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H I G H L I G H T S
� Effects of exposure to stressors modeled by specifying dynamics of reactive oxygen species and damage.

� Feedbacks constituting metabolic response to stress quantified.
� Ability of organisms to control damage depends on strength of feedbacks.
� The simple new formalism enables relating model variables to measured quantities.
� Exposure history can cause runaway dynamics even for otherwise safe exposure levels.
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a b s t r a c t

Biological feedbacks play a crucial role in determining effects of toxicants, radiation, and other en-
vironmental stressors on organisms. Focusing on reactive oxygen species (ROS) that are increasingly
recognized as a crucial mediator of many stressor effects, we investigate how feedback strength affects
the ability of organisms to control negative effects of exposure. We do this by developing a general
theoretical framework for describing effects of a wide range of stressors and species. The framework
accounts for positive and negative feedbacks representing cellular processes: (i) production of ROS due to
metabolism and the stressor, (ii) ROS reactions with cellular compounds that cause damage, and (iii)
cellular control of both ROS and damage. We suggest functional forms that capture generic properties of
cellular control mechanisms constituting the feedbacks, assess stability of equilibrium states in the re-
sulting models, and investigate tipping points at which cellular control breaks down causing unregulated
increase of ROS and damage. Depending on the chosen functional forms, the models can have zero, one,
or two positive steady states; except in one singular case, the steady state with lowest values of ROS and
damage is locally stable. We found two types of tipping points: those induced by changes in the para-
meters (including the stressor intensity), and those induced by the history of exposure, i.e. ROS and
damage levels. The relatively simple models effectively describe several patterns of cellular responses to
stress, such as the covariation of ROS and damage, the break-down of cellular control leading to ex-
plosion of ROS and/or damage, increase in damage even when ROS is (near)-constant, and the effects of
exposure history on the ability of the cell to handle additional stress. The models quantify dynamics of
cellular control, and could therefore be used to estimate the metabolic costs of stress and help integrate
them into models that use energetic considerations to model organism's response to the environment.
Although developed with unicellular organisms in mind, our models can be applied to all multicellular
organisms that utilize similar feedbacks when dealing with stress.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The cells attempt to reduce deleterious effects of ROS such as
membrane, DNA, and protein damage by regulating levels of both
ROS and damage. Exposure to environmental stressors, including
e, Zagreb, Croatia.
toxic exposure to transition metal ions and engineered nano-par-
ticles (ENPs), results in greatly enhanced ROS production rates
that, in turn, require increase in control of ROS and damage. Ac-
cordingly, several empirical studies in eco- and nano-toxicology
report simultaneous measurements of ROS and of some proxy for
cellular damage (e.g. Nel et al., 2006; Priester et al., 2009; Priester
et al., 2012; Ivask et al., 2014; Kaweeteerawat et al., 2015). These
studies and others, found distinct correlation between ROS, the
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Fig. 1. Outline of oxidative stress network that inspired the development of our
models. Metabolism and various environmental stressors give rise to the produc-
tion of compounds with high oxidative potential, such as radicals and hydrogen
peroxide. For example, reduced metabolites (XH2) donate electrons to components
of electron transport chains that, under the influence of the environmental stressor,
achieve relatively high redox potentials and thereby facilitate the production of
superoxide radicals. This initiates a cascade of reactions involving reactive oxygen
species (ROS) that are mediated by enzymes such as superoxide dismutase, cata-
lase, glutathion peroxidase and peroxiredoxins, and more haphazardly by me-
talloenzymes (Fenton-like reactions in the figure). These reactions do not directly
result in cellular damage. However, ROS may spontaneously react with cellular
compounds such as lipids, DNA, and proteins. These reactions can inflict damage.
Damage can also be inflicted directly by environmental stressors such as ionizing
radiation and transition metals. Intermediate steps in the radical cascade, as well as
actual damage, can serve as signals for up-regulation of defense and/or repair
mechanisms (among other mechanisms not dealt with here, such as degenerative
and developmental processes). Damaged molecular machinery may not be as ef-
ficient in controlling ROS production (e.g. damaged mitochondria leak more ROS).

T. Klanjscek et al. / Journal of Theoretical Biology 404 (2016) 361–374362
proxies for damage, and (for bacteria) reduction in population
growth.

With toxic effect models, we have previously demonstrated
that simultaneous measurements of ROS and of responses to ROS
in bacteria, exposed to cadmium and cadmium-based ENPs, aid in
elucidating the potential modes of toxicant action at the sub-
organismal to population levels of organization (Klanjscek et al.,
2012, 2013). Our previous work was based on Dynamic Energy
Budget (DEB) theory (Kooijman, 2010), a unifying and relatively
abstract modelling framework with many applications in ecotox-
icology (e.g. Jager and Zimmer, 2012; Martin et al., 2013; Jager
et al., 2014a, 2014b). The resulting models were able to use the
patterns of ROS and damage accumulation at a constant exposure
to predict toxicity, but were of limited use for modeling dynamics
of repairable damage, and investigating key features of cellular
control.

Known cellular control mechanisms instigate negative feed-
backs that reduce ROS and damage levels. ROS levels are reduced
using antioxidant enzymes such as catalases, glutathionperox-
idases and peroxiredoxins, and non-enzymatic radical scavengers
(e.g. Bannister et al., 1987; Jamet et al., 2003; Giorgio et al., 2007;
Culotta and Daly, 2013), while damage is controlled using repair
pathways ranging from protein (see Chondrogianni, 2014 for a
review) to DNA repair (e.g. Gros et al., 2002; Zahradka et al., 2006).
The negative feedbacks are subject to physiological and bio-
chemical constraints including energy and materials available to
them. The constraints may be the reason why many studies (e.g.
Priester et al., 2009; Krisko and Radman, 2010) note a fairly small
increase in ROS and/or damage for a range of exposure levels,
followed by a large increase in both for a relatively small addi-
tional increase in exposure: for sufficiently high ROS and/or da-
mage production rates, the negative feedbacks may not be able to
keep up, the control breaks, and ROS and damage experience a
runaway, i.e. an accelerated and unbounded increase of ROS and
damage leading to rapid mortality.

To account for these biomolecular defense and repair me-
chanisms, and their breakage, we develop simple models to ex-
plore the effects of positive and negative feedbacks on the dy-
namics of damage and damage-inducing compounds in response
to environmental stressors. We investigate how particular control
mechanisms affect the long-term dynamics, and identify contexts
that may cause a runaway increase in ROS and/or damage that
would lead to rapid mortality. We discuss potential applications
and limitations of the new models, and analyze some of the ways
in which duration of experiments and combinations of stressor
intensities might affect results.
2. Models

Our models aim at generality, but they have been inspired by
specific mechanisms (see Fig. 1). Metabolism, and environmental
stressor impact, yield a variety of damage-inducing compounds
with different physicochemical properties and damaging poten-
tials. Given the prevalence of ROS as damage-inducing compounds
in the literature (see Imlay, 2003 for a review on pathways of
oxidative damage), we will use these terms interchangeably. In
order to keep our representation of the dynamics of reactive
compounds tractable, we assume that each physiological process
(metabolism and impact of each distinct stressor) generates a set
of reactive compounds whose relative proportions are approxi-
mately constant. This enables us to aggregate compounds with
significant oxidative potential into a single, abstract “generalized”
entity, i.e. damage-inducing compounds or ROS. Similarly, there
are many forms of damage, but for the present work we aggregate
these forms into a generalized damage compound. We denote
concentrations of ROS and damage in a cell by Z and D, respec-
tively. We leave the term “concentration” deliberately vague; the
actual units can be chosen to best fit a particular application.

In most of what follows, we assume that – given sufficient time,
energy, and material resources – damage can be repaired. In rea-
lity, some damage is irreparable. Examples of irreparable damage
include permanent loss of information through DNA damage and/
or loss of epigenetic information, proteins wrongly produced be-
cause of permanent loss of information, as well as irreparable or-
gan and/or tissue damage in multicellular organisms. We discuss
the implications of irreparable damage in the Discussion.

2.1. Choice of variables and balance equations

Fig. 2 describes the basic relationships of the processes de-
termining the dynamics of ROS and damage: environmental
stressors and metabolism produce ROS (of concentration Z) that,
unless inactivated, can produce damage (of concentration D). Da-
mage may enhance ROS production, but can also be repaired. The
rate of ROS inactivation, as well as the rate of damage repair, can
be regulated by the cell. In general terms, the system can be de-
scribed by the following mass balance equations:

δ= − − ( )
dZ
dt

j j , 1Z prod Z out Z
G

, ,

δ= − − ( )
dD
dt

j j , 2D prod D out D
G

, ,

where δZ D
G
, accounts for dilution, i.e. changes in concentrations of Z



Fig. 2. Model structure: Metabolism and environmental stressor produce ROS. In
part, ROS is ultimately reduced to harmless compounds, such as water, through
controlled reactions without causing damage to the cell. However, ROS also inflicts
damage through spontaneous, uncontrolled reactions with cellular compounds.
Damage is reduced by regulated repair mechanisms, while non-repaired damage
may enhance ROS production.
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and D due to growth or shrinking of the organism. Fluxes jprod and
jout represent, respectively, production and loss rates. For the
current presentation, we assume that organismal growth (or
shrinking) is a slow process relative to the dynamics of ROS and
damage and set the dilution terms to zero ( )δ = 0Z D

G
, , but note that

growth may need to be considered in some applications (see
Klanjscek et al., 2012, 2013). The production and loss rates are
discussed below.

The ROS production flux ( )jZ prod, is assumed to be an increasing
function of metabolically induced ROS, stressor-induced ROS, and
ROS production enhanced by cellular damage. We compound the
first two sources of ROS into a production term, PZ:

γ= + ( )P P S, 3Z ZS0

where P0 and S represent respectively the metabolic ROS pro-
duction flux and stressor intensity. The relationship between PZ
and S will depend on the actual stress mechanism; for this study,
we assume a linear functional dependence where the coefficient
γZS quantifies how much ROS is produced given some stressor
intensity.

Damage can affect ROS production in a myriad of ways. We
consider a linear combination of multiplicative and additive ef-
fects:

γ= ( + ) + ( )j g D P D1 , 4Z prod ZD Z ZD,

where gZD is the multiplicative, and γZD the additive damage in-
teraction coefficient. The multiplicative term ( )g P DZD Z accounts for
increases in ROS production due to metabolic inefficiencies re-
sulting from damage, and the additive term γ( )DZD accounts for
other damage-related sources of ROS.

The ROS removal flux ( )jZ out, is a consequence of reactions with
cellular components. Some ROS is removed by controlled reactions
without creating damage. ROS not removed by the controlled re-
actions can react with other cellular components and cause da-
mage. Since at any given time the number of ROS molecules is
minuscule compared to the number of potential target sites
(Giorgio et al., 2007), spontaneous ROS reactions are limited by the
concentration of ROS only, and they can be assumed to be pro-
portional to the ROS concentration. The total ROS removal flux is
thus the sum of the two, controlled and spontaneous, reaction
fluxes:

= + ( )j k Z R , 5Z out Z Z,
where kZ is a rate coefficient for the spontaneous flux, and RZ re-
presents the flux resulting from controlled reactions (see Appen-
dix A for details).

The damage production flux ( )jD prod, has two components: direct,
stress-induced damage production, PD, and damage created by
spontaneous ROS reactions. The direct stressor-induced damage
production term is represented by

γ= ( )P S, 6D DS

where the damage stress coefficient, γDS, quantifies the yield of
damage due to direct stressor action. For simplicity, we assume
that the damage yield from oxidative stress is constant, yD; the
total damage creation flux is then:

= + ( )j y k Z P . 7D prod D Z D,

The damage removal flux ( )jD out, accounts for all cellular repair
processes, including the metabolic turnover of damaged macro-
molecules. We assume that spontaneous damage repair is negli-
gible, and that all damage repair is regulated:

= ( )j R , 8D out D,

where RD represents regulated damage repair.
The regulatory networks exerting the control of damage repair

and of ROS are context-specific and can be extremely complex, so
we approximate their dynamics through simple, stylized negative
feedback loops (see Zhang and Andersen, 2007; Drengstig et al.,
2012 for examples). Such general feedback loops have at minimum
one controller variable describing the controller compound, and
one controlled variable describing the controlled compound. The
rate of change of each controller X controlling a variable Y is
governed by a balance equation

= − ( )
dX
dt

j j . 9X prod X out, ,

We assume that:

� jX prod, can be represented by a Michaelis–Menten type saturat-

ing function, = +jX prod
v Y

K Y,
X

X
, because we expect:

○ jX prod, is an increasing function of Y: production rates of the

controllers increase as ROS and damage concentrations in-
crease (for example, cells up-regulate defenses against ROS as
ROS concentrations increase (Giorgio et al., 2007), e.g. by
initiating the SOS gene pathway when damage accumulates
(Friedman et al., 2005)), and

○ jX prod, is a saturating function of Y: the cellular capacity to
produce controller compounds is bounded, i.e. there is an
upper limit to the rate of controller production.

� jX out, is an increasing function of X: controllers are inactivated
due to cellular turnover and to interactions with the controlled
compounds; we assume a simple linear, passive inactivation:

=j k XX out X, .

We introduce two additional variables, E and A, to represent re-
spectively the concentrations of the compounds controlling ROS
and damage. We consider two types of interaction between the
controller compounds (E, A) and the controlled compounds (Z, D):
bilinear and saturating Michaelis–Menten kinetics (see Table 1 and
Appendix A for details). Dynamics of Z and D are of special
importance because there are many experimental contexts where
ROS and some measure of damage play a role and where data are
available. We therefore focus on dynamics of Z and D by assuming

the transients of controllers are not important ( )= = 0dE
dt

dA
dt

,

which results in implicit representations of control (RZ and RD)



Table 1
Summary of functional forms of ROS and damage production fluxes, ROS in-
activation, and damage repair. Extreme cases of the production flux are: additive
( =g 0ZD , γ > 0ZD ), and multiplicative ( >g 0ZD , γ = 0ZD ). Repair of ROS (Z) and
damage (D) are regulated by control variables E and A, respectively; interaction
terms and the resulting implicit forms are listed. Compound control parameters are

used for simplicity: =vZ
gZ vE

kE
, and =vD

gDvA
kA

, where vE and vA are the maximum

production rates of E and A; gZ and gD quantify control strength, while KE and KA

are inactivation rates of the controller. KE and KA are half-saturation constants for
production of E and A; KZ and KD are half-saturation constants for control of Z and
D.

ROS production, jZ prod,

Additive γ+P DZ ZD
Multiplicative ( )+ g D P1 ZD Z

Controlled ROS inactivation, RZ

Interaction term Implicit form

Linear g EZZ
+

vZ Z
KE Z

2

Saturating
+

g EZZ
KZ

KZ Z
( + ) +

⎛
⎝⎜⎜

⎞
⎠⎟⎟

vZ Z

KE Z
Z

KZ

2

1

Damage repair, RD

Interaction term Implicit form

Linear g ADD

+
v D

K D
D

A

2

Saturating
+

g ADD
KD

KD D
( + ) +

⎛
⎝⎜⎜

⎞
⎠⎟⎟

vDD

KA D
D

KD

2

1
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listed in Table 1, with details of their derivation in Appendix A.
This assumption may not hold if a sudden, acute exposure causes
massive increase in ROS and/or damage in a time span much
shorter than the response time of the controls.

2.2. Steady state analysis

The steady state analysis, performed using implicit form of ROS
and damage control (RZ and RD), is greatly facilitated by quantifi-
cation of feedbacks by their strength. We define the feedback
strength, ΦXY, of a state variable Y on dynamics of state variable X
as:

Φ =
∂

∂ ( )

dX
dt
Y

. 10XY

Our system has two state variables and, therefore, four possible
feedbacks with the associated strengths: (i) a negative feedback
that increases ROS removal in response to ROS concentration

( )( )Φ = − +− ∂
∂kZZ Z
R
Z
Z , (ii) a positive feedback that increases da-

mage production in response to ROS concentration Φ( = )+ y kDZ D Z ,
(iii) a positive feedback that increases ROS production in response

to damage Φ =+ ∂

∂
⎜ ⎟
⎛
⎝

⎞
⎠ZD

j

D
Z prod, , and (iv) a negative feedback that in-

creases damage repair in response to damage ( )Φ = −− ∂
∂DD
R
D
D .

Feedbacks (i) and (iii) are considered positive because they in-
crease Z and/or D, and feedbacks (ii) and (iv) are negative because
they reduce Z and D.

Seven model variants with different combinations of ROS pro-
duction, ROS control, and damage control were analyzed. De-
pending on the model variant and the feedback strengths, the
system may have had zero, one, or two steady states. An overview
of the six model variants and results for which ROS and/or damage
control are linear are included in Table 2. The model variant in
which both ROS and damage control are saturating does not
qualitatively differ from the models with saturating damage con-
trol, so was omitted from the overview.

