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Abstract

Background/Aims: The optic nerve development during the critical postnatal weeks of preterm 

infants is unclear. We aimed to investigate the change of retinal nerve fibre layer (RNFL) in 

preterm infants.

Methods: We used an investigational handheld optical coherence tomography (OCT) system to 

serially image awake preterm infants between 30 and 60 weeks postmenstrual age (PMA) at the 

bedside. We assessed RNFL thickness in the papillomacular bundle and nasal macular ganglion 

cell layer + inner plexiform layer (GCL+IPL) thickness. We applied a segmented mixed model to 

analyze the change in the thickness of RNFL and GCL+IPL as a function of PMA.

Results: From 631 OCT imaging sessions of 101 infants (201 eyes), RNFL thickness followed a 

biphasic model between 30 and 60 weeks, with an estimated transition at 37.8 weeks PMA (95% 

confidence interval (95%CI): 37.0 to 38.6). RNFL thickness increased at 1.8 μm/week (95%CI: 

1.6 to 2.1) before 37.8 weeks and decreased at −0.3 μm/week (95%CI: −0.5 to −0.2) afterwards. 

GCL+IPL thickness followed a similar biphasic model, in which the thickness increased at 2.9 
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μm/week (95%CI: 2.5 to 3.2) before 39.5 weeks PMA (95%CI: 38.8 to 40.1) and then decreased at 

−0.8 μm/week (95%CI: −0.9 to −0.6).

Conclusion: We demonstrate the feasibility of monitoring RNFL and GCL+IPL thickness from 

OCT during the postnatal weeks of preterm infants. Thicknesses follow a biphasic model with a 

transition age at 37.8 and 39.5 weeks PMA, respectively. These findings may shed light on optic 

nerve development in preterm infants and assist future study designs.

INTRODUCTION

Although the survival of preterm infants has increased worldwide,1 the risk of 

major neurodevelopmental disabilities in the later life of very preterm infants remains 

approximately 50%.2 Very preterm infants are also at risk of developing ophthalmic 

diseases, including retinopathy of prematurity (ROP), optic atrophy, myopia, strabismus, 

amblyopia, and visual field deficit.3–5 In the retina, ganglion cells project axons through 

the innermost retina to form the optic nerve, marking the beginning of the anterior visual 

pathway.6 The unmyelinated axons of retinal ganglion cells form most of the retinal nerve 

fibre layer (RNFL).7

Portable handheld optical coherence tomography (OCT) has enabled rapid, non-contact, and 

high-resolution imaging of the retinal layers and optic nerve in awake infants,8 and their 

RNFL thickness has been correlated with brain MRI findings9 as well as cognitive and 

motor functions in infants,10 making the RNFL a potential biomarker for brain and cognitive 

integrity. But to date, there have been no in vivo descriptions of the development of the 

optic nerve or the visual pathway during the critical postnatal weeks of preterm infants since 

most previous studies that assessed RNFL thickness in infants included only 1 OCT imaging 

session per infant.10–14 Understanding how RNFL thickness changes in preterm infants may 

shed light on optic nerve development, guide clinicians to address retinal or optic nerve 

pathology in infants, and assist the design of future studies.

The primary purpose of this study is to investigate the longitudinal change (i.e., the 

pattern and rate) of RNFL thickness from 30 to 60 weeks postmenstrual age (PMA) in 

preterm infants enrolled in the STudy of Eye imaging in Preterm infantS (BabySTEPS; 

ClinicalTrials.gov identifier: NCT02887157). As a seminal prospective study using RNFL 

thickness as a measure, we also tested the inter-grader reproducibility of RNFL thickness 

and the inter-eye relationship of RNFL thickness across different PMAs. We assessed the 

association of RNFL thickness with central foveal thickness, which has been associated 

with the severity of macular oedema.15 A nonpositive association would suggest that RNFL 

thickness measurement is not influenced by macular oedema severity. Additionally, we 

analyzed ganglion cell layer + inner plexiform layer (GCL+IPL) thickness outside the foveal 

centre to test the hypothesis that the longitudinal change in RNFL thickness and GCL+IPL 

thickness follows the same pattern.
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METHODS

Study Participants and Procedure

BabySTEPS is a prospective observational study to assess the visual and neurological 

development of preterm infants. This study involves human participants and was approved 

by the Duke University Health System Institutional Review Board (IRB #: Pro00069721) 

and adhered to the tenets of the Declaration of Helsinki. We described the BabySTEPS 

design, OCT image capture, image processing, and thickness measurements in our previous 

papers.13 15 Briefly, we enrolled 118 infants eligible for retinopathy of prematurity (ROP) 

screening based on the American Association of Pediatrics guidelines16 from August 

2016 through November 2019. The parent or legal guardian provided informed consent 

to participate in the study. We excluded infants with ocular opacity that would preclude eye 

imaging or who had a health condition (e.g., anencephaly) other than prematurity that had a 

profound impact on brain development.

We obtained infant medical data from the medical record consistent with data collected 

for the Generic Database, a registry of clinical information of very low birth weight 

infants born alive in Eunice Kennedy Shriver NICHD Neonatal Research Network centres 

(ClinicalTrials.gov identifier: NCT00063063). Certified imagers used an investigational 

handheld high-speed, swept-source OCT system to image awake infants in the Duke 

intensive care nursery or Duke Regional Hospital nursery during each ROP clinical 

examination while infants’ pupils dilated.15 The imaging was performed without 

pharmacologic pupil dilation if there were no corresponding clinical ROP screening exams. 

Per imaging session, one imager held the non-contact OCT probe17 to image the infant 

without eyelid speculums and a second imager operated the software (Figure 1). The 

near-infrared light from OCT was nearly invisible to infants. Imagers typically imaged 

infant’s right eyes followed by the left eyes, although the imaging protocol did not 

require a fixed order of imaging infants’ eyes. Across the study, 4 imagers performed 

the handheld OCT examinations. We used proprietary infant-specific software (DOCTRAP 

V66.2) to automatically segment the OCT images and review for corrections by a trained 

grader (K.P.W.).13 15 Based on the corrected segmentation, we extracted the central foveal 

thickness,15 nasal macular GCL+IPL thickness at 1000 μm nasal to the fovea,15 and RNFL 

thickness in the papillomacular bundle (PMB)13 for each imaging session. To assess inter-

grader reproducibility of RNFL thickness, we randomly selected 10 OCT volumes (1 per 

infant) that were segmented by the primary grader (K.P.W.) for PMB RNFL at 31 ± 1, 33 ± 

1, 36 ± 1, 39 ± 1, and 41 ± 1 weeks postmenstrual age (PMA) windows, for segmentation by 

a second grader (D.T.) masked to the original grading.

In the present study, we included all infant eyes with ≥ 1 eligible OCT imaging session. 

Eligible sessions occurred before or on 60 weeks 6 days PMA and did not meet any of the 

following exclusion criteria: PMB RNFL thickness could not be segmented; RNFL thickness 

was measured on < 90% of the PMB arc13; the imaging session occurred after treatment for 

ROP.
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Statistical Analysis

We analyzed the data using MATLAB (The MathWorks, Inc, Natick, MA) and R 

3.6.2 (R Foundation for Statistical Computing, Vienna, Austria). We calculated the 

intraclass correlation coefficients (ICC) of RNFL thickness for assessing the inter-grader 

reproducibility. The 95% confidence interval (CI) of the ICC was calculated based on the 

percentile bootstrap method.

We calculated the Pearson correlation coefficients (r) of the inter-eye relationship of 

PMB RNFL thickness, the association between PMB RNFL thickness and central foveal 

thickness, and the association between PMB RNFL thickness and nasal macular GCL+IPL 

thickness at 31 ± 1, 33 ± 1, 36 ± 1, 39 ± 1, and 41 ± 1 weeks PMA. We did not include 

temporal macular GCL+IPL thickness in the analysis because the temporal macula may be 

affected by ROP in these preterm infants. For infants with multiple OCT imaging sessions 

during a 2-week window, we selected the session closest to the target PMA and randomly 

selected 1 session if an infant had imaging sessions at equal intervals from the target PMA. 

We compared the difference in RNFL thickness between the right and left eyes via a paired 

t-test.

We included eyes with ≥ 4 eligible OCT imaging sessions for assessing longitudinal change 

in PMB RNFL thickness. A segmented regression model is a widely employed statistical 

method to evaluate the existence and location of a transition point where the slope of a linear 

regression changes significantly.18 We performed a segmented mixed model (in R 3.6.2; 

developed by Muggeo et al18 19) of PMB RNFL thickness as a function of PMA with the 

eye as the unit of analysis and data from both eyes were included for analysis. In this model, 

we accounted for the inter-eye correlation of an infant and longitudinal correlation among 

measures from the same eye by using eye-level random intercept, infant-level random 

intercept, transition point, and slope difference. We also performed a segmented regression 

model of nasal macular GCL+IPL thickness as a function of PMA.

RESULTS:

Study Cohort and Inter-Grader Reproducibility

Among 118 infants enrolled in the BabySTEPS, we successfully captured 1752 eye imaging 

sessions in which 1691 (96.52%) sessions had the PMB imaged successfully for RNFL 

(2.11% not imaged, 1.31% imaged but insufficient to determine optic nerve foveal axis, 

and 0.05% insufficient quality for grading the PMB RNFL). Of 1691 OCT images with 

successfully imaged PMB, we were able to measure the PMB RNFL thickness in 1522 

(90.01%) sessions. 17 of 118 infants were excluded from the study because 11 infants 

were transferred out of nursery before any OCT imaging, 5 infants died before any OCT 

imaging, and 1 infant did not have any RNFL thickness measurement due to poor image 

quality. One eye of the remaining 101 infants was excluded because the RNFL thickness 

was not measurable on OCT due to poor image quality. In total, 201 eyes from 101 infants 

(51.5% female) had at least 1 eligible OCT imaging sessions (631 sessions in total) and 

were included in the present study. The mean ± standard deviation (SD) of gestational age 
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was 28.0 ± 2.7 weeks, and the birth weight was 979.5 ± 290.4 grams. Table 1 shows the 

characteristics of the study cohort.

We found excellent inter-grader reproducibilities of PMB RNFL thickness at 31, 33, 36, 

39, and 41 weeks PMA (ICC = 0.88 to 0.97; Supplemental Table 1). The mean difference 

between the RNFL thickness measured by 2 graders ranged from −0.5 to 2.8 μm across 

different PMAs. Overall, the RNFL thickness across all PMAs measured by the 2 graders 

had a mean ± SD difference of 0.5 ± 3.8 μm (ICC = 0.92).

RNFL and GCL+IPL Thickness at Different PMA Windows

PMB RNFL thickness was highly correlated between right and left eyes in all PMA 

windows (r = 0.80 to 0.88; Table 2). RNFL thickness was higher (by 1.5 to 3.4 um) in the 

right eyes than in the left eyes across all PMAs, and the inter-eye difference was statistically 

significant at 36 and 41 weeks (P < 0.001 and = 0.02, respectively; Table 2).

Nasal macular GCL+IPL was correlated between right and left eyes in all age windows (r 

= 0.62 to 0.84) without any statistically significant inter-eye difference (Supplemental Table 

2).

We found a weak, negative association between PMB RNFL thickness and central foveal 

thickness in both right and left eyes across all PMAs (r = −0.39 to −0.17; Supplemental 

Table 3). PMB RNFL thickness was positively associated with nasal macular GCL+IPL 

thickness in both right and left eyes across all PMAs (r = 0.45 to 0.63; Supplemental Table 

4).

Longitudinal Change in RNFL and GCL+IPL Thickness

We included 145 eyes of 77 infants who had at least 4 eligible OCT imaging sessions in 

the longitudinal analysis, and their changes in RNFL thickness and nasal macular GCL+IPL 

thickness over time are shown in Supplemental Figure 1. In a representative infant (#91 in 

Supplemental Figure 1), RNFL thickness in the right and left eye increased from 57.0 to 

70.5 μm (right) and from 50.6 to 62.7μm (left) between 31 and 39 weeks and then declined 

to 63.8 μm (right) and 52.3 μm (left) at 57 weeks (Figure 2). RNFL remained thicker in the 

right than in the left eye across the 3 PMAs.

The longitudinal change in PMB RNFL thickness followed a biphasic model with a 

transition PMA of 37.8 weeks (95% CI: 37.0 to 38.6) (Figure 3A). The estimated slope 

was 1.8 μm/week (95% CI: 1.6 to 2.1) before and −0.3 μm/week (95% CI: −0.5 to −0.2) 

after the transition PMA. The difference in slope between before and after the transition 

point was 2.2 μm/week (95% CI: 2.0 to 2.5; P < 0.001).

Similarly, the longitudinal change in nasal macular GCL+IPL followed the biphasic trend of 

the RNFL with a transition at 39.5 weeks PMA (95% CI: 38.8 to 40.1) (Figure 3B). The 

estimated slope was 2.9 μm/week (95% CI: 2.5 to 3.2) and −0.8 μm/week (95% CI: −0.9 to 

−0.6) before and after the transition age, respectively (difference in slope = 3.6 μm/week, 

95% CI: 3.2 to 4.0; P < 0.001).
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DISCUSSION

Using bedside swept-source OCT with custom-built, handheld ultra-compact imaging 

probes, we successfully assessed PMB RNFL thickness in 101 awake preterm infants 

between 30 and 60 weeks PMA and achieved excellent inter-grader reproducibility of RNFL 

thickness at each PMA window. The longitudinal change in RNFL thickness in preterm 

infants followed a biphasic model between 30 and 60 weeks PMA, with a transition at 37.8 

weeks PMA. RNFL thickness increased at 1.8 μm/week before the transition and decreased 

at −0.3 μm/week afterwards. Nasal macular GCL+IPL thickness was moderately associated 

with PMB RNFL thickness from 31 to 41 weeks PMA (r = 0.45 to 0.63) and followed the 

same biphasic longitudinal change with a similar transition age at 39.5 weeks. The right and 

left eyes were highly correlated in both the RNFL and GCL+IPL thickness from 31 to 41 

weeks PMA (r = 0.80–0.88 for RNFL and 0.62–0.84 for GCL+IPL). Interestingly, RNFL 

was thicker (by 1.5 to 3.4 um) in the right than in the left eyes across all PMA windows. We 

found a weak negative association between RNFL thickness and central foveal thickness (r = 

−0.39 to −0.17).

Our previous pilot study of 27 very preterm infants showed that PMB RNFL thickness 

increased by 15 μm from 33.8 to 38.3 weeks PMA,10 consistent with our present finding 

(Figure 3A). However, our prior study did not assess RNFL thickness after 42 weeks PMA. 

Patel et al measured peripapillary temporal RNFL thickness in full-term infants and found 

that RNFL thickness decreased from birth (approximately 40 weeks PMA) to 18 months of 

age,12 corresponding to our finding of RNFL thinning after 37.8 weeks PMA in preterm 

infants.

The observed biphasic change in RNFL thickness in preterm infants may be related 

to a change in the ganglion cell axon number, oedema, or both. During natural fetal 

development, each optic nerve contains about 2.85 million optic fibres at the end of the 

second trimester (14–27 weeks PMA).20 About 1.85 million supernumerary fibres are 

eliminated during the third trimester (after 28 weeks PMA).20 21 Therefore, we expected 

to find RNFL thinning between 30 and 40 weeks PMA in preterm infants. Interestingly, 

we observed a significant increase, instead of a decrease, in RNFL thickness from 30 

to 37.8 weeks PMA in preterm infants, suggesting that a change from the intrauterine 

to extrauterine environment may alter optic nerve development. One hypothesis is that 

early visual stimulation in these premature infants may prevent normal third-trimester axon 

elimination and promote retinal ganglion cell growth.21 22 This hypothesis is supported 

by a previous finding in cultured rat cells that retinal ganglion neurons that receive an 

electrical signal produce more neurotropic factors, which may promote the growth of nearby 

neurons.23 If this hypothesis is correct, the number of retinal ganglion cells should also 

increase in the same time frame, which is consistent with our finding on the increase of nasal 

macular GCL+IPL thickness from 30 to 39.5 weeks PMA. However, this hypothesis cannot 

explain why RNFL and GCL+IPL thickness start to decline after term-equivalent age.

