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ABSTRACT OF THE DISSERTATION 

 

Computational Methods for Studying Protein-Protein Interactions and 

Association Experiments 

by 

 

Erick Velasquez 

 

Doctor of Philosophy in Biochemistry, Molecular and Structural Biology 

University of California, Los Angeles, 2021 

Professor Jorge Torres, Chair 

 

The elucidation of a protein’s interaction/association network is important for defining its 

biological function. Mass spectrometry-based proteomic approaches have emerged as 

powerful tools for identifying protein-protein interactions (PPIs) and protein-protein 

associations (PPAs). However, interactome/association experiments are difficult to 

interpret considering the complexity and abundance of data that is generated. Although 

tools have been developed to quantitatively identify protein interactions/associations, 

there is still a pressing need for easy-to-use tools that allow users to contextualize their 

results.  
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To address this, we developed CANVS, a computational pipeline that cleans, analyzes, 

and visualizes mass spectrometry-based interactome/association data. CANVS is 

wrapped as an interactive Shiny dashboard, allowing users to easily interface with the 

pipeline. With simple requirements, users can analyze complex experimental data and 

create PPI/A networks. The application integrates systems biology databases like 

BioGRID and CORUM to contextualize the results. Furthermore, CANVS features a Gene 

Ontology tool that allows users to identify relevant GO terms in their results and create 

visual networks with proteins associated with relevant GO terms. As examples, we 

recently used the analytical framework included in CANVS to study the PPI/A networks 

of DUSP7, which helped to define its regulation of ERK2 during mitosis and also to 

analyze the PPA networks of core spindle assembly checkpoint proteins. Overall, CANVS 

is an easy-to-use application that benefits all researchers, especially those who lack an 

established bioinformatic pipeline and are interested in studying interactome/association 

data. 

Additionally, we describe a supervised machine learning method that incorporates 

annotated data from the contaminant repository for affinity purification data (CRAPome) 

that predicts contaminants in affinity and proximity purification data. The method involves 

first calculating amino acid content, sequence order, hydrophobicity and hydrophilicity 

from protein sequence. Then balancing data using data augmentation methods. Finally, 

measuring precision and accuracy using protein-protein interaction/association data. The 

results suggest that our supervised method can predict with 90% accuracy contaminants 

in protein-protein interaction/association data.  
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1.1 Protein-protein interactions (PPIs) and indirect protein-protein associations 

(PPAs) 

Direct protein-protein interactions (PPIs) and indirect protein-protein associations (PPAs) 

are critical to understanding the biological function of a protein of interest (POI). PPI/As 

can inform on how a POI is compartmentalized within the cell, how it forms higher-order 

complexes, how it is regulated, and how it coordinates with other proteins to carry out 

specific cellular processes in a spatial and temporal manner (Yugandhar et al., 2019; Lu 

et al., 2020). More broadly PPI/A networks have been used to analyze the composition 

of cellular structures like centrosomes, kinetochores, cilia, and other organelles, and to 

define the function of cell cycle proteins (Torres et al., 2011; Firat-Karalar and Stearns, 

2015; Cheung et al., 2016; Go et al., 2019; Remnant et al., 2019; Garcia et al., 2021). 

Most importantly, PPI/As play important roles in driving key cellular events like DNA 

replication, transcription, translation and signal transduction (Koh et al., 2012; Lu et al., 

2020).  

 

Hence, thoroughly understanding how PPI/As give rise to cellular events allows scientists 

to define how aberrant PPI/As can give rise to disease (White et al., 2008; Blazer and 

Neubig, 2009) and how they can be used to develop novel therapeutics (Rosell and 

Fernández-Recio, 2018). Classic drug targets involve enzymes, ion channels or receptors 

making PPI/As an important modality that can be used as therapeutic targets (Milroy et 

al., 2014). One of the main difficulties in small molecule discovery is large contact 

surfaces involved in PPI/As compared to protein-small molecule interactions, therefore 

creating therapeutic modalities that mimic PPI/As has become an attractive option in 
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therapeutic development (Hill et al., 2014; Nevola and Giralt, 2015). PPI/As as 

intervention targets have been proven to be useful in generating novel treatments for 

refractory diseases demonstrating promising capabilities as novel therapeutic targets 

(Nero et al., 2014).  

 

1.2 Approaches to identify PPI/As 

Studying PPI/As is important to developing a better understanding of biological systems 

and to developing novel therapeutics, however first scientists have to identify probable 

interactions and associations. Several approaches have been used to identify PPIs 

including yeast two-hybrid (Fields and Song, 1989; Chien et al., 1991), fluorescent 

resonance energy transfer (Selvin, 1995), and protein fragment complementation assay 

(Michnick et al., 2000). Although these classical methods are important for identifying and 

validating PPIs, mass spectrometry-based approaches have made high-throughput 

identification of PPIs possible (Yugandhar et al., 2019). Affinity purification mass 

spectrometry (AP-MS) has become the conventional method to identify PPIs, since it 

isolates protein complexes from cell lysates in near physiological conditions (Gingras et 

al., 2007). More recently the field has transitioned to defining PPAs, which may represent 

direct protein-protein interactions or local protein neighborhoods, through proximity-

dependent biotinylation methods (Perkins et al., 2010). A popular method is BioID, where 

a protein of interest (POI) is tagged with a promiscuous biotin ligase, which biotinylates 

proteins in close proximity to the POI in the presence of biotin (Sears et al., 2019).  
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Figure 1. Exploratory PPI/A Experimental Pipeline. A. Identify protein of interest and 

create an experimental set up that seeks to identify either protein-protein interactions or 

protein-protein associations. B. Biochemical purification. Based on type of experimental 

set up, pull POI or proteins that have been tagged through close proximity of POI. C. 

Identify proteins present in pull down purification via mass spectrometry. D. Bioinformatic 

analysis of proteins identified via mass spectrometry. If quantitative protein values are 

available with multiple replicates significant change can be calculated and PPI/As can be 

represented in protein networks. Created with BioRender.com 

 

1.3 Analysis workflow of MS-based PPI/A experiments 

Overall, popular pipelines for PPI/A approaches involve identifying a POI, tagging the POI 

with an appropriate protein tag (Figure 1A), expression of the tagged-POI, biochemical 

purifications (Figure 1B), MS of purifications to identify proteins (Figure 1C), and 

qualitative/quantitative bioinformatic analyses of identified proteins (Figure 1D) (Sears et 
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al., 2019; Yugandhar et al., 2019). Mass spectrometry-based approaches to identify 

PPI/As generate large amounts of PPI/A data, which are difficult to analyze and interpret. 

To overcome these issues, computational tools have been developed to quantitatively 

analyze PPI/A data (Choi et al., 2011; Choi et al., 2012; Nesvizhskii, 2012; Teo et al., 

2014), to create visual representations of the analyses (Knight et al., 2017), and to 

generate PPI/A networks (Shannon et al., 2003; Szklarczyk et al., 2019). One pipeline, 

APOSTL, integrates these steps and automates the process within a Galaxy framework 

(Kuenzi et al., 2016). However, currently APOSTL does not allow users to filter search 

results by Gene Ontology-based (GO) terms or integrate protein complex data. 

Furthermore, most PPI/A data analysis computational tools focus on the accuracy of 

protein identification, instead of how the identified proteins might be associated at the 

molecular level.  

 

1.4 PPI/A Network Biology Databases 

PPI/A MS-based experiments seek to unravel network data that allows scientists to 

understand how proteins might contribute to complex biological events. To better aid 

scientists and contextualize their results many large biological datasets have been 

arranged that describe protein interactions, associations, and function.  Most importantly, 

these databases are set up to help scientists derive hypotheses about cellular function in 

the context of a protein or proteins of interest. Of particular interest are databases that 

group proteins as part of a complex, detail the function or location of proteins and show 

previously known experimental information about protein interactions/associations. The 

comprehensive resource of mammalian protein complexes (CORUM) is a manually 
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curated repository for experimentally characterized protein complexes in mammalian 

organisms, providing the necessary information to identify common complexes in PPI/A 

experimental data (Giurgiu et al., 2019). The gene ontology resource (GO Consortium) is 

the largest source of information about gene and gene product attributes across species. 

GO data allows scientists to study PPI/A result within the context of their molecular 

function, cellular component or whether they aid in a certain biological process 

(Ashburner et al., 2000; Consortium, 2019). The biological general repository of 

interaction datasets (BioGRID) is a database that archives genetic and protein interaction 

information (Oughtred et al., 2019). BioGRID allows scientists to contextualize their 

results based on previously identified interactions so that scientist gain more confidence 

about possible interactions and associations. These three databases can be used 

individually or together to create a more thorough understanding of PPI/A experiments, 

which is particularly helpful in the exploratory stages of the pipeline.   
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ABSTRACT 

The elucidation of a protein’s interaction/association network is important for defining its 

biological function. Mass spectrometry-based proteomic approaches have emerged as 

powerful tools for identifying protein-protein interactions (PPIs) and protein-protein 

associations (PPAs). However, interactome/association experiments are difficult to 

interpret considering the complexity and abundance of data that is generated. Although 

tools have been developed to quantitatively identify protein interactions/associations, 

there is still a pressing need for easy-to-use tools that allow users to contextualize their 

results. To address this, we developed CANVS, a computational pipeline that cleans, 

analyzes, and visualizes mass spectrometry-based interactome/association data. 

CANVS is wrapped as an interactive Shiny dashboard, allowing users to easily interface 

with the pipeline. With simple requirements, users can analyze complex experimental 

data and create PPI/A networks. The application integrates systems biology databases 

like BioGRID and CORUM to contextualize the results. Furthermore, CANVS features a 

Gene Ontology tool that allows users to identify relevant GO terms in their results and 

create visual networks with proteins associated with relevant GO terms. Overall, CANVS 

is an easy-to-use application that benefits all researchers, especially those who lack an 

established bioinformatic pipeline and are interested in studying interactome/association 

data.  
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INTRODUCTION 

Direct protein-protein interactions (PPIs) and indirect protein-protein associations (PPAs) 

are critical to understanding the biological function of a protein of interest (POI). PPI/As 

can inform on how a POI is compartmentalized within the cell, how it forms higher-order 

complexes, how it is regulated, and how it coordinates with other proteins to carry out 

specific cellular processes in a spatial and temporal manner (Yugandhar et al., 2019; Lu 

et al., 2020). More broadly PPI/A networks have been used to analyze the composition 

of cellular structures like centrosomes, kinetochores, cilia, and other organelles, and to 

define the function of cell cycle proteins (Torres et al., 2011; Firat-Karalar and Stearns, 

2015; Cheung et al., 2016; Go et al., 2019; Remnant et al., 2019; Garcia et al., 2021; Guo 

et al., 2021). Several approaches have been used to identify PPIs including yeast two-

hybrid (Fields and Song, 1989; Chien et al., 1991), fluorescent resonance energy transfer 

(Selvin, 1995), and protein fragment complementation assay (Michnick et al., 2000). 

Although these classical methods are important for identifying and validating PPIs, mass 

spectrometry-based approaches have made high-throughput identification of PPIs 

possible (Yugandhar et al., 2019). Affinity purification mass spectrometry (AP-MS) has 

become the conventional method to identify PPIs, since it isolates protein complexes from 

cell lysates in near physiological conditions (Gingras et al., 2007). More recently the field 

has transitioned to defining PPAs, which may represent direct protein-protein interactions 

or local protein neighborhoods, through proximity-dependent biotinylation methods 

(Perkins et al., 2010). A popular method is BioID, where a protein of interest (POI) is 

tagged with a promiscuous biotin ligase, which biotinylates proteins in close proximity to 

the POI in the presence of biotin (Sears et al., 2019). Overall, popular pipelines for PPI/A 
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approaches involve identifying a POI, tagging the POI with an appropriate protein tag, 

expression of the tagged-POI, biochemical purifications, MS of purifications to identify 

proteins, and qualitative/quantitative bioinformatic analyses of identified proteins (Sears 

et al., 2019; Yugandhar et al., 2019).  

Mass spectrometry-based approaches to identify PPI/As generate large amounts 

of PPI/A data, which are difficult to analyze and interpret. To overcome these issues, 

computational tools have been developed to quantitatively analyze PPI/A data (Choi et 

al., 2011; Choi et al., 2012; Nesvizhskii, 2012; Teo et al., 2014), to create visual 

representations of the analyses (Knight et al., 2017), and to generate PPI/A networks 

(Shannon et al., 2003; Szklarczyk et al., 2019). One pipeline, APOSTL, integrates these 

steps and automates the process within a Galaxy framework (Kuenzi et al., 2016). 

However, currently APOSTL does not allow users to filter search results by Gene 

Ontology-based (GO) terms or integrate protein complex data. Furthermore, most PPI/A 

data analysis computational tools focus on the accuracy of protein identification, instead 

of how the identified proteins might be associated at the molecular level. With this in mind, 

we sought to develop a computational pipeline that allowed users with no computational 

background to explore PPI/A data interactively within the context of relevant biological 

processes, molecular functions, cellular components, and protein-protein-complex 

interactions.  

Here, we present CANVS (Clean Analyze Network Visualization Software), an 

open access computational pipeline that cleans mass-spectrometry PPI/A data through 

statistical analyses and annotates identified proteins with proteoinformatic databases like 

BioGRID (Biological General Repository for Interaction Datasets) (Oughtred et al., 2019) 
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and CORUM (Comprehensive Resource of Mammalian Protein Complexes) (Giurgiu et 

al., 2019) to create protein interaction/association networks. Furthermore, CANVS allows 

users to apply GO (Gene Ontology) (Ashburner et al., 2000; Consortium, 2021) filters to 

create protein networks relevant to biological processes, cellular locations, or molecular 

functions of interest. To ensure accessibility to all researchers, CANVS is wrapped in a 

Golem framework (Fay et al., 2021) and is deployed as a Shiny dashboard app that can 

be downloaded and installed locally on a Windows system 

(https://sourceforge.net/projects/canvs/files/). CANVS can be used as a stand-alone tool; 

however, the user can also upload results from other proteomic pipelines to quickly 

generate protein networks and identify proteins with relevant biological associations to a 

POI. Overall, CANVS provides an easy-to-use interactive framework where 

proteoinformatic resources are integrated to quantify, contextualize, and visualize data 

from PPI/A experiments that enables users to better understand the biological role of their 

POI. 

RESULTS  

Features 

CANVS is an open-access easy-to-use pipeline for studying protein-protein 

interactome/association data. CANVS was created so that researchers with no 

computational background can quickly analyze mass spectrometry data from affinity-

based and proximity-based protein purifications, with an emphasis on identifying 

biologically interesting PPI/As that can be further validated and explored. Briefly, the 

CANVS pipeline (Figure 1) can be divided into four steps, 1) uploading data, 2) cleaning 

data to identify significant protein hits, 3) analyzing results by applying proteoinformatic 

https://sourceforge.net/projects/canvs/files/


19 
 

databases, and 4) visualizing the resulting PPI/A networks. The CANVS pipeline takes 

advantage of user interface web development packages in R and is wrapped as a Shiny 

dashboard app that can be installed locally on a Windows system.  

 

1. Data upload/pre-processing  

CANVS accepts csv or tab-delimited text files with five columns containing information 

on: protein UniProt (Apweiler et al., 2004) accession number, score or quantitative value, 

protein description, file name, and protein bait name (Supplemental Material - Uploading 

Data). Files are then merged and the merged data table can be accessed in the Upload 

tab (Supplemental Figure S1). Additionally, the user has the option of uploading one data 

table, for the control and experimental each, that has all the information about 

replicates/conditions. The data tables are interactive and the user can search for specific 

keywords in the search section. Pre-processing involves both determining how many 

replicates a protein needs to appear in to carry out the analysis and normalization across 

replicates and baits (Figure 2 and Supplemental Figures S2-S4). High-throughput MS-

based approaches to identify PPI/As contain systematic biases due to steps in data 

processing and generation (Chawade et al., 2014). To overcome these biases the field 

has adopted normalization methods that aim to make samples more comparable across 

replicates/conditions (Chawade et al., 2014; Välikangas et al., 2018). CANVS gives the 

user the option to normalize by the median and scales samples so that each purification 

has the same median value (Välikangas et al., 2018). We recommend using this method 

if no previous normalization was performed and if the user suspects variation across 

purifications due to human error (sample preparation) or analytical errors (device 
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calibration, temperature fluctuations, etc.). Both settings are pre-defined by the user in 

the Clean tab where the user can filter by the number of replicates a protein must be 

identified in to be considered for further analysis and whether to normalize by the median 

(Figure 2). Please see Supplemental Material for details and step-by-step user 

instructions. 

 

2. Semi quantitative/qualitative analysis of protein hits 

After setting up the pre-processing options, users can determine whether to perform a 

statistical analysis to identify significant protein hits (Supplemental Material – Cleaning 

Data). CANVS uses spectral counts as a quantitative representation of protein abundance 

(Lundgren et al., 2010), specifically the exponentially modified protein abundance index 

(emPAI) since this score considers the number of peptides per protein, an important 

metric in IP-MS (Ishihama et al., 2005). Additionally, other label free or labeled 

quantitative values can be used, including results from intensity-based quantification, 

stable isotope labeling using amino acids in cell culture (SILAC), and tandem mass tag 

(TMT) experiments (Thompson et al., 2003; Ong and Mann, 2006; Zhang et al., 2010). 

However, the data must be in an array format and representative of the abundance of a 

protein. If a protein is not present in either a control or experimental purification, a missing 

value, CANVS assigns the missing protein half the minimum value of non-missing 

proteins in the same purification (Wei et al., 2018). CANVS has two methods by which 

the user can filter data, using the log2fold change of proteins compared to a control or 

using a combination of log2fold change and significance statistics in the form of a two-

tailed t-test (Student, 1908; Hubner et al., 2010). Calculating the difference between the 
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logarithmic mean protein intensities between experimental and control purifications 

allows users to identify non-specific binders that center around zero (Hubner et al., 2010; 

Singh et al., 2016). If a sufficient number of replicates (we recommend three biological 

replicates and two technical replicates) are used in the analysis, the user also has the 

option of calculating the significance in the log2fold change using a two-tailed t-test. 

Comparing the negative log of the P value to the log2fold change creates a volcano plot 

where background proteins cluster at zero (Singh et al., 2016). The interactive volcano 

plot is displayed in the results box of the Clean tab (Figure 2 and Supplemental Figures 

S2-S4). Additionally, the user has the option of deciding to analyze the data by log2fold 

change only or log2foldchange and significance statistics. This is done by changing the 

drop-down menu under Analysis Method (Supplemental Material – Cleaning Data). The 

user can filter by a certain fold change of interest or a different P value, however the 

preset options are set at a log change of 0.6 and a P value of 0.05. Additionally, if the 

user is concerned about the multiple testing problem and does not wish to use a strict P 

value cutoff, we included an option to adjust the P value via the Benjamini and Hochberg 

method (Benjamini et al., 2001). Briefly, adjusting the P value controls the false discovery 

rate and therefore corrects for the expected amount of false positives among all positives 

that rejected the null hypothesis (Jafari and Ansari-Pour, 2019). Results appear in the 

form of a data table in the Clean tab, which are referenced throughout the rest of the 

pipeline.  

Alternatively, users can elect to not carry out a statistical analysis and use CANVS 

solely to contextualize and visualize the results. To do so, users can select the no analysis 

option in the Clean tab and the program will consider data in the experimental as the 
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results. Even when no statistical analysis is performed, the user must press the run button 

in the Clean tab to let CANVS know that the data uploaded in the experimental should be 

used as the results. This feature allows CANVS to be easily integrated with any other 

statistical pipeline of choice. The experimental data will then appear in the form of a data 

table in the Clean tab, and this data table will be referenced in the rest of the pipeline 

(Figure 2 and Supplemental Figures S2-S4). 

 

3. Data analysis 

CANVS features two tabs to analyze and generate visual network representations of the 

results (Supplemental Material – Analysis/Visualization). The first Analyze/Visualize tab 

(Supplemental Figure S5-S7) creates networks for all identified proteins. The GO 

Analyze/Visualize tab (Supplemental Figure S8-S9) features a GO-based (Ashburner et 

al., 2000; Consortium, 2019) filtering tool that allows users to search the protein results 

for associations with GO terms of interest. The GO database classifies GO terms into 

three categories; biological processes (BP), molecular function (MF) and cellular 

component (CC). CANVS links proteins in the results to associated GO terms. Users can 

search by keyword and CANVS searches for GO terms that have that keyword. GO terms 

with the keyword and their respective sub-terms are selected. CANVS then renders two 

objects: a color-coded network representing how the selected GO terms are related and 

a data table with all the selected GO terms (Figure 3). Users can then select GO terms of 

interest in the data table, which instructs CANVS to filter the results for proteins that have 

the selected GO terms. Alternatively, if users want to filter the results with all of the GO 

terms in the table, no selection is necessary and the network visuals will reflect proteins 
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associated with all the GO terms. This feature is particularly helpful if users are interested 

in specific biological processes, molecular functions and/or cellular components and want 

to search the results for proteins associated with such GO terms.  

Once the user determines whether to include all proteins in the results or selects 

certain proteins based on GO terms, proteins in the result can be further annotated and 

contextualized. CANVS integrates two main databases: the Biological General 

Repository for Interaction Datasets (BioGRID v. 4.3) (Oughtred et al., 2019) and the 

Comprehensive Resource of Mammalian Protein Complexes (CORUM v. 3.0) (Giurgiu et 

al., 2019). BioGRID contextualizes results in terms of previously identified protein-protein 

interactions, whereas, CORUM contextualizes the results in terms of known protein-

protein-complex information. For both databases, the user first defines an organism of 

interest and annotations are performed within the context of that organism. See 

Supplemental Material for a full list of organisms supported by CANVS, BioGRID, and 

CORUM. By analyzing the results from both databases, the user can identify known PPIs 

and complex-PPI/As present in the results.  

 

4. Data visualization 

After the results have been annotated (using CORUM or BioGRID) or selected for (using 

associated GO terms) three types of networks are created; protein-protein network 

(Figure 4A), CORUM protein-protein-complex network (Figure 4B and Supplemental 

Figure S10), and a BioGRID protein-protein network (Figure 4C and Supplemental Figure 

S11). Visual representations are powered by visNetwork, an R package that provides a 

framework for creating visual networks in an interactive environment (Almende, 2021). 
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Considering a basic network, the user can interact with the graphs by zooming in on 

certain sections of a network, selecting certain proteins to highlight interactions, and 

downloading edited networks as png files. Networks can also be reset and created again, 

a helpful feature when considering different parameters that might influence which 

proteins are rendered in the networks. The user also has the option to download 

Cytoscape (Shannon et al., 2003) network files, which can be used in Cytoscape to re-

create networks developed using CANVS. See Supplemental Material for a detailed 

walkthrough on how to use CANVS network visuals.  

CONCLUSION 

CANVS is an interactive tool that allows scientists to integrate systems biology databases 

and create PPI/A networks with biologically relevant results. The simple requirements of 

the application along with its interactive networks, make CANVS a powerful tool to be 

used in conjunction with other tools or as a standalone pipeline. The application is 

particularly useful to researchers studying a POI or sets of proteins and want to 

contextualize the results of their interactome/association experiments. The integration of 

BioGRID allows the user to compare the results to a wide set of interactome experiments 

and create PPI networks based on previous PPI data. Similarly, the integration of CORUM 

allows users to identify protein complexes within their results, providing context as to how 

a POI or bait might be related to other proteins in the network. Additionally, by creating 

networks where specific molecular functions, biological processes or cellular components 

are prioritized, the user can quickly parse through the results and concentrate on PPI/As 

that are relevant to the user’s scientific question. Ultimately, more databases and other 

statistical methods can be integrated into the pipeline. It’s important to note that protein 



25 
 

interactions and associations should be validated biochemically. As examples, we 

recently used the analytical framework included in CANVS to study the PPI/A networks 

of DUSP7, which helped to define its regulation of ERK2 during mitosis (Guo et al., 2021), 

and also to analyze the PPA networks of core spindle assembly checkpoint proteins 

(Garcia et al., 2021). Overall, CANVS offers an interactive and easy-to-use solution to 

study PPI/A data that can be used by laboratories without an established proteomic 

analysis pipeline.  

 

MATERIALS AND METHODS 

Testing CANVS with mass spectrometry data from BioID experiments  

To test CANVS, we utilized a previously published mass spectrometry data set from 

BioID-based experiments of core spindle assembly checkpoint proteins (Garcia et al., 

2021). Briefly, BioID2-tagged inducible HeLa stable cell lines were generated for core 

spindle assembly checkpoint (SAC) proteins (BUB1, BUB3, BUBR1, MAD1L1, MAD2L1). 

These cell lines were induced to express the BioID2-tagged core SAC proteins, incubated 

with biotin, and BioID purifications were performed in triplicate for each bait except for 

BUB3 which was performed in duplicate. A BioID2-tag alone cell line was used as control. 

The purifications were then analyzed by LC-MS/MS and peptide identification was 

conducted with Mascot (v2.4; Matrix Science, Boston, MA) against the UniProt human 

database (October 10, 2018). Search parameters included trypsin digestion allowing up 

to two missed cleavages, carbamidomethyl on cysteine as a fixed modification, oxidation 

of methionine as a variable modification, 10-ppm peptide mass tolerance, and 0.02-Da 

fragment mass tolerance. Peptides that surpassed a cut-off score of 20, considering a 
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5% false discovery rate, were accepted. From the SAC protein BioID panel, 387 proteins 

where identified with at least two significant peptides and where further processed using 

CANVS. To perform a statistical analysis of proteins identified in both the control and 

experimental, emPAI (Ishihama et al., 2005) scores where considered as quantifiable 

values. Files compatible with CANVS where then generated by summarizing search 

results by UniProt accession ID, protein description, quantifiable (emPAI score), file 

name, and associated bait. This dataset is available at the SourceForge directory 

(https://sourceforge.net/projects/canvs/files/) where users can download it for reference.  

 

Statistical analysis 

Given quantitative scores, the significance of proteins shared between the experimental 

and the control can be determined using log2fold change values and significance 

statistics (Hubner et al., 2010; Singh et al., 2016). Proteins are first filtered by the number 

of replicates each protein is present in, which is a number chosen by the user. Proteins 

with the appropriate replicate count are further tested for significance. Fold change is 

calculated by comparing the mean value of a protein across experimental purifications to 

the same mean value of a protein across control purifications. If the protein is not present 

in either a control or experimental purification, half of the minimum value of that 

purification is used (Wei et al., 2018). Fold change is calculated by comparing the mean 

value of a protein across experimental purifications to the same mean value of a protein 

across control purifications. CANVS then calculates the log base-2 of the fold change 

since it is beneficial to represent the distribution around zero, a value that indicates no 

change for a protein between the experimental and control. If a sufficient number of 

https://sourceforge.net/projects/canvs/files/
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replicates (we suggest at least three biological replicates and two technical replicates) 

are used in the analysis, the user has the option of also calculating the significance in the 

log2fold change using a two-tailed t-test. Additionally the user can adjust the p value using 

the Benjamini and Hochberg correction. Briefly, adjusting the P value controls the false 

discovery rate and therefore corrects for the expected amount of false positives among 

all positives that rejected the null hypothesis (Jafari and Ansari-Pour, 2019).  

 

Integration of System Biology Databases 

Three main system biology databases are integrated in CANVS: the Biological General 

Repository for Interaction Datasets (BioGRID v. 3.5) (Oughtred et al., 2019), the 

Comprehensive Resource of Mammalian Protein Complexes (CORUM v. 3.0) (Giurgiu et 

al., 2019), and Gene Ontology (Ashburner et al., 2000; Consortium, 2019). To incorporate 

each database, the entire database was downloaded and transformed into an R object 

that is then referenced in a function. In the case of Gene Ontology, both GO terms and 

sub-terms were merged by GO term ID. In order to identify data that corresponds to 

certain proteins across all three databases, UniProt accession numbers are translated to 

common gene names using R package org.HS.eg.db (Carlson, 2019). The package 

includes local versions of each database. Updates to databases in the package will be 

performed every six months. 

 

Development of Shiny Dashboard 

CANVS follows a Golem framework, with the motivation of creating an easy to use 

application with simplified modules (Fay et al., 2021). Modules, functions, and helper 
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functions were created using the framework outlined in the Golem package. To make the 

app interactive yet intuitive, a dashboard framework was implemented where the user is 

able to perform a part of the pipeline in each tab. Visual networks are created using 

visNetwork, an R package designed to create interactive network visuals (Almende, 

2021). Briefly, protein results are formatted to include node information, edge information, 

and annotations for each node including ID and visual components that can be changed 

by the user (color, shape, etc.). The networks are then rendered in an interactive Shiny 

session in the format of a Shiny dashboard. The app was deployed using protocols from 

DesktopDeployR, a framework for deploying self-contained R-based applications in 

Windows (https://github.com/wleepang/DesktopDeployR). For step-by-step instructions 

on how to use CANVS refer to the Supplemental Material or the main repository.  

 

Installation 

CANVS is packaged as an R Shiny dashboard app but since it includes data from large 

databases, the application is deployed locally. Currently the local version of the app can 

only be used in a Windows system. To install CANVS, download the CANVS.zip file in 

the main repository (https://sourceforge.net/projects/canvs/files/). Unzip the file in a 

location where you want to save the application. Open the folder and right click on the 

CANVS.bat file, then select create a shortcut. Name the shortcut CANVS and then drag 

the shortcut to the desktop. Then double click on the new shortcut and CANVS will open 

in a web browser window. Please make sure that there are no antivirus software blocking 

application connections to ports in the computer and that firewall does not block use of 

ports.  

https://github.com/wleepang/DesktopDeployR
https://sourceforge.net/projects/canvs/files/
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FIGURES 

 

 

FIGURE 1: CANVS workflow. Mass spectrometry data files, comma-delimited text files, 
with protein UniProt accession numbers, protein descriptions, protein quantitative 
values (scores), and bait POIs are uploaded and rendered as interactive data tables. To 
clean the data, users can determine the significance of the identified proteins, given 
proper controls, using log2fold change and a t-test. Significant protein identifications are 
then analyzed by applying Gene Ontology (GO) terms, the Comprehensive Resource of 
Mammalian Protein Complexes (CORUM) database, and the Biological General 
Repository for Interaction Datasets (BioGRID) database. The visNetwork R package is 
then used to visualize the GO PPI/A, CORUM PPI/A, and BIOGRID PPI/A networks.  
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FIGURE 2: CANVS cleaning method. CANVS allows users to upload 
interaction/association MS data, filter by a minimum number of replicates a protein 
should be present in, normalize proteins by the median value of each purification, and 
apply significance statistics. CANVS calculates the log2fold change and P values that 
can be visualized in an interactive volcano plot. The user can then filter by a certain P 
value or fold change and the results are used in the pipeline for further 
analysis/visualization.  
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FIGURE 3: Selection of Gene Ontology GO terms and filtering results with selected GO 
terms. Users can perform a keyword search and GO terms containing the keyword/s of 
interest and any associated sub-terms are retrieved. Only GO terms associated with 
protein hits in the dataset will appear and can be selected and applied as a filter. 
Proteins with the associated GO terms of interest are included in the network tables. 
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FIGURE 4: Create interactive PPI/A networks of (A) protein hits associated with the 
selected GO terms, integrating (B) CORUM protein complex information and (C) 
BioGRID PPI information. 
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ABSTRACT 

 
The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-

kinetochore attachments and tension across the kinetochore and functions to arrest cells 

in prometaphase to allow time to repair any errors before proceeding into anaphase. 

Dysregulation of the SAC leads to chromosome segregation errors that have been linked 

to human diseases like cancer. Although much has been learned about the composition 

of the SAC and the factors that regulate its activity, the proximity associations of core 

SAC components have not been explored in a systematic manner. Here, we’ve taken a 

BioID2 proximity-labeling proteomic approach to define the proximity protein environment 

for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in 

mitotic-enriched populations of cells where the SAC is active. These five protein 

association maps were integrated to generate a SAC proximity protein network that 

contains multiple layers of information related to core SAC protein complexes, protein-

protein interactions, and proximity associations. Our analysis validated many known SAC 

complexes and protein-protein interactions. Additionally, it uncovered new protein 

associations, including the ELYS-MAD1L1 interaction that we have validated, that lend 

insight into the functioning of core SAC proteins and highlight future areas of investigation 

to better understand the SAC.   

 

Key words: Spindle assembly checkpoint (SAC), BioID2, Proximity labeling, Protein 
associations, Protein networks, Cell division 
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INTRODUCTION 

Human cell division is a highly coordinated set of events that ensures the proper 

transmission of genetic material from one mother cell to two newly formed daughter cells. 

Chromosome missegregation during cell division can lead to aneuploidy, an aberrant 

chromosomal number, which is a hallmark of many types of cancers and has been 

proposed to promote tumorigenesis (1). However, there is currently no consensus as to 

the pathways and factors that are deregulated to induce aneuploidy, why it is prevalent in 

cancer and how it contributes to tumorigenesis. Pivotal to cell division is the metaphase 

to anaphase transition, which is a particularly regulated process involving a multitude of 

protein-protein interactions that relies heavily on posttranslational modifications like 

phosphorylation and ubiquitination that function as switches to activate or inactivate 

protein function (2,3). For example, the multi-component spindle assembly checkpoint 

(SAC) is activated when unattached kinetochores or nonproductive (monotelic, syntelic, 

and merotelic) attachments are sensed and functions to arrest cells in metaphase to give 

time to correct these deficiencies and generate proper microtubule-kinetochore 

attachments (2) (Figure 1A). This ensures proper sister chromatid separation and 

minimizes segregation errors that lead to chromosomal instability, aneuploidy, and 

tumorigenesis (1). Core components of the SAC include BUB1, BUB3, BUBR1, MAD1L1, 

and MAD2L1(4). Critical to the SAC is the mitotic checkpoint complex (MCC, composed 

of MAD2L1, BUBR1, BUB3, and CDC20) that maintains the anaphase promoting 

complex/cyclosome (APC/C) ubiquitin ligase substrate adaptor protein CDC20 

sequestered and thereby inactivates the APC/C (5,6). Upon proper microtubule-

kinetochore attachment the SAC is satisfied and the inhibitory effect of the MCC on the 
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APC/C is relieved (2) (Figure 1A). Active APC/C then ubiquitinates and targets Securin 

for degradation (2), which activates Separase, the protease that cleaves RAD21, a 

component of the cohesin complex that holds sister chromatids together (7). This 

releases sister chromatid cohesion and chromatids are pulled to opposing poles of the 

cell by spindle microtubules, marking the entry into anaphase.  

Because understanding the SAC is critical to understanding tumorigenesis and the 

response of tumor cells to antimitotic drugs that activate the SAC and trigger apoptotic 

cell death, it has become an intensive area of research (8,9). Although decades of 

research have shed light on the SAC, we are far from elucidating the full complement of 

regulatory factors involved in this complex pathway and from understanding how 

misregulation of this pathway can lead to tumorigenesis and resistance to 

chemotherapeutic drugs like antimitotics (10). Furthermore, models of proximity 

associations of the core SAC proteins with themselves and with structural and signaling 

components that mediate the establishment and silencing of the SAC are still being 

defined (11-13). Recently, proximity-labeling approaches like BioID and APEX have been 

used effectively to determine association networks among proteins and for defining the 

architecture of the centrosome, centrosome-cilia interface, and other organelles within 

the cell (14-19). However, proximity labeling has not been applied to the SAC in a 

systematic fashion, which could help to interrogate current models of core SAC protein 

associations and regulation.  

Here, we have engineered vectors for establishing inducible BioID2-tagged protein 

stable cell lines. This system was used to establish stable cell lines with inducible BioID2-

tagged core SAC protein (BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1) expression. 
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These cell lines were utilized in BioID2-proximity biotin labeling studies, which were 

coupled to biotin biochemical purifications and mass spectrometry analyses to map the 

associations among the core SAC proteins and other proteins in close proximity. These 

analyses yielded a wealth of information with regards to the protein environment of the 

core SAC proteins in mitotic-enriched populations of cells where the SAC is active. In 

addition to validating well-established SAC protein complexes and protein-protein 

interactions, we defined new protein associations that warrant further investigation, 

including the ELYS-MAD1L1 interaction, to advance our understand SAC protein function 

and regulation.   

 

EXPERIMENTAL PROCEDURES 

Cell Culture and Cell Cycle Synchronization  

All media and chemicals were purchased from ThermoFisher Scientific (Waltham, MA) 

unless otherwise noted. HeLa Flp-In T-REx BioID2-tagged stable cell lines and RPE cells 

were grown in F12:DMEM 50:50 medium with 10% FBS, 2 mM L-glutamine, in 5% CO2 

at 37o C. Cells were induced to express the indicated BioID2-tagged proteins by the 

addition of 0.2 µg/ml doxycycline (Sigma-Aldrich, St. Louis, MO) for 16 hours. For 

synchronization of cells in mitosis, cells were treated with 100 nM Taxol (Sigma-Aldrich) 

for 16 hours. A list of all reagents used is provided in Table S1.  

 

Cell siRNA and Chemical Treatments  

HeLa cell siRNA treatments were performed as described previously (20), with control 

siRNA (siControl, D-001810-10) or BUB1-targeting siRNA (siBUB1, L-004102-00) from 
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Dharmacon (Lafayette, CO) for 48 hours. For chemical treatments, RPE or HeLa cells 

were treated with control DMSO vehicle or the BUB1 inhibitor BAY 1816032 (HY-103020) 

(21) from MedChemExpress (Monmouth Junction, NJ) at 10 μM for five hours. 

 

Generation of Inducible BioID2-tagging Vectors and Stable Cell Lines  

For generating pGBioID2-27 or pGBioID2-47 vectors, the EGFP-S-tag was removed from 

pGLAP1 (22) by digestion with BstBI and AflII. BioID2-Myc-27 (27 amino acid linker) or 

BioID2-Myc-47 (47 amino acid linker) were PCR amplified, digested with NheI and XhoI 

and cloned into BstBI and AflII digested pGLAP1 to generate pGBioID2-27 or pGBioID2-

47 (Figure S1A). For full-length human SAC core gene hBUB1, hBUB3, hBUBR1, 

hMAD1L1, and hMAD2L1 expression, cDNA corresponding to the full-length open 

reading frame of each gene was cloned into pDONR221 as described previously (22,23) 

(Figure S1B). SAC core genes were then transferred from pDONR221 to pGBioID2-47 

using the Gateway cloning system (Invitrogen, Carlsbad, CA) as described previously 

(22,23) (Figure S1B). The pGBioID2-47-SAC protein vectors were then used to generate 

doxycycline inducible HeLa Flp-In T-REx BioID2 stable cell lines that expressed the fusion 

proteins from a specific single locus within the genome as described previously (22,23) 

(Figure S1C,D). All primers were purchased from ThermoFisher Scientific. A list of 

primers used is provided in Table S2. For a list of vectors generated in this study see 

Table S3. The pGBioID2-27 and pGBioID2-47 vectors have been deposited at Addgene 

(AddgeneIDs: 140276 and 140277 respectively) and are available to the scientific 

community.  
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Biotin Affinity Purifications  

All media, chemicals, and beads were purchased from ThermoFisher Scientific unless 

otherwise noted. Biotin affinity purifications were conducted using previously described 

protocols with modifications (18,19). Briefly, 10% FBS was treated with 1 ml of MyOne 

streptavidin C1 Dynabeads overnight and passed through a 0.22 μm filter. The BioID2- 

BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1, and BioID2 alone inducible stable cell 

lines were plated on six 150 mm tissue culture dishes, 24 hours post-plating, the cells 

were washed three times with PBS and once with DMEM without FBS, and shifted to the 

streptavidin Dynabead-treated 10% FBS DMEM. The cells were induced with 0.2 μg/ml 

Dox, and treated with 100 nM Taxol and 50 μM Biotin for 16 hours. Mitotic cells were 

collected by shake-off and centrifuged at 1,500 rpm for 5 minutes and washed twice with 

PBS. The pellet was lysed with 3 ml of lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 

1 mM EDTA, 1 mM EGTA, 1% Triton-X-100, 0.1% SDS, Halt Protease and Phosphatase 

Inhibitor Cocktail) and incubated with gentle rotation for 1 hour at 4 o  C, then centrifuged 

at 15,000 rpm for 15 minutes and transferred to a new 15 ml conical tube. The lysate was 

transferred to a TLA-100.3 tube (Beckman Coulter, Indianapolis, IN) and centrifuged at 

45,000 rpm for 1 hour at 4 o  C. The lysate was then transferred to a new 15 ml conical 

tube and incubated with 300 ml of equilibrated streptavidin Dynabeads overnight with 

gentle rotation at 4 o  C. The beads were separated with a magnetic stand and washed 

twice with 2% SDS, followed by a wash with WB1 (0.1% sodium deoxycholate, 1% Triton 

X-100, 500 mM NaCl, 1 mM EDTA, 50 mM HEPES), a wash with WB2 (250 mM LiCl, 

0.5% deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8.0), and a final wash with 50 mM 

Tris-HCl pH 7.5. The beads were then resuspended in 50 mM triethylammonium 
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bicarbonate (TEAB), 12 mM sodium lauroyl sarcosine, 0.5% sodium deoxycholate. 10% 

of the beads were boiled with sample buffer and used for immunoblot analysis.  

 

In Solution Tryptic Digestion 

Streptavidin Dynabeads in 50 mM triethylammonium bicarbonate (TEAB), 12 mM sodium 

lauroyl sarcosine, 0.5% sodium deoxycholate were heated to 95 o   C for 10 minutes and 

then sonicated for 10 minutes to denature proteins. Protein disulfide bonds were reduced 

by treatment with 5 mM tris(2-carboxyethyl) phosphine (final concentration) for 30 minutes 

at 37o C. Protein alkylation was performed with 10 mM chloroacetamide (final 

concentration) and incubation in the dark for 30 minutes at room temperature. The protein 

solutions were diluted five-fold with 50 mM TEAB. Trypsin was prepared in 50 mM TEAB 

and added 1:100 (mass:mass) ratio to target proteins followed by a 4-hour incubation at 

37 o C. Trypsin was again prepared in 50 mM TEAB and added 1:100 (mass:mass) ratio 

to target proteins followed by overnight incubation at 37 o  C. A 1:1 (volume:volume) ratio 

of ethyl acetate plus 1% trifluoroacetic acid (TFA) was added to the samples and samples 

were vortexed for five minutes. Samples were centrifuged at 16,000 x g for five minutes 

at room temperature and the supernatant was discarded. Samples were then lyophilized 

by SpeedVac (ThermoFisher Scientific) and desalted on C18 StageTips (ThermoFisher 

Scientific) as described previously (24). 

 

Nano-liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) 

Analysis Nano-LC-MS/MS with collision-induced dissociation was performed on a Q 

Exactive Plus Orbitrap (ThermoFisher Scientific) integrated with an Eksigent 2D nano-LC 



 51 

instrument. A laser-pulled reverse-phase column, 75 µm x 200 mm, containing 5-µm C18 

resin with 300-Å pores (ThermoFisher Scientific) was used for online peptide 

chromatography. Electrospray ionization conditions using the nanospray source 

(ThermoFisher Scientific) for the Orbitrap were set as follows: capillary temperature at 

200° C, tube lens at 110 V, and spray voltage at 2.3 kV. The flow rate for reverse-phase 

chromatography was 500 nl/min for loading and analytical separation (buffer A, 0.1% 

formic acid and 2% acetonitrile; buffer B, 0.1% formic acid and 98% acetonitrile). Peptides 

were loaded onto the column for 30 minutes and resolved by a gradient of 0–80% buffer 

B over 174 minutes. The Q Exactive Plus Orbitrap was operated in data-dependent mode 

with a full precursor scan time at 180 minutes at high resolution (70,000 at m/z 400) from 

350-1,700 m/z and 10 MS/MS fragmentation scans at low resolution in the linear trap 

using charge-state screening excluding both unassigned and +1 charge ions. For 

collision-induced dissociation, the intensity threshold was set to 500 counts, and a 

collision energy of 40% was applied. Dynamic exclusion was set with a repeat count of 1 

and exclusion duration of 15 seconds.  

 

Experimental Design and Statistical Rationale  

To enhance confidence in identifying core SAC protein proximity associations, we 

performed control and experimental purifications in biological replicates (3 biological 

purifications for each core SAC proteins, except for BUB3 where 2 biological purifications 

were performed, and 2 technical replicates were performed for each biological 

purification). This approach allowed for downstream comparison of control and 

experimental purifications, where proteins identified in the control BirA only (empty vector) 
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were deemed potential non-specific associations. See Figure S2 for experimental mass 

spectrometry data acquisition and analysis workflow. Database searches of the acquired 

spectra were analyzed with Mascot (v2.4; Matrix Science, Boston, MA) as described 

previously (25). The UniProt human database (October 10, 2018) was used with the 

following search parameters: trypsin digestion allowing up to 2 missed cleavages, 

carbamidomethyl on cysteine as a fixed modification, oxidation of methionine as a 

variable modification, 10-ppm peptide mass tolerance, and 0.02-Da fragment mass 

tolerance. With these parameters, an overall 5% peptide false discovery rate, which 

accounts for total false positives and false negatives, was obtained using the reverse 

UniProt human database as the decoy database. Peptides that surpassed an expectation 

cut-off score of 20 were accepted. See Table S4 for a list of all identified peptides and 

Table S5 for a list of all identified proteins. A list of all peptides that were used to identify 

proteins with one peptide sequence is provided in Table S6. All raw mass spectrometry 

files can be accessed at the UCSD Center for Computational Mass Spectrometry 

MassIVE datasets ftp://MSV000084975@massive.ucsd.edu. Peptides meeting the 

above criteria with information about their corresponding identified protein were further 

analyzed using in-house R scripts. All R scripts used in this study are freely available at 

GitHub https://github.com/uclatorreslab/MassSpecAnalysis. To increase precision and 

reduce error, a pseudo qualitative/quantitative approach was taken. Proteins identified in 

both the control and test purifications were assayed for significance, whereas proteins 

identified in test purifications but not present in control purifications were further 

considered. To handle proteins shared between test and control purifications, but only 

identified in less frequency, we measured the relative fold change or mean difference in 

ftp://MSV000084975@massive.ucsd.edu/
https://github.com/uclatorreslab/MassSpecAnalysis
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a quantitative manner. To compare quantification between purifications, we used the 

Exponentially Modified Protein Abundance Index (emPAI) (26). emPAI offers 

approximate relative quantitation of the proteins in a mixture based on protein coverage 

by the peptide matches in a database search result and can be calculated using the 

following equation (26).  

𝑒𝑚𝑃𝐴𝐼 = 10
𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑁𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 − 1 

Where NObserved is the number of experimentally observed peptides and NObservable is the 

calculated number of observable peptides for each protein (26). To compare proteins 

across multiple replicates/baits each emPAI score was normalized to pyruvate 

carboxylase, a protein that readily binds to biotin (27), and was found in high abundance 

in all purifications. Using a normalized emPAI (NemPAI) as a relative quantification score, 

we calculated the mean difference (the mean NemPAI for a certain protein across test 

replicates minus the mean NemPAI). Resampling involved recreating or estimating the 

normal distribution around a test statistic, in this case the mean difference, by calculating 

that statistic many times under rearrangement of labels. We performed ten thousand 

simulations per test statistic, resulting in normal distributions of mean difference between 

values of proteins identified in the experimental and the control. Using this distribution, 

we related each individual mean difference to the mean difference observed in the overall 

population in order to get a relative idea of what might be significantly higher in value 

compared to the control, when taking what is observed in the entire population. Values 

that lied outside of the 95% confidence interval of the mean difference and showed a 

higher value in the experimental compared to the control were then considered for further 

analysis (see Table S7). 
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Protein Proximity Network Visualization and Integration of Systems Biology 

Databases  

Visual renderings relating protein-protein interactions/associations were carried out using 

custom scripts in R. To incorporate protein-complex information, we integrated the 

Comprehensive Resource of Mammalian Protein Complexes (CORUM v. 3.0) (28). 

Protein-protein interaction information was derived and integrated from the Biological 

General Repository for Interaction Datasets (BioGRID v. 3.5) (29). To create relational 

networks that associated proteins based on cellular mechanisms, Gene Ontology (GO) 

terms were incorporated into the search (Gene Ontology release June 2019) (30). For a 

list of GO terms used, see Table S8. Pathway information was derived from Reactome, 

an open source and peer-reviewed pathway database (31). All databases were 

individually curated into an in-house systems biology relational database using custom R 

scripts. Final visuals relating protein associations were constructed using RCytoscapeJS, 

a developmental tool used to develop Cytoscape renderings in an R and JavaScript 

environment (32,33).  

 

Immunoprecipitations  

For cell lysate immunoprecipitations (IPs), BioID2 (empty vector, EV), BioID2-MAD1L1, 

or BioID2-MAD2L1 HeLa stable cell lines were induced with 0.2 μg/ml Dox and treated 

with 100 nM Taxol for 16 hours to arrest cells in mitosis. Cells were collected by shake-

off and lysed with lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM 

EGTA, 1% Triton-X-100, 0.1% SDS, Halt Protease and Phosphatase Inhibitor Cocktail) 
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and incubated with gentle rotation for one hour at 4 o C, then centrifuged at 15,000 rpm 

for 30 minutes and the supernatant was transferred to a microcentrifuge tube. Myc 

magnetic beads were equilibrated and incubated with mitotic cell extracts for five hours 

at 4 o C with gentle rotation. The beads were then washed five times with wash buffer 

(50 mM Tris pH 7.4, 150 mM NaCl, 1 mM DTT, and Halt Protease and Phosphatase 

Inhibitor Cocktail) for five minutes each and bound proteins were eluted with 50 μL of 2X 

Laemmli SDS sample buffer. Ten percent of the sample inputs, and the entire eluates 

from the immunoprecipitations were used for immunoblot analysis.  

 

In Vitro Binding Assays  

For in vitro binding assays, Myc or FLAG-tagged GFP, MAD1L1, MAD2L1, or ELYS (N-

terminal fragment) were in vitro transcribed and translated (IVT) using TNT® Quick 

Coupled Transcription/Translation System, (Promega, Madison, WI) in 10 μL reactions. 

Myc beads (MBL, Sunnyvale, CA) were washed three times and equilibrated with wash 

buffer (50 mM Tris pH 7.4, 200 mM KCl, 1 mM DTT, 0.5% NP-40, and Halt Protease and 

Phosphatase Inhibitor Cocktail). IVT reactions were added to the equilibrated Myc beads 

and incubated for 1.5 hours at 30o C with gentle shaking and after binding, beads were 

washed three times with wash buffer and eluted by boiling for 10 minutes with 2X Laemmli 

SDS sample buffer. The samples were then resolved using a 4-20% gradient Tris gel with 

Tris-Glycine SDS running buffer, transferred to an Immobilon PVDF membrane (EMD 

Millipore, Burlington, MA), and the membranes were analyzed using a PharosFX Plus 

molecular imaging system (Bio-Rad, Hercules, CA). 
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Immunofluorescence Microscopy  

Immunofluorescence microscopy was performed as described previously (34) with 

modifications described in (25). Briefly, HeLa inducible BioID2-tagged BUB1, BUB3, 

BUBR1, MAD1L1, and MAD2L1 stable cell lines were treated with 0.2 µg/ml doxycycline 

for 16 hours, fixed with 4% paraformaldehyde, permeabilized with 0.2% Triton X-

100/PBS, and co-stained with 0.5 μg/ml Hoechst 33342 and the indicated antibodies. 

Imaging of mitotic cells was carried out with a Leica DMI6000 microscope (Leica DFC360 

FX Camera, 63x/1.40-0.60 NA oil objective, Leica AF6000 software, Buffalo Grove, IL) at 

room temperature. Images were subjected to Leica Application Suite 3D Deconvolution 

software and exported as TIFF files. The quantification of immunofluorescence 

microscopy images from BUB1 RNAi and BUB1 inhibitor treated cells was performed by 

capturing intensity profiles in ImageJ for both a kinetochore section and a background 

section adjacent to the kinetochore. Each intensity value was normalized by the area of 

the captured image and the background signal was subtracted. The values were 

compared using a student’s t-test. The number of samples used varied by experiment; 

knock-down experiments: BUB1 (n=19), SGO2 (n=50), and PLK1 (n=13); inhibitor 

treatments: BUB1 (n=20), SGO2 (n=17), and PLK1 (n=17). All calculations were 

performed in R. 

 

Antibodies  

Immunofluorescence microscopy and immunoblotting were performed using the following 

antibodies: BioID2 (BioFront Technologies, Tallahassee, FL), GAPDH (Preoteintech, 

Rosemont, IL), -tubulin (Serotec, Raleigh, NC), anti-centromere antibody (ACA, Cortex 
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Biochem, Concord, MA), SGO2 (Bethyl, Montgomery, TX), PLK1, BUB1, and ELYS 

(Abcam, Cambridge, MA). Affinipure secondary antibodies labeled with FITC, Cy3, and 

Cy5 were purchased from Jackson Immuno Research (West Grove, PA). IRDye 680RD 

streptavidin was purchased from LI-COR Biosciences (Lincoln, NE). Immunoblot 

analyses were carried out using secondary antibodies conjugated to IRDye 680 and 

IRDye 800 from LI-COR Biosciences (Lincoln, NE) and blots were scanned using a LI-

COR Odyssey infrared imager. 

 

RESULTS AND DISCUSSION 

Generation of Inducible BioID2-tagged SAC Protein Stable Cell Lines  

The spindle assembly checkpoint is essential for ensuring the fidelity of chromosome 

segregation during cell division (35) (Figure 1A). To better understand how the SAC 

functions and is regulated, we sought to map the protein associations of the core SAC 

proteins BUB1, BUB3, BUBR1 (BUB1B), MAD1L1, and MAD2L1 using a BioID2 proximity 

labeling proteomic approach (18) (Figure 1B-F). The over-expression of critical cell 

division proteins often leads to cell division defects that can preclude the generation of 

epitope-tagged stable cell lines. Therefore, we first sought to generate BioID2 Gateway-

compatible vectors with a doxycycline (Dox) inducible expression functionality. To do this, 

we amplified BirA-Myc with linkers coding for 27 or 47 amino acid residues downstream 

of Myc (BirA-Myc-27/47) (Figure S1A, Table S2). These amplification products were 

cloned into the pGLAP1 vector (22), which had been previously modified by removal of 

its LAP-tag (EGFP-Tev-S-protein), to generate the pGBioID2-27 and pGBioID2-47 

vectors (Figure S1A). Full-length human open reading frames encoding for BUB1, BUB3, 
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BUBR1, MAD1L1, and MAD2L1 were cloned into the pGBioID2-47 vector. The pGBioID2-

47-SAC protein vectors (Figure S1B, Table S3), were co-transfected with a vector 

expressing the Flp recombinase (pOG44) into HeLa Flp-In T-REx cells (Figure S1C). 

Hygromycin resistant clones were then selected (Figure S1D) and grown in the presence 

or absence of Dox for 16 hours. The Dox-induced expression of each BioID2-47-SAC 

protein was then assessed by immunoblot analysis (Figure 2A). All of the BioID2-tagged 

core SAC proteins were expressed only in the presence Dox (Figure 2A), indicating the 

successful establishment of inducible BioID2-tagged core SAC protein stable cell lines. 

Additionally, these BioID2-tagged core SAC proteins were expressed at lower levels than 

the untagged endogenous proteins (Figure S3A)   

 

BioID2-SAC Proteins Localize Properly to Kinetochores During Prometaphase  

Next the ability of BioID2-SAC proteins to properly localize to the kinetochores during 

prometaphase, a time when the SAC is active and core SAC proteins localize to the 

kinetochore region, was analyzed by immunofluorescence microscopy. BioID2-SAC 

protein HeLa inducible stable cells lines were treated with Dox for 16 hours, fixed, and 

stained with Hoechst 33342 DNA dye and anti-BioID2, anti-α-Tubulin and anti-centromere 

antibodies (ACA). The localization of BioID2-SAC proteins in prometaphase cells was 

then monitored by immunofluorescence microscopy. BioID2-tagged BUB1, BUB3, 

BUBR1, MAD1L1, and MAD2L1 localized to kinetochores, overlapping fluorescence 

signal with anti-centromere antibodies (ACA) during prometaphase (Figure 2B). In 

contrast, the BioID2-tag alone showed no specific localization (Figure 2B). These results 

indicated that the BioID2-tag was not perturbing the ability of the SAC proteins to localize 
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to kinetochores during the time when the SAC was active. Further, the addition of biotin 

did not perturb the localization of the BioID2-SAC proteins to the kinetochores (Figure 

S3B).  

 

BioID2-SAC Protein Proximity Labeling, Purifications, and Peptide Identification  

To define the protein proximity networks of core SAC proteins, the inducible BioID2-SAC 

protein HeLa stable cell lines were used to perform BioID2-dependent proximity biotin 

labeling and biotinylated proteins were purified with a streptavidin resin (Figures 1D and 

2C). Briefly, inducible BioID2-SAC protein HeLa stable cells lines were treated with 0.2 

μg/ml Dox, 100 nM Taxol, and 50 μM Biotin for 16 hours to induce the expression of 

BioID2-SAC proteins and to activate the SAC and arrest cells in prometaphase. Mitotic 

cells were collected by shake-off, lysed, and the cleared lysates were bound to 

streptavidin beads. Bound biotinylated proteins were trypsinized on the beads and the 

peptides were analyzed by 2D-LC MS/MS (for details see Experimental Procedures). A 

diagnostic immunoblot analysis of each purification, using anti-BioID2 antibodies, showed 

that BioID2-tagged BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 were present in the 

extracts and were purified with the streptavidin beads, indicating that they had been 

biotinylated (Figure 2C). Additionally, western blots of each purification were probed with 

streptavidin, which showed that biotinylated proteins were present and efficiently captured 

in each purification (Figure S4A). In-house R scripts were then used to analyze the mass 

spectrometry results (for details see Experimental Procedures), to draw significance 

between peptides shared between the experimental and the control, we estimated the 

distribution of the mean difference of normalized emPAI scores across proteins and 
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selected proteins with a significant higher difference (for details see Experimental 

Procedures). Proteins that showed significant higher values in test purifications compared 

to the controls (values that lied outside of 95% confidence interval of the population mean 

difference) were considered hits and further analyzed (Table S7). 

 

Analysis of the Core SAC Protein Proximity Association Network  

In-house R scripts were then used to integrate the identified proteins from the mass 

spectrometry analysis with the data visualization application RCytoscapeJS (32) to 

generate protein proximity association maps for each of the core SAC proteins (BUB1; 

BUB3; BUBR1; MAD1L1; MAD2L1) (Figure S5). These five maps were compiled to 

generate the SAC protein proximity network (Figure S6). To begin to digest the wealth of 

information within the SAC protein proximity network, we first analyzed the network with 

the CORUM database (28) and examined the proximal associations between each of the 

core SAC proteins. This analysis revealed many of the previously characterized core SAC 

component protein-protein interactions and the BUB1-BUB3, BUBR1-BUB3, BUBR1-

BUB3-CDC20 (BBC subcomplex of the MCC) and MAD2L1-BUBR1-BUB3-CDC20 

(MCC) complexes (Figures 3 and S6) (6,36-38). These SAC complexes are critical to the 

establishment and maintenance of the SAC (39) and their identification was an indication 

that our proximity-based labeling approach was robust. Of interest, BUB3 was present in 

all of the purifications, consistent with its central role in recruiting other SAC proteins to 

the kinetochore and coordinating the formation of SAC sub-complexes (Figure 3) (12). 

Although MAD1L1 and MAD2L1 had been previously determined to bind directly (40), our 

approach was unable to detect this association. However, previous proteomic analyses 
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with N- or C- terminal BioID-tagged MAD1L1 were also unable to detect an association 

with MAD2L1, which was attributed to a low number of lysines on the surface of MAD2L1 

that likely affected the efficiency of biotin labeling (41). 

 

Analysis of Core SAC Protein-Kinetochore Protein Proximity Associations  

To specifically analyze the kinetochore proteins identified in the core SAC protein 

proximity networks, we applied a kinetochore related Gene Ontology (GO) annotation 

analysis to the data sets. Briefly, R scripts were used to integrate the identified proteins 

with the bioinformatic databases CORUM (28), Gene Ontology (30), BioGRID (29), and 

Reactome (31) using kinetochore related GO terms (see Table S8 for a list of Kinetochore 

GO IDs) to reveal the kinetochore associated proteins. RCytoscapeJS (32) was then used 

to generate GO, BioGRID, and Reactome kinetochore protein proximity association maps 

for each of the core SAC proteins (BUB1; BUB3; BUBR1; MAD1L1; MAD2L1) (Figures 

S7-S11). The five kinetochore GO maps (one for each core SAC protein) were compiled 

to generate one core SAC protein kinetochore GO network that visualized the proteins 

within the network that were active at the kinetochore (Figure S12A). A similar process 

was repeated to generate one core SAC protein BioGRID network that displayed the 

verified associations between the proteins that were active at the kinetochore (Figure 

S12B) and one core SAC protein Reactome network that highlighted the cellular 

pathways that proteins in the SAC proximity association network have been linked to 

(Figure S12C). Additionally, we generated core SAC protein GO, BioGRID, and 

Reactome networks using mitotic spindle related GO annotations (Figure S13A-C) and 

centromere related GO annotations (Figure S14A-C), see Table S8 for a list of GO IDs. 
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Finally, we generated core SAC protein GO, BioGRID, and Reactome networks using the 

kinetochore, mitotic spindle, and centromere related GO annotations (Figure 4A-C). 

Interestingly, of the proteins identified in the purifications, kinetochore associated proteins 

were enriched in comparison to mitochondrial proteins (Figure S15). Together, these 

networks not only visualized the associations of each core SAC protein with kinetochore 

components and more broadly proteins implicated in mitotic spindle assembly, they also 

provided a holistic view of their interconnectedness (ie. associations among core SAC 

proteins and subcomplex and complex formation).  

Numerous insights were derived from these networks and we highlight four here. 

First, we identified the Mis12 centromere complex components DSN1 and PMF1 in the 

BUB1 and MAD1L1 purifications (Figures 4A, S7A, and S10A). The Mis12 complex is 

comprised of PMF1, MIS12, DSN1, and NSL1 (42-44) and genetic and biochemical 

studies have shown that it coordinates communication from the outer kinetochore to the 

centromeric DNA in the inner kinetochore (44-46). Unexpectedly, PMF1 was also 

identified in the BUB3 purification (Figures 4A and  S8A). To our knowledge there have 

been no previous reports of a direct association between BUB3 and the Mis12 complex. 

Therefore, this BUB3-PMF1 association could indicate a novel direct interaction or simply 

that these proteins reside within close proximity at the kinetochore. Of interest, the Mis12 

complex recruits KNL1 to the kinetochore, which functions as a scaffold for the 

recruitment of BUB3 that subsequently recruits additional SAC components (4,38,47). 

Consistently, we observed the association of KNL1 with BUB1, BUB3, BUBR1, and 

MAD1L1 (Figure 4A). These associations were previously reported, as summarized in the 

Figure 4B BioGRID network, and had been established to have a role in checkpoint 
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activation (41,48-50) (reviewed in (5)). Additionally, MAD2L1 was not found to associate 

with KNL1 and to our knowledge a KNL1-MAD2L1 interaction has not been reported.  

Second, minor components of the Astrin-Kinastrin complex (PLK1, DYNLL1, and 

SGO2) (51) were found to associate with all of the core SAC proteins (Figures 4A, S7A, 

S8A, S9A, S10A, and S11A). The Astrin-Kinastrin complex is important for aligning and 

attaching microtubules to kinetochores (51-53). Previous studies showed that depletion 

of BUB1 led to the delocalization of PLK1 and SGO2 from the kinetochores during 

prometaphase (54,55). Additionally, the BUB1 kinase activity was shown to be important 

for SGO2 kinetochore localization (56) and for the proper localization of BUB1 to the 

kinetochore (55) and pharmacological inhibition of the BUB1 kinase activity led to 

delocalization of SGO2 away from kinetochores (57). However, whether the BUB1 kinase 

activity was required for PLK1 kinetochore localization remained unknown. To address 

this, we first sought to confirm that PLK1 and SGO2 were mislocalized in BUB1-depleted 

cells. HeLa cells were treated with control siRNA (siControl) or BUB1-targeting siRNA 

(siBUB1) capable of depleting BUB1 protein levels (Figure 5A). Immunofluorescence 

microscopy of these cells showed that BUB1was absent from kinetochores in siBUB1-

treated cells (Figure 5B). Additionally, the siBUB1 treatment reduced the levels of 

kinetochore-localized PLK1 and SGO2 (Figure 5C,D). Next, we asked if the BUB1 kinase 

activity was required for PLK1 and SGO2 kinetochore localization. RPE cells were treated 

with control DMSO vehicle or the recently developed BUB1 kinase selective inhibitor BAY 

1816032 (21) and the localization of PLK1 and SGO2 was assessed in mitotic cells. In 

comparison to the control DMSO treatment, treatment with BAY 1816032 led to a 

reduction in the levels of kinetochore-localized PLK1 and SGO2 (Figure 5E,F). 
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Additionally, treatment of BioID2-BUB1 expressing HeLa cells with BAY 1816032 also led 

to a reduction in the levels of kinetochore-localized BioID2-BUB1 (Figure 5G). This data 

indicated that the BUB1 kinase activity was important for its proper localization to 

kinetochores and for the localization of the Astrin-Kinastrin minor complex components 

PLK1 and SGO2 to the kinetochore. 

Third, we identified CENPV as a MAD2L1 associating protein (Figure 4A). CENPV 

was identified in a proteomic screen for novel components of mitotic chromosomes (58) 

and was later shown to localize to kinetochores early in mitosis and to have a major role 

in directing the chromosomal passenger complex (CPC) subunits Aurora B and INCENP 

to the kinetochore (50,59). Although BUB1 has been shown to be important for the 

recruitment of the CPC to kinetochores (60), we are unaware of any reports of MAD2L1 

being involved in this process. Interestingly, MAD2L1 has been shown to regulate the 

relocation of the CPC from centromeres through its inhibition of MKLP2, which is essential 

for proper cytokinesis (61). Thus, it is possible MAD2L1 could also be regulating CPC 

localization to kinetochores through its association with CENPV.  

Fourth, components of the nuclear pore complex were found to associate with 

MAD1L1 and MAD2L1 (Figure S5). To better visualize these nuclear pore associated 

proteins, we performed a proximity protein mapping analysis for each of the core SAC 

proteins using the nuclear pore related GO annotations (see Table S8 for a list of nuclear 

pore related GO IDs) (Figure S16). This analysis revealed that MAD1L1 had associations 

with nuclear pore basket components including TPR, NUP153, NUP50, and other 

components of the nuclear pore that are in close proximity to the nuclear basket like 

ELYS/AHCTF1 (also known as MEL-28 in C. elegans) and NUP107 (Figure S16A). These 
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data support previous studies in humans and other organisms that have shown that 

MAD1L1 associates with TPR, NUP153, ELYS, and NUP107 and is important for 

generating the MAD1L1-MAD2L1 complex in early mitosis to establish the SAC (62-68). 

Similarly, MAD2L1 was found to associate with TPR (previously verified in (63)), NUP50, 

Nup153, NUP210 and ELYS (Figure S16A). Of interest, we did not detect associations 

between other core SAC proteins (BUB1; BUB3; BUBR1) and nuclear pore basket 

proteins. These data are consistent with a model where MAD1L1 makes multiple direct 

contacts with the nuclear pore basket complex subunits and MAD2L1 is in close proximity 

to NUP153 and NUP50 due to its binding to MAD1L1. We note that ELYS was found in 

both the MAD1L1 and MAD2L1 proximity maps (Figure S16A). ELYS was discovered in 

a proteomic screen for NUP107-160 complex binding partners and was shown to localize 

to nuclear pores in the nuclear lamina during interphase and to kinetochores during early 

mitosis, similar to the NUP107-160 complex (69). More recently, ELYS was shown to 

function as a scaffold for the recruitment of Protein Phosphatase 1 (PP1) to the 

kinetochore during M-phase exit, which was required for proper cell division (70,71). Due 

to ELYS’s roles at the kinetochore and an identified yeast two-hybrid interaction between 

C. elegans MEL-28 (ELYS in humans) and MDF-1 (MAD1L1 in humans) (65), we sought 

to determine if MAD1L1 and MAD2L1 were binding directly to ELYS. First, we performed 

MYC immunoprecipitations from mitotic protein extracts prepared from BioID2, BioID2-

MAD1L1, and BioID2-MAD2L1 expressing cell lines that had been arrested in mitosis. 

Indeed, ELYS immunoprecipitated with both BioID2-MAD1L1 and BioID2-MAD2L1, albeit 

weakly, in these mitotic extracts (Figure 6A). Next, we sought to asses these interactions 

in a cell-free in vitro expression system. Although a validated full-length ELYS cDNA 
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vector was not available and could not be generated, we were able to generate a MYC-

tagged ELYS N-terminal fragment vector that expressed the first 46 amino acids of ELYS. 

This ELYS N-terminal fragment bound to FLAG-MAD1L1, but not FLAG-MAD2L1 (Figure 

6B). Together, these data indicated that ELYS associated with MAD1L1 and MAD2L1 in 

mitotic cell extracts and that MAD1L1 bound to the ELYS N-terminal fragment in vitro.  

 

 

Core SAC Proteins in Cellular Homeostasis  

It’s important to note that most of the core SAC proteins have been shown to have roles 

in cellular homeostasis independent of their role in the SAC, which are predominantly 

mediated through protein-protein interactions with non-kinetochore proteins. Many of 

these associations were present in the individual core SAC protein proximity maps where 

GO annotations were not applied (Figure S5). Consistently, Reactome pathway analysis 

of the core SAC protein proximity protein network showed that many of the SAC 

associated proteins had roles in numerous pathways important for cellular homeostasis 

including the cell cycle, DNA repair, and gene expression (Figure 4C). We encourage 

researchers interested in non-mitotic SAC protein functions to explore the SAC protein 

proximity association networks to gain further insights into these pathways. 

 

CONCLUSIONS 

The SAC is an important signaling pathway that is critical for proper cell division, which 

functions with great precision in a highly orchestrated manner (2). Due to the dynamic 

nature of the associations between core SAC proteins and the complexes and 
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subcomplexes that they form, it has been difficult to generate a proteomic network view 

of the proteins that are in close proximity and that interact with core SAC proteins. Here, 

we have established an inducible BioID2-tagging system that allowed for the transient 

expression of BioID2-tagged core SAC proteins (BUB1, BUB3, BUBR1, MAD1L1, and 

MAD2L1), which bypasses issues associated with long-term overexpression of key cell 

division proteins that can compromise cellular homeostasis. We coupled this system to a 

proximity labeling proteomic approach to systematically define a proximity protein 

association map for each of the core SAC proteins. These proximity maps were integrated 

to generate a core SAC protein proximity protein network. The coupling of the proximity 

maps/network with curated functional databases like CORUM, GeneOntology, BioGRID, 

and Reactome allowed for a systems level bioinformatic analysis of the associations 

within these maps/network. To our knowledge this is the first systematic characterization 

of the core SAC proteins by proximity-based proteomics.  

  Our analysis recapitulated many of the core SAC protein-protein interactions, sub-

complexes, and complexes that had been previously described. Importantly, it also 

identified numerous novel associations that warrant further examination. Among these is 

ELYS, which associated with MAD1L1 and MAD2L1. Although an interpretation of these 

associations could be that MAD1L1 and MAD2L1 associate with ELYS at the nuclear pore 

in preparation for mitotic entry and SAC activation, we favor a model where ELYS may 

be important for the recruitment of SAC proteins to the kinetochore and/or for checkpoint 

activation. Future studies aimed at addressing these models should bring clarity to the 

potential role of ELYS in SAC functioning and cell division. Of interest, previous studies 

had shown the importance of BUB1 for the localization of the Astrin-Kinastrin minor 
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complex proteins to the kinetochore (51-54) and our analysis further determined that the 

BUB1 kinase activity was important for this function. Together, these data indicate that 

BUB1 may have a central organizing role not only in SAC activation and function, but in 

SAC silencing and mediating the transition from metaphase to anaphase through its 

association with the Astrin-Kinastrin minor complex (Figure 5H). 

  We note that there are limitations to the BioID2 approach (for review see (72)). 

Although our analysis was conducted from mitotic-enriched populations of cells to enrich 

for mitotic protein associations, the biotinylation process is conducted over the time-frame 

of hours and some identified associations could represent associations that take place 

outside of mitosis. These associations could inform on the non-mitotic functions of core 

SAC proteins, which is a rapidly growing field. Moving forward recent developments in 

BioID2 technology such as the mini-turboID system should help to resolve proximity 

associations in a time-dependent manner, as labeling occurs within minutes (73). Our 

analysis also employed N-terminal BioID2-tagging and a similar approach using C-

terminal tagging of core SAC proteins could lead to different results. Additionally, it is 

important to note that BioID systems do not identify all known interactions of any specific 

bait protein. For example, we did not identify the MAD1L1-MAD2L1 interaction in our 

BioID2 analysis, which is consistent with a previous BioID analysis of MAD1L1 (41). 

Interestingly, we were able to detect the MAD1L1-MAD2L1 interaction when we 

performed immunoprecipitations with BioID2-MAD1L1 and BioID2-MAD2L1 and 

immunoblotted for endogenous MAD1L1 or MAD2L1 (Figures S4B and 6A). This 

indicates that BioID2-MAD1L1 is capable of binding to MAD2L1, but is not able to 

biotinylate it efficiently. There are many reasons why similar phenomena may occur with 
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other protein pairs and these include a low abundance of surface exposed lysines on prey 

proteins (whether absent from the protein surface or buried within a protein complex) and 

the orientation of the protein interaction could preclude access to lysines on prey proteins 

(72). Nonetheless, BioID systems have been invaluable to understanding cellular process 

and the architecture of cellular structures (14,19,74-76). 

  To facilitate the use and interrogation of the core SAC protein proximity 

maps/network generated in this study, all mass spectrometry data and R scripts used to 

analyze the data have been deposited in open access databases that are freely available 

to the scientific community (see Experimental Procedures). These tools will enable 

researches to define novel associations and to generate testable hypotheses to further 

advance the current understanding of SAC protein function and regulation.    

 

SUPPORTING INFORMATION 

The Supporting Information is available free of charge at: (link provided by ACS) 

Workflow for generating BioID2 vectors and cell lines; workflow of mass spectrometry 

data acquisition and analysis; supporting data characterizing cell lines and biochemical 

purification controls; combined Cytoscape protein association maps of selected SAC 

proteins with no GO terms applied; Cytoscape protein association maps for each SAC 

protein with applied GO terms; kinetochore protein enrichment analysis; uncropped 

immunoblots for all figures (PDF)  

List of reagents used (XLSX) 

List of primers used (XLSX) 

List of vectors generated (XLSX) 
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Summary of all identified peptides from all BioID2 purifications (XLSX) 

Summary of all identified proteins from all BioID2 purifications (XLSX) 

Summary of peptides for all proteins that were identified with one peptide sequence 

(XLSX) 

Summary of significant SAC protein proximity associated proteins (XLSX) 

List of Gene Ontology (GO) annotations used in the core SAC protein proximity 

association network analyses (XLSX) 
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FIGURES 

 

Figure 1. Overview of the approach to generate core SAC protein BioID2 proximity 

association networks. (A) Schematic of the core spindle assembly checkpoint (SAC) 

components BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 that localize to the 

kinetochore region during early mitosis. MCC denotes mitotic checkpoint complex. (B) 

Generation of inducible BioID2-tagged stable cell lines for each core SAC protein. (C) 

Fixed-cell immunofluorescence microscopy to analyze BioID2-tagged SAC protein 

subcellular localization in time and space. (D) Biochemical purifications; affinity 

purification of biotinylated proteins and identification of proteins by LC/MS/MS. (E) 
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Computational analysis of raw mass spectrometry data using in-house R scripts. (F) 

Generation of high-confidence SAC protein proximity association networks. 

 

 

 

Figure 2. Establishment of inducible BioID2-tagged SAC protein (BUB1, BUB3, BUBR1, 

MAD1L1 and MAD2L1) stable cell lines and biochemical purifications. (A) Immunoblot 

analysis of extracts from doxycycline (Dox)-inducible BioID2-tag alone (EV, empty 

vector) or BioID2-tagged SAC protein (BUB1; BUB3; BUBR1; MAD1L1; MAD2L1) 

expression cell lines in the absence (-) or presence (+) of Dox for 16 hours. For each 

cell line, blots were probed with anti-BioID2 (to visualize the indicated BioID2-tagged 

SAC protein) and anti-GAPDH as a loading control. M.W. indicates molecular weight. 

Note that BioID2-tagged SAC proteins are only expressed in the presence of Dox. The 
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arrow points to the induced BioID2-BUB3 protein band and the asterisk denotes a non-

specific band recognized by the anti-BioID2 antibody. (B) Fixed-cell 

immunofluorescence microscopy of the BioID2-tag alone (EV) or the indicated BioID2-

tagged SAC proteins during prometaphase, a time when the SAC is active. HeLa 

BioID2-tagged protein expression cell lines were induced with Dox for 16 hours, fixed 

and stained with Hoechst 33342 DNA dye and anti-BioID2, anti-α-Tubulin and anti-

centromere antibodies (ACA). Bar indicates 5𝜇m. Note that all BioID2-tagged SAC 

proteins localize to the kinetochore region (overlapping with the ACA signal), whereas 

the BioID2-tag alone (EV) was absent from kinetochores. (C) Immunoblot analysis of 

BioID2 biochemical purifications from cells expressing the indicated BioID2-tagged SAC 

proteins or the BioID2-tag alone (EV). For each cell line, blots were probed with anti-

BioID2 (to visualize the indicated BioID2-tagged SAC protein) and anti-GAPDH as a 

loading control. M.W. indicates molecular weight. LS indicates low speed supernatant, 

HS indicates high speed supernatant. Uncropped immunoblots are provided in Figures 

S17 and S18. 
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Figure 3. Associations among the core SAC proteins identified in the proximity protein 

network. The associations between each of the core SAC proteins (BUB1; BUB3; 

BUBR1; MAD1L1; MAD2L1) were isolated from the unified core SAC protein proximity 

association network (Figure S6). Purple boxes highlight protein complexes known to 

assemble with core SAC proteins as annotated by the CORUM database. Arrows 

indicate the direction of the detected associations. 
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Figure 4. SAC protein BioID2 kinetochore/mitotic spindle assembly/ centromere 

proximity association network. (A) Individual core SAC protein (BUB1; BUB3; BUBR1; 

MAD1L1; MAD2L1) proximity protein maps were compiled and subjected to 

kinetochore, mitotic spindle assembly, and centromere GO annotation analysis along 

with a COURM complex annotation analysis to generate a core SAC protein 

kinetochore/mitotic spindle assembly/ centromere proximity association network. Purple 
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boxes highlight kinetochore, mitotic spindle assembly, and centromere associated 

protein complexes present in the network. Arrows indicate the direction of the detected 

interactions. For a list of GO terms used see Table S8. (B) The core SAC protein 

kinetochore/mitotic spindle assembly/ centromere proximity association network was 

analyzed with BioGRID to reveal previously verified protein associations. Each arrow 

indicates an experimentally annotated interaction curated in the BioGRID database. 

Direction of arrows indicate an annotated interaction from a bait protein to the prey. (C) 

Reactome pathway analysis of the core SAC protein kinetochore/mitotic spindle 

assembly/ centromere proximity association network. The Reactome circular interaction 

plot depicts the associations between the identified proteins within the SAC protein 

kinetochore/mitotic spindle assembly/centromere proximity association network and the 

corresponding pathways in which they function. Legend presents the color-coded 

pathways that correspond to the circular interaction plots. 
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Figure 5. BUB1 as a hub for organizing the metaphase to anaphase transition. (A) 

Immunoblot analysis of protein extracts isolated from HeLa cells treated with control 

(Ctl) or BUB1 siRNA. GAPDH was used as a loading control. (B-D) Fixed-cell 

immunofluorescence microscopy of mitotic HeLa cells treated with control siRNA 

(siControl) or siRNA targeting BUB1 (siBUB1). Cells were fixed and stained with 
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Hoechst 33342 DNA dye and anti-BUB1 (B), anti-PLK1 (C), or anti-SGO2 (D) 

antibodies, along with anti-α-Tubulin and anti-centromere antibodies (ACA). Bars 

indicate 5𝜇m. Box plots on the right of each panel show the quantification of the 

normalized fluorescence intensity for kinetochore-localized BUB1 (B), PLK1 (C), or 

SGO2 (D) and **** denotes a P-value < 0.001. (E-F) Same as in A, except that RPE 

cells were used and treated with control DMSO vehicle or the BUB1 kinase inhibitor 

BAY 1816032. Note that the levels of kinetochore-localized PLK1 (E) and SGO2 (F) 

decrease in BAY 1816032-treated cells. Bars indicate 5𝜇m. Box plots on the right of 

each panel show the quantification of the normalized fluorescence intensity for 

kinetochore-localized PLK1 (E, * indicates P-value of 0.027) or SGO2 (F, **** indicates 

P-value < 0.001). (G) Same as in E-F, except that a HeLa BioID2-BUB1 expressing cell 

line was used. Bar indicates 5𝜇m. Box plot shows the quantification of the normalized 

fluorescence intensity for kinetochore-localized BioID2-BUB1, **** indicates P-value < 

0.001. (H) Model of BUB1 as an organizer of the metaphase to anaphase transition. 

BUB1 is critical for SAC protein binding to KNL1 to establish the SAC response and is 

also critical for the recruitment of the Astrin-Kinastrin minor complex, which is essential 

for the metaphase to anaphase transition.    
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Figure 6. ELYS binds to MAD1L1 and MAD2L1 in mitotic cell lysates and to MAD1L1 in 

vitro. (A) BioID2-Myc (empty vector, EV), BioID2-Myc-MAD1L1, or BioID2-Myc-MAD2L1 

inducible HeLa stable cell lines were induced with Dox and treated with 100 nM Taxol to 

arrest cells in mitosis. Mitotic cell lysates were then used for Myc immunoprecipitations 

and subjected to immunoblot analysis with the indicated antibodies. Note that 

endogenous ELYS immunoprecipitates with BioID2-Myc-tagged MAD1L1 and MAD2L1. 

Asterisks indicate BioID2-Myc-MAD1L1 or BioID2-Myc-MAD2L1 in the inputs or eluates. 

Arrow head indicates non-specific background band recognized by the anti-BioID2 

antibody. (B) 35S-radiolabeled Myc-ELYS N-terminal fragment (ELYS1-46, first 46 amino 

acids), FLAG-MAD1L1, FLAG-MAD2L1, and FLAG-GFP (control) were used in in vitro 

binding assays. Myc immunoprecipitations were resolved by western blotting and the 

blots were analyzed by autoradiography. Note that the ELYS N-terminal fragment binds 

to MAD1L1 and not MAD2L1. 
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CHAPTER 4 

 

Future Directions: Predicting Contaminants in PPI/A Data Using Supervised Machine 

Learning 
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INTRODUCTION 

Predictive analysis via machine learning has become a popular technique in the biological 

sciences, fueled by improvements in computer systems, data accessibility, and analytical 

techniques. These advances have given rise to many breakthroughs in numerous 

scientific areas including molecular biology (Camacho et al., 2018), image data analysis 

(Shen et al., 2017) and clinical practice (Rajkomar et al., 2019). Of particular interest are 

network-specifics about pathways or disease states, since protein-protein interactions 

and associations (PPI/A) contribute significantly to our understanding of function in 

biological systems. In this area scientists have used databases like BioGRID (Oughtred 

et al., 2019), a database of gene interactions, protein-protein interactions and chemical 

interactions to study how different biomolecules relate to each other. Understanding these 

relationships allows us to have a better understanding of healthy states which can be 

applied to train a machine learning algorithm to understand healthy network 

characteristics of these states. Then providing the algorithm with patient data, machine 

learning can be used to predict between healthy and disease states, allowing scientists 

to identify key characteristics that distinguish disease states (Mall et al., 2017).  Similarly, 

machine learning techniques can be applied to understanding network inference, 

especially when considering phenotypic differences in expression (Fuente, 2010). 

 

More recently, machine learning methods have been used to improve many aspects of 

the proteoinformatic pipeline in PPI/A MS based experiments. Mass spectrometry-based 

proteomics is a powerful technique that allows for the qualitative and quantitative analysis 

of proteins in complex mixtures. However, there are computational challenges in peptide 



 

94 
 

identification, quantification, quality assessment and biological interpretation that prevent 

more sensitive and accurate identification and quantification of proteins (Sagawa et al., 

2020; Meyer, 2021). In simple terms, machine learning methods approximate the value 

or classify an object based on the mathematical relationship between object (x) and 

output (y) (Badillo et al., 2020). By learning from the relationship between outputs and 

objects machine learning methods are then able to apply this statistical relationship to 

new examples. This can be applied to many aspects of the proteoinformatic pipeline, for 

example predicting retention time of unknown proteins considering information from 

known proteins. Machine learning methods have been used to predict fragment ion 

intensity, rentention time, protein and peptide identification (Table 1) (Meyer, 2021). 

Table 1. Examples of machine learning methods used for fragment ion, retention time, 

and protein/peptide identification predictions.  

Year Name Prediction Type Citation 

2005 PeptideART Fragment Ion (Arnold et al., 2006) 

2017 pDeep Fragment Ion (Zhou et al., 2017) 

2019 DeepMass Fragment Ion and 

Retention Time 

(Tiwary et al., 2019) 

2003 N/A Retention Time (Petritis et al., 2003) 

2017 DeepRT Retention Time (Ma et al., 2017) 

2012 Barista Protein/Peptide 

Identification 

(Spivak et al., 2012) 

2020 DIA-NN Protein/Peptide 

Identification 

(Demichev et al., 2020) 
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Machine learning methods can be classified into two main categories: supervised and 

unsupervised methods (Figure 1). Supervised methods have labelled data and their goal 

is to predict a value (either numerical or categorial) given new data (Badillo et al., 2020). 

Unsupervised methods have unlabeled data and their goal is to explore the structure of 

the data to find some sort of pattern or order (Badillo et al., 2020). Figure 1 summarizes 

common machine learning methods and how they relate to each other. Once the right 

algorithm is chosen, machine learning projects often follow similar steps that lead to 

adapting the machine learning method to the data structure at hand. Often the steps 

involve obtaining data, preparing data, training/applying a model, testing the model and 

finally using the test to improve the algorithm itself (Badillo et al., 2020).  

 

Analysis of protein-protein interaction/association experiments using mass spectrometry 

often involves a quantitative or semi-quantitative/qualitative analysis workflow. The 

abundance of each protein in bait purifications is compared to abundance values of 

proteins in a control purification. However, depending on the mass spectrometer and 

preparation of samples before mass spectrometry, not all proteins identified in the bait 

purification are identified in the control purification and vice versa. This common problem 

falls under a common problem in mass spectrometry coined the missing data problem 

(Jin et al., 2021). This problem is particularly prevalent in label-free quantitative 

proteomics, and it reduces the accuracy and completeness of the data. To overcome this 

issue, the field has adopted imputation methods that simulate missing values in order to 

complete the data (Jin et al., 2021). However, accuracy of imputation value is dependent 
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on the selection of imputation method creating a wide array of results in the downstream 

pipeline. Alternatively, databases have been created to overcome the missing data 

problem in PPI/A MS-based experiments. The most popular database is the contaminant 

repository for affinity purification-mass spectrometry data (CRAPome) that houses label 

free quantitative values for common controls in PPI/A experiments (Mellacheruvu et al., 

2013). However, because of the nature of the experiment, not every protein identified in 

an experiment will be present in the controls of the CRAPome, and so there is a question 

of whether or not a protein should be considered a contaminant. To overcome this issue, 

we suggest a more general algorithm using supervised machine learning that aims to 

create a profile of proteins commonly found in a certain type of controls and aims to then 

applies this understanding to predicting whether a protein should be a contaminant or not.  

 

This work describes a supervised machine learning method aiming to predict 

contaminants in PPI/A MS-based data. The pipeline involves four major steps: 1. 

Identifying a control of interest in the CRAPome (Mellacheruvu et al., 2013) and data 

scrapping sequence information for proteins in the control. 2. Creating features to 

describe proteins in the control, we show that amphiphilicity is a main predictor to 

separate contaminants in PPI/A data. 3. Create a predictive model using supervised 

machine learning methods, we compare random forest and svm two popular machine 

learning methods. 4. Apply the model to test data. Using this pipeline we achieved 90% 

accuracy with a high sensitivity of 87%. We suggest this method is beneficial to labs that 

have established common methods of doing PPI/A experiments and would like to apply 

another quality control filter by which to start analyzing the data from these experiments. 
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Overall, this method can be applied to any PPI/A MS-based control experiment to create 

a general algorithm that predicts contaminants mostly based on amphiphilicity.  

 

RESULTS  

Unsupervised data exploration 

To create a predictive model that identifies contaminants in PPI/A MS-based data, we 

sought to identify features that commonly describe protein sequences through 

proteochemometric modeling. We hypothesized that hydrophobic and hydrophilic pockets 

in proteins where not only important in determining protein-protein interactions but also 

could be used to identify common features in contaminants. Hence, we calculated the 

Amphiphilic Pseudo-Amino Acid Composition (APseAAC) (Chou, 2001; Chou, 2005; Xiao 

et al., 2021) for protein sequences. In simple terms, APseACC aims to calculate the 

hydrophobicity and hydrophilicity of protein sequences while considering local and global 

sequence order (Chou, 2001; Chou, 2005). We first identified 114 common contaminants 

in a BioID control purification in the CRAPome (Mellacheruvu et al., 2013), then compared 

those to 1,000 randomly selected proteins from the UniProt database (Apweiler et al., 

2004) and around 80 to 90 protein interactions/associations for each SAC protein. Using 

the ProtR (Xiao et al., 2021) computational suite for proteochemometric modeling in R we 

calculated the APseAAC from protein sequences in each group.   

 

We decided to first explore the data in an unsupervised fashion to determine if there are 

any differences between protein groups. To do so we took the average APseAAC values 
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for all proteins in each group and compared them to each other. Figure 2A demonstrates 

hydrophobic and hydrophilic values across the first ten principal components. Figure 2B 

shows the difference across average values when the control and BUB1 interacting 

proteins are compared to contaminants. The difference heatmap (Figure 2B) clearly 

demonstrates that there are numerical differences between contaminants and the other 

two groups demonstrating that hydrophobicity and hydrophilicity can be used as features 

in predicting contaminants from interactors or associations in BioID purifications.   

 

Supervised machine learning 

Using amphiphilicity as a predictor, we applied supervised machine learning and 

measured for accuracy. Using interactors from 4 main SAC components (BUB1, BUB1B, 

MAD1, MAD2) we combined interactors with 1,000 random proteins from the UniProt 

database. We then compared these proteins to the most common contaminants in the 

Hela Cell Line BioID in the CRAPome database. For each SAC component, we divided 

the dataset into a training (70% of the data) and test (30% of the data) set in order to 

create and test the model for accuracy. Given that there was an imbalance in classes 

(114 contaminants vs. 1000+ random and interaction proteins) we decided to apply 

Synthetic Minority Oversampling Technique (SMOTE), a technique used to balance 

uneven numerical classes by using Euclidian distances between groups to create new 

data points, in the training set (Blagus and Lusa, 2013). We then applied the trained 

random forest model to the test data and measured for accuracy. The results suggest the 

model is about ~90% accurate at predicting contaminants in test data. Furthermore, the 

accuracy is consistent across different baits (Figure 3).  
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CONCLUSION AND FUTURE DIRECTIONS 

 Mass spectrometry is a powerful tool for cell biologists, specially when understanding the 

proteome of cellular events and compartments. Affinity purification and proximity mass 

spectrometry-based assays have become extremely popular techniques that aim to 

elucidate the proteome around cellular events and proteins of interest. However, these 

techniques often result in large amounts of data which can be overwhelming for biologists 

to understand. To address these issues scientists have applied quantitative data and 

statistical analysis to better understand which proteins might be contaminants in 

interaction/proximity MS-based data. Although these techniques are powerful and 

accurate in labeled MS-based data, they are less accurate in unlabeled MS data. 

Furthermore, these types of experiments are prone to the missing data problem in which 

proteins might be contaminants but because of the limitations in MS-based techniques 

are not identified in control purifications. To address these issues, we have started to 

apply machine learning techniques to identify protein contaminants in 

interaction/proximity-based purifications. Our results suggest that amphiphilicity is a 

predictor of protein contaminants, and that applying supervised machine learning 

methods like random forest results in accurate (90% accurate) prediction of protein 

contaminants in interaction/proximity-based experiments. Furthermore, we tested this 

method with 4 different unique protein baits, resulting in similar results suggesting our 

predictions are accurate and reproducible across a variety of baits. In the future, we hope 

to extend this research to incorporate other types of protein-based numerical features 

and test unsupervised machine learning methods to perform quality control in 

interaction/proximity MS-based data.  
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METHODS 

Preparing PPI/A Data 

In order to create and test a supervised machine learning model that predicts 

contaminants in PPI/A data, we first created a training dataset from which we could train 

the model and monitor it’s performance. We decided to scrape data from the contaminant 

repository for affinity purifications (CRAPome) database  (Mellacheruvu et al., 2013). We 

decided to specifically focus on a BioID control purification performed in human Hela cells 

incubated with Biotin since this type of experiment mostly resembles the type of 

experiments done in our lab. More specifically, we chose experiments CC539, CC540, 

CC541, CC542, CC543, and CC544 and aggregated the scores of all proteins identified 

in the control purifications by calculating the mean spectral count value for each protein. 

We then sought to determine which proteins where most present in the purification, and 

so we calculated the distribution of the mean spectral count value. Using bootstrap 

method (Henderson, 2005), we calculated the distribution of the mean spectral count for 

proteins in the selected purifications and calculated a range for 95% confidence interval 

(CI) of the mean. We calculated the mean value to be 5.2 spectral count units (SCU) with 

the 95% CI within 3.5 and 7.8 SCUs. We reasoned that the most prevalent proteins would 

lie to the right of the 95% CI and labeled proteins with a spectral count higher than 7.8 

SCUs as contaminants. We identified a total 114 proteins as common contaminants for 

this type of BioID purifications. We then sought to identify a separate class of proteins 

that would be representative of non-contaminants in order to train a supervised machine 

learning algorithm. To do so, we identified 1000 random proteins in the UniProt database 

(Apweiler et al., 2004) and used that as our second class by which to train the algorithm 
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with. Finally, to identify probable interactors, it was important to include protein-protein 

interactions and associations for baits of interest in the training set of the supervised 

machine learning model. Using the IntAct database (Hermjakob et al., 2004) we identified 

protein-protein interactions and associations for baits of interest in which to include in the 

training set.  

 

Feature Extraction 

We sought to identify features that commonly describe protein sequences through 

proteochemometric modeling. We reasoned that proteins commonly identified as 

contaminants must have common hydrophobic and hydrophilic regions. With this in mind, 

we focused on the amphiphilic pseudo-amino acid composition (APseAAC) (Chou, 2001) 

a feature that aims to calculate amino acid composition and the distribution of 

hydrophobic and hydrophilic amino acids while considering sequence order (Chou, 2005). 

This feature has been used in predictive modeling to predict enzyme subfamily classes 

(Chou, 2005), cofactors of oxidoreductases (Zhang and Fang, 2008) and drug-target 

interactions (Wang et al., 2020).  In simple terms it aims to create discrete numerical 

values from sequence order information by calculating the amphiphilicity of groups of 

amino acids. We calculated this feature for all the proteins identified in the previous 

section using the R package ProtR, which is a package developed to calculate common 

numerical features in protein sequences for the purposes of machine learning workflows. 

For a more detailed explanation of how this is calculated please refer to the original 

papers explaining APseAAC (Chou, 2001; Chou, 2005) and the ProtR package (Xiao et 

al., 2021).  
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Building and Testing a Predictive Model 

Once the data was cleaned and annotated, we sought to apply supervised machine 

learning to predict contaminants in PPI/A data. We first selected a training set which was 

used to create the algorithm and a test set by which to test the accuracy of the algorithm.  

The training set was composed of 70% of the data accounting for classes which was 

selected at random (70% of each class in the annotated data). The test set was composed 

of the remaining 30% of the data. In order to account for the imbalance between classes 

while training the algorithm, we took advantage of a technique meant to create balanced 

data in high dimensional data called Synthetic Minority Oversampling Technique (Blagus 

and Lusa, 2013). Briefly, the algorithm considers the data points of the minority class in 

multidimensional space and creates new data points by measuring near Euclidian 

distances between data points. The balanced data was then used to train a random forest 

algorithm in R. Finally, the trained algorithm was tested against the test data and 

measured for accuracy.  
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FIGURES 

 

Figure 1. Machine learning methods can be classified into two general types: 

unsupervised and supervised. Unsupervised machine learning methods first undergo 

dimensionality reduction and then clustering in order to group like objects together, with 

the goal of finding general structure within data. Supervised machine learning methods 

can either be used to predict numerical labels or categorical labels; using labeled data 

supervised methods create a statistical relationship between samples and outputs in 

order to then predict one new data.  
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Figure 2. Average amphiphilicity differs across contaminants, control and interaction 

proteins. A.  Amphiphilicity values where calculated across amino acids and averaged for 

all proteins found in BioID CRAPome contaminants purification, 1,000 random proteins 

found in the UNIPROT database, and BUB1 IntAct interaction proteins. B. Amphiphilic 

values for random control and BUB1 interaction proteins were compared to BioID 

contaminant proteins.  
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Figure 3. Supervised machine learning predicts contaminants in BioID experiments of 

spindle assembly checkpoint proteins. Amphiphilic features were extracted from 

CRAPome BioID contaminants, 1,000 random proteins found in the Uniprot database, 

and SAC protein interactions according to the IntAct database. Database was separated 

into two classes; BioID CRAPome contaminants and probable interactors which consisted 

of IntAct interactions and random Uniprot proteins. The datasets where then divided into 

a training (70%) and test set (30%) for each SAC component. Random forest modeling 

was used to create a model with the training set and accuracy was measured with test 

set. Accuracy was consistent across different SAC components. 
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CANVS Instructions

Getting stared with CANVS

The goal of this document is to get you started with CANVS as quickly as possible.

CANVS is an open-access easy-to-use pipeline for studying protein-protein interaction/association data.
CANVS was created so that scientists with no computational background can quickly analyze mass spec-
trometry data from affinity-based and proximity-based protein purifications, with an emphasis on identifying
biologically interesting protein interactions/associations that can be further validated and explored. The
pipeline can be divided into the following steps:

1. Uploading data
2. Cleaning data
3. Analysis with system biology databases/Network visuals

The tabs in the application reflect these steps, where the network visuals steps can be done with or without
filtering the results with GO terms. Each step is described in more detail below.

0. Download and Setup

CANVS is packaged as an R Shiny dashboard app but since it includes data from large databases, the
application is deployed locally. Currently the local version of the app can only be used in a windows systems.
To install CANVS, download the CANVS.zip file from (https://sourceforge.net/projects/canvs/files/). Unzip
the file in a location where you want to save the application. Open the folder and right click on the
CANVS.bat file, then select create a shortcut. Name the shortcut CANVS and then drag the shortcut to
the desktop. Then double click on the new shortcut and CANVS will open in a web browser window. Please
make sure that there are no antivirus software blocking application connections to ports in the computer
and that firewall does not block use of ports.

1. Uploading Data

CANVS accepts multiple csv or tab delimited files as long as each data table has the following information,
along with these exact column names;

• Accesion - UNIPROT accession ID.
• Description - Description of the protein identified.
• File - Unique filename for the purification.
• Bait - The bait or protein that was affinity tagged. This is usually the protein of interest that is being

studied.

If the user chooses to carry out a semi-quantitative qualitative analysis the user should also include a score
column that represents a quantitative value at the protein level.

• Score - a quantitative score at the protein level.
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Data is uploaded in the “upload” tab, however it’s important to remember that the pipeline will only run if
the above columns are included in the data.

Instructions of acceptable data structures are summarized in the first box “1. Instructions”. Data is uploaded
in the second box “2. Upload”. Multiple files can be uploaded in each of the control and experimental sections.
Once the Upload Data button is pressed, the results will be rendered as data tables in the final two boxes,
“3. Control” and “4. Experimental”. Each box can be exapanded in order to view the data tables with
the uploaded control and experimental data. Additionally, the user has the option of uploading a single file
for either the control or experimental as long as it is formatted with the columns above and replicates are
indicated with unique file names in File column.

Figure S1: Upload Tab

2. Cleaning Data

Once the data has been uploaded, the user has to set up the analysis method for the pipeline to run. There
are three main settings that the user has to consider:

• Perform Analysis - whether to perform analysis or not.
• Protein Replicates - Filter proteins to consider only proteins that appear in n replicates.
• Normalization - Normalize score values by the median across purifications.

CANVS can perform log2fold change and a two-tailed t-test. Coupled together it will render a volcano plot,
however the user also has the option of just using log2fold change as a metric to filter data. Once the analysis
is complete the user can change settings like the log fold value to filter by, the P value to consider or whether
to look at UP or DOWN regulated proteins. The user also has the option of not performing any analysis or
using already processed data as input

Each item is described in more detail below.

Statistical Analysis

Once the data is filtered by replicates and normalized, the user has the option of applying statistical tests
to proteins shared in the control and experimental proteins.
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Figure S2: Clean Tab

Figure S3: Clean Tab
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Figure S4: Clean Tab

A. Perform Analysis - CANVS first calculates the difference between the logarithmized mean protein inten-
sities between experimental and control purifications. The log base-2 of the fold change is then calculated
since it is beneficial to represent the distribution around zero, a value that indicates no change for a protein
between the experimental and control. If a large number of replicates (we recommend three biological repli-
cates and two technical replicates) are used in the analysis, the user has the option of also calculating the
significance in the log2fold change using a two-tailed t-test. Comparing the negative log of the P value to
the log2fold change creates a volcano plot where background proteins cluster at zero.

B. No Analysis - All proteins in the experimental are considered hits.

For the first option experimental and control data sets must be supplied, however if the user chooses not to
carry out a statistical analysis only experimental data is needed. No analysis might be useful if the user has
done a quantitative analysis somewhere else and wants to use CANVS for analysis/visual purposes.

Filtering proteins by replicates

The user has the option to filter proteins by how many times they where identified in multiple replicates.
This is particularly helpful to experimental set ups that included multiple replicates and want to increase
confidence by only including proteins found in n replicates in the results. Default setting is set to 2 but can
be changed using the drop down menu.

Normalizing

Currently, CANVS supports normalization by the median. Briefly, CANVS scales samples so that each
purification has the same median value.
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Results

Results can then be viewed in the box below and the user can download them in a csv format by clicking
the Download Results button. The result table will also be used in the rest of the pipeline to create nework
visuals. The table and analysis are reactive to user inputs and so if the user chooses to analyze data in a
different method, the user would first update results in the analysis tab and then run the rest of the pipeline.
The filtering tools allow the user to change the conditions by which to consider hits. The user has the option
of filtering either by log2fold change or log2fold change in combination with a given P value. Additionally
the user can correct P values by using the Benjamini and Hochberg correction. Briefly, adjusting the P value
controls the false discovery rate and therefore corrects for the expected amount of false positives among all
positives which rejected the null hypothesis.

3. Analysis/Visualization

The application features 2 final tabs that provide the user with visual network representations of the results.
The first tab creates networks for all identified proteins while the second tab features a Gene Ontology based
filtering tool that allows the user to create visual representations of proteins with certain GO terms. Both tabs
feature annotated data in the form of protein-protein and protein-complex networks. To incorporate protein-
protein information we integrated the Biological General Repository for Interaction Datasets (BioGRID v.
3.5). To incorporate protein-complex information, we integrated the Comprehensive Resource of Mammalian
Protein Complexes (CORUM v. 3.0).

Protein Networks Considering All Hits

The first visualization tab features 4 different ways to analyze results:

• Bait-Bait Interaction/Association Networks
• Protein-Protein Interaction/Association Networks
• CORUM Complex Protein-Protein Interaction/Association Networks
• BioGRID Protein-Protein Interaction/Association Networks

Figure S5: Main Analyze/Visualize Tab
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Figure S6: Main Analysze/Visualize Expanded Tab

Figure S7: Change Color and Shape in Networks
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Users can create networks corresponding to the network type of that box by pressing the + button and
expanding each box. For example, a bait-bait network diagram is shown below after expanding the first box.

All networks are customizable (in terms of color and shape of nodes) by clicking the Network Settings link
in the sidebar. For example, the color and shape of the nodes in the previous network are changed from gold
to salmon and from star to down triangle by changing the color and shape of baits in the sidebar, resetting
the network, and then creating the network again. All networks carry the same logic and settings in terms
of color and shape to make the analysis consistent throughout tabs.

To reset a network after applying any change: 1. Click Reset Network 2. Click Create Network

Furthremore, the user has the option of downloading Cytoscape network files that can be used to create
network visuals in Cytoscape. To do so press the Download Cytoscape File button in each network and then
upload the file to Cytoscape as a network.
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Filter by GO Terms

CANVS also allows the user to filter protein results by GO terms associated with the proteins in the results.
To do so, first search GO Terms by a keyword which will be used to search for any GO terms associated
with the results that have that keyword. The terms that have the keyword and the subterms, or child terms
in Gene Ontology, will be selected. These will be summarized in a table and the association of how the
terms might be related to each other can also be analyzed in a network. The network will color code GO
terms based on whether they are biological processes, molecular functions, or cellular components (the three
categories Gene Ontology uses to describe GO terms).

Figure S8: GO Analyze/Visualize Tab

Terms of interest are selected by clicking on each term in the table. If the user wants to select all terms,
then no terms need to be selected CANVS will automatically select all terms. The rest of the networks in
the tab are:

• Protein-Protein Interaction/Association Networks
• CORUM Complex Protein-Protein Interaction/Association Networks
• BioGRID Protein-Protein Interaction/Association Networks

CANVS will then only select the proteins associated with the GO terms that the user picked (or all the GO
terms in the search if the user did not select any GO terms). The environment is reactive and so it’s possible
to add or take away terms and then recreate the networks.
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Figure S9: Select GO Terms
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CORUM Networks

Figure S10: CORUM Example

The user can create CORUM (CORUM v. 3.0) based networks with proteins from the general results or
proteins pertaining to particular GO Terms. To expand the CORUM Network box, select an organism of
interest and click create network. This will render a network with PPI/As and their respective complexes
under the organism chosen. To create an informative network, only complexes that are shared by two or more
proteins are considered when making the network. Currently CORUM supports the following organisms:

• Human
• Mouse
• Pig
• Bovine
• Rat
• Mammalia
• Rabbit
• Dog
• Hamster
• Mink

The user has the option of changing the original search terms or updating the results, which results in a
different network that the user can render by first clicking reset network and then creating the network again.
Below is an example:

119



BioGRID Networks

Figure S11: BioGRID Example

To contextualize the results of PPI/A data with previously known interaction data, CANVS integrates
BioGRID (BioGRID V. 3.5). To create these networks, click on the BioGRID network box and search for an
organism of interest. Click on create network which will render a network showing how the results are related
in the context of BioGRID interactions. The user also has the option to expand BioGRID information and
create a datatable that summarizes each interacion and offers the user information about it’s nature and
where it was initially reported. This datatable can also be downloaded. BioGRID currently supports the
following organisms:

• Homo sapiens
• Drosophila melanogaster
• Caenorhabditis elegans
• Saccharomyces cerevisiae S288C
• Schizosaccharomyces pombe 972h-
• Mus musculus
• Rattus norvegicus
• Canis lupus familiaris
• Arabidopsis thaliana
• Bos taurus
• Gallus gallus
• Escherichia coli BW2952
• Escherichia coli str. K-12 substr. MG1655
• Neurospora crassa OR74A
• Dictyostelium discoideum AX4
• Human papillomavirus type 16
• Escherichia coli str. K-12 substr. W3110
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• Ustilago maydis 521
• Candida albicans SC5314
• Aspergillus nidulans FGSC A4
• Bacillus subtilis subsp. subtilis str. 168
• Anopheles gambiae str. PEST
• Pediculus humanus corporis
• Selaginella moellendorffii
• Escherichia coli K-12
• Mycobacterium tuberculosis H37Rv
• Chlorocebus sabaeus
• Oryza sativa Japonica Group
• Human gammaherpesvirus 8
• Plasmodium falciparum 3D7
• Human betaherpesvirus 6B
• Human betaherpesvirus 6A
• Vitis vinifera
• Tobacco mosaic virus
• Simian immunodeficiency virus
• Human immunodeficiency virus 2
• Human immunodeficiency virus 1
• Hepacivirus C
• Simian virus 40
• Human gammaherpesvirus 4
• Human betaherpesvirus 5
• Human alphaherpesvirus 3
• Human alphaherpesvirus 2
• Human alphaherpesvirus 1
• Vaccinia virus
• Cavia porcellus
• Cricetulus griseus
• Oryctolagus cuniculus
• Sus scrofa
• Equus caballus
• Pan troglodytes
• Macaca mulatta
• Meleagris gallopavo
• Xenopus laevis
• Danio rerio
• Strongylocentrotus purpuratus
• Apis mellifera
• Zea mays
• Solanum tuberosum
• Nicotiana tomentosiformis
• Solanum lycopersicum
• Ricinus communis
• Glycine max
• Chlamydomonas reinhardtii

The user has the option of changing the original search terms or updating the results which would result in
a different network which the user can render by first clicking reset network and then creating the network
again. Below is an example of the box:
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4. Conclusion

CANVS is meant to be used as an interactive platform to explore how proteins from PPI/A experiments might
be associated with each other. Proper experimental validation of PPI/As is then required. Furthermore,
as proteoinformatic databases expand to include data from more organisms, CANVS can be extended to
include those organisms. Nonetheless, CANVS empowers any scientist to carry out a simple straight-forward
bioinformatic analysis of PPI/A data without having the technical/coding skills to do so.
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Supplemental Figures 

Figure S1. Generation of BioID2-tagged SAC protein inducible stable cell lines. (A) Generation of the 
Gateway compatible pGBioID2 vectors (pGBioID2-27 and pGBioID2-47) using the pGLAP1 vector backbone. 
S denotes S-tag and M denotes Myc-tag. (B) Transfer of core human SAC gene ORFs from the pDONR221 
vector to the pGBioID2 vector. (C-D) pGBioID2-SAC gene vectors were co-transfected with the Flpase 
containing vector pOG44 into HeLa Flp-In-TRex cells and stable integrants were selected with Hygromycin. 
See Tables S2 and S3 for primer amplification sequences and information on the vectors generated. 
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Figure S2. Workflow of mass spectrometry data acquisition and analysis. Control and experimental SAC core 
protein BioID2 purifications were analyzed by mass spectrometry and the mass spectrometry data was analyzed 
with a Mascot search that yielded 8,403 unique peptides, from which 903 unique proteins were identified. The 
experimental purifications, considering all 5 baits and replicates, identified 870 proteins while the control 
purifications identified 480 proteins. Due to the overlap between proteins identified in the control and 
experimental purifications, we determined hits by identifying proteins that showed a significant difference when 
compared to the control. Briefly, proteins shared between control and experimental purifications were compared 
by calculating the mean difference and then simulating the distribution of the mean difference (10,000 
simulations). Once the distribution was simulated the 95% confidence interval (CI) were calculated and proteins 
which lied outside the 95% CI and also showed a higher spectral count in the experimental compared to the 
control were considered hits. A total of 378 unique proteins were considered hits across all experimental 
purifications. Protein hits were then queried in several databases (Geneontology; BioGRID; Reactome) and 
Cytoscape protein association networks were used to visualize the results. 
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Figure S3. Establishment of inducible BioID2-tagged SAC protein (BUB1, BUB3, BUBR1, MAD1L1 and 
MAD2L1) stable cell lines. (A) Immunoblot analysis of extracts from doxycycline (Dox)-inducible BioID2-tag 
alone or BioID2-tagged SAC protein (BUB1; BUB3; BUBR1; MAD1L1; MAD2L1) expression cell lines in the 
absence (-) or presence (+) of Dox for 16 hours. For each cell line, blots were probed with the indicated 
antibodies that recognize the endogenous protein (labeled with a 1* to indicate 1x endogenous protein levels) 
and the corresponding overexpressed BioID2-tagged protein (labeled with .21-.78 and an arrow to indicate that 
their level of expression is below endogenous levels). M.W. indicates molecular weight. Note that BioID2-
tagged SAC proteins are only expressed in the presence of Dox. (B) Fixed-cell immunofluorescence 
microscopy of the BioID2-tag alone (empty vector, EV) or the indicated BioID2-tagged SAC proteins during 
prometaphase, a time when the SAC is active. HeLa BioID2-tagged protein expression cell lines were induced 
with Dox and treated with 50 µM Biotin for 16 hours, fixed and stained with Hoechst 33342 DNA dye and anti-
BioID2, anti-α-Tubulin and anti-centromere antibodies (ACA). Bar indicates 5𝜇m. Note that all BioID2-tagged 
SAC proteins localize to the kinetochore region, overlapping with the ACA signal, whereas the BioID2-tag 
alone (EV) was diffused throughout the cell.  
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Figure S4. BioID2 biochemical purifications. (A) HeLa BioID2-tag alone (empty vector, EV) or BioID2-tagged 
SAC protein (BUB1; BUB3; BUBR1; MAD1L1; MAD2L1) stable cell lines were induced to express the 
BioID2-tagged proteins for 16 hours in the presence of 100 nM Taxol and 50 µM of Biotin. BioID2 
biochemical purifications were then performed with streptavidin beads to capture biotinylated proteins. 
Diagnostic samples of each purification (low speed supernatant (LS), high speed supernatant (HS), eluate, and 
unbound) were resolved by western blotting and the blots were probed with streptavidin to visualize the 
biotinylated eluates of each BioID2-tagged SAC protein purification. (B) BioID2-Myc (empty vector, EV), 
BioID2-Myc-MAD1L1, or BioID2-Myc-MAD2L1 inducible HeLa stable cell lines were induced with Dox and 
treated with 100 nM Taxol to arrest cells in mitosis. Mitotic cell lysates were then used for reciprocal Myc 
immunoprecipitations and subjected to immunoblot analysis with the indicated antibodies. Note that 
endogenous MAD1L1 immunoprecipitates with BioID2-Myc-MAD2L1 and endogenous MAD2L1 
immunoprecipitates with BioID2-Myc-MAD1L1. Asterisks denote endogenous MAD2L1 and BioID2-Myc-
MAD2L1. 
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Figure S5. Core SAC protein proximity association maps. (A-E) Protein proximity association maps for each of 
the core SAC proteins BUB1 (A), BUB3 (B), BUBR1 (C), MAD1L1 (D), and MAD2L1 (E). See Table S4 for a 
list of proteins in each map. The maps were visualized using RCytoscapeJS. 129



Figure S6. Core SAC protein proximity network. The five core SAC protein (BUB1; BUB3; BUBR1; 
MAD1L1; MAD2L1) proximity association maps in Figure S5 were combined to generate the core SAC protein 
proximity association network. The network was visualized using RCytoscapeJS. 
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Figure S7. The BioID2-BUB1 proximity protein association map. (A) Generation of the BUB1 protein 
proximity association map using kinetochore related Gene Ontology annotations and CORUM complex 
annotation analyses. The map was visualized using RCytoscapeJS. Purple boxes highlight protein complexes 
known to assemble with BUB1 as annotated by the CORUM database. Arrows indicate the direction of the 
detected interactions. (B) The BUB1 proximity association map was analyzed with BioGRID to reveal 
previously verified protein associations. Each arrow indicates an experimentally annotated interaction curated in 
the BioGRID database. Direction of arrows indicate an annotated interaction from a bait protein to the prey. (C) 
Reactome pathway analysis of the BUB1 proximity association map. The Reactome circular interaction plot 
depicts the associations between the identified proteins within the BUB1 proximity association map and the 
corresponding pathways in which they function. Legend presents color-coded pathways that correspond to the 
circular interaction plot.  
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Figure S8. The BioID2-BUB3 proximity protein association map. A, B, and C are as described in Figure S7. 
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Figure S9. The BioID2-BUBR1/BUB1B proximity protein association map. A, B, and C are as described in 
Figure S7.  
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Figure S10. The BioID2-MAD1L1 proximity protein association map. A, B, and C are as described in Figure 
S7.  
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Figure S11. The BioID2-MAD2L1 proximity protein association map. A, B, and C are as described in Figure 
S7.  
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Figure S12. The core SAC protein proximity association network using kinetochore Gene Ontology 
annotations. (A) Generation of the core SAC protein (BUB1; BUB3; BUBR1; MAD1L1; MAD2L1) proximity 
association network using kinetochore related Gene Ontology annotations and CORUM complex annotation 
analyses. The map was visualized using RCytoscapeJS. Purple boxes highlight protein complexes known to 
assembly with core SAC proteins as annotated by the CORUM database. Arrows indicate the direction of the 
detected interactions. (B) The core SAC protein kinetochore proximity association network was analyzed with 
BioGRID to reveal previously verified protein associations. Each arrow indicates an experimentally annotated 
interaction curated in the BioGRID database. Direction of arrows indicate an annotated interaction from a bait 
protein to the prey. (C) Reactome pathway analysis of the core SAC protein kinetochore proximity association 
network. The Reactome circular interaction plot depicts the associations between the identified proteins within 
the core SAC protein proximity association network and the corresponding pathways in which they function. 
Legend presents color-coded pathways that correspond to the circular interaction plot. 
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Figure S13. The core SAC protein proximity association network using mitotic spindle related Gene Ontology 
annotations. A, B, and C are as described in Figure S12, except that the mitotic spindle related Gene Ontology 
annotations were applied to the analysis.  
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Figure S14. The core SAC protein proximity association network using centromere related Gene Ontology 
annotations. A, B, and C are as described in Figure S12, except that the centromere related Gene Ontology 
annotations were applied to the analysis.  138



Figure S15. Kinetochore protein enrichment analysis. (A) Kinetochore related GO terms (see Table S8 for GO 
terms) were used to identify kinetochore related proteins and the normalized emPAI scores were used as a 
quantitative measure of the amount of each protein in each purification. Comparing the amount of kinetochore 
related proteins to the sum of normalized emPAI scores of all proteins in each purification resulted in a 
normalized emPAI percentage. This percentage was representative of the amount of kinetochore proteins 
compared to the total amount of proteins identified in the purification. This resulted in a range of 0.5- 5% 
kinetochore proteins in each experimental purification. These percentages were then compared to control 
purifications to determine whether there was an enrichment of kinetochore related proteins in the experimental 
purifications. After analyzing the control purifications as described above for the experimental, we performed a 
student’s t-test to determine if there was a significant difference. The results indicate that there are lower 
amounts, 0.2-1%, of kinetochore related proteins in the control purifications, and that the difference is 
significant (p value = 0.023). (B) The same analysis in (A) was performed with Mitochondria related proteins. 
The results showed no significant difference between the percentage of mitochondria related proteins in control 
purifications compared to experimental purifications.   
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Figure S16. The core SAC protein proximity association network using nuclear pore related Gene Ontology 
annotations. A, B, and C are as described in Figure S12, except that nuclear pore related Gene Ontology 
annotations were applied to the analysis.  
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Figure S17. Uncropped immunoblots and autoradiography blots for all figures. 
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Figure S18. Uncropped immunoblots for all supplemental figures. 
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Human cell division is a highly regulated process that relies
on the accurate capture and movement of chromosomes to the
metaphase plate. Errors in the fidelity of chromosome con-
gression and alignment can lead to improper chromosome
segregation, which is correlated with aneuploidy and tumori-
genesis. These processes are known to be regulated by extra-
cellular signal-regulated kinase 2 (ERK2) in other species, but
the role of ERK2 in mitosis in mammals remains unclear. Here,
we have identified the dual-specificity phosphatase 7 (DUSP7),
known to display selectivity for ERK2, as important in regu-
lating chromosome alignment. During mitosis, DUSP7 bound
to ERK2 and regulated the abundance of active phospho-ERK2
through its phosphatase activity. Overexpression of DUSP7,
but not catalytically inactive mutants, led to a decrease in the
levels of phospho-ERK2 and mitotic chromosome misalign-
ment, while knockdown of DUSP7 also led to defective chro-
mosome congression that resulted in a prolonged mitosis.
Consistently, knockdown or chemical inhibition of ERK2 or
chemical inhibition of the MEK kinase that phosphorylates
ERK2 led to chromosome alignment defects. Our results sup-
port a model wherein MEK-mediated phosphorylation and
DUSP7-mediated dephosphorylation regulate the levels of
active phospho-ERK2 to promote proper cell division.

Critical to the fidelity of cell division is the accurate move-
ment and alignment of chromosomes at the metaphase plate
and their segregation during anaphase. Errors in these processes
are linked to human developmental disorders and tumorigen-
esis (1). Previous research has underscored the importance of
protein phosphorylation as a molecular switch to regulate the
activity of cell division enzymes (2, 3). This is highlighted by the
growing list of essential mitotic kinases and their substrates that
carry out functions related to bipolar spindle assembly,
kinetochore-microtubule attachment, chromosome con-
gression, and chromosome segregation (4–6). Beyond well-
established mitotic kinases, less studied phospho signaling
pathways have been implicated in cell division including the
* For correspondence: Jorge Z. Torres, torres@chem.ucla.edu.
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Wnt, mTOR, andMAPK/ERK pathways, among whichMAPK/
ERK is phosphorylated by MEKs (mitogen-activated protein
kinase or extracellular signal–regulated kinase kinase) to regu-
late downstream transcription factors (7–9). In Xenopus laevis
ERK2 (extracellular signal–regulated kinase 2) is critical for the
spindle assembly checkpoint (10–12). In mammalian cells
ERK1/2 activity is necessary for theG1/S transition and early G2
events for timely entry into mitosis (13, 14). However, whether
human ERK2 is active in mitosis and what roles it plays in hu-
man somatic cell division remains ambiguous.

Our RNAi screen for novel factors important for cell division
identified the dual-specificity phosphatase 7 (DUSP7/MKP-X).
DUSP7, DUSP6/MKP-3, and DUSP9/MKP-4 are members of
the cytoplasmic ERK specific mitogen-activated protein kinase
phosphatases (MKPs) subfamily that share similar amino acid
sequences, subcellular localizations, and substrate preferences
(15–17). DUSPs can dephosphorylate both tyrosine and serine/
threonine residues and are important modulators of signaling
pathways that regulate cellular processes such as proliferation
and apoptosis (16, 17). DUSP7 exhibits selectivity toward ERK1/
2 (18–20) and is a regulator of oocyte meiosis (21–23). DUSP7
contains an N terminal noncatalytic Rhodanese-like domain
and a C-terminal dual-phosphatase domain. A conserved Ki-
nase Interaction Motif (KIM) in the noncatalytic domain is
essential for the interaction between MKPs and ERK (19, 24).
Two key amino acid residues within the conserved catalytic
sequence (H/V)C(X5)R(S/T) of the phosphatase domain, C331
and R337, are important for DUSP7’s phosphatase activity (25,
26). However, in contrast to MKPs such as DUSP6 and DUSP9,
little is known about the physiological functions of DUSP7.

Here, we have determined that MEK phosphorylation ac-
tivity and DUSP7 phosphatase activity regulate the levels of
active phospho-ERK2, which is important for the fidelity of
chromosome alignment and segregation during cell division.

Results

DUSP7 interacts with ERK2 and regulates the levels of
phospho-ERK2

To understand the role of DUSP7 during cell division, we
began by defining the protein–protein interaction and protein
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ACCELERATED COMMUNICATION: DUSP7 regulates ERK2 to promote cell division
proximity networks of DUSP7 in mitotic cells. Localization
and affinity purification (LAP = GFP-Tev-S-tag)-tagged and
biotin identification 2 (BioID2)-tagged DUSP7 inducible HeLa
stable cell lines were used to express LAP/BioID2-DUSP7 and
biochemical purifications were analyzed by mass spectrometry.
In-house R scripts were used to analyze the mass spectrometry
data and protein interaction and proximity networks were
visualized with RCytoscape JS (Fig. S1, A and B). Further, we
applied Gene Ontology (GO) terms (mitotic spindle; kineto-
chore and chromosome segregation) (Fig. S1C) and CORUM
complex annotation analyses to these networks (see
Experimental procedures for details). These analyses deter-
mined that ERK2 (aka MAPK1) was also associating with
DUSP7 in mitosis (Fig. 1, A and B). Next, we validated the
DUSP7-ERK2 mitotic interaction by immunoprecipitation (IP)
experiments using mitotic cell extracts from Taxol- or
nocodazole-arrested LAP-DUSP7 stable cell lines (Fig. 1C).

The KIM domain was shown to be essential for the interac-
tion of some DUSPs (DUSP1, 4, 6) with ERK2 (24, 27, 28), but it
remained unknown which domain of DUSP7 bound to ERK2
and whether its KIM was required for binding to ERK2 or its
ability to dephosphorylate ERK2. To better understand the
DUSP7-ERK2 interaction, we generated DUSP7 KIM mutants
R102A, R103A, and R102,103A double mutants (Fig. 1D and
Fig. S2, A–C). IP experiments from mitotic cells transiently
transfected with DUSP7 or DUSP7 KIM mutants showed that
ERK2 IPed with DUSP7 but not DUSP7 KIMmutants (Fig. 1E).
To further define the interaction domains of DUSP7 involved in
ERK2 binding, we generated a series of LAP-DUSP7 stable cell
lines expressing DUSP7 truncations (Fig. S3A). ERK2 failed to
associate with DUSP7 truncations (Fig. S3B), likely due to
DUSP7 destabilization. Next, we sought to determine the sig-
nificance of the DUSP7-ERK2 interaction. Consistent with the
abolished interaction between DUSP7 KIM mutants and ERK2
(Fig. 1E), DUSP7-R103A and DUSP7-R102,103A double mu-
tants showed a slightly reduced ability to dephosphorylate ERK2
in mitotic HeLa cells (Fig. 1F and Fig. S3, C–E). However,
DUSP7-R102A could still dephosphorylate ERK2 (Fig. 1F); this
phenomenon was also observed for conserved KIM mutations
in DUSP6 (29). Similarly, IP experiments using in vitro
expressed proteins or mitotic cell extracts from DUSP7 or
DUSP7 catalytic dead mutant (C331A and R337A) (Fig. S2, D–
G) cell lines showed that ERK2 IPed with DUSP7 and DUSP7-
R337A but not DUSP7-C331A (Fig. 1, G and H, Fig. S3, F–H).
While overexpression of DUSP7 led to the absence of phospho-
ERK2, overexpressed DUSP7-R337A or DUSP7-C331A showed
a reduced ability to dephosphorylate ERK2 inmitotic HeLa cells
(Fig. 1I). Together, these results showed that DUSP7 was
binding to ERK2 during mitosis and that the DUSP7 KIM was
required for this interaction, while the DUSP7 catalytic sites
(C331 and R337) within its phosphatase domain were important
for regulating the levels of active phospho-ERK2.

Knockdown of DUSP7 leads to chromosome alignment and
segregation defects

To understand the importance of DUSP7’s function in
regulating the levels of active phospho-ERK2 during cell
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division, we first identified siRNAs capable of depleting DUSP7
levels by immunoblot analysis (Fig. 2A and Fig. S4A) and
DUSP7 mRNA expression by RT-qPCR (Fig. S4, B and C).
Knockdown of DUSP7 led to a failure to dephosphorylate
ERK2 and an increase in phospho-ERK2 levels (Fig. 2A). We
then analyzed the consequences of depleting DUSP7 during
metaphase (Fig. 2B) and postmetaphase (Fig. 2E) with immu-
nofluorescence (IF) microscopy. DUSP7 depletion led to an
increased percentage of defective mitotic cells with chromo-
some misalignment (siDUSP7 = 44.6 ± 5.6, p < 0.05 compared
with siControl = 29.1 ± 2.9) (Fig. 2, C and D). These defective
cells also showed defects in spindle organization including
unfocused and multipolar spindles (Fig. 2C). The chromosome
misalignments defects in siDUSP7 cells translated into an in-
crease in the percentage of lagging chromosomes during
anaphase (siDUSP7 = 24.9 ± 3.7, p < 0.05 compared with
siControl = 13.45 ± 3.1) (Fig. 2, F and G). The mitotic defects
were rescued by an siRNA resistant DUSP7 (Fig. S2H)
expressed at near endogenous levels but not DUSP7 catalytic
dead mutants (Fig. S4, D–F). Similar results were observed and
statistically analyzed in U2OS cells (Fig. S4, G–I) and
HCT116 cells (Fig. S4, J–L).

Next, we analyzed whether DUSP7 depletion could affect
the timing of cell division by live-cell time-lapse microscopy in
HCT116 GFP-H2B cells (Fig. 2H). This analysis showed that
depletion of DUSP7 led to a marked increase in the time from
chromosome condensation to chromosome segregation
(siDUSP7 = 54.0 ± 38.3 min, p < 0.01 compared with siCon-
trol = 38.0 ± 19.1 min) (Fig. 2, I–K; Movies S1–S4). Together,
these results showed that depletion of DUSP7 led to a slowed
mitosis where cells failed to properly align and segregate
chromosomes.

Downregulation of ERK2 leads to chromosome alignment
defects

Next, we sought to determine if ERK2 was important for
human cell division. First, we depleted endogenous ERK2 by
RNAi (Fig. 3A) and analyzed the consequences during cell
division (Fig. 3B) with IF microscopy. Depletion of ERK2 led to
an increased number of cells with defects in chromosome
alignment during metaphase (siERK2 = 52.1 ± 2.8, p < 0.01
compared with siControl = 30.6 ± 3.5) (Fig. 3, C and D), which
was consistent in U2OS cells (Fig. S5, A and B) and
HCT116 cells (Fig. S5, C and D). ERK2 depletion also led to an
increase in interphase cells that were multinucleated or con-
tained micronuclei (siERK2 = 22.6 ± 6.2, p < 0.01 compared
with siControl = 3.8 ± 0.8) (Fig. S5, E and F).

Since phospho-ERK2 levels were lower in mitosis than in
G1/S phase (Fig. S5, G–J), we asked if ERK2 phosphorylation
or ERK2 kinase activity was important for cell division. HeLa
cells were treated with a MEK inhibitor U0126 (30, 31) or the
ERK2 ATP-competitive inhibitor FR180204 (32) and analyzed
by western blotting and IF microscopy (Fig. 3E). Phospho-
ERK2 levels decreased in U0126-treated cells, but were not
affected in FR180204-treated cells (Fig. 3F). In comparison to
the control DMSO treatment, cells treated with U0126 or
FR180204 showed an increase in chromosome alignment
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Figure 1. DUSP7 interacts with ERK2 and regulates the levels of phospho-ERK2. A and B, DUSP7 protein–protein interaction (PPI) (A) and protein
proximity (B) networks generated using mitotic spindle GO annotations and CORUM complex annotation analyses. Yellow stars indicate the bait protein
DUSP7; red circles indicate putative interactors; blue squares indicate protein complexes; red dashed circles highlight ERK2 (aka MAPK1). C, ERK2 immu-
noprecipitates (IPs) with DUSP7 (D7) in early (nocodazole (Noc) arrested cells) and mid (taxol (Tax) arrested cells) mitosis. D, schematic of DUSP7 domain
structure and key sites. The number of amino acids are indicated for each domain. DUSP7 KIM (R102, R103) and catalytic sites (C331, R337) are in red. E, the
DUSP7 KIM mediates the DUSP7-ERK2 mitotic interaction. F, the DUSP7 KIM is dispensable for its phosphatase activity. Ratios below immunoblots indicate
normalized phospho-ERK2 levels. G and H, the DUSP7-ERK2 mitotic interaction is influenced by DUSP7’s catalytic activity. In (G) HA-ERK2, Flag-DUSP7, Flag-
C331A, Flag-R337A and Flag-GFP (negative control) were IVT expressed and incubated with anti-FLAG M2 magnetic beads in IP assays. In (H) LAP-only, LAP-
DUSP7-WT, LAP-C331A, and LAP-R337A stable cell lines were induced before being harvested for S-tag pull downs. Ratios below immunoblots indicate
relative protein–protein binding affinity. I, DUSP7 regulates mitotic phospho-ERK2 levels through its phosphatase activity. Phosphatase inhibitor (PI) in the
second lane was added when lysing the cells. Numbers on the right side of immunoblots indicate molecular weights of proteins. All cell-based experiments
and immunoprecipitations were carried out in HeLa cells.
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Figure 2. Knockdown of DUSP7 leads to chromosome alignment and segregation defects. A, siRNA knockdown of endogenous and overexpressed
DUSP7. Numbers on the right side of immunoblots indicate molecular weights of proteins. Red arrow indicates endogenous DUSP7 band. B, schematic of IF
microscopy experiment performed in (C). C, knockdown of DUSP7 leads to chromosome misalignment in metaphase. HeLa cells were treated with negative
control siRNA or siDUSP7 before being fixed and costained with anti-CREST and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. D, quantification
of the percentage of cells with chromosome misalignment in metaphase (y-axis) for conditions shown in (C) (x-axis). E, schematic of IF microscopy
experiment performed in (F). F, knockdown of DUSP7 leads to an increase in lagging chromosomes in anaphase. HeLa cells were treated with negative
control siRNA or siDUSP7 before being fixed and costained with anti-CREST and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. White arrow
shows the lagging chromosome. G, quantification of the percentage of cells with lagging chromosome in anaphase (y-axis) for conditions shown in (F)
(x-axis). H, schematic of live-cell time-lapse microscopy experiment performed in (I) and (J). I and J, knockdown of DUSP7 leads to a slowed mitosis. Live-cell
time-lapse microscopy of HCT116 GFP-H2B cells treated with negative control siRNA (I) and siDUSP7 (J) undergoing cell division. K, quantification of the
timing of mitosis from chromosome condensation to chromosome segregation (y-axis) for the conditions shown in (I) and (J) (x-axis). Scale bars: 10 μm. *p <
0.05, **p < 0.01 (unpaired two-tailed Student’s t-test).
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errors (U0126 = 48.7 ± 12.7, p < 0.05 and FR180204 = 45.6 ±
6.5, p < 0.05 compared with DMSO = 25.8 ± 3.9) (Fig. 3, G and
H), which was consistent in U2OS cells (Fig. S5, K and L) and
 J. Biol. Chem. (2021) 296 100676 146
HCT116 cells (Fig. S5, M and N). These results showed that
inhibiting ERK2 phosphorylation, and thereby its activation, or
ERK2’s kinase activity led to chromosome alignment defects.
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Figure 3. Downregulation of ERK2 leads to chromosome alignment defects. A, siRNA knockdown of ERK2. B, schematic of IF microscopy experiment
performed in (C). C, knockdown of ERK2 leads to chromosome misalignment in metaphase. HeLa cells were treated with negative control siRNA or siERK2
before being fixed and costained with anti-ERK2, anti-CREST and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. D, quantification of the
percentage of cells with chromosome misalignment in metaphase (y-axis) for conditions shown in (C) (x-axis). E, schematic of western blotting experiment
performed in (F) and IF microscopy experiment performed in (G). F, HeLa cells were treated with DMSO (as negative control), 50 μM U0126, or 50 μM
FR180204 before being lysed and analyzed by immunoblot. G, inhibition of MEK kinase activity or ERK2 kinase activity leads to chromosome misalignment
in metaphase. HeLa cells were treated with DMSO or the indicated inhibitors, fixed, and costained with anti-CREST and anti-α-tubulin antibodies and the
DNA dye Hoechst 33342. H, quantification of the percentage of cells with chromosome misalignment in metaphase (y-axis) for the conditions shown in (G)
(x-axis). Numbers on the right side of immunoblots indicate molecular weights of proteins. Scale bars: 10 μm. *p < 0.05, **p < 0.01 (unpaired two-tailed
Student’s t-test).

ACCELERATED COMMUNICATION: DUSP7 regulates ERK2 to promote cell division
DUSP7 promotes chromosome alignment in mitosis by
regulating the activity of ERK2

Since DUSP7 dephosphorylated ERK2 (Fig. 1E), we hy-
pothesized that overexpression of DUSP7 would lead to similar
chromosome alignment defects to those observed in cells
treated with the MEK inhibitor U0126. To test this, we over-
expressed GFP-tagged DUSP7 (validated to decrease phospho-
ERK2 levels, Fig. 1, F and I) or the catalytic dead DUSP7-
C331A or DUSP7-R337A mutants (showed minimal effects
on phospho-ERK2 levels, Fig. 1I) and analyzed the cells by IF
147
microscopy (Fig. 4A). While DUSP7 overexpression led to a
significant increase in chromosome alignment defects, over-
expression of DUSP7-R337A or DUSP7-C331A did not
(DUSP7 = 42.1 ± 6.9, p < 0.05; DUSP7-C331A = 30.6 ± 3.5, p =
0.3183; and DUSP7-R337A = 34.4 ± 5.7, p = 0.1386; compared
to the GFP control = 27.3 ± 3.5) (Fig. 4, B and C), which was
consistent in U2OS cells (Fig. S6A) and HCT116 cells
(Fig. S6B). These results showed that an overabundance of
DUSP7 phosphatase activity led to chromosome alignment
defects.
J. Biol. Chem. (2021) 296 100676 
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Figure 4. DUSP7 promotes chromosome alignment in mitosis by regulating the activity of ERK2. A, schematic of IF microscopy experiment performed
in (B) and (D). B, overexpression of DUSP7 wild type, but not catalytic dead mutants, leads to chromosome misalignment in metaphase. LAP-only, LAP-
DUSP7-WT, LAP-C331A, and LAP-R337A HeLa stable cell lines were treated as described in (A) before being fixed and costained with anti-GFP, anti-CREST,
and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. C, quantification of the percentage of cells with chromosome misalignment in metaphase
(y-axis) for conditions shown in (B) (x-axis). D, LAP-only, LAP-ERK2-WT, and LAP-ERK2-2A HeLa stable cell lines were treated as described in (A) before being
fixed and costained with anti-GFP, anti-CREST, and anti-α-tubulin antibodies and the DNA dye Hoechst 33342. E, quantification of the percentage of cells
with chromosome misalignment in metaphase (y-axis) for conditions shown in (D) (x-axis). F, model of how DUSP7 regulates the abundance of active
phospho-ERK2 to ensure the fidelity of chromosome alignment. See main text for details. Scale bars: 10 μm. *p < 0.05, **p < 0.01, ns indicates not sta-
tistically significant (unpaired two-tailed Student’s t-test).
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To further understand the phospho-ERK2 equilibrium
regulated by MEK and DUSP7 during cell division, we asked if
the ERK2-DUSP7 interaction was dependent on ERK2 phos-
phorylation. IP experiments using cell extracts from a U0126-
treated LAP-DUSP7 stable cell line showed that ERK2 bound
to DUSP7 in the absence of MEK kinase activity (Fig. S6C).
Since ERK2 is phosphorylated by MEK at T185 and Y187 (33,
34), we generated the nonphosphorylation mimetic mutant
ERK2-2A (T185,Y187A) (Fig. S2, I and J) and analyzed its
binding to DUSP7. In vitro binding experiments showed that
both ERK2 and ERK2-2A bound to DUSP7 (Fig. S6D). Similar
results were observed in IP experiments from HeLa cell ex-
tracts (Fig. S6E). Together, these results showed that DUSP7’s
binding to ERK2 did not require ERK2 to be phosphorylated.
Instead, D318 within the ERK2 common docking (CD) domain
(24) was responsible for its binding to DUSP7 (Fig. S6F). Next,
we examined if phosphorylation of ERK2 at T185 and Y187
was critical for cell division by analyzing cells overexpressing
GFP-tagged ERK2 or the nonphosphorylation mimetic mutant
ERK2-2A (Fig. 4A). Compared with the overexpression of
ERK2, overexpression of ERK2-2A led to a significant increase
in cells with chromosome alignment defects in metaphase
(ERK2 = 28.7 ± 4.4, p = 0.1438; ERK2-2A = 49.7 ± 3.0, p <
0.01; compared with GFP control = 20.6 ± 6.4) (Fig. 4, D and
E), which was consistent in U2OS cells (Fig. S6A) and
HCT116 cells (Fig. S6B). These data indicated that the proper
amount of phospho-ERK2 in cells was critical for chromosome
alignment and segregation during mitosis.

Discussion

This study revealed a novel function for DUSP7 in mitotic
chromosome alignment and established the MAPK/ERK
pathway as being important for cell division. Our data are
consistent with a model where, during a normal mitosis,
MEK’s kinase activity phosphorylates ERK2 and DUSP7’s
phosphatase activity dephosphorylates ERK2 to establish an
equilibrium of active phospho-ERK2 (Fig. 4F middle panel).
This phospho-ERK2 equilibrium is critical for ensuring the
fidelity of chromosome alignment and segregation. Perturbing
the balance of active phospho-ERK2 through MEK inhibition
(Fig. 4F right panel), DUSP7 depletion (Fig. 4F left panel) or
overexpression (Fig. 4F right panel) leads to defects in chro-
mosome alignment. Together, these results establish DUSP7 as
an important mitotic phosphatase that regulates the abun-
dance of active phospho-ERK2 to ensure the fidelity of chro-
mosome alignment and segregation.

Interestingly, although the DUSP7 KIM mutant R102A did
not bind EKR2, it could still dephosphorylate it (Fig. 1F, Fig. S3,
C–E). This is consistent with previous DUSP6 observations,
where theDUSP6KIMmutant R64Adid not bind ERK2 but was
able to dephosphorylate it (29). Therefore, it is possible that
these mutants are capable of transiently interacting with ERK2,
but that the interaction is undetectable in IP experiments.

With the exception of ERK2, there is little known about the
repertoire of DUSP7 substrates, regulators, and interactors. The
GO enrichment analyses of the DUSP7 protein association
network and DUSP7 proximity protein network indicate that
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DUSP7 is likely to associatewith numerousproteins that carry out
important functions related to a broad array of cellular processes
including apoptosis, regulation of transcription, and cell division
(Table S1). Therefore, future studies aimed at understanding the
importance of these interactions will further aid our under-
standing of DUSP7’s function in cell division and beyond.

Experimental procedures

Cell culture

Table S2 lists all reagents and tools used in this study. HeLa
cells (ATCC) were grown in DMEM/Ham’s F-12 with
L-Glutamine (Genesee Scientific), U2OS (ATCC) and
HCT116 cells were grown in McCoy’s 5A (Gibco), with 10%
FBS and 5% CO2 at 37 �C. Detailed experimental procedures
for cell synchronization, cell transfection, and inhibitor treat-
ments are in the Supporting information.

Generation of vectors and cell lines

DUSP7 and ERK2 mutants were generated by QuikChange
Lightning Site-Directed Mutagenesis (Agilent). cDNAs of GFP,
DUSP7, DUSP7 KIM mutants, DUSP7 catalytic dead mutants,
ERK2, ERK2-2A, and DUSP7 truncations were cloned into
pGLAP1, pGBioID2, pCS2-HA, or pCS2-Flag via Gateway
LR Clonase reaction (35). pGLAP1-only/DUSP7/DUSP7-
C331A/DUSP7-R337A/ERK2/ERK2-2A/DUSP7-truncations
and pGBioID2-only/DUSP7 were used to generate Dox
inducible HeLa Flp-In T-REx LAP-GFP/DUSP7-C331A/
DUSP7-R337A/ERK2/ERK2-2A/DUSP7-truncations and
HeLa Flp-In T-REx BioID2-only/DUSP7 stable cell lines as
described previously (36, 37) (see Supporting information).

LAP/BioID2 purifications and LC-MS/MS analyses

LAP purifications from Taxol arrested LAP-tagged inducible
stable cell lines were as previously described (36). For BioID2
purifications, biotinylated proteins were purified from Taxol-
arrested BioID2-tagged inducible stable cell lines as described
previously (38, 39).Mass spectrometry analysis was performed on
a Thermo Q Exactive Plus Orbitrap as described previously (40).
Protein–protein interaction information was integrated from the
Biological General Repository for Interaction Datasets (BioGRID
v. 3.5) (41). Protein-complex information was derived from the
Comprehensive Resource of Mammalian Protein Complexes
(CORUMv. 3.0) (42). Selected GO terms (Gene Ontology release
June 2019) (43) were used to analyze the protein–protein in-
teractions based on cellular mechanisms. Affinity-based and
proximity-based networks were generated with RCytoscapeJS
(44, 45). See Supporting information and Table S3–S6 for details
on purifications, mass spectrometry, quantification of data, and
protein interaction and proximity networks.

Immunoprecipitations, in vitro binding assays, and
immunoblot analyses

Immunoprecipitations, in vitro binding assays, and immu-
noblot analyses were performed as described previously (46)
with minor modifications detailed in the Supporting
information.
J. Biol. Chem. (2021) 296 100676
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Cell imaging

Fixed-cell and live-cell time-lapse microscopy was carried
out as described previously (47), except that an ImageXpress
XL imaging system (Molecular Devices) was used for live cell
imaging. See Supporting information for details on imaging,
quantification of data, and statistical analyses.

RT-qPCR

RNA from control or DUSP7 siRNA transfected HeLa,
U2OS, or HCT116 cells and DUSP7 cell lines was isolated
with Direct-zol RNA Miniprep Kits (Zymo Research) and
reverse transcribed with UltraScript 2.0 cDNA Synthesis Kit
(Genesee Scientific). qPCR was carried out with the
synthesized cDNA, oligo(dT) primers, and qPCRBIO
SyGreen Blue Mix Lo-ROX (Genesee Scientific) using a CFX
Connect Real-Time PCR Detection System (Bio-Rad). qPCR
data were analyzed with the Livak–Schmittgen method
(2−ΔΔCT) (48).

Antibodies

See Table S2 for a list of the antibodies used for immuno-
blotting and IF microscopy.

Data and code availability

Mass spectrometry data were deposited at the UCSD Center
for Computational Mass Spectrometry MassIVE datasets ftp://
massive.ucsd.edu/MSV000085629/. R scripts used to analyze
and visualize LC-MS/MS results were deposited at
GitHub https://github.com/uclatorreslab/MassSpecAnalysis.
All remaining data are contained within this article.

Supporting information—This article contains supporting
information (46, 49-51).
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Abstract

Myosins are ATP-dependent actin-based molecular motors critical for diverse cellular

processes like intracellular trafficking, cell motility, and cell invasion. During cell divi-

sion, myosin MYO10 is important for proper mitotic spindle assembly, the anchoring

of the spindle to the cortex, and positioning of the spindle to the cell mid-plane.

However, myosins are regulated by myosin regulatory light chains (RLCs), and

whether RLCs are important for cell division has remained unexplored. Here, we have

determined that the previously uncharacterized myosin RLC Myl5 associates with

the mitotic spindle and is required for cell division. We show that Myl5 localizes to

the leading edge and filopodia during interphase and to mitotic spindle poles and

spindle microtubules during early mitosis. Importantly, depletion of Myl5 led to

defects in mitotic spindle assembly, chromosome congression, and chromosome seg-

regation and to a slower transition through mitosis. Furthermore, Myl5 bound to

MYO10 in vitro and co-localized with MYO10 at the spindle poles. These results sug-

gest that Myl5 is important for cell division and that it may be performing its function

through MYO10.

K E YWORD S

cell division, mitosis, mitotic spindle, Myl5, myosin light chain

1 | INTRODUCTION

The proper assembly of the bipolar mitotic microtubule spindle is criti-

cal to the fidelity of chromosome congression and segregation during

cell division (Walczak & Heald, 2008). During development, the

anchoring and positioning of the mitotic spindle regulates the estab-

lishment of the cell division plane that is critical for cell fate determi-

nation (Morin & Bellaiche, 2011). Important to mitotic spindle

anchoring and positioning are astral microtubules that radiate out

from the spindle poles and make contacts with the cell cortex

(di Pietro, Echard, & Morin, 2016; Morin & Bellaiche, 2011;

Nakajima, 2018). Abnormal spindle assembly and orientation can

result in defective cell divisions that can lead to developmental and

proliferative diseases (di Pietro et al., 2016; Morin & Bellaiche, 2011;

Nakajima, 2018). Although numerous components involved in

assembling and orienting the spindle are known (Morin &

Bellaiche, 2011; Walczak & Heald, 2008), the full complement of fac-

tors and the molecular signaling pathways that govern these events

are not completely understood. Increasing evidence indicates that

both the actin and microtubule cytoskeletal systems are necessary for

proper cell division (Akhshi, Wernike, & Piekny, 2014; Kita

et al., 2019). Although actin has been highly studied within the con-

text of interphase cells where it establishes the cellular architecture

and regulates numerous important processes like cell motility, intra-

cellular trafficking, cell signaling pathways, and gene expression

(Hyrskyluoto & Vartiainen, 2020; Moujaber & Stochaj, 2020;

Svitkina, 2018; Titus, 2018), less is known about its role during early

cell division. However, actin has been shown to be critical for anchor-

ing the spindle through microtubule-actin interactions at the cell cor-

tex, for spindle positioning at the mid plane, and for actomyosin
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cellular constriction during cytokinesis (Akhshi et al., 2014; Chaigne

et al., 2016; Thery & Bornens, 2006; Uraji, Scheffler, & Schuh, 2018).

Additionally, evidence indicates that an actin mesh assembly supports

the bipolar meiotic and mitotic spindles, where actin provides rigidity

and aids in focusing the spindle (Kita et al., 2019; Mogessie &

Schuh, 2017; Woolner, O'Brien, Wiese, & Bement, 2008; Wuhr,

Mitchison, & Field, 2008). Therefore, actin plays an important role in

ensuring the fidelity of cell division.

Myosins are ATP-dependent actin-based molecular motors that

perform a variety of functions in muscle contraction, cargo transport,

cell adhesion, and cell division; including spindle assembly, spindle ori-

entation, and cytokinesis (Hartman & Spudich, 2012; Li, Lu, &

Zhang, 2016). During cell division, myosin-II is critical for acto-myosin

ring contraction during cytokinesis, which is essential for bisecting

one cell into two daughter cells (Murthy & Wadsworth, 2005; Robin-

son & Spudich, 2000). Of interest, the unconventional myosin-10

(MYO10) has been shown to be an important factor for establishing

the architecture and function of the mitotic spindle through its bind-

ing to both actin and microtubules (Kwon, Bagonis, Danuser, &

Pellman, 2015; Sandquist, Larson, & Hine, 2016; Weber, Sokac, Berg,

Cheney, & Bement, 2004; Woolner et al., 2008; Wuhr et al., 2008).

MYO10 localizes to the spindle poles throughout mitosis and deple-

tion of MYO10 leads to structural defects in the mitotic microtubule

spindle, chromosome congression defects, and chromosome segrega-

tion defects (Kwon et al., 2008; Weber et al., 2004; Woolner

et al., 2008; Wuhr et al., 2008). MYO10 also has important non-

mitotic functions during interphase and in post-mitotic cells where it

is important for filopodia formation and function (Kerber &

Cheney, 2011; Quintero & Yengo, 2012; Sousa & Cheney, 2005). The

filopodia core is composed of actin filaments (Leijnse, Oddershede, &

Bendix, 2015) and MYO10 has been shown to be recruited to focal

adhesions at the leading edge, undergoes intrafilopodial motility, accu-

mulates at the filopodial tips, and promotes the formation and exten-

sion of filopodia (Berg & Cheney, 2002; Bohil, Robertson, &

Cheney, 2006; He, Sakai, Tsukasaki, Watanabe, & Ikebe, 2017; Kerber

et al., 2009; Sato et al., 2017; Tokuo, Mabuchi, & Ikebe, 2007). There-

fore, myosins perform important functions that are necessary for cell

division and cell motility.

The unconventional myosin holoenzymes typically consist of

heavy and light chains (Li et al., 2016). Myosin light chains are

required for the structural integrity of the myosin holoenzyme and

have regulatory functions on the activity of the protein complex

(Heissler & Sellers, 2014; Heissler & Sellers, 2016; Li et al., 2016).

There are two major groups of myosin light chains, the essential light

chains (ELCs) and the regulatory light chains (RLCs) (Heissler &

Sellers, 2014; Heissler & Sellers, 2016). The ELCs are essential for the

enzymatic activity of the myosin and removal or depletion of the ELCs

from the myosin leads to a dramatic loss of myosin enzymatic activity

(Heissler & Sellers, 2014; Heissler & Sellers, 2016). The RLCs are

involved in regulating the enzymatic activity of the myosin and their

removal or depletion typically leads to moderate effects on myosin

activity (Heissler & Sellers, 2014; Heissler & Sellers, 2016). For exam-

ple, both calmodulin and calmodulin-like protein have been shown to

be MYO10 light chains that regulate MYO10 motility and function

(Bennett, Caride, Mauer, & Strehler, 2008; Bennett, Mauer, &

Strehler, 2007; Homma, Saito, Ikebe, & Ikebe, 2001; Rogers &

Strehler, 2001). Although myosin-II and MYO10 have important roles

in cell division, the role of RLCs (if any) in cell division has remained

unexplored.

We recently performed a microscopy-based RNAi screen using an

siRNA library (25,620 siRNAs) targeting the druggable genome in

HeLa cells, that included enzymes like kinases and components of

molecular motors like myosins, to identify novel factors whose deple-

tion led to a slowed cell division (Torres lab unpublished). This screen

identified 13 novel proteins that were not known to be important for

cell division, among which was myosin light chain 5 (Myl5). Although

Myl5 has remained poorly characterized, based on its protein

sequence similarity it is predicted to be a myosin RLC (Collins,

Schappert, & Hayden, 1992). Dysregulation of MYL5 mRNA levels has

been observed in glioblastoma multiforme, cervical carcinoma, and

breast cancer (Alshabi, Vastrad, Shaikh, & Vastrad, 2019; Savci-

Heijink, Halfwerk, Koster, Horlings, & van de Vijver, 2019; Zhang

et al., 2017). For example, MYL5 mRNA levels are upregulated in late

stage cervical cancer patients and is associated with poor survival

(Zhang et al., 2017). Additionally, MYL5 overexpression promoted

tumor cell metastasis in a cervical cancer mouse model (Zhang

et al., 2017). Here, we have discovered that Myl5 is important for

mitotic spindle assembly, chromosome congression, and proper cell

division. GFP-Myl5 localizes to the spindle poles during mitosis, indi-

cating that its localization is cell cycle phase dependent. GFP-Myl5

co-localized with spindle pole proteins and MYO10 and bound to

MYO10 in vitro. Importantly, depletion of Myl5 led to spindle assem-

bly defects, chromosome congression defects, and chromosome seg-

regation errors. These results suggest that Myl5 has important roles in

spindle assembly and chromosome segregation and that it may be per-

forming its function through its association with MYO10.

2 | RESULTS AND DISCUSSION

2.1 | In silico analysis of Myl5

Our recent genetic RNAi screen for novel cell division proteins led us

to discover myosin light chain 5 (Myl5), an uncharacterized hypotheti-

cal myosin regulatory light chain (RLC) of the MLC2 type. Human

Myl5 is a 173 amino acid protein with three EF hand domains

predicted to be important for calcium binding in other myosin regula-

tory light chains (Figure 1a) (Grabarek, 2006; Heissler & Sellers, 2014).

A phylogenetic tree (Hunt et al., 2018) analysis indicated that Myl5

was conserved among vertebrates (Figure 1b). An Online Mendelian

Inheritance in Man search showed that the MYL5 gene was within the

4p16.3 region where the Huntington Disease locus is located. How-

ever, MYL5 has not been linked to inherited human diseases. Due to

recent studies showing the upregulation of MYL5 expression in cervi-

cal cancer (Zhang et al., 2017) and the down regulation of MYL5

expression in breast (Savci-Heijink et al., 2019) and brain cancers

24 RAMIREZ ET AL.

153



(Alshabi et al., 2019), we sought to determine if MYL5 was widely dys-

regulated in other types of cancers. Interestingly, analysis of MYL5

and MYO10 differential gene expression across a broad array of

cancers using the Gene Expression Profiling and Interactive Analysis

(GEPIA) web server (Tang et al., 2017) showed that MYL5 mRNA

levels were lower in most cancers compared to matched normal

F IGURE 1 In silico analyses of Myl5. (a) Schematic of the human Myl5 (UniProtKB-Q02045) protein domain architecture with the EF hand
domains highlighted in blue. The number of amino acid residues are indicated. (b) Phylogenetic tree analysis showing that Myl5 is conserved

among vertebrates. (c) Analysis of MYL5 and MYO10 differential gene expression in a broad array of cancers versus matched normal samples with
the Gene Expression Profiling and Interactive Analysis (GEPIA) web server. See Table S2 for a list of cancer types considered and their
corresponding abbreviations. The median gene expression levels are on the x-axis and cancer type is on the y-axis. Positive values represent
higher gene expression in tumor samples compared to normal samples and negative values represent lower gene expression in tumor samples
compared to normal samples. (d) Correlation analysis between MYL5 and MYO10 mRNA levels and the overall survival of cancer patients using
the GEPIA web server. Survival plots indicate time in months on the x-axis and percent survival on the y-axis. See materials and methods for
analysis details [Color figure can be viewed at wileyonlinelibrary.com]
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samples, whereas MYO10 mRNA levels were elevated in most cancers

compared to normal samples (Figure 1c). Additionally, a GEPIA sur-

vival analysis showed that low MYL5 mRNA levels and high MYO10

mRNA levels related to an unfavorable overall survival (Figure 1d).

Together, these analyses showed that the Myl5 protein is conserved

among vertebrates and that MYL5 and MYO10 gene expression is

widely dysregulated in cancer.

2.2 | Myl5 localizes to the spindle poles and
spindle microtubules during cell division

Although previous genomic and bioinformatic studies had implicated

Myl5 in myosin related functions and in tumorigenesis, its biological

function had remained poorly characterized. To begin to understand

the cellular role of Myl5 and its link to tumorigenesis, we analyzed its

subcellular localization throughout the cell cycle. First, we generated a

LAP(GFP-TEV-S-Peptide)-Myl5 inducible stable cell line that

expressed GFP-Myl5 upon induction with Dox (Figure S1a; Bradley,

Ramirez, Cheung, Gholkar, & Torres, 2016; Torres, Miller, &

Jackson, 2009). The LAP-Myl5 cell line was treated with Dox for

16 hr to express GFP-Myl5 and cells were fixed, stained with Hoechst

33342 DNA dye, and anti-α-Tubulin and anti-GFP antibodies, and

imaged by immunofluorescence microscopy. During interphase GFP-

Myl5 was dispersed throughout the nucleus and cytoplasm of the cell

(Figure 2a). Interestingly, GFP-Myl5 localized to the spindle poles in

early mitosis, and to a lesser extent the mitotic spindle, and remained

associated with the poles until mitotic exit (Figure 2a). To further

F IGURE 2 Myl5 localizes to mitotic spindle poles during mitosis. (a) The LAP (GFP-TEV-S-Peptide)-tagged-Myl5 HeLa inducible stable cell

line was treated with Dox for 16 hr to express GFP-Myl5 and cells were fixed, stained with Hoechst 33342 DNA dye, and anti-α-Tubulin and
anti-GFP antibodies, and imaged by immunofluorescence microscopy. Images show the cell cycle subcellular localization of GFP-Myl5 during
interphase, prometaphase, metaphase, anaphase, and cytokinesis. Bar indicates 5 μm. (b,c) Same as in (a), except that cells were also stained with
anti-NUMA (b) or anti-Pericentrin (c) antibodies. Bar indicates 5 μm. (d) Analysis of endogenous Myl5 protein levels throughout the cell cycle.
HeLa cells were synchronized in G1/S, released into the cell cycle and cells were harvested at the indicated time points. Protein extracts were
prepared, resolved by SDS-PAGE, transferred to a PVDF membrane and immunoblotted with the indicated antibodies. Gapdh is used a loading
control [Color figure can be viewed at wileyonlinelibrary.com]
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define the GFP-Myl5 subcellular localization in early mitosis, we per-

formed immunofluorescence co-localization studies with centrosome

and spindle pole markers. The GFP-Myl5 localization signal over-

lapped with NUMA at the spindle poles and encompassed the Peri-

centrin and Centrin signals, which stained the centrosomes (Figure 2b,

c; Figure S1b). Furthermore, in cells with high levels of GFP-Myl5

expression, GFP-Myl5 also co-localized with TPX2 on the spindle

microtubules (Figure S1c). Due to the change in GFP-Myl5 localization

at mitotic entry, we next asked if endogenous Myl5 protein levels

were also cell cycle regulated. HeLa cells were synchronized in G1/S

with thymidine treatment, released into the cell cycle, cells were

harvested every hour, and protein extracts were prepared. Immuno-

blot analysis of these samples with anti-Myl5 and anti-Cyclin B anti-

bodies indicated that endogenous Myl5 protein levels remained

steady in G1/S and G2/M and decreased slightly during mitotic exit, a

time when mitotic Cyclin B levels decreased (Figure 2d). Additionally,

the anti-Myl5 antibody recognized two protein bands that

corresponded with the size of the two Myl5 isoforms (19.5 kD,

UniProtKB-Q02045-1; 14.9 kD, UniProtKB-Q02045-2). Together,

these results indicated that the Myl5 protein is abundant throughout

the cell cycle and that it undergoes a dynamic cell cycle dependent

change in subcellular localization where it redistributes from the

nucleus and cytoplasm in interphase to the spindle poles during

mitotic entry and remains associated with the poles throughout

mitosis.

2.3 | Myl5 is required for proper cell division

Next, we asked if Myl5 was required for cell division by depleting Myl5

in HeLa cells. First, we sought to identify siRNA oligonucleotides which

reduced Myl5 protein levels to less than 10% compared to non-targeting

control siRNA. HeLa cells were transfected with non-targeting control

siRNA (siCtrl) or siRNAs targeting Myl5 (siM1-siM4) for 72 hr and cell

F IGURE 3 Depletion of Myl5 leads to spindle assembly and cell division defects. (a) Immunoblot analysis showing that siRNA
oligonucleotides targetingMYL5 (M1 and M2) expression deplete Myl5 protein levels in HeLa cells compared to non-targeting control siRNA
(siCtrl). Percent Myl5 protein level knockdown (% KD) normalized to Gapdh is indicated for each oligonucleotide. (b,c) Immunofluorescence
microscopy of HeLa cells transfected with siCtrl or siM1 for 72 hr, fixed, and stained with Hoechst 33342 DNA dye and anti-α-Tubulin
antibodies. Scale bar indicates 5 μm. (d,e) Quantitation of the percent mitotic cells with multipolar spindles (d) and lagging chromosomes (e) in

siCtrl or siM1 transfected cells. Data represent the average ± SD of four independent experiments, 100 cells counted for each. *** indicates a
p value = .0004 and **** a p value <.0001. (f–g) The LAP-Myl5-WT and LAP-Myl5-siRes (resistant to siM1 siRNA targeting Myl5) HeLa inducible
stable cell lines were transfected with siM1 for 46 hr, synchronized in G1/S with thymidine for 18 hr, released into the cell cycle for 8 hr, and
induced with Dox during the last 16 hr of the experiment to overexpress either GFP-Myl5-WT or GFP-Myl5-siRes. Cells were then fixed and
analyzed by immunofluorescence microscopy and the percent mitotic cells with mitotic defects (multipolar spindles [f] and lagging chromosomes
[g]) was quantified. Data represent the average ± SD of three independent experiments, 100 cells counted for each. ** indicates a p value = .0026
and * indicates a p value = .0270 [Color figure can be viewed at wileyonlinelibrary.com]
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lysates were prepared and analyzed by immunoblotting. The siM1-siM4

oligonucleotides depleted Myl5 protein levels to undetectable levels

(Figure 3a; Figure S2a). Next, we sought to analyze the consequences of

depleting Myl5 protein levels during cell division. HeLa cells were trans-

fected with siCtrl or siM1-siM4 siRNAs for 72 hr. The cells were then

fixed and co-stained with Hoechst 33342 (to visualize the DNA) and

anti-α-Tubulin antibodies to detect the mitotic microtubule spindle.

Interestingly, depletion of Myl5 led to a significant increase in cells with

a defective mitosis, including an increase in the percentage of

prometaphase cells with multipolar spindles (siM1 = 20.75 ± 3.59%,

p = .0004 compared to siCtrl = 7.5 ± 1.29%) and anaphase cells with lag-

ging chromosomes (siM1 = 32.25 ± 2.5%, p < .0001 compared to

siCtrl = 8.25 ± 3.1%; Figure 3b–e; Figure S2b–f). Importantly, the mitotic

defects (multipolar spindles and lagging chromosomes) observed upon

siM1 treatment were rescued with the expression of a siRNA-resistant

(siRes) version of GFP-Myl5 (for multipolar spindles—siM1+ GFP-

Myl5-siRes = 3.0 ± 1.0%, p = .0270 compared to siM1+ GFP-Myl5-WT =

8.33 ± 2.51%; for lagging chromosomes—siM1+ GFP-Myl5-siRes =

9.67 ± 1.5%, p = .0026 compared to siM1+ GFP-Myl5-WT = 19.67 ±

2.08%) (Figure 3f,g; Figure S3). Together, these results indicated that

Myl5 was required for proper cell division and that its depletion led to

cell division errors.

2.4 | The levels of Myl5 affect the timing of cell
division

Next, we asked if the overall time to cell division was affected by the

depletion of Myl5. HeLa cells were transfected with non-targeting

control siRNA (siCtrl) or siRNAs targeting Myl5 (siM1 and siM3) for

48 hr, synchronized in G1/S with thymidine treatment for 18 hr, and

released in media containing the cell permeable DNA specific stain

SiR-DNA (visible in the far-red channel). Five-hours post release live

cells were imaged at ×20 magnification at 5-min intervals for 18 hr.

Movies were then analyzed and the time from nuclear DNA conden-

sation to nuclear separation was quantified. This analysis showed that

depletion of Myl5 led to a significant increase in the time that cells

spent in mitosis with the average time from nuclear DNA condensa-

tion to nuclear separation for siM1 = 55 ± 27.4 min (p < .0001) and

siM3 = 46 ± 22 min (p = .0288) compared to siCtrl = 38.9 ± 21.6 min

(Figure 4a,b; Videos S1–S3).

2.5 | Myl5 binds MYO10 and colocalizes with
MYO10 to the spindle poles

Due to the ability of MYO10 to localize to the spindle poles in early

mitosis and its functional importance in ensuring the fidelity of spindle

assembly, chromosome congression, chromosome segregation, and

cell division (Woolner et al., 2008), we asked if Myl5 and MYO10

shared a similar localization during mitosis. The LAP-Myl5 cell line was

used to express GFP-Myl5 and cells were fixed, stained with Hoechst

33342 DNA dye, and anti-α-Tubulin, anti-MYO10, and anti-GFP anti-

bodies, and imaged by immunofluorescence microscopy. Indeed, the

GFP-Myl5 and MYO10 localization signals overlapped at the spindle

poles throughout mitosis (Figure 5a). Next, we sought to determine if

Myl5 and MYO10 could associate directly. In vitro binding experi-

ments were performed with HA-Myl5 and FLAG-GFP or FLAG-

MYO10. Indeed, MYO10 co-immunoprecipitated with Myl5

(Figure 5b). The IQ motifs of myosins are key sites for binding to

F IGURE 4 Modulation of Myl5 levels affects the time to cell division. (a) Live-cell time-lapse microscopy of HeLa cells transfected with siCtrl
or siM1 or siM3 for 72 hr. Cells were then synchronized in G1/S with thymidine treatment for 18 hr, released, and imaged by staining the cells
with SiR-DNA stain at 5 hr post-release. The indicated times are in minutes. See Videos S1–S3. (b) Quantitation of the time cells spend in mitosis
from DNA condensation to chromosome separation. Y-axis indicates time in minutes. X-axis indicates the siRNA transfections. Data represent the
average ± SD of three independent experiments, 30 cells counted for each. **** indicates p value <.0001
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regulatory light chains (Heissler & Sellers, 2014), thus we asked if the

IQ motifs of MYO10 were necessary for the MYO10-Myl5 interac-

tion. To do this, we removed the three IQ motifs from MYO10 to gen-

erate MYO10 IQ-less (MYO10-IQL). In vitro binding experiments with

HA-Myl5 or HA-CALM3 (Calmodulin 3, a known MYO10 regulatory

light chain that binds to the MYO10 IQ motifs [Rogers &

Strehler, 2001]) and FLAG-GFP, FLAG-MYO10, or FLAG-MYO10-IQL

showed that Myl5 was able to bind to both MYO10 and MYO10-IQL,

while CALM3 only bound to MYO10 and not MYO10-IQL (Figure 5c,

d; Figure S4). Together, these data indicated that Myl5 binds to

MYO10, independent of the IQ motifs, and colocalizes with

MYO10 at the spindle poles during mitosis.

2.6 | Myl5 localizes to the leading edge of the cell
and to filopodia in interphase cells

Within the context of cancer, actin-based structures like filopodia are

critical for cell migration, invasion, and metastasis (Caswell &

Zech, 2018; Jacquemet, Hamidi, & Ivaska, 2015). Of interest, MYO10

has a critical role in filopodia formation and accumulates at the tips of

filopodia (Bohil et al., 2006; Kerber et al., 2009; Tokuo et al., 2007)

and has been linked to promoting cancer invasion and metastasis,

including in breast cancer and melanomas (Arjonen et al., 2014; Cao

et al., 2014; Courson & Cheney, 2015; Tokuo, Bhawan, &

Coluccio, 2018). Due to the association of Myl5 with MYO10, we

F IGURE 5 Myl5 colocalizes with MYO10 at mitotic spindle poles during mitosis and binds to MYO10 in vitro. (a) The LAP (GFP-TEV-S-
Peptide)-tagged-Myl5 HeLa inducible stable cell line was treated with Dox for 16 hr to express GFP-Myl5 and cells were fixed, stained with
Hoechst 33342 DNA dye, and anti-α-Tubulin and anti-MYO10 antibodies, and imaged by immunofluorescence microscopy. Images show the cell
cycle subcellular localization of GFP-Myl5 and MYO10 during interphase, metaphase, anaphase, and cytokinesis. Bar indicates 5 μm. (b) In vitro

binding assays performed in the presence or absence of radiolabeled (35S methionine) FLAG-MYO10, FLAG-GFP, or HA-Myl5. HA-Myl5 was
immunoprecipitated (IP) and eluates were analyzed by radiometry. See Section 3 for experimental details. (c) Same as in (b), except that FLAG-
MYO10-IQL (MYO10 IQ-less mutant) was added to the analysis. (d) Same as in (c), except that the binding of HA-CALM3 to FLAG-MYO10 or
FLAG-MYO10-IQL was analyzed instead of HA-Myl5. See Figure S4 for control experiment showing that FLAG-MYO10 and FLAG-MYO10-IQL
do not bind non-specifically to anti-HA beads [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Legend on next page.
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sought to determine whether Myl5 also localized to filopodia like

MYO10. The LAP-Myl5 or LAP-MYO10 cell lines was used to express

GFP-Myl5 or GFP-MYO10 and cells were fixed, stained with Hoechst

33342 DNA dye, anti-α-Tubulin, anti-Fascin (marker for filopodia

[Edwards & Bryan, 1995; Otto, Kane, & Bryan, 1979]), and anti-GFP

antibodies and imaged by immunofluorescence microscopy. Interest-

ingly, GFP-Myl5 localized to the leading edge of the cell and through-

out filopodia, but did not accumulate at the tips of filopodia like

MYO10 (Figure 6a). Calcium binding and phosphorylation are two key

mechanisms for regulating myosin RLC function (Heissler &

Sellers, 2016). RLCs typically have multiple EF hands that are gener-

ally thought bind calcium, however, only EF hands with a calcium

binding consensus pattern of amino acids are predicted to have the

ability to bind calcium (prosite prorule annotation rule: PRU00448,

[Sigrist et al., 2005]) (Grabarek, 2006). Specifically, Myl5 has three EF-

hands, but only the N-terminal EF-hand contains the calcium binding

consensus (amino acids 43–54; Figure 1a). Additionally, RLCs are typi-

cally phosphorylated at consensus Ser/Thr residues in their N-termi-

nus, which are conserved in Myl5 (Figure S5; Yu, Chakravorty,

Song, & Ferenczi, 2016). Therefore, we sought to determine whether

deletion of the predicted Myl5 calcium binding site or mutation of the

conserved RLC sites of phosphorylation (Serines 20 and 21, Figure S5)

would perturb the localization of GFP-Myl5 to cytoskeletal structures.

To do this, we generated LAP-tagged inducible stable cell lines of

Myl5 calcium binding site deletion (CAD), phospho-null (20A and 21A

[AA]) and phospho-mimic (20E or 21E) mutants; although phospho-

mimetic mutants in other RLCs do not always have the anticipated

effect on myosin activity (Heissler & Sellers, 2015; Vasquez, Heissler,

Billington, Sellers, & Martin, 2016). Immunofluorescence microscopy

of HeLa cells overexpressing these GFP-Myl5 mutants, showed that

they were capable of localizing to the leading edge, filopodia, and the

spindle poles, similar to wild type GFP-Myl5 (Figure 6b–e). Addition-

ally, no major perturbations to the overall architecture of filopodia,

spindles, and spindle poles were observed by the overexpression of

these Myl5 mutants. Together, these results showed that GFP-Myl5

localizes to the leading edge and filopodia during interphase and that

conserved residues in Myl5 that regulate the function of other RLCs

are not required for its localization to these structures.

2.7 | Conclusion

Although actin and the unconventional myosin MYO10 had been

implicated in ensuring the fidelity of mitotic spindle assembly and cell

division, the role of myosin RLCs during cell division remained

unknown. Here, we have determined that Myl5 is a novel and impor-

tant factor necessary for proper cell division. GFP-Myl5 localized to

the leading edge and filopodia in interphase cells and to the spindle

poles and spindle microtubules during early mitosis. Depletion of

Myl5 led to mitotic spindle defects, errors in chromosome congression

and segregation, and a slowed progression through mitosis. These

Myl5 depletion phenotypes were similar to those reported upon

MYO10 depletion (Woolner et al., 2008), albeit less severe. Interest-

ingly, the GFP-Myl5 immunofluorescence signal overlapped with

MYO10 at the spindle poles throughout mitosis and Myl5 bound

directly to MYO10 in vitro. Our results suggest that Myl5 is important

for cell division and that it may function through MYO10. To our

knowledge, Myl5 is the first myosin RLC family member that has been

implicated in mitotic spindle assembly.

Of the �40 myosins encoded in the human genome, at least

10 (including MYO10) have been implicated in tumorigenesis (Li &

Yang, 2016). Our analysis showing that MYL5 and MYO10 gene

expression are frequently dysregulated in cancer compared to normal

samples is intriguing and puzzling. While MYL5 mRNA levels were

lower in most cancers and related to unfavorable survival, MYO10

mRNA levels were elevated in most cancers and related to unfavor-

able survival (Figure 1c,d). These results are consistent with reports

showing low levels of MYL5 mRNA in breast (Savci-Heijink

et al., 2019) and brain cancers (Alshabi et al., 2019) and high MYO10

mRNA levels in invasive and metastatic breast cancer and melanoma

(Arjonen et al., 2014; Cao et al., 2014; Courson & Cheney, 2015;

Tokuo et al., 2018). However, others have reported that MYL5 mRNA

levels are elevated in late stage cervical cancer patients, are associated

with poor survival, and can promote tumor cell metastasis in mouse

models of cervical cancer (Zhang et al., 2017). Similarly, the

upregulation of MYO10 mRNA levels in invasive and metastatic can-

cers is consistent with its critical role in promoting filopodia formation,

which are important for cell motility and invasion (Berg &

Cheney, 2002; Bohil et al., 2006; Caswell & Zech, 2018; He

et al., 2017; Jacquemet et al., 2015; Kerber et al., 2009; Sato

et al., 2017; Tokuo et al., 2007). However, it is the depletion of

MYO10 that leads to cell division defects and genetic instability

(Kwon et al., 2008; Weber et al., 2004; Woolner et al., 2008; Wuhr

et al., 2008) and what role this may play in early stage cancers remains

to be determined. Therefore, it is possible that MYL5 and MYO10

mRNA levels are differentially expressed in early versus late stage

tumors and further research in this area is warranted. Although our

data suggest that Myl5 may be affecting cell division through MYO10,

it is possible that Myl5 may function independently or with other

non-motor proteins. We also note that during interphase, myosin light

F IGURE 6 Myl5 localizes to the leading edge and filopodia. (a) The LAP (GFP-TEV-S-Peptide)-tagged-Myl5 or MYO10 HeLa inducible stable
cell lines were treated with Dox for 16 hr to express GFP-Myl5 or GFP-MYO10 and cells were fixed, stained with Hoechst 33342 DNA dye, anti-
GFP and anti-α-Tubulin, and anti-Fascin (filopodia marker) antibodies, and imaged by immunofluorescence (IF) microscopy. Bars indicate 5 μm.
Bottom panels of GFP-Myl5 and GFP-MYO10 IF images show magnified view of filopodia. (b–e) GFP-Myl5-AA (phospho-null), GFP-Myl5-20E
and GFP-Myl5-21E (phospho-mimics), and GFP-Myl5-CAD (calcium-binding domain deletion) mutants were expressed in HeLa cells for 16 hr and
cells were fixed, stained with Hoechst 33342 DNA dye, and anti-α-Tubulin and anti-GFP antibodies and imaged by IF microscopy. Bars indicate
5 μm [Color figure can be viewed at wileyonlinelibrary.com]
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chains have been implicated in regulating gene expression by binding

to specific sequences within the promoter region of target genes (Li &

Sarna, 2009; Zhang et al., 2015) and that Myl5 has been shown to

bind the promoter region of HIF-1alpha, an important factor in tumor-

igenesis, and regulates its expression (Rankin & Giaccia, 2016; Zhang

et al., 2017). Consistent with this function, GFP-Myl5 localized to

both the cytoplasm and nucleus in interphase cells (Figure 6a). There-

fore in addition to its cytoskeleton-related function, Myl5 has cyto-

skeleton unrelated functions in gene expression that may contribute

to tumorigenesis.

3 | MATERIALS AND METHODS

3.1 | Cell culture

HeLa cells were grown in F12:DMEM 50:50 (Hyclone, Logan UT,

USA) with 10% FBS, 2 mM L-glutamine and antibiotics in 5% CO2 at

37�C. Cells were synchronized in G1/S by treatment with 2 mM thy-

midine (Sigma-Aldrich, St. Louis MO, USA) for 18 hr. The following

siRNAs were used for siRNA transfections: ThermoFisher (Waltham

MA, USA) Silencer Select 4390843 (control non-targeting siRNA) and

S9187 and S9188 (M1 and M2 siRNAs targeting MYL5); Dharmacon

(Lafayette CO, USA) ON-TARGETplus D-001810-10 (control non-

targeting siRNA) and J-011739-03 and J-011739-04 (M3 and M4

siRNAs targeting MYL5) were used as described previously (Torres,

Ban, & Jackson, 2010). See Table S1 for a list of key reagents and

resources used in this study and their pertinent information.

3.2 | Generation of the LAP-Myl5 inducible stable
cell line

The HeLa LAP(GFP-TEV-S-Peptide)-Myl5, -Myl5-AA, -Myl5-20E,

-Myl5-21E, -Myl5-CAD, -Myl5-siRes, and -MYO10 inducible stable

cell lines were generated as described previously (Bradley et al., 2016;

Torres et al., 2009). Briefly, full-length MYL5 (coding for amino acid

residues 1–173) and mutant derivatives (alanine mutations at both

Ser20 and Ser21 [AA]; Glu mutations at either Ser20 [20E] or Ser21

[21E]; deletion of the calcium binding domain [amino acids 43–54,

CAD]) and full-length MYO10 (coding for amino acid residues 1-2058)

were cloned into pDONR221 and transferred to pGLAP1 through a

Gateway reaction to generate the pGLAP1 vectors with these ORFs

that were transfected into HeLa Flp-In T-Rex cells to generate their

respective inducible stable cell lines.

3.3 | Immunoblotting

For Myl5 cell cycle protein expression analysis, HeLa cells were syn-

chronized in G1/S with 2 mM thymidine for 18 hr. Cells were then

washed with PBS three times and twice with F12:DMEM media with

10% FBS and released into the cell cycle. Cells were harvested at the

indicated time points, lysed, and protein extracts were resolved on a

4–20% SDS-PAGE and transferred to a PVDF membrane. The mem-

branes were immunoblotted with the indicated antibodies and imaged

with a LiCOR (Lincoln NE, USA) system. The same approach was used

to detect Myl5 protein depletion upon siRNA transfections without

the cell synchronization step. Cell extract preparation and immunoblot

analyses with the indicated antibodies were as described previously

(Gholkar et al., 2016).

3.4 | Fixed-cell immunofluorescence microscopy
and live-cell time-lapse microscopy

Fixed-cell immunofluorescence microscopy was performed as

described previously (Gholkar et al., 2016). Briefly, non-transfected

cells or cells that had been transfected with the indicated siRNAs for

48 hr were arrested in G1/S with 2 mM thymidine for 18 hr, washed,

and released into fresh media for 8 hr. Cells were then fixed with 4%

paraformaldehyde, permeabilized with 0.2% Triton X-100/PBS, and

co-stained with 0.5 μg/ml Hoechst 33342 (ThermoFisher) to visualize

the DNA and the indicated antibodies. A Leica (Wetzlar, Germany)

DMI6000 microscope (Leica DFC360 FX Camera, 63x/1.40–0.60 NA

oil objective, Leica AF6000 software) was then used to capture the

images, which were deconvolved with the Leica Application Suite 3D

Deconvolution software and exported as TIFF files. For quantifying

mitotic defects, the data from four independent experiments, with

100 cells counted for each, was used to quantify the average ± SD.

For time-lapse microscopy, HeLa cells were transfected with the indi-

cated siRNAs for 48 hr, arrested in G1/S with 2 mM thymidine for

18 hr, washed, and released into fresh media containing 100 nM SiR-

DNA stain (Cytoskeleton Inc., Denver CO, USA). Cells were imaged

live 5-hr post release for 18 hr using an ImageXpress XL imaging sys-

tem (Molecular Devices, San Jose CA, USA) with a ×20 air objective at

37�C in 5% CO2. Captured images were exported as a video at one-

half frames per second using Image J and the videos were saved as

AVI movies. Each frame represents a 5-min interval. For quantifying

the timing of cell division, the data from three independent experi-

ments, with 30 cells counted for each, was used to quantify the aver-

age time in minutes from DNA condensation for nuclear

separation ± SD.

3.4.1 | Statistical analysis

All statistical data are presented as the average ± SD from at least

three independent experiments. Outliers were considered in time-

lapse experiments by using Tukey's method in R (https://www.r-

project.org/). For experiments where two groups were compared,

they were analyzed using unpaired Student's t test. Data was judged

to be statistically significant when p < .05. For experiments where

three or more groups were compared, they were first tested for signif-

icance using ANOVA statistical test. If p-value showed significance

(p < .05), multiple pair-wise comparisons were performed between
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the means of groups using Tukey Honest Significant Difference and

Dunnet's tests. All statistical figures were generated with GraphPad

(La Jolla CA, USA) Prism 5.

3.5 | Generation of plasmids and in vitro binding
assays

For in vitro binding assays, full-length human MYL5 (encoding amino

acid residues 1–173) or CALM3 (encoding amino acid residues 1–149)

were fused to the C-terminus of the HA-tag to generate the

pCS2-HA-MYL5 and pCS2-HA-CALM3 vectors. Similarly full-length

MYO10 (encoding amino acid residues 1-2058) or MYO10 lacking

amino acids 742–817 that contain the IQ motifs (MYO10-IQL) were

fused to the C-terminus of the FLAG-tag to generate the pCS2-FLAG-

MYO10 and pCS2-FLAG-MYO10-IQL vectors. In vitro binding assays

were performed as described previously (Gholkar et al., 2016). Briefly,

HA-Myl5, HA-CALM3, FLAG-MYO10, FLAG-MYO10-IQL, and FLAG-

GFP (negative control) were in vitro transcribed and translated (IVT)

using TNT® Quick Coupled Transcription/Translation System,

(Promega, Madison WI, USA) in 10 μl reactions. Magnetic HA beads

(MBL International, Woburn MA, USA) were washed three times and

equilibrated with wash buffer (50 mM Tris pH 7.4, 200 mM KCl,

1 mM DTT, 0.5% NP-40, and Halt Protease and Phosphatase Inhibitor

Cocktail). IVT reactions were added to the equilibrated HA beads and

incubated for 1.5 hr at 30
�C with gentle shaking. Beads were washed

three times with wash buffer and eluted by boiling for 5 min with 2X

Laemmli SDS sample buffer. Samples were resolved on a 4–20% gra-

dient Tris gel with Tris-Glycine SDS running buffer, transferred to an

Immobilon PVDF membrane (EMD Millipore, Burlington MA, USA),

and membranes were analyzed with a PharosFX Plus molecular imag-

ing system (Bio-Rad, Hercules CA, USA).

3.6 | In silico analysis of Myl5

The Myl5 phylogenetic tree was constructed by querying Ensembl

(Hunt et al., 2018) (https://www.ensembl.org/) for Myl5 (ID:

ENSGT00940000163023) and Figure 1b was generated by

reconstructing the phylogenetic tree on Ensembl using images from

LogoMarkr (https://logomakr.com/). For analysis of MYL5 and MYO10

differential gene expression in cancer cells compared to normal coun-

terparts, their gene expression profiles were retrieved from the

GEPIA, an interactive web server for cancer genomics that compares

cancer and normal gene expression (Tang et al., 2017). For a list of

cancer types considered and their corresponding abbreviations refer

to Table S2. The median gene expression for both tumor and matched

normal samples were compared by subtracting median normal from

tumor gene expression for each cancer type. Positive values represent

higher gene expression in tumor samples compared to normal samples

and negative values represent lower gene expression in tumor sam-

ples compared to normal samples. Figure 1c summarizes the gene

expression compared to normal samples in different tumor types for

both MYL5 and MYO10. Correlation analysis between MYL5 and

MYO10 mRNA levels and the overall survival of cancer patients was

carried out using the Survival Plot tool in GEPIA with default parame-

ters. Datasets for all cancers and matched normal samples listed on

Table S2 were used in the analysis. Survival plots were exported as

PDF files.

3.7 | Antibodies

Immunofluorescence and immunoblotting were carried out using anti-

bodies against: Myl5, MYO10, and Fascin (Proteintech (Rosemont IL,

USA): 14249-1-AP, 24565-1-AP, and 66321-1-lg); Pericentrin (Novus

Biologicals (Centennial CO, USA): NB-100-68277); GFP (Abcam

(Cambridge, United Kingdom): ab13970); Gapdh (GeneTex (Irvine CA,

USA) GTX100118); α-Tubulin (Bio-Rad (Hercules CA, USA):

MCA78G); Cyclin B (Santa Cruz (Dallas TX, USA): sc-245). Centrin

antibodies were a gift from J. Salisbury and NUMA and TPX2 anti-

bodies were gifts from D. Compton. Secondary antibodies conjugated

to FITC, Cy3, and Cy5 were from Jackson Immuno Research (West

Grove PA, USA) and those conjugated to IRDye 680 and IRDye

800 were from LI-COR Biosciences (Lincoln NE, USA).
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ABSTRACT: Somatic mutations that perturb Parkin ubiquitin ligase activity and the misregulation of iron homeostasis have both
been linked to Parkinson’s disease. Lactotransferrin (LTF) is a member of the family of transferrin iron binding proteins that
regulate iron homeostasis, and increased levels of LTF and its receptor have been observed in neurodegenerative disorders like
Parkinson’s disease. Here, we report that Parkin binds to LTF and ubiquitylates LTF to influence iron homeostasis. Parkin-
dependent ubiquitylation of LTF occurred most often on lysines (K) 182 and 649. Substitution of K182 or K649 with alanine
(K182A or K649A, respectively) led to a decrease in the level of LTF ubiquitylation, and substitution at both sites led to a major
decrease in the level of LTF ubiquitylation. Importantly, Parkin-mediated ubiquitylation of LTF was critical for regulating
intracellular iron levels as overexpression of LTF ubiquitylation site point mutants (K649A or K182A/K649A) led to an increase in
intracellular iron levels measured by ICP-MS/MS. Consistently, RNAi-mediated depletion of Parkin led to an increase in
intracellular iron levels in contrast to overexpression of Parkin that led to a decrease in intracellular iron levels. Together, these
results indicate that Parkin binds to and ubiquitylates LTF to regulate intracellular iron levels. These results expand our
understanding of the cellular processes that are perturbed when Parkin activity is disrupted and more broadly the mechanisms that
contribute to Parkinson’s disease.

Parkinson’s disease (PD) is a debilitating neurodegener-
ative disease whose incidence has increased over the past

decade and presents a major public health epidemic.1 The
PARK2 gene that encodes the Parkin E3 ubiquitin ligase is
found to be mutated in familial forms of PD.2 Two
pathological hallmarks of PD are the aggregation of α-
synuclein in Lewy bodies and the accumulation of iron.3

Lactotransferrin (lactoferrin or LTF) is a member of the family
of transferrin iron binding proteins that transport iron and
regulate intracellular iron levels.4−6 X-ray structures of LTF
show that it displays a bilobal architecture with one iron
binding site within each lobe.7,8 Increased levels of LTF and its
receptor have been reported within nigral neurons in PD
patients and in other neurodegenerative disorders like
Alzheimer’s disease.4,9−11 Iron homeostasis is important for
maintaining the normal physiology of neuronal cell popula-
tions, and iron accumulation leads to neurotoxicity.12 Due to
this dysregulation of iron homeostasis during PD progression,
iron chelators have been proposed as a potential therapeutic
strategy.13,14 Although many models for how iron-mediated
cell death occurs in PD exist, most agree that an excess of
reactive iron (Fe2+) leads to the generation of reactive oxygen
species that induces oxidative stress and promotes neuronal
cell death through toxic reactions that include mitochondrial
dysfunction, lipid peroxidation, and protein misfolding.13,14

Interestingly, transferrin (Tf)-containing endosomes have been
shown to contact the mitochondria and may function to
deliver iron directly to the mitochondria,15 which could be a

mechanism that contributes to mitochondrial dysfunction.
However, whether other members of the transferrin family, like
LTF, function in a similar manner remains unclear. Although
the dysregulation of Parkin and LTF had been previously
linked to the accumulation of iron in populations of neuronal
cells that undergo cell death in PD, a direct connection
between the two had not been established.
To better understand the role of Parkin dysfunction in PD,

we sought to identify novel Parkin ubiquitylation substrates.
First, we established a HEK293 doxycycline-inducible local-
ization and affinity purification (LAP = EGFP-TEV-S-
Peptide)-tagged Parkin stable cell line and utilized it to
express and tandem affinity-purified LAP-Parkin.16,17 Eluates
were analyzed by mass spectrometry to identify Parkin-
associated proteins (Figure 1A). This analysis identified Parkin
(270 peptides) and lactotransferrin (LTF, 72 peptides) as the
most abundant proteins (Figure 1B and Table S1). Addition-
ally, tubulin isoforms and proteasome subunits, known Parkin-
interacting proteins,18−23 were also identified along with
subunits of the CCT/TRiC complex (chaperonin-containing
T-complex/TCP-1 ring complex), which is critical for tubulin
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folding and for blocking the fibrillation of α-synuclein that is a
pathological hallmark of PD (Figure 1B and Table S1).24−26

Due to the importance of LTF in iron homeostasis and its
misregulation in PD,4 we sought to further validate the
Parkin−LTF interaction. Reciprocal co-immunoprecipitation
experiments from SH-SY5Y neuronal cells and HeLa cells with
anti-Parkin and anti-LTF antibodies showed that LTF co-
immunoprecipitated with Parkin and Parkin co-immunopreci-
pitated with LTF (Figure 1C−F). Similarly, in vitro protein
binding reactions with GST-Parkin and FLAG−LTF showed
that LTF co-immunoprecipitated with Parkin (Figure 1G).
Together, these data indicated that LTF was associating with
Parkin.
To understand the significance of Parkin−LTF association,

we asked if LTF was ubiquitylated and whether its
ubiquitylation was Parkin-dependent. LAP−LTF was immu-
noprecipitated from control siRNA (siCont) or Parkin siRNA
(siParkin)-treated cells, and its ubiquitylation was monitored
by immunoblot analysis with anti-ubiquitin antibodies. LAP−
LTF was ubiquitylated in the siCont sample, and the level of
this ubiquitylation was substantially decreased upon Parkin
depletion with siParkin (Figure 2A). Next, we asked if LTF
was a Parkin substrate using an in vitro-reconstituted

ubiquitylation assay.27 GST−LTF, GST−tubulin (positive
control), or GST−GFP (negative control) were incubated
with an ATP regeneration system, ubiquitin, an E1 ubiquitin-
activating enzyme, an E2 ubiquitin-conjugating enzyme, and
wild-type (WT) or LAP−Parkin-overexpressing HEK293 cell
extracts. Parkin substrate ubiquitylation was then monitored by
immunoprecipitating the GST-tagged proteins and performing
an immunoblot analysis with anti-ubiquitin and anti-GST
antibodies. We observed ubiquitylation of GST−LTF and
GST−tubulin (a known substrate of Parkin18) as a ladder of
increasing molecular weight bands (Figure 2B). Next, we
analyzed LTF ubiquitylation reactions by mass spectrometry
and determined that LTF was ubiquitylated at seven different
lysine (K) residues, with K182 and K649 being the most
frequently modified sites (Table S2). Mapping of the
ubiquitylation sites onto the human LTF crystal structure
[Protein Data Bank (PDB) entry 1FCK] showed that all sites
were on exposed loops (Figure 2C).
Next, we analyzed the contribution of the most frequently

modified lysines (K182 or K649) to the overall ubiquitylation
of LTF by substituting them with alanines and assessing LTF
ubiquitylation. LAP−LTF-WT or LTF single (K182A or
K649A) or double (K182A/K649A) ubiquitylation site point

Figure 1. LTF co-purifies and associates with Parkin. (A) LAP−Parkin tandem affinity purification. Abbreviations: MW, molecular weight marker;
HSS, high-spin supernatant; E, final eluates. The asterisk denotes the Parkin protein band. (B) Cytoscape visualization map of Parkin-associated
proteins, identified by mass spectrometry, showing the major classes of co-purifying proteins. The bottom panel highlights the identification of
lactoferrin (LTF) as a Parkin co-purifying protein. The protein name, the number of peptides identified, the number of unique peptides, and the
percent protein coverage are indicated. See Table S1 for a complete list of Parkin co-purifying proteins identified by mass spectrometry. (C−F) SH-
SY5Y or HeLa cell extracts were used to perform reciprocal co-immunoprecipitation (Co-IP) experiments using anti-lactoferrin (LTF), anti-Parkin,
and control IgG antibodies. Note that endogenous Parkin immunoprecipitates with endogenous LTF (C and E) and endogenous LTF
immunoprecipitates with endogenous Parkin (D and F). Inp indicates input, and IP indicates immunoprecipitation. (G) In vitro binding assays
performed in the presence or absence of in vitro-transcribed/translated FLAG−LTF, FLAG−Lcmt1, or GST−Parkin. GST−Parkin was
immunoprecipitated (GST-IP), and eluates were analyzed by immunoblotting with the indicated antibodies. Note that FLAG−LTF
immunoprecipitates with GST−Parkin, whereas control FLAG−Lcmt1 does not.
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mutants were expressed in HeLa cells and immunoprecipi-
tated, and their ubiquitylation status was monitored using anti-
K48 and anti-K63 ubiquitin linkage specific antibodies. K182A
or K649A single mutants showed a reduction in the level of
K63-linked ubiquitylation of LTF, and ubiquitylation of the
LTF K182A/K649A double mutant was highly impaired
compared to the WT control (Figure 2D). Together, these
data indicated that LTF was a Parkin substrate and that K182A
and K649A were the most frequently ubiquitylated sites and
accounted for the majority of LTF-ubiquitylated species.
Interestingly, LTF protein levels remained unchanged in HeLa
or SH-SY5Y cells treated with Parkin siRNA or in Parkin
knockout mice brains (Figure S1), indicating that Parkin did
not regulate the levels of LTF.
Next, we sought to determine if ubiquitylation at K182 or

K649 could influence the ability of LTF to regulate
intracellular iron levels. Extracts from control HeLa cells or
HeLa cells overexpressing the LTF wild type, K182A single
mutant, K649A single mutant, or K182A/K649A double
mutant were analyzed for intracellular sulfur (S), iron (Fe),

and zinc (Zn) levels using inductively coupled plasma mass
spectrometry (ICP-MS/MS). For all ICP-MS/MS analyses, Fe
and Zn levels were normalized to total S levels. Overexpression
of the K649A variant alone or the K182A/K649A double
mutant resulted in a similar significant increase in the
intracellular Fe level compared to the control, while the Zn
levels did not significantly change (Figure 3A,B). We
hypothesized that if Parkin was ubiquitylating LTF on
K649A to regulate iron levels, then modulation of Parkin
levels would also affect intracellular iron levels. To test this, we
performed RNAi-mediated depletion of Parkin levels and again
analyzed the extracts for total S, Fe, and Zn. Decreasing Parkin
levels led to a significant increase in Fe content compared to
the control, while the Zn levels did not significantly change
(Figure 4A,B). In contrast, extracts from cells that were
overexpressing Parkin showed a significant decrease in total Fe
levels compared to the control, while the Zn levels did not
significantly change (Figure 4C,D). Together, these data
demonstrated that Parkin abundance directly or the sub-
stitution of the Parkin-dependent LTF ubiquitylation site

Figure 2. LTF is a substrate of Parkin. (A) Immunoblot analysis of LAP−LTF immunoprecipitated from HeLa cells treated with control
nontargeting siRNA (siCont) or siRNA targeting Parkin (siParkin). Immunoprecipitation of LAP−LTF (S-Tag-IP) was monitored with anti-S-tag
antibodies. LAP−LTF ubiquitylation was monitored with anti-ubiquitin antibodies (Ub). Depletion of Parkin was monitored with anti-Parkin
antibodies, and anti-Gapdh antibodies were used as a control to monitor Gapdh protein levels. IP indicates immunoprecipitation. (B) In vitro
ubiquitylation assays with or without recombinant GST−LTF, GST−tubulin (positive control), or GST−GFP (negative control); an ATP
regeneration system; ubiquitin; E1 ubiquitin-activating enzyme; E2 ubiquitin-conjugating enzyme (Ubc7); and wild-type (WT) or LAP−Parkin-
overexpressing (OE) HEK293 cell extracts (Ext). GST-tagged proteins were immunoprecipitated, and their ubiquitylation was monitored with anti-
ubiquitin antibodies (Ub). IP indicates immunoprecipitation. (C) LTF ubiquitylation reactions were analyzed by mass spectrometry, and the most
abundant Parkin-mediated LTF ubiquitylation sites, K182 and K649, were mapped onto the human LTF structure of PDB entry 1FCK
(represented as orange spheres). Five additional ubiquitylation sites are represented as magenta spheres. Fe bound to LTF is represented as blue
spheres. For a complete list of identified LTF ubiquitylation sites, see Table S2. (D) LAP−LTF-WT or LTF single (K182A or K649A) or double
(K182A/K649A) ubiquitylation site mutants were expressed in HeLa cells and immunoprecipitated (S-Tag IP), and their ubiquitylation was
monitored using anti-K48 and anti-K63 ubiquitin linkage specific antibodies. IP indicates immunoprecipitation.
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(K649A) affects intracellular iron levels, consistent with a role
for Parkin in regulating iron levels through LTF ubiquitylation.
To begin to understand how Parkin-mediated ubiquitylation of
LTF on K649 was affecting LTF metal binding, we performed

molecular dynamics simulations to compare the interaction
potential energy in the LTF structure to the monoubiquity-
lated LTF structure. LTF structural studies have shown that
the structure of LTF remains essentially the same irrespective
of whether iron (Fe), cerium (Ce), or copper (Cu) is
bound.28−31 For this analysis, we used the structure of PDB
entry 1FCK that is bound to Ce.30 First, the monoubiquity-
lated LTF was modeled by conjugating the ubiquitin structure
C-terminal glycine to K649 of human lactoferrin (see Materials
and Methods) (Figure S2A). The molecular dynamics
simulation showed that the monoubiquitylated LTF had an
overall Ce binding stability that was lower than that of LTF
with a mean initial interaction energy of approximately −2120
kcal/mol compared to a value of −2170 kcal/mol.
Furthermore, the stability of monoubiquitylated LTF de-
creased over the 100 ps simulation with an increased
interaction energy while the Ce metal binding for LTF
remained stable during the simulation (Figure S2B).
Inspection of energy-minimized LTF and monoubiquitylated
LTF structures revealed a shift in residues His597, Tyr435, and
Arg465 that coordinate metal binding.29 This in silico
molecular analysis indicated that LTF ubiquitylation at K649
led to structural changes that destabilize metal coordination in
the binding site and therefore could modulate metal (including
iron) binding activity.
In summary, we have discovered a previously undescribed

link between Parkin and LTF that influences iron homeostasis.
We identified lactoferrin (LTF or lactotransferrin) as a Parkin-
interacting protein and validated this interaction through
reciprocal co-immunoprecipitations from cells and in binding
reactions in vitro. Increased levels of LTF and its receptor have
been reported within nigral neurons in PD patients and in
other neurodegenerative disorders.4,9 Iron homeostasis is
important for maintaining normal physiology of neuronal cell
populations, and iron accumulation leads to neurotoxicity.12

Due to the importance of LTF in iron homeostasis and its
misregulation in PD, we sought to further define the
significance of the Parkin−LTF interaction. We determined
that LTF was ubiquitylated in a Parkin-dependent manner in
cells and in vitro through K63 linkages. Moreover, we mapped
the sites of seven lysines on the LTF lysine that were
ubiquitylated, with K182 and K649 being the most abundantly
modified. Substitution of K182 or K649 with an alanine
(K182A or K649A) led to a decrease in the level of LTF
ubiquitylation, and the double point mutant led to a major
decrease in the level of LTF ubiquitylation. Importantly,
Parkin-mediated ubiquitylation of LTF was critical for LTF’s
ability to modulate iron levels as overexpression of LTF
ubiquitylation site point mutants K649A or K182A/K649A led
to an increase in intracellular iron levels measured by ICP-MS/
MS. Consistently, RNAi-mediated depletion of Parkin also led
to an increase in intracellular iron levels in contrast to
overexpression of Parkin that led to a decrease in intracellular
iron levels. Together, our data suggest that Parkin binds to and
ubiquitylates LTF to influence intracellular iron levels. We
propose that Parkin ubiquitylation of LTF at K649 perturbs
LTF’s ability to accumulate intracellular iron levels and that
depletion of Parkin, or substitution of K649 on LTF, allows
LTF to accumulate intracellular iron levels. The ability of
Parkin to influence iron levels through LTF ubiquitylation may
have direct implications for the increased iron levels that are
observed in the nigral cells of PD patients. These results
expand our understanding of the cellular processes that are

Figure 3. Overexpression of LTF ubiquitylation site mutants
influences intracellular iron levels. (A) Extracts from control HeLa
cells (Cont) or HeLa cells overexpressing the LAP−LTF wild type
(WT), lysine 182 to alanine (K182A) point mutant, lysine 649 to
alanine (K649A) point mutant, or double point mutant (K182A/
K649A, indicated by DM) were analyzed for sulfur (32S), iron (56Fe),
and zinc (66Zn). (B) Total 32S levels (in micrograms) were used to
quantify 56Fe and 66Zn levels (in millimoles per mole of S). Bar graphs
show the mean ± standard deviation from three replicate samples. A t
test was used to calculate p values (α < 5%) in the indicated
comparisons.

Figure 4. Parkin levels influence intracellular iron levels. (A and B)
Extracts from HeLa cells transfected with control nontargeting siRNA
(siCont) or Parkin siRNA (siParkin) were analyzed for total sulfur
(32S), iron (56Fe), and zinc (66Zn). (C and D) Extracts from the
HEK293 LAP−Parkin-inducible cell line that was not induced (Parkin
NI) or induced to overexpress LAP−Parkin (Parkin OE) were
analyzed for total sulfur (32S), iron (56Fe), and zinc (66Zn). NI
indicates not induced, and OE indicates overexpression. (B and D)
The total 32S levels (in micrograms) were used to quantify 56Fe and
66Zn levels (in millimoles per mole of S). Bar graphs show the mean ±
standard deviation from three replicate samples. A t test was used to
calculate p values (α < 5%) in the indicated comparisons.
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perturbed when Parkin activity is disrupted and more broadly
the mechanisms that contribute to PD. LTF is a member of the
family of transferrin iron binding proteins that transport iron
and regulate intracellular iron levels.4,5 It is currently unclear
whether other isoforms of LTF like δ-lactoferrin32 or other
transferrin iron binding proteins are regulated through
ubiquitylation and whether their ubiquitylation is Parkin-
mediated. This study should help stimulate additional work
related to Parkin-mediated iron regulation in PD and other
neurological disorders. We note that the regulation of iron
levels through Parkin-mediated ubiquitylation of LTF that we
observe in vitro cannot solely account for the dysregulation in
iron levels seen in PD patients and that other mechanisms are
likely to exist. For example, the protein levels of divalent metal
transporter 1 (DMT1), which transports metals, including
iron, into the cell from the extracellular environment, have
been shown to be regulated through Parkin-mediated
ubiquitylation and proteasome-dependent degradation, and
elevated levels of DMT1 have been observed in PD
patients.4,33,34 Furthermore, it is important to note that LTF
can also influence the levels of other proteins with roles in iron
homeostasis.35 For example, studies analyzing the effect of
bovine lactoferrin (bLf) on the inflammation response showed
that the addition of exogenous bLf could inhibit iron overload
by reducing the level of production of the pro-inflammatory
cytokines IL-6 and IL-1β and regulating iron metabolism
through the upregulation of the iron exporter ferroportin
(Fpn) and the transferrin receptor 1 (TfR1) and down-
regulation of ferritin (Ftn).35,36 Thus, whether the changes in
intracellular iron levels that we observe upon LTF
ubiquitylation are directly related to LTF function or to the
function of downstream iron-regulating proteins that are
modulated by LTF remains to be determined.
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