipelined microprocessor is verified against a sequen-
tial (meaning that instructions are executed one after another) version of the same processor.
The sequential processor is essentially a formal model of the instruction set architecture.
The property that correspondence checking aims to verify is that the pipelined processor
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Figure 1.1: Levels of abstraction. Bit-level modeling is the lowest level of abstraction.
Bit-vector level modeling is one step above bit-level modeling, however, it is precise in the
sense that no information is abstracted away. Term-level modeling is the highest level of
abstraction, where datapaths and functional blocks can be represented abstractly.

refines the sequential version of the same processor. In other words, the pipelined processor
can mimic all of the behaviors present in the sequential version. Since processor designs are
some of the main benchmarks used in this dissertation, we describe this technique in more
detail in Section 2.5.

1.2 Abstraction Layers in Formal Verification

Regardless of the type of formal verification being applied, the same underlying rea-
soning mechanisms can be used. The type of reasoning mechanism depends on the level
of abstraction used to model the system being verified. While there are many levels of
abstraction within which the design and property to be tested can be modeled, this work
focuses on three levels: bit-level modeling, bit-vector-level modeling, and term-level model-
ing. The aforementioned levels of abstraction are listed in increasing levels of abstraction
as illustrated in Figure 1.1.

Bit level modeling. At the lowest level, the entire design can be modeled with individual
bits, using propositional logic. In this case, higher-level constructs such as addition or
multiplication circuits are modeled solely with Boolean logic gates, at the bit level. Solvers
that operate at the bit level, such as Boolean satisfiability (SAT) solvers and Binary Decision
Diagram (BDD) packages, can be quite powerful and have seen tremendous performance
and capacity increases over the last decade.

BDDs, in their current form, were introduced by Bryant in 1986 [25]. He showed how to
reduce BDDs into a canonical form by using a series of simplifications that are applied during
the creation of a BDD. Further optimizations, such as using a unique table for fast access
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to existing nodes and adding complemented edges to represent negation, were presented
in [14]. Even the most state-of-the-art BDD packages, such as CUDD, an efficient BDD
package created by Somenzi [64], suffer from exponential time and space requirements in
the worst case.

The Boolean satisfiability (SAT) problem, and algorithms to solve SAT problems, have
been around for several decades [35, 34]. Even with these early works, the field of SAT solving
did not see major advances until the late 1990s and early-to-mid 2000s [55, 57, 39, 40, 38, 67].
SAT solving has since received much attention, and as a result, additional progress has been
made [39, 7, 12, 47]. The problem of Boolean satisfiability is NP-complete, thus, it is no
surprise that problems exist that exhibit worst-case behavior for even the best SAT solvers.
Additionally, certain circuit structures, such as those with many exclusive-or gates, tend
to hinder the performance of bit-level solvers. To combat these problems, a higher level of
abstraction can be employed.

Satisfiability Modulo Theories. The Satisfiability Modulo Theories (SMT) problem
is a decision problem over formulas in first-order logic coupled with decidable first-order
background theories. SMT solvers have become the umbrella term for solvers that reason
at a level of abstraction above the bit level [9, 10]. There are many background theories
supported by SMT solvers, however, they are not all compatible with one another. This
work focuses on two background theories, the theory of bit vectors, and logic of equality
with uninterpreted functions [10, 9, 33].

Bit-vector level modeling. The bit-vector level, also referred to as the word level, is the
level of abstraction in which most hardware designs are modeled. At the word level, datapath
signals are modeled with groups of bits, or bit vectors, and operations are defined over these
bit vectors. The most obvious advantage that the bit-vector level has over the bit level is
the reduction in model size. For example, the number of gates within a multiplier grows
quadratically with the size of the datapath, however, when represented at the bit-vector
level, a multiplier has constant size. Another advantage, which can be exploited for major
performance increases, is that word-level reasoning procedures take into account properties
that are lost at the bit level [48]. One such example is the commutativity of multiplication
as we show in Chapter 3. Bit-vector solvers have received a lot of attention over the last
several years [27, 28, 44, 43, 21] and there are many efficient solvers available [48, 23, 22, 37].
While bit-vector solvers outperform bit-level solvers in many cases, there are still situations
where further abstraction is required. In these situations, term-level abstraction can be
employed.

Term-level modeling. Term-level abstraction is a modeling technique where datapath
signals are represented with symbolic terms and precise functionality is abstracted away
with uninterpreted functions. Term-level abstraction has been found to be especially useful
in microprocessor design verification [46, 31, 52, 54]. The precise functionality of units such
as instruction decoders and the ALU are abstracted away using uninterpreted functions, and
decidable fragments of first-order logic are employed in modeling memories, queues, counters,
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and other common data structures. While several SMT solvers support some, or all, of the
background theories used in term-level abstraction, UCLID [53, 29] and SAL [36, 11] are
two of the only full-fledged term-level verification systems available.

A major challenge of any abstraction technique, including term-level abstraction, is in
determining what functionality to abstract. On the one hand, constructing these models
by hand is a tedious process prone to errors, hence automation is essential. On the other
hand, automatically abstracting all bit-vector signals to terms and all operators to unin-
terpreted functions results in too coarse an abstraction, in which properties of bit-wise and
finite-precision arithmetic operators are obscured, leading to a huge number of spurious
counterexamples. While such spurious counterexamples can in many cases be eliminated
by selectively abstracting only parts of the design to the term level, manual abstraction
requires detailed knowledge of the RTL design and the property to be verified. It is difficult
for a human to decide what functional blocks or operators to abstract in order to obtain
efficiency gains and also avoid spurious counterexamples.

1.3 Thesis Contributions

The problem addressed by this thesis is the automatic application of term-level abstrac-
tion to hardware designs with the goal of creating easier to verify models.

The main contributions of this thesis include:

1. A data abstraction technique, optionally guided by user-provided type annotations,
that re-encodes portions of a bit-vector design at the term-level. While this technique
can be fully automated, user-provided type annotations are used to provide feedback
to the verification engineer (Chapter 4);

2. A random-simulation-based technique used for the identification of abstraction candi-
dates (Chapter 5);

3. An automatic approach to function abstraction based on a combination of random
simulation and static analysis. Random simulation is used to identify abstraction
candidates. Then, static analysis is used to compute conditions under which it is
precise to abstract (Chapter 5), and

4. An automatic function abstraction technique based on machine-learning, random sim-
ulation, and counterexample-guided abstraction-refinement. Abstraction candidates
are identified using random simulation. Interpretation conditions are then learned
by applying machine learning techniques to the spurious counterexamples that arise
(Chapter 6).

1.4 Thesis Overview

This thesis is broken down into two main parts. The first part of this thesis discusses
relevant background material. Chapter 2 introduces basic notation, modeling techniques,
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and levels of abstraction commonly used in formal methods. This includes the basics of
bit-level, word-level, and term-level modeling and examples of term-level abstraction tech-
niques being applied to simple circuits. Chapter 3 discusses the decision procedures used to
solve problems at the various levels of abstraction, as well as discussing the strengths and
weaknesses of each approach.

The second part of this thesis presents our approaches to data and function abstraction.
Our data abstraction procedure, based on joint work with R. E. Bryant and S. A. Seshia [16],
is presented in Chapter 4. Chapter 5 presents our automatic approach to function abstrac-
tion based on random simulation and static analysis. The techniques discussed in Chapter 5
are based on collaborations with R. E. Bryant, S. A. Seshia, and J. W. O’Leary [17]. An
alternative approach to automatic function abstraction, based on a combination of ma-
chine learning, random simulation, and counterexample-guided abstraction-refinement, is
presented in Chapter 6. This technique is the result of joint work with S. A. Seshia [19].
Finally, in Chapter 7, we summarize the techniques and results presented in this thesis and
give avenues for future work.
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Part I

Background
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Chapter 2

Modeling Hardware Systems

The level of detail required to model a hardware system is highly dependent, if not
dictated, by the task being performed. For example, SPICE-level models are often used for
transistor-level simulation. In this type of simulation, the thickness of wires, the type of
dielectric material, and other physical details are used to get an extremely accurate analog
picture of how the design is operating. On the other end of the spectrum, in Network-on-
Chip (NoC) simulation, processing elements are modeled as black-boxes, ignoring all of the
physical details, and keeping only those logical details that control the interaction with the
network, or neighboring nodes.

Register-transfer level (RTL) descriptions are often the most authoritative models of
hardware systems. RTL descriptions precisely capture the logical details of a circuit, while
ignoring most of the physical implementation details. Synthesis tools are used to transform
the RTL description into lower-level models, such as SPICE-level models for transistor-
level simulation. While RTL descriptions are at a much higher level than transistor-level
descriptions, or even Boolean descriptions, they still present a major verification hurdle
due to the size and complexity of the circuits being described. In order to perform most
formal verification techniques, further abstraction is necessary. The challenge with using
abstraction lies in determining what components to abstract and under what conditions.

The remainder of this chapter is organized as follows. Preliminary definitions and nota-
tion used throughout this thesis are presented in Section 2.1. The basics of term-level ab-
straction are introduced in Section 2.2 and term-level modeling is described in Section 2.3.
Examples of how term-level abstraction can be applied to a network-on-chip router and
a fragment of a processor pipeline in Section 2.4. Finally, we expand our description of
correspondence checking in Section 2.5.

2.1 Preliminaries

Word-level netlists are the basic building blocks we use to represent RTL designs.

Definition 2.1. A word-level netlist N is a tuple (I, O, C, S, Init , A) where

(a) I is a finite set of input signals;
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(b) O is a finite set of output signals;

(c) C is a finite set of intermediate combinational (stateless) signals;

(d) S is a finite set of intermediate sequential (state-holding) signals;

(e) Init is a set of initial states, i.e., initial valuations to elements of S, and

(f) A is a finite set of assignments to outputs and to sequential and combinational inter-
mediate signals. An assignment is an expression that defines how a signal is computed
and updated. We elaborate below on the form of assignments.

First, note that input and output signals are assumed to be combinational, without loss
of generality. Moreover, although the signals in the designs we consider can all be modeled
as bit vectors of varying sizes, it is useful to distinguish Boolean signals for the control logic
from bit-vector valued signals modeling the datapath. Boolean and bit-vector signals are
defined in Section 2.1.1 and Section 2.1.2, respectively.

Memory is typically modeled as a flat array of bit-vector signals in an RTL design.
However, modeling memory in this way leads to extremely large verification models. For
instance, state-of-the-art microprocessors typically have several megabytes of on-chip cache
and rely on gigabytes of off-chip memory. Representing such memories precisely is beyond
the capacity of any formal tool. Therefore, we assume that all memories are modeled
abstractly, as described in Section 2.2.3.

Definition 2.2. A combinational assignment is a rule of the form v ← e, where v is a
signal in the disjoint union C ] O and e is an expression that is a function of C ] S ] I.
Combinational loops are disallowed.

We differentiate between combinational assignments based on the type of the right-hand
side expression and write them as follows:

b← bool | v ← bv

Here bool and bv represent Boolean and bit-vector expressions in a word-level netlist.

Definition 2.3. A sequential assignment is a rule of the form v := e, where v is a signal in
S and e is an expression that is a function of C ] S ] I.

Again, we differentiate between sequential assignments based on type, and write them
as follows (where b, ba are any Boolean signals and v, u are any bit-vector signals):

b := ba | v := u

Note that we assume that the right-hand side of a sequential assignment is a signal; this loses
no expressiveness since we can always introduce a new signal to represent any expression.

Modern hardware systems are typically described in hierarchical fashion. Hierarchically
structured designs promote the reuse of components across multiple designs, help divide
the design workload by providing boundaries between components, and aid design and
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verification engineers in understanding the overall design. Hardware description languages,
such as Verilog [1] and VHDL [2], provide constructs (e.g., modules and entities) to describe
designs hierarchically. We capture this hierarchical structure formally using a word-level
design. In Chapter 5, we show how the hierarchical structure can be exploited to aid in
abstraction.

Definition 2.4. A word-level design D is a tuple (I,O, {Ni | i = 1, . . . , N}), where I and
O denote the set of input and output signals of the design, and the design is partitioned
into a collection of N word-level netlists.

Definition 2.5. A well-formed design is a design such that:

(a) every output of a netlist is either an output of the design or an input to some netlist,
including itself;

(b) every input of a netlist is either an input to the design or exactly one output of a
netlist.

We refer to the netlists Ni as functional blocks, or fblocks.
Consider the example RTL design illustrated in Figure 2.1. The top-level module is

A. The remaining modules, B, C, and D, are modules instantiated within A. Note that
A, B, C, and D are fblocks. Let DA be the word-level design associated with module A.
Then, DA = (I,O, {NA,NB,NC,ND}), where I = {i0, i1, i2, i3}, O = {o0, o1, o2, o3} and the
word-level netlists associated with A, B, C, and D are NA, NB, NC, and ND, respectively.
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Figure 2.1: A hierarchical word-level design. Fblock A is the top-level word-level design
and B, C, and D are fblocks contained within A.

2.1.1 Bit-Level Modeling

A Boolean signal (bit), b, can take values from the set of Boolean values B = {false, true}.
A Boolean function, Fbool : Bn → B, maps a set of n bits {b1, b2, ..., bn} to a single Boolean
output bout = Fbool(b1, b2, ..., bn). Boolean functions can be represented with Boolean formu-
las.

Boolean formulas are constructed using Boolean variables, constants, and three propo-
sitional operators: negation (¬), conjunction (∧), and disjunction (∨). In addition to the
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aforementioned operators, a grouping operator is included in our definition to enforce spe-
cific order of operations when needed, and is denoted by parenthesis. A Boolean formula is
generated by the grammar in Figure 2.2.

φbool ::= false | true | b ∈ B
| ¬φbool | φbool ∧ φbool | φbool ∨ φbool | (φbool)

Figure 2.2: Syntax for Boolean formulas. A grammar describing Boolean formulas
(φbool).

A few examples of Boolean formulas are ¬a∨b, (a∧¬b)∨(¬a∧b), and (a∨¬b)∧(¬a∨b),
where a and b Boolean signals.

In the digital hardware design and verification community, the negation, conjunction, and
disjunction operators are often referred to as the not, and, and or operators, respectively.
Furthermore, they are denoted by a, ab or a · b, and a + b, respectively. For the remainder
of this thesis, we will use these terms and notation interchangeably when it is convenient to
do so.

In addition to the propositional operators defined above, there are several derived op-
erators that are used frequently in digital hardware design and verification, so we include
them here. These additional operators are nand, nor, xor, xnor, implies, and equiv.
Figure 2.3 lists the Boolean operations along with their corresponding symbols and propo-
sitional representations. A few examples of Boolean formulas using the derived operators are:

a · b+ c · d+ e · f

a⊕ b⊕ c

(a · b) + (c · (a⊕ b))

Hardware systems, or logic circuits, are often represented graphically with a network of
interconnected logic gates. For the remainder of this thesis, the term circuit is used to denote

Gate Boolean Expression Propositional Expression
not a a ¬a
a and b a · b a ∧ b
a nand b a · b ¬(a ∧ b)
a or b a+ b a ∨ b
a nor b a+ b ¬(a ∨ b)
a xor b a⊕ b (a ∧ ¬b) ∨ (¬a ∧ b)
a xnor b a⊕ b (a ∧ b) ∨ (¬a ∧ ¬b)
a implies b a⇒ b ¬a ∨ b
a equiv b a⇐⇒ b (a ∧ b) ∨ (¬a ∧ ¬b)

Figure 2.3: Boolean operators. The Boolean operators along with their corresponding
symbols and propositional expressions.
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a logic circuit or a hardware system. An example of a circuit represented at the bit level
with a Boolean formula is the 1-bit full adder shown in Figure 2.4. Consider the datapaths
encoding the sum and cout signals. The corresponding Boolean formulas, represented as
combinational assignments (Definition 2.2), are:

sum ← cin ⊕ (a⊕ b)
cout ← (a · b) + (cin · (a⊕ b))

XOR

OR

XOR

AND

AND

a

b

c
in

sum

c
out

Figure 2.4: A 1-bit full adder circuit. a, b, cin are Boolean signals representing the
input arguments, and the carry-in signal, respectively. sum and cout represent the sum and
carry-out signals, respectively.

2.1.2 Bit-vector Level Modeling

A bit-vector signal (bit vector), bv, is a sequence of bits 〈b1, b2, ..., bN〉, where N is the
length of bv, and bi ∈ B for all bi. We use length(bv) to denote the length, or bit-width, of the
bit-vector signal bv. Let BV be the set of all finite-length bit-vector signals and BVN ⊂ BV
be the set of all bit-vector signals of length N . A bit-vector function, Fbv : BVm → BV , maps
a set of m bit vectors {bv1, bv2, ..., bvm} to a single bit vector bvout = Fbv(bv1, bv2, ..., bvm).
Bit-vector expressions are used to represent bit-vector functions.

Bit-vector expressions (ψ) and formulas (φbv) are constructed from bit-vector constants,
signals, and a set of bit-vector operators. A bit-vector constant of length N with value x,
where x ∈ N is a non-negative integer, is denoted bv〈x 〉N . The set of bit-vector components
we use, shown in Figure 2.5, is a representative subset of commonly-used operators supported
by most bit-vector solvers. Furthermore, the techniques presented in this work can easily
be extended to other bit-vector operators. The text based representations (shown in bold
in Figure 2.5) are used when referring to operators in the text and in figures, in which case,
the size of the operator will be obvious from the context or irrelevant. We write formulas
and expressions using the corresponding symbolic representation.

Note that all operators are assumed to be unsigned, unless explicitly stated otherwise.
A subscripted bit-vector operator denotes the bit-width of the operator. For instance,
a +4 b represents a 4-bit wide addition, where length(a) = length(b) = 4. Any time that a
bit-vector operator is explicitly sized, the input arguments must have the same length as
the operator. A bit-vector operator without a subscript takes the size of the arguments,
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Type Function Symbol Description

Arithmetic

bvneg −ψ1 Bit-vector negation
bvadd ψ1 +N ψ2 Bit-vector addition
bvsub ψ1 −N ψ2 Bit-vector subtraction
bvmul ψ1 ×N ψ2 Bit-vector multiplication
bvdiv ψ1 ÷N ψ2 Bit-vector division

Shifting
bvlsl ψ1 �N ψ2 Logical shift left
bvlsr ψ1 �N ψ2 Logical shift right
bvasr ψ1 ≫N ψ2 Arithmetic shift right

Bitwise Logical

bvnot ∼ ψ1 Bit-wise not
bvand ψ1 & ψ2 Bit-wise and
bvor ψ1 | ψ2 Bit-wise or
bvxor ψ1 ⊗ ψ2 Bit-wise xor

Relation

bveq ψ1 = ψ2 Bit-vector equality
bvneq ψ1 6= ψ2 Bit-vector inequality
bvgt ψ1 > ψ2 Bit-vector greater than
bvgte ψ1 ≥ ψ2 Bit-vector greater than or equal
bvlt ψ1 < ψ2 Bit-vector less than
bvlte ψ1 ≤ ψ2 Bit-vector less than equal

Bit-manipulation

extract ψ[msb:lsb] Bit-vector extraction
concat ψ1 • ψ2 Bit-vector concatenation
sx ψ <S w Bit-vector sign extension
zx ψ <Z w Bit-vector zero extension

Conditional ite ITEN(φ, ψ1, ψ2) Bit-vector if-then-else

Figure 2.5: Bit-vector operators. Bit-vector operators along with their respective symbols
and descriptions.

which must be equal (e.g., length(a & b) = length(a) = length(b)). Bit-vector relations are
Boolean expressions with arguments of equal width. The bit-width of the left-hand side of
combinational and sequential assignments is determined by the size of the right-hand side.

The extraction operator is parameterized by non-negative integers msb and lsb where
msb ≥ lsb. The size of an extraction operation is msb − lsb + 1. For example, let x =
〈x0, x1, ..., x15〉 be a bit-vector with length(x) = 16, then x[3:0] = 〈x0, x1, x2, x3〉, where
length(x[3:0]) = 4. A concatenation operator takes two arguments, x and y. The size of a
concatenation is the sum of the bit-widths of each input argument, length(x) + length(y).
The sign- and zero- extension operators are parameterized by a non-negative integer w.
They each take an argument with length ≤ w, and produce a bit-vector of size w.

We also define bvop, bvmanip and bvrel to be an arbitrary bit-vector arithmetic operator,
bit manipulation operator, or relation, respectively, for cases when it doesn’t matter what
specific operation is being performed. bvop can be any one of the arithmetic, shift, or
logical operators, bvmanip can be any of the bit-manipulation operators and bvrel can be
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any relation operator listed in Figure 2.5.
A bit-vector formula, φbv , extends the definition of Boolean formulas to include bit-vector

relations. Bit-vector expressions and formulas are described by the grammar in Figure 2.6.

ψ ::= bv〈x 〉n | bv ∈ BV
| bvneg ψ | bvnot ψ
| ψ bvadd ψ | ψ bvsub ψ
| ψ bvmul ψ | ψ bvdiv ψ
| ψ bvlsl ψ | ψ bvlsr ψ | ψ bvasr ψ
| ψ bvand ψ | ψ bvor ψ | ψ bvxor ψ
| extract msb lsb ψ | concat ψ ψ
| sx w ψ | zx w ψ
| ite φ ψ ψ

φbv ::= φbool | (φbv)
| ¬φbv | φbv ∧ φbv | φbv ∨ φbv

| ψ bveq ψ | ψ bvgt ψ | ψ bvlt ψ
| ψ bvneq ψ | ψ bvgte ψ | ψ bvlte ψ

Figure 2.6: Syntax for bit-vector expressions and formulas. A grammar describing
bit-vector expressions ψ and bit-vector formulas φbv .

Examples of bit-vector formulas are

(a×32 b) = (b×32 a)

ITE32(a > b, a, b) > (a+32 b)

bv616 = bv116 + bv216 + bv316

where a, b ∈ BV32.
An example of a 4-bit addition circuit modeled at the bit-level and the corresponding

bit-vector model is shown in Figure 2.7. Each full adder (FA) component in Figure 2.7(a) is
implemented with the circuit shown in Figure 2.4. Without any optimizations, this circuit
is represented with 20 logic gates and the size is linear in the number of input bits. The
bit-vector model is shown in Figure 2.7(b). Regardless of the bit-width of the addition, a
bit-vector addition is represented with a single operator parameterized by a non-negative
integer. While it is possible for the bit-vector model to be converted into its bit-level
equivalent, modeling operators at the bit-vector level requires less space and allows decision
procedures to exploit higher-level properties such as commutativity and associativity.

