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Abstract

A method is presented for computing the average solution of problems which are

"~ too complicated for adequate resolution, but where information about the statistics

of the solution is available. The method involves computing average derivatives by

interpolation based on linear regression, and an updating of a measure constrained by
the available crude information. Examples are given.

1 Outline of goal and method

There are many problems in science whose solution is described by a set of differential
equations, but where the solution of these equations is so complicated that it cannot be
found in practice, even numerically, because it cannot be properly resolved. An accurate
numerical solution requires that the problem be well-resolved, i.e, that enough variables
(“degrees of freedom”) be retained in the calculation to represent all relevant features of the
solution. Well-known examples where good resolution cannot be achieved in practice include
turbulence and various problems in statistical physics and in economics. We consider in the
present paper what one should do in underresolved problems, i.e., problems where good
resolution has not been achieved.

There exists a large literature on the solution of underresolved problems, describing
a wide variety of problem-specific tools; for example, in the case of turbulence there are
modeling methods and methods for “large-eddy simulation” [1]. All these methods involve
some assumptions about the relation between what one can effectively compute and the
“invisible” degrees of freedom that cannot be properly represented. Obviously, nothing can
be done without some information in addition to what can be computed. In the present
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paper we assume that the additional information consists of explicit information about a
measure preserved by the differential equations. In many problems of interest this kind of
information is available, but it does not seem to have previously been fruitfully utilized. The
key special case of turbulence will be treated in detail elsewhere, where it will be shown that
it falls within the class of problems to which our methods apply.

The situation of interest is as follows: Consider a differential equation of the form
us = R(u), (1)

where t is the time and R(u) = R(u, $%,...) is a (generally nonlinear) function of its argu-
ments. Assume in addition that a measure on the space of solutions of (1) is invariant under
the flow induced by (1), and that we know what it is. We denote averages with respect to
this measure by angle brackets: (-). We further assume that we can not resolve u, but that
we can find some information about u at a small number of mesh points; the information
could consist of point values but it is more reasonable physically and mathematically to as-
sume that what one has is “filtered” values, as would be indeed produced by a real physical
measurement. We thus assume that what we have at the mesh points are the values 4,

defined by: |
Uq(1) = /G(x — z4)u(z,t) dz, | (2)

where « is an index on the mesh. The kernel G can represent, for example, spatial averaging.
The coarse grid data in equation (2) specify, at every moment in time, a subset of functions
(the functions that are consistent with these observations). We denote averages over this
restricted subset by angle brackets with a subscript, corresponding to the observations: (-)g.
We call the measure on the restricted subset the “constrained measure.” If the problem is
underresolved, the measure is carried by a non-trivial set of functions. It is important to note
that the constrained measure is not invariant; indeed, if the invariant measure we start with
is ergodic, the constrained measure tends in time to the unconstrained measure; for example,
if we demanded that initially all the functions assumed given values at the grid points, there
is no reason to believe that the solutions of the differential equations that evolve from these
data would still take on the very same values at the mesh points at later times.

Our goal is to calculate averages of the solutions with respect to the constrained measure;
these averages represent what one can calculate on the crude grid, properly averaged over the
“invisible” degrees of freedom that cannot be represented on that grid. Given the constrained
measure and the filtered values, the mean and the moments of the solution can be found
at all points by interpolation (equivalent to linear regression [2]), and therefore the mean
derivatives of these quantities at the computational points can be found, for all practical
purposes without error. The remaining problem is to characterize the evolution of the
constrained measure so that the mean solution (and any moments that may be needed) can
be advanced in time. Our assumption is that the constrained measure remains the invariant
measure constrained by n filters, where n is the number of grid points. The filters therefore
have to change in time. The formulas below will allow us to relate quantities whose evolution
can be calculated to the parameters that determine the evolving filters. In the present paper
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we shall simplify the problem of finding the evolving filters by assuming that the filters are
determined by the evolution of the mean solution (and not for example by the evolution of
the higher moments of the solutions). This is equivalent to assuming that the equation

dig,

g (t) = </ G(z — z4)R(u) dm>ﬁ(t) (3)

is a good approximation to the real evolution of the #,(t) given by (1) and (2). Of course,
the validity of this assumption depends in particular on a good choice of filters G. In the
present paper, we furthermore assume that the measure is either Gaussian or approximately
Gaussian, in a sense specified below.

The two keys to success are: (i) Averaging with respect to the right constrained measure,
and (ii) updating the constraints as the solutions evolve. Ingredient (i) was already used
numerically in [3]. A number of interesting attempts have been made over the years to
“fll in” data from coarse grids in difficult computations so as to enhance accuracy without
refining the grid (see e.g. [4, 5]), but without our two key ingredients the usefulness of the
earlier methods is necessarily limited.

We proceed as follows: First we present some elementary but important results on con-
strained Gaussian probabilities; then we explain and apply our scheme in the special cases
of linear and nonlinear Schrédinger equations. Note that in the nonlinear case the invariant
measure is not Gaussian. We also explain why these are significant test models. As these
model equations have some simplifying features, we also sketch a more general methodology.

2 Gaussian distributions: conditional expectation un-
der affine constraints

We start by describing how to calculate expectation values of functions of normally dis-
tributed variables when the variables satisfy constraints of the affine form. Let u = (uy,... ,u,)¥
be a real vector of jointly normal random variables; it has a probability density F'(u) of the
form,

P(sy <up <81+4ds1,.. .80 <Up < 8y +dsp) = F(s)dsy...dsy =
1
=71 exp (—-2—81'612‘]‘5]‘ + bz-s,) dsy... ds]("l)

where Z is the appropriate normalization factor, repeated indices imply summation, the
n X n matrix A with entries a;; is symmetric and its inverse A™!, assumed to exists, is the
pairwise covariance matrix whose elements are

a;;t = Cov [wi, uj] = (uinj) — (wi) (u;), - (5)

where the brackets denote averaging with respect to the probability density, while the vector
b with components b; is related to the pointwise expectation values by

aij b; = (). (6)
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The distribution is fully determined by the n means and by the sn(n + 1) independent
elements of the covariance matrix, therefore all expectation values of observables (O(u)) can
be expressed in terms of these parameters. In particular, all higher order moments are given
by Wick’s theorem (e.g., [6]).

