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The Dawn of Open Access to Phylogenetic Data
Andrew F. Magee, Michael R. May, Brian R. Moore*

Department of Evolution and Ecology, University of California Davis, Davis, CA, United States of America

Abstract

The scientific enterprise depends critically on the preservation of and open access to published data. This basic tenet applies
acutely to phylogenies (estimates of evolutionary relationships among species). Increasingly, phylogenies are estimated
from increasingly large, genome-scale datasets using increasingly complex statistical methods that require increasing levels
of expertise and computational investment. Moreover, the resulting phylogenetic data provide an explicit historical
perspective that critically informs research in a vast and growing number of scientific disciplines. One such use is the study
of changes in rates of lineage diversification (speciation – extinction) through time. As part of a meta-analysis in this area,
we sought to collect phylogenetic data (comprising nucleotide sequence alignment and tree files) from 217 studies
published in 46 journals over a 13-year period. We document our attempts to procure those data (from online archives and
by direct request to corresponding authors), and report results of analyses (using Bayesian logistic regression) to assess the
impact of various factors on the success of our efforts. Overall, complete phylogenetic data for *60% of these studies are
effectively lost to science. Our study indicates that phylogenetic data are more likely to be deposited in online archives and/
or shared upon request when: (1) the publishing journal has a strong data-sharing policy; (2) the publishing journal has a
higher impact factor, and; (3) the data are requested from faculty rather than students. Importantly, our survey spans recent
policy initiatives and infrastructural changes; our analyses indicate that the positive impact of these community initiatives
has been both dramatic and immediate. Although the results of our study indicate that the situation is dire, our findings
also reveal tremendous recent progress in the sharing and preservation of phylogenetic data.
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Introduction

Archiving and sharing published data is a social contract that is

integral to the scientific enterprise [1]. Sharing published data

advances the scientific process by: (1) exposing published results to

independent verification (to identify errors and discourage fraud);

(2) providing the pedagogical material for educating students and

training future researchers; (3) acting as a test bed to guide the

development of new methods, and; (4) providing a basis to identify

and pursue new questions via synthesis/meta-analysis [2].

Additionally, archiving published data protects our scientific

investment, avoiding needless costs of data regeneration in terms

of time, money, and environmental impact [3].

These considerations are particularly germane to phylogenetic

data, which include both alignments (estimates of the positional

homology of molecular sequences) and phylogenetic trees

(estimates of the evolutionary relationships among species).

Phylogenetic trees for individual groups are inherently synthet-

ic—combination of these ‘twigs’ provides a natural approach for

elucidating the entire Tree of Life, c.f., [4,5]. Additionally,

phylogenetic data have tremendous potential for reuse, often in

ways that were completely unanticipated by the original studies:

because they provide an explicit evolutionary perspective,

phylogenies have become central to virtually all areas of research

in evolutionary biology, ecology, molecular biology and epidemi-

ology [6,7,8]. Moreover, the generation of phylogenetic data is an

increasingly arduous and technical enterprise. Clearly, phyloge-

netic data are a precious scientific resource that must be preserved

and shared in order to realize their full potential.

The vast majority of phylogenies are estimated from molecular

(primarily nucleotide) sequence data. Although GenBank and

similar public archives provide a robust (albeit imperfect, [9])

backstop against the complete loss of the raw sequence data, these

databases do not safeguard the associated phylogenetic data: the

alignments estimated from raw sequence data, and the trees

inferred from those alignments. Multiple sequence alignment—the

process of estimating the positional homology of each nucleotide

site comprising DNA sequences—is a difficult inference problem

for which many approaches have been proposed [10,11]. Different

algorithms (or different settings for a given algorithm) may yield

dramatically different estimates of the alignment that, in turn, can

substantially impact estimates of phylogeny [12,13]. Moreover, the

majority of phylogenetic studies are based on alignments that are

subjected to ‘manual adjustment’ after being estimated using

formal methods [14], which effectively destroys the possibility of

replicating published alignments from the corresponding raw

sequence data. Even if the alignment could be dependably

reproduced, replicating the published phylogeny requires a precise
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description of how the phylogenetic analysis was performed,

details that are typically not provided in phylogenetic studies [15].