An example of a word-level netlist Nex is shown in Figure 2.8. Nex is a 4-bit counter
with reset functionality. On each clock cycle, c is updated with the sequential assignment
c := y, unless the reset signal is asserted, in which case, c := bv04 . The formal word-level
description for Nex is I = {reset}, O = {out}, C = {x, y}, S = {c}, Init = {c := bv04},
A = {x ← c +4 bv14 , y ← ITE4(reset , bv04 , x), c := y, out ← c}. The corresponding word-
level design is Dex = (I,O, {Nex}).



15

c
0 c

1
c
2

c
3

c
4

FA

sum
0

sum
1

sum
2

sum
3

a
0
b
0

a
1
b
1

a
2
b
2

a
3
b
3

FA FA FA bvadd

sum

a b

(a)

c
0 c

1
c
2

c
3

c
4

FA

sum
0

sum
1

sum
2

sum
3

a
0
b
0

a
1
b
1

a
2
b
2

a
3
b
3

FA FA FA bvadd

sum

a b

(b)

Figure 2.7: Comparison of bit-level and bit-vector addition circuits. A bit-level and
bit-vector level model of a 4-bit addition circuit.

An example of a property that can be proved on the counter circuit is (reset) =⇒
(next(out) == bv04 ). This states that out must be equal to bv04 on the cycle after the
reset signal is asserted. The notation next(x ) represents the next state of a signal and is
defined formally in Section 3.5.
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c := y

x

1

0bvadd
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Figure 2.8: Example word-level design. A 4-bit counter with reset functionality.

Creating a verification model, or word-level design, from an RTL description is a straight-
forward process. In most cases, it is possible to directly and automatically translate RTL
descriptions in languages such as Verilog [1] and VHDL [2] into bit-vector expressions. This
translation is discussed further in Chapter 3

2.2 Term-Level Abstraction

Term-level abstraction is a technique used to abstract word-level designs in a formal
logic. The main goal of term-level abstraction is to create verification models that are easier
to reason about than the original, word-level designs. Term-level abstraction is especially
powerful when applied to designs with data-insensitive control flow, where the specific values
of data have limited influence on the control logic.

Term-level abstraction relies on a combination of techniques, such as representing terms
over an abstract domain, the logic of equality with uninterpreted functions (EUF), and a
restricted form of lambda expressions. Modeling signals over an abstract domain allows us
to create smaller verification models. Uninterpreted functions allow us to model complex
circuitry abstractly which can help improve verification performance. Lambda expressions
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provide the constructs necessary to model data structures such as memories and queues.
The three main flavors of term-level abstraction – data abstraction, function abstraction,
and memory abstraction – are defined in the remainder of this section.

2.2.1 Data Abstraction

In data abstraction, bit-vector expressions are modeled as abstract terms that are inter-
preted over a suitable domain (typically a subset of Z). Data abstraction is effective when
it is possible to reason over the domain of abstract terms far more efficiently than it is to do
so over the original bit-vector domain. The most basic form of data abstraction is to model
terms using the logic of equality.

In equality logic, an abstract term is an expression over an abstract domain Z ⊆ Z. For-
mulas are constructed in equality logic using equality between terms and the usual Boolean
connectives. Equality logic expressions (τ) and formulas (φE) are generated by the grammar
shown in Figure 2.9, where v is a variable over Z and term〈x 〉 is a symbolic constant, where
x ∈ Z.

φE ::= ¬φE | (φE)
| φE ∧ φE | φE ∨ φE | τ = τ

τ ::= v ∈ Z | term〈x 〉 | ite φE τ τ

Figure 2.9: Syntax for equality logic expressions and formulas. A grammar describing
expressions and formulas in equality logic.

Examples of formulas in equality logic are

a = b ∧ b = c ∧ a 6= c

a = b ∧ a = 2

where a, b, and c are abstract terms. Note that we use a 6= b as shorthand for ¬(a = b).
The power of data abstraction comes from the fact that abstract terms do not have

a specific size. In many practical situations, word-level designs use far more bits than are
necessary in order to prove a given property. Equality logic allows us to take advantage of the
finite model property which states that every satisfiable formula in this logic has a satisfying
interpretation of finite size. Additionally, we can compute the bound on the size of variables
in equality logic formulas [51, 9]. We discuss the finite model property and how it is used
in encoding equality logic formulas as propositional formulas in Section 3.4.2. Figure 2.10
illustrates the difference between modeling with bit-vectors and terms. While bit-vector
signals such as 〈xn, ..., x2, x1〉 in Figure 2.10(a) have an associated size and encoding (e.g.,
unsigned, two’s complement), term signals such as x in Figure 2.10(b) have no associated
size or encoding.

Notice the similarity between equality logic and the fragment of the theory of bit-vectors
that includes only bit-vector equalities over variables and constants. The only difference is
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Figure 2.10: Comparison between bit-vector and term signals. Part (a) shows a
bit-vector signal x of length N where each bit is represented precisely and part (b) shows a
term-level representation of x where there is no associated size.

the type of the basic expression. Equality logic formulas are constructed using equalities
between abstract terms, not bit vectors. This similarity can be exploited by representing
portions of bit-vector formulas that contain only bit-vector equalities in equality logic, in-
stead of the theory of bit-vectors. The intuition behind this abstraction is that formulas will
require fewer bits to represent abstractly in equality logic, than precisely with bit-vectors,
and this will lead to easier-to-verify models.

2.2.2 Function Abstraction

When function abstraction is employed, portions of a word-level design are treated
abstractly as “black-boxes” using uninterpreted functions. Individual operators or entire
netlists can be abstracted using uninterpreted functions.

An uninterpreted function, UF, is a function that is constrained only by functional
consistency. Functional consistency (also called functional congruence) states that a function
must evaluate to the same value when applied to equal arguments

∀x1, ..., xny1, ..., yn.x1 = y1 ∧ ... ∧ xn = yn =⇒ UF(x1, ..., xn) = UF(y1, ..., yn)

where xi and yi for all i are terms.
Unlike the Boolean and bit-vector functions described in Section 2.1.2, an uninterpreted

function can be applied to arguments of any type, and yield an expression of any type.
Let V = B ] BV ] Z be the set of all values a signal can take. An uninterpreted function
UF : Vn → V , maps a set of n values to a single value. We differentiate uninterpreted
functions by the type of their output. Uninterpreted bit-vector functions map Vn → BV ,
uninterpreted term functions map Vn → Z, and uninterpreted predicates map Vn → B.
Thus, uninterpreted functions can be added to both equality logic and the theory of bit-
vectors.

The logic of equality with uninterpreted functions (EUF) is an extension of equality
logic where expressions can now be the result of uninterpreted function applications and
formulas can be the result of uninterpreted predicate applications. Uninterpreted functions
can also be added to the theory of bit-vectors. The theory of bit-vector with uninterpreted
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functions is referred to as BVUF. BVUF allows one to represent precise, bit-vector operators
abstractly, with the intention of creating verification models that are smaller and/or easier-
to-verify than the original bit-vector model.

Formulas and expressions in EUF are described by the grammar shown in Figure 2.11.
Formulas and expressions in BVUF extend the bit-vector grammar shown in Figure 2.6.
Only these extensions to the bit-vector grammar are shown in Figure 2.12. Also note
that it is possible to use a combination of EUF and BVUF, where the input arguments to
uninterpreted functions can have any type t ∈ V .

φUF ::= false | true | v ∈ B
| ¬φUF | φUF ∧ φUF | φUF ∨ φUF
| τUF = τUF | UFbool(t1, t2, ..., tn) | (φUF )

τUF ::= v ∈ Z | term〈x 〉
| ITE(φ, τUF , τUF ) | UFterm(t1, t2, ..., tn)

Figure 2.11: Syntax for expressions and formulas in EUF. Formulas in EUF are
Boolean combinations of equalities between terms where terms are constants, variables, or
the result of uninterpreted function applications.

φUF ::= UFbool(bv1, bv2, ..., bvn)

ψUF ::= UFbv(bv1, bv2, ..., bvn)

Figure 2.12: Syntax for expressions and formulas in BVUF. BVUF extends the
grammar shown in Figure 2.6. Only these extensions are shown here.

Examples of formulas that are in EUF are

t1 = f(t2, t3) ∧ t1 = f(t3, t2)

t1 = t2 ∧ t2 = g(t2) ∧ h(b1)

where ti ∈ Z, bi ∈ B, f ∈ Z2 → Z, g ∈ Z → Z, and h ∈ B → B.

Examples of formulas in BVUF are

bv1 = f(bv2, bv3) ∧ bv1 = f(bv3, bv2)

bv1 +N bv2 = g(bv1, bv2)

where bvi ∈ BVN and f, g ∈ BV2
N → BVN .

The function abstraction techniques in this work focus on BVUF. The main goal of
replacing a bit-vector fblock with an uninterpreted function is to reduce the complexity of
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the circuit being verified. It is often more efficient to reason about uninterpreted functions
than bit-vector operators such as multiplication and division.

It is always sound to replace a combinational fblock with an uninterpreted function in the
sense that if the abstracted model is valid, then so is the original, word-level model. This
is the case because an uninterpreted function contains more behaviors than the original,
precise function (i.e., it is an over-approximation).

Note that soundness only holds for replacing a combinational fblock with an uninter-
preted function. In order for soundness to hold for a sequential fblock, we must take into
account a bounded amount of history for the inputs of the fblock. Furthermore, the sequen-
tial fblock must be acyclic. The key point here is that the uninterpreted function must be
an over-approximation of the acyclic, sequential fblock being replaced for the abstraction to
be sound. In order to over-approximate a sequential fblock, every possible unique sequence
of inputs must be accounted for. Thus, if there are n latches in a path within a sequential
fblock, then we must account for history up to a depth of 2n. We discuss this further in
Section 5.2. For the remainder of this thesis, it is assumed that any sequential fblock being
abstracted or being considered for abstraction is acyclic.

Note that even with a sound abstraction, the additional behaviors introduced by un-
interpreted functions can lead to spurious counterexamples. Spurious counterexamples are
counterexamples that occur in the abstracted model but not the original model.

ALU Example We illustrate the concept of function abstraction using a toy ALU design.
Consider the simplified ALU shown in Figure 2.13(a). Here a 20-bit instruction is split into
a 4-bit opcode and a 16-bit data field. If the opcode indicates that the instruction is a jump,
then the data field contains a target address for the jump and is simply passed through the
ALU unchanged. Otherwise, the ALU computes the square of the 16-bit data field and
generates as output the resulting 16-bit value.

Using very coarse-grained term-level abstraction, one could abstract the entire ALU
module with a single uninterpreted function (ALU) , that maps the 20-bit instruction to a
16-bit output, as shown in Figure 2.13(b). However, we lose the precise mapping from instr
to out.

Such a coarse abstraction is quite easy to perform automatically. However, this abstrac-
tion loses information about the behavior of the ALU on jump instructions and can easily
result in spurious counterexamples. In Section 2.4, we will describe a larger equivalence
checking problem within which such an abstraction is too coarse to be useful.

Suppose that reasoning about the correctness of the larger circuit containing this ALU
design only requires one to precisely model the difference in how the jump and squaring
instructions are handled. In this case, it would be preferable to use a partially-interpreted
ALU model as depicted in Figure 2.13(c). In this model, the control logic distinguishing
the handling of jump and non-jump instructions is precisely modeled, but the datapath is
abstracted using the uninterpreted function SQ. However, creating this fine-grained abstrac-
tion by hand is difficult in general and places a larger burden on the designer. A main goal
of this thesis is to mitigate this burden.



20

1 0

bvmul

=

out
16

16

16JUMP

19 15 0

4

instr

(a) Original word-level ALU

out
16

20

19 0
instr

ALU

(b) Fully uninterpreted ALU

1 0

=

out
16

16

16JUMP

19 15 0

4

instr

SQ

(c) Partially interpreted ALU

Figure 2.13: Three versions of an ALU design with varying levels of abstraction.
Boolean signals are shown as dashed lines and bit-vector signals as solid black lines. The
uninterpreted function ALU in part (b) has type BV20 → BV16, while SQ in part (c) has
type BV16 → BV16.

2.2.3 Memory Abstraction

While this work does not address automatic memory abstraction, memory abstraction
is considered to be a form of term-level abstraction [17] and is employed in the case studies
used throughout this thesis. Thus, a brief discussion of memory abstraction is warranted.

The goal of memory abstraction is to accurately represent only as many memory locations
as necessary, instead of representing an entire memory as a flattened array of bit vectors.
The memory abstraction technique we use relies on a restricted form of lambda expressions
described by Seshia et al. [29, 53, 63]. Lambda expressions are a versatile construct that
are especially useful in modeling data structures, such as stacks, queues, and random-access
memory (RAM). We describe how to model random-access memory (RAM) with lambda
expressions. The interested reader is referred to [63] for a description of other data structures
that can be modeled with lambda expressions.

A memory expression is a function expression M that maps addresses to values. A
memory expression has the type Vn → V , where n is the dimensionality of the memory.
We define memory operations read and write to represent reading from and writing to
memories. A read operation on a 1-dimensional memory M at address v is encoded as the
function application M(v) and is denoted read(M, v), where M ∈ V → V , v ∈ V , and
read(M, v) ∈ V . A write operation on memory M with address v and data d , denoted
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write(M, v , d), is modeled with the lambda expression

M ′ := λaddr.ITE(addr = v , d ,M(addr))

where M ′ ∈ V → V . Note that while the result of a memory read operation is a value
of type V , the result of a memory write operation is a new memory expression with type
V → V .

Memory reads (writes) are typically modeled using combinational (sequential) assign-
ments. Consider the effect of a sequence of n memory write operations,

write(M, v1, d1)

write(M, v2, d2)

...

write(M, vn, dn)

where data di is written to address vi in memory M on clock cycle i. The above sequence
of memory writes is synonymous with the following sequence of sequential assignments:

M1 := λaddr.ITE(addr = v1, d1,M0)

M2 := λaddr.ITE(addr = v2, d2,M1)

... :=
...

Mn := λaddr.ITE(addr = vn, dn,Mn−1)

where M0 is the initial state of memory M and Mi is the state of M after the i-th write
operation. The initial state M0 is modeled with a read-only memory (i.e., a memory without
an associated write operation).

In the example given above, we use a 1-dimensional memory, however, it is possible to
have multidimensional memories where the address argument v would be replaced with a
tuple of address arguments (v1, v2, ..., vn) such that vi ∈ V for i = 1, ..., n. In this case, we
let V denote the multidimensional address into a memory M .

In addition to modeling RAM, it is possible to model other memory elements, such as
queues and stacks, and arbitrary Boolean, bit-vector and term expressions using lambda
expressions. The only restriction placed on the usage of lambda expressions is that the
arguments must be Boolean, bit-vector or term expressions. Thus, it is impossible to express
iteration or recursion [63]. Lambda expressions can be used to mimic the behavior associated
with a hierarchical construct (e.g., module, entity). However, it is important to note that,
lambda expressions must be removed from the formula before invoking a solver. Due to
the restriction placed on lambda arguments (i.e., they must be Boolean, bit-vector, or term
signals), beta substitution can be used to eliminate lambda expressions from the formula [63].
In some cases, this procedure can incur significant overhead within decision procedures.
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Thus, it is prudent to use lambda expressions only when necessary (e.g., abstracting a large
memory), especially when the same behavior can be obtained by other means (e.g., using a
module).

As with uninterpreted functions, memories can have arguments of any type and can yield
values of any type. We differentiate between memory expressions based on the type of the
data being stored in the memory. The grammar describing memory expressions is shown in
Figure 2.14. The syntax for a memory read or memory write is the same regardless of the
type of the output. Thus, we show only the general form in Figure 2.14 instead of listing
the syntax for each type.

Mt ::= write(Mt ,V , dt) | Ct | Mt

et ::= read(Mt ,V )

Figure 2.14: Syntax for memory expressions. Mt is a memory expression with type
t , where t ∈ {B,BV ,Z}. Ct denotes a constant memory expression of type t . V denotes
the address argument(s) to the memory read and write operators, where V ∈ Vn, and dt is
the data being written to memory during a memory write. et is the expression with type t
resulting from a read from memory Mt

2.3 Term-Level Modeling

Term-level modeling involves using abstraction to hide implementation details in the
hope of creating easier-to-verify models. Informally, term-level models are extensions of
word-level models where expressions can be represented precisely with bits and bit vectors as
described in Section 2.1 or abstractly with terms using the abstraction techniques described
in Section 2.2.

Definition 2.6. A term-level netlist is a generalization of a word-level netlist where expres-
sions can be from the syntax shown in Figure 2.15.

Term-level netlists can also contain sequential and combinational assignments to memory
variables. Assignments of this form are also allowed within a word-level netlist. As memory
abstraction is not the focus of this thesis, we do not consider a netlist where memory
abstraction is the only form of abstraction to be a term-level netlist.

Definition 2.7. A strict term-level netlist is a term-level netlist that satisfies one or more
of the following properties:

(a) There exists a signal s ∈ I ] O ] C ] S such that s has type Z.

(b) There exists an assignment a ∈ A such that the right-hand side of a is of the form:
UFbool(V ), UFbv(V ), or UFterm(V ), where V ∈ Vn for some n.
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φ ::= false | true
| b ∈ B | (φ)
| ¬φ | φ ∧ φ | φ ∨ φ
| ψ bveq ψ | ψ bvgt ψ | ψ bvlt ψ
| ψ bvneq ψ | ψ bvgte ψ | ψ bvlte ψ
| τ = τ | τ 6= τ
| UFbool(V ) | read(Mbool ,V )

ψ ::= bv〈x 〉n | bv ∈ BV | (ψ)
| bvneg ψ | bvnot ψ
| ψ bvadd ψ | ψ bvsub ψ
| ψ bvmul ψ | ψ bvdiv ψ
| ψ bvlsl ψ | ψ bvlsr ψ | ψ bvasr ψ
| ψ bvand ψ | ψ bvor ψ | ψ bvxor ψ
| extract msb lsb ψ | concat ψ ψ
| sx w ψ | zx w ψ
| UFbv(V ) | read(Mbv ,V ) | ite φ ψ ψ

τ ::= term〈x 〉 | t ∈ Z
| UFterm(V ) | read(Mterm ,V ) | ite φ τ τ

Mbool ::= write(Mbool ,V , d) | Cbool | Mbool

Mbv ::= write(Mbv ,V , d) | Cbv | Mbv

Mterm ::= write(Mterm ,V , d) | Cterm | Mterm

Figure 2.15: Syntax for formulas and expressions used in term-level netlists.
Boolean expressions are denoted with φ, bit-vector expressions with ψ, and term expressions
with τ . Uninterpreted functions, memory expressions, and constant memory expressions are
differentiated by the type of their output and are denoted with UFt , Mt , and Ct , respec-
tively, where t ∈ {bool , bv , term}. V denotes a tuple of arguments to an uninterpreted
function or memory operation where each v ∈ V has type V . n denotes the length of a
bit-vector constant, while x denotes the value of a bit-vector or term constant. w denotes
the size of a bit-vector signal after sign-/zero- extension is performed, while msb and lsb
denote the most and least significant bits of a bit-vector extraction. Recall that certain
bit-vector operators can be annotated with size information. Refer to Figure 2.5 for this
size information.
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In other words, Definition 2.7 states that data abstraction has been performed on at
least one signal or that function abstraction has been performed on at least one fblock. The
set of all word-level netlists is a (strict) subset of the set of all (strict) term-level netlists.

Definition 2.8. A pure term-level netlist P = (I,O, C,S, Init ,A) is a term-level netlist
such that each signal s ∈ I ] O ] C ] S has type Z.

The notion of a pure term-level netlist comes into play when performing data abstraction.
In this situation, because each signal is being interpreted abstractly over Z, it is possible
to encode the verification problem more concisely. Chapter 4 discusses this procedure in
detail.

Definition 2.9. A term-level design T is a tuple (I,O, {Ni | i = 1, . . . , N}), where at least
one fblock Ni is a strict term-level netlist.

Given a word-level design D = (I,O, {Ni | i = 1, . . . , N}), we say that T is a term-level
abstraction of D if T is obtained from D by replacing some word-level fblocks Ni by strict
term-level fblocks N ′i .

2.4 Modeling Examples

In this section we present examples that illustrate how data and function abstraction can
be used to create easier-to-verify designs. We show how data abstraction can be applied to a
chip-multiprocessor router in Section 2.4.1 and how function abstraction can be performed
on a fragment of a pipelined processor.

2.4.1 Chip-Multiprocessor Router

Network-on-chip (NoC) architectures are the backbone of modern, multicore processors,
serving as the communication fabric between processor cores and other on-chip devices such
as memory. It is important to prove that individual routers and networks of interconnected
routers operate properly. We show how data abstraction can be used to reduce the size
of the verification model of a chip-multiprocessor (CMP) router which leads to smaller
verification runtimes.

The CMP router design [59] we focus on is part of an on-chip interconnection network
that connects processor cores with memory and with each other. The main function of the
router is to direct incoming packets to the correct output port. Each packet is made up of
smaller components called flits. There are three kinds of flits: a head flit, which reserves
an output channel, one or more body flits, which contain the data payload, and a tail flit,
which signals the end of the packet. The anatomy of a flit is depicted in Figure 2.16. The
two least-significant bits represent the flit type, the next 6 most-significant bits represent
the destination address, and the 24 most significant bits contain the data payload.

The CMP router consists of four main modules, as shown in Figure 2.17. The input
controller buffers incoming flits and interacts with the arbiter. Upon receipt of a head flit,
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Figure 2.16: Anatomy of a flit. A flit contains a 24-bit data payload, a 6-bit destination
address, and a 2-bit type.

the input controller requests access to an output port based on the destination address
contained in the head flit. The arbiter grants access to the output ports in a fair manner,
using a simple round-robin arbitration scheme. The remaining modules are the encoder and
crossbar. When the arbiter grants access to a particular output port, a signal is sent to the
input controller to release the flits from the buffers, and at the same time, an allocation
signal is sent to the encoder which in turn configures the crossbar to route the flits to the
appropriate output port.

in0

in1

Buffers

Input Controller

Arbiter

req0
resp0
req1
resp1

Crossbar

alloc

select

flit0

flit1

Encoder

out0

out1

Figure 2.17: Chip-Multiprocessor (CMP) Router. There are four main modules: the
input controller, the arbiter, the encoder, and the crossbar.

Consider a word-level representation of the CMP router, where each packet is repre-
sented with 32-bits. Examples of correctness properties that one might wish to prove on
the CMP router are: 1) packets are being routed to the correct output port and 2) packets
spend no more than N clock cycles within a router. For example, if packet p is sent to input
port in0 of router R then it must appear on output port out1 within N clock cycles. This
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property can be formalized as a disjunction of equalities,

φcmp ≡
N∨
i=1

in0,1 = out1,N

where ini,j (outi,j) denotes the packet on input (output) port i on clock cycle j.
The property φcmp is expressible in equality logic, which leads to the obvious question:

is it possible to encode the CMP router where the flit datapath signals are terms, instead
of bit vectors? Unfortunately, it is not possible to do so because the router requires that
the destination and type fields of a flit be represented precisely. The routing logic uses bit-
vector inequality relations to determine the correct output channel and the input controller
uses the flit type to coordinate its interaction with the arbiter. While it is not possible
to encode the entire flit datapath as a term, it is possible to encode the data payload as
a term. This is possible because the only operation performed on the data portion of a
flit is equality. Thus, a flit would then be represented with 8-bits and a term. Decision
procedures for equality logic are then responsible for computing the appropriate number of
bits to accurately represent the data payload.

As long as data abstraction is only applied to the top 24 bits of the flit datapath, the
resulting abstracted model will be valid if and only if the word-level model is valid. Let
Dcmp be the word-level CMP router and Tcmp be the term-level CMP router in which the
top 24 bits are abstracted with a term. Then Dcmp |= φcmp ⇐⇒ Tcmp |= φcmp

In Chapter 4, we show how this process can be automated and show that it results in a
smaller, easier-to-verify CMP router model.

2.4.2 Processor Fragment

Function abstraction is especially useful when verifying data insensitive properties. One
such example is in microprocessor design verification, where it is possible to abstract func-
tionality such as the ALU and branch prediction logic to create easier-to-verify models [31,
52]. In this section we give an example of how function abstraction can be applied to the
domain of processor verification. Figure 2.18 illustrates an equivalence checking problem
between two versions of a processor fragment.

Consider Design A. This design models a fragment of a processor datapath. PC models
the program counter register, which is an index into the instruction memory denoted as
IMem. The instruction is a 20-bit word denoted instr , and is an input to the ALU design
shown earlier in Figure 2.13(a). The top four bits of instr are the operation code. If the
instruction is a jump instruction (i.e., instr [19:16] equals JUMP), then the PC is set equal
to the ALU output outA; otherwise, it is incremented by 4.

Design B is virtually identical to Design A, except in how the PC is updated. For this
version, if instr [19:16] equals JUMP, the PC is directly set to be the jump address instr [15:0].

Note that we model the instruction memory as a read-only memory using an uninter-
preted function IMem. The same uninterpreted function is used for both Design A and
Design B. We also assume that Designs A and B start out with identical values in their PC
registers.
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Figure 2.18: Equivalence checking of two versions of a portion of a processor
design. Boolean signals are shown as dashed lines and bit-vector signals as solid lines.

The two designs are equivalent if and only if their outputs are equal at every cycle,
meaning that the Boolean assertion out ok ∧ pc ok is always true.

It is easy to see that this is the case. By inspection of Figure 2.13(a), we know that outA
always equals instr [15:0] when instr [19:16] equals JUMP. The question is whether we can
infer this without the full word-level representation of the ALU.

Consider what happens if we use the abstraction of Figure 2.13(b). In this case, we lose
the relationship between outA and instr [19:16]. Thus, the verifier comes back to us with a
spurious counterexample, where in cycle 1 a jump instruction is read, with the jump target
in Design A different from that in Design B, and hence pcA differs from pcB in cycle 2.

However, if we instead used the partial term-level abstraction of Figure 2.13(c) then
we can see that the proof goes through, because the ALU is precisely modeled under the
condition that instr [19:16] equals JUMP, which is all that is necessary.

The challenge is to be able to generate this partial term-level abstraction automatically.
We describe two methods to solving this problem in Chapters 5 and 6.
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2.5 Correspondence Checking

Recall that correspondence checking, introduced by Burch and Dill [31] and described
in Section 1.1, is a formal verification technique used to verify the control logic of pipelined
microprocessor designs.

In correspondence checking, a pipelined microprocessor (Fimpl) is verified against a se-
quential (meaning instructions are executed one after another) version (Fspec) of the same
processor. The sequential processor is essentially a formal model of the instruction set archi-
tecture. We refer to Fimpl as the implementation version of the processor (i.e., the pipelined
version) and Fspec as the specification version of the processor (i.e., the sequential version
that the implementation is being verified against).

Correspondence checking relies on two functions: flush and project.

1. flush is used to execute the instructions in the pipeline and update the processor state
(i.e., commit the instruction) after each instruction is executed. flush is implemented
by issuing no-ops to the pipeline for enough cycles so that all the instructions present
in the pipeline are executed and committed. Whenever the pipeline is being flushed
no new instructions are injected into the pipeline.

2. project is used to project the state of Fimpl into Fspec. The state of a processor includes
a register file, program counter, condition codes, and memory. project is typically used
only once during correspondence checking to initialize the sequential processor’s state
to be consistent with the state of the pipelined processor after the pipeline has been
flushed. Note that the pipelined implementation must be flushed before the projection
takes place, in order for the instructions in the pipeline to be executed and committed
to the implementation state, before the implementation state is projected into the
specification state.

Figure 2.19 illustrates the structure of a correspondence checking problem. A high-level
description of correspondence checking is as follows.

The state of Fimpl is initialized to an arbitrary, ideally reachable, state. Fimpl is flushed
for enough cycles so that all of the instructions within the pipeline are committed to the
processor state. The state of Fimpl is then projected into the state of Fspec and the state of
Fspec is stored in S0. Next, an instruction is injected into and executed on the specification
machine. After the instruction is committed to the specification state, the updated specifi-
cation state, F ′spec, is stored in S1. Next, the same instruction that was injected into Fspec
is now injected into and executed on Fimpl. The injected instruction is then committed to
the implementation state by flushing for an appropriate number of cycles and the updated
implementation state, F ′impl, is stored in I. The final step of correspondence checking is to
determine whether the implementation refines the specification. This refinement checking
problem is formulated as: I = S0 ∨ I = S1. Note that it is necessary to check I = S0

because the pipelined processor can stall, in which case, no instruction is committed to
the Fimpl state. The interested reader is referred to [31] for a more in-depth description of
correspondence checking.
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Figure 2.19: Correspondence checking diagram. Correspondence checking deter-
mines whether a pipelined version of a processor refines the instruction set architecture
specification of the same processor.
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Chapter 3

Solving Techniques

The Boolean satisfiability (SAT) problem is a decision problem over formulas in proposi-
tional logic and is fundamental to higher-level reasoning. The Satisfiability Modulo Theories
(SMT) problem is a decision problem over formulas in first-order logic coupled with decid-
able first-order background theories [10, 44]. Examples of such background theories are the
theories of linear arithmetic over the reals or integers, bit-vectors, uninterpreted functions,
and arrays. This work relies on the theory of bit-vectors and the logic of equality with
uninterpreted functions.

Most formal verification tools encode the verification problem as a SAT or SMT problem.
Efficient solvers are then used to determine whether or not the design satisfies the property,
by means of searching for a satisfying assignment of the underlying SAT or SMT problem.

In recent years, both SAT and SMT solvers have seen great performance advances and
are being adopted by users across both academia and industry. SAT solvers are well-
studied and highly optimized, and have a small footprint due to the relatively few constructs
present in a propositional formula [7, 40, 38, 39, 12, 47]. The main advantage SMT solvers
have over traditional SAT solvers are the theory-specific properties present at the SMT
level which are lost at the bit level. Exploitation of these properties can lead to drastic
performance improvements. For example, consider the problem where we wish to prove
that a×N b = b×N a. Trying to prove this equality at the bit level is a challenging problem
even with relatively small bit-widths. If a ×N b = b ×N a is represented at a higher level,
such as with bit vectors or integers, instead of at the bit level, proving equivalence becomes
trivial. We discuss this further in Section 3.2.2.

The remainder of this chapter describes decision procedures for the various levels of
abstraction used throughout this thesis and presents the strengths and weaknesses of each
approach.

3.1 Terminology

A Boolean literal l is a variable b or its complement b (where b ∈ B and b ∈ B). A clause
is a disjunction of literals. For example, if a, b, and c are Boolean variables, then a, b, and
c are literals and (a + b + c) is a clause. The cone-of-influence (COI ) of a signal s in a
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circuit is defined as the set of all signals in the transitive fanin of s, including s. We denote
the COI of s by COI (s). The set of signals in COI (sum) is {a, b, cin, g1, g2} and is shown
in bold in Figure 3.1.
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Figure 3.1: Cone-of-influence (COI) illustration. The cone-of-influence for the sum
signal.

3.2 Boolean satisfiability (SAT)

The Boolean satisfiability (SAT) problem is the problem of deciding whether a Boolean
formula φ is satisfiable. A Boolean formula φ is considered satisfiable if and only if there
exists an assignment of Boolean values to the support variables x1, x2, ..., xn such that φ
to evaluates to true. Formally, the SAT problem is defined as ∃x1, x2, ..., xn ∈ B such
that φ(x1, x2, ..., xn) = true? Consider the example formulas in Equation 3.1. φ1(a, b) is
unsatisfiable because for any valuation of a and b one of the clauses evaluates to false which
causes the conjunction to evaluate to false. φ2(a, b) is satisfiable because there exists an
assignment to a and b that causes φ2(a, b) to evaluate to true. One such assignment is
a = true and b = false.

φ1(a, b) = (a ∨ b)(a ∨ b)(a ∨ b)(a ∨ b)
φ2(a, b) = (a ∨ b)(a ∨ b)

(3.1)

Most modern, state-of-the-art SAT solvers [7, 12, 39, 38, 47, 40] operate on Boolean
formulas in conjunctive-normal form (CNF). CNF is a restricted form of a Boolean formula
where the formula is a conjunction of disjunctions∧

i

(
∨
j

lij)

where lij is the j-th literal of the i-th clause. φ1 and φ2 in Equation 3.1 are both in CNF.
A CNF formula is generated by the grammar shown in Figure 3.2.

Using CNF does not restrict the type of logic circuits we can represent, in fact, any
Boolean formula can be expressed in CNF. The Tseitin encoding is a technique that allows
the conversion between an arbitrary circuit to an equivalent representation in CNF.
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literal ::= b | ¬b b ∈ B
clause ::= clause ∨ literal | literal
φCNF ::= φCNF ∧ clause

Figure 3.2: Conjunctive Normal Form (CNF) grammar. A Boolean formula in con-
junctive normal form consists of a conjunction of clauses, where each clause is a disjunction
of literals.

3.2.1 Tseitin Encoding

The Tseitin encoding is a technique used to encode a logic circuit into an equivalent
representation in CNF.

The Tseitin encoding operates by first introducing a new variable for each logic gate in
the original circuit. Next, several clauses are created that relate the output of each logic
gate to the inputs of that same gate. The conjunction of these clauses is true if and only
if the inputs and output of the associated gate abide by the definition of the gate. For
example, consider a not gate with output b and input a, the clauses are: (a+ b) and (a+ b).
As you can see, the conjunction of these clauses is true if and only if a = b. Table 3.1 shows
the clauses generated for each operator. The final step of the Tseitin encoding is to conjoin
the clauses for all gates in the circuit along with the single-literal clause corresponding to
the output signal of interest.

Gate Clauses

b = not (a) (a+ b), (a+ b)

c = a and b (a+ b+ c), (a+ c), (b+ c)

c = a nand b (a+ b+ c), (a+ c), (b+ c)

c = a or b (a+ b+ c), (a+ c), (b+ c)

c = a nor b (a+ b+ c), (a+ c), (b+ c)

c = a xor b (a+ b+ c), (a+ b+ c), (a+ b+ c), (a+ b+ c)

c = a xnor b (a+ b+ c), (a+ b+ c), (a+ b+ c), (a+ b+ c)

c = a implies b (a+ c), (b+ c), (a+ b+ c)

c = a equiv b (a+ b+ c), (a+ b+ c), (a+ b+ c), (a+ b+ c)

Table 3.1: Clauses generated during Tseitin encoding. Clauses generated during the
Tseitin encoding for each gate type.

Consider the circuit in Figure 3.1. Performing the Tseitin encoding on the sum signal
generates new variables and clauses for gates g1 and g2, because they are in COI (sum).
Table 3.2 lists the clauses generated for each gate in COI (sum).

Let φsum be the formula representing the satisfiability problem for the signal sum, shown
in Equation 3.2. φsum is true if and only if sum evaluates to 1 for some assignment to a, b,
and cin. Note that in addition to the clauses generated for gates g1 and g2, the single-literal
clause (g2) is included. Without this clause, the formula could be satisfiable with g2 = false.
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g1 g2

(a+ b+ g1) (g1 + cin + g2)

(a+ b+ g1) (g1 + cin + g2)
(a+ b+ g1) (g1 + cin + g2)

(a+ b+ g1) (g1 + cin + g2)

Table 3.2: Example of Tseitin encoding. The clauses generated during the Tseitin
encoding of sum.

φsum is satisfiable and a satisfying assignment is a = b = false and cin = true.

φsum = (a+ b+ g1) · (a+ b+ g1) · (a+ b+ g1) · (a+ b+ g1)·
(g1 + cin + g2) · (g1 + cin + g2) · (g1 + cin + g2) · (g1 + cin + g2)·
(g2)

(3.2)

3.2.2 Disadvantages of Boolean Satisfiability

Modeling circuits at the bit level is the lowest-level logical representation of a circuit.
Verification tools operating at the bit level, especially SAT solvers, have seen tremendous
performance and capacity increases in the last 10 years. We are able to represent circuits
with millions of logic gates and prove interesting properties about them. However, even
with the recent performance increases, bit-level techniques fall short on many industrial-
scale circuits and circuits that contain operators that are challenging to reason about at the
bit level.

A multiplication circuit is an example of a circuit that is hard to reason about at the bit
level. Let φMult denote the bit-level formula corresponding to a×N b = b×N a, where a and b
are bit vectors of size N . That is, φMult is valid if and only if a×N b = b×N a. For relatively
small bit-widths state-of-the-art SAT solvers will prove φMult valid in a reasonable amount
of time. However, even the best SAT solvers won’t prove this equivalence for multipliers
with large bit-widths. Table 3.3 shows the runtimes for 5 leading SAT solvers: glucose [7],
MiniSAT [40, 38], MiniSAT2 [39], PicoSAT [12], and PrecoSAT [47]. As you can see, for
instances with small bit-widths φMult is proven valid in only a few seconds. However, larger
bit-widths prove to be much more challenging for SAT solvers.

For multipliers with a relatively small bit-width (≤ 12), using exhaustive simulation can
be more efficient. SAT solvers can not distinguish between primary inputs and intermediate
variables, whereas simulation only takes into account the primary inputs, reducing the
search-space from that of a SAT problem. However, even exhaustive simulation can not
handle multipliers with large bit-widths. The limiting factor is the number of simulation
vectors required. Shown in Table 3.4 are the runtimes for the simulation of φMult with
N = 16. As expected, the runtime is exponential in the number of input bits, hence, using
exhaustive simulation for circuits with wide datapaths in unrealistic.

Representing a ×N b = b ×N a at a higher level would allow us to reason about the
multiplication operation itself, instead of reasoning about Boolean operators. The commu-
tativity property of multiplication, which is lost at the bit level, allows higher-level solvers
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Solver
Bit-width

4 6 8 10 12 14 16
glucose 0.00 0.09 3.76 132.94 5696.93 T.O. T.O.

MiniSAT 0.00 0.13 2.73 85.86 2826.51 T.O. T.O.
MiniSAT v2 0.00 0.09 2.83 53.90 2164.52 T.O. T.O.

PicoSAT 0.00 0.07 2.04 47.67 1119.63 T.O. T.O.
PrecoSAT 0.01 0.10 2.97 127.57 4384.95 T.O. T.O.

Table 3.3: Runtimes for checking the commutativity of multiplication. For small
bit-widths SAT solvers can prove that a×N b = b×N a

Multiplier
Bit-width

#Vectors Runtime (sec)

4 28 0.01
6 212 0.28
8 216 0.85
10 220 22.30
12 224 536.38
14 228 12022.61
16 232 T.O.

Table 3.4: Simulation runtime of 16-bit multiplier for varying number of simulation vectors.

to immediately prove the the equivalence of a ×N b and b ×N a (i.e., a ×N b = b ×N a is
valid). Bit-level reasoning techniques are not sufficient when reasoning about larger, more
complex circuits.

3.3 Word-Level Reasoning

In order to be consistent with our definition of a word-level design, we consider a word-
level reasoning technique to be a technique that reasons about formulas defined by the
grammar shown in Figure 2.6. Therefore, a word-level technique, in the context of this
thesis, does not reason about abstract terms or uninterpreted functions.

Word-level decision procedures are often layered techniques that rely heavily on a process
known as rewriting. Rewriting takes advantage of high-level, theory-specific rules that
dictate how formulas can be simplified. In addition to rewriting, abstraction-refinement
techniques [21, 22, 27, 28, 43] can be employed within a bit-vector decision procedure.
Finally, when word-level techniques are exhausted, bit-vector problems are translated into
equivalent bit-level representations using a technique called bit-blasting, after which bit-level
techniques are employed.
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3.3.1 Rewriting

A main component to any state-of-the-art bit-vector decision procedure is a simplification
process called rewriting [8]. Rewriting engines are based on a set of rules that dictate how
certain formulas can be simplified, or rewritten.

Rewriting is not limited to high-level theories such as bit vectors or integers. For example,
the laws of Boolean logic can be used to simplify a Boolean formula before invoking a SAT
solver. Figure 3.3 lists a set of properties of Boolean logic that can serve as simplification
rules.

Property Rewrite Rules Property Rewrite Rules

Absorption
x ∧ (x ∨ y) = x

Annihilator
x ∧ false = false

x ∨ (x ∧ y) = x x ∨ true = true

Idempotence
x ∨ x = x

Identity
x ∨ false = x

x ∧ x = x x ∧ true = x
Complementation x ∧ ¬x = false Complementation x ∨ ¬x = true

Figure 3.3: Boolean simplification rules. The axioms of Boolean logic can be used to
simplify Boolean formulas.

Consider the following example where the formula φSAT1 can be proven to be satisfiable
using only the simplification rules listed in Figure 3.3. Starting from our original formula
φSAT1, we obtain Equation 3.4 by applying the complementation rule. Next, we obtain
Equation 3.5 by applying the identity property to Equation 3.4. Finally, we obtain true
by applying the complementation property to Equation 3.5. We deem problems that can
be solved with simplification rules alone to be trivially solvable (i.e., φSAT1 is trivially
satisfiable).

φSAT1 = a ∧ (b ∨ ¬b) ∨ ¬a ∧ (b ∨ ¬b) (3.3)

= a ∧ (true) ∨ ¬a ∧ (true) (3.4)

= a ∨ ¬a (3.5)

= true (3.6)

An example of a formula where simplification rules alone are not enough to decide
satisfiability is φSAT2 shown in Equation 3.7. This example differs from the previous in the
second step when the identity and annihilator properties are applied resulting in φSAT2 = a.
Note that this problem is not trivially solvable and a proper satisfiability engine must be
invoked.

φSAT2 = a ∧ (b ∨ ¬b) ∨ ¬a ∧ (b ∧ ¬b) (3.7)

= a ∧ (true) ∨ ¬a ∧ (false) (3.8)

= a (3.9)
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Bit-vector decision procedures solvers are equipped with an analogous set of rewriting
rules [48, 43, 22, 44]. There are far too many rewriting techniques to discuss here, so instead
we list commonly used techniques that convey the spirit of rewriting.

The most simple form of bit-vector rewriting is constant propagation. Constant propa-
gation involves computing a concrete value of an input or output to a bit-vector operator.
Consider a bit-vector multiplication where one of the inputs is bv0N . The result of this
multiplication is bv0N . The bitwise logical-AND operation has the same property. bv0N is
a controlling value for both the multiplication and bitwise logical-AND operators. This is a
special form of constant propagation where the input to the operator dictates the output.

Another class of rewriting rules aims to eliminate redundancies by analyzing the struc-
ture of bit-vector expressions. For instance, consider an ITE node where the conditional
argument is true or false. In this case, we can replace the ITE with the appropriate value.
Another situation involving the ITE operator is when the “then” and “else” branches are
equal.

A more subtle rewriting rule exploits the commutativity property. Before creating an op-
erator that has the commutativity property, such as addition or multiplication, the decision
procedure checks to see if an equivalent operator has already been created. For example,
assume we create the node a×N b. Later, if we try to create the node b×N a, we first check
to see if either a ×N b or b ×N a have been created already. If so, we return the existing
node instead of creating a new node. Taking this example a step further, assume we wish
to create the equality a×N b = b×N a. First we create a×N b. Then we attempt to create
b×N a but because it has already been created, we end up with a×N b again. Finally, when
we create the equality, we have a×N b = a×N b which simplifies to true.

The last form of rewriting we discuss is equality propagation. Equality propagation
involves substituting values into expressions. Consider the following fragment of a word-
level design.

v1 ← a+N b

v2 ← v1 +N c

v3 ← v2 +N d

c← v3 > bv0N

This portion of a bit-vector design would be rewritten as c← a+N b+N c+N d > bv0N .
The benefit of such a translation is that the intermediate variables vi are removed from the
underlying SAT problem. This can lead to drastic reduction in the size and complexity of
the SAT problem.

3.3.2 Abstraction-Refinement

Abstraction-refinement within a bit-vector decision procedure involves solving successive
under- and over- approximations of the original formula.

Let φunder be an under-approximation of φ, meaning that if φunder is satisfiable so is
φ. Let φover be an over-approximation of φ, meaning that if φover is unsatisfiable so is



37

φ. The intuition behind computing approximations is that it should be easier to find a
satisfying assignment of an under-approximation and easier to prove the unsatisfiability of
a over-approximation.

There are many existing heuristics [21, 22, 27, 28, 43] that compute under- and over-
approximations of bit-vector formulas. A thorough discussion of all such approximation
techniques is beyond the scope of this thesis. Instead, we discuss briefly the approximation
techniques used in our own bit-vector decision procedure [27, 28].

