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Abstract

Dry eye disease (DED) is a prevalent public health concern that affects up to 30% of adults and is 

particularly chronic and severe in the elderly. Two interconnected mechanisms cause DED: (1) an 

age-related dysfunction of lacrimal and meibomian glands, which leads to decreased tear 

production and/or an increase in tear evaporation; and (2) an age-related uncontrolled 

inflammation of the surface of the eye triggered by yet-to-be-determined internal 

immunopathological mechanisms, independent of tear deficiency and evaporation. In this review 

we summarize current knowledge on animal models that mimic both the severity and chronicity of 

inflammatory DED and that have been reliably used to provide insights into the 

immunopathological mechanisms of DED, and we provide an overview of the opportunities and 

limitations of the rabbit model in investigating the role of both ocular and nasal mucosal immune 

systems in the immunopathology of inflammatory DED and in testing novel immunotherapies 

aimed at delaying or reversing the uncontrolled age-related inflammatory DED.

Dry eye disease (DED) (Figure 1) is a prevalent public health concern that affects an 

estimated 25 million people in the United States.1 Among these, over five million 

individuals (50 years and older) experience chronic and severe DED symptoms.2–5 DED is 

one of the most common reasons that people visit their ophthalmologist and optometrist.4,5 

With the increase in life expectancy, the overall burden of DED for the United States 
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healthcare system is expected to double in the next decades from its current cost of around 

$3 billion annually.6–8

Lacrimal and meibomian glands, corneal and conjunctival epithelia, and tear film coordinate 

to control the response to internal and external insults on the ocular surface and preserve its 

integrity and function.9–16 When the integrity of one of these ocular surface compartments is 

disrupted, this may lead to DED, thus compromising the normal function of the visual 

system. Two interconnected external and internal mechanisms cause DED17–22: (1) an age-

related decrease in tear production and/or an increase in tear evaporation that triggers a 

sustained ocular surface inflammation, which in the elderly can lead to blindness from 

corneal epithelial barrier disruption, ulceration, and scarring23–26 and (2) an age-related 

inflammation of the surface of the eye, triggered by yet-to-be-determined 

immunopathological mechanisms, independent of tear deficiency. This inflammation 

compromises the function of lacrimal and meibomian glands, which reduces tear film 

stability and osmolarity, leading to inflammatory DED.27–31

The word “inflammation” comes from the Latin inflammo, which means “I set alight” or “I 

ignite.” Currently, there is no specific immunotherapy for inflammatory DED, and patients 

must rely on sustained nonspecific artificial tears, anti-inflammatory steroids32,33 or 

cyclosporine-based34–37 drugs (e.g. Restasis) to reduce the uncontrolled ocular surface 

inflammation. However, many of these treatments must be taken consistently for years and 

often many times a day. There is an urgent need to develop a specific and long-lasting 

immunotherapy to reduce uncontrolled inflammatory DED. Evidence suggests that 

inflammatory DED is associated with an ocular surface inflammatory imbalance (Figures 1 

and 2), characterized by a decrease in ocular surface-resident anti-inflammatory regulatory T 

cells (Treg) and an increase of proinflammatory CD4+ Th1/Th17 cells (Figures 2 and 6). 

However, key knowledge gaps still remain, including the mechanisms of age-related 

deterioration and dysregulation of the ocular mucosal immune system that leads to severe 

inflammatory DED in the elderly; and the role of nasal associated lymphoid tissue (NALT) 

in inflammatory DED.

The present review focuses on the opportunities and limitations of a rabbit DED model in 

studying the role of aging ocular and nasal mucosal immune systems in the 

immunopathology of inflammatory DED. For more details on other aspects of DED, such as 

disruption of homeostatic mechanisms in DED, anti-inflammatory therapy in DED, mucosal 

autoimmune disease and DED, role of Toll-like receptors in DED, the prevalence and risk 

factors of DED in the elderly, and relevance of animal models for the research into the 

immunophysiological processes regulating the functions of the lacrimal gland, we direct the 

readers to the following excellent reviews by Dana et al.,16,38 Pflugfelder et al.,13 De Paiva 

et al.,13 McDermott et al.,17,21 Perez et al.,1,39–41 and Mercheff et al.42–44

POTENTIAL IMMUNOPATHOLOGICAL MECHANISMS THAT LEAD TO 

SEVERE AND CHRONIC INFLAMMATORY DED IN THE ELDERLY

Dry eye disease, as defined by the Report of the International Dry Eye Workshop,45 occurs 

in two major types: tear-deficient forms (including Sjögren syndrome and non-Sjögren tear-
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deficient) and evaporative forms. Sjögren syndrome, which is the classic form of exocrine 

deficiency associated with keratoconjunctivitis sicca (KCS), is characterized by a chronic 

inflammatory infiltration of the lacrimal glands, predominantly by CD4+ T cells.46–49 The 

exact factors that incite the infiltration of lacrimal glands by inflammatory CD4+ T cells 

remain unknown. In addition, the pathogenic mechanisms in DED are not limited to lacrimal 

inflammation. Age-related interruption of neuronal stimulation of tear secretion, defects in 

transmembrane and secretory mucin expression, and meibomian gland dysfunction (MGD) 

contribute to various forms of KCS.9–12

Three independent human studies have recently shown that tears from DED patients contain 

significantly increased concentrations of IL-1β, IL-6, IL-8, IL-17, and TNF-α 

proinflammatory cytokines that correlated with severity of the disease.50–52 All three studies 

directly associated DED severity with increased ocular inflammation, independent of the 

evaporative effect. The ocular surface epithelium expresses receptors to all of these 

cytokines. Changes in the balance of Th2 cytokine IL-13 have a homeostatic role in 

promoting goblet cell differentiation. In contrast, Th1 cytokine IFN-γ antagonizes IL-13 

function and promotes apoptosis and squamous metaplasia of the ocular surface epithelia. 

IL-17 promotes corneal epithelial barrier disruption. Therapies that maintain normal IL-13 

signaling or suppress IFN-γ and IL-17 proinflammatory cytokines might reduce the severity 

and chronicity of inflammatory DED.

However, more studies are needed to further elucidate the underlying cellular and molecular 

immune mechanism(s) that lead to the increased inflammation and pathogenesis of severe 

inflammatory DED seen in the elderly.17–22 An expansion of CD4+CD25(low)GITR(+) Treg 

cells has been detected in inflamed tissues of the salivary glands of Sjögren syndrome 

patients.53,54 This expansion may represent a regulatory attempt to reduce excessive 

inflammation.53–55 We hypothesize that severe inflammatory DED seen in the elderly is 

associated with a lack of sufficient number and/or function of ocular surface-resident Treg 

cells, an increase in the number and/or function of ocular surface-resident proinflammatory 

CD4+ Th1/Th17 cells, and a high basal level of proinflammatory mediators, such as 

metaloproteinases (MMPs) produced by ocular surface dendritic cells (DCs).56 These factors 

increase the levels of damaging proinflammatory cytokines, chemokines, and MMPs in 

tears, which lead to severe inflammatory DED seen in the elderly.

Dendritic cells (DCs) act as a bridge between innate and adaptive immune responses.57 

Dendritic cells lining the ocular surface epithelium are critical in initiating effective immune 

responses to harmful pathogens while maintaining tolerance against harmless antigens. We 

have recently discovered that systemic DCs from the elderly fail to prevent immune response 

to harmless antigens.56 Ocular surface epithelial cells (ECs) and DCs are present in close 

proximity and there is continuous interaction between the two types of cells. Strikingly, 

there is a scarcity of information regarding the interaction between ECs and DCs, 

particularly in aged lung. This is an area of high significance since lung ECs and DCs have a 

profound effect on the functions of each other. For example, proinflammatory cytokines, 

such as type I and type I interferons, are secreted by DCs in response to infections act on 

epithelial cells of the mucosa and upregulate the expression of antiviral molecules such as 

MHC-I.58 Cytokine secretion by DCs also increases the permeability of the epithelial cell 
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barrier to allow infiltration of other immune cells, by reducing the expression of tight 

junction proteins.59 Most of the information regarding functions of ocular DCs has been 

derived from mouse models. The studies on human ocular DCs, particularly in the aged 

population, are hampered by a number of ethical and practical factors, such as the scarcity of 

obtaining ocular tissues from healthy aged individuals. Biopsies of the cornea, conjunctiva, 

and meibomian and lacrimal glands are not a routine procedure. Furthermore, the number of 

ocular DCs is too small to perform mechanistic and functional studies. Exploring the 

interface between aging and the ocular surface epithelial cells and dendritic cells in health 

and DED and evaluating how the failure of immune homeostatic processes in elderly leads 

to chronic and severe DED remain to be elucidated.

AGE-RELATED DETERIORATION AND DYSREGULATION OF THE OCULAR 

MUCOSAL IMMUNE SYSTEM AND ITS ASSOCIATION WITH CHRONIC AND 

SEVERE INFLAMMATORY DED

After age 50, the severity of inflammatory DED increases exponentially with every 

decade.60–62 DED has a considerable negative impact on visual function and quality of life, 

particularly in the elderly.63–65 As illustrated in Figures 1 and 6, the pathophysiology of 

DED involves both external and internal factors: (1) external desiccating stress, caused by 

hot, dry, windy environments or high altitudes that adversely affect tear film stability and 

tear osmolarity by damaging the ocular surface and sensory corneal nerves, and initiating a 

cascade of ocular inflammation that leads to DED66–68 and (2) yet-to-be-determined, age-

related internal immunopathological mechanisms, independent of the evaporative effect, that 

compromise the function of lacrimal and meibomian glands and the lacrimal drainage 

system, reducing the tear film quality and quantity, which in turn would lead to ocular 

surface inflammation and inflammatory DED.19,69–73 This view is supported by our recent 

finding that older individuals have elevated basal levels of proinflammatory mediators 

produced by immune cells,74–76 have less anti-inflammatory Treg cells, have more CD45+ 

immune leukocyte infiltration at the ocular surface, compared to young individuals,77–81 and 

have more proinflammatory CD4+ T cells (see Figure 3 and reference 82). Human aging is 

characterized by a chronic, low-grade inflammation, a phenomenon known as 

“inflammaging”.83–85 Inflammaging is a highly significant risk factor for both morbidity and 

mortality in elderly people, as most if not all age-related diseases share an inflammatory 

pathogenesis. We are currently investigating age-related specific mechanisms that lead to 

ocular and nasal mucosal immune deterioration (i.e. immunosenescence) and dysregulation 

(i.e. “inflammaging”) associated with DED.

We hypothesize that age-associated increases in the number and/or function of resident 

proinflammatory T helper type 1 (Th1) and, preferentially, Th17 effector cells are associated 

with a decrease in the number and/or function of anti-inflammatory Foxp3+CD4+CD25+ 

Treg cells in ocular and nasal mucosal immune system, leading to chronic and severe 

inflammatory DED in the elderly. Recent human studies suggest that Th17 cells are 

important players in inflammatory DED.86–90 In contrast to the older inflamed eye, the 

normal young eye is populated by an abundance of conjunctiva-resident Treg cells, which 

might suppress Th1/Th17-mediated inflammation, thus contributing to ocular surface 

Farid et al. Page 4

Ocul Immunol Inflamm. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



homeostasis91 (as illustrated in Figures 1 and 6). Reduced numbers of Treg cells or defects in 

their functionality have been documented in several human inflammatory diseases.92–94 We 

recently found that normal palpebral conjunctivas from healthy young rabbits contain a 

higher frequency of functional Foxp3+CD4+CD25+ Treg cells, compared to spleen and 

PBMC93,95 (Figure 4). We also found that conjunctiva-derived Treg cells efficiently 

suppressed inflammatory CD4+ Th1 cells.93 We are currently investigating the potential age-

associated defects in the number and function of ocular-surface-resident 

Foxp3+CD4+CD25+ Treg cells in both humans and rabbits, and whether a decrease in the 

number and/or function of “aged” Treg cells is associated with an increase in Th1/Th17 

proinflammatory cells and severe inflammatory DED.

A reliable animal model that simulates human DED would be useful, not only for 

investigation of the immunopathologic mechanisms of DED, but also in developing a novel, 

safe, and powerful immunotherapy with the potential to produce a sustained clinical 

response to inflammatory DED. The paragraphs below describe several animal models of 

dry eye with a focus on the opportunities and limitations of the rabbit model.

ANIMAL MODELS OF DRY EYE: OPPORTUNITIES AND LIMITATIONS

Numerous animal models have been developed to reflect the multiplicity of 

immunopathophysiologic mechanisms involved in DED (see Report of the International Dry 

Eye Workshop [RIDEW, 2007]).96,97 Several animal models mimicking different 

immunopathological mechanisms that cause inflammatory DED have been proposed: 

surgical extirpation of the lacrimal gland, mechanical inhibition of blinking with a 

blepharostat in rabbits, induced progressive lacrimal gland inflammation resembling the 

development of Sjögren syndrome in certain strains of mice, pharmacologic blockade of 

cholinergic muscarinic receptors in the lacrimal glands, housing mice in desiccating 

environments, surgical denervation, botulinum toxin injection, topical benzalkonium 

chloride treatment, topical cholinergic blockade, and ex vivo to in vivo transfer of activated 

immune cells. Understanding the characteristics, benefits, and limitations of these animal 

models will help address specific mechanisms and develop new treatment strategies for 

DED.

Mouse Model

The mouse model has contributed enormously to the study of inflammatory DED. It is the 

model most commonly used to study the mechanisms of DED, because of the diversity of 

knockout and transgenic strains and wide availability of immunological reagents. Thus, it is 

not surprising that the mouse model has contributed enormously to the study of 

inflammatory DED. Many transgenic and gene-targeted mouse strains have been used to 

characterize the immune mechanisms leading to inflammatory DED. Dana and collaborators 

recently reported that desiccating environmental stress and systemic muscarinic 

acetylcholine receptor (mAChR) blockade induced clinical signs of DED in the mouse 

model.98–101 However, desiccating environmental stress appears to impart higher 

conjunctival CD3+ T-cell infiltration, greater Th17 cell activity and Treg cell dysfunction 

than mAChR blockade.98 mAChR blockade also decreased tear secretion more severely than 
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desiccating environmental stress.98 Systemic mAChR blockade attenuated Th17 activity and 

enhanced Th2 and Treg cells responses without affecting Th1 activity.98 Thus, in vivo 
inhibition of mAChRs variably affects CD4+ T-cell subsets and desiccating environmental 

stress and systemic mAChR blockade appeared to induce DED through different 

immunopathogenic mechanisms.98 Transdermal scopolamine application and exposure to a 

continuous airflow are used to induce dry eye in female mice in a particular mouse model of 

KCS.102–106 Scopolamine induces a pharmacologic blockade of cholinergic (muscarinic) 

receptors in the lacrimal gland and therefore is used to decrease aqueous production, 

whereas the airflow mimics environmental stressing conditions (with resultant increased 

evaporation).

Below are listed opportunities and limitations of some murine lacrimal inflammatory models 

that mimic Sjögren syndrome. The nonobese diabetic (NOD) mouse model shows an 

infiltration of predominantly CD4+ Th1 cells in the lacrimal gland as well as submandibular 

and thyroid glands. The appearance of autoimmune diabetes before autoimmune 

exocrinopathy in the NOD mouse suggests that it can be used as a model of secondary, but 

not primary Sjögren syndrome.107,108 However, the complex immunopathological 

mechanisms involved in the NOD mouse remain to be fully elucidated. Evidence also 

indicates that the immunopathology of lacrimal and salivary glands is secondary to 

metabolic changes, unrelated to primary diseases (i.e., rheumatoid arthritis, autoimmune 

thyroiditis, and system lupus erythematosus), that typically give rise to secondary Sjögren 

syndrome.109–112 The MLR/lpr mouse models of Sjögren syndrome exhibit lacrimal gland 

infiltrates characterized by a predominance of CD4+ T cells. In contrast to the NOD model, 

the extent of the lacrimal gland inflammation is significantly greater in female than in male 

mice, resembling the difference observed in human Sjögren syndrome.109,113–115 The 

immunopathology of MLR/lpr mouse models is unique, in that the predominance of IL-4 

and B7-2 (also known as CD86) within the lacrimal gland lesions of MRL mice suggests a 

largely Th2-type response, distinct from that in the NOD model. However, cholangiocytes 

from Fas-deficient MRL/lpr mice did not show inergic agonist-induced apoptosis, and 

epithelial cells in biopsied labial salivary glands from patients with Sjögren syndrome are 

not hyperresponsive to chol MLR/lpr inergic agonists. The MLR/lpr mouse model has been 

used to test the hypothesis that a reduction of the quantity of parasympathetic fibers, or an 

alteration in the neurotransmitters in the healthy tissue of the lacrimal gland, is responsible 

for tear decrease in patients with Sjögren syndrome.3,9

Overall, these data suggest the existence of potentially divergent and complex 

immunopathological mechanisms of lacrimal-associated inflammatory DED in the mouse 

models. Several other mouse models are also associated with a predominant CD4+ T-cell 

infiltration of the lacrimal gland. The TGF-β1 knockout mouse, for example, has shown 

significant inflammatory cell infiltrates in the lacrimal gland between the ages of 2 and 4 

weeks, whereas the globe itself exhibits a normal structure and phenotype on histologic 

examination. Several factors complicate the use of these mice for study of ocular surface 

disease: (1) no definitive data have been produced relating the lacrimal gland infiltration to 

altered tear secretion in these mice; (2) the absence of specific lymph nodes, together with a 

variety of other serious immune defects, including depressed baseline immunoglobulin 

production and isotype switching, defective T-cell function, and faulty homing responses, 
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confounds the study of the effect of lacrimal insufficiency on the eye, as each of these 

factors alone or in combination may affect the cornea and ocular surface.

Endocrine control of lacrimal secretion has been proposed in humans but to date there have 

been no animal models that show spontaneous development of DED due to a specific 

endocrine imbalance. Genetically modified mice are expected to aid in the study of the 

influence of a specific hormone(s) on the tear film homeostasis. In an early study, Sullivan 

and Dana reported that no inflammation exists in rat lacrimal glands 15–31 days after 

orchiectomy and pituitary removal.116 The authors also report that no aqueous tear 

deficiency was apparent in patients receiving anti-androgen therapy. They conclude that 

androgen deficiency may promote the progression of Sjögren syndrome and its associated 

lacrimal gland inflammation, meibomian gland dysfunction, and severe dry eye. However, 

androgen insufficiency alone is not sufficient to cause lacrimal gland inflammation or 

aqueous tear deficiency in nonautoimmune animals and humans.116

The tear film is constantly exposed to multiple external factors, including variable 

temperatures, airflow, and humidity, which stimulate or retard its evaporation. Lipids are 

produced by the meibomian glands and spread onto the aqueous phase that covers the ocular 

surface, thus protecting the tear film from excessive evaporation. Meibomian gland 

dysfunction (MGD) is among the leading factors that cause DED.117–120 A better 

understanding of the progression of MGD may facilitate the development of effective 

therapeutic strategies against DED. In particular, comparative analysis of immunological 

features of MGDs in health and disease may reveal important insights into the 

immunopathology of MGD. In this regard a reliable animal model is crucial. Abnormal 

keratinization of the meibomian gland has been shown in various animal models of MGD, 

including the rabbit epinephrine-induced MGD, the primate polychlorinated biphenyl-

induced MGD, and the rhino mouse genetic MGD models.121 Recently a mouse model for 

characterizing glandular changes in obstructive MGD has been described by Nichols and 

coworkers (Abstract ARVO, 2014). In this model, obstruction of the meibomian gland 

orifices produced stasis of the meibum, which ultimately induced alterations in the 

morphology of the glands and glandular dropout characteristic of clinical MGD. This is a 

convenient and economical animal model that can be used for investigating therapeutic 

agents for treatment of evaporative DED. These models provide new insights into the 

pathophysiologic mechanisms of hyperevaporative DED and help to identify potential 

targets for novel gene therapy.