Finally, even if the alignment and details of the analysis were

available, re-generating the phylogeny remains a non-trivial

proposition: the analysis of a single dataset may require hundreds

or thousands of compute hours [16].

These issues have been appreciated for some time [17], and

motivated the development of a specialized online archive for

phylogenetic data, TreeBASE [18], more than 20 years ago.

Despite such noble efforts, it is increasingly evident that the loss of

phylogenetic data is catastrophic: recent surveys estimate that

*70% of published phylogenetic data are lost forever [8,19,20].

In response to this crisis, several recent community initiatives have

been proposed to encourage the preservation and sharing of

phylogenetic data. These include policy initiatives both by funding

agencies (the NSF Data Management Plan established in 2011

that requires the preservation of data generated by funded

research), and by journals/publishers (the establishment of the

Joint Data Archiving Policy, JDAP, by a consortium of prominent

journals requiring the submission of data to online archives as a

condition of publication [21,22,23,24,25]), and the establishment

of a new online archive for evolutionary and ecological data,

Dryad [26].

We set out to perform a meta-analysis exploring the empirical

prevalence of temporal changes in rates of lineage diversification.

To this end, we sought to collect the phylogenetic data from

studies using the two most common statistical phylogenetic

approaches for detecting temporal shifts in diversification rate;

i.e., the ‘gamma’ statistic (‘method 1’ [27]) and the ‘birth-death

likelihood’ (‘method 2’ [28]) methods. To be included in our meta-

analysis, we required two key data files from each published

empirical study: (1) an alignment of nucleotide sequence data, and

(2) an ultrametric tree (where the branch lengths are rendered

proportional to relative or absolute time). We document our

attempts to procure these data (both via searches of online archives

and by direct solicitation from the corresponding authors), and

describe results of analyses exploring various factors associated

with the availability of phylogenetic data. We assess a number of

correlates—the age of the study, the impact factor and data-

sharing policy of the publishing journal, the status of the solicitor,

etc.—with a focus on revealing the efficacy of recent community

initiatives to ensure the preservation and promote the sharing of

published phylogenetic data.

Methods

In this section, we document our attempts to procure

phylogenetic data from a large and random sample of studies

exploring temporal variation in rates of lineage diversification

published over a 13-year period. We first describe how we sought

to collect these data, and then describe the analyses we performed

to gauge the success of our efforts.

Data Collection
During the months of August and September, 2013, we

searched for articles citing the two methods papers using the the

Google Scholar cited-reference search tool. Our search identified a

total of 470 citing articles (322 and 148 for methods 1 and 2,

respectively). Of these, 217 articles involved empirical analyses

(165 and 52 using methods 1 and 2, respectively).

For each study, we captured bibliometric data on authorship,

publication month and year, and the name and impact factor of

the publishing journal. We also recorded the data-sharing policy of

the publishing journal and whether it was a member of the JDAP

initiative at the time of publication. Specifically, we ascertained the

data-sharing policy for each of the 46 journals from the

corresponding ‘instructions to authors’ documentation (see Jour-
nal Policies section of File S1). Following [29], we categorized

journals that made no mention of data sharing as having no policy;

those that encouraged authors to share data upon publication were

scored as having a weak policy; those that required data sharing as

a condition of publication were scored as having a strong policy;

and those that were members of the JDAP initiative were scored as

having JDAP membership. Finally, we noted whether the studies

acknowledged funding support from the National Science

Foundation (NSF).

For each study, we assessed whether data were available online

by first searching each article for various keywords (‘‘Dryad’’,

‘‘TreeBASE’’, etc.), and pursued any links or references to

archived data. If data could not be sourced directly from the

article itself, we proceeded to examine any associated Supplemen-

tal Material files using a similar strategy. Articles that did not

submit their data to online repositories were targeted for direct

solicitation using a semi-automated, multi-step approach (Fig-

ure 1). Specifically, we wrote ‘templates’ for three sequential

messages comprising an initial, a followup, and a final request for

published phylogenetic data (see Example Template Messages
section of File S1). In the messages, we identified ourselves,

provided details of the requested data, and explained the reason

for our request; that is, we explained that we were gathering data

for a meta-analysis evaluating the prevalence of temporal changes

in diversification rate, and we sought the sequence alignment and

ultrametric tree files that were the used to assess temporal changes

in diversification rates in the published study.