Macular oedema is another possible factor responsible for the biphasic change in 

RNFL thickness in preterm infants. Approximately 60% of preterm infants have macular 

oedema,15 24 so it is possible that the onset and resolution of macular oedema could 
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affect these measures. If this is the case, PMB RNFL thickness should be positively 

associated with the central foveal thickness, a biomarker for macular oedema severity.15 

However, we found a weak, negative association between RNFL thickness and central 

foveal thickness, undermining this hypothesis. The underlying mechanism for the negative 

association between central foveal thickness and RNFL thickness is yet unclear.

Other factors that could play a role in the biphasic change in longitudinal thickness 

of the RNFL and the GCL+IPL include: RNFL oedema secondary to inflammation or 

high intracranial pressure; development or loss of astrocytes, microglia or Müller cell 

components;25 myelinations of the optic nerve reaching the lamina cribrosa at term-age (it 

progresses from the brain toward the globe starting at 32 weeks PMA).26 Since OCT cannot 

yet differentiate oedema from ganglion cell axons or other cells in the RNFL thickness 

measurement or myelin behind the lamina cribrosa, future studies are required to understand 

the underlying mechanism responsible for our observations.

Many previous studies in adults and school-aged children have reported that RNFL 

thickness, assessed by OCT, is statistically significantly higher in the right than in the left 

eyes.27–35 We recently reported a similar inter-eye RNFL thickness difference at 36 weeks 

in preterm infants and discussed possible underlying mechanisms.13 Here, we added that 

RNFL thickness in the right eyes was consistently higher than RNFL thickness in the left 

eyes across all PMA windows, although only borderline significant at 31, 33, and 39 weeks 

(P = 0.07, 0.06, and 0.07, respectively; Table 2). The lack of statistical significance in the 3 

PMA windows may be due to lower statistical power caused by a relatively small number of 

infants with RNFL thickness measures at these PMA weeks.

Our results provide several insights for the design of future studies aiming to investigate 

the clinical value of RNFL thickness in preterm infants. First, the excellent inter-grader 

reproducibility of RNFL thickness suggests PMB RNFL thickness measured at a young 

PMA as a reproducible anatomic outcome measure in future studies. However, the 

reproducibility was slightly lower at 31 weeks (ICC = 0.88) than at older PMAs (ICC = 

0.96 to 0.97), which should be considered in the future study design and statistical power 

calculation. Second, due to the high inter-eye correlation in RNFL thickness across all 

PMAs (r = 0.80 to 0.88), future studies may only need to image 1 eye per infant, which will 

reduce the number of imagings by half. However, since RNFL is thicker in the right than in 

the left eyes, future studies should choose the same eye laterality among the entire cohort. 

Besides, future studies should account for the dynamic change in PMB RNFL thickness 

during the postnatal weeks of preterm infants. One example is to evaluate RNFL thickness 

within a narrow age window to minimize the confounding effect of RNFL longitudinal 

change.

Our study has several limitations. First, since our study included imaging sessions from 

30 to 60 weeks PMA, we do not yet know how RNFL thickness changes after 60 weeks 

PMA. We are pursuing these answers as we follow this cohort to early school age in 

the BabySTEPS2 (ClinicalTrials.gov identifier: NCT04995341). Second, we do not have 

RNFL thickness measurements after term age in several infants because we excluded 

imaging sessions after ROP treatment, or some infants were lost to follow-up. Third, 
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neurodevelopmental outcomes that are required to determine the predictive value of RNFL 

thickness for neurodevelopment are still being gathered (at age 2 years). Fourth, we only 

included nasal macular GCL+IPL thickness in the present study because ROP may affect 

the temporal macula, and OCT macular volumes did not consistently include both superior 

and inferior macular quadrants. The longitudinal change in GCL+IPL thickness in other 

macular quadrants may differ from the nasal macula. Finally, since the present study aims 

to investigate the pattern and rate of RNFL thickness change in preterm infants, we did 

not investigate the impact of maternal factors, birth factors, infant systemic diseases, and 

ROP treatments on the longitudinal change in RNFL thickness among preterm infants. These 

questions will be addressed in future studies.