Other mouse models of lacrimal insufficiency and evaporative DED have been 

proposed.102–106 Although there are significant benefits to studying sicca-related ocular 

surface disease in mice that lack concomitant systemic immune dysfunction, this model 

remains to be optimized, as it does not adequately control important environmental factors 

such as temperature and humidity factors that can have profound effects on the exposed 

ocular surface. Moreover, the airflow generated by an air fan placed 6 inches in front of the 

mice’s cage for 10 h a day for 12 consecutive days may be a source of stress for mice that 

may affect other immune responses and hence affect the data on the tear film and ocular 

surface homeostasis.
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Rat, Cat, and Dog Models

Experimental immune dacryoadenitis has also been produced in Lewis rats by sensitization 

with a single intradermal administration of an extract of lacrimal gland in complete Freund’s 

adjuvant (CFA) and simultaneous intravenous injection of killed Bordetella pertussis. No 

data have been published about the effect of this procedure on the ocular surface. Surgical 

removal of the main lacrimal gland in dogs and cats leads to a decrease in basal tear 

production as measured by the Schirmer test, but it does not cause significant changes in 

ocular surface signs, even after a long follow-up. Monkeys have one main lacrimal gland 

with an anatomic structure similar to that in humans. The removal of the lacrimal gland has 

been demonstrated to decrease tear secretion, but without causing any reproducible ocular 

surface damage. It is likely that compensatory tear production by the accessory lacrimal 

glands alone may be sufficient to maintain a stable tear layer.

WHAT CAN A RABBIT MODEL TEACH US ABOUT THE 

IMMUNOPATHOLOGY OF CHRONIC INFLAMMATORY DED?

The rabbit has recently emerged as a viable and reliable model to study DED (Figure 3E). 

For experimental study of DED characteristics, a rabbit model is more suitable, because it 

presents decreased tear secretion and ocular surface changes, has a longer lifespan, and 

offers greater accessibility to the ocular surface tissues.122–136 For studying specific causes 

of DED, such as defects of neuronal reflex loops, environmental changes, or evaporative 

DED, the rabbit model appears to recapitulate many underlying pathophysiologic 

mechanisms observed in humans. Because of the large exposed ocular surface in rabbits 

compared with mice, standard DED clinical tests, such as tear breakup time and fluorescein 

or rose Bengal staining of the ocular surface, can be much more easily performed in rabbits. 

Below are opportunities and limitations of rabbit DED models.

Meibomian Gland Rabbit Model

One of the major causes of DED is meibomian gland dysfunction (MGD), which shows 

increased prevalence with aging.137 Besides apparent autoimmune/inflammatory reactions, 

with yet-to-be-determined mechanism and target antigen(s), the MGD is also caused by 

hyperkeratinization of the ductal epithelium of the meibomian gland and reduced quantity 

and/or quality of meibum.137 The meibum is the holocrine product that stabilizes and 

prevents the evaporation of the tear film.137 Gilbard and collaborators first proposed a rabbit 

model of DED in which the orifices of meibomian glands were individually closed by 

cauterization.138 In this rabbit model, they found not only a significant decrease in 

conjunctival goblet cell density and corneal epithelial glycogen levels by 12 weeks, but also 

the presence of inflammatory immune cells within the bulbar conjunctiva after 20 weeks. 

Although this rabbit model is helpful in studying the effect of meibomian gland dysfunction 

on the ocular surface, in order to reflect physiological conditions, the model could be 

improved in an environment in which temperature, humidity, and airflow are constantly 

monitored and controlled, such as the Controlled Adverse Environment chamber.98,139–143 

This would more closely reflect the clinical setting, where it has been demonstrated that the 

rate of tear film evaporation from the ocular surface is temperature-, humidity-, and airflow-
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dependent. Orchiectomy and ovariectomy in rabbits have been used to study the influence of 

hormones on the structure and function of the lacrimal and meibomian glands, as discussed 

in reference144. In rabbits, closing the lacrimal gland excretory duct and surgically removing 

the nictitating membrane and harderian gland can cause an increase in tear osmolarity at 

postoperative day 1, accompanied with significant decrease in conjunctival goblet cell 

density by 8 weeks.127,145,146

Lacrimal Gland Rabbit Model

Early studies by Wood and collaborators established that transient infection of the cornea is 

followed by increased lymphocytic infiltration of the lacrimal gland.147–150 More recently, 

Mircheff and collaborators have proposed a rabbit model in which infection of the lacrimal 

gland with a replication-deficient adenovirus vector initiates a relatively mild acute 

inflammatory response, which progresses through at least two quite distinct phases and then 

evolves into a chronic, low-grade inflammation.151 Exposure to hot, dry weather causes 

lymphocyte aggregates to accumulate; notably, those aggregates are associated with a 

cytokine mRNA expression profile similar to the profile in the second phase of the acute 

response to adenovirus infection.152 When transduced prolactin is expressed in lacrimal 

glands that already contain substantial numbers of resident immune cells, it induces the 

immune cells to upregulate IFN-γ expression and proliferate.153–155 These findings lead to 

the hypothesis that the resident immune cell population contains physiologically relevant 

numbers of natural killer (NK) and natural killer T (NKT) cells. The lacrimal glands of 

normal adults contain resident immune cells that appear to accumulate through the responses 

to normal environmental stress and ocular adenovirus infections in addition to dIgA-

secreting plasmacytes.

Neural Reflex Rabbit Model

The ocular surface (cornea, conjunctiva, and accessory lacrimal glands), meibomian glands, 

and main lacrimal gland are interconnected by neural reflex loops that produce an integrated 

“functional unit.” Neural control of lacrimal secretion has also been well established for 

many decades in both animal models and humans (reviewed in references3,156,157). A New 

Zealand albino rabbit DED model, which putatively mimics a blockade of the neural reflex 

loops involved in maintaining the normal tear physiology, has been created by 

administrating the anticholinergic agent atropine. Similar to scopolamine, atropine is a 

competitive muscarinic acetylcholine receptor antagonist.158–160 The antimuscarinic effect 

of topical 1% atropine sulfate has been shown in rabbits to significantly reduce lacrimal 

secretion within 2 days and to induce corneal epithelial defects by 3 days. A short-term 

rabbit model for hyperevaporative DED has been created by preventing rabbits from 

blinking through the placement of lid specula or sutures.122–136 After 2 h of desiccation 

induced by lid specula, dry spots appear on the rabbit corneal epithelial surface and stain 

with methylene blue. Because of the acuteness of the induced DED and the use of 

anesthetics (which themselves can decrease tear secretion), this rabbit model is not optimal 

for studying KCS pathogenesis, which is a chronic event. However, in these rabbits, corneal 

epitheliopathy develops within a few hours, and hence such rabbits can be used to evaluate 

the effect of artificial tears or other therapies aimed at delaying the evaporative loss of the 

preocular tear film.
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Inflammatory DED Rabbit Model

We recently introduced a novel rabbit model to study defects of the aging ocular and nasal 

immune systems that led to severe inflammatory DED, as seen in the elderly (Figure 3E). 

We selected rabbits because numerous similarities exist between the rabbit and human 

ocular and nasal immune system in both homeostasis and inflammatory 

diseases34,36,91,93,125,161–170: (1) several immune-mediated ocular surface diseases, 

including inflammatory DED are similar in rabbits and humans91,93,170,171; (2) rabbit 

conjunctiva-associated lymphoid tissues (CALT) closely resemble the human CALT172–175; 

(3) similar to humans, rabbit palpebral conjunctiva contains an abundance of conjunctival 

lymphoid follicles (CLF)173,176; (4) from a practical standpoint rabbits possess relatively 

large conjunctival surfaces and lacrimal glands offering abundant ocular mucosal tissue for 

immune cell studies; (5) because of the large exposed ocular surface in rabbits compared to 

mice, standard DED clinical tests, such as tear breakup time and fluorescein and rose bengal 

staining, can be much more easily performed in rabbits; (6) for practical reasons, surgical 

closure of the nasolacrimal ducts (NLDs) to determine the role of NALT in inflammatory 

DED is much easier in rabbits than in mice122–136; and (7) during the past several years we 

have been studying the rabbit ocular mucosal immune system (OMIS).93,95 We recently 

found that conjunctiva from young rabbits contains an abundance of functional Treg cells 

that produce anti-inflammatory cytokines, such as IL-10 and TGF-β, and suppress excessive 

ocular surface-resident Th1 CD4+ T-cell responses93,177 (Figures 4 and 5). This apparent 

natural expansion of Treg cells in young conjunctiva may represent a regulatory mechanism 

to suppress potential excess ocular surface inflammation. Based on the above published data, 

together with findings from others, we are currently testing the hypothesis that advanced age 

could contribute to a reduction in ocular surface-resident anti-inflammatory Treg cells and an 

expansion of proinflammatory Th1/Th17 cells in aging conjunctiva. Such a mechanism may 

lead to the apparent increase of ocular surface inflammation and severity of DED seen in 

aging eyes.

Although the state of the art in rabbit immunological tools still lag behind that of the mouse 

and human, the rabbit is still widely used in studies for mucosal immunity.178 Several 

immunological reagents (e.g. polyclonal and monoclonal antibodies specific to rabbit 

effector T cells [CD3, CD4, and CD8], regulatory T cells [CD25, GITR, CTLA4, Foxp3], 

macrophages [RAM-11], and dendritic cells [CD11c, CD11b]) are now commercially 

available and we have confirmed the usefulness of these immunological reagents to perform 

many immunological studies91,93 (Figures 3–5). We and others are developing an 

experimental rabbit model of DED that uses a desiccation-controlled room that allows low 

humidity and high airflow, which increases tear evaporation and leads to the clinical signs of 

DED.122–136 Using this novel rabbit model and armed with the necessary rabbit 

immunological expertise and reagents, we are now poised to investigate the immune 

mechanisms of age-related deterioration and dysregulation of the OMIS that lead to 

inflammatory DED, and the role of NALT in inflammatory DED.

A recent study demonstrates autoimmune/inflammatory disease in rabbits resembling 

Sjögren syndrome following an injection of autologous peripheral blood lymphocytes that 

were stimulated in vitro with epithelial cells obtained from the contralateral excised gland 

Farid et al. Page 10

Ocul Immunol Inflamm. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



into the lacrimal gland. The histopathologic pictures of the treated lacrimal glands were 

similar to those in patients with Sjögren syndrome, with predominantly CD4+ T-cell 

infiltrates. A continuous decrease in tear production and stability and an increase in rose 

bengal staining of the ocular surface were recorded in eyes injected with activated PBLs and 

in the excised contralateral lacrimal gland that indicated generalized autoimmune/

inflammatory responses. Nevertheless, it remains to be verified whether the acinar cells (the 

putative APCs of this model) in this rabbit model lack professional bone marrow–derived 

APCs that can stimulate the CD4+ T cells. Further studies are required to elucidate the exact 

mechanism(s) that lead to increased ocular inflammation in general and, in particular, the 

chronicity and severity of inflammatory DED in the elderly.122–136 An expansion of 

CD4+CD25(low)GITR(+) Treg cells has been detected in inflamed tissues of salivary gland of 

Sjögren syndrome patients.53,54 This expansion may represent a counter-regulatory attempt 

to reduce excessive inflammation.53–55 As illustrated in Figure 6, together with related 

reports by others,17,19,41,50,125,151,161,179–181 we hypothesize that severe inflammatory DED 

seen in the elderly is associated with lack of sufficient number and/or function of ocular 

surface-resident Treg cells, and an increase in the number and/or function of ocular surface-

resident proinflammatory CD4+ Th1/Th17 cells. This will lead to an increase in the levels of 

damaging proinflammatory cytokines, chemokines, and MMPs in tears, which leads to 

severe inflammatory DED seen in the elderly.

Curcumin, extracted from Curcuma longa (turmeric), is a recently discovered natural dietary 

anti-inflammatory compound.182–185 Curcumin reverses production of proinflammatory 

cytokines186 and downregulates MMP-9.187,188 Curcumin treatment of LPS-matured DC 

arrests their maturation into a tolerogenic phenotype that preferentially promotes the 

suppressive function of Treg cells.189 Oral treatment with curcumin alleviates intestinal 

inflammation by inhibiting proinflammatory Th1 cytokines.183 However, curcumin has 

never been investigated in ocular inflammation. Anti-CD3 mAbs have been successfully 

used clinically to alleviate the severity of many inflammatory diseases by decreasing 

activated Th1/Th17 and increasing tissue-resident Treg cells.190–199 We are currently 

investigating whether curcumin will synergize with the anti-CD3 mAbs to alleviate the 

severity of ocular inflammation in the rabbit DED model, by interfering with Th1 cytokines, 

arresting maturation of DC, and promoting Treg cells (as illustrated in Figure 6).

Advantage of a Rabbit Model in Studying the Potential Role of Nasal Mucosal Immune 
System in Chronic DED

The rabbit could represent a reliable and convenient animal model to study the role of both 

ocular and nasal mucosal immune systems in inflammatory DED.82 Because of the above 

obvious ethical and practical considerations in obtaining human ocular and nasal mucosal 

tissues (see section on Inflammatory DED Rabbit Model above), we selected rabbits because 

numerous similarities exist between rabbit and human ocular and nasal immune systems in 

homeostasis and in inflammatory diseases.34,36,91,93,125,161–170 Although severe nasal 

inflammatory response has been seen in the elderly,200,201 its contribution to ocular 

inflammation remains to be determined. We hypothesize that deterioration of immune 

responses of aging nasal-associated lymphoid tissue (NALT) contributes to severe ocular 

inflammation. We are currently using a desiccating stress-induced rabbit model of DED 
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(Figure 3E) to address the following pivotal questions: Is there an effect of aging on ocular 

mucosal inflammation that leads to DED? What are the age-related mechanisms that lead to 

severe inflammatory DED? and Does aging NALT contribute to ocular inflammation and 

severity of inflammatory DED? As mentioned above performing surgical closure of the 

nasolacrimal ducts (NLDs) to determine the role of NALT in inflammatory DED is much 

easier in rabbits than in mice.122–136

The ocular mucosal immune system (OMIS)91 is also known as eye-associated lymphoid 

tissue (EALT)202,203 and drainage-associated lymphoid tissue (DALT).204,205 The NALT 

and OMIS are physically interconnected through a channel called the tear duct (also known 

as the nasolacrimal duct or NLD).206 Tears and topically applied solutions often drain down 

small channels (canaliculi) on the inner side of the eye into the tear sac. From this sac they 

flow down the NLD into the nose.24,207,208 Inversely, NLDs drain intranasally administrated 

solutions to the mucosal surface of the eye and thus the OMIS. In the elderly, natural 

nasolacrimal occlusion (NLO) decreases tear draining and minimizes DED (reviewed in 

reference 209). This unique anatomical connection between the OMIS and NALT systems 

prompted us to test whether OMIS and NALT are also immunologically interdependent and 

whether this interdependence affects the inflammatory DED. These studies are made 

possible by our novel rabbit model of DED, the first preclinical animal model in which 

NLDs can be surgically closed similar to that seen in humans and that allows for statistical 

analysis of potential clinical interventions. Using this model, we recently found that surgical 

closure of NLDs in rabbits significantly decreased the inflammatory responses of 

conjunctiva-derived IFN-γ-producing CD4+ T-cell responses elucidated following topical or 

intranasal immunization (see Figure 3 and reference 82), suggesting that NALT and OMIS 

are immunologically interconnected. However, it remains to be determined whether and how 

NALT controls the ocular surface inflammation in general and in inflammatory DED, and 

whether such interdependence is eroded by age and hence leads to severe DED in the 

elderly. We are currently using a rabbit model of DED (young and old animals) to determine 

whether NLD closure will reduce ocular inflammation and alleviate the severity of 

inflammatory DED.

STRUCTURE, COMPONENTS, AND FUNCTION OF THE OCULAR MUCOSAL 

IMMUNE SYSTEM

The chief functional units of the ocular mucosal immune system are the conjunctiva, cornea, 

and DLNs.202 The major T-cell inductive site of the OMIS is the conjunctiva,172,202,210–212 

which forms a continuous lymphoid tissue that covers most of the external eye. The cornea, 

in contrast to the conjunctiva, is considered an “immune-privileged” compartment of the eye 

with a minimum of lymphoid cells.213–217 Under physiologic conditions, the cornea relies 

on neighboring lymphoid tissues and local lymphoid cell follicles for protection to maintain 

its transparency, allowing the passage of light to the retina.69,172 Under inflammatory 

conditions, such as during DED, the cornea must also rely on the support of neighboring 

lymphoid tissues and local lymphoid cell follicles for immune protection and immune 

modulation.69,172 When the topographical distribution of conjunctiva lymphoid tissue is 

projected onto the ocular surface, it overlies the surface of the cornea during eye closure, and 
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is hence in a suitable position to assist in corneal immunity and immunoregulation.172 On 

one hand, corneal inflammation often induces the development of organized conjunctival 

leukocytic aggregates.218,219 On the other hand, conjunctival immune cells have been shown 

to influence corneal immune response and the course of inflammation.220 Likewise, it is 

clinically known that long-term eye closure can alleviate corneal inflammation.221 

Conjunctiva resident Treg cells can suppress “aggressor” Th1 and Th17 inflammatory cells 

in the cornea and resolve DED, as recently suggested by Siemasko et al.94,222,223 Clearly, 

the OMIS is intimately involved in corneal immune responses since it is a major source for 

immune cells in the cornea. Besides the organized lymphoid follicles of the conjunctiva, the 

draining preauricular lymph nodes are the major T-cell inductive sites. To better understand 

corneal immunity, immunopathology, inflammation, and ultimately design therapeutic 

strategies against inflammatory ocular surface diseases such as DED, we need to investigate 

the OMIS immune cell composition and function, including how conjunctiva Treg cells 

interact and regulate inflammatory Th1 and Th17 cells.

The ocular mucosal immune system (secretory glands and lymphoid tissues at ocular and 

nasal mucosal surfaces) is largely separate from the peripheral systemic immune system 

(bone marrow, spleen, and lymph nodes). This system maintains the homeostasis of ocular 

surface while avoiding inflammation that would impair eye function. The ocular mucosal 

surfaces contain the major classical antigen-presenting cells (APCs), including dendritic 

cells (DC), macrophages (MΦ), and B cells, as well as nonclassical APCs (corneal and 

conjunctival epithelial cells). In general, the ocular mucosal immune system can be divided 

into mucosal inductive sites and mucosal effector sites. Antigens (pathogens and allergens) 

are encountered, taken up by APCs, processed, and presented to T cells at mucosal inductive 

sites, which are usually local lymph nodes (cervical, preauricular, and submandibular lymph 

nodes). Antigen-specific Tcells are induced in these lymph nodes and then travel back to 

ocular mucosal effector sites where they function.47,87,224–228

Another source of ocular mucosal surface protection is locally secreted antibodies (sIgA). 

Roughly 95% of secreted mucosal antibodies are IgA (sIgA or dIgA), while IgG subclasses 

account for only about 5%.16,17,229,230 Within the common mucosal immune system, certain 

sites may facilitate a more far-reaching distal mucosal immune response than others in a sort 

of mucosal immune hierarchy.231–234 For example, intranasal immunization induces IgA not 

only within the nose and salivary glands, but also on the eye surface.229,231 Several reports 

suggest that intranasal immunization may be more effective than ocular administration in 

eliciting tear IgA antibody responses, indicating that NALT can serve as an inductive site for 

ocular mucosal IgA responses.235–238 Greater than 99% of the tear IgA is synthesized 

locally in the lachrymal gland and most of the IgA in rat tears appear to recognize 

respiratory and gut microbiome.229,239,240 The vascular structure of ocular mucosa (both 

blood and lymphatic vasculatures) and the pathways for lacrimal gland drainage and tear 

flow also provide unique anatomical conduits and intercommunication between the nasal 

associated lymphoid tissue (NALT) and the ocular mucosal immune system (OMIS) that are 

thought to be immunologically connected and interdependent.82 The integrated nature of 

OMIS and NALT systems is important for the development of ocular immunotherapeutic 

strategy against inflammatory DED, and it is hoped that intranasally delivered 

immunotherapies will provide, or at least contribute to, protection against inflammatory 

Farid et al. Page 13

Ocul Immunol Inflamm. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DED. In rats, topical ocular delivery of a particulate antigen (Ag) results in Ag uptake that is 

greatest at the ocular sites, particularly the conjunctiva, but there is also Ag uptake in 

NALT.3,33–36 In some cases, the inductive site for Ag-specific IgA stimulation was traced to 

NALT rather than to the ocular surface.37 Therefore, it was suggested that NALT functions 

as a primary inductive site for ocular immune responses, at least in rodent models.241–246 

However, this remains unresolved for humans, in which the complex interaction between 

OMIS and NALT, in both the normal and inflammatory situations, is not yet fully elucidated.