Next assume that the random vector u satisfies a set of affine constraints of the form,
Jaill; = Uy a=1,... , m<n, (7)

where the index o enumerates the constraints; the matrix G whose entries are g,; is the
discrete analog of the continuous kernel G(-) introduced in equation (2). To distinguish be-
tween the vector space of random variables, (uy,... ,u,), and the vector space of constraints,
(@1, .. ,Um), we use Roman and Greek letter indices, respectively.

Our goal is to calculate conditional expectation values, i.e., averages over the functions
that satisfy the constraints; formally,

_ ST dw) O(u)F(u) [T05; 6(gaju; — Ga)
(O = (T, do) F@) Ty s — ) ©

where the left-hand side introduces a notation for a constrained average and F(u) is the
properly normalized probability density (4). We shall use the following three lemmas:

LEMMA 1 The conditional expectation of the variable u; obeys an affine relation,
(Ui)g = Gialla + Ciy (9)
where the n X m matriz ) with entries ¢;o, and the n-vector ¢ with entries ¢; are
Q = (A7G7) (A7)
c=A"'b - (A'GT)NGA'GT) H(GA™'D).

LEMMA 2 The conditional covariance matriz has entries

Cov[uiyuj]ﬁ = <uiuj>ﬁ - (ui>ﬁ <uj>ﬁ =a;' - [(A_IGT)(GA_IGT)_I(GA_I)]z'j

Y

(11)

LEMMA 3 Wick’s theorem holds for constrained ezpectations, namely,

M=) ={% o P o
” * i meCov[uz'l,uz'z]a"--COU[ui,,_l,u;P]ﬁ P even’ (12)

where the summation is over all possible pairings of the P coordinates that are in the list.

Lemmas 1 and 2 can be deduced from standard linear regression theory. Lemma 3 can
be proved by noting that a delta function is the limit of a narrow Gaussian function. As a
result, the projection of a Gaussian measure on the subspace of functions that satisfy the
constraints can be viewed as approximately Gaussian, hence satisfying Wick’s theorem; an
appropriate limit can then be taken. ’




3 A linear'SChrﬁdinger equation

We demonstrate our method by applying it to two equations of Schrodinger type. We chose
these problems because we feel that a nonlinear Schrodinger equation is a suitable one-
dimensional cartoon of the Euler/Navier-Stokes problem that we are most interested in: it
is Hamiltonian and nonlinear. The more popular cartoon, the Burgers equation, will be
analyzed elsewhere; its peculiar properties (dominance of the solution by shocks and the
need for a driving noise term to obtain an invariant measure) introduce added complications
whose analysis does not fit within a short introductory paper.

We start with a linear Schrodinger equation written as a pair of real equations:
= - + 2 ' ' )
y 2 qzx ﬂzq, (l 3)
gt = +Pez — 7P

where p,q : [0,27) x [0,00) — R, pu is a given constant, and periodic boundary conditions
_are assumed. This system of equations can be derived from a Hamiltonian,

Hip,q) = %/0 s [(p)® + () + *(P* + )], (14)

where p(z,t) and ¢(z,t) are the canonically conjugate variables.

This system has an invariant measure, the canonical measure, depending on a tempera-
ture which we set equal to one, so that the invariant measure has the density distribution
F(p, q) = exp(—H[p, q]). The quadratic form of the Hamiltonian makes the canonical distri-
bution Gaussian, completely specified by the average functions (p(z)) and (g(z)), which are
zero by symmetry, and by the covariance functions,

eik(z-—y)

k2 +p?, (15)

Cov [p(2), p(y)] = Cov [g(2), q(¥)] = D

k=—00

Cov [p(z), ¢(y)] = Cov [¢(<), p(y)] = 0

The measure is absolutely continuous with respect to a Wiener measure and the sample
functions in this ensemble are continuous but not differentiable with probability one, so that
the evolution of a single solution in time is hard to calculate.

We pick initial data from the invariant ensemble, but then assume that measurement has
revealed, at each of m points, the values of two sets of filtered quantities that can be thought
of as local averages of the solution:

Dol(t) = / ) dz p(z,t) G(z — z,4)
° ; (16)

go(t) = /0 ’ dz q(z,t) G(z — z4)

where a = 1,... ,m, z, = 27a/m are the points about which the averages are evaluated,
and the function G(-) is a Gaussian filter (i.e., a function of Gaussian shape, not a random
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variable) of width . Once we know the values of these filtered values, the constramed
average is defined. We wish of course to evaluate the future means of the solutions in the
ensemble that has been constrained in this way, without calculating any particular solutions
and using only the information at the m given points.

Given the values of the filters, formulas (9,11) allow us to find the mean of the solution
in the ensemble conditioned by these filtered values; a short manipulation yields

(9(2))pq = ra() 535 G6> , (17)

where

27 2m

(@)= [ dyCovla(@)a@IG-5) o= [ durl)G-ss)

0 0 ( 1 8)
- and the 5;5 are the «, B elements of the matrix that is the inverse of the matrix whose entries
are the s,g. The result of this procedure is shown in Figure 1 where we plot the mean of
the functions that satisfy the constraints that have been imposed at a set of 10 points. The
width of the filtering kernel is o = