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Guidelines for Conducting Ethical Artificial Intelligence Research in 
Neurology: A Systematic Approach for Clinicians and Researchers

Sharon Chiang, Rosalind W. Picard, Winston Chiong, Robert Moss, Gregory A. 
Worrell, Vikram R. Rao, Daniel M. Goldenholz

ABSTRACT
Pre-emptive recognition of the ethical implications of study design and 
algorithm choices in
artificial intelligence (AI) research is an important but challenging process. AI
applications have
begun to transition from a promising future to clinical reality in neurology. As
the clinical
management of neurology is often concerned with discrete, often 
unpredictable, and highly
consequential events linked to multimodal data streams over long 
timescales, forthcoming
advances in AI have great potential to transform care for patients. However, 
critical ethical
questions have been raised with implementation of the first AI applications in
clinical practice.
Clearly, AI will have far-reaching potential to promote, but also to endanger, 
ethical clinical
practice. This article employs an anticipatory ethics approach to scrutinize 
how researchers in
neurology can methodically identify ethical ramifications of design choices 
early in the research
and development process, with a goal of pre-empting unintended 
consequences that may violate

principles of ethical clinical care. First, we discuss the use of a systematic 
framework for
researchers to identify ethical ramifications of various study design and 
algorithm choices.
Second, using epilepsy as a paradigmatic example, anticipatory clinical 
scenarios that illustrate
unintended ethical consequences are discussed, and failure points in each 
scenario evaluated.
Third, we provide practical recommendations for understanding and 
addressing ethical
ramifications early in methods development stages. Awareness of the ethical
implications of

https://doi.org/10.1212/WNL.0000000000012570
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study design and algorithm choices that may unintentionally enter AI is 
crucial to ensuring that
incorporation of AI into neurology care leads to patient benefit rather than 
harm.
KEYWORDS: Machine learning, Biomedical ethics; Anticipatory ethics; 
Anticipatory
governance; Scenario analysis; Technology foresight

1. INTRODUCTION
Artificial intelligence (AI) applications have begun to transition from a 
promising future to
clinical reality in neurology. AI can transform neurological clinical practice, 
with impacts on
quality, cost, and access to care.1 Epilepsy serves as a paradigmatic case of 
AI’s potential in
neurology, for which the breadth and depth of emerging AI applications 
spans a rapidly
expanding number of diagnostic, therapeutic, and prognostic applications2-10.
Critical ethical concerns have begun to arise with AI incorporation into 
clinical practice. These
include maximization of patient benefit while avoiding harm, risks to patient 
privacy,
perpetuation of bias, and tradeoffs between competing ethical goals. A 
fundamental question that
the epilepsy and broader neurology community must answer in coming years
is the degree of
responsibility each party (researchers, industry, clinicians, regulatory 
agencies) carries in the AI
pipeline, in order to facilitate a common goal of ensuring that AI promotes 
rather than endangers
ethical clinical practice.11

With the rapid proliferation of AI in healthcare, there have been a number of 
broad initiatives12-14

that provide general guidance on ethical values that AI should promote in 
healthcare. There is
currently little consensus in the neurologic community on where 
responsibility lies in the AI
pipeline for ensuring that benefit outweighs harm. The Food and Drug 
Administration (FDA)’s
action plan to increase oversight over AI-based medical software15 is 
anticipated to help guide
safe usage of AI in later market development stages. However, consideration
of the ethical
implications of AI research is important starting from early 
development/validation stages. First,
from the viewpoint of promoting safe AI, many fundamental study design 
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and algorithm choices
are made during early development/validation stages that have downstream 
ethical implications.
Second, from the viewpoint of direct benefit to early-stage researchers, early
adoption of

appropriate practices will decrease workload later when the system goes to 
market. It may be in
researchers’ interests to consider these factors early rather than engage in 
post-hoc consideration
that may require data retraining or recollection.
While literature exists on good statistical practices to improve rigor and 
reproducibility from a
technical standpoint16, as well as a number of documents on guiding values 
for AI,12-14 there is
limited practical guidance to researchers/clinicians on how to systematically 
identify ethical
implications of design choices in emerging AI research. Given the domain-
specificity of AI data
streams, patient vulnerabilities, and outpatient/inpatient differences in 
neurological subspecialties,
it may be helpful to consider distinct neurological subfields individually. The 
purpose of the
present work is to discuss a practical framework that researchers, peer-
reviewers, and clinicians
may find helpful when evaluating the potential ethical ramifications of 
emerging AI research in
the field of neurology, focusing on epilepsy as a paradigmatic case.

2. FIVE KEY ETHICAL PRINCIPLES FOR AI AND SYSTEMATIC FRAMEWORK
The four core principles of bioethics—respect for patient autonomy, 
beneficence,
nonmaleficence, and justice17—are pertinent also in AI. In addition, there is 
consensus that a fifth
key essential principle arises when evaluating AI: explicability, or 
transparency of process14,18

(eTable 1, available on Dryad: https://doi.org/10.5061/dryad.9zw3r22f8). 
Although the
community has established that an “ethical AI” should enhance these five 
principles,1 there are
limited guidelines on how to implement these principles in practice when 
conducting or
evaluating AI research. Consideration of impact on these five ethical 
principles by developers is
generally ad hoc.
It may be useful to contextualize ethical concerns in neurological AI research 
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by breaking down
the AI development pipeline into five stages (eFigure 1, available on Dryad:
https://doi.org/10.5061/dryad.9zw3r22f8)19: conception; development, during
which data
collection, algorithm development, training, and testing take place; 
calibration, during which
performance is evaluated; implementation in clinical practice; and 
monitoring, or maintenance in
the clinical environment. Below, we focus on the initial three stages during 
which many
fundamental AI choices are made: conception, development, and calibration.
We decompose
each stage into the various design/algorithm choices made in that stage and 
discuss the
implications of each choice for the five key ethical principles of AI.

3. RECOMMENDATIONS FOR ETHICAL CONSIDERATIONS BY STAGE
We followed published guidelines for development of health research 
reporting guidelines20 for
recommendations development. Anticipatory case analysis was first 
conducted with a focus on
examples from the field of epilepsy. eAppendix 1 (available on Dryad:
https://doi.org/10.5061/dryad.9zw3r22f8) shows case scenarios in epilepsy, 
some hypothetical
and some based on real cases, that illustrate unintended consequences of AI 
applications that
may endanger rather than promote ethical values. Each of these cases 
motivates the
recommendations developed in this document, illustrates potential failure 
points, and raises
discussion of checkpoints that the neurological community can take in AI 
development.
Anticipatory case analysis was then combined with systematic literature 
review and modified
Delphi methodology (Figure 1, eAppendix 2 [available on Dryad:
https://doi.org/10.5061/dryad.9zw3r22f8]) to develop a set of 15 operational 
recommendations
for conducting AI research in neurology (Tables 1-3).
A. CONSIDERATIONS IN STAGE 1 (ALGORITHM CONCEPTUALIZATION)
Q1. To what extent were key stakeholders directly or indirectly involved in
conceptualization/design phase of the AI application? Stakeholders who may 
benefit or be
affected by the AI application should be defined at conceptualization. Most 
commonly,
stakeholders of AI research in neurology include the users of AI applications, 
and may include
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patients, healthcare providers, patient families, and/or care providers. It is 
helpful to include key
stakeholders early in AI development to understand how likely a specific data
type is to be
accepted for collection or reliably acquired by the patient community. Patient
concerns about
privacy and data security are a major public concern that may limit a 
system’s
implementation.21,22 For example, specific data streams (such as video 
cameras, motion

detectors, or chronic outpatient EEG) may impact patient privacy or 
fundamental rights;23 others,
such as mobile phones or smart glasses, may be turned off or not worn 
constantly. Understanding
use cases early will help researchers understand anticipated limitations of 
potential data streams
when deciding which variables to incorporate into algorithms. It is important 
to acknowledge
when citing use cases that stakeholders may not be able to imagine all 
possible use cases of a
technology that does not exist yet. Focus groups are often time-intensive to 
conduct and it may
not be feasible to incorporate key stakeholders directly in the 
conceptualization/design phase. If
prior research has been conducted describing the needs and concerns of key
stakeholders with
regards to the AI application, references to this literature should be provided.
This step helps
promote transparency about intentions, provides a means for fundamental 
rights and privacy
assessment early in development, and helps ensure that patient 
perspectives are included early in
the design phase.
Q2. Is the explainability of methods justified against potential harm in the 
case of erroneous
predictions or unreliable human supervision? Methods with technical 
explainability can help to
improve AI safety through understanding of key assumptions, unintended 
biases, and cases
where performance may be low.14,15 However, explainability of AI decisions is
not always
possible (or adequate), particularly in the case of “black box” approaches, 
such as deep neural
networks. Although some advocate for avoiding “black box” approaches21,24, 
technical solutions
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such as post-hoc and hybrid approaches can increase explainability for 
different machine
learning models (eTable 2, available on Dryad: 
https://doi.org/10.5061/dryad.9zw3r22f8).
Tradeoffs may also sometimes be necessary between increased accuracy (at
the cost of
explainability) and enhanced explainability (at the cost of accuracy). The 
level of expected
technical explainability should also be balanced against the degree of 
explainability in the
corresponding gold standard non-AI process; for example, if an AI process 
attempts to reproduce
a human decision that is not explainable, the degree of technical 
explainability reasonably

expected from the AI may not be as high. In all cases, but particularly in 
cases where
explainability is reduced, including a discussion of other measures (e.g. 
limitations and
generalizability of testing data, traceability, auditability, and transparent 
communication about
system capabilities) is needed for internal verification, which also allows 
external reviewers to
understand how unintended biases and model assumptions may affect 
performance14. When
determining whether the provided level of explainability is appropriate for an
emerging AI, the
potential severity of consequences in case of inaccurate predictions or 
unreliable human
supervision should be considered. For example, certain outcomes, such as 
identification of
surgical candidates, seizure forecasting, and sudden unexpected death in 
epilepsy (SUDEP)
prediction may have more severe consquences than others in case of 
inaccurate predictions.
Because of the often tacit assumption that AI predictions are closer to “truth”
than patient report,
it is important for clinicians to be cognizant of this latent assumption, 
especially in AI with low
explainability, and evaluate when incorrect.
Q3. Is the AI algorithm intended for locked or continuous learning? 
Continuously learning
applications automatically update using inputs during use, as opposed to 
locked applications,
which do not change after initial training. Evaluating safety, efficiency, and 
equity for
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continuous and locked learning involves contain distinct challenges. 
“Distributional drift” is a
phenomenon that occurs most frequently in locked learning when training 
data does not match
ongoing testing data. Various types of distributional drift can occur, including
covariate drift
(where the input distribution changes), prior probability drift (where the 
outcome distribution
changes), and concept drift (where the relationship between covariates and 
predicted outcome
changes). Locked learning AI algorithms are particularly susceptible to 
distributional drift, which
may lead to inaccurate conclusions. To ensure that AI operating in dynamic 
environments does
not degrade over time, drift detection and performance re-evaluation when 
drift is
suspected/detected are needed, particularly in locked learning. The rate of 
distributional drift will

vary on a case-by-case basis. If original test data are diverse and large, 
distributional shift may be
gradual, while if original test data are non-representative, small, or if a major
event occurs,
distributional drift may occur quickly. Drift detection methods25 are helpful 
for detecting when
distributional drift occurs. If distributional drift is detected, performance 
estimates may no longer
up-to-date and should be re-evaluated. Benefits of performance re-
evaluation must be reasonably
weighed against financial costs and computational time. Alternatively, 
continuous learning AI
mitigates distributional shift, but unless performance estimates are 
published in realtime, it can
lead to outdated and inaccurate performance estimates. The FDA does not 
currently have defined
guidelines for monitoring changes in performance in continuously learning 
systems.
Q4. Is the AI algorithm assistive or autonomous? Assistive AI algorithms 
provide
recommendations whereas autonomous AI algorithms operate autonomously
without human
supervision. Some devices and algorithms, such as responsive 
neurostimulation (RNS) or
physiology-based smart watches,3,26 can operate as either. For example, 
currently both FDAapproved/cleared versions of these systems run 
autonomously in their seizure detection
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capacities; however, the clinician (in the case of RNS) or patient (in the case 
of a smart watch)
assists the AI in confirming detected events as true seizures or false alarms. 
If an algorithm
intended solely for assistive capacity is misused in an autonomous capacity, 
this may lead to
harm due to lack of appropriate human supervision. AI proposed for solely 
autonomous usage,
such as closed-loop systems that operate outside of human without 
supervision, should be held to
higher performance standards. There may be different implications for 
assumption of
responsibility and liability in assistive versus autonomous AI systems, with 
some advocating for
liability to be imposed on AI developers for autonomous systems21,27.
B. CONSIDERATIONS IN STAGE 2 (ALGORITHM DEVELOPMENT)

Q5. How well are latent biases in training data and sources of missingness 
assessed and
mitigated? Training datasets often include demographic inequalities, 
historical bias, and
incompleteness. There are at least two major types of bias that can be 
present in training data.
First, training data may not reflect accurately the epidemiology within a 
given demographic; for
example, underdiagnosis of dissociative seizures in areas without access to 
tertiary epilepsy
centers, underrepresentation of low socio-economic status or rural 
populations in top research
centers, or off-label use of medications/devices. Second, training data may 
undersample specific
subgroups. For example, patients with rare epilepsies, children, and elderly 
patients are often
underrepresented in training and testing data. Missing data can lead 
similarly to unrecognized
systematic undersampling; for example, members of groups that have 
historically faced
discrimination or other disadvantages may be more reluctant to provide 
personal information that
could be used against them. These sources of bias may result in decreased 
accuracy in
undersampled subgroups, perpetuate discrimination/marginalization, or lead 
to
over/underestimation of risk in specific populations.28 Identifiable sources of 
bias should be
acknowledged and removed in the data collection phase when possible. 
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Strategies can include
recruiting from diverse backgrounds, training the algorithm exclusively on 
the cohort alone, or
training on data evenly distributed across cohorts. To promote transparency 
in potential latent
biases, demographic characteristics should be reported in training/testing 
data for all AI
algorithms. There are several key demographics in epilepsy (age, sex, socio-
economic status,
intellectual/developmental disability) which can be useful to report in 
epilepsy due to common
demographic inequities. Depending on the application, other characteristics 
may be relevant as
well, such as race, seizure frequency, height/weight, comorbidities, 
medications, and epilepsy
etiology. Whenever demographic subpopulations are underrepresented, 
latent bias should be
acknowledged as a limitation.

Q6. Are proxy outcomes used and what are sources of measurement error? 
Use of proxy
outcomes and measurement error may lead to algorithmic bias against 
patient groups. If proxy
outcomes are used, a careful evaluation is warranted of cases where the 
proxy outcome will not
reflect the desired outcome and consideration of how differences may result 
in algorithmic bias
against patient subgroups. Examples of proxy outcomes include the use of 
hospital visits as a
proxy for illness,29 heart rate escalations as a proxy for seizures,30 and 
sustained detection of
epileptiform activity as a proxy for electrographic seizures.23 Measurement 
error can
independently be present in variables themselves, which can also result in 
algorithmic bias. For
example, measurement error in counting self-reported seizures may be 
higher in seizures with
loss of consciousness, which may result in algorithmic bias against patients 
with focal
dyscognitive or generalized seizures.31

Q7. Could the AI lead to self-fulfilling prophecy and perpetuate disparities 
present in training
data? Training algorithms on real-world data will reflect disparities present in
data and may
result in perpetuation of AI bias and deescalation of care, violating non-
maleficence through selffulfilling prophecy. For example, if clinicians de-
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escalate anti-seizure medications (ASMs) early
for patients predicted to be at high likelihood for failure from a particular 
ASM, then further
training the AI on data reflecting these clinical decisions will likely classify 
these patients as
likely to fail the ASM, resulting in even higher likelihood of early ASM de-
escalation. To
mitigate this, sources of training bias should be acknowleged and attempts 
made to decrease
effects of bias. Algorithms trained on real-world data, which is at greater risk 
for being subject to
this bias, can also be trained on randomized clinical trial data to reduce bias. 
However, if
algorithms are trained only on randomized trial data, this omits clinically 
important sources of
knowledge present in real-world data. Samples studied in randomized clinical
trials may also be
outliers to the broader epilepsy community, including generally higher 
seizure frequencies than
typical patients.32 Therefore, in data subject to bias from self-fulfilling 
prophecy, training on both

real-world data and randomized clinical data is ultimately needed, along with
acknowledgment
of known bias sources and attempts for mitigation.
Q8. How is data ownership/access defined? It is important to define data 
ownership and patients’
and researchers’ rights to access data up-front. There is an open debate 
about these choices.33

Stakeholders claiming ownership may include patients, researchers, 
institutions, industry, and
funding agencies. Data at present are often owned by the entity collecting 
the data, such as
industry, funding agencies, or institutions. Patients may also seek access to 
their own research
data.23 Although considerations of autonomy suggest that patients should be 
provided direct
access to research data, unregulated access may also lead to harm when 
there are no guidelines
available for interpretation of raw data. Allowing open access is beneficial to 
the scientific
community; however, doing so may decrease the competitive advantage of 
entities that have
invested significant resources into data collection, who will likely incur 
additional costs to ensure
data privacy protection and appropriate sharing. Establishing how these 
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issues will be handled
early on can help avoid downstream issues, as each choice has different 
implications on
autonomy, non-maleficence, and beneficence.
C. CONSIDERATIONS IN STAGE 3 (ALGORITHM CALIBRATION)
Q9. How comprehensive is the performance testing? Due to the context-
specific nature of AI
applications in epilepsy, traditional testing on simulated data and a single 
real-world case
example carries limited generalizability. Models tested on one clinical 
dataset may poorly
generalize to datasets with other patient groups. Testing conducted by both 
internal and
independent external parties increases auditability. Multi-institutional 
datasets, adversarial
testing to “break” the system, incentive competitions for external 
developers, and AI self-play
can be considered (eTable 2, available on Dryad: 
https://doi.org/10.5061/dryad.9zw3r22f8).

Q10. Are practices employed that may lead to overly optimistic performance 
estimates?
Practices leading to overly optimistic performance estimates of AI systems 
include failure to
compare with null models or the gold standard, comparison only to sub-par 
competitors;
improper separation of training and testing data; overfitting; and poor quality
or biased labeling
practices.34,35

Q11. When optimizing performance testing metrics, was optimization tailored
toward metrics
most valued by the target population? At minimum, all AI should report 
performance metrics
that are standard in statistical practice. Approriate performance testing 
practices are not within
the scope of this article and is discussed elsewhere.34 Accuracy, sensitivity, 
and specificity
should not be reported in isolation. For example, when predicting whether an
event will occur
(such as seizure forecasting), one can achieve 100% sensitivity by always 
predicting that the
event will occur. Similarly, since accuracy is the weighted average of 
sensitivity and specificity,
it should never be reported in isolation; one can easily achieve near perfect 
accuracy even in the
presence of low specificity if there is a high prevalence of events. As 
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different patient
populations may weight false positives and negatives differently, it is helpful 
to conduct an
analysis or literature review prior to algorithm development of which 
populations are most likely
to utilize the algorithm, and to gain an understanding of the relative 
importance of false positives
and negatives to the populations at greatest probability of usage. eTable 2 
(available on Dryad:
https://doi.org/10.5061/dryad.9zw3r22f8) highlights several examples.
Q12. Is there equity in performance testing? Ideally, estimates of 
performance should be
provided for multiple patient subgroups in the intended use population. 
Subgroups evaluated
should be of sufficient size for valid performance estimation. As additional 
data collection incurs
cost to research/development, benefits must be balanced against cost 
practicalities.

Q13. Is there a reasonable plan for periodic reevaluation of AI performance? 
The safety,
efficiency, and equity distribution of AI performance will change over time as 
clinical contexts
change. A reasonable plan for re-evaluation is needed in both locked and 
continuous learning AI
systems.
Q14. Is the AI’s performance level justified against the potential cost to 
patients in case of AI
error? AI errors can include incorrect predictions, induced human 
complacency, and data/device
failure modes (e.g., unreliable data collection or supervision). Minimum 
standards for reasonable
performance and reliability should be weighed against the potential for 
patient, stakeholder, and
societal harm and realistic worst case scenarios for harm caused by AI 
errors.
Q15. What is the ecological impact? AI systems with large computational 
costs may have an
ecological impact in terms of carbon footprint. For example, natural language
processing (NLP)
models generally incur high computational costs and may leave a greater 
carbon footprint than,
for example, models built on seizure counts, which have far fewer events and
categories to
classify than natural language36. However, computational cost and ecologic 
impact must be
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balanced against performance and reproducibility, as the benefit of better 
performance or greater
reproducibility may or may not outweigh the ecological cost of a greater 
carbon footprint.
Strategies such as transfer learning and variational inference can help 
reduce resource
consumption. In cases where equal performance and high reproducibility can
be attained, more
efficient approaches are preferred.

4. CONCLUSIONS
Awareness of the potential ethical implications of study design and algorithm
choices that may
unintentionally enter AI research is crucial to ensuring that the impact of AI 
in neurology leads
to patient benefit rather than harm. Concrete steps in the early stages of 
research can help
preempt inherent structural issues contributing to later biases and 
unintended consequences.
This work is intended to provide AI developers and researchers with an 
operational set of
guidelines for conducting ethical AI research in neurology, and to provide 
clinicians and peerreviewers with a systematic approach to evaluating the 
potential ethical consequences of
emerging AI research. While we focus on epilepsy as a paradigmatic case, 
similar approaches
may be followed in other subfields of neurology: for example, considerations 
of
assistive/autonomous usage, locked/continuous learning, and potential for 
self-fulfilling
prophecy in automated detection of stroke and intracerebral hemorrhage37; 
explicability and
patient privacy in deep learning to predict Alzheimer’s disease38; patient 
privacy and latent bias
in AI-based systems to predict diabetic neuropathy using facial recognition 
from home cameras39.
Adopting a systematic approach to considering the ethical ramifications of 
emerging research on
the principles of beneficence, non-maleficence, patient autonomy, justice, 
and explicability can
help ensure that the patient’s benefit remains at the forefront of the 
neurological community’s
efforts.

5. LIMITATIONS
The field of AI is fluid, and there are several caveats to these 
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recommendations. (1) The
proposed recommendations are intended for AI research in 
development/validation stages in
neurology. There are various other ethical issues and questions that arise in 
later stages of AI
development (e.g., implementation and maintenance in the clinical 
environment), and by other
stakeholders, including end-users and deployers, which have been addressed
by other experts40.
Regulatory guidance from the FDA is needed at later stages15. (2) These 
recommendations are
intended only to address ethical considerations related to AI use in 
neurology, and not its
technical quality, which is addressed in other resources. (3) Issues already 
covered by
Institutional Review Board or FDA requirements, such as data privacy and 
protection, usability
testing, regulations for off-label indications, informed consent, and 
liability/redress are not
addressed here.

TABLES
Table 1. Checklist of ethical considerations when conducting or evaluating AI 
research in
epilepsy during algorithm conceptualization.

Question Recommendation 
Ethical
principle(s)

1. To what extent were key
stakeholders directly or
indirectly involved in
conceptualization/design
phase of the AI application?

State whether key stakeholders were directly or
indirectly involved in conceptualization of the
algorithm. If key stakeholders were not directly
involved, include references to existing literature
on stakeholder needs (e.g., priorities, privacy,
fundamental rights considerations). In either case,
provide the characteristics of participating
stakeholders, paying careful attention to which
groups may not have been fully represented. An
effort should be made to ensure that the
participants involved in shaping the technology
include anticipated potential future user groups,
including lower socio-economic status, poor
health, and pediatric and elderly populations.

Beneficence,
non
maleficence,
autonomy

2. Is the explicability of
methods justified against
potential harm in the case
of erroneous predictions or 
unreliable human

Employ methods with high technical
explainability or technical solutions for increasing
explainability when possible (eTable 2, available
on Dryad: 
https://doi.org/10.5061/dryad.9zw3r22f8). Include

Explicability
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supervision?

a technical as well as a non-technical explanation
adapted to readers with a non-statistical
background to increase transparency; details that
help increase explicability include sources of data,
data collection procedure,
cleaning/transformations, data labeling (including
the background of persons labeling data),
algorithm, model assumptions and parameter
settings, sensitivity analysis, evaluated test cases,
and limitations. Limitations should include a
description of examples of the types of errors that
may occur with the technology in language
understandable to all users. Weigh the expected
degree of algorithm explicability against the
severity of consequences in the case of erroneous
predictions or unreliable human supervision.

3. Is the AI algorithm
intended for locked or
continuous learning?

Explicitly state whether the AI is locked or
continuously learning. If locked learning is used,
recognize as a limitation that distributional drift
may occur and performance re-evaluation may be
needed. Consider distributional shift monitoring
methods to guide timing for performance re
evaluation. Discuss role of out-of-sample testing
to re-evaluate algorithm performance.

Non
maleficence,
justice,
explicability

4. Is the AI algorithm
assistive or autonomous?

State whether the AI is assistive, autonomous, or
both. Pay particular attention to moments of trade
off between the human and the AI, e.g., where the
human may assume the AI is doing more than it
accurately can, or the AI is handing off a task to a
human unable to take appropriate or timely action.
If the AI is developed for use in an assistive
capacity, exercise caution prior to use in an
autonomous capacity.

Non
maleficence,
explicability

Table 2. Checklist of ethical considerations when conducting or evaluating AI 
research in
epilepsy during algorithm development.

Question Recommendation 
Ethical
principle(s)

1. How well are latent
biases in training data

Perform analysis to identify underrepresented
patient subpopulations, non-representative training

Non
maleficence,
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and sources of
missingness assessed
and mitigated?

sets, and potential latent biases present in
training/testing data. Describe anticipated
sources/mechanisms of missingness. Report
demographic characteristics of training/testing data,
including age, sex, socio-economic status,
intellectual/developmental disability, and any other
relevant demographic subgroups for whom
performance or needs may be anticipated to vary. If
demographic subpopulations are suspected to be
underrepresented in training data, reasonable
attempts should be made to train the algorithm on a
representative dataset sampled evenly across
demographics or specifically on underrepresented
cohorts. Provide clear statements as to which 
populations the performance estimates apply, and
acknowledge that performance estimates may differ
in non-represented or underrepresented 
populations.

justice

2. Are proxy outcomes
used and what are 
sources of measurement
error?

State whether proxy outcomes are used and 
evaluate
potential cases where the proxy may not reflect the 
desired outcome. Discuss subgroups for which
measurement error is anticipated to be greater. 
Consider how this may result in algorithmic bias.