Each of the three message templates contained ‘fields’ for

several variables, including: the name and status of the solicitor;

the name and email address of the corresponding author; and the

Figure 1. Flowchart of data acquisition. We identified a total of 217
articles exploring temporal variation in rates of lineage diversification.
Data for 54 of these studies were archived in online repositories; data
for the remaining 163 studies were solicited by direct requests to the
corresponding author by an undergraduate student (55 studies), a
graduate student (52), or a professor (56). A maximum of three requests
were made at weekly intervals. Recovered phylogenetic data comprised
tree files (green), alignment files (orange), or both (blue). Datasets not
obtained after the third request were deemed unavailable (gray).
doi:10.1371/journal.pone.0110268.g001
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year and title of the published article. We divided the solicitations

evenly (and randomly) between the three of us. This was intended

both to share the burden equably, and also to assess any effect of

the solicitor status, which comprised a professor (BRM), a

graduate student (MRM) and an undergraduate student (AFM).

We then generated messages using R scripts that populated the

fields of the templates with the relevant information from the

spreadsheet (we provide the message templates and R scripts in

File S1). Messages were sent at weekly intervals. If we received a

response, the corresponding author was precluded from receiving

subsequent generic email messages, and we corresponded with

them on an individual basis. We recorded various details of each

response, including whether the recipient sent the requested

alignment file and/or tree file. Datasets not obtained at the end of

this process were deemed unavailable.

We assembled a data table summarizing the information

gathered for the 217 studies (see File S2). Following [30], the

data table has been anonymized to protect the identity of

corresponding authors (i.e., with regard to who did or did not

archive and/or share phylogenetic data from published studies).

However, a key is available upon request to allow details of our

analyses to be independently verified. In any case, the issues that

we document are general and should not be use to impugn the

academic integrity of the individual researchers.

Data Analysis
We used Bayesian logistic regression to explore correlations

between data availability and several variables. Under this

approach, a trial is an attempt to recover data for a particular

study either from online archives or by direct solicitation, which

we deem a success if we received data for that study. The outcomes

of a set of n trials are contained in a data vector

x~fx1,x2, . . . ,xng, where xi is 1 if we obtained the relevant data

for study i and is 0 otherwise. The outcome of each trial depends

on a set of k predictor variables that may be continuous (e.g., the

journal impact factor) or discrete (e.g., the status of the solicitor).

An n|k matrix I , the design matrix, describes the relationships

between trials and predictor variables: I ij is the value for

predictor variable j for trial i. Parameters relate the values of

each predictor variable to the probability of success of each trial,

and are described by the parameter vector b~fb1,b2, . . . ,bkg,
where bi is the contribution of parameter i to the probability of

success.

In a Bayesian framework, we are interested in estimating the

joint posterior probability distribution of the model parameters b
conditional on the data x. According to Bayes’ theorem,

P(bDx)~
P(xDb)P(b)Ð

P(xDb)P(b) db
,

the posterior probability of the model parameters, P(bDx), is equal

to likelihood of the data given the model parameters, P(xDb),
multiplied by the prior probability of the parameters, P(b), divided

by the marginal likelihood of the data.

Given the design matrix I , the outcomes of each of the n trials

are conditionally independent, so that the likelihood of x is the

product of the likelihoods for each individual trial:

P(xDb)~ P
n

i~1
P(xi DI ,b):

The likelihood of observing the outcome of a particular trial is

P(xi DI ,b)~

1

1ze{vi
if xi~1

1{
1

1ze{vi
if xi~0,

8>><
>>:

where

Table 1. Summary of logistic model parameters and their interpretation.

Parameter Predictor variable Interpretation

bI intercept The ‘‘base’’ log-odds of retrieving the data, irrespective. of other model parameters.

bage age The change in log-odds of retrieving the data per month of the study’s age.

bIF impact factor The change in log-odds of retrieving the data per unit impact factor of the journal in
which the study was published.

bnone no policy The change in log-odds of retrieving the data if the study was published in a journal
with no data-availability policy (relative to a weak policy).

bstrong strong policy The change in log-odds of retrieving the data if the study was published in a journal
with a strong data-availability policy (relative to a weak policy).

bJDAP JDAP membership The change in log-odds of retrieving the data if the study was published in a
member of the JDAP initiative beginning 2011 (relative to a weak policy).

bNSF NSF funding The change in log-odds of retrieving the data if the study reported NSF funding
beginning 2011.

bundergrad undergraduate student The change in log-odds of retrieving the data if it was solicited by an undergraduate
student (relative to a graduate student).

bprof professor The change in log-odds of retrieving the data if it was solicited by a professor
(relative to a graduate student).

bsolicited solicited The change in log-odds of retrieving the data if it was solicited (relative to archived).

doi:10.1371/journal.pone.0110268.t001

Open Access to Phylogenetic Data

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e110268



vi~
Xk

j~1

I ijbj :

We specified a multivariate normal prior probability distribu-

tion on the b parameters with means m and covariance matrix S.

The complexity of the marginal likelihood precludes an analytical

solution to the posterior probability distribution. Accordingly, we

approximated the posterior probability distribution using the

Markov chain Monte Carlo algorithm implemented in the R

package BayesLogit [31,32]. This program uses conjugate prior

and posterior probability distributions (via Polya-Gamma-distrib-

uted latent variables), which permits use of an efficient Gibbs

sampling algorithm to approximate the joint posterior distribution

of b conditional on the data.

We defined a set of predictor variables based on the bibliometric

metadata captured for each study. We included an intercept
predictor variable to describe the background probability of

procuring data. We treated age (i.e., months since publication) and

journal impact factor as continuous predictor variables, and

journal policy, NSF funding, and solicitor status as discrete

predictor variables. Discrete predictor variables for logistic

regression are generally binary, assuming values of 0 or 1. A few

of our discrete bibliometric metadata, however, had more than

two possible categories. We therefore adopted an indicator-
variable approach in which predictor variables with p categories

are discretized into p distinct indicators; each study in a particular

predictor category was then assigned a 1 for the corresponding

indicator variable. Under this approach, studies published in

journals with no data-sharing policy were assigned a 1 for the no
policy variable, studies published in journals with a strong policy

were assigned a 1 for the strong policy variable, and studies

published in journals that were members of the JDAP initiative at

the time of publication were assigned a 1 for the JDAP membership
variable. For the studies included in our direct-solicitation

campaign, we also assigned values for solicitor status: datasets

solicited by an undergraduate student were scored as 1 for the

undergraduate student variable, while those solicited by a

professor were scored as 1 for the professor variable. In order to

avoid overparameteriziation of the logistic model, we did not

assign indicator variables for the weak-policy or graduate-student
variables. Accordingly, the values for no policy, strong policy, and

JDAP membership parameters are interpreted as effects relative to

weak policies; similarly, the values for undergraduate student and

professor parameters are interpreted as effects relative to a

graduate student. Details of the predictor variables and interpre-

tations of the corresponding parameters are summarized in

Table 1. We tested whether our predictor variables were

correlated (by calculating variance inflation factors, [33]), since

this can influence interpretations of parameter estimates; however,

correlations among our predictor variables appear to be minimal

(see Figure S1 and Table S2 in the Multicollinearity Analysis
section File S1).

We analyzed various subsets of our data table in order to

understand the relative importance of the predictor variables on

different aspects of data availability. Specifically, we defined

subsets of our data table based on whether study data were sought:

(1) by queries to online archives, (2) by direct solicitation from the

corresponding author, or (3) either by queries to online archives or
by direct solicitation. We further parsed our data table based on

whether we successfully procured: (1) only trees (i.e., the trial

Figure 2. Detailed breakdown of data availability. The number of studies with available phylogenetic data—as tree files (green), alignments
files (orange) or both (blue), procured either from online archives or by direct request—organized by year of publication (barplot). Phylogenetic data
of some kind (tree and/or alignment files) were available from an online archive for approximately 25% of the studies, and additional data were
successfully solicited by direct request for 42% of the studies. Complete datasets were unavailable for 60% of published studies, and data of any kind
were unavailable for 33% of studies (gray). The ‘policy’ arrow indicates the onset of several community initiatives to improve the sharing and
preservation of evolutionary (including phylogenetic) data, which coincides with a marked increase in the deposition of phylogenetic data to online
archives. For each pair of barplots, the left/right bars correspond to archived/solicited data, respectively. Grayscale image available at http://dx.doi.
org/10.6084/m9.figshare.1148872.
doi:10.1371/journal.pone.0110268.g002
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outcome was 1 if we acquired a tree and no alignment, and 0

otherwise); (2) only alignments; (3) either alignments or trees (i.e.,
the trial outcome was 0 if we acquired no data, and 1 otherwise),

and; (4) both alignments and trees (i.e., the trial outcome was 1 if

we acquired both an alignment and a tree). This defined 16

(overlapping) subsets of our data table. Note that not all predictor

variables apply to every subset of our data table; e.g., the solicitor-

status variable, undergraduate, only applies to data that were

directly solicited. Details of the data subsets and their predictor

variables are summarized in Table S1.

We estimated parameters for each data subset by performing

four independent MCMC simulations, running each chain for 106

cycles and saving every 100th sample to reduce autocorrelation

and file size. We assessed the performance of all MCMC

simulations using the Tracer [34] and coda [35] packages. We

monitored convergence of each chain to the stationary distribution

by plotting the time series and calculating the Geweke diagnostic

(GD [36]) for every parameter. We assessed the mixing of each

chain over the stationary distribution by calculating both the

potential scale reduction factor (PSRF [37]) diagnostic and the

effective sample size (ESS [38]) for all parameters. Values of all

Figure 3. Correlates of data availability. We used Bayesian logistic regression to estimate the effect of several variables on the on the probability
that phylogenetic datasets were either available from a public archive (left column) or could be successfully procured by direct solicitation (right
column). Specifically, for all datasets we explored the effect of the data-sharing policy of the publishing journal (scored as none, weak, strong, or JDAP
membership) and the impact of funding-agency policy (NSF). For solicited datasets, we also assessed the impact of solicitor status (undergraduate,
graduate, or professor). We estimated effects of these variables on our ability to successfully procure either the tree or alignment files (top panels), or
both the tree and alignment files (bottom panels) for a given study. The estimated effect size for a given variable reflects its contribution to the
probability of successfully acquiring the data. For each variable, the marginal distribution of its estimated effect size is summarized as a boxplot,
indicating the median effect (solid line), +1 interquartile range (box), and 1:5 interquartile range (whisker) of the corresponding posterior probability
distribution. Journal-policy effects are relative to the effect of a weak policy, and solicitor-status effects are relative to that of graduate student. The
predictor variables and interpretation of the corresponding parameters are described in Table 1.
doi:10.1371/journal.pone.0110268.g003
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diagnostics for all parameters in all MCMC simulations indicate

reliable approximation of the stationary (joint posterior probabil-

ity) distributions: e.g., ESSww1000; PSRF&1; GD ww0:05
(Tables S3{S14 in File S1). Additionally, we assessed conver-

gence by comparing the four independent estimates of the

marginal posterior probability density for each parameter,

ensuring that all parameter estimates were effectively identical

and SAE compliant [38]. Based on these diagnostic analyses, we

discarded the first 25% of samples from each chain as burn-in, and

based parameter estimates on the combined stationary samples

from each of the four independent chains (N~30,000). We

assessed the sensitivity of our estimates to the chosen priors by

computing the Kullback-Leibler divergence [39] between the

marginal posterior probability density and the corresponding prior

probability density for each parameter. The KL divergence was

large for all marginal posterior probability densities (indicating

limited impact of the prior on parameter estimates), with the

notable exception of the JDAP parameter for solicited data (see

Figures S2–S3 in the Prior Sensitivity Analysis section in File S1).

The low KL divergence of the JDAP parameter for solicited

studies reflects the limited information available for estimating this

parameter: we directly solicited only 12 datasets from studies

published in JDAP journals.