CONCLUSIONS

PMB RNFL thickness can be measured with an excellent inter-grader reproducibility 

between 31 to 41 weeks PMA. The longitudinal change in RNFL thickness follows a 

biphasic model between 30 and 60 weeks PMA, with an estimated transition age of 37.8 

weeks. Also, the longitudinal change in nasal macular GCL+IPL thickness follows a similar 

biphasic model with a transition at 39.5 weeks. To our knowledge, the study is the first 

to describe the change in RNFL and GCL+IPL thickness in preterm infants from 30 to 

60 weeks PMA. These findings may shed light on the optic nerve development in preterm 

infants and may assist the design of future studies aiming to evaluate the clinical application 

of RNFL thickness in preterm infants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key messages:

• What is already known on this topic

– Retinal nerve fiber layer (RNFL) thickness assessed by the optical 

coherence tomography (OCT) is a noninvasive biomarker for optic 

nerve integrity and a potential biomarker for brain and cognitive 

integrity in infants but the longitudinal change of RNFL thickness 

and optic nerve development during the critical postnatal weeks of 

preterm infants are unclear.

• What this study adds

– Handheld OCT systems can monitor RNFL and ganglion cell layer 

+ inner plexiform layer (GCL+IPL) thickness during the postnatal 

weeks of preterm infants.

– RNFL thickness in preterm infants increased at 1.8 μm/week from 

30 to 37.8 weeks postmenstrual age (PMA) and then decreased at 

−0.3 μm/week from 37.8 weeks to 60 weeks PMA.

– The longitudinal change in nasal macular GCL+IPL thickness 

follows a similar biphasic model with a transition at 39.5 weeks 

PMA.

• How this study might affect research, practice or policy

– Our findings shed light on the optic nerve development in preterm 

infants and may assist the design of future studies aiming to evaluate 

the impact of diseases and interventions on the optic nerve (and 

visual pathway) in preterm infants.
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SYNOPSIS

Our prospective study of 101 preterm infants found that the retinal nerve fibre layer 

thickness increased before (1.8 μm/week) and decreased after (−0.3 μm/week) 37.8 

weeks postmenstrual age, shedding light on the optic nerve development.
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Figure 1. 
Bedside handheld optical coherence tomography (OCT) imaging of a preterm infant. The 

viewing screen is across from the imager who is holding the eyelids open with the left hand 

and holding the handpiece (which is in a single-use disposable cover) with the right hand. 

Note the handpiece is held near the tip of the imaging barrel for accurate positioning, the 

OCT investigational device does not touch the infant and the black tether cord transmits the 

signal from the handpiece to the OCT system in the cart.
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Figure 2. 
Demonstration of the longitudinal change of retinal nerve fibre layer (RNFL) thickness in 

(A–C) the right eyes and (D–F) the left eyes. In each figure, the solid yellow line indicates 

the organising axis from the optic nerve centre to the fovea. The pink arc between two 

dashed pink lines and arrows represent the papillomacular bundle (arc from −15 to +15 

degrees relative to the organising axis), where we measured the RNFL thickness in the study. 

In the right eye, RNFL thickness increased from 57.0 to 70.5 μm between 31 and 39 weeks 

and then declined to 63.8 μm at 57 weeks. Similarly, RNFL thickness increased from 50.6 
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to 62.7 μm between 31 and 39 weeks and then declined to 52.3 μm at 57 weeks. RNFL 

remained thicker in the right eye than in the left eye at all the three postmenstrual ages 

(PMA).
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Figure 3. 
Longitudinal change of (A) retinal nerve fibre layer (RNFL) thickness at papillomacular 

bundle (PMB) and (B) nasal macular ganglion cell layer+inner plexiform layer (GCL+IPL) 

thickness in 145 eyes of 77 infants. The raw data of individual eyes are shown in 

online supplemental figure 1. Each line represents the data of an eye. We estimated the 

segmented linear regression (red line) based on a segmented mixed regression model. (A) 

The longitudinal change of PMB RNFL thickness follows a biphasic trend with an estimated 

transition postmenstrual age (PMA) of 37.8 weeks (95% CI: 37.0 to 38.6). The estimated 
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slope is 1.8 μm/week (95%CI: 1.6 to 2.1) and −0.3 μm/week (95%CI: −0.5 to −0.2) before 

and after the transition age, respectively (difference in slope=2.2 μm/week, 95%CI: 2.0 to 

2.5; p<0.001). (B) Interestingly, the longitudinal change of nasal macular GCL+IPL follows 

the same biphasic trend with an estimated transition PMA of 39.5 weeks (95%CI: 38.8 to 

40.1). The estimated slope is 2.9 μm/week (95%CI: 2.5 to 3.2) and −0.8 μm/week (95%CI: 

−0.9 to −0.6) before and after the transition age, respectively (difference in slope=3.6 μm/ 

week, 95%CI: 3.2 to 4.0; p<0.001).
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Table 1.