OMIS includes the protective barrier of the conjunctival and corneal epithelium, resident 

immune cells of the epithelia (DC and LC) and corneal stroma (various bone marrow-

derived cells), the conjunctiva-associated lymphoid tissue (CALT), and the lacrimal 

glands.241–246 These structures interact in ocular immunity, tolerance, and inflammation. 

OMIS involves a complex set of interactions between local and systemic immunocompetent 

and parenchymal cells that communicate through specialized cell surface receptors and 

soluble mediators to protect the surface of the eye.91 Only a small number of researchers are 

involved in studying OMIS, also known as eye-associated lymphoid tissue 

(EALT).15,202,247–250 The role of the role NALT in generating protection against 

inflammatory DED remains to be fully elucidated.

The Conjunctiva and Conjunctival Lymphoid Follicles in Inflammatory DED

The conjunctiva and the lacrimal gland are key elements in the OMIS. The conjunctiva 

forms a continuous mucosal surface that extends from the eyelid margin to the cornea and 

makes contact with airborne Ags, pathogens, and periocular tear film.15,91,202,247–250 The 

conjunctiva and the lacrimal gland are postulated to play an active role in both inductive and 

effector functions and contain IgA+ plasma cells, secretory sIgA, and T cells, which produce 

the inflammatory cytokines and chemokines that play a major role in inflammatory 

DED.166,251 Conjunctival immunocompetent cells include those from the lymphoid system 

(lymphocytes) and those from the myeloid system (macrophages, polymononuclear 

leukocytes, eosinophils, mast cells, basophils), fibroblasts, epithelial cells, vascular 

endothelial cells, and professional APCs (macrophage, dendritic cells, Langerhans cells, and 

B cells). Human and rabbit conjunctiva contain an abundance of lymphoid derived 

cells.15,91,202,247–250

Because of the crucial role of CD4+CD25+ regulatory T cells in immune regulation in other 

mucosal surfaces,252–254 it is important to determine the presence and percentage of these 

naturally occurring Treg cells in conjunctiva compared to other lymphoid systems, such as 

the spleen. A better understanding of the function of Treg cells in controlling OMIS 

inflammation should help in protecting from DED. We have recently demonstrated that 

conjunctiva from young rabbits contain an abundance of CD4+CD25+ Treg cells, suggesting 

an anti-inflammatory role of these cells in protecting the surface of the eye.93,177

Role of OMIS in Protecting the Corneal Surface

Because the cornea, a nonlymphoid organ, normally contains few immune-competent cells, 

it relies on surrounding OMIS tissues, such as conjunctiva, the draining preauricular lymph 

nodes, and the tear film for immune protection.93 The conjunctiva and its secretions 
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comprise one of the main immune tissues that protect the cornea. Along with the lacrimal 

gland, they provide soluble mediators, including lysozyme, sIgA, cytokines, chemokines, 

and complement, via the tear film.91 The palpebral conjunctiva can detect corneal Abs and 

pathogens, and prime respective OMIS-derived B and T effector cells or distribute protective 

factors, such as secretory IgA.241–246

CONCLUDING REMARKS

• Inflammatory dry eye disease (DED), an immune disorder of largely unknown 

underlying immunopathological mechanisms, is characterized by sustained 

ocular surface inflammation, and disruption of the corneal epithelial barrier 

(see Report of the International Dry Eye Workshop (RIDEW, 2007).255–257 In 

the elderly, DED can lead to severe corneal ulceration and scarring that can 

lead to vision loss.

• A reliable animal model is needed to investigate the internal 

immunopathological mechanism(s) leading to inflammatory DED, and to 

develop a specific and long-lasting immunotherapy to reduce the chronic and 

severe inflammatory DED in the elderly. Numerous animal models have been 

developed, each with unique characteristics and limitations.

• The mouse model has contributed enormously to the study of inflammatory 

DED. It is the model most commonly used to study the mechanisms of DED, 

because of the diversity of knockout and transgenic strains and wide 

availability of immunological reagents and many transgenic and gene-targeted 

mouse strains.

• Rabbit has recently emerged as a leading translational animal model that 

mimics the severity and chronicity of inflammatory DED. The rabbit model 

presents many opportunities to investigate the role of nasal mucosal immune 

systems in the immunopathology of inflammatory DED and to test novel nasal 

immunotherapies aimed at delaying/reversing the uncontrolled chronic and 

severe of age-related inflammatory DED. Ongoing efforts in our laboratory are 

trying to develop a safe and long-lasting specific immunotherapy. We are 

currently investigating whether curcumin will synergize with the anti-CD3 

mAbs to alleviate the severity of ocular inflammation in the rabbit DED model 

by interfering with Th1 cytokines, arresting maturation of DC, and promoting 

Treg cells (as illustrated in Figure 6).

• We hypothesize that severe inflammatory DED seen in the elderly is associated 

with lack of sufficient number and/or function of ocular surface-resident Treg 

cells; an increase in the number and/or function of ocular surface-resident 

proinflammatory CD4+ Th1/Th17 cells; and high basal level of 

proinflammatory mediators, such as metaloproteinases (MMPs), produced by 

ocular surface DCs.56 These increase the levels of damaging proinflammatory 

mediators, leading to severe inflammatory DED seen in the elderly.
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• The anatomical connection between OMIS and NALT suggests immunological 

connection and interdependency.91,258,259 The integrated nature of OMIS and 

NALT systems may be important for ocular surface inflammation and 

inflammatory DED.91,93,245,259–262 Topically administrated solutions to the 

ocular surface are conducted by NLDs into the inferior meatus of the nose, 

where it reaches the NALT system.91,259,263 Inversely, intranasally 

administrated immunotherapy solutions are also drained by the NLDs to the 

mucosal surface of conjunctiva where it reaches the OMIS system.91,263–266 

The anatomical details of rabbit nasolacrimal ducts (NLDs), the connecting 

overpass between OMIS and NALT, are illustrated in Figure 3 and described in 

references 91, 82, and 263. Our recent findings indicate that NALT and OMIS 

are immunologically interdependent,82 suggesting that NALT is an important 

factor that affects the severity of inflammatory DED. We are currently testing 

this hypothesis in the rabbit model of inflammatory DED.

• It is important to determine the role of aging ocular and nasal mucosal immune 

systems in the severity of inflammatory DED seen in the elderly. This should 

help the development of a novel, safe, and powerful immunotherapy with the 

potential to produce a sustained clinical response to lessen or ameliorate 

inflammatory DED.
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FIGURE 1. 
Dry eye is a part of the natural aging process. (a) Normal young eye. (b–e) Up to 30% of 

people over age 50 experience some symptoms of dry eyes. (b) Dry eye in an elderly patient 

with conjunctival hyperemia, irregular tear film, and inflamed meibomian glands (arrows). 

(b–d) Conjunctival and corneal epithelial degeneration (1). In (c) rose bengal (2) and (d) 

lissamine green (3) staining shows uptake in degenerating ocular surface cells in the zone of 

exposure. (e) Severe dry eye in an elderly patient showing uptake of fluorescein stain by the 

basement membrane of the corneal epithelium and zones of epithelial cell (4) loss (arrows). 

Palpebral conjunctiva = (1). Bulbar conjunctiva = (5).
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FIGURE 2. 
Major immunopathological cellular and molecular players in inflammatory dry eye disease. 

Dry eye (left) is induced by desiccating stress, which leads to disruption in tear film and to 

maturation of ocular surface-resident dendritic cells (DC), which migrate to palpebral 

conjunctiva and to draining lymph nodes (DLN) through the afferent vessels. This triggers 

activation/expansion of proinflammatory CD4+ Th1/Th17 cells in palpebral conjunctiva and 

DLN. These proinflammatory Th1 and Th17 cells will then migrate through the efferent 

vessels into the palpebral conjunctiva, cornea, and lacrimal and meibomian glands, leading 

to a disruption of epithelial barriers associated with an increase in ocular surface 

inflammation and DED. Low number and/or dysfunction of palpebral conjunctiva-resident 

Treg cells seen in the elderly cannot help regulate inflammatory Th1/Th17 cells. Thus, aging 

promotes inflammatory Th1 and Th17 cells to produce damaging IFN-γ and IL-17 and 

mature DC to produce inflammatory mediators, which exacerbate ocular inflammation and 

increase severity of DED in the elderly. Normal eye (right) (i.e. homeostatic) is 

characterized by Treg cells normally suppressing proinflammatory Th1/Th17 cells, thus 

controlling excessive ocular inflammation.
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FIGURE 3. 
Schematic representation of rabbit nasolacrimal system. (A) Nasolacrimal canal open and 

(B) nasolacrimal canal closed. The two sharp bends, the proximal maxillary bend (pb) and 

the bend at incisor tooth (ib), are indicated. The nasolacrimal canal system is composed of 

lacrimal canaliculi (Lc), lacrimal sac (Ls), nasolacrimal duct (Ld), and the nasal meatus (n). 

(C) Surgical closure of the nasolacrimal duct in rabbits (D) substantially reduces the level of 

IFN-γ produced by conjunctiva-derived inflammatory T cells following topical application 

of TLR9 agonist (CpG2007). (E) Representative images of old rabbit DED. Unstained (top) 

and fluorescein stained (bottom) rabbit corneas showing ocular surface epithelial disease (1), 

and altered corneal epithelial barrier (2) in old dry eye (left) compared with healthy control 

Farid et al. Page 32

Ocul Immunol Inflamm. Author manuscript; available in PMC 2016 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



young eyes (Control). Sustained corneal inflammation and disruption of the ocular surface 

epithelial barrier in old DED rabbits lead to corneal ulceration and scarring (2). See 

reference 82 for details.
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FIGURE 4. 
(A) High numbers of CD4+CD25+ Treg cells detected in conjunctiva of young rabbits. (B) 

CD4+CD25+ regulatory T cells are abundant in both superior and inferior healthy 

conjunctiva of young rabbits. (C) CD4+CD25+ regulatory T cells from young rabbit 

conjunctiva are Foxp3 positive and produce high levels of IL-10 and TGF-β. See references 

93 and 95 for details.
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FIGURE 5. 
Anti-CD3 mAb immunotherapy significantly induces the expansion of rabbit conjunctival 

CD4+CD25+ Treg cells: (A) CFSE-labeled CD4+CD25+ Treg cells (5 × b104 cells per well) 

were left unstimulated (None) or stimulated in vitro with soluble anti-CD3 (1 μg/mL), IL-2 

(5 ng/mL), or both in culture media for 6 days. Cells were harvested and stained with anti 

rabbit CD4-PE and CD25-FITC and analyzed by FACS. Values in each bar indicate the 

average number of proliferating CD4+CD25+ Treg cells of two sets ± SD. *p<.05 when 

stimulated and unstimulated cells are compared. (B) Percentage of CD4+CD25+ T cells in 

inflamed conjunctiva and PBMC of rabbits receiving anti-CD3 treatment (3 doses, 20 μg 

each at 2-week intervals). The percentage of CD4+ cells expressing CD25 is shown before 

(day 0), during (day 7), and after (day 30) treatment with anti-CD3. There was a significant 

increase in the percentage of conjunctival CD4+CD25+ (p = .0016) and peripheral 

CD4+CD25+ (p<.005) T cells at day 7 post-treatment.
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FIGURE 6. 
Potential mechanisms of inflammatory DED in elderly (left) and development of novel 

targeted immunotherapies to alleviate severity of inflammatory DED (right). Desiccating 

stress induces (→) DC maturation through TLRs that produce relatively high basal levels of 

damaging proinflammatory mediators (IL-1β, IL-6, CXCL-8, CXCR-3, and MMP-9) (1). 

Proinflammatory cytokines (e.g. IL-1β and IL-6) reduce the suppressive function of 

CD4+CD25+ Treg cells (|—), which fail to suppress the ongoing production of damaging 

proinflammatory cytokines/chemokines produced by CD4+ Th1 and Th17 cells (2). Th17 

cytokines/chemokines antagonize Treg cell suppressive function (3) and a further expansion 

of proinflammatory Th1 and Th17 cells in ocular surface that leads to inflammatory DED. 

On the right, we hypothesize that (a) the mechanisms (1), (2), and (3) are exacerbated by 

age; and (b) subconjunctival injection of anti-CD3 mAbs (4), which eliminate activated Th1 

and Th17 (|—) and enrich Treg cells (→), and/or treatment with curcumin (5), which induces 

maturation-arrested DC, expands Treg cells (→), and blocks Th1 (|—), would alleviate the 

severity of inflammatory DED in the elderly.
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