The abstraction-refinement loop implemented within the UCLID bit-vector decision
procedure operates as follows. First, for each bit-vector variable vi in the support of the
formula φbv , an encoding size si is chosen, where 0 ≤ si ≤ length(vi). Next, an under-
approximation φunder of φbv is generated where each variable vi is encoded with si Boolean
variables and then φunder is encoded as a SAT problem. If φunder is satisfiable then the process
terminates. Otherwise, the unsatisfiable core is used to generate an over-approximation φover
of φbv . A key point here is that in the over-approximation φover the variables vi are encoded
as a SAT problem with the full number of bits, otherwise, φover would be unsatisfiable.
If φover is unsatisfiable, then so is φbv and the process terminates. Otherwise, if φover is
satisfiable, then it must be the case that at least one Boolean variable vi is assigned a value
that can not be encoded with si Boolean variables. In this case, it is necessary to increase
si for vi and repeat the process.

Additional techniques for computing under- and over- approximations can be found
in [21, 22, 27, 28, 43].

3.3.3 Bit-blasting

Bit-blasting is a technique that converts a word-level formula into its corresponding bit-
level representation. There are two general methods of bit-blasting. The first is a two-phase
approach where a word-level formula is converted into an equivalent bit-level formula then
the bit-level formula is encoded as a CNF formula [27, 28] using, for example, the Tseitin
transformation as described in Section 3.2.1. An alternative approach converts a word-level
formula directly into a CNF formula [43].

An advantage to the two-phase approach is that propositional simplifications can be
applied before the formula is encoded to CNF. A disadvantage of the two-phase approach is
that the intermediate propositional formula could be large, and time consuming to generate.

3.3.4 Limitations

After all the rewriting rules and theory-specific optimizations have been employed, most
bit-vector solvers resort to bit-blasting. In this case, there are generally two limiting factors:
the size of the datapaths present in the problem and the number of hard to reason about
operators present after all the optimizations have been employed. Consider a bit-vector
problem where a single multiplier with a very large bit-width remains after the word-level
simplifications have been applied. Bit-blasting such a circuit will most likely result in an
extremely large and hard to solve SAT problem. This problem is only compounded when
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many bit-vector operators remain after the theory specific optimizations have been applied.

3.4 Decision Procedures for EUF

There are two main options when solving EUF formulas. The first option involves
combining an EUF algorithm, such as congruence closure, with a SAT solver. The second
option involves transforming the EUF formula into a propositional formula.

In the first approach, the EUF formula is abstracted by replacing each equality with a
fresh Boolean variable. A SAT solver is then used to determine if the abstracted formula
(also known as the Boolean skeleton) is satisfiable. If a satisfying assignment is found, an
EUF algorithm (e.g., congruence closure) is used to determine if there is a corresponding
assignment to the equality predicates [51]. If no satisfying assignment to the equality pred-
icates exist, then a new satisfying assignment to the Boolean skeleton is found (if it exists),
and the process is repeated. A more detailed description of this approach can be found
in [51].

In this work, we rely on the second approach, where the EUF formula is transformed
into propositional logic. The translation from EUF to propositional logic, requires two main
procedures: eliminating function applications and determining how many Boolean variables
are required to encode each term. These techniques are described in Sections 3.4.1 and 3.4.2.

It is important to note, however, that while we use the second approach, where EUF
formulas are translated into propositional logic, the techniques described in this work are not
fundamentally limited to such an approach. Our reliance on this approach stems from the
use of UCLID [53, 18, 63] as our underlying verification environment. UCLID, as described
in Section 3.5, provides a rich description language, as well as a symbolic simulation engine
which enables the solving of a variety of verification problems.

Before describing function elimination and small-domain encoding, we introduce some
notation. Let φUF be an EUF formula containing function applications, φElim be an equi-
satisfiable equality-logic formula without function applications, and φProp be the proposi-
tional formula encoding φElim

3.4.1 Eliminating Function Applications

Before translating an EUF formula into propositional logic, function applications must
be removed. There are two main procedures for eliminating function applications. The first
is the classic technique introduced by Ackermann [3]. The second, more recent, approach
was introduced by Bryant et al. [24]. We describe Ackermann’s technique below, using an
example.

Starting with φUF , the goal is to compute the equi-satisfiable formula φElim such that
all function applications have been removed. Let f : Z → Z be a function used in φUF and
let a, b, c ∈ Z be terms appearing in φUF . Assume that the following function applications
appear in φUF : f(a), f(b), and f(c). Ackermann’s method proceeds as follows. First, create
the formula φFresh by replacing each function application in φUF with a fresh variable. In
this case, we would replace f(a) with vf(a), f(b) with vf(b), and f(c) with vf(c) to create
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φFresh. Next, the set of functional consistency constraints are generated for f :

a = b =⇒ vf(a) = vf(b)

a = c =⇒ vf(a) = vf(c)

b = c =⇒ vf(b) = vf(c)

Let φFCC denote this set of functional consistency constraints. Then φFCC =⇒ φFresh is
the equi-satisfiable formula φElim that contains no function applications. In general, this
process is repeated for each function in φUF . Note that the number of functional consistency
constraints grows quadratically with the number of applications of a given function.

We omit a description of Bryant’s technique and refer the interested reader to [24, 9].

3.4.2 Small-Domain Encoding

The last step in converting φUF to φProp is to determine the number of bits required to
accurately represent each term in φElim.

Let φ be an equality logic formula with support variables x1, x2, ..., xn ∈ Z. Consider
the worst case situation where each xi must be distinct:

φ ≡
n∧
i=1

n∧
j=1

i 6= j =⇒ xi 6= xj

In order for φ to be true, there must be n distinct values, so that each xi is different. It is
possible represent n values with log2(n) bits. This leads to a solution space size of O(nn) [9].
After determining the number of Boolean variables necessary to accurately represent each
term variable in φElim, the term variables are replaced with a vector of Boolean variables of
length log2(n) (i.e., a bit-vector x with length(x) = log2(n)).

An optimization to this technique is to group terms into equivalence classes so that terms
appearing in the same equality are grouped into the same class. Each equivalence class can
then be treated separately when computing the number of bits necessary to encode each
term [9]. Pnueli et al. describe another optimization, called range allocation, however, the
details of this technique are beyond the scope of this work and we refer the interested reader
to [60].

3.5 UCLID

UCLID is a verification framework capable of reasoning about systems expressible with a
variety of logics. Originally focused on infinite-state systems, UCLID now provides support
for modeling at the bit-, word-, and term-level [53, 18, 63]. The UCLID system comprises
the UCLID specification language and the verification engine itself. A UCLID model is
essentially a description of a transition system, where the user provides the initial and next
state functions for state variables [18, 20, 63]. State variables can be any of the base types



40

or function types as defined in Chapter 2. Thus, state variable x can have type t, where
t ∈ {V ,Vn → V}.

The main component of UCLID is a decision procedure for a decidable fragment of
first-order logic, including the logic of equality with uninterpreted functions, integer linear
arithmetic, finite-precision bit-vector arithmetic, and constrained lambda expressions. The
decision procedure operates by translating the input formula to an equi-satisfiable SAT or
SMT formula on which it invokes a SAT or SMT solver, respectively [18, 20]. UCLID is
equipped with a symbolic simulation engine which provides a mechanism to model a vari-
ety of verification problems such as inductive invariant checking, bounded-model checking
(BMC), equivalence checking, and correspondence checking [20, 63].

There are certain situations that require reasoning about signals across time frames. For
example, in the example shown in Figure 2.8, the property we wish to prove is (reset) =⇒
(next(out) == bv04 ). This property requires reasoning about the value of out in the time-
frame after the reset signal is asserted. Therefore, in order to reason across time frames, we
define polymorphic operators init(), prev(), and next() to represent the state of a signal in
the initial state, the previous state, and next state, respectively.

Let x be a signal with type t ∈ {V ,Vn → V} and let xi denote the value of signal x in
time frame i. Assume that the verification problem in question requires the model to be
unrolled for N cycles, that is, there are N time frames in addition to the initial time frame
(0 ≤ i ≤ N).

Definition 3.1. init(xi) denotes the initial state of signal xi and is equivalent to x0.

Definition 3.2. next(xi) denotes the next state of signal xi and is equivalent to xi+1.

Definition 3.3. prev(xi) denotes the previous state of signal xi and is equivalent to xi−1.

Note that the value of init() is the same regardless of the time frame in which it is used.
This differs from prev() and next() where the value is dependent upon the time frame in
which it is used. Also note that prev(x0 ) = init(x0 ) = x0 and next(xN ) is undefined, thus, it
is up to the user to ensure that the verification model is unrolled for enough cycles so that
every use of the next state operator is defined.

3.6 Challenges

While bit-vector SMT solvers have outperformed bit-level reasoning techniques in many
cases, there are still problems that even the best SAT and bit-vector SMT solvers can not
solve in a reasonable amount of time. This thesis focuses on these hard cases.

The word level is typically the level at which hardware designs are modeled. However,
in some specialized cases, such as high performance microprocessors, designs are hand-
optimized at the bit level. This bit-level optimization is usually necessary in order to
satisfy timing and other performance constraints. While it is somewhat easier to perform
abstraction on a word-level design, compared to an equivalent design at the bit level, design
size is a limiting factor for current abstraction techniques.
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A major challenge for any abstraction technique is in deciding what to abstract. Con-
structing abstract verification models by hand is a tedious and error prone process. More-
over, this requires maintaining multiple models of the same design, one describing the ac-
tual design, the other describing the verification model. Maintaining multiple models of the
same design poses several challenges. Changes to the design will likely require an associated
change to the verification model. If a bug arises in the verification model, it is necessary
to determine if it is an actual bug in the design, a bug due to an abstraction introduced in
the verification model, or simply an error introduced in the construction of the verification
model that isn’t present in the actual design. Tracking down the root cause of a bug can
be a challenging endeavor, however, it is an unavoidable challenge associated with hardware
design. Maintaining multiple models of a design multiplies the effort required in determining
the source of an error. While this is an obvious drawback to maintaining multiple models
of a design, an even greater drawback comes from manually introducing abstraction into
the verification model. Creating a precise abstraction (i.e., an abstraction that does not
introduce spurious counter-examples) often requires intimate knowledge of the design. It is
often the case that introducing abstraction will result in spurious counterexamples which
must be dealt with manually. Thus, automatic abstraction procedures are desired.

The challenge with automatic abstraction procedures is how to choose the abstraction
granularity. Andraus and Sakallah [6] were the first to propose an automatic abstrac-
tion techniques operating directly on RTL. These techniques rely on counterexample-guided
abstraction-refinement (CEGAR) and start by abstracting each word-level operator with
an uninterpreted function. While CEGAR-based approaches have shown promise, the main
drawback is the number of CEGAR iterations required. As we discuss in Section 4.7,
CEGAR-based approaches can require many iterations to learn very simple properties. On
the other end of the spectrum, it is possible to abstract larger functional blocks with un-
interpreted functions. However, this poses its own challenges. Module boundaries are an
obvious starting point, however, industrial-scale designs can have hundreds or thousands
of module instantiations. Deciding which modules should be abstracted is a non-trivial
problem. Thus, more intelligent abstraction procedures are necessary.

Bit-vector SMT solvers represent only a small portion of the SMT solvers available.
Certain hardware design patterns can be reasoned about more efficiently in theories other
than the theory of bit-vectors, such as logic of equality with uninterpreted functions. This
work enables the use of SMT solvers that reason over these other theories by automatically
abstracting bit-vector designs to those theories.
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Part II

Automatic Abstraction
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Chapter 4

Data-Abstraction

In this chapter we present a data abstraction technique based on type inference. Type
qualifiers, optionally provided by the designer, are used to selectively abstract portions
of a word-level design to the term level. This lightweight approach can yield substantial
performance improvements, while requiring little to no designer input. Type inference rules
are used to check that the annotations provided by the designer can be applied safely,
that is, without introducing spurious counterexamples. In the absence of designer-provided
type qualifiers, an automatic technique is used to compute a maximal, sound, and complete,
term-level abstraction. We present experimental results that show that type qualifier-based,
selective term-level abstraction can be effective at scaling up verification.

4.1 Type Qualifiers

We propose the use of type qualifiers to guide the process of abstracting to the term level.
Type qualifiers are widely used in the static analysis of software [42], from finding security
vulnerabilities to the detection of races in concurrent software, to enable programmers to
easily guide the analysis. Even standard languages such as C and Java have keywords such
as const that qualify standard types such as ints.

In our case, type qualifiers indicate what can and cannot be abstracted. The widespread
effectiveness of type qualifiers in software leads us to believe that they would be effective in
incorporating a designer’s insights for abstraction, without placing an undue burden on the
designer. In our context, a type qualifier specifies the part of a bit-vector signal that should
be abstracted with a term.

A type qualifier is always associated with an underlying logic. In this work, the under-
lying logic is logic of equality with uninterpreted functions (EUF). Thus, a type qualifier
specifies which portion of a bit-vector signal should be encoded as a term t ∈ Z.

Definition 4.1. A type qualifier TQv = {[w1 : w′1], [w2 : w′2], ..., [wk : w′k]} is a set of non-
overlapping sub-ranges of [v−1 : 0] specifying portions of the bit-vector signal v that should
be abstracted with a term, where v is a bit-vector signal with length(v).

Our approach is depicted in Figure 4.1. We start with Verilog RTL, the specification to
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be verified, and, optionally, with designer-provided type qualifier annotations. The Verilog-
to-UCLID abstraction tool, v2ucl, then performs type inference and type checking. If the
designer-provided annotations are inconsistent, warnings are generated, which indicate to
the designer what operators are prohibiting abstraction. Otherwise, v2ucl automatically
creates a term-level model, with the specification included in it. Note that while the tool
v2ucl takes Verilog as input, the techniques presented in this work are not limited to
Verilog.

RTL Type 
Annotations

Specification
Properties

Term
Level
Model

v2ucl

Invoke
Verifier

Valid / Counterexample

Refine 
Annotations 

or RTL

Type 
Checker 
Warnings

Figure 4.1: An overview of v2ucl. v2ucl takes Verilog RTL and optional type-qualifiers
as input and produces a term-level model. The type checker issues warnings when the type
qualifiers specified are not consistent with the design. This information can be used to refine
the design to make it amenable for verification or correct mistakes in the type qualifiers.

Given a Verilog RTL description R, optionally annotated with type qualifiers, and a
specification S, v2ucl performs an automatic analysis in the following steps:

1. Compute Equivalence Classes: Partition the set of signals and their extracted portions
into equivalence classes such that signals that appear together in assignments, rela-
tional comparisons, or functional operations in R or S end up in the same equivalence
class.

2. Compute Maximal Term Abstraction: For each equivalence class, we compute the
maximal term abstraction (defined in Section 4.3) that is common to all signals in
that equivalence class.

3. Check Type Annotations for Consistency: If the designer has provided any type anno-
tations, we check those for consistency with the computed abstraction. If the designer’s
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annotations are more abstract, an error message is generated. If they are less abstract,
v2ucl can either use the automatically inferred abstraction, or use the abstraction
provided by the user. In either case, a warning is issued.

4. Create UCLID Model: Signals that have associated term abstractions are encoded in
the UCLID model with combinations of term and bit-vector variables, and a hybrid
UCLID model is generated and verified.

We describe each of these stages in more detail in Sections 4.2-4.5 below.

4.2 Compute Equivalence Classes

This step is performed by computing equivalence classes of bit-vector expressions defined
in the RTL with the goal of giving signals in the same equivalence class the same term
abstraction.

Before computing equivalence classes, we construct a word-level design DRTL = R‖S, by
composing Verilog RTL model R and specification S. We make the reasonable assumption
that there is a 1-1 mapping from Verilog operators to the word-level operators listed in
Figure 2.5, thus, the translation from Verilog description to DRTL is straightforward. Note
that it is important to include the specification S in the analysis, because bit-vector opera-
tions might be performed on a node in S even if it is not performed in R. If the bit-vector
representation of a signal is important for determining the truth value of S, this information
must also be retained in the model.

The process of constructing equivalence classes is as follows. First, each bit-vector signal
is placed in its own singleton equivalence class. Denote the equivalence class containing
signal vi by E(vi). Next, equivalence classes are merged according to the rules listed in
Table 4.1. This is accomplished by iterating through the signals in DRTL and applying the
appropriate equivalence class update rule.

Notice that there are no update rules for bit-manipulation operators (i.e., nothing is
merged). This omission prevents signals with different bit-widths from belonging to the
same equivalence class. We construct equivalence classes with the idea that each signal
belonging to an equivalence class will be abstracted in the same manner, and hence, have
the same type. If we merged equivalence classes through bit-manipulation operators, we
would have signals of different bit-widths (i.e., different types) within the same equivalence
class.

After iterating through all of the signals in R, we are left with a set of equivalence classes
ES. Each equivalence class E ∈ ES can have at most one unique type qualifier associated
with it. Thus, for all bit-vector signals x, y ∈ E , if TQx and TQy exist, then TQx = TQy.

We denote the type qualifier associated with the equivalence class E by TQE .
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Assignment Type Expression Update Rule

Bit-vector arithmetic v ← bvop(v1, . . . , vk)
Merge

E(v), E(v1), . . . , E(vk)

Bit manipulation v ← bvmanip(v1, . . . , vk)
Merge

Nothing

Bit-vector relations bvrel(v1, . . . , vk)
Merge

E(v1), . . . , E(vk)

Equality v1 = v2
Merge

E(v1), E(v2)
Sequential/combinational v ← u Merge

assignment v := u E(v), E(u)

Multiplexor assignment v ← ITE(b, v1, v2)
Merge

E(v), E(v1), E(v2)

Memory operations
v ← read(M,u) Merge

M := write(M,u, v) E(M), E(v)

Uninterpreted Function
vx ← UF(vx1 , . . . , vxk

) Merge E(vx), E(vy)
vy ← UF(vy1 , . . . , vyk

) Merge E(vxi), E(vyi) ∀i = 1 . . . k

Table 4.1: Rules for merging equivalence classes. u and v denote bit-vector expressions,
b denotes a Boolean expression, M denotes a memory expression, and UF is an uninterpreted
bit-vector function or predicate.

4.3 Compute Maximal Abstraction

For each equivalence class, we compute the maximal term abstraction common to all
signals in that equivalence class. The maximal term abstraction for a signal v with range
[w − 1 : 0] is a sequence of non-overlapping sub-intervals [w1 : w′1], [w2 : w′2], . . . , [wk : w′k]
of [w− 1 : 0] such that the fanouts of those sub-ranges of v do not appear in any bit-vector
arithmetic operation, but those of the sub-ranges [w,w1], [w′1, w2], . . ., [w′k, 0] do (and hence
the latter intervals cannot be abstracted to terms).

The first step is to filter out equivalence classes that cannot be abstracted. For each
equivalence class, if any element is used with a bit-vector operator excluding extraction or
concatenation, compared with a bit-vector constant, or compared with non-equality rela-
tional comparison (such as <), we will not abstract any signals in that equivalence class,
since that operation cannot be modeled in equality logic.

At this point, the only equivalence classes remaining will contain nodes whose fanouts go
into assignments, conditional assignments, equality (equals, not equals), or extraction/con-
catenation operators. Note that all signals within an equivalence class will have the same
bit-width. The next step will determine if a consistent term abstraction exists for each
remaining equivalence class.

The main challenge is in dealing with extractions and concatenations. Let us first con-
sider concatenations. Our approach is to treat concatenations like extractions, by tracking
the sub-intervals that make up the result of a concatenation. For example, if we had the as-
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signment y = y1 • y2, with y1 being 8 bits and y2 being 4 bits, we treat y as if it had ranges
[11:4] and [3:0] extracted from it. Next we compute how extractions refine the bit-range of
each signal.

For each equivalence class E , let the bit-width of any signal in that class be w. For each
bit-vector signal vj ∈ E , let Ij be the set of all ranges extracted from vi. Thus, Ij is a set
of sub-intervals of the range [w-1:0]. We take the intersection of the sub-intervals in all
Ij, corresponding to each signal in that equivalence class, resulting in a maximally refined
partition PE of the interval [w-1:0]. By filtering out all of the intervals in PE that appear in
bit-vector operators (i.e., extract, concatenation), we are left with the maximal term-level
abstraction for class E (i.e., the sub-intervals that can be modeled with terms).

4.4 Determine Final Abstraction

The goal of this step is to determine what abstraction should be used for each equivalence
class E ∈ ES.

Definition 4.2. A type qualifier TQE legal if and only if for each sub-range r ∈ TQE there
exists a sub-range s ∈ PE such that r is contained within s.

Definition 4.3. A type qualifier TQE maximal if and only if TQE = PE .

For each equivalence class E ∈ ES that has an associated type qualifier TQE , this step
determines:

1. If TQE is legal.

2. If TQE is maximal.

If TQE is legal, it is used to create a term-level model. If TQE is not legal, a warning is
issued and the equivalence class E is not abstracted. If TQE is not maximal, a warning is
issued and E is abstracted according to TQE .

If an equivalence class does not have an associated type qualifier, then no abstraction is
performed, but a warning is issued to inform the designer than it is possible to abstract the
equivalence class.

It is important to note that v2ucl can operate completely automatically, without any
guidance from the user, by using the maximal abstraction computed in Section 4.3. However,
it is also important to allow the designer to convey their intuition about how the design
should be abstracted.

A discrepancy between how a design can be abstracted and how a designer thinks it
should be abstracted, can be helpful in tracking down possible errors. If a designer-supplied
type qualifier is the same as the maximal abstraction computed in Section 4.3, then this is
an extra assurance that the circuit is designed the way they expected. If the type qualifier
is too aggressive, meaning that it specifies to abstract a portion of a signal that can not
be abstracted, errors are issued to the designer. The designer can then figure out why the
specified abstraction does not work. If the type qualifier is conservative, meaning that it is
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a legal, but not maximal, abstraction, then instead of using the maximal abstraction, we
issue warnings and use the user-supplied abstraction. One possible reason for this is that
during the design cycle, the designer will be verifying parts of the design before other parts
are complete. If the designer knows that a certain signal will be connected to another signal
that can not be abstracted, they may not want to abstract this portion of the design, so
they can reuse this verification model at a later time.

4.5 Create UCLID Model

A term-level model is created from the word-level model R in a straightforward way.
Each signal in R that has an associated legal type qualifier is split into several sections,
some of which will be encoded as terms, while the rest remain bit-vectors.

For example, let x ∈ E be a bit-vector signal with length(x) = N and let TQE = {[w1 :
w′1], [w2 : w′2], ..., [wk : w′k]} be the type qualifier associated with E . Then signal x is encoded
with k terms and at most k + 1 bit-vectors. There are at most k + 1 bit-vectors because
there can be a bit-vector before and after every term. Note that there are at least k − 1
bit-vectors because there must be a bit-vector between every term. Figure 4.2 depicts how
signal x is partitioned into a series of terms and bit-vectors.

w1 w1' w2 w2' wk wk'

Term Term TermBVBV

0w-1

Figure 4.2: Term-level encoding of a signal. Each sub-range [i : i′] is encoded as a term.
The sub-ranges not encoded as terms are encoded as bit-vectors.