Characteristics of the Study Cohort on Infant-Level

Number of infants (eyes) 101 (201)

Number of OCT imaging sessionsa 631

Number of OCT imaging sessions per infant, median (Q1–Q3) 5 (4–8)

Gestational age, mean ± SD, wks 28.0 ± 2.7

Birth weight, mean ± SD, gm 979.5 ± 290.4

Sex, n (%)

 Female 52 (51.5)

Race, n (%)

 African-American 47 (46.5)

 Asian 5 (5.0)

 White 45 (44.6)

 More than one 4 (4.0)

Ethnicity, n (%)

 Non-Hispanic 92 (91.1)

PMA at the first imaging session, median (Q1–Q3), wks 33.1 (31.7–34.4)

PMA at the last imaging session, median (Q1–Q3), wksb 47.1 (38.5–58.2)

Maximum ROP stage, n (%)c

 Stage 0 43 (42.6)

 Stage 1 16 (15.8)

 Stage 2 26 (25.7)

 Stage 3 15 (14.9)

 Stage 4 1 (1.0)

Maximum plus disease, n (%)c

 None 83 (82.2)

 Pre-plus disease 7 (6.9)

 Plus disease 11 (10.9)

Any treatment for ROP, n (%)d

 None 89 (88.1)

 Laser photocoagulation 3 (3.0)

 Bevacizumab and laser photocoagulation 9 (8.9)

OCT = optical coherence tomography; PMA = postmenstrual age; Q1 = first quartile; Q3 = third quartile; ROP = retinopathy of prematurity; SD = 
standard deviation.

a
Among 631 OCT imaging sessions, 533 (84.5%) sessions have RNFL thickness measurements from both eyes of the same infants.

b
The last imaging session before or on 60 weeks and 6 days PMA. Imaging sessions after the treatment for retinopathy of prematurity were 

excluded from the analysis, which contributed to the large interquartile range of PMA at the last imaging session.

c
The highest stage across all visits in the worse eye for each infant.

d
The ROP treatment that an infant received regardless of the eye laterality.
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Table 2.

Inter-eye Relationship of Retinal Nerve Fiber Layer Thickness at the Papillomacular Bundle Among Infants 

with Data from Both Eyes

Postmenstrual age Number of 
Infants

RNFL Thickness 
in Right Eyes 

(μm)

RNFL Thickness 
in Left Eyes (μm)

RNFL Thickness 
in Right – Left 

Eyes (μm)

P for inter-eye 
difference in 

RNFL 
Thickness

r for inter-eye 
correlation in 

RNFL 
Thickness

31 weeks 21 54.9 ± 11.0 52.6 ± 11.5 2.3 (−0.2, 4.8) 0.07 0.88

33 weeks 50 55.8 ± 11.4 54.0 ± 10.3 1.8 (−0.1, 3.7) 0.06 0.82

36 weeksa 76 63.1 ± 11.7 59.7 ± 10.6 3.4 (1.7, 5.0) < 0.001 0.80

39 weeks 59 63.1 ± 10.5 61.6 ± 10.4 1.5 (−0.2, 3.2) 0.07 0.81

41 weeks 47 64.3 ± 10.9 62.2 ± 9.7 2.2 (0.4, 3.9) 0.02 0.83

r = Pearson’s correlation coefficient; RNFL = retinal nerve fiber layer.

Values are mean ± standard deviation and mean (95% confidence interval).

a
Data at 36 weeks PMA were reported in our previous paper: Shen LL, Mangalesh S, McGeehan B, et al. Birth Weight Is a Significant Predictor of 

Retinal Nerve Fiber Layer Thickness at 36 Weeks Postmenstrual Age in Preterm Infants. Am J Ophthalmol. 2020 Sep 4;222:41–53.
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