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Abstract

Several investigations have found that students learn
more when they explain examples to themselves while
studying them. Moreover, they refer less often to
the examples while solving problems, and they read
less of the example each time they refer to it. These
findings, collectively called the self-explanation effect,
have been reproduced by our cognitive simulation pro-
gram, Cascade. Cascade has two kinds of learning. It
learns new rules of physics (the task domain used in
the human data modeled) by resolving impasses with
reasoning based on overly-general, non-domain knowl-
edge. It acquires procedural competence by storing
its derivations of problem solutions and using them
as analogs to guide its search for solutions to novel
problems. This paper discusses several runs of Cas-
cade wherein the strategies for explaining examples is
varied and the initial domain knowledge is held con-
stant. These computational experiments demonstrate
the computational sufficiency of a strategy-based ac-
count for the self-explanation effect.

Introduction

The long-term goal of the Cascade project is to de-
velop a model of knowledge acquisition in scientific
task domains. The short-term goal is to model the
self-explanation effect. Cascade has been tested using
data from a study by Chi, Bassok, Lewis, Reimann and
Glaser (1989) who studied students learning classical
particle dynamics, the first topic in a typical first-year
college physics course. The 8 subjects studied the first
three chapters of college textbook, then read the prose
part of a chapter on Newton’s laws. They took a test
on their understanding of the chapter, then studied 3
worked examples and solved 25 problems. Protocols
were taken as they studied the examples and solved
the problems. On the basis of the scores on problem
solving, the 8 subjects were divided two groups. The 4
students with the highest scores were called the Good
solvers; the others were called Poor solvers. Since the
students in both groups scored the same on pre-tests,
the Good solvers seem to have learned more during
the experiment (but see discussion below). Using pro-
tocol analysis, Chi et al. attempted to find out how
the Good solvers managed to learn more than the Poor
solvers from the same material. They found five dif-
ferences:

1. The Good solvers uttered more self-explanations as
they studied examples, whereas the Poor solvers’
comments were mostly paraphrases of the examples’
statements.

2. All students commented frequently on whether they
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understood what they had just read. The Good
solvers tended to say that they did not understand
what they had just read, whereas the Poor solvers
tended to say that they did understand. Since the
Poor solvers scores show that they understood less
than the Good solvers, their self-monitoring was less
accurate than the Good solvers’.

. During problem solving, the Poor solvers tended to
refer back to the examples more often than the Good
solvers.

. When the Good solvers referred to the examples,
they read fewer lines then the Poor solvers. The
Poor solvers tended to start at the beginning of the
example and read until they found a useful line,
whereas the Good solvers started reading in the mid-
dle of the example and read only one line.

The first two findings have also been observed in sim-

ilar studies of students learning Lisp (Pirolli & Biel-

aczyc, 1989) and electrodynamics (Fergusson-Hessler

& de Jong, 1990). This cluster of findings is called the

self-explanation effect.

Hiffpothesized sources of the
self-explanation effect

Cascade is based on the hypothesis that the self-explan-

ation effect is caused by knowledge-level learning that

occurs as the students explain examples and solve prob-
lems. This section introduces the hypothesis by first
examining competing hypotheses.

A plausible hypothesis is that the two groups of stu-
dents had accumulated different knowledge of physics
Jjust prior to studying the examples. This difference
might be due to prior exposure to physics or to read-
ing the text of the chapter more carefully. The ones
who had more prior knowledge solved more problems
correctly, and thus were classified as Good solvers. Un-
der this prior-knowledge hypothesis, all subjects try to
explain the text and the example lines, but those who
already know a lot are better able to explain the ex-
ample and so produce more self-explanations (finding
1 in the list above). Moreover, because they produce
more derivations during example processing, they use
fewer (finding 3) and more economical (finding 4) ref-
erences during analogical problem solving. Thus, the
prior-knowledge hypothesis is consistent with 3 of the
4 findings. There are, however, three sets of evidence
against the prior knowledge hypothesis.

1. After reading the text of the target chapter, the stu-
dents in the Chi et al. study took a test on their
knowledge of Newton’s laws. The mean scores of
the Good and Poor students on this test were ex-
actly the same (Chi et al., 1989). This suggest that


mailto:VanLehn@cs.pitt.edu
mailto:Jones@cs.pitt.edu
mailto:Chi@vms.cis.pitt.edu

both groups of students had roughly the same prior
knowledge.

2. Chi and VanLehn (1991) conducted a fine-grained
analysis of all 258 self-explanations in the protocols,
reducing each to a set of propositions, For each
proposition, they attempted to determine whether
it was inferred (a) from the example line, (b) from
common sense knowledge, (¢) from knowledge ac-
quired from previous example lines, or (d) from the
text. The first three categories are considered non-
text sources. Of the propositions whose source could
be determined, 68.5% were inferred from non-text
sources. More importantly for the present argu-
ment, this proportion was the same for both Good
and Poor students. If the Good students had more
prior knowledge, more of their propositions would be
encoded as coming from the text. Thus, this result
is inconsistent with the prior knowledge hypothesis.

. The prior-knowledge hypothesis predicts that Poor
subjects would utter more negative self-monitoring
statements because they more often fail to explain a
line. In fact, they utter fewer negative self-monitorin
statements.

Although it is unlikely that all 9 students had exactly

the same prior knowledge, the above difficulties indi-

cate that variations in prior knowledge cannot be the
sole source of the self-explanation effect. There must
be some kind of learning going on.

g

Because the subjects are explaining examples, a plau-

sible type of learning is EBL (Mitchell, Keller & Smada
Cabelli, 1986). EBL is symbol-level learning (Diet-
terich, 1986), in that all the knowledge is assumed
to be present in some form before the learning be-
gins. Learning consists of making the knowledge more
efficiently usable. EBL, knowledge compilation (An-
derson, 1983) and chunking (Newell, 1990) are all in-
stances of symbol-level learning. However, the hy-
pothesis that self-explanation is caused by symbol-
level learning has two difficulties.

1. When the subjects took an untimed test on the con-
tent of the text, their mean score was only 5.5 out
of a possible 12. Moreover, after studying the exam-
ples and solving the problems, the Good student’s
score increased to 8.5. This suggests that students
did not learn much physics from studying the text,
and that some more physics was learned by studying
the examples and working the problems.

. The text does not contain all the information needed
by the subjects to explain the examples or solve the
problems. To quantify this inadequacy, an extensive
task analysis and simulation conducted with the aid
of Bernadette Kowalski and William Ball. Starting
with the task analyses of Bundy, Byrd, Luger, Mel-
lish and Palmer (1979) and Larkin (1983), we devel-
oped a set of rules and a representation of physics
problems that was simple and yet sufficient for solv-
ing all but 2 of the 25 problems in the Chi study.
(Solving the 2 problems would require a type of
mathematical reasoning that we did not bother to
implement). During this time, extensive, albeit in-
formal, analyses of the Chi protocols were conducted
in an effort to align the proposed knowledge repre-

I-
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sentations with the subject’s comments. The re-
sulting target knowledge base contained 62 physics
rules. Next, two people who were not involved in
the development of the target knowledge base were
asked to judge each rule and determine whether it
was mentioned anywhere in the textbook prior to
the examples. There was 95% agreement between
the judges. Disagreements were settled by a third
judge. Of the 62 rules in the target knowledge base,
29 (47%) were judged to be present in the text prior
to studying the examples. Thus, more than half the
knowledge required for explaining the examples and
solving the problems is not presented in the text,
and presumably is not known by the subjects prior
to explaining the examples and solving the prob-
lems.

These results suggest that the major prerequisite
of symbol-level learning is not met, for the students
did not seem to have complete knowledge before the
example studying and problem solving began. Thus,
some kind of knowledge-level learning must be going
on during the explanation of examples and the solving
of problems.

Because the examples contain more information than
the problems, a plausible hypothesis is that all know-
ledge-level learning occurs during the explanation of
examples. Using the 33 rules that did not occur in the
text, we estimated that only 11 of the rules were used
during the examples. The other 22 were first used dur-
ing the problems. This suggests that two-thirds of the
rules are acquired during problem solving. Thus, it
appears that some kind of knowledge-level learning is
going on during both example explaining and problem
solving. This is the hypothesis upon which Cascade is
based.

The hardest technical challenge is to find a know-
ledge-level learning method that can learn correct rules
during problem solving. Learning during problem solv-
ing is harder than learning during example explain-
ing, because the examples provide partial description
of their solution paths which allows the program to
do less guessing than it must do when learning during
problem solving. Because students often refer to ex-
amples as they solve problems, we assume that they
are using the example’s solutions to constrain their
generation of the problems’ solutions, and this in turn
facilitates correct learning during problem solving. We
hypothesize that knowledge-level learning takes place
in the context of analogical problem solving and ex-
ample explaining.

Since the Poor students learn fewer rules during ana-
logical problem solving than the Good students, and
the Poor students generated fewer self-explanations
during example studying, we hypothesize that there is
something about explaining the examples that causes
analogical problem solving to be more effective. It gen-
erates solution paths that are more often correct and
this in turn establishes a better context for knowledge-
level learning. We built Cascade order to work out
the interactions between example explaining, analogi-
cal problem solving and learning, and thus provide a
test of the computational and empirical sufficiency of



our hypotheses.

The Cascade model

Cascade models two basic activities: explaining ex-
amples and solving problems. Knowledge-level learn-
ing goes on during both. Because the type of physics
problems used in Chi et al.’s study involve only mono-
tonic reasoning in a single state, Cascade uses a rule-
based, backchaining theorem prover (similar to Pro-
log) to implement both activities. A physics example
is presented to Cascade as a set of facts representing
the givens of the problem and a list of propositions
representing the force diagram and the lines of the
problem’s solution. Cascade explains each proposition
by proving that it follows from the givens and the pre-
ceding propositions. To solve a problem, Cascade is
presented with facts representing the problem’s givens
and is asked to prove a proposition involving the quan-
tities the problem seeks. For instance, the translation
of, “What is the tension of string A7” is “Prove the
proposition value(tension(stringA), X).” In the process
of proving the proposition, Cascade derives a value for
the variable X, thus solving the problem. Although
this model of problem solving and example explaining
is clearly too simple to cover all task domains, it suf-
fices for physics and other task domains dominated by
monotonic reasoning.

Cascade includes two kinds of analogical problem
solving. One kind of analogy is used when Cascade
has multiple rules that can be applied to achieve a
goal and it does not know which one to choose. To
get advice, it refers to its derivation of the examples’
lines, which are stored as the examples are explained.
(A derivation is represented by a set of pairs, each con-
taining a goal from the proof of a line and the rule used
to achieve that goal.) This type of analogy begins by
retrieving an example (retrieval is currently not mod-
eled in a psychologically plausible way), establishing
a mapping between the example’s givens and the cur-
rent problem’s givens, then using the mapping to see
if the example’s derivation has a goal that is equiva-
lent to the goal that it is currently worried about. If
it finds an equivalent goal, the rule that achieves that
goal is chosen for attempting to prove the worrisome
goal. This type of analogy is called analogical search
control, because it uses the example as a source of ad-
vice on which of several alternative to try first. For
instance, a student might say, “I cannot tell whether I
should project this onto the x-axis or the y-axis. At an
analogous point in the example, they projected onto
the x-axis, so I'll try that too.” Analogical search con-
trol is also used in the Eureka (Jones, 1989).

The second type of analogy is used when Cascade
cannot find a rule that will apply to the current goal.
Here, it tries to find a line in an old example that it
can convert into an appropriate rule. It begins just
like analogical search control by retrieving an example
and forming a mapping between the givens of the ex-
ample and the problem. Next it now looks for a line
in the example's solution that mentions the current
goal (or rather, a goal equivalent to the current goal
under the mapping). Most lines are equations, so it is
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simple to convert a line to a temporary rule which can
then be used to try to achieve the goal. For instance,
a student might say, “I need some way to get the ten-
sion of string A. The example has a line saying that
string 1's tension is mg sin 30. Those two strings are
analogous, and 30 degrees is analogous to 45 degrees
in this problem, so 1 bet that the tension of string A
is mg sin 45 degrees.” This type of analogy is called
transformational analogy, after a similar method ex-
plored by Carbonell (1986). As Carbonell discovered,
transformational analogies often yield wrong answers.

Cascade’s mechanism for learning at the knowledge
level is called explanation-based learning of correctness
or EBLC (VanLehn, Ball & Kowalski, 1990). The ba-
sic idea is divide knowledge into domain knowledge
and non-domain knowledge. Domain knowledge con-
tains rules that are believed to be correct and appropri-
ate for the task domain. Non-domain knowledge con-
tains rules that are believed to be incorrect or relevant
only to other task domains. The most important non-
domain rules for learning are overly general rules. The
basic process of EBLC is to use overly general rules
whenever domain rules fail, then to save the particu-
lar usage of that rule if its use turns out to be correct.
EBLC begins when Cascade reaches a knowledge-level
impasse. A knowledge-level impasse occurs when there
is no domain rule for achieving a goal and there is no
successful alternative solution path that uses only do-
main rules (VanLehn & Jones, in press, describe how
such impasses are detected). To resolve a knowledge-
level impasse, Cascade tries to use non-domain rules,
such as, “If an object has a part, then the property
values of the part and the whole are the same.” If
the use of such non-domain rules ultimately leads to
a successful explanation of an example line or a suc-
cessful solution to a problem, then Cascade forms a
new domain rule that is a specialization of the overly
general one. The specialization is chosen so that it is
also a generalization of the particular usage. For in-
stance, on one problem Cascade could not determine
the pressure in a part of a container even though it
knew the pressure in the whole. Since there was no
alternative solution to the problem, Cascade was at
a knowledge-level impasse. It used the overly-general
rule just mentioned, which ultimately led to a solution
of the problem. Cascade then formed a new domain
rule, “If a container has a part then the pressure in
the part is equal to the pressure in the whole.”

From a machine learning point of view, Cascade
does both knowledge-level learning (via EBLC) and
symbol-level learning (via analogical search control).
Analogical search control is a form of learning, be-
cause each time an example is explained or a problem
is solved, the system gains another derivation that can
be used by analogical search control. However, ana-
logical search control does not change the set of prob-
lems solvable with infinite resources. It only changes
the efficiency of the search. Thus, it is a symbol-level
learning mechanism.

Cascade’s learning is similar to those proposed by
existing theories of skill acquisition. \We believe that
analogical search control can eventually provide an



account for the practice effects usually explained by
chunking (Newell, 1990), knowledge compilation (An-
derson, 1983), and other also symbol-level learning
mechanisms. EBLC is similar to proposals by Schank

(1986), Lewis (1988), Anderson (1990) and others, which

also acquire new knowledge by specializing existing,
overly general knowledge. Although all these models
of skill acquisition are similar in spirit, they differ in
significant ways. For more on the Cascade system and
a detailed comparison with its predecessors, see Van-
Lehn and Jones (in press).

Modeling the self-explanation effect
with Cascade

Given the learning mechanism of Cascade, a simple
hypothesis for explaining the difference between Good
and Poor solvers is that Good solvers chose to explain
more example lines than Poor solvers. To test this,
several simulation runs were made, varying the num-
ber of example lines explained and turning on and off
various learning mechanisms. All these simulations be-
gan with the same initial knowledge state. The initial
domain knowledge consisted of the 27 rules that three
judges found to be present in the text (see above). The
rest of the initial knowledge base consists of 45 non-
domain rules, of which 28 represented common sense
physics (e.g., a taught rope tied to a object pulls on
it) and 17 represented over-generalizations, such as “If
there 1s a push or a pull on an object at a certain angle,
then there is a force on the object at the same angle.”
See VanLehn, Jones and Chi (in press) for a list of the
45 non-domain rules.

The simulation runs

Run 1 was intended to simulate a very good student
who explains every line of every example. Cascade first
explained the 3 examples in the study, then it solved
the 23 problems. (The 2 problems that are not solvable
by the target knowledge were excluded.) It was able to
correctly solve all the problems. It acquired 22 rules: 7
while explaining examples and 15 while solving prob-
lems. The new rules are correct physics knowledge,
allowing for the simplicity of the knowledge represen-
tation. Moreover, they seem to have the right degree
of generality in that none were applied incorrectly and
none were inapplicable when they should have been.
However, some of the rules dealt with situations that
only occurred once in this problem set, so they were
never used after their acquisition.

Run 2 was intended to simulate a very poor student
who explains none of the example lines. To simulate
a student who merely reads an example without ex-
plaining it, the lines from the 3 examples were placed
in Cascade’s memory without explaining them. Thus,
there was no opportunity for EBLC to learn new rules
nor were any derivations left behind to act as search
control for later problem solving. Cascade was given
the same 23 problems given to it in run 1. It cor-
rectly solved 9 problems. Apparently these problems
require only knowledge that Cascade had been given
initially. As it solved these problems, Cascade learned
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3 correct rules via EBLC. On 6 other problems, Cas-
cade found an incorrect solution. EBLC did not oc-
cur on these problems. On the remaining 8 problems,
Cascade failed to find any solution or its search went
on for so long that it was cut it off after 20 minutes.
Although EBLC was used extensively on these prob-
lems problems, the rules produced were always incor-
rect. On the assumption that a poor student would
not believe a rule unless it led to a correct solution
to a problem, rules acquired during failed solution at-
tempts were deleted.

Run 3 was intended to separate the benefits of EBLC
from the benefits of analogy. Cascade studied the ex-
amples as in run 1, learning the same 7 rules as on
run 1. During problem solving, both analogical search
control and transformational analogy were disabled.
As would be expected of a symbol-level learner whose
learning was turned off, Cascade was slower on run 3
than on run 1 (249 seconds per correctly solved prob-
lem vs. 154 seconds for run 1), and it answered only 19
of 23 problems correctly. More importantly, a large in-
teraction was found with EBLC. When analogy is not
used during problem solving, EBLC learned 10 rules,
only 6 of which were correct. Moreover, three of the 6
were the same three that it learned on run 2. Thus, of
the 15 rules learned during problem solving on run 1,
3 can be learned without benefit of the rules learned
during example studying, 3 others require the example
studying rules but can be learned without analogy, and
the remaining 9 require both analogy and the example-
studying rules. This finding makes sense. Analogical
search control and, to a lesser extent, transformational
analogy influenceithe exact location of impasses, which
in turn determine the rules learned by EBLC. Their in-
fluence is strong enough that analogy is necessary for
EBLC to learn 9 of the 15 rules (60%) acquired during
run 1’s problem solving.

In order to determine whether this effect is due to
transformational analogy or analogical search control,
a fourth run was conducted that was similar to run
3 except that only analogical search control was dis-
abled. Cascade still used transformational analogy.
This allowed it to get two more problems correct, rais-
ing its score to 21 of 23 problems. More importantly,
EBLC acquired the same 6 correct rules as on run 3.
The fact that no further correct rules were acquired
implies that it is analogical search control and not
transformational analogy that helped EBLC during
run 1. Thus, it appears that analogical search con-
trol (or some other kind of search control) is necessary

during problem solving if EBLC is to learn success-
fully.

Explaining the self-explanation
correlations

Cascade should be able to explain the four differ-
ences observed by Chi et al. (1989) between Good
and Poor solvers. Assuming that the number of self-
explanatory utterances is directly proportional to the
number of lines explained during example studying,
the job facing Cascade is to explain why explaining
more lines causes better scores on quantitative post-



tests (finding 1), more accurate self-monitoring (find-
ing 2) and more frequent (finding 3) and more eco-
nomical reference to the examples (finding 4).

The contrast between runs 1 and 2 indicates that
Cascade can reproduce the positive correlation between
the number of example lines explained and the number
of problems solved correctly. On run 1, it explained
all the example lines and got all 23 problems correct;
on run 2, it explained none of the example lines and
got 9 of the problems correct. Knowing the opera-
tion of Cascade, it is clear that having it explain an
intermediate number of lines would cause it to cor-
rectly answer an intermediate number of problems. So
the two extreme points (runs 1 and 2) plus Cascade’s
deterministic design are sufficient to demonstrate the
main finding of the self-explanation effect.

Several mechanisms contributed to this result, and
each will be examined in turn. First, when more lines
are explained, Cascade is more likely to stumble across
a gap in its domain knowledge. Such missing knowl-
edge causes impasses, which lead to EBLC and the ac-
quisition of new rules during example explaining. Of
the 19 rules that were learned during run 1 and not
run 2, 7 (37%) were learned while explaining exam-
ples. As the domain knowledge becomes more com-
plete, performance on problem solving rises. Thus,
the more self-explanation, the more EBLC during ex-
ample studying, and hence the more improvement in
problem solving.

The acquisition of rules during example studying
helps produce contexts during problem solving that al-
low EBLC to learn more rules during problem solving
even without the aid of analogical search control. Of
the 19 rules, run 3 shows that 3 (16%) were acquired
in this fashion. These new rules also contributed to
the improvement in problem solving.

Analogical search control contributes to the corre-
lation both directly and indirectly. When more lines
are explained, more derivations available for analogi-
cal search control. Because analogical search control
prevents Cascade from going down some dead ends,
it directly helps raise the score during problem solv-
ing (compare runs 1 and 4). There is an indirect ef-
fect as well. Analogical search control causes impasses
to occur at places where knowledge is truly missing,
rather than at local dead ends in the search space, so
EBLC is more often applied to appropriate impasses,
and thus more often generates correct domain rules.
The remaining 9 of the 19 rules (47%) require analog-
ical search control for their acquisition.

Cascade provides a simple explanation of the corre-
lation between the amount of self-explanation and the
accuracy of self-monitoring statements, assuming that
negative self-monitoring statements (e.g., "I don’t un-
derstand that”) correspond to impasses, and that pos-
itive self-monitoring statements (e.g., Ok, got that.”)
occur with some probability during any non-impasse
situation. When more example lines are explained,
there are more impasses, and hence the proportion of
negative self-monitoringstatements will be higher. In
the extreme case of run"2, where no example lines are
explained, all the self-monitoring statements during
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example processing would be positive, which is not far
off from Chi et al.’s observation that 85% of the Poor
solver’s self-monitoring statements were positive.

The third finding involves the frequency of analog-
ical references during problem solving. Chi et al. ob-
served that during problem solving, the Good solvers
make fewer references to the examples than the Poor
solvers (2.7 references per problem vs. 6.7). These
were mostly physical references, wherein the solver
turned to the example and reread part of it. Cascade
does not distinguish memory references from physi-
cal references. However, it does have two different
kinds of analogical references. Analogical search con-
trol searches for a sought quantity in the derivation of
a solution, while transformational analogy reads con-
secutive lines in an example looking for one that con-
tains the sought quantity. Suppose we assume that all
of the transformational analogy references are physical
and that few, say P, of the references due to analog-
ical search control are physical. On the Good solver
run, Cascade made 551 references for analogical search
control and 40 for transformational analogy. Using the
assumption, this would yield 551 x P+ 40 physical ref-
erences. On the Poor solver run, Cascade could not
use analogical search control because no derivations
were available from explaining examples. However, it
made 91 references for transformational analogy. If
P < .092, then 551 x P 4+ 40 < 91 and Cascade cor-
rectly predicts that the Good solvers make fewer phys-
ical references than Poor solvers.

Chi et al. observed that the Good solvers read fewer
lines when they referred to examples than the Poor
solvers (1.6 lines per reference vs. 13.0 lines per ref-
erence). Cascade can model this effect, although an
assumption is again needed about the percentage of
analogical search control references that are physical.
Suppose we assume as before that P of the analogical
search control references are physics, and furthermore,
assume that a physical reference by analogical search
control reads only one line. On the Good solver run,
Cascade read 340 lines during transformational anal-
ogy and 551 x P lines during analogical search control,
for a total of (551 x P + 340)/(551 x P + 40) lines per
reference. On the Poor solver run, Cascade read 642
lines during its 91 transformational analogy references,
for 642/91 = 7.1 lines per reference. If P > .017, then
(551 x P+340)/(551 x P+40) > 7.1 and Cascade cor-
rectly predicts that the Good solvers read fewer lines
per references than the Poor solvers.

Notice that the lower bound (.017) on P does not
have to be beneath the upper bound (.092). If P had to
be above, say .1 in order to get the lines-per-reference
finding correct and below .05 in order to get the refer-
ence frequency finding correct, then Cascade could not
model both these findings. Thus, these findings jointly
have the power to test Cascade, and yet it passed their
test.

Discussion

The major technical hurdle in developing Cascade was
finding a way to constrain problem solving so that
knowledge-level learning could operate correctly dur-



ing it. This was achieved by adding analogical search
control, a form of symbol-level learning. There was
no way to tell in advance of running Cascade whether
analogical search control was sufficient. Fortunately,
it was, and Cascade was able to learn all 15 rules that
it needed to learn.

As a model of the self-explanation effect, Cascade is
both qualitatively and quantitatively adequate. It ex-
hibits the same qualitative behavior as subjects: It can
self-explain examples as well as “paraphrase” them.
It can solve problems with and without referring to
examples, and its analogical references can both dive
into the middle of the example to pick out a single fact
(analogical search control) or read the example from
the beginning searching for a useful equation (trans-
formational analogy). Cascade's performance is quan-
titatively similar to the Good and Poor solvers as its
reproduction of the 4 self-explanation findings shows.

Cascade is based on the assumption that the self-
explanation effect is due solely to a difference in ex-
ample studying habits rather than a difference is prior
knowledge. This is probably too extreme. We plan to
explore the tradeoff by fitting protocols of each individ-
ual subject. Cascade will be forced to explain exactly
the lines that the subject explains. When given prob-
lems to solve, Cascade should reach impasses in the
same places that the subject does. However, the sub-
ject will probably display more impasses than Cascade,
thus indicating gaps in the prior knowledge. Thus, we
should be able to tell exactly how much variation in
performance is due to prior knowledge and how much
is due to learning strategies.

As a general model of cognitive skill acquisition,
Cascade shows promise but needs considerable work.
In order to be a more complete account of the phenom-
ena at hand, it needs a model of analogical retrieval
and of the difference between physical and mental ref-
erences to the examples. We believe the existing mech-
anisms can also handle some well-known phenomena
of skill acquisition, such as practice and transfer ef-
fects, but this needs to be demonstrated. The major
limitation on the generality of Cascade 3 is its use of
monotonic single-state reasoning. With the help of
Rolf Ploetzner, we are currently incorporating a ver-
sion of the situation calculus which will greatly en-
hance the types of reasoning Cascade can model, and
thus the number of task domain that it can model. We
are encouraged to extend Cascade to become a more
complete, more general model of learning by its sim-
ilarity to other theories of cognitive skill acquisition
(e.g., Anderson, 1990; Schank, 1986). It is consider-
ably simpler than those theories and probably more
thoroughly implemented and tested. We hope that its
simplicity and empirical adequacy remain intact as it
is extended.
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