Generating a term-level model from a word-level model based on type qualifiers requires
to types of modifications to the word-level design.

1. Every assignment, whether combinational or sequential, including multiplexor assign-
ments and assignments to and from memory, are split into at most 2k+1 assignments,
one assignment for each section of the newly partitioned signal.

2. Every equality is transformed into a conjunction of at most 2k + 1 equalities, one
conjunct for each section of the newly partitioned signal. This translation is depicted
in Figure 4.3.

After the term-level circuit is created by applying the above-mentioned modifications,
the portions of the circuit corresponding to the term segments are pure term-level netlists.
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=

x[w-1:0]

out

y[w-1:0]

(a)

=

x[w1:w1']

out

y[w1:w1']

=

x[wk:wk'] y[wk:wk']

∧

(b)

Figure 4.3: Equality operator transformation. (a) Original word-level equality opera-
tor. (b) Equality operators are transformed by instantiating an equality operator for each
segment of the newly partitioned signal and then conjoining the equality operators together.

4.6 Case Study: CMP Router

We present experimental results using the CMP router described in Section 2.4.1.

4.6.1 Experimental Setup

Two models were created of the CMP router design described in Section 2.4.1. The
first model is a word-level design that contains no abstraction aside from using lambda
expressions to model queues [29]. Note that the word-level design was created automatically
by v2ucl using Verilog models of the CMP router provided by Peh et al. [59] as input. It
is possible to disable abstraction within v2ucl. In this case, v2ucl translates the Verilog
description directly into a bit-vector UCLID model.

The second model of the CMP router is a term-level design that was automatically
produced by v2ucl. In fact, no annotations were necessary. The type qualifier associated
with the maximal abstraction of the flit datapath is TQflit = [31:8]. Intuitively, the reason
TQflit is maximal is that the bottom 8-bits as shown in Figure 2.16 are extracted from the
flit datapath and used in precise bit-vector operations. Bits [7:2] can’t be abstracted with
terms because they are used in bit-vector inequalities which determine the proper output
port for a flit. Bits [1:0] are compared against bit-vector constants, and hence, they can not
be abstracted with terms, either.

The environment of the router was manually modeled in UCLID. The environment injects
one packet onto each input port, with the destination of the packets modeled by an symbolic
destination field in the respective head flit; this models scenarios of having packets destined
for different output ports as well as for the same output port (resulting in contention to be
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resolved by the arbiter). Bounded-model checking (BMC) was used to check that starting
from a reset state, the router correctly forwards both packets to their respective output ports
within a fixed number of cycles that depends on the length of the packet. If both packets
are headed for the same output port, the lower priority packet must wait until all flits of
the other packet have been copied to the output. This property was verified successfully
by UCLID using purely bit-vector reasoning and also using the hybrid term-level reasoning.
Note that in a purely term-level model, where the entire flit datapath is modeled as a single
term, the router generates spurious counterexamples as the correctness depends on routing
logic that performs bit extractions and comparisons on the flit header.

We ran experiments with both models for varying packet size. Recall that a packet
comprises several flits. We used UCLID as the verification system for this experiment.
For the bit-vector model, the bit-vector decision procedure within UCLID is invoked. For
the term-level model, containing both term and bit-vector datapaths, UCLID reasons in
equality logic for the term-abstracted datapaths and with bit-vector arithmetic for the rest.
There were no uninterpreted functions in this model.

4.6.2 Experimental Results

Figure 4.4 compares the verification runtimes for the word-level model with those for
the term-level model. We plot two curves for each type of model: one for the time taken by
the SAT solver (MiniSAT), and another for the time taken by UCLID to generate the SAT
problem. We can see that, for the pure bit-vector model, the time taken by the SAT solver
increases rapidly with packet size, whereas the SAT time for the hybrid model increases
much more gradually. Using the hybrid version achieves a speed-up of about 16X in SAT
time. The improvement in time to encode to SAT is more modest. This shows that data
abstraction can help increase the capacity of formal verification tools.

To evaluate whether the improvement was entirely due to reduction in SAT problem size,
we plotted the ratio of speedup in SAT time along with the ratio of reduction in problem
size. These plots are shown in Figure 4.5. We can see that the speedup in time does not
track the reduction in problem size (which is largely constant for increasing packet size),
indicating that the abstraction is assisting the SAT engine in other ways.

4.7 Related Work

The first automatic term-level abstraction tool was Vapor [6], which aimed at generating
term-level models from Verilog. The underlying logic for term-level modeling in Vapor is
CLU (Counter arithmetic, Lambda expressions, and Uninterpreted functions), which orig-
inally formed the basis for the UCLID system [29]. Vapor uses a counterexample-guided
abstraction-refinement (CEGAR) approach [6]. Vapor has been since subsumed by the Re-
veal system [4, 5] which differs mainly in the refinement strategies employed within the
CEGAR loop.

Both Vapor and Reveal start by completely abstracting a Verilog description to the
UCLID language by modeling all bit-vector signals as abstract terms and all operators as
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Figure 4.4: Runtime comparison for increasing packet size in CMP router. The
runtimes for the word-level and term-level CMP designs are compared for increasing packet
size. The time for the SAT solver is indicated by “SAT” and the time to generate the SAT
problem by “DP.”

uninterpreted functions. Next, verification is attempted on the abstracted design. If the
verification succeeds, the tool terminates. However, if the verification fails, it checks whether
the counterexample is spurious using a bit-vector decision procedure. If the counterexample
is spurious, a set of bit-vector facts are derived, heuristically reduced, and used on the next
iteration of term-level verification. If the counterexample is real, the system terminates,
having found a real bug.

The CEGAR approach has shown promise [5]. In many cases, however, several itera-
tions of abstraction-refinement are needed to infer fairly straightforward properties of data,
thus imposing a significant overhead. For instance, in one example, a chip multiprocessor
router [59], the header field of a packet must be extracted and compared several times to
determine whether the packet is correctly forwarded. If any one of these extractions is not
modeled precisely at the word level, a spurious counterexample results. The translation is
complicated by the need to instantiate relations between individually accessed bit fields of
a word modeled as a term using special uninterpreted functions to represent concatenation
and extraction operations.

Our approach to selective term-level data abstraction is distinct from that of Andraus
and Sakallah, for the following reason. Our approach is selective. Instead of abstracting all
datapath signals to the term level, we abstract only those portions of the design specified by
the designer. If the designer-provided annotations are incorrect, a type checker emits warn-
ings and avoids performing the specified abstractions. When annotations are not provided,
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Figure 4.5: Runtime reduction versus reduction in SAT problem size. The reduc-
tion in runtime is labeled “SAT” and is shown in a solid line. The reduction in the number of
variables and clauses in the SAT instance are shown in dashed lines and are denoted “Vars”
and “Clauses”, respectively. We compare the reduction in runtime with the reduction in
problem size, going from a word-level model to a term-level model, for increasing packet
size. Note that the curves for the number of variables and the number of clauses coincide.

we abstract only the portions of the design expressible in EUF.
Johannesen presented an automated bit-width reduction technique which was used to

scale down design sizes for RTL property checking [49, 50]. A static data-flow technique is
used to partition the datapath signals based on the usage of the individual bits. Bits that are
used in a symmetric way are abstracted to take the same value, while preserving satisfiability.
As with the approach we present, one is able to compute a satisfying assignment for the
original circuit from a satisfying assignment of the reduced circuit.

More recently, Bjesse presented a technique which is an extension to Johannesen’s
work [13]. The main difference is that Bjesse includes the partitioning of the initial states,
ensures that the current- and next-state partitions correspond, and bit-blasts operators such
as inequalities which are left untouched in Johannesen’s work.

Our work, developed concurrently with and independent of Bjesse’s [13], is different from
that work and Johannesen’s [49, 50] in that our abstraction is not limited to merely reducing
bit-widths of variables. Instead, we encode the different partitions of the circuit in different
logical theories. In this work, we use two theories: finite-precision bit-vector arithmetic (BV)
and the logic of equality with uninterpreted functions (EUF), but the ideas are not restricted
to BV and EUF. The use of logical theories allows us to use one of several techniques to
encode abstracted variables, not just a single procedure; e.g., we are able to use for EUF
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the technique of positive equality [24] that encodes some variables into the SAT problem
with constant values. Furthermore, neither Johannesen’s nor Bjesse’s reduction technique
has a way to incorporate user insight for abstraction. In our work, we allow the user to use
type qualifiers to convey his/her intuition as to how the circuit should be abstracted. If the
computed abstraction does not coincide with the designer’s intuition, v2ucl will warn the
user and generate suitable feedback. The output from v2ucl can guide the user to write
annotations or rewrite the RTL in a way that substantially reduces verification effort.

4.8 Summary

In this chapter we presented an automatic data abstraction technique called v2ucl.
v2ucl takes as input an RTL design, a property to be proven over this design, and optional
abstraction information (in the form of type qualifiers). If type qualifiers are provided,
v2ucl determines if they are legal, and if so, abstracts the design accordingly. If the an-
notations are illegal or overly conservative, v2ucl will issue a warning. v2ucl can be
configured to perform the maximal abstraction without relying on guidance from the user.
We presented experimental evidence that v2ucl can create smaller, easier-to-verify models.

A binary distribution of v2ucl, the original Verilog models of the CMP router, bit-
vector and hybrid UCLID models of the CMP router, and the experimental data from which
the results are based, can be obtained from http://uclid.eecs.berkeley.edu/v2ucl.

http://uclid.eecs.berkeley.edu/v2ucl
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Chapter 5

Automatic Function Abstraction

This chapter describes ATLAS1, an approach to automatic function abstraction. AT-
LAS is a hybrid approach, involving a combination of random simulation and static analysis,
and operates in three main stages. First, fblocks that are candidates for abstraction are iden-
tified using random simulation. Next, static analysis is used to compute conditions under
which the fblocks must be modeled precisely. Finally, a term-level model is generated where
each fblock is replaced with a partially interpreted function.

We provide evidence that shows ATLAS can be used to speed up equivalence and
refinement checking problems.

5.1 Identifying Candidate Fblocks

Word-level designs D1 and D2 are derived from RTL designs in languages such as Verilog
and VHDL. In such languages, modules defined by the designer provide natural boundaries
for function abstraction.

Consider the flat word-level netlist obtained from an RTL design after performing all
module instantiations. Every module instance corresponds to a functional block, or fblock,
of the flat netlist. However, only some of these fblocks are of interest for function abstraction.

The first important notion in this regard is that of isomorphic fblocks.

Definition 5.1. Two fblocksN1 = (I1,O1,S1, C1, Init1,A1) andN2 = (I2,O2,S2, C2, Init2,A2)
are said to be isomorphic if there is a bijective function ϕ such that ϕ(I1,O1,S1, C1) =
(I2,O2,S2, C2) and if we substitute every signal s in Init1 and A1 by ϕ(s) we obtain Init2

and A2.

Thus, of all the fblocks that are candidates for function abstraction, we only consider
those fblocks in D1 that have an isomorphic counterpart in D2 (and vice-versa).

Definition 5.2. A replicated fblock is an fblock in D1 that has an isomorphic counterpart
in D2.

1ATLAS stands for Automatic Term-Level Abstraction of Systems
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For example, each ALU in Figure 2.18 is a replicated fblock.
In equivalence or refinement checking, replicated fblocks are easy to identify as instances

of the same RTL module that appear in both designs, and this is how we identify them in
this work. Note, however, that it is also possible for fblocks that are not instances of the
same module to be isomorphic.

Given that we identify replicated fblocks as instances of the same module, the question
then becomes one of selecting RTL modules whose instances generate candidate fblocks for
abstraction. Currently, we make this selection based on heuristic rules, such as the size of
the module in terms of the number of input, output and internal signals, or the presence of
operators such as multiplication or XOR that are hard for formal verification engines (such
as SAT solvers) to reason about efficiently. Note however, that this is purely an optimization
step. One can identify any set of replicated fblocks as candidates for function abstraction.

To summarize, given designs D1 and D2 that are to be checked for equivalence or re-
finement, we can generate the set containing all replicated fblocks in those designs. This
set can be partitioned into a collection of sets of fblocks FS = {F1,F2, . . . ,Fk}. Each set
Fj comprises replicated fblocks that are isomorphic to each other. We term each Fj as an
equivalence class of the fblocks it contains. Our ATLAS approach uses the same function
abstraction for every fblock in Fj. For example, in the design of Figure 2.18, the ALU mod-
ules are isomorphic to each other and together constitute one set Fj. ATLAS will compute
the same function abstraction, shown in Figure 2.13(c), for both fblocks.

In the following sections, we describe how ATLAS analyzes the sets in FS in two phases.
In the first phase, random simulation is used to prune out replicated fblocks that likely
cannot be abstracted with uninterpreted functions. Every fblock that survives the first
phase is then statically analyzed in the second phase in order to compute conditions under
which that fblock can be abstracted with an uninterpreted function. The resulting conditions
are used to generate a term-level netlist for further formal verification.

5.2 Random Simulation

Given an equivalence class of functional blocks F , we use random simulation to determine
whether the fblocks it contains are considered for abstraction with an uninterpreted function.

We begin by introducing some notation. Let the cardinality of F be l. Let each fblock
fi ∈ F have m bit-vector output signals 〈vi1, . . . , vim〉, and n input signals 〈ui1, . . . , uin〉.
Then, we term the tuple of corresponding output signals χ = (v1j, v2j, . . . , vlj), for each
j = 1, 2, . . . ,m, as a tuple of isomorphic output signals.

Definition 5.3. A random function RF(v1, . . . , vn) is a function that returns a randomly
chosen output value for a particular set of input values.

A random function is similar to an uninterpreted function in that it is functionally
consistent, i.e., when applied to equal arguments, it produces the same output. The only
difference between a random function and an uninterpreted function is the context within
which they are used. An uninterpreted function is used in formal verification, where the
inputs and output values are symbolic. A random function is used within simulation, thus,
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the inputs and output values are concrete. A random function can be implemented using a
random number generator and a hashtable. Anytime a random function is applied to a tuple
of arguments, we check to see whether the random function has been applied to that tuple
previously. If so, we retrieve and return the value from the hashtable. If not, we generate
a random number, store it in a hashtable with the input tuple as the key, and return it.
Table 5.1 illustrates the behavior of a random function. Notice that the value of RFALU is
the same in cycles 3, 4, 7 and 9. This is due to the fact that the arguments are the same in
cycles 3 and 9 as well as 4 and 7.

Time argA argB op ALU RFALU

1 0 0 + 0 9
2 0 4 + 4 17
3 4 0 + 4 3
4 7 9 + 16 3
5 4 5 + 9 6
6 2 3 + 5 1
7 7 9 + 16 3
8 6 7 + 13 12
9 4 0 + 4 3
10 5 5 + 10 8

Table 5.1: Illustration of a random function. Time denotes the current time frame;
argA, argB, and op are the inputs to the ALU module and the random function RFALU ;
ALU is the output of the precise ALU module; and, RFALU is the output of the random
function. The rows shown in dark (light) gray have equal values for RFALU because the
input arguments are the same between both function applications (i.e., RFALU is functionally
consistent).

As mentioned in Section 2.2.2, it is only sound to abstract combinational fblocks or
acyclic, sequential fblocks. Regardless of the type of fblock (i.e., combinational or sequential)
we use random functions to determine whether or not to abstract the fblock.

Combinational fblocks are considered first. Given a tuple of isomorphic output signals
χ = (v1j, v2j, . . . , vlj), we create a random function RFχ unique to χ that has n inputs
(corresponding to input signals 〈ui1, . . . , uin〉, for fblock fi). For each fblock fi, i = 1, 2, . . . , l,
we replace the assignment to the output signal vij with the random assignment vij ←
RFχ(ui1, . . . , uin). This substitution is performed for all output signals j = 1, 2, . . . ,m.

The resulting designs D1 and D2 are then verified through simulation. This process is
repeated for T different random functions RFχ. If the fraction of failing verification runs is
greater than a threshold τ , then we drop the equivalence class F from further consideration.
(The values of T and τ we used in experiments are given in Section 5.6.) Otherwise, we
retain F for static analysis, as described in the following section.

Now we consider replacing sequential fblocks with random functions. The difference is
that for each output signal vij, instead of replacing it with the random assignment vij ←
RFχ(ui1, . . . , uin), we must replace it with an assignment that takes into account the history
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of the inputs 〈ui1, . . . , uin〉, for some bounded depth, as discussed in Section 2.2.2. Let Uik
denote the tuple of inputs 〈ui1, . . . , uin〉 that occurred k cycles in the past. Thus, Ui0 refers
to the input tuple in the current cycle, Ui1 refers to the input tuple 1 cycle ago, and so on.
Recall that to soundly abstract a sequential fblock, we must account for a history of depth
2n, where n is the maximum number of latches in any path in the sequential fblock being
considered for abstraction. We replace the assignment to the output signal vij, with the
random assignment vij ← RFχ(Ui0, Ui1, . . . , Uik) where k = 2n.

5.3 Static Analysis

The goal of static analysis is to compute conditions under which fblocks can be abstracted
with uninterpreted functions (UFs) without loss of precision – i.e., without generating spuri-
ous counterexamples. ATLAS performs this analysis by attempting to compute the opposite
condition, under which the fblocks are not abstracted with UFs.

More specifically, for each tuple of isomorphic output signals χ of each equivalence class
F , we compute a Boolean condition under which the elements of χ should not be abstracted
as uninterpreted functions of the inputs to their respective fblocks. We term these conditions
as interpretation conditions, with the connotation that the fblocks are precisely interpreted if
and only if these conditions are true. Thus, we perform conditional abstraction by replacing
the original fblock with a circuit that chooses between the original implementation and
the abstract representation. Figure 5.1 illustrates how the output signals of an fblock are
conditionally abstracted. The original word-level circuit is shown in Figure 5.1(a) and the
conditionally abstracted version with interpretation condition c is shown in Figure 5.1(b).
The intuition behind replacing a word-level circuit with the circuit shown in Figure 5.1(b), we
are introducing a case-split on the interpretation condition. Thus, anytime the interpretation
condition c is false, there is no need to reason about the word-level circuit. The goal of this
replacement is to prevent a decision procedure from reasoning about a complicated portion
of a design unless it is absolutely necessary.

Clearly, true is a valid interpretation condition, but it is a trivial one and not very
useful. It turns out that even checking whether a given interpretation condition is precise is
co-NP-hard. We prove this by formalizing the problem as below:

IntCondChk: Given word-level designs D1 and D2, let f1 and f2 be fblocks
in D1 and D2 respectively, where f1 and f2 are isomorphic. Let c be a Boolean
condition such that c 6≡ true. Let designs T1 and T2 result from conditionally
abstracting f1 and f2 with an uninterpreted function UF only when condition c
is false.

Then, the IntCondChk problem is to decide whether, given 〈D1,D2, f1, f2, c〉,
D1 is equivalent to D2 if and only if T1 is equivalent to T2.

Theorem 5.4. Problem IntCondChk is co-NP-hard.
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Figure 5.1: Conditional abstraction (a) Original word-level fblock f . (b) Conditionally
abstracted version of f with interpretation condition c

Proof. The proof is by reduction from UNSAT – the Boolean unsatisfiability problem. We
map an arbitrary Boolean formula f to a tuple 〈D1,D2, f1, f2, c〉, so that f is unsatisfiable
if and only if D1 is equivalent to D2 if and only if T1 is equivalent to T2.

Consider the word-level circuit in Figure 5.2, where theD1 is the circuit rooted at the left-
hand input of the equality node, andD2 is the circuit rooted at the right-hand input. Clearly,
D1 is equivalent to D2. Let c = false, in other words, we want to know if unconditional
abstraction is precise. Consider the multiplier blocks in D1 and D2 respectively. Since
these blocks are isomorphic, we can consider replacing them with the same uninterpreted
function. Note that, unless f(x1, x2, . . . , xn) is equivalent to false, this abstraction can
result in spurious counterexamples, since it is possible that UF(2, 5) 6= UF(1, 10), whereas
MULT(2, 5) = MULT(1, 10) always. In other words, we answer ’yes’ to this instance of
IntCondChk if and only if f(x1, x2, . . . , xn) ≡ false, implying that IntCondChk is co-
NP-hard.

Given this hardness result, ATLAS uses the following three-step procedure for verifica-
tion by term-level abstraction:

1. Unconditionally abstract all isomorphic fblocks with the same uninterpreted function,
for all equivalence classes of fblocks. Verify the resulting term-level designs. If the
term-level verifier returns “VERIFIED”, then return that result and terminate. How-
ever, if we get a counterexample, evaluate the counterexample on the word-level design
to check if it is spurious. If non-spurious, return the counterexample, else go to Step
2.

2. Call Procedure ConditionalFuncAbstraction to conditionally abstract to the
term-level. Again, verify the resulting term-level designs, performing exactly the same
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Figure 5.2: Circuit for showing NP-hardness of IntCondChk. f is any arbitrary
Boolean function of x1, x2, . . . , xn.

checks as in Step 1 above: If the term-level verifier returns “VERIFIED”, we return
that result; otherwise, we return the counterexample only if it is non-spurious, going
to Step 3 if it is spurious.

3. Invoke a word-level verifier on the original word-level designs.

The following theorem about ATLAS follows easily.

Theorem 5.5. ATLAS is sound and complete.

Proof. First, we give notation for the proof. Given word-level designs D1 and D2, let f1

and f2 be fblocks in D1 and D2, respectively, where f1 and f2 are isomorphic. Let de-
signs T1 and T2 result from conditionally abstracting f1 and f2 with an uninterpreted
function UF. Note that f1 and f2 are two different instantiations of bit-vector function
f(x1, . . . , xn). Abs(c, x1, . . . , xn) denotes the conditionally abstracted function that will re-
place f(x1, . . . , xn) in D1 and D2 to create T1 and T2, respectively, and is defined as:

Abs(c, x1, . . . , xn) =

{
f(x1, . . . , xn) if c is true
UF (x1, . . . , xn) if c is false

(Soundness) Soundness follows from the fact that ATLAS only attempts to verify over-
approximate abstractions of the original designs. Anytime abstraction is performed within
ATLAS, a precisely implemented fblock is replaced with an fblock that switches between
the original, precise fblock and an uninterpreted function that contains more behaviors than
the original fblock.

Notice that f(x1, . . . , xn) is a specific bit-vector function with the type Vn → BV and
UF(x1, . . . , xn) is any bit-vector function with type Vn → BV , including the specific bit-
vector function f . There are two cases to consider. In the first case, if c = true, then
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Abs(true, x1, . . . , xn) = f(x1, . . . , xn) and D1 = T1 and D2 = T2 and therefore, D1 is equiv-
alent to D2 if and only if T1 is equivalent to T2. In the other case, if c = false, then
Abs(false, x1, . . . , xn) = UF(x1, . . . , xn). Recall that UF(x1, . . . , xn) contains the behavior
for all possible functions over x1, . . . , xn, including the behavior specified by f(x1, . . . , xn).
If T1 is equivalent to T2 when c = false, then it means T1 is equivalent to T2 under all
interpretations of UF(x1, . . . , xn). Under the interpretation UF(x1, . . . , xn) = f(x1, . . . , xn),
T1 = D1 and T2 = D2. Therefore, D1 = D2 and ATLAS is sound.

(Completeness) Completeness follows because ATLAS only outputs a counterexample
if it is evaluated to be a counterexample on the original word-level design.

Anytime a counterexample arises when attempting to verify that T1 is equivalent to T2,
ATLAS checks if the counterexample is spurious by simulating it on the original, word-
level verification problem. If the counterexample occurs in the word-level problem, then it
is a real counterexample. This counterexample is output and the procedure terminates. If
the counterexample is spurious and does not occur in the word-level verification problem,
the interpretation conditions are set to true, meaning that all modules are interpreted at
all times. Thus, we now are checking the original word-level problem. Any counterexam-
ple found from this point on is real. Hence, ATLAS only outputs real counterexamples.
Therefore, ATLAS is complete.

For ease of presentation, the algorithms presented throughout this chapter are described
with respect to combinational fblocks. However, the techniques can be generalized to se-
quential fblocks in a manner similar to that described in Section 5.2.

Algorithm 1 summarizes our static abstraction procedure. Procedure Conditional-
FuncAbstraction takes two inputs. The first is the netlist D obtained by combining
D1 and D2 to do equivalence or refinement checking. For equivalence checking, this is the
standard miter circuit. A miter between two designs D1 and D2 is the circuit that evaluates
to true if and only if the circuits are functionally different (i.e., when the outputs differ
when the same inputs are applied to both circuits). For refinement checking, D is obtained
by connecting inputs to D1 and D2 for use in symbolic simulation (e.g., a “flush” input
to the pipeline for Burch-Dill style processor verification), as well as logic to compare the
outputs of D1 and D2. The second input to ConditionalFuncAbstraction is the set of
all equivalence classes of fblocks FS. Given these inputs, ConditionalFuncAbstrac-
tion generates a rewritten netlist as output where some outputs of fblocks are conditionally
rewritten as outputs of uninterpreted functions.

Algorithm 1 operates in two phases. In the first phase (lines 1-10), we identify outputs
of fblocks that can be unconditionally abstracted with an uninterpreted function. This is
performed by first computing, for every bit-vector output signal v in FS, the equivalence
class of signals E(v) that its value flows to or which it is compared to. Table 4.1 lists the
rules for computing E(v). Suppose there is no signal in E(v) that is assigned or compared
to a bit-vector constant, or is the input or output of a bit-vector arithmetic or relational
operator other than equality. This implies that the value of v does not flow to any bit-vector
operation, arithmetic or relational, and is never compared with a specific bit-vector constant.
In such a scenario, it is possible to always abstract v as the output of an uninterpreted
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function. Procedure AbstractWithUF shown in Algorithm 2 performs this full function
abstraction and is described later in this section.

The second phase of Algorithm 1, comprising lines 12-18, is responsible for performing
conditional abstraction on the fblocks that were not unconditionally abstracted during the
first phase (because those fblocks will have been removed in line 10). First, an interpretation
condition cvi

is associated with each bit-vector signal vi ∈ fi. The interpretation conditions,
which are initialized to false, are computed by applying a set of rules to each signal vi ∈ fi.
These rules are applied to the signals in an arbitrary order, however, the appropriate rule
is applied to each signal vi ∈ fi before moving onto the next iteration. This process stops
when the interpretation conditions converge (i.e., there is no change to any interpretation
condition cvi

for all vi ∈ fi). Note that this process is guaranteed to converge because we only
consider verification problems over a bounded number of cycles. Furthermore, it is possible
to incorporate this process into an abstraction-refinement loop, by initially performing a
limited number of iterations and increasing the number of iterations performed only when
spurious counterexamples arise. At this point, each signal vi ∈ fi has an interpretation
condition cvi

and conditional abstraction is performed. Finally, this procedure is repeated
for each equivalence class of fblocks Fi ∈ FS. Recall that each Fi is associated with an
abstraction and the set of all fblock equivalence classes FS corresponds to the set of all
modules that we wish to abstract. Now we discuss in more detail the rules used to compute
the interpretation conditions and how the interpretation conditions are used to perform
conditional abstraction.

The interpretation condition rules are listed in Table 5.2. Most of the rules are intuitive,
so we describe them only briefly. Consider rules 1,4, and 6: all of these involve a bit-vector
operator or constant. Therefore, any signal involved in such an assignment is assigned an
interpretation condition of true. For equality comparisons or combinational assignments
(rules 2 and 3), both sides of the comparison or assignment must have the same interpretation
condition. For a multiplexor assignment (rule 5), the condition under which an input of the
multiplexor flows to its output is incorporated into the interpretation conditions. Rule
7, for a sequential assignment, makes use of special prev and next operators. The prev
operator indicates that the condition is to be evaluated in the preceding cycle, whereas the
next operator indicates that it must be evaluated in the following cycle. During symbolic
simulation for term-level equivalence or refinement checking, these operators are translated
to point to the conditions in the appropriate cycles. Rules 8 and 9 deal with memory
reads and writes. Finally, rules 10 and 11 handle the case where we have some fblock
outputs replaced with uninterpreted functions. In this case, we ensure that the arguments to
uninterpreted functions (predicates) are interpreted consistently across function (predicate)
applications.

As described above, the interpretation conditions are computed by applying the rules in
Table 5.2 for a bounded number of iterations. After the interpretation conditions are com-
puted, they are used to perform conditional function abstraction. Lines 15-16 of Algorithm 1
indicate the process: we first compute the disjunction of all conditions computed for output
signals in an isomorphic tuple χj, and then use this disjunction ocj within Procedure Con-
ditionalAbstractWithUF to compute the new output assignment for each element of
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χj as a conditional (ITE) expression. It is necessary to take the disjunction over the con-
ditions computed for all output signals in χj so that each instance of the isomorphic fblock
is interpreted (or abstracted) at the same time. The new design D′ is the output of Proce-
dure ConditionalFuncAbstraction. We describe the Procedures AbstractWithUF
and ConditionalAbstractWithUF below.

Algorithm 1 Procedure ConditionalFuncAbstraction (D, FS): abstracting fblocks
with uninterpreted functions, either wholly or partially.

Input: Combined netlist (miter) D := 〈I,O, {Ni | i = 1, . . . , N}〉
Input: Equivalence classes of fblocks FS := {Fj | j = 1, . . . , k},
Output: Rewritten netlist (miter) D′ := 〈I,O, {N ′i | i = 1, . . . , N}〉
1: for each Fj ∈ FS do
2: for each tuple of isomorphic output signals χj = (v1, v2, . . . , vlj ), where lj = |Fj|,

vi ∈ fi for fblock fi ∈ Fj, i = 1, 2, . . . , lj do
3: for each output signal vi ∈ χj do
4: Compute equivalence class E(vi) of vi by repeatedly applying rules in Table 4.1

to all assignments in D except for those inside the fblock fi
5: If E(vi) contains a signal u s.t. u is assigned a bit-vector constant or is the input

to or output of a bit-vector operator, mark χj.
6: end for
7: If χj is unmarked { Fj ← AbstractWithUF (Fj,χj) }
8: end for
9: end for

10: For all Fj ∈ FS, if all isomorphic output signal tuples χj are unmarked, delete Fj from
FS.

11: // Now compute conditions for partial abstraction with a UF
12: for each remaining Fj ∈ FS do
13: for each tuple of isomorphic output signals χj = (v1, v2, . . . , vlj ), where vi ∈ fi for

fblock fi ∈ Fj, i = 1, 2, . . . , lj do
14: Compute interpretation conditions cvi

for all i by repeatedly applying rules in Ta-
ble 5.2 to the netlist obtained by deleting all signals (and corresponding assign-
ments) inside fblocks in Fj. The rules are applied until the conditions do not
change or up to a specified bounded number of iterations, whichever is smaller.

15: Compute ocj :=
∨lj
i=1 cvi

.
16: Perform partial function abstraction of Fj with ocj:

Fj ← ConditionalAbstractWithUF (Fj,χj,ocj)
17: end for
18: end for

Procedure AbstractWithUF, shown in Algorithm 2, replaces an fblock with a com-
pletely uninterpreted function. Procedure AbstractWithUF takes two inputs. The first
is an equivalence class F of fblocks. The second is a tuple of isomorphic output signals
χ = (v1, v2, . . . , vl) corresponding to the fblocks in F . Procedure AbstractWithUF



63

operates as follows. First, a fresh uninterpreted function UFχ is created for the tuple of
isomorphic outputs χ (line 1). Next, the assignment to each output signal vi ∈ χ is replaced
with the assignment vi ← UFχ(i1, . . . , iki

) (lines 3-4). Finally, all of the assignments con-
tained within the fblocks fi’s, are deleted (line 5). The deletion of assignments occurs in
order from the outputs to the inputs, terminating at (but not deleting) the assignments to
the input signals.

Procedure ConditionalAbstractWithUF, shown in Algorithm 3, replaces an fblock
with a conditionally abstracted fblock as illustrated in Figure 5.1. Procedure Condition-
alAbstractWithUF takes three inputs. The first two inputs are the same as Proce-
dure AbstractWithUF. Namely, an equivalence class F of fblocks and a tuple of iso-
morphic output signals χ = (v1, v2, . . . , vl) corresponding to the fi’s of F . The third input
argument is an interpretation condition oc corresponding to the isomorphic output tuple
χ. Procedure ConditionalAbstractWithUF operates as follows. First, similarly with
Procedure AbstractWithUF, a fresh uninterpreted function UFχ is created for the tuple
of isomorphic outputs χ (line 1). Next, the assignment to each output signal vi ∈ χ is
replaced with the assignment vi ← ITE(oc, e, UFχ(i1, . . . , iki

)) (lines 3-4). Note that it is
not necessary to delete any assignments as is the case with Procedure AbstractWithUF.
In fact, the assignments must be kept because they are used anytime oc is true.

Algorithm 2 Procedure AbstractWithUF (F , χ): wholly abstract outputs in χ with
uninterpreted functions.

Input: Equivalence class of functional blocks F = {f1, f2, . . . , fl}
Input: Tuple of isomorphic output signals of fi’s χ = (v1, v2, . . . , vl)
Output: Updated functional blocks F ′.
1: Create a fresh uninterpreted function symbol UFχ.
2: for each output signal vi ∈ χ do
3: Let (i1, . . . , iki

) denote the input symbols to fblock fi.
4: Replace the assignment vi ← e in fi with the assignment vi ← UFχ(i1, . . . , iki

).
5: Transitively delete all assignments u ← e or u := e in fi where signal u does not

appear on the right-hand side of any assignment in fi.
6: Denote the resulting fblock by f ′i .
7: end for
8: return Updated equivalence class of fblocks F ′ = {f ′1, f ′2, . . . , f ′l}.

5.4 Illustrative Example

We illustrate the operation of our approach on the equivalence checking problem shown
in Figure 5.3. Note that Figure 5.3 describes the same circuit as Figure 2.18, we duplicate
it here for convenience. Note that all signals in this design have been given names from v1

(outA) to v17 (outB).
Assume that the ALU modules have passed the first two steps in ATLAS: identifying

replicated fblocks A.ALU and B.ALU and performing random simulation.
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Rule English Form of Rules for Updating
No. Description Assignments Interpretation Condition

1. Bit-vector constant v ← c c′v := true

2. Combinational copy v ← u
c′v := cv ∨ cu
c′u := cv ∨ cu

3.
Equality

b← v = u
c′v := cv ∨ cu

comparison c′u := cv ∨ cu

4.
Bit-vector

b← bvrel(v1, v2, . . . , vk)
c′vi

:= true
relational operator ∀i = 1, 2, . . . , k

5.
Multiplexor
assignment

v ← ITE(b, v1, v2)
c′v := cv ∨ (b ∧ cv1 ∨ ¬b ∧ cv2)

c′v1 := cv1 ∨ (b ∧ cv)
c′v2 := cv2 ∨ (¬b ∧ cv)

6.
Bit-vector v ← bvop(v1, v2, . . . , vk) c′v := true
operator v ← bvmanip(v1, v2, . . . , vk) c′vi

:= true ∀i = 1, 2, . . . , k

7.
Sequential

v := u
c′v := cv ∨ prev(cu)

assignment c′u := cu ∨ next(cv)

8. Memory read v ← read(M,u)
c′v := cv ∨ cM
c′M := cv ∨ cM

9. Memory write M := write(M, va, vd)
c′M := cM ∨ prev(cvd

)
c′vd

:= next(cM) ∨ cvd

10. Uninterpreted function
vx ← UF(vx1 , . . . , vxk

)
vy ← UF(vy1 , . . . , vyk

)

c′vx
:= cvx , c′vy

:= cvy

c′vxi
:= cvxi

∨ cvyi
∀i = 1 . . . k

c′vyi
:= cvxi

∨ cvyi
∀i = 1 . . . k

11. Uninterpreted predicate
bx ← UP(vx1 , . . . , vxk

) c′vxi
:= cvxi

∨ cvyi
∀i = 1 . . . k

by ← UP(vy1 , . . . , vyk
) c′vyi

:= cvxi
∨ cvyi

∀i = 1 . . . k

Table 5.2: Rules for computing interpretation conditions. Rules for computing the
interpretation condition cv for every bit-vector (or memory) signal v (or M) in a set of
signals V . Every condition cv initially starts out as false. c′x denotes the updated value of
cx for a bit-vector or memory signal x.
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Algorithm 3 Procedure ConditionalAbstractWithUF (F , χ, oc): conditionally ab-
stract outputs in χ with uninterpreted functions using condition oc.

Input: Equivalence class of functional blocks F = {f1, f2, . . . , fl}
Input: Tuple of isomorphic output signals of fi’s χ = (v1, v2, . . . , vl)
Input: Boolean condition: oc :=

∨l
i=1 cvi

.
Output: Updated functional blocks F ′.
1: Create a fresh uninterpreted function symbol UFχ.
2: for each output signal vi ∈ χ do
3: Let (i1, . . . , iki

) denote the input symbols to fblock fi.
4: Replace the assignment vi ← e in fi with the assignment

vi ← ITE(oc, e, UFχ(i1, . . . , iki
)).

5: Denote the resulting fblock by f ′i .
6: end for
7: return Updated equivalence class of fblocks F ′ = {f ′1, f ′2, . . . , f ′l}.

We describe how procedure ConditionalFuncAbstraction operates on this exam-
ple. The first phase of ConditionalFuncAbstraction computes equivalence classes of
the output signals v1 and v17 of the two ALUs. We observe that

E(v1) = E(v17)

= {v1, v2, v4, v5, v13, v10, v9, v12, v16, v14, v15, v11, v17}

Clearly, since some of the above signals are outputs or inputs of bit-vector arithmetic oper-
ators such as + and bit-extraction, we cannot abstract the two ALUs unconditionally with
an uninterpreted function.

Therefore, ConditionalFuncAbstraction performs the second phase: computing
interpretation conditions for the signals in Designs A and B.

As stated in the caption of Table 5.2, all conditions are initialized to false.
Next, consider all signals that are inputs or outputs of bit-vector operators, or compared

with a bit-vector constant (such as JMP). We apply Rules 1 and 6 to these signals, to get:

cv2 = cv5 = cv8 = cv6 = cv7 = true and

cv13 = cv10 = cv14 = cv1 = cv15 = true

Since we have the assignments v5 := v4 and v13 := v12, we can apply Rule 7 to obtain

cv4 = (v5) = true and cv12 = (v13) = true

Now, using Rule 5 for the multiplexor in Design A, we obtain

cv1 = {(v7 = JMP) ∧ cv4} = (A.instr[19 : 16] = JMP)

Finally, using Rule 3 for the equality corresponding to out ok, we conclude that cv17 =
cv1 = (A.instr[19 : 16] = JMP).
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Figure 5.3: Equivalence checking of two versions of a portion of a processor design.
Boolean signals are shown as dashed lines and bit-vector signals as solid lines.

At this point, the interpretation conditions have converged, causing the procedure to ter-
minate. We can thus compute a partial abstraction of the ALUs using a fresh uninterpreted
function symbol UF by employing the new assignments below:

v1 ← ITE(A.instr[19 : 16] = JMP, ALU(v8), UF(v8))

v17 ← ITE(A.instr[19 : 16] = JMP, ALU(v16), UF(v16))

Note that ALU above refers to the original ALU as shown in Figure 2.13(a). The right-hand
side expressions in the new assignments shown above are instances of the partially-abstracted
ALU shown in Figure 2.13(c).

In summary, for our running example, ATLAS correctly computes the conditions under
which the ALU can be abstracted with an uninterpreted function.

5.5 Benchmarks

In addition to the example described in Section 5.4, we performed experiments on four
benchmarks: a simplified pipelined processor [20], the packet disassembler from the USB 2.0
function core [58], a power-gated calculator design [65], and the Y86 processor designs [26].
We describe these benchmarks here.
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5.5.1 Pipelined Datapath (PIPE)

This example is based on the simple pipeline described in the UCLID userguide [20].
This processor consists of 3-stages: fetch, execute, and writeback. It supports 7 arithmetic
instructions and has a 32x32-bit, dual-read, single-write register file. The design we use here
differs from the one in the UCLID manual [20] only in that it does not use memory abstrac-
tion for the register file. We verify that the pipelined processor refines (i.e., is simulated
by) a single-cycle, sequential version of the processor using Burch-Dill style correspondence
checking [31]. The shared state variables that are checked for equality are the program
counter (PC) and register file (RF). Excluding the top-level processor modules, there are 3
candidate modules for abstraction: PC update, RF, and arithmetic-logic unit (ALU). The
PC update and ALU modules both pass the random simulation stage of ATLAS, however,
we only abstract the ALU due to the small size of the PC update module. The RF module
does not pass random simulation and, hence, we don’t abstract it. By replacing the RF with
a combinational random function, we lose the ability to store values, which causes random
simulation to fail.

5.5.2 USB Controller (USB)

This example relies on a modified version of the packet disassembler in the USB 2.0
Function Core [58]. In the refined version, we removed the notion of a TOKEN packet and
updated the state machine and other relevant logic accordingly. We performed bounded
equivalence checking on the original and refined packet disassemblers by injecting packets
on each cycle. The property checked was that the disassembler state, error condition state,
and cyclic redundancy check (CRC) error signals were the same for each cycle. The two
candidate modules for abstraction were the 16- and 5-bit CRC modules. Both passed random
simulation, which is expected because neither influences the state machine control, however,
only the 16-bit CRC module was abstracted because the 5-bit CRC module is not in the
cone-of-influence of the property being checked.

5.5.3 Calculator (CALC)

This experiment is based on one of the calculator designs described in [65]. The design
we use is the second in a series of calculator implementations, we refer to it as CALC. CALC
is a pipelined implementation of a calculator that has 4 datapaths each with its own input
and output port. CALC accepts accepts 4 instructions: add, subtract, shift left, and shift
right. Each port can have up to 4 outstanding instructions. A two-bit tag is used to keep
track of outstanding instructions. There are two main execution units shared between the
datapaths in this design: the adder-subtractor unit (ASU) and the shifter unit.

For this experiment, we created a power-gated version of an existing calculator design, in
a manner similar to that in [41]. In the power-gated version, the ASU is powered down (by
fencing the outputs) whenever there are no add or subtract instructions in the add/subtract
queue. We performed equivalence checking on the outputs of the two versions to make sure
that the correct results come out in the same order, with the proper tags, and on the correct
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ports. For this design, there are only 2 modules which passed random simulation: the ASU
and the shifter. There are many modules which didn’t pass random simulation. An example
is the priority module. The priority module takes the incoming commands and adds them to
the appropriate queues and dispatches commands to the appropriate unit (ASU or shifter).
The priority module is a sequential fblock containing cycles, therefore we do not consider it
for abstraction.

5.5.4 Y86 Processor (Y86)

In this experiment, we verify two versions of the well-known Y86 processor model intro-
duced by Bryant and O’Hallaron [30]. The Y86 processor is a pipelined CISC microprocessor
styled after the Intel IA32 instruction set. While the Y86 is relatively small for a processor,
it contains several realistic features, such as a dual-read, dual-write register file, separate
data and instruction memories, branch prediction, hazard resolution, and an ALU that sup-
ports bit-vector arithmetic and logical instructions. There are several variants of the Y86
processor:

STD The base implementation. Hazards are resolved by a combination of forwarding and
stalling. Branches are predicted as taken, with up to two instructions cancelled on
misprediction.

FULL Implements two additional instructions.

STALL Uses stalling to resolve all hazards.

NT Conditional branches are predicted as not taken.

BTFNT Similar to NT, except that backward branches are predicted as taken, while
forward branches are predicted as not taken.

LF An additional forwarding path is added, allowing some load/use hazards to be resolved
by forwarding rather than stalling.

SW The register file has only one write port, requiring execution of the pop instruction
to occur over two cycles: one to update the stack pointer and the other to read from
memory.

The property we wish to prove on the Y86 variants is Burch-Dill style correspondence-
checking [31]. In correspondence checking, a pipelined version of a processor is checked
against a single-cycle version. The main goal of correspondence checking is to verify that
the pipeline control logic allows all of the same behaviors that the instruction set architec-
ture (ISA) supports. Each run of correspondence checking involves injecting an instruction
into the pipeline and subsequently flushing the pipeline to allow the effects of the injected
instruction to update the processor state. A single run of correspondence checking requires
over a dozen cycles of symbolic simulation.
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Each Y86 version has the same module hierarchy. The following modules are candidates
for abstraction: register file (RF), condition code (CC), branch function (BCH), arithmetic-
logic unit (ALU), instruction memory (IMEM), and data memory (DMEM). The RF module
is ruled out as a candidate for abstraction during the random simulation stage due to a large
number of failures during verification via simulation. This occurs because an uninterpreted
function is unable to accurately model a mutable memory. We do not consider IMEM
and DMEM for automatic abstraction because they are memories and we do not address
automatic memory abstraction in this work. Instead, we manually model IMEM and DMEM
with completely uninterpreted functions. The CC and BCH modules are also removed from
consideration due to the relatively simple logic contained within them. Abstracting these
modules is unlikely to yield substantial verification gains and may even hurt performance
due to the overhead associated with uninterpreted functions. This leaves us with the ALU
module.