In Appendix C we show that for each of our six model variants,
there is a unique positive stable equilibrium (UPSE) if and only if
the combined effect of the negative feedbacks is stronger than
those of the positive feedbacks as Z and D approach infinity:

Φ Φ Φ Φ< ( )→∞
+ +

→∞
− −lim lim .

11Z D
ZD DZ

Z D
ZZ DD

, ,

The left-hand side of (11) can be interpreted as susceptibility to
stress, and the right-hand side as resistance to stress; the condition
(11) then simply states that there is a UPSE whenever resistance is
greater than susceptibility to stress. Functional forms of the
feedbacks and UPSE existence conditions for each of the six model
variants are summarized in Table 2.

When effects of damage on ROS are multiplicative and damage
repair (RD) is linear, the UPSE condition can always be satisfied for
low enough stressor intensities, i.e. when < ΦP PZ Z where:

( )
=

+

( )

Φ

⎧
⎨
⎪⎪

⎩
⎪⎪

P

k v v

k y g
v

y g

if ROS control is linear,

if ROS control is saturating.
12

Z

Z Z D

Z D ZD

D

D ZD

When effects of damage on ROS are additive, the UPSE condition
does not depend on stressor intensities. For saturating RD, a UPSE
is never possible, so the system can never have a UPSE. Note that
both types of stressor effects (PZ and PD) affect the equilibrium
values of ROS and damage, even if they cannot affect the condi-
tions for the existence of a UPSE.

When UPSE condition is satisfied, the organism's cellular con-
trol mechanisms are, in principle, able to cope with any amount of
ROS and damage. If the condition is not satisfied, there are two
possibilities:

1. The system has two equilibria: one stable with lower Z and D
values, and one unstable with higher Z and D values. If Z and D
are lower than the values for the unstable equilibrium, the
system approaches the stable equilibrium, and ROS and damage
are controlled. If Z and D increase above the values for unstable
equilibrium, ROS and damage increase indefinitely. Only models
with saturating control can have two equilibria.

2. There are no equilibria. ROS and damage increase indefinitely at
all stressor intensities.

2.3. Tipping points

We use the term “tipping point” to characterize a transition
from a stable state to runaway dynamics by which we mean
continuous, unbounded increase over time of Z and D. We dis-
tinguish between two types of tipping points.

Type 1 tipping point (TP1) is caused by changes in parameters
and/or forcing (stressor intensity), and can appear in systems with
both linear and saturating control. In systems with linear ROS
control and damage repair (linear RZ and RD), any changes in
parameters or forcing that leads to invalidation of the UPSE con-
dition causes a transition from a system with a unique stable
equilibrium to a system with runaway dynamics (see the steady
state analysis in Section 2.2). When the control is saturating, and
the system has two equilibria, change in parameters or forcing can
cause a saddle node bifurcation in which the two equilibria ap-
proach each other, combine into a single neutral equilibrium, and
then disappear causing runaway dynamics (see Appendix C).

Type 2 tipping point (TP2) only exists in two-equilibria



Table 2
Model equations, feedbacks, conditions for the unique positive stable equilibrium (UPSE), and the number of equilibria possible for the six investigated models. The positive feedback
(Φ =+ y kDZ D Z ) is not listed in the table because it is the same for all models. When displaying conditions for UPSE, we group production-related parameters on the left, and removal-

related parameters on the right. Consistent with expectations, the UPSE condition is harder to satisfy for higher yield (YZD), higher effects of damage on ROS production γ( )g ,ZD ZD ,
and/or lower compound control rates (vZ ,vD). Less obviously: (i) the UPSE condition is harder to satisfy for higher uncontrolled ROS clearance rate (KZ ) when ROS control is linear; (ii)
direct damage production (PD) does not affect the existence of the UPSE; (iii) stress-related ROS production (PZ ) affects the UPSE condition only for multiplicative effect of damage on
ROS production, and linear RD (iv) compound control rates (vZ ,vD for nonlinear control of Z, D) do not affect the existence of the UPSE; (v) when the effect of damage on ROS
production is multiplicative, systems with linear damage and ROS control can always attain a single steady state for low enough ROS production; (vi) if damage repair saturates, the
UPSE cannot be attained for any parameter values (only double equilibria are possible). See text for the discussion on the double equilibria, and Appendix C.2 for analysis and
discussion of steady states for the model with saturating control of both ROS and damage.

ROS production Linear RZ, linear RD Φ |+
∞ZD Φ |− ∞ZZ Φ |− ∞DD UPSE condition Possible equilibria

Multiplicative jZ prod, = ( + ) − −

= + −

+

+

g D P k Z

y k Z P

1dZ
dt ZD Z Z

vZ Z
KE Z

dD
dt D Z D

vDD
KA D

2

2

g PZD Z ( )− +k vZ Z −vD ( )<
+

y g PD ZD Z
kZ vZ vD

kZ

0, 1

Saturating RZ, linear RD

= ( + ) − −

= + −

( + ) +

+

⎛
⎝⎜⎜

⎞
⎠⎟⎟

g D P k Z

y k Z P

1dZ
dt ZD Z Z

vZ Z

KE Z
Z

KZ

dD
dt D Z D

vDD
KA D

2

1

2

g PZD Z −kZ −vD <y g P vD ZD Z D 0, 1, 2

Linear RZ, saturating RD

= ( + ) − −

= + −

+

( + ) +
⎛
⎝⎜⎜

⎞
⎠⎟⎟

g D P k Z

y k Z P

1dZ
dt ZD Z Z

vZ Z
KE Z

dD
dt D Z D

vDD

KA D
D

KD

2

2

1

g PZD Z ( )− +k vZ Z 0 Impossible 0, 2

Additive jZ prod, Linear RZ, linear RD

γ= + − −

= + −

+

+

P D k Z

y k Z P

dZ
dt Z ZD Z

vZ Z
KE Z

dD
dt D Z D

vDD
KA D

2

2

γZD ( )− +k vZ Z −vD ( )γ <
+

yD ZD
kZ vZ vD

kZ

0, 1

Saturating RZ, linear RD

γ= + − −

= + −

( + ) +

+

⎛
⎝⎜⎜

⎞
⎠⎟⎟

P D k Z

y k Z P

dZ
dt Z ZD Z

vZ Z

KE Z
Z

KZ

dD
dt D Z D

vDD
KA D

2

1

2

γZD −kZ −vD γ <y vD ZD D 0, 1, 2

Linear RZ, saturating RD

γ= + − −

= + −

+

( + ) +
⎛
⎝⎜⎜

⎞
⎠⎟⎟

P D k Z

y k Z P

dZ
dt Z ZD Z

vZ Z
KE Z

dD
dt D Z D

vDD

KA D
D

KD

2

2

1

γZD ( )− +k vZ Z 0 Impossible 0, 2
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systems. The tipping point is caused by high values of Z and D
resulting from high initial values or large transients. In two-equi-
librium systems, the organism is able to control ROS and damage
indefinitely if the initial values of Z and D are low enough; if Z and/
or D increase above a threshold (see Appendix C), positive feed-
backs take over, control mechanisms are overwhelmed, and ROS
(Z) and damage (D) increase indefinitely at an accelerating rate.

We illustrate these possibilities using a reduced model that
follows what is arguably the most important state variable – da-
mage. Recognizing that ROS and control typically operate on much
shorter time scales than damage, we separate the time scales and
set = 0dZ

dt
. Expressing RZ in terms of Z, and solving (1) for the

quasi-equilibrium value of Z, *Z , gives:

ξ* = ( ) ( )Z D P, , 13Z

where the function ξ normally has to be evaluated numerically.
Inserting *Z into (2) gives just one – albeit complicated – ODE
describing the slow dynamics of a general form:

ξ= ( ) + − ( )
dD
dt

y k D P P R, . 14D Z Z D D

For illustration, we choose a model with =P 0D (no direct damage
production), multiplicative jZ prod, , saturating RZ, and linear RD. The
choice enables us to investigate the widest range of possible dy-
namics, as well as analyze the tipping points as a function of stress.
We calculated a “canonical” parameter set (gu)estimated from a
number of different studies. These parameters do not represent
any one system, but their foundation in data suggests that we
explored “plausible” regions of parameter space. Details and a
summary of all state variables and parameter values are in Ap-
pendix B.

Increase in stress can cause two types of bifurcation: from a
UPSE to a double equilibrium at = ΦP PZ Z (making TP2 possible),
and the transition from a two-equilibria system to a runaway at

=P PZ Z
C (TP1). The critical stress ΦPZ was calculated by equating the

limits in (11) and solving for P, and PZ
C was estimated numerically.

Since ΦPZ is a linear function of yD, γZD, and v
1

D
(see (12) for satur-

ating ROS control), increasing yD and γZD, or reducing vD can cause
the same transition to a double-equilibrium dynamics as increas-
ing PZ.

Three regions delineated by the UPSE condition and the saddle-
node bifurcation are illustrated in Fig. 3, with further details and
trajectories shown in Fig. 4. Trajectories D(t) with < ΦP PZ Z , as ex-
pected for a unique positive stable equilibrium (UPSE), eventually
attain a finite equilibrium value of D for all considered values of
initial damage ( )D 0 ; if an additional stressor temporarily increases
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Fig. 3. Three types of qualitative dynamics for effects of stress on damage pro-

duction. Rate of change of damage ( )dD
dt

as a function of damage (D) for ΦPZ and PZ
C

(solid lines), and an intermediate value of PZ (dashed line). Intersections of the lines

with y¼0 (dotted line) represent equilibria ( )= 0dD
dt

. If the line crosses from po-

sitive to negative dD
dt

as D increases, the equilibrium is stable; otherwise, it is un-

stable. Stressor intensities ΦPZ are characterized by a UPSE with low equilibrium

values of D (and, therefore, Z). As PZ increases above ΦPZ , the stable equilibrium

moves to the right (attained for larger D), the line curves up, and the second, un-
stable equilibrium is reached for high values of D. For =P PZ Z

C , TP1 is reached

(second solid line) with only one neutral equilibrium (at = =D D 1.86C ). All stressor
intensities higher than PZ result in a runaway. Parameter values listed in Table B1
used, only PZ varied.
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D, the organism will be able to repair the excess damage once the
additional stress stops. The exact value of the equilibrium in our
example depends on the stress intensity, but is always less than

ΦD , the equilibrium value of D for ΦPZ ( =ΦD 0.248 in Fig. 4).
As exposure (PZ) increases, non-linear effects become increas-

ingly important, and the system has two equilibria. The lower
equilibrium is stable; the higher one (DU) is unstable. The organ-
ism will still be able to control additional short-term stress, but
not as effectively as for < ΦP PZ Z : if damage due to the additional
stressor increases above DU, the organismwill not be able to return
to any equilibria even if the additional stressor disappears. The
higher the value of PZ, the lower the range of damage for which the
organism can successfully accommodate additional stress: the
stable equilibrium increases, while DU decreases. Eventually, the
two equilibria overlap for =P PZ Z

C (saddle node bifurcation point).
The reduced ability to recover from significant damage is

especially important when the organism is exposed to multiple
and/or time-varying stressors (Fig. 5). For example, even small
(potentially unknown) additional stress can completely reverse
the outcome of an experiment (Fig. 5, left plot). The outcome can
likewise be affected by small changes in timing of a time-varying
(e.g. pulsed) stressor. For example, small changes in the duration
of the stress pulses can completely reverse the outcome: even if
stress is greater than PZ

C, the organism can repair damage if the
pulse is short. If, on the other hand, the duration of the pulse is
long enough that damage increases past the unstable equilibrium
( > )D DU , the organism cannot repair damage even after the pulsed
stress stops (Fig. 5, right plot).

The duration of a hypothetical experiment can also affect the
perceived critical stress intensity (Fig. 6). The model predicts that
large increases of damage in short experiments will appear only
for stress intensities that are significantly higher than the critical
intensity, leading to a significant overestimate of the critical stress
intensity and, therefore, potential overestimate of the safe levels of
exposure.

The effects of stressors that directly produce damage (PD) can
be understood from the analysis in Appendix C. The analysis
shows that PD can cause saddle node bifurcations only. Conse-
quently, stress increasing directly both ROS and damage (PZ,

>P 0D ) in two-steady state systems causes qualitatively the same
effects as the stress directly affecting ROS only ( > = )P P0, 0Z D ; the
addition of direct damage production (PD) only reduces the range
of exposure levels for which the two steady states exist, and re-
duces the ability of the organism to recover from additional da-
mage (reduces the damage and/or ROS necessary for TP2).
3. Discussion

We developed simple models for two generic types of in-
dicators of cellular stress: proxies for damage (e.g. carbonylation,
membrane permeability, electron transport function), and proxies
for damage-inducing compounds (notably ROS). The models offer
a minimal representation of currently accepted understanding of
dominant processes in the cell to describe ROS creation due to
metabolism and exposure to environmental stressors, regulation
of ROS, damage inflicted by ROS and directly by environmental
stressors, and regulation of damage. The complexity of cellular
regulatory networks is condensed into simple negative feedback
loops requiring one “controller” for each controlled variable. The
full model has four state variables (ROS, ROS control, damage, and
damage control/repair), but model reduction is possible by re-
cognizing that the damage dynamics are slow relative to other
processes.

Although damage is the true “slow” variable, we focused much
of our analysis on two state variables (ROS and damage) because
these (or proxies) relate to quantities frequently measured in
ecotoxicological studies. The analysis showed the possibility of:
(i) tight regulation of ROS and damage in some conditions, and (ii)
unbounded (runaway) increase of ROS and damage in others. The
relationship between susceptibility and resistance to exposure
defined by (11) inform about the conditions in which stable
equilibrium can be achieved.

Runaway dynamics are a consequence of a positive feedback
between ROS and damage resulting in uncontrolled increase in
both: more ROS begets more damage, and more damage begets
more ROS. Transitions from a stable, controlled state to runaway
dynamics involve one of two types of tipping points:

� Type 1: parameter or forcing-induced tipping point. Type 1 tip-
ping point can be reached by either bifurcation of a unique
positive stable equilibrium (UPSE) into runaway dynamics (in-
terpretable as a saddle node bifurcation at = ± ∞D or =−D 01 ),
or a saddle-node bifurcation as two equilibria approach and
annihilate each other. The tipping point can be caused by
changes in stressor intensity, but only if the effects of damage
on ROS production are multiplicative or if the stressor directly
affects ROS production or cell damage.

� Type 2: related mathematically to initial condition dependence
or biologically to the history of the system under study: accu-
mulation of damage and/or ROS above a critical level can cause
a runaway of an otherwise controllable system. The transition
can be induced by fluctuating stressors, for example a long and/
or intense stress pulse, or by a ratchet-like response to periodic
stress if damage from one cycle is not fully repaired before
another cycle starts. This tipping point is of particular im-
portance because it can occur in all investigated (non-linear)



Fig. 4. Tipping points and typical trajectories. Top left: rate of change of damage ( )dD
dt

as a function of damage (D). Consecutive lines represent increasing stressor intensities:

= Φ Φ Φ ΦP P P P P P, 3.5 , , 4 , and4.5Z Z Z Z
C

Z Z . Unstable equilibrium =D 5.11U appears for = ΦP P3.5Z Z . Note that the rate of accumulation of damage for stressor intensities only slightly

higher than PC still have a minimum, hence a proximate reduction in the damage increase rate does not necessarily imply successful damage regulation. Other plots:
trajectories corresponding to PZ used in the top left plot with different initial values of D. Top right: D(t) for ( ) =D 0 0. Trajectories for <P PZ Z

C eventually equilibrate. Bottom

left: D(t) for ( ) =D 0 2. Since ( ) >D D0 C , the trajectory for =P PZ
C diverges; since ( ) <D D0 U , the trajectory for intermediate stressor intensities equilibrates. Bottom right: D(t)

for ( ) =D 0 5.3. Since ( ) >D D0 C , all trajectories with > ΦP PZ Z diverge. Parameter values listed in Table B1 used, only PZ varied.

Fig. 5. Interpretation of transient dynamics. Left plot: Simulation of an experiment with a target stressor intensity =P P0.95Z Z
C0 (dashed line), and an additional stress

resulting from the details of the experimental setup. Additional stress is 7% of target (solid line). Although the organism manages to control damage when exposed to target
stressor intensity, D experiences a runaway when the stressors are combined. The closer to PZ

C the target stressor intensity is, the smaller the additional stress needed to
cause the runaway. Therefore, even small additional stress can completely change the dynamics, especially if target experimental stress (PZ0) is close to the critical stress
(PZC). Right plot: Simulations of an experiment with a stress pulse in addition to the background stress. Background stress: ΦP1.1 Z ; additional stress: PZC starting at t¼5.

Damage levels equilibrate if the additional stress ends at =t 8.5 min1 . If the stress lasts just half a minute longer (ending at =t 92 ), D crosses the initial value-related tipping
point (TP2), and the damage levels spiral out of control. Therefore, duration of pulsed studies matters, especially if multiple pulses are investigated: in case the time between
pulses does not allow for a full recovery, the organism may experience a ratcheting mechanism: each cycle leaves more damage in the organism, eventually tipping the
system. Parameter values listed in Table B1 used, only PZ varied.
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Fig. 6. Transients affect perceived effects of stress depending on duration of ob-
servation, t. Damage at time t (log scale) shown for a range of stressor intensity (PZ).
Critical stress ( =P 16 370Z

C ) can be estimated by looking at the pattern of damage

accumulation: once >P PZ
C , damage accumulates indefinitely, thus if given enough

time to accumulate results in a marked increase in accumulated damage (a “kink” in
the damage vs. exposure curve). Short observation periods do not leave enough
time for ROS and damage to spiral out of control even when >P PZ

C , so the tran-

sition (from slow to fast accumulation of damage) seems to happen for larger
stress. As a result, PZC could be significantly overestimated; in this example, the
estimate would be 22 000, 18 000, and 17 000 for t¼1, 5, and 10, respectively). A
longer observation period (t¼30), however, correctly estimates ≈P 16 400Z

C .

Parameter values listed in Table B1 used, only PZ varied.
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models whenever two steady states exist (see Table 2), and
because it depicts long-term sensitivity to multiple and recur-
ring stressors.

Our models were motivated by the large, and growing body of
literature reporting simultaneously enhanced levels of ROS and of
some measure of damage in response to environmental stress.
Each of our models predicts that increase in direct stressor effects
on ROS (PZ) or damage (PD) can cause long-term increase in both
ROS and damage, irrespective of whether there are runaway
dynamics or a stable steady state (Appendix D). Strong correlation
between observed ROS and cellular damage may be caused by
either direct contribution to ROS production, or direct damage
production. Distinguishing between the two possibilities is possi-
ble in principle by comparing transients, but this requires time
series rather than just endpoints. We know of no experimental
study where this has been attempted. Note that lack of observable
correlation between changes in ROS and cellular damage does not
preclude direct stressor contribution to ROS production. Depend-
ing on the parameter values, the ratio of ROS and damage can
increase, decrease, or remain constant with time and/or exposure
(Appendix D). Also, the type of control mechanism might influence
these results; although only one family of control mechanisms was
considered here, others are possible and can be substituted in
place of RZ and RD (e.g. integral control (Drengstig et al., 2012) or
rein control (Saunders et al., 1998, 2000), which could cause ROS
to remain constant under stress).

Indeed, our analysis (Appendix C) highlights dynamic features
that might be most susceptible to the choice of type of control.
While all investigated types of control permit at least one steady
state, details of the control determine the number and character of
steady states. Interestingly, the analysis (Appendix C.2.2) shows
that qualitative dynamics of a model with saturating damage
control does not depend on whether ROS control is saturating or
not. Since our analysis largely relied on generic properties com-
mon to many regulatory mechanisms (e.g. increase of regulation
with stress, and possibility of overwhelming regulation), we ex-
pect that alternative functional forms based on the same con-
sideration follow similar qualitative patterns. Choices of the details
in any particular application are best informed by the prior
knowledge of the modeled system, and experimental data.

The key to using our models to interpret experimental data is to
have time resolved measurements of ROS and damage. Damage
creation and repair are dynamical processes; even when ROS and
control dynamics equilibrate rapidly, transients can still have sig-
nificant consequences. For example, critical exposure can be
overestimated due to transients (Fig. 6); time-resolved measure-
ments would show whether ROS and damage levels equilibrated,
thus preventing masking of runaway dynamics by slow transients.
That said, we appreciate the practical difficulty in obtaining the
time resolved measurements, as the relevant procedures are
commonly destructive.

Our model analyses used a time-scale separation argument to
focus on the relatively slow dynamics of damage, so our conclu-
sions only relate to the slow (long time scale) dynamics. Therefore,
when modeling acute exposures, the validity of the time separa-
tion argument has to be scrutinized. The full four-dimensional
model can exhibit very large transients in the “fast dynamics” re-
sulting from inclusion of all four state variables, but these are al-
most certainly biologically unrealistic as a wide range of me-
chanisms not included in the model may be implicated in ROS
regulation over very short times. Therefore, a more detailed,
context-specific characterization of ROS dynamics is necessary if
aiming to model the fast dynamics.

Even in this minimal representation, all our models have at
least one tipping point and could be used in conjunction with
other process-based models, such as those of Dynamic Energy
Budget (DEB) theory (see van Leeuwen et al., 2010 for an example).
With such combinations, ecologically relevant but experimentally
elusive stressor impacts can be assessed. For example, a tox-
icokinetic model may require energy fluxes defined by a DEB
model to properly account for effects of exposure. Since our
models specify control and repair fluxes, the required energetic
costs could be calculated and included in a DEB model to calculate
sub-lethal stressor impacts such as those on growth and re-
production and, subsequently, on population dynamics.

The latter requires a model relating environmental stress to
mortality, for which the concept of hazard in the DEB theory might
be used. Hazard represents the instantaneous probability of dying
caused by accumulation of irreversible damage, whose accumu-
lation is essentially a mechanism of physiological aging. Adapting
the model presented here to track irreversible damage is
straightforward. Mathematically, it amounts to setting damage
repair to zero ( = )g 0D , but the interpretation of damage (D) and
damage yield (yD) subtly changes: only irreparably damaged cel-
lular components are considered damage (e.g. irreparably da-
maged DNA, and reduced function of proteins produced by such
DNA). The definition of yield changes accordingly to include only
the production of newly created irreparable damage. Our model
can track both repairable and irreparable damage using a different
state variable for each type of damage, but special attention should
be given to interaction between the two types of damage.

Although state variables were defined with distinct cellular
processes in mind, simplification required a significant level of
abstraction that comes with a cost in ability to relate state vari-
ables to measurable quantities. For example, damage produced by
ROS is affected both by the species and the location of the ROS. The
model framework set up here could easily be adapted to include
some heterogeneity in ROS and account for various types of
proxies for damage without affecting the qualitative dynamics
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leading to tipping points.
Although abstraction of state variables and cellular control

processes creates challenges in applying the model to particular
systems, it increases generality of the approach. All organisms
have developed strategies to mitigate consequences of environ-
mental stress and stress created by their own metabolism. These
strategies more often than not rely on negative and positive
feedbacks that impact the dynamics of damage and damage-in-
ducing compounds. Therefore, with reinterpretation of the state
variables, the model (or similar models) – as well as the concepts
of susceptibility and resistance to exposure – becomes applicable
to more complex, multicellular organisms.
Acknowledgments

This work had its origins in many discussions with Gary Cherr,
Hunter Lenihan, Robert Miller Patricia Holden, John Priester and
other colleagues in the University of California Center for En-
vironmental Implications biology. This material is based upon
work supported by the National Science Foundation and the En-
vironmental Protection Agency under Cooperative Agreement
Number DBI-0830117. There was also partial support from (i) the
US Environmental Protection Agency through STAR grant 835797,
and (ii) Croatian National Science Foundation (HRZZ) project AC-
CTA grant 2202. Any opinions, findings, and conclusions or re-
commendations expressed in this material are those of the author
(s) and do not necessarily reflect the views of the National Science
Foundation, or the Environmental Protection Agency. This work
has not been subjected to EPA review and no official endorsement
should be inferred.
Appendix A. Dynamics of controller compounds

In our model, ROS inactivation and damage repair function as
controls of ROS and damage. The control is mediated by controller
compounds (controllers) that are produced by the cell, interact
with the controlled compounds (inactivate ROS and/or repair da-
mage), and decay (see Table A1). We considered two types of
mechanisms for the control, depending on the type of interaction
between controllers and ROS/damage: linear and saturating. The
ROS controller dynamics and control of ROS is detailed below; the
rationale of damage control is similar.

We assume that the production of E, the ROS controller, is
Table A1
ROS and damage dynamics, complete with the dynamics of their respective con-
trollers, E and A.

Dynamics Fluxes Description

= − −dZ
dt

j k Z jZ prod Z ZE,
jZ prod, ROS production due to metabolism and stress

k ZZ Spontaneous ROS reaction flux (causing
damage)

jZE Controlled ROS removal flux (mediated by E)

= −dE
dt

j jE prod E out, ,
jE prod, Saturating production flux of E in response to

ROS
jE out, Inactivation flux of the controller compound E

= −dA
dt

j jA prod A out, ,
jA prod, Saturating production flux of A in response to

damage
jA out, Inactivation flux of the controller compound

A

= −dD
dt

j jD prod DA,
jD prod, Damage production due to spontaneous ROS

reactions
jDA Damage repair (mediated by A)
induced in the presence of ROS. Therefore, the production of E
increases as ROS levels increase but, recognizing that the upre-
gulation potential of a cell is finite, we assume a Michaelis–Menten
type of saturating dynamics:

=
+ ( )

j
v Z

K Z
,

A.1E prod
E

E
,

where vE is the maximum production rate of E, and KE is the in-
duction saturation constant.

Controller compounds are inactivated due to cellular turnover,
interactions with controlled compounds, and/or targeted de-
gradation mechanisms. We choose simple, linear dynamics:

= ( )j k E, A.2E out E,

where kE is the controller inactivation rate.
In the case of linear control of ROS inactivation, we assumed

that controlled ROS inactivation depends on the contact rate be-
tween the controller, E, and ROS, Z, resulting in a simple bilinear
collision term:

= ( )j g EZ, A.3ZE
linear

Z

with gZ signifying the ROS control strength coefficient.
For the saturating control of ROS inactivation, we considered

that there may be an appreciable ‘handling time’ for inactivation of
ROS by E and, consequently, assumed that:

=
+ ( )

j g EZ
K

K Z
,

A.4ZE
saturating

Z
Z

Z

where KZ is the relative saturation coefficient.
If stress intensities change slowly relative to the dynamics of

controllers, e.g. because the bioaccumulation of toxic stressors is
gradual, and if stress intensities do not exceed a value that would
cause rapid unbounded increase in ROS and damage, we can set

= 0dE
dt

and solve the corresponding equation in Table A1 for a
quasi-equilibrium value of E:

* =
+ ( )

E
v
k

Z
K Z

.
A.5

E

E E

Inserting (A.5) into the equation for dZ
dt

in Table A1 gives

( )( )
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+
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Appendix B. Parameter values

Although we aimed at characterizing the dynamics of our
model variants qualitatively, we used plausible parameter values
whenever possible. All parameter values, and state variables are
listed in Table B1.

Here we show our reasoning for choosing particular values for
clearance rates (k k,Z E, and kA), and maximum production/collision
rates: (v v g, ,E A Z , and gD). For this purpose, we take the SOS DNA



Table B1
Symbols, state variables, parameters, and reference values. The reference values
were used in simulations unless otherwise noted. The acronym “u. of” stands for
“units of”.

Symbol Meaning Reference values

State variables and flux symbols
Z Damage-inducing compounds (ROS) –

D Cellular damage –

E Controller variable – ROS control –

A Controller variable – damage repair –

S Stressor intensity –

P0 Metabolic ROS production flux –

PZ Stress-related ROS production flux –

PD Stress-related damage production flux –

RZ Regulated ROS clearance –

RD Regulated damage repair –

Parameters (alphabetical order)
gD Damage repair coefficient −0.001 min 1

gZ ROS control strength coefficient −25 min 1

gZD Multiplicative damage interaction coeff. 0.1 ( )−Du. of 1

γDS Stress-related damage production coeff. 0
γZD Additive damage interaction coefficient 0
γZS Stress-related ROS production coefficient Included in PZ

KA Half-saturation constant for production of A 1 u. of A
KD Relative saturation coefficient of damage repair 1 u. of D
KE Half-saturation constant for production of E 1 u. of E
KZ Relative saturation coefficient of ROS control 1 u. of Z

kA Clearance/turnover rate of A 0.012 min�1

kE Clearance/turnover rate of E 0.012 min�1

kZ Passive ROS clearance rate coefficient 50 min�1

vA Maximum production rate of A A5 u. of /min
vD Damage control rate coefficient g v

k
D A

A

vE Maximum production rate of E E5 u. of /min
vZ ROS control rate coefficient g v

k
Z E

E

yD Damage yield from passive ROS reactions 0.001
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repair network in Escherichia coli as a paradigm for our system and
assume that the dynamics of the RecA protein of this repair net-
work, as quantified by Friedman et al. (2005), are representative
for those of the controller compounds in our system.

Friedman et al. (2005) used UV radiation as a stressor to induce
the promoter activity of a fusion product of the RecA promoter and
a fluorescent protein. At saturating levels of UV radiation, the ex-
pression rate of this fusion product is about 5 arbitrary units (au)
per minute (see Fig. 1C in Friedman). Accordingly, we take

= =v v 5 au/minE A .
Nath and Koch (1971) estimated the half-life of proteins in

starved E. coli at about 60 min. Assuming a similar half-life for the
controllers in our system,

= = ( ) = ( )k k
ln 2

60
0.012 per minute. B.1A E

This rate is consistent with RecA decay measured after a peak in
expression in Deinococcus radiodurans (Vlašić et al., 2008).

Panel F from Friedman et al. (2005) Figure 1 shows that – for
low exposures – promoter activity starts to decline within 35 min,
consistent with the estimate of 40 min for the repair response of
the SOS gene cascade (Michel, 2005). If the decline in promoter
activity results from successful damage repair (i.e. no need for the
expression of repair mechanism proteins once the damage is re-
paired), we can use the time of decline as a proxy for time to
successful repair. Assuming double the exposure creates double
the damage, we can then use panels D and G to estimate the repair
rate at maximum expression. Following a 20 J m2 exposure (Panel
D), it takes about 70 min for the reduction in promoter activity to
start; following a 50 J m2 exposure, the time to reduction is ap-
proximately 130 min. Hence, the half-life of damage is about
60 min “when regulation is at the maximum”, i.e. when

= ≈
( )

A
v
k

420, and
B.2max

A

A

τ
= ( ) =

·
= ·

( )
−g

A
ln 2 0.70

60 500
3 10 .

B.3D
max0.5

5

Such a low value of made the equilibrium hard to attain, so we
used a larger value of 0.001 per minute. The ROS clearance rate
( )kZ and interaction coefficient ( )gZ should be significantly higher
because ROS dynamics is extremely fast; we arbitrarily set them to
25 per minute and 50 per minute, respectively. The following va-
lues were used for other parameters: yield coefficient =y 0.001D ,
strength of effect of damage on ROS production =g 0.1ZD . All sa-
turation constants were set to unity.
Appendix C. Equilibrium states and stability

The models in Table 2 can be written in a general form:

γ= + ( + ) − −

= + − ( )

dZ
dt

P D g P k Z R

dD
dt

y k Z P R

,

, C.1

Z ZD ZD Z Z Z

D Z D D

where RZ and RD have one of the implicit forms shown in Table 1
(see also Appendix A). The feedbacks defined by (10) form a Ja-
cobian:

Φ Φ
Φ Φ

=
( )

− +

+ −

⎡
⎣⎢

⎤
⎦⎥J

C.2

ZZ ZD

DZ DD

γ
=

− + ∂
∂

+

− ∂
∂ ( )

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥
⎥
⎥
⎥

k
R
Z

g P

y k
R
D

J ,

C.3

Z
Z

ZD Z ZD

D Z
D

= < >
> ≤ ( )

⎡
⎣⎢

⎤
⎦⎥

where the matrix
elements have signs

0 0
0 0

.
C.4

Since each of the functions R RandZ D in Table 1 is a monotonic
increasing function of its argument, the respective partial deriva-
tives are positive, and both Φ Φ− −andZZ DD are negative for any
combination of parameters (with >k v v, , 0Z Z D ), i.e. Φ Φ+ <− − 0ZZ DD .
From the Bendixson criterion (McCluskey and Muldowney, 1998),
there can therefore never be periodic solutions of the equations.
Thus, the only possible attractors are fixed points (equilibria).

An equilibrium ( )* *Z D, is stable if the trace of the Jacobian
evaluated at the equilibrium is negative and the determinant is
positive, i.e.