Results and Discussion

Overall, our efforts secured complete phylogenetic data for

*40% of the published studies (Figure 2). Accordingly, invaluable

phylogenetic data for more than half of these studies are effectively

lost to science. From online archives, we successfully procured

complete phylogenetic data (both the tree and alignment files) for

11:5% of the studies, and partial datasets (either the tree or

alignment files) for an additional 13:4% of the studies were

archived: 5:5% of these cases had only tree files, 7:9% had only

alignment files. Of these online accessions, 24 were archived in

Dryad, 22 in TreeBASE, and 8 as supplemental files on journal

websites. Our (in)ability to recover phylogenetic datasets from

online archives over the entire 13-year period is comparable to

that of recent reports regarding phylogenetic data—where archival

rates range from *4%{16:7% [8,19,40]—and also falls within

the scope of archival rates for non-phylogenetic data, which range

from *14%{48% [41,42,43]. However, our results also reveal a

dramatic increase in the archiving of phylogenetic data since 2011;

e.g., datasets from more than half of the studies published in 2013

were deposited in online archives (Figure 2).

Our direct-solicitation campaign entailed the exchange of 786
emails over the course of four weeks (BRM: n~341; MRM:

n~212; AFM: n~233). We received responses to 61:3% of the

163 messages we sent to corresponding authors (37%, 18%, and

7% after the first, second and third message, respectively), 38:7%
of the authors never responded to any messages (28%, 46%, and

42% for BRM, MRM, and AFM, respectively). Although 20:2% of

the messages were initially undeliverable (owing to invalid/

obsolete email addresses), we were able to resolve contact

information for all but 3% of the corresponding authors (by

performing Internet searches and/or contacting study co-authors).

Our 61% response rate is comparable to that of previous studies. A

recent survey [19] reported a 40% response rate to direct requests

Table 2. Relative probability of obtaining phylogenetic data from online archives.

alignments or trees alignments and trees

95% HPD 95% HPD

mean lower upper mean lower upper

no policy 1.17 0.42 2.35 1.87 0.05 10.95

strong policy 1.83 0.79 3.52 3.92 0.32 21.84

JDAP membership 2.76 1.40 5.46 8.58 1.86 54.19

NSF funding 1.37 0.67 2.33 0.91 0.20 2.09

doi:10.1371/journal.pone.0110268.t002

Table 3. Relative probability of procuring phylogenetic data by solicitation.

alignments or trees alignments and trees

95% HPD 95% HPD

mean lower upper mean lower upper

no policy 1.16 0.66 1.78 0.94 0.35 1.82

strong policy 1.32 0.78 2.08 1.31 0.44 2.49

JDAP membership 1.03 0.30 1.85 1.03 0.09 2.52

NSF funding 0.76 0.27 1.34 0.65 0.12 1.40

undergraduate student 1.27 0.79 1.93 2.76 1.16 6.10

professor 1.78 1.19 2.82 4.21 1.80 9.57

doi:10.1371/journal.pone.0110268.t003
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for phylogenetic data, which falls within the range for studies

involving non-phylogenetic data: e.g., 20% for medical/clinical

trial data [44]; 27% for psychological trial data [45]; and 71% for

population-genetic data [43].

By directly contacting corresponding authors, we successfully

procured complete phylogenetic datasets for 29:0% of the

published studies, and partial datasets for an additional 12:9% of

the studies: 8:8% of corresponding authors sent only tree files, and

4:1% sent only alignment files (Figure 2). Our success in procuring

complete (29%) or some form (42%) of phylogenetic data by

direct solicitation compares favorably to the 16% recovery rate of

a recent study [19], but again is within the range reported for non-

phylogenetic data; e.g., 10% for medical/clinical trial data [44];

26% for psychological-trial data [45]; 45% for gene-expression

data [46]; 48% for cancer microarray data [41]; 59% for

population-genetic data [43].

The results of our logistic-regression analysis provide insights

into factors associated with the availability of published phyloge-

netic data (Figure 3; Tables 2–3). Studies published in journals

with strong data-sharing policies are more likely to archive both

complete (tree and alignment files) and incomplete (tree or

alignment files) phylogenetic data, and are also more likely to

provide complete and incomplete phylogenetic data upon direct

request. Strikingly, the availability of phylogenetic data (via online

archives or direct solicitation) from studies published in journals

with weak data-sharing policies is comparable to (or slightly worse)

than that of studies published in journals with no data-sharing

policy, c.f., [29,43]. This observation substantiates recent calls for

establishing strong (and stringently enforced) data-sharing policies

[2,19,20,29,44]. The efficacy of such policies is evident for studies

published in JDAP journals. Surprisingly, there is a low probability

of directly soliciting data for studies published in JDAP journals.