5.6 Results

The hypothesis we test with our experiments is that performing automatic term-level
abstraction before verification can yield substantial speedups over verifying the original
word-level design. While we would have liked to compare with the Reveal or Vapor systems,
they are not publicly available. Our own experience with performing fine-grained term-level
abstraction as with Reveal/Vapor is that there are far too many spurious counterexamples
generated to yield any improvements, especially given the recent advances in bit-vector SMT
solvers.

Our experiments were performed by first extracting ATLAS netlist representations from
the Verilog RTL. Random simulations were performed using the Icarus Verilog simulator [66].
We used T = 1000 random functions for each equivalence class of fblocks, selecting a class
for function abstraction if at most τ = 50 (5%) simulations failed. ATLAS translates both
word-level and term-level netlists into UCLID format [20], before using UCLID’s symbolic
simulation engine to perform bounded equivalence checking or refinement (correspondence)
checking of processor designs. Experiments were run on a Linux workstation with 64-bit 3.0
GHz Xeon processors and 2 GB of RAM.

Some characteristics of the benchmarks are given in the first six columns of Table 5.3.
The size of the designs are described in terms of the numbers of latches as well as the
number of signals in the word-level netlist (based on ATLAS’ representation). In general,
random simulation was very effective at pruning out fblocks that cannot be replaced with
uninterpreted functions. For the PIPE, USB, and Y86 designs, only two fblocks survived
the results of random simulation, both being instantiations of the same Verilog module (one
in each circuit in the equivalence/refinement check). For the CALC, the ADD/SUB as well
as the Shifter fblocks could be abstracted, again symmetrically on each side of the miter.

Once candidate fblocks are identified for abstraction, ATLAS generates word-level and
term-level UCLID models using the approach outlined in Section 5.3. UCLID is used to
perform symbolic simulation. For refinement checking of processor designs, the number of
cycles of symbolic simulation is defined by the Burch-Dill approach [31] and based on the
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pipeline depth. For equivalence checking tasks, we performed symbolic simulation for various
numbers of cycles. Both verification tasks, at the end, generate a decision problem in a
combination of logical theories. For word-level models, this problem is in the theory of finite-
precision bit-vector arithmetic, possibly including the theory of arrays if memory abstraction
is performed (as for Y86 benchmarks). For term-level models, the decision problem is in the
combination of bit-vector arithmetic, uninterpreted functions, and arrays. We experimented
with several SMT solvers for this combination of theories, including Boolector, MathSAT,
and Yices, three of the top solvers in the 2008 and 2009 SMTCOMP competition [33]. We
present our results for Boolector [22], the SMT solver that performs best for the word-level
designs.

The experimental results are presented in the last 9 columns of Table 5.3. Consider the
last two columns of the table. Here we present two ratios: “SMT” indicates the speedup of
running Boolector on ATLAS output versus the original design. We observe that we get a
speedup on all benchmarks, ranging from a factor of 2 to 92. However, when the running
time for random simulations and static analysis is factored in (“Total”), we observe that
ATLAS does worse on the USB design, and has a somewhat smaller speedup on the other
designs. The main reason is the time spent in random simulation. We believe there is scope
for optimizing the performance of the random simulator, as well as amortizing simulation
time across different formal verification runs.

We also experimented with a purely SAT-based approach. Here the word-level problems
are bit-blasted to a SAT problem. For term-level problems, UCLID first eliminates uninter-
preted function applications using Ackermann’s method as described in Section 3.4.1, and
then the resulting word-level problem is bit-blasted to SAT. We experimented with several
SAT engines, including MiniSAT [40, 38], PicoSat [12], and Precosat [47].

Table 5.4 reports the SAT problem sizes and run-times for a selected subset of generated
SAT problems. The run-time of the best SAT solver is reported for each run. For the
CALC example, the SAT solvers perform better on the original word-level model, which is
understandable, since reasoning about addition, subtraction, and shifting is not particularly
hard for SAT engines. Thus, by abstracting these operators, we complicate the verification
problem by adding functional consistency constraints (as described in Section 3.4.2). For
the PIPE and USB examples, however, term-level abstraction by ATLAS performs signif-
icantly better even when the SAT problem size is much bigger. This indicates the benefit
of abstracting modules such as CRC16 which can have operators such as XORs that are
hard for SAT engines. This data supports the intuition given in Section 5.3 behind why
conditional abstraction is effective.

5.7 Related Work

While Vapor and Reveal [6, 4, 5], as described in Section 4.7, are related to the ATLAS
approach described in this chapter, there are a few key differences.

Vapor and Reveal perform both data and function abstraction, whereas ATLAS focuses
solely on function abstraction. Furthermore, instead of individually abstracting all bit-
vector operators, ATLAS performs selective abstraction at the module level. Thus, instead
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Name N Abs? SAT Size Run-time
#Vars #Clauses (sec.)

PIPE 9 No 41911 122203 >3600
Yes 45644 133084 29.86

USB 25 No 17667 51916 >3600
Yes 159509 475057 68.74

CALC 25 No 351892 1039501 823.71
Yes 753164 2234485 1771.66

Table 5.4: Performance Comparison of SAT-based Verification. N is the number of
cycles symbolically simulated. “Abs?” indicates whether term-level abstraction via ATLAS
was used or not.

of replacing individual operators with uninterpreted functions, we replace entire modules
with uninterpreted functions. Another key difference is that ATLAS employs conditional
abstraction. Thus, a verification model produced by ATLAS retains the original function-
ality, as well as the abstract functionality, and then chooses between the two based on the
interpretation conditions computed via static analysis. The benefits of using the ATLAS
approach are as follows:

1. The relative gain from using an uninterpreted function is typically greater, because
each uninterpreted function is replacing many precise operators.

2. Uninterpreted functions require constraints to enforce functional consistency. These
constraints grow quadratically with the number of applications of a particular unin-
terpreted function. Thus, it is important to use uninterpreted functions only when
necessary, otherwise the functional consistency constraints are introducing unneces-
sary overhead.

3. Vapor and Reveal replace all operators with uninterpreted functions. However, certain
operations, such as extract and concatenation, are not hard for bit-vector solvers
to reason about. Thus, the use of uninterpreted functions will be more expensive
due to the consistency constraints and, in the case of extract and concatenate, the
uninterpreted function is essentially replacing a wire.

This work is the first to propose conditional term-level abstraction and demonstrate that
it actually works. Furthermore, this work is the first to combine random simulation with
static analysis to perform automatic conditional function abstraction. Potentially, if the
statically-computed conditions generated by ATLAS make the problem size too large, one
can fall back to a CEGAR approach.

We also note that the ATLAS approach presented herein could in principle be combined
with bit-width reduction techniques (e.g. [49, 13, 16]) to perform combined function and data
abstraction.
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5.8 Summary

In this chapter we presented an automatic approach to function abstraction called AT-
LAS. ATLAS takes a word-level RTL design and creates a conditionally abstracted term-
level design. ATLAS relies on a combination of random simulation and static analysis.
Random simulation is used to identify what modules to abstract. Static analysis is used
to compute conditions under which it is precise to abstract. We presented experimental
evidence that ATLAS can produce easier-to-verify models, even when the underlying SAT
or SMT problem is larger than the corresponding word-level model.

A binary distribution of ATLAS, UCLID models of the benchmarks used throughout
this chapter, and the experimental data from which the results in Section 5.6 are based, can
be obtained at http://uclid.eecs.berkeley.edu/atlas.

http://uclid.eecs.berkeley.edu/atlas
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Chapter 6

Learning Conditional Abstractions

In this chapter we present CAL1 , an alternative approach to automatic function abstrac-
tion. CAL is a layered approach based on a combination of random simulation, machine
learning, and counterexample-guided abstraction-refinement (CEGAR). CAL is similar to
ATLAS in the way it decides what blocks to abstract, however, it is different in the way in
which interpretation conditions are computed. CAL uses machine learning [56] instead of
static analysis to compute interpretation conditions.

A high-level overview of the CAL approach is as follows. Random simulation is used to
determine candidate modules for abstraction. A verifier is invoked on a term-level model
where the candidate modules are completely abstracted with uninterpreted functions. If
spurious counterexamples arise, machine learning is used to compute interpretation condi-
tions under which abstraction can be performed without loss of precision. This process is
repeated until we arrive with a term-level model that is valid or a legitimate counterexample
is found. Figure 6.1 illustrates the CAL approach.

6.1 Top-Level CAL Procedure

The top-level CAL procedure, VerifyAbs, is described in Algorithm 4. VerifyAbs
takes two arguments, the design D being verified and the set of equivalence classes being
abstracted FSA. Initially, the interpretation conditions ci ∈ IC are set to false meaning
that we start by unconditionally abstracting the fblocks in D. The procedure CondAbs
creates the abstracted term-level design T from three inputs: the word-level design D, the
set of equivalence classes to be abstracted FSA, and the set of interpretation conditions
IC. Next, a term-level verifier is invoked on T . If Verify (T ) returns Valid, we report
that result and terminate. If a counterexample arises, the counterexample is evaluated
on the word-level design. If the counterexample is non-spurious, VerifyAbs reports
the counterexample and terminates, otherwise the counterexample is stored in CE and the
abstraction condition learning procedure, LearnAbsConds (D,FSA, CE), is invoked.

We say that VerifyAbs is sound if it reports Valid if and only if D is correct. It is

1CAL stands for Conditional Abstraction through Learning
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Figure 6.1: The CAL approach A CEGAR-based approach, CAL identifies candidate
abstractions with random simulation and uses machine learning to refine the abstraction if
necessary.

complete if any counterexample reported by it when it terminates is a true counterexample
(i.e., not spurious). We have the following guarantee for the procedure VerifyAbs:

Theorem 6.1. If VerifyAbs terminates, it is sound and complete.

Proof. Any term-level abstraction is a sound abstraction of the original design, since any
partially-interpreted function (for any interpretation condition) is a sound abstraction of
the fblock it replaces. Thus VerifyAbs is sound. Moreover, VerifyAbs terminates with
a counterexample only if it deems the counterexample to be non-spurious, by simulating it
on the concrete design D. Therefore VerifyAbs is complete.

Note that VerifyAbs performs abstraction in a manner similar to the abstraction
performed by ATLAS as described in Section 5.3. The difference is in the way interpretation
conditions are computed and refined. Thus, assuming that VerifyAbs terminates, the
proof of Theorem 5.5 can be used to prove Theorem 6.1, so we include only a proof sketch
above.

In order to guarantee termination of VerifyAbs, we must impose certain constraints
on the learning algorithm LearnAbsConds. This is formalized in the theorem below.

Theorem 6.2. Suppose that the learning algorithm LearnAbsConds satisfies the follow-
ing properties:
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(i) If ci denotes the interpretation condition for an fblock learned in iteration i of the
VerifyAbs loop, then ci =⇒ ci+1 and ci 6= ci+1;

(ii) The trivial interpretation condition true belongs to the hypothesis space of Learn-
AbsConds, and

(iii) The hypothesis space of LearnAbsConds is finite.

Then, VerifyAbs will terminate and return either Valid or a non-spurious counterexample.

Proof. Consider an arbitrary fblock that is a candidate for function abstraction. Let the
sequence of interpretation conditions generated in successive iterations of the VerifyAbs
loop be c0 = false, c1, c2, . . .. By condition (i), c0 =⇒ c1 =⇒ c2 =⇒ . . . where
ci 6= ci+1. Since no two elements of the sequence are equal, and the hypothesis space is
finite, no element of the sequence can repeat. Thus, the sequence (for any fblock) forms a
finite chain of implications. Moreover, since true belongs to the hypothesis space, in the
extreme case, VerifyAbs can generate in its final iteration the term-level design T identical
to the original design D, which will yield termination with either Valid or a non-spurious
counterexample.

In practice, the conditions (i)-(iii) stated above can be implemented on top of any learn-
ing procedure. The most straightforward way is to set an upper bound on the number of
iterations that LearnAbsConds can be invoked, after which the interpretation condition
is set to true. Another option is to set ci+1 to ci ∨ di+1 where di+1 is the condition learned
in the i+ 1-th iteration. Yet another option is to keep a log of the interpretation conditions
generated, and if an interpretation condition is generated for a second time, the abstrac-
tion procedure is terminated by setting the interpretation condition to true. Many other
heuristics are possible; we leave an exploration of these to future work.

6.2 Conditional Function Abstraction

Procedure CondAbs (D,FSA, IC) is responsible for creating a term-level design T from
the original word-level design D, the set of equivalence classes to be abstracted FSA, and
the set of interpretation conditions IC. Algorithm 5 outlines the conditional abstraction
procedure.

CondAbs operates by iterating through the equivalence classes in FSA. A fresh un-
interpreted function symbol UFj is created for each tuple of isomorphic output signals χj
associated with equivalence class Fi ∈ FSA. Each output signal vij ∈ χj is condition-
ally abstracted with UFj. Figure 6.2 illustrates how the output signals of an fblock are
conditionally abstracted. The original word-level circuit is shown in Figure 6.2(a) and the
conditionally abstracted version with interpretation condition c is shown in Figure 6.2(b).
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Algorithm 4 Procedure VerifyAbs (D,FSA): Top-level CAL verification procedure.

Input: Combined word-level design (miter): D := 〈I,O, {Ni | i = 1, . . . , N}〉
Input: Equivalence classes of fblocks: FSA := {Fj | j = 1, . . . , k}
Output: Verification result: Result ∈ {Valid,CounterExample}
1: Set ci = false for all ci ∈ IC.
2: while true do
3: T = CondAbs (D,FSA, IC)
4: Result = Verify (T )
5: if Result = Valid then
6: return Valid.
7: else
8: Store counterexample in CE .
9: if CE is spurious then

10: IC ←LearnAbsConds (D,FSA, CE)
11: else
12: return CounterExample.
13: end if
14: end if
15: end while

Algorithm 5 Procedure CondAbs (D,FSA, IC): Create term-level design T from word-
level design D, the set of fblocks being abstracted FSA, and the set of interpretation con-
ditions IC.
Input: Combined word-level design (miter): D := 〈I,O, {Ni | i = 1, . . . , N}〉
Input: Equivalence classes of fblocks: FSA := {Fj | j = 1, . . . , k}
Input: Set of interpretation conditions: IC
Output: Term-level design: T
1: for each equivalence class Fi ∈ FSA do
2: Let χj denote the isomorphic output tuple associated with the j-th output signal in

fblock fi ∈ Fi
3: for all j ∈ 1, ..., k do
4: Create a fresh uninterpreted function symbol UFj.
5: Let (i1, ..., ik) denote the input symbols to fblock fi.
6: for each output signal vij ∈ χj do
7: Let cvij

∈ IC denote the interpretation condition associated with vij
8: Replace the assignment vij ← e in fi with the assignment

vij ← ITE(cvij
, e,UFj(i1, ..., ik))

9: end for
10: end for
11: end for
12: return Term-level design T
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Figure 6.2: Conditional abstraction (a) Original word-level fblock f . (b) Conditionally
abstracted version of f with interpretation condition c

6.3 Learning Conditional Abstractions

Spurious counterexamples arise due to imprecision introduced during abstraction. More
specifically, when a spurious counterexample arises, it means that at least one fblock fi ∈ F
(where F ∈ FSA) is being abstracted when it needs to be modeled precisely. In the context
of our abstraction procedure VerifyAbs, if Verify (T ) returns a spurious counterexample
CE , then we must invoke the procedure LearnAbsConds (D,FSA, CE).

The LearnAbsConds procedure invokes a decision tree learning algorithm on traces
generated by randomly mutating fblocks fi ∈ F to generate “good” and “bad” traces. Good
traces are those where the mutation does not lead to a property violation; the other traces
are bad. The learning algorithm generates a classifier in the form of a decision tree to
separate the good traces from the bad ones. The classifier is essentially a Boolean function
over signals in the original word-level design. More information about decision tree learning
can be found in Mitchell’s textbook [56].

There are three main steps in the LearnAbsConds procedure:

1. Generate good and bad traces for the learning procedure;

2. Determine meaningful features that will help decision tree learning procedure compute
high quality decision trees, and

3. Invoke a decision tree learning algorithm with the above features and traces.

The data input to the decision tree software is a set of tuples where one of the tuple elements
is the target attribute and the remaining elements are features. In our context, a target
attribute α is either Good or Bad. Our goal is to select features such that we can classify the
set of all tuples where α = Bad based on the rules provided by the decision tree learner. It
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is very important to provide the decision tree learning software with quality input data and
features, otherwise, the rules generated will not be of use. The data generation procedure
is described in Section 6.4 and feature selection is described in Section 6.5.

6.4 Generating Data

In order to obtain high quality decision trees, we need to generate good and bad traces
for the design being verified. Of course, whenever the procedure LearnAbsConds is
called, we have a spurious counterexample stored in CE . However, a single trace comprising
only the counterexample is far from adequate, and will result in a trivial decision tree stating
that α always equals Bad (i.e., the decision tree is simply true), since the learning algorithm
with not have sufficient positive and negative examples to generalize from.

In order to produce a meaningful decision tree, we must provide the decision tree learner
with both good and bad traces. We use random simulation to generate witnesses and coun-
terexamples and describe these procedures in detail in Sections 6.4.1 and 6.4.2, respectively.

6.4.1 Generating Witnesses

We generate good traces, or witnesses, for the decision tree learner using a modified
version of the random simulation procedure described in Section 5.1. Instead of simulating
the abstract design when only a single fblock has been replaced with a random function,
we replace all fblocks with their respective random functions at the same time and perform
verification via simulation. Replacing all the fblocks to be abstracted with the respective
random function is an important step, because the goal of generating witnesses is to gen-
erate many different witnesses. If the fblocks are not replaced with random functions, the
witnesses will be similar and this will degrade the results of the decision tree learner.

After replacing each fblock to be abstracted with the corresponding random functions,
we perform simulation by verification for N iterations, in the same manner that we did
in Section 5.2. Note that N is chosen heuristically and we discuss typical values for N in
Section 6.6. The initial state of design D is set randomly before each run of simulation.
This usually results in simulation runs that pass. Recall that at this stage we only consider
fblocks that produce failing runs in a small fraction of simulation runs. Now, instead of
only logging the result of the simulation, we log the value of every signal in the design for
every cycle of each passing simulation. It is up to the feature selection step, described in
Section 6.5, to decide what signals are important. Let Good be the set of all witnesses
produced in this step.

Note that in practice, if the set of features are known before this step, there is no need to
log every signal. Instead, we log only the features that the decision tree learner will operate
on. However, for small N , it is not much of a burden to log all signals, and doing this has
the added benefit that in the case that the features are not sufficient, there is no need to
rerun this process.
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6.4.2 Generating Similar Counterexamples

There are several options that can be used to generate bad traces, or counterexamples.
The counterexamples generated in this step are similar to the original spurious counterex-
ample stored in CE .

The first option is to use random simulation in a manner similar to that used to identify
abstraction candidates. If more than one fblock has been abstracted, the counterexample CE
can be the result of abstracting any individual fblock, or a combination of fblocks. Consider
the situation where CE is the result of only a single abstraction. In this situation, we replace
each fblock that has been abstracted with a random function in the word-level design, just
as we did when identifying abstraction candidates. Next, verification via simulation is
performed for N iterations, with a different random function for each iteration, just as in
the procedure described in Section 5.2 (again, N is chosen heuristically). A main point of
difference between generating similar counterexamples and generating witnesses is that in
generating similar counterexamples, we set the initial state of design D to be consistent
with the initial state in CE , whereas we randomly set the initial state of design D when
generating witnesses.

We log the values of every signal in the design for each failing simulation run. It is
possible that none of the simulation runs fail, because the counterexample could be the
result of abstracting a different fblock. In either case, we repeat this process for each fblock
that is being abstracted. If random simulation for individual fblocks does not result in any
failing simulation run, we must take into account combinations of fblocks, otherwise, we
terminate the process of generating similar counterexamples. When it is necessary to take
into account combinations of fblocks, there are several options. On one hand, trying every
possible combination of fblocks could lead to an exponential number of iterations. On the
other hand, trying the situation where every fblock is responsible for the counterexample
could lead to interpretation conditions that are less precise.

Consider the case where only a small number of abstracted fblocks are responsible for
the spurious counterexample and a large number of fblocks are being abstracted. By using
all of the fblocks to determine the appropriate interpretation condition means that we will
need to use the same interpretation condition for each fblock. Thus, we would be using an
interpretation condition that only a small number of fblocks require, for a large number of
fblocks. None of the examples we use in this work require interpretation conditions for more
than a single fblock, so we leave the exploration of heuristics that determine how to choose
interpretation conditions for combinations of fblocks for future work.

Alternative Approaches. The random simulation based approach is the most versatile,
and likely the least computationally intensive, method of generating similar counterexam-
ples. However, two alternative approaches exist. The first involves using the Verify
procedure where the previously seen counterexamples are ruled out. The drawback to this
approach is that using a formal verifier will likely be more computationally expensive than
running a small number of simulations.

The second approach involves modifying the verification property and is only applicable
in certain scenarios. For example, in bounded-model checking, it is possible to construct
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a property such that any counterexample violates the property in every stage of BMC, as
opposed to only failing in a single stage. Not all equivalence or refinement checking problems
lend themselves to this approach. However, when it is possible to use this option, it can
reduce the number of traces required to create a quality decision tree. We give an example
of this option in Section 6.6.3.

Regardless of how the bad traces are generated, we denote the set of all bad traces by
Bad . Furthermore, we annotate each trace in Bad with the Bad attribute and each trace in
Good with the Good attribute.

6.5 Choosing Features

The quality of the decision tree generated is highly dependent on the features used to
generate the decision tree. We use two heuristics to identify features:

1. Include input signals to the fblock being abstracted.

2. Include signals encoding the “unit-of-work” being processed by the design, such as the
instruction being executed.

Input signals. Suppose we wish to determine when fblock f must be interpreted. It is
very likely that whether or not f must be interpreted is dependent on the inputs to f . So,
if f has input signals (i1, i2, ..., in) it is almost always the case that we would include the
input arguments as features to the decision tree learner.