Φ Φ Φ Φ Φ Φ+ < − > ( )− − − − + +0 and 0 C.5ZZ DD ZZ DD ZD DZ

when evaluated at ( )* *Z D, . Since the first inequality is always
satisfied, the stability is determined by the second inequality,
which has a simple graphical interpretation in the –Z D plane. First,
let us consider the two isoclines:

( )γ
( ) =

+
( + − ) − ( – )

C.6
D Z

g P
k Z R P Z Z D

1
, the “ isocline” in space

ZD Z ZD
Z Z Z
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( )
( ) = − − ( – )

⎛
⎝⎜

⎞
⎠⎟ C.7

Z D
y k

R P D D Zand
1

, the “ isocline” in space ,
D Z

D D

whose slopes (in –Z D plane) are

γ
Φ

Φ
= ∂ ( )

∂
=

+ ∂
∂

+
= −

( )

−

+a
D Z

Z

k
R
Z

g P
,

C.8
Z

Z
Z

ZD Z ZD

ZZ

ZD

Φ
Φ

= ∂ ( )
∂

=

∂
∂ = −

( )
−

−

+a
Z D

D

R
Z

y k
,

C.9
D

D

D Z

DD

DZ

1

where aD in –Z D plane is an inverse of the slope calculated in –D Z
plane. Reorganizing the second inequality in (C.5), while taking the
known signs from (C.4) into the account, gives:

Φ
Φ

Φ
Φ

>
( )

−

+

+

− ,
C.10

ZZ

ZD

DZ

DD

> ( )a a , C.11Z D

i.e. when evaluated in the –Z D plane at the equilibrium, the slope
of the Z-isocline must be greater than the slope of the D-isocline.

Note that ( ) = ( ) =R R0 0 0Z D , implying that for any >P 0Z and
≥P 0D , ( ) <D 0 0 and ( ) ≤Z 0 0. Hence, the intercepts of the D-iso-

cline on the D axis and of the Z-isocline on the Z axis are both
positive. Furthermore, if (C.11) holds in the limit as → ∞Z D, , then
for sufficiently large values of Z , the value of D on the Z-isocline
always exceeds its value on the D-isocline. Since the opposite
holds when =Z 0, there must be at least one intersection. Thus, a
sufficient condition for the existence of at least one steady state is

Φ Φ Φ Φ− >
( )→∞

− − + +⎜ ⎟⎛
⎝

⎞
⎠lim 0,

C.12D Z
ZZ DD ZD DZ

,

i.e. Eq. (11) in the text. To determine the number of possible
equilibria, we continue to use the isoclines in the positive quad-
rant of the –Z D plane, but further analysis requires specification of
RZ and RD.

C.1. Linear interaction terms

When the interaction terms defining ROS inactivation and da-
mage repair are linear in Z and D respectively, the functions
R RandZ D from Table 1 are

=
+

=
+ ( )

R
v Z

K Z
R

v D
K D

; .
C.13Z

Z

E
D

D

A

2 2

Starting with the Z-isocline in the –Z D plane

∂ ( )
∂

∝ ∂
∂

> ( )
D Z
Z

R
Z

0, C.14
Z

2

2

2

2

thus the Z-isocline is concave upward (convex) in the –Z D plane.
Similarly, the D-isocline is concave upward in the –D Z plane:

∂ ( )
∂

∝ ∂
∂

> ( )
Z D
D

R
D

0, C.15
D

2

2

2

2

i.e. concave downward in the –Z D plane. Since (i) both isoclines
increase with Z (Eqs. (C.8) and (C.9)), (ii) the Z-isocline is concave
upward while the D-isocline is concave downward, and (iii) the Z-
isocline has a positive intercept on the D-axis, and the D-isocline
has a positive intercept on the Z-axis, the isoclines can only in-
tersect once in the positive quadrant of the –Z D plane. Therefore,
at most one (unique) positive steady state exists, provided that for
sufficiently large Z inequality (C.11) is satisfied, i.e. >a aZ D. This
unique steady state also must be stable because the concavity of
both isoclines remains the same, so if (C.11) is true for any >Z 0,
the UPSE condition (11) is also necessarily true. Note that the proof
of this result relies only on the concavity of the isoclines, not on
our specific choice of functional forms (C.13).

C.2. Saturating interaction terms

In this section, we investigate steady states and stability of
models with one or both saturating terms. First, we investigate the
double-saturating model (saturating control of both ROS and da-
mage). In addition to the equations above, we will need:
1. first derivatives of the isoclines with respect to the independent

variable:

( )( )
∂
∂

= + ( ( + ) + )

+ +
> >

( )

− −

−
g

D
Z

k
v Z Z K K K K

K Z K Z
Z

2
0 for 0.

C.16
ZD Z

Z E Z E Z

E Z

1 1

2 1 2

( )( )
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= ( ( + ) + )

+ +
> >
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− −

−
y k

Z
D

v D D K K K K

K D K D
D

2
0 for 0

C.17
D Z

D A D A D

A D

1 1

2 1 2

2. second derivatives of the isoclines with respect to the in-
dependent variable:

( )( )
∂
∂

= ( − − ( + ) )

+ + ( )

− − −

−
g

D
Z

v K K K K Z K K Z

K Z K Z

2 2 3

C.18
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E Z

2

2

2 2 1 2 1 3

3 1 3

( ) ( )
∂
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= ( − − ( + ) )
+ + ( )

− − −
y k

Z
D

v K K K K D K K D

K D K D

2 2 3

C.19
D Z

D A D D A A D

A D

2

2

2 2 1 2 1 3

3 3

3. more convenient definitions of the isoclines:
(a) we re-define the Z-isocline (C.6) as ( ) = ( )D Z D Z1 , and
(b) since the D-isocline in –D Z plane (C.7) is monotonic and

therefore has an inverse, we can define it in –Z D plane as
( )D Z2 .

During the analysis, we utilize the following statements regard-
ing the Z-isocline ( )ZISO and D-isocline ( )DISO :

1. Except in a singular case of a touching intersection, models with
saturating damage repair can only have an even number
of steady states ( …)0, 2, 4 for >Z D, 0. Proof: for =Z

( ) < ( )D Z D Z0, 1 2 . Furthermore, note that D2 diverges at
= ( )

→∞
Z Z DlimC

D
, so the domain of D2 in the first quadrant is [ ]Z0, C .

Also, ∃ ϵ > | ( − ϵ) < ( − ϵ) ∀ ϵ < ϵD Z D Z0C C C C1 2 . Hence, on both
ends of the domain ( ) ( ) < ( ))Z D Z D Z0, ,C 1 2 . This is only possible
if isoclines intersect an even number of times, or if

( ) ≤ ( ) ∀ ∈ [ ]D Z D Z Z Z0, C1 2 . The latter is satisfied when there are
no intersections, or in the singular case of a touching intersec-
tion ( =a aZ D at the intersection).

2. The positive steady state at (for *Z1 ) closest to the origin is

stable. Proof: since ( ) < ( ) ∀ ∈ [ *)D Z D Z Z Z0,1 2 1 , >
* *

dD
dZ Z

dD
dZ Z

1

1

2

1
.

Therefore, unless the slopes are exactly equal, the condition
(C.11) is satisfied, and the first equilibrium in the first quadrant
(i.e. the equilibrium for the smallest >Z 0) is stable.

3. In the first quadrant ( > )Z D, 0 , the second derivatives of the
isoclines are decreasing functions of their respective in-
dependent variables. This is readily discernible from Eqs. (C.18)
and (C.19): the greater the independent variable, the smaller the
nominator, and the larger the denominator. Note that this

means that d D

dZ

2 1
2

can only decrease, and that d D

dZ

2 2
2

can only

increase.
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4. Isoclines with saturating control can have only one inflection
point. Proof: since, when evaluated at 0, both second derivatives
((C.18) and (C.19)) are greater than zero, statement 3 guarantees
that, as Z Dand increase, (C.18) and (C.19) can intersect the x-
axis only once. Hence, the second derivatives have only one
positive root and, therefore, the isoclines have only one inflec-
tion point.

C.2.1. Model with saturating control of both ROS and damage
We start the analysis by noting that for = <Z D D0, 1 2 and

= <0 dD
dZ

dD
dZ

1 2 . For the isoclines to intersect, dD
dZ

1 has to increase, and

dD
dZ

2 has to decrease. Since (at = ) >Z 0 0d D

dZ

2 1
2 and < 0d D

dZ

2 2
2 , the in-

tersection is possible. As Z increases, d D

dZ

2 1
2

decreases, while d D

dZ

2 2
2

increases until at least one isocline reaches the inflection point
(second derivative equal to zero). If the isoclines intersect once,
the second intersection (at *Z2 ) is only possible if at least one of the
isoclines switches concavity for < *Z Z2 (otherwise the isoclines
would continue to diverge). Note that, at the second intersection,

<
* *

dD
dZ Z

dD
dZ Z

1

2

2

2
. For the third intersection to exist, the reverse would

have to be true; hence, either dD
dZ

1 would have to increase, and/or
dD
dZ

2 would have to decrease.
Depending on which isocline(s) reached the inflection point,

we distinguish three possibilities:
� P1: Only D2 reached the inflection point: both isoclines are

concave upwards ( )>, 0d D

dZ

d D

dZ

2 1
2

2 2
2 . Since D2 has to remain con-

cave upwards (statement 4), dD
dZ

2 can only increase further.

Hence, only a sufficient increase in dD
dZ

1 could cause a third in-

tersection. Such an increase is, however, impossible (statement
3).

� P2: Only D1 reached the inflection point: both isoclines are

concave downwards ( )<, 0d D

dZ

d D

dZ

2 1
2

2 2
2 . Since D1 has to remain

concave downwards (statement 4), only a sufficient decrease in
dD
dZ

2 could cause a third intersection; such an increase is im-

possible (statement 3).
� P3: Both isoclines reached the inflection point, so D1 is concave

downwards and D2 is concave upwards. Since there are no
additional inflection points, the isoclines will continue to di-
verge, making a third intersection impossible.

Therefore, the third intersection is impossible, i.e. there is a
maximum of two intersections. Statement 1 then guarantees that
(baring the singular case), there are either zero or two intersec-
tions; if two states exist, the one closer to the origin is
stable (statement 2).

C.2.2. Model with linear control of ROS and saturating control of
damage

Here, only D2 can have an inflection point; D1 remains concave
upwards. However, all statements and steps in the analysis of the
double-saturating model apply, with the exception that P2 and P3
need not be considered. Therefore, the results are the same: ig-
noring the singular case, this model can have either zero or two
steady states, and the steady state closest to the origin is stable.

Note that models with saturating control of damage have a
similar qualitative dynamics (in terms of existence of steady
states) regardless of whether ROS control saturates or not. This is
because, even when ROS control is saturated, ROS continues to be
inactivated in the process of damage creation: mathematically, the
inactivation ( ∼ )Z is (in terms of dynamics) indistinguishable from
linear control for large ( ∼ )→∞Z R ZlimZ Z . Hence, even when the
ROS control is saturated for large Z , the inactivation term assumes
the dynamical role equivalent to that of linear ROS control. Clearly,
the actual dynamics will differ due to the positive feedback loop
between ROS and damage.

C.2.3. Model with saturating control of ROS and linear control of
damage

Here, D1 can have an inflection point, but D2 cannot. Therefore,
statement 1 is not applicable, and condition (11) needs to be
considered. Two cases are possible:
1. Condition (11) is satisfied. Then, <D D1 2 for small and >D D1 2

for large values of Z . This is only possible if there is an odd
number of intersections ( …)1, 3, 5 . Since more than two
intersection are not possible, there is one and only one inter-
section whenever condition (11) is satisfied.

2. Condition (11) is not satisfied. Then, <D D1 2 for both small and
large values of Z . Therefore (ignoring the singular case and
recognizing that the third steady state is impossible), either zero
or two intersections exist. Statement 2 holds, so the steady state
closer to the origin is stable.
Appendix D. Correlations between ROS and damage

Here we look at how Z changes relative to D by a qualitative
analysis of (1) equilibrium values of Z and D as forcing (PZ or PD)
increases, and (2) the ratio of Z and D in a runaway.

D.1. Changes in the equilibrium as forcing increases

Let =
*

∂ ( )
∂a D Z
Z

be the rate of change of Z-isocline (C.6) with

respect to Z , and =
*

∂ ( )
∂( )b Z D

D
the rate of change of D isocline (C.7)

with respect to D at the stable equilibrium. For the equilibrium to
exist, the two isoclines need to intersect, and for the equilibrium to
be stable, the Z-isocline has to be steeper than the D-isocline
( > )−a b 1 .

We start by linearizing the isoclines at the steady state, *Z and
*D , and consider an infinitesimal increase in PZ resulting in

changes of the equilibrium, δ *Z and δ *D . Since PZ affects only the Z
isocline, it is appropriate to observe the shift of the equilibrium
along the D isocline,

δ δ* = * ( )Z b D . D.1

The ratio of δ δ* *D Zand is, therefore, equal to −b 1:

( )

( ) ( )
( )

= ∂ ( )
∂ *

= ∂
∂ *

=

+ *
* ( * + )

+ * + *
* ( *( + ) + )

−
− −⎛
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⎞
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⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪⎪

D.2
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Z D

D
y k

R
D

y k

K D

D v D K
j

K D K D

D K v D K K K K
j

2
for

2
for

.

D Z
D

D Z

A

D A
DA
linear

A D

D D D A D A
DA
saturating

1
1 1

2

2 2

For linear control (linear jDA),
−b 1 starts very high and ap-

proaches a constant as *D increases. We can therefore expect, as
stress increases, supra-linear correlation between * *D Zand for
small stressor intensities, and a constant ratio for *D significantly
higher than K2 A.

For saturating −j b,DA
1 is again extremely large when *D is small

(small PZ), reduces for intermediate *D , and approaches infinity as
*D increases further. We could, therefore, expect that the corre-

lation between *Z and *D , as stress intensity increases, is first
supra-linear, then sub-linear, and then supra-linear again. Conse-
quently, the type of correlation between *Z and *D will depend on
parameter values.
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Next, let us consider changes in effects of increase in PD. Since
PD only affects the D isocline, it is opportune to look at the shift of
the equilibrium along the Z-isocline:

δ δ* = * ( )D a Z . D.3

Consequently,

( )

( ) ( )

Φ

Φ
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∂

= + ∂
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+
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+ *

+
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⎛
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D Z
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Z v Z K
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k
Z K v Z K K K K

K Z K Z
j

1

1

2
for

2
for

.

D.4

ZD
Z

Z

ZD

Z
Z E

E
ZE
linear

Z
Z Z Z E Z E

E Z
ZE
saturating

2

2 2

For linear jZE , the correlation between *Z and *D increases until
it reaches a constant value. Therefore, we can expect sub-linear
(smaller increase in *D than *Z ) correlation for small, and linear
correlation for large *Z .

For non-linear j a,ZE increases with *Z for small values of *Z ,
then decreases for intermediate *Z , and finally approaches a
constant for large *Z . Hence, conditioned on the existence of the
equilibrium, the type of correlationwill depend on the parameters.

D.2. The ratio of Z and D in a runaway

Starting from the general dynamics (C.1), we first investigate
three combinations of control types (see also Table 2): (1) linear RZ

and RD, (2) saturating RZ and linear RD, and (3) linear RZ and
saturating RD. Next, we investigate how dynamics changes when
the positive feedback from D to Z is negligible γ( = = )g 0ZD ZD .

Since in a runaway Z and D can be expected to be high enough
that ⪢Z K K,E Z and ⪢D K K,A D, we approximate (C.1) with a non-
homogeneous linear system of ODEs and recast it into a matrix
form:

= +
( )
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⎤
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d
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where the subscript =i 1, 2, 3 represents one of the three cases,
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Provided the matrix Ai is not singular, and PZ and PD are con-
stants, the particular integral of (D.5) is a constant and can be
ignored for large enough Z and D. Furthermore, only solutions to
the homogeneous equation

=
( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

d
dt

Z
D

Z
D

A
D.7

i

are of interest. The solutions for either state variable are a sum of
two exponential functions of time ( + )λ λa e b eZ D

i t
Z D
i t

, ,
i i
1 2 where λ i

1,2 are
the eigenvalues of Ai, and aZ D, and bZ D, the corresponding coeffi-
cients for Z and D. Eventually, the dominant eigenvalue ( λ i

1 by
convention) will prevail, and the ratio of Z Dand will be constant:

=
( )→∞

Z
D

a

a
lim .

D.8t

Z
i

D
i

Analytic solutions are cumbersome, but solutions for specific sets
of parameters can easily be calculated by solving (D.7), and the
accuracy increased by taking into the account the complete
solution of (D.5).
Removing the positive feedback of D on Z changes the runaway

dynamics considerably. When γ= =g 0ZD ZD , runaway is impossible
for linear RD (the left-hand side of UPSE condition in Table 2 is
zero). When RD is saturating, although Z always has steady state, a
runaway is inevitable whenever damage production ( + )y k Z PD Z D is
greater than the maximum damage repair ( )vD , i.e. whenever

+ >y k Z P vD Z D D. Then, ROS remains constant at * = ( + )−Z P k vZ Z Z
1,

and damage increases linearly with the asymptotic rate of
( + − )y k Z P vD Z D D .
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