However, this likely reflects the fact that the data from these

studies are so often available in online archives that there is

essentially no need for direct solicitation; indeed, datasets were

only solicited from 12 studies published in JDAP journals (c.f.,
Figure S3).

Our analyses also indicate that corresponding authors are more

likely to grant data requests from faculty than from students

(Figure 3). This may simply reflect the fact that the faculty solicitor

(BRM) is acquainted with a larger proportion of the corresponding

authors. However, this does not explain why corresponding

authors are more likely to provide data to undergraduate than to

graduate students. An alternative (but not mutually exclusive)

explanation involves the perceived risks of data sharing. Authors

may be reluctant to share published data for fear (reasonable or

not) that reanalysis may identify errors and/or reach contradictory

conclusions [47,48]. This idea has, in fact, been substantiated by a

recent study demonstrating that reluctance to share published data

is significantly correlated with weaker evidence and a higher

prevalence of apparent errors in the reporting of statistical results

[30]. Accordingly, corresponding authors may perceive requests

from undergraduate students to present less potential risk than

those from graduate students, whereas the potential risks presented

Figure 4. Availability of phylogenetic data as a function of impact factor. We estimated the effect of the impact factor of the publishing
journal on our ability to procure partial (top panels) and complete (bottom panels) phylogenetic datasets from online archives (left panels) or by
direct solicitation (right panels). Generally, studies published in journals with a higher impact factor are more likely to both deposit the corresponding
(partial or complete) datasets in online archives and to provide those data upon direct request. The shaded areas reflect the 95% credible intervals of
the estimates.
doi:10.1371/journal.pone.0110268.g004
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by faculty requests are balanced by their greater familiarity to the

authors.

The influence of journal impact factor on data availability might

also be interpreted from the perspective of perceived risk. As for

non-phylogenetic data [29,43], our analyses indicate that studies

published in journals with a higher impact factor are more likely to

both deposit their phylogenetic data in online archives and provide

these data upon direct request (Figure 4). If willingness to share

published data is correlated with the quality of the research [30],

and if research quality is correlated with the impact factor of the

publishing journal, then journal impact factor should positively

predict data availability. An alternative (perhaps less conspirato-

rial) explanation for the correlation between journal impact factor

and data availability invokes an indirect effect of journal impact

factor on journal data-sharing policy. That is, by virtue of their

greater prestige, journals with higher impact factors may have

greater reign to impose stronger (and more strictly enforced) data-

sharing policies on contributing authors [43].

As in previous studies [49,50], our results indicate that data

availability decreases markedly over time. Several corresponding

authors reported that the requested datasets had been misplaced

or had been lost due to hard-drive failures. As noted above, there

appears to be a distinct uptick in the availability of data from

studies published since 2011; this trend was particularly pro-

nounced for archived data (Figure 5). This pattern may simply

indicate that the decay of archived phylogenetic data is nonlinear.

Our findings, however, indicate that the recent surge in archived

phylogenetic data is attributable to policy changes. Studies with

NSF funding are *1:4 times more likely to archive some kind of

phylogenetic data (tree or alignment files), but are actually less
likely to archive complete phylogenetic data (Table 2). Curiously,

the NSF mandate has led to a drastic increase in archiving

alignment (but not tree) files (Table S15; see also Tables S16–S17

in File S1). By contrast, studies published in journals with JDAP

membership are *2:8 and *8:6 times more likely to archive

partial and complete phylogenetic datasets, respectively (Table 2;

Figure 5). Paradoxically, the probability of successfully soliciting

data from studies with NSF funding and/or published in JDAP

journals is lower than that for studies without NSF funding and/or

published in non-JDAP journals (Figure 6). However, this likely

reflects the decreased demand for these data by direct solicitation.

Summary

Phylogenetic data are a precious scientific resource: molecular

sequence alignments and phylogenies are expensive to generate,

difficult to replicate, and have seemingly infinite potential for

synthesis and reuse. At face value, our results support the

conclusion of recent studies [8,19,20] that the loss of phylogenetic

data is catastrophic: complete phylogenetic datasets have been lost

for *60% of the studies we surveyed. Our results also identify

factors associated with (phylogenetic) data availability that have

been implicated by previous studies: the probability of procuring

phylogenetic data is strongly predicted the age of the study, and

the data-sharing policy and impact factor of the publishing

journal.

Figure 5. Availability of archived phylogenetic data as a function of age. We estimated the effect of publication age on our ability to
procure partial (top panels) and complete (bottom panels) phylogenetic datasets from online archives. Overall, the probability of recovering archived
phylogenetic data increases toward the present, with a conspicuous recent increase for partial datasets (left panels). The recent surge of archived
phylogenetic data likely reflects recent policy changes (middle panels): studies with NSF funding are more likely to archive alignment (but not tree)
files (c.f., Table S15); whereas studies published in journals with JDAP membership are dramatically more likely to archive both partial and complete
phylogenetic datasets. The effects of these policy initiatives are not strictly additive (right panels): the correlation of these predictor variables
suggests that studies published in JDAP journals are likely to have NSF funding. Shaded areas reflect the 95% credible intervals.
doi:10.1371/journal.pone.0110268.g005
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Unlike previous studies, however, our survey of phylogenetic

datasets spans important policy initiatives and infrastructural

changes, and so provides an opportunity to assess the efficacy of

those recent measures. Overall, the positive impact of these

community initiatives has been both substantial and immediate.

Even at this very early stage—spanning the first three years since

the introduction of these policies—the archival rate of phyloge-

netic data has increased dramatically. Specifically, the proportion

of studies that archived partial or complete phylogenetic data since

2011 has increased 4:8-fold and 2:9-fold, respectively. Moreover

the proportion of archived phylogenetic data has increased each

year since the policy changes, and deposition rates of phylogenetic

data to Dryad have been 4:3 times that of the more established

TreeBASE archive. The prospects for future progress along these

lines appear promising: membership of the JDAP consortium has

almost tripled in the three years since its formation.

Although recent policy initiatives have had a clear and welcome

effect on the preservation and sharing of phylogenetic data, there

nevertheless remains considerable scope for improvement. The

NSF data-management policy, for example, has increased the

preservation of alignments but not phylogenetic trees. This is

unfortunate, both because phylogenies are more computationally

expensive than alignments, and also because most of the reuse of

phylogenetic data entails trees rather than sequence alignments

[7,8]. Moreover, although relative archival rates have increased

dramatically, the absolute rate remains low: despite recent policy

initiatives, a large proportion of datasets are not being captured in

online archives. Sustaining the momentum of recent initiatives

could be achieved via small measures that increase the benefits

and decrease the costs of data sharing to data generators. Although

authors who archive data are rewarded with increased citation

rates [41,51], this incentive could be enhanced by rewarding the

collection of data as an achievement in its own right. Journal

policies can encourage the direct citation of archived datasets in

addition to the studies in which the data were generated, and

funding agencies and academic institutions can recognize alterna-

tive metrics that acknowledge the scientific value of data [52].

Concordantly, the perceived costs of data sharing could be

reduced by implementing more flexible embargo policies that

protect the priority access of data generators [1,53].

Clearly, we have a long way to go in order to adequately

preserve and freely share phylogenetic data, and the road ahead

will not be easy. Nevertheless, our findings suggest that we are

moving in the right direction; we are beginning to glimpse the

dawn of open access to phylogenetic data.

Supporting Information

File S1 Supporting information file describing details of
the data collection, data analyses, and results.

(PDF)

File S2 Supporting Information file (formatted as a csv
table) summarizing the bibliographic data gathered for
the 217 studies. Following [30], this data table has been

anonymized to protect the identity of corresponding authors. A

key is available upon request from the corresponding author

(BRM) to allow details of our analyses to be independently verified.

(CSV)

Figure 6. Availability of solicited phylogenetic data as a function of age. We estimated the effect of publication age on our ability to
procure partial (top panels) and complete (bottom panels) phylogenetic datasets by direct solicitation. Overall, the probability of successfully
recovering phylogenetic data decreases over time (left panel). Paradoxically, the probability of soliciting data from studies with NSF funding and/or
published in JDAP journals is lower than that for studies without NSF funding and/or published in non-JDAP journals. However, this likely reflects the
fact that the data from these studies are so often available in online archives that there is essentially no need for direct solicitation. Shaded areas
reflect the 95% credible intervals.
doi:10.1371/journal.pone.0110268.g006
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