Unit-of-work signals. There are cases when the input arguments alone are not enough
to generate a quality decision tree. In these cases, human insight can be provided by
defining the unit-of-work being performed by the design. For example, in a microprocessor
design, the unit-of-work is an instruction. Similarly, in a network-on-a-chip (NoC), the unit-
of-work is a packet, where the relevant signals could include the source address, destination
address, or possibly the type of packet being sent across the network. After signals corre-
sponding to a unit-of-work are identified, it is easy to propagate this information to identify
all signals directly derived from the original unit-of-work signals. For instance, in the case
of a pipelined processor, the registers storing instructions in each stage of the pipeline are
relevant signals to treat as features.

6.6 Experimental Results

We performed three case studies to evaluate CAL. Each of these case studies has also
been verified using ATLAS. Additionally, each case study requires a non-trivial interpreta-
tion condition (i.e., an interpretation condition different from false). The first case study
involves verifying the example shown in Figure 5.3. Next, we verify, via correspondence
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checking, two versions of the the Y86 microprocessor. Finally, we perform equivalence
checking between a low-power multiplier and the corresponding non-power-aware version.

Our experiments were performed using the UCLID verification system [18]. Min-
iSAT [39, 40] was used as the SAT backend, while Boolector [22] was used as the SMT
backend. Random simulation was performed using the Icarus Verilog [66] simulator. The
interpretation conditions were learned using the C5.0 decision tree learner [61]. All experi-
ments were run on a Linux workstation with 64-bit 3.0 GHz Xeon processors with 2 GB of
RAM.

6.6.1 Processor Fragment

In this experiment, we perform equivalence checking between Design A and B shown in
Figure 5.3. First, we initialize the designs to the same initial state and inject an arbitrary
instruction. Then we check whether the designs are in the same state. The precise property
that we wish to prove is that the ALU and PC outputs are the same for design A and B.
Let outA and outB denote the ALU outputs and pcA and pcB denote the PC outputs for
designs A and B, respectively. The property we prove is:

outA = outB ∧ pcA = pcB

Aside from the top-level modules, the design consists of only two modules, the instruction
memory (IMEM) and the ALU. We do not consider the instruction memory for abstraction
because we do not address automatic memory abstraction. The ALU passes the random
simulation stage, so it is an abstraction candidate.

For this example, we have the benefit of knowing a priori the exact interpretation condi-
tion needed in order to precisely abstract the ALU module. A counterexample is generated
during the first verification stage due to the unconditionally abstracted ALU. Due to the
rather simple and contrived nature of this example, not many signals need to be considered
as features for the decision tree learner. The features we use in this case are arguments
to the ALU; the instruction and the data arguments. The interpretation condition learned
from the trace data is op = JMP where op is the top 4 bits of the instruction.

Interpretation UCLID Runtime (sec)
Condition SAT SMT

true 28.51 27.01
op = JMP 0.31 0.01

Table 6.1: Performance comparison for Processor Fragment. UCLID runtime com-
parison for the processor fragment shown in Figure 5.3. The runtime associated with the
model abstracted with CAL is shown in bold.

6.6.2 Y86 Processor

In this experiment, we verify two versions of the well-known Y86 processor model intro-
duced by Bryant and O’Hallaron [30] and described in Section 5.5.4. The Y86 variants we
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consider in this section are NT and BTFNT. We focus on these versions in particular be-
cause they require non-trivial interpretation conditions (e.g., interpretation conditions not
equal to true or false).

During the random simulation phase the ALU generates very few, if any, failures. In
fact, in order to get a failure, it is usually necessary to simulate for 10,000–100,000 runs of
correspondence checking; potentially several hundred thousand to a million individual cycles
before obtaining an error. Of course we never run that many cycles of random simulation.
Instead, we perform at most 500-1000 runs of correspondence checking and usually do not
receive a violation. However, in the first iteration of VerifyAbs we obtain a spurious
counterexample which requires the computation of non-trivial interpretation conditions. We
use this counterexample to initialize the initial state of the processor models as discussed in
Section 6.4.

Decision tree feature selection

In the case of both BTFNT and NT using only the arguments of the abstracted ALU
is not sufficient to generate a useful decision tree. The ALU takes three arguments, the
op-code op and two data arguments a and b. Closer inspection of the data provided to
the decision tree learner reveals a problem. In almost every single case in both good and
bad traces, the ALU op is equal to ALUADD and the b argument is equal to 0, in almost
every cycle of correspondence checking. The underlying cause of this poor data stems from
a perfectly reasonable design decision. Many of the Y86 instructions do not require the
ALU to perform any operation. In these cases, the default values fed into the ALU are
op = ALUADD and b = 0 and this condition holds in good and bad traces alike.

In this situation, the arguments to the ALU are not good features by themselves. Con-
ceptually, the unit-of-work that we are performing in a pipelined processor is a sequence
of instructions, specifically the instructions that are currently in the pipeline. When we
include the instructions that are in the pipeline during the cycle in which the instruction is
injected as described earlier in this section, we are able to obtain a much more high qual-
ity decision tree, or interpretation condition. In fact, the interpretation condition obtained
when considering all instructions currently in the pipeline during the cycle in which the new
instruction is injected is:

c := InstrE = JXX ∧ InstrM = RMMOV

The interpretation condition c indicates that we need to interpret the ALU whenever
there is a JUMP instruction (JXX) in the execute stage and there is a register-to-memory
move in the memory stage. While this interpretation condition is an improvement over the
original decision tree, it still leads to further spurious counterexamples. The reason is that
we are now including too many features, some of which have no effect on whether the ALU
needs to be interpreted. These additional features restrict the situations when the ALU is
interpreted and this causes further spurious counterexamples. A logical step is to include as
a feature only the instruction that is currently in the ALU. So, when we use the following
features: InstrE, op, a, and b we obtain the interpretation condition:

cE,b := InstrE = JXX ∧ b = 0
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This is the best interpretation condition we can hope for. In fact, in previous attempts to
manually abstract the ALU in the BTFNT version, we used:

cHand := op = ALUADD ∧ b = 0

When we compare the runtimes for verification of the Y86-BTFNT processor, we see
that verifying BTFNT with the interpretation condition cE,b outperforms the unabstracted
version and the previously best known abstraction condition (cHand). Table 6.2 compares
the UCLID runtimes for the Y86 BTFNT model with the different versions of the abstracted
ALU.

Interpretation UCLID Runtime (sec)
Condition SAT SMT

true > 1200 > 1200
cHand 133.03 105.34
cE,b 101.10 65.52

Table 6.2: Performance comparison for Y86-BTFNT processor. UCLID runtime
comparison for Y86-BTFNT for different interpretation conditions. The runtime associated
with the model abstracted with CAL is shown in bold.

Abstraction-refinement

The NT version of the Y86 processor requires an additional level of abstraction refine-
ment. In general, requiring multiple iterations of abstraction refinement is not interesting
by itself. However, it is interesting to see how the interpretation conditions change using
this machine learning-based approach.

Attempting unconditional abstraction of the ALU in the NT version results in a spurious
counterexample. The interpretation condition learned from the traces generated in this
step is c := a = 0. It is interesting that the same interpretation condition is generated
regardless of whether we consider all of the instructions as features, or only the instruction
in the same stage as the ALU. Not surprisingly, the second attempt at verification using
the interpretation condition c results in another spurious counterexample. In this case, the
interpretation condition learned is cE := InstrE = ALUADD, which states that we must
interpret anytime an addition operation is present in the ALU. Similarly with the first
iteration, the interpretation condition learned is the same regardless of whether use all of
the instructions as features, or only the instruction in the execute stage. Verification is
successful when cE is used as the interpretation condition.

A performance comparison for the NT variant of the Y86 processor is shown in Table 6.3.
Unlike the BTFNT case, the abstraction condition we learn for the NT model is not quite
as precise as the previously best known interpretation condition, and the performance isn’t
as good. However, the runtimes for conditional abstraction, including the time spent in
abstraction-refinement, are smaller than that of verifying the original word-level circuit.
That is, the runtime when the interpretation condition is cE is accounting for two runs of
UCLID that produce a counterexample and an additional run when the property is proven
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Valid. Note that the most precise abstraction condition is the same for both BTFNT and
NT. The best performance on the NT version is obtained when the interpretation condition
cBTFNT := InstrE = JXX ∧ b = 0 is used.

Interpretation UCLID Runtime (sec)
Condition SAT SMT

true > 1200 > 1200
cHand 154.95 89.02
cE 191.34 187.64

cBTFNT 94.00 52.76

Table 6.3: Performance comparison for Y86-NT processor. UCLID runtime compar-
ison for Y86-NT for different interpretation conditions. The runtime associated with the
model abstracted with CAL is shown in bold.

The reason the interpretation condition for BTFNT differs from that of NT is because
the root cause of the counterexamples are different. The counterexample generated for the
BTFNT model arises because the branch target that would pass through the ALU unaltered,
gets mangled when the ALU is abstracted. The counterexample generated for the NT model
arises because the abstracted ALU incorrectly squashes a properly predicted branch.

6.6.3 Low-Power Multiplier

The next example we experimented with is a low-power multiplier design first introduced
in [15]. Consider a design that has a multiplier which can be powered down when no
multiply instructions are present to save power. Any time a multiply instruction is issued,
the multiplier would have to be powered up in order to compute the multiplication. An
optimization to this design is to send any multiply instructions in which at least one operand
is a power of 2 to a shifter. Figure 6.3(b) illustrates this design. The pow2 module takes
inputs a and b and generates cond which is true if either operand is a power of 2. If one
or more operand is a power of 2, pow2 ensures that the proper shift amount is computed
and sent to the appropriate shifter input. If neither operand is a power of two, cond is
false, so the inputs to the shifter are don’t cares. To safely use such a circuit, we must first
verify that the optimized multiplier performs the same computation as a regular multiplier.
We consider the unoptimized multiplier module for abstraction, because a) it is the only
replicated fblock in the design and b) it passes the random simulation stage.

Note that in the implementation of the design in Figure 6.3(b) there are two signals
a is pow 2 and b is pow 2 that are true when a or b, respectively, are powers of
two. When performing unconditional abstraction on the miter constructed between the
multiplier designs, a spurious counterexample is generated. This happens due to the fact
that when either input argument is a power of two, then the output of the low-power
multiplier is precise. In order for the verification to succeed, we must capture this behavior
in an interpretation condition.
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Figure 6.3: Low-power design example. (a) the original, word-level multiplier; (b)
multiplier that uses a shifter when an operand is a power of 2.

It is possible to generate similar counterexamples using random simulation. However,
in this case, it is also possible to use the alternative method of modifying the property. In
order to do this, we generate multiple counterexamples by unrolling the circuit many times
and constructing a property that is valid if and only if there is never a time frame in which
the two circuits differ. A counterexample of this property will be a trace in which the two
circuits have different results in every stage. We use this method to generate bad traces
for the decision tree learner. To generate good traces, we simply randomly simulate the
circuits for some number of cycles. The chance of one of the inputs being a power of two is
so small that it is unlikely to occur in a small number of simulation runs. In addition to the
arguments to the multiplier circuits, a and b, we consider a is pow 2 and b is pow 2

as features. The interpretation condition obtained due to this configuration of features and
traces is cpow2 := a is pow 2 ∨ b is pow 2

The performance comparison for the equivalence checking problem between a standard
multiplier and the multiplier optimized for power savings is shown in Table 6.4. While the
abstracted designs show a small speedup in most cases, it is by no means a performance
victory. Instead, what this experiment shows is that we are able to learn interpretation
conditions for another type of circuit and verification problem. Additionally, performing
abstraction on this circuit doesn’t cause a performance degradation.
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UCLID Runtime (sec)
BMC SAT SMT
Depth No Abs Abs No Abs Abs

1 2.81 2.55 1.27 1.38
2 12.56 14.79 2.80 2.63
5 67.43 22.45 8.23 8.16
10 216.75 202.25 21.18 22.00

Table 6.4: Performance comparison for low-power multiplier. UCLID runtime com-
parison for equivalence checking between multiplier and low-power multiplier. The runtime
associated with the model abstracted with CAL is shown in bold.

6.6.4 Comparison with ATLAS

ATLAS and CAL compute the same interpretation conditions for the processor frag-
ment described in Section 6.6.1 and the low-power multiplier described in Section 6.6.3.
Thus, the only interesting comparison with regard to the interpretation conditions is for the
Y86 design.

ATLAS is able to verify both BTFNT and NT Y86 versions with one caveat—the
multiplication operator was removed from the ALU to create a more tractable verification
problem. When multiplication is present inside the ALU, the ATLAS approach cannot
verify BTFNT or NT in under 20 minutes. In the case where the multiplication operator is
removed, the interpretation conditions generated by ATLAS for both BTFNT and NT are
quite large, even though the procedure to generate the conditions is iterated very few times.
Running this procedure for more iterations leads to exponential growth of the interpretation
condition expressions. Upon closer inspection of the interpretation conditions, it turns
out that the expressions simplify to true (i.e., no abstraction takes place). In this case,
ATLAS actually takes longer to verify BTFNT as shown in [17]. This behavior highlights
the main drawback of ATLAS. The static analysis procedure blindly takes into account the
structure of the design, giving equal importance to every signal. In reality, bugs stem from
very specific situations where only small fragments of the overall design contribute to the
buggy behavior. This was the inspiration behind the using machine learning to compute
interpretation conditions. Not only is CAL able to verify the BTFNT and NT Y86 versions
when multiplication is included in the ALU, but it does so with an order of magnitude
speedup over the unabstracted version.

6.6.5 Remarks

We have mainly focused thus far on the runtime taken by UCLID. The remaining runtime
taken by the other components of the CAL procedure is, in comparison, negligible. First,
the runtime of the decision tree learner is less than 0.1 seconds in every case. Second, the
simulation time is quite small. For instance, simulating 1000 correspondence checking runs
for the Y86 model takes less than 5 seconds. Whereas we are unable to verify the original
word-level Y86 designs within 20 minutes, so the CAL runtime is negligible. Note that the
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simulation runtime for the low-power multiplier example is even smaller than that of the Y86
design. For instance, it takes less than 0.2 seconds to simulate the low-power multiplier for
1000 cycles. The number of good and bad traces required to produce a quality decision tree
for the processor fragment example in Section 6.6.1 and the low-power multiplier example
in Section 6.6.3 is 5 (10 total). For the Y86 examples, the number of good and bad traces
was 50 (100 total). Thus, in every example, it takes only a fraction of a second to generate
enough data for the machine learning algorithm to be able to produce useful results.

A key point to note is that while the entire CAL procedure can be automated, human
insight can be invaluable in speeding up verification. For instance, if a designer or verification
engineer could mark the most important signals in a design, we could give those signals
priority when choosing features to give to the decision tree learner. In the context of the
Y86 examples, if the designer would specify up front that the instruction code signals for
each stage were important, we could fully automate the examples shown in this paper.
Noticing that the instruction codes are important signals in a processor design does not
require any leap of faith. It is obvious that they are important—they directly affect the
operation of the design being verified!

6.7 Related Work

CAL shares many similarities with ATLAS. Thus, work related to ATLAS as discussed
in Section 5.7 is relevant here as well; however, we refrain from duplicating it here.

ATLAS is the first technique to exploit the module structure specified by the designer
by using random simulation to determine the module instantiations that are suitable for
abstraction with uninterpreted functions. CAL uses this same technique to identify ab-
straction candidates. The main difference between CAL and ATLAS is the way in which
interpretation conditions are computed. Instead of using static analysis to compute inter-
pretation conditions, as described in Section 5.3, CAL uses a dynamic approach based on
machine learning. The benefit of this machine learning based approach is that the conditions
learned are actually causing spurious counterexamples. To the best of our knowledge, CAL
is the first work to use machine learning to dynamically compute conditions under which it
is precise to abstract. As is the case with ATLAS, the CAL approach could be combined
with bit-width reduction techniques (e.g. [49, 13]) to perform combined function and data
abstraction.

To our knowledge, Clarke, Gupta et al. [32, 45] were the first to use machine learning
to compute abstractions for model checking. Our work is similar in spirit to theirs. One
difference is that we generate term-level abstract models for SMT-based verification, whereas
their work focuses on bit-level model checking and localization abstraction. Consequently,
the learned concept is different: we learn Boolean interpretation conditions while they learn
sets of variables to make visible. Additionally, our use of machine learning is more direct
— e.g., while Clarke et al. [32] also use decision tree learning, they only indirectly use the
learned decision tree (the make visible all variables branched upon in the tree), whereas
we use the Boolean function corresponding to the entire tree as the learned interpretation
condition.
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6.8 Summary

In this chapter, we present CAL, an automatic function abstraction technique. As is
the case with ATLAS, CAL takes a word-level RTL design and creates a conditionally
abstracted term-level design. CAL relies on a combination of random simulation, machine
learning, and counterexample-guided abstraction-refinement. The random simulation-based
technique presented in Section 5.2 is used to identify abstraction candidates. CAL com-
putes abstraction conditions by integrating machine learning and counterexample-guided
abstraction-refinement. We have evaluated the effectiveness and efficiency of CAL on equiv-
alence and refinement checking problems involving pipelined processors and low-power de-
signs. Furthermore, we were able to learn abstraction conditions that were more precise
than previously known hand-crafted abstraction conditions.

A binary distribution of CAL is unavailable at the time of this writing. However, the
experimental data from which the results are based can be found at http://uclid.eecs.

berkeley.edu/cal.

http://uclid.eecs.berkeley.edu/cal
http://uclid.eecs.berkeley.edu/cal
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Chapter 7

Conclusions and Future Work

This chapter summarizes the main theoretical results and suggests avenues of future work.

7.1 Summary

Automatic abstraction can help increase the performance and capacity of formal verifi-
cation tools. This thesis has presented automatic data and function abstraction techniques
that have been used to successfully verify designs with realistic characteristics.

The data abstraction technique, v2ucl, presented in Chapter 4 exploits the small do-
main property of the logic of equality with uninterpreted functions. By re-encoding portions
of a bit-vector design in EUF, we are able to reduce the bit-width of certain datapaths within
the original design. We have presented experimental evidence that shows that the data ab-
straction technique presented herein leads to smaller, easier-to-verify models.

The notion of using random functions in place of uninterpreted functions in simulation
is a novel idea. Identifying abstraction candidates using simulation while exploiting the
module structure given by the designer is a new and useful technique. Automating the
identification of abstraction candidates is crucial if automatic abstraction is to be used in
industrial-quality tools.

The function abstraction techniques presented in Chapters 5 and 6 present two methods
of computing conditions under which it is precise to abstract. The static analysis-based
procedure, ATLAS, discussed in Chapter 5 can yield accurate interpretation conditions in
some cases. Another technique, CAL, described in Chapter 6 is based on machine learning.
We use machine learning to determine conditions that are shared amongst the spurious
counterexamples. These conditions can then be used to compute abstraction conditions.
We’ve shown that CAL can be used to compute high quality interpretation conditions
leading to easier to verify models.

7.2 Future Work

In this section we present avenues for future work.
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7.2.1 Combining Data and Function Abstraction

Data abstraction is often limited by bit-vector operators present in the datapaths being
abstracted. Applying function abstraction to these operators could lead to further data
abstraction. This type of abstraction is more fine grained than the abstraction procedures
described in Chapters 5 and 6. Combining function and data abstraction presents new chal-
lenges in automatic abstraction. In the data abstraction technique presented in Chapter 4,
portions of the circuit are abstracted to terms unconditionally. If this abstraction were to
be partial, we would need to compute interpretation conditions similar in nature to the con-
ditions we use for function abstraction, except this time, it will be activating or deactivating
entire portions of a circuit, instead of just an uninterpreted function.

7.2.2 Constraining the Progress of Learning Algorithms

As discussed in Section 6.1, in order for CAL to terminate, constraints must be imposed
on the progress of the learning algorithm. While the techniques we suggest to enforce
termination are correct, there is room for improvement.

In first option, a bound is imposed on the number of iterations. Once the bound is
reached, the interpretation conditions are set to true. This is the most straightforward
technique, but it does not prevent the situation where the learning algorithm gets into a
cycle. For example, the learning algorithm could alternate between learning c1 and c2. In
this case, the bound will enforce termination, but only the first two iterations of refinment
will be useful, the remaining iterations will not discover any new information.

The next option sets the interpretation condition ci+1 to ci ∨ di+1, where di+1 is the
condition learned on the i + 1-th iteration. The idea behind this option is to avoid cycles
by incorporating everything that has been learned into the current condition. This option
can result in pathological behavior where an exponential number of refinement iterations
are required before termination. In the worst case, the word-level design must be modeled
precisely and all the time spent learning conditions would be wasted.

The last option we suggested in Section 6.1 is to keep a log of all the conditions learned.
If any condition is repeated, set the condition to true. Recall that setting the condition
to true means that the module in question is represented precisely. Consider the example
discussed above where the learning algorithm cycles between learning c1 and c2. On the
third iteration (i.e., the second time we learn c1), we would set the condition to be true.
However, it is possible that the actual condition is c1 ∨ c2. Thus, we would give up, while
being very close to learning the desired solution.

The ideal method of constraining the progress of the conditions being learned will find the
balance between requiring few iterations of learning and finding a interpretation condition
that is relatively precise. Precise in this context means that the interpretation condition
evaluates to true only when necessary. The options listed above are limited in the sense that
they are overly conservative or aggressive in the way in which they constrain progress. It is
likely that a combination of the above heuristics can be more effective than any individual
heuristic. One possible combination of the above heuristics is as follows. The learning
algorithm can operate unconstrained, but if a particular condition is repeated, then take
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the disjunction of the current condition and every other condition that occured since the
last occurance of the current condition. If no condition is repeated after some number of
cycles, then either set the condition to true or take the disjunction of all conditions seen
thus far.

It is also possible that many iterations of refinement are required do to a poor feature
selection. Thus, being able to add or remove features on the fly could be helpful in learning
conditions more efficiently. This leads into our final suggestion for possible directions of
future work.

7.2.3 Automatic Feature Selection

One of the challenges in verifying the Y86 design was in selecting the features necessary
to obtain a high quality decision tree. Thus, automatic methods for choosing the features to
use in a decision tree learner are desirable. Techniques such as Bayesian multiple instance
learning [62] can be used to identify a subset of features that are relevant. A similar technique
could be incorporated into the the generation of witnesses and counterexamples. After
logging every signal in the design, we could then apply, for example, a Bayesian multiple
instance learning technique to identify what features will lead to a high quality decision
tree.
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