Non
maleficence, 
justice

3. Could the AI lead to
self-fulfilling prophecy
and perpetuate
disparities present in
training data?

Evaluate potential disparities present in training
data, and seek to identify potential scenarios in
which bias may be perpetuated or lead to de
escalation of care. If present, training on both real
world and randomized trial data can help mitigate
this bias. Sources of training bias and attempts
toward mitigation should be acknowledged within
the limitations section. A clear clinical strategy
should be outlined to prevent clinical de-escalation
of care due to self-fulfilling prophecy.

Non
maleficence,
justice

4. How is data
ownership/access
defined?

Questions of data ownership and patient/researcher
access to their own data should be clarified up front.
Unless it is stated from the start that changes can 
be
made after an agreement is established, data
ownership and access should not be made more
restrictive to patients/researchers without explicit
permission.

Beneficence,
non
maleficence,
autonomy

Table 3. Checklist of ethical considerations when conducting or evaluating AI 
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research in
epilepsy during algorithm calibration.

Question Recommendation 
Ethical
principle(s)

1. How comprehensive
is the performance
testing?

Seek to identify and state all limitations on
comprehensiveness of performance testing, e.g.
single institutional dataset, multi-institutional
data, simulated testing, adversarial testing, self
play, labelers’ training backgrounds, and method
for how “true” labels were adjudicated. Consider
mechanisms to allow testing by external and
internal parties to increase auditability.

Justice

2. Are practices
employed that may lead
to overly optimistic
performance estimates?

Performance comparison should be made for at
least three use cases: 1) a model for uninformed
guessing, such as a majority class predictor or
rate-matched forecast; 2) a standard statistical
approach; and 3) the current preferred standard
clinical method. Statistical rigor to avoid improper
separation of training/testing data, overfitting, and
biased or poor-quality labeling is essential.

Beneficence,
explicability

3. When optimizing
performance testing
metrics, was
optimization tailored
toward metrics most 
valued by the target 
population?

Report at minimum performance metrics that are
standard in statistical practice. Perform sensitivity
analysis to assess how performance may vary.
Conduct analysis or literature review of patient
populations most likely to utilize the algorithm 
and the relative importance of false positives,
false negatives, and tolerable levels of accuracy to
the populations at greatest probability of usage. If
estimates of accuracy or sensitivity (specificity)
are provided, the specificity (sensitivity) should
also be reported. When possible, show how the AI
algorithm can be adapted to change its weights to
accommodate different cost tradeoffs.

Beneficence,
non-maleficence

4. Is there equity in
performance testing?

Test performance for patient subgroups in the
intended use population, and state for which
subgroups the performance measures are 
reported.
Acknowledge limitations in extrapolating to
subgroups with lower performance.

Beneficence,
non-maleficence,
autonomy,
justice,
explicability

5. Is there a reasonable
plan for periodic
reevaluation of AI
performance?

Each AI in clinical use should undergo re
assessment of safety, efficiency, and equity
periodically to determine if these endpoints
deviate from the prior performance standards.

Beneficence,
non-maleficence,
justice

6. Is the AI’s
performance level
justified against the

Even in the early stages of AI
development/validation, consider potential
harmful consequences to patients in the case of

Non-maleficence
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potential cost to patients
in case of AI error?

erroneous predictions, indirect effects on inducing
human complacency, or possible failure modes,
such as unreliable data collection or unreliable
supervision. Consider holding AI with greater 
potential for patient or societal harm to greater
minimum performance/reliability standards. Costs
to patients, stakeholders, and society to consider
include financial, psychological, legal,
morbidity/mortality, and exacerbation of
disparities.

7. What is the ecological
impact?

State the total expected computational
requirements of training, testing and expected
implementation, being mindful of computationally
intensive processes that increase carbon footprint.
Adopt strategies to minimize computational cost
in cases where similar performance can be
obtained via more efficient or less computational
expensive algorithms.

Non
maleficence,
justice

FIGURE LEGENDS
Figure 1. Flowchart demonstrating steps used to generate recommendations.
Details are in
eAppendix 2 (available on Dryad: https://doi.org/10.5061/dryad.9zw3r22f8).

https://doi.org/10.5061/dryad.9zw3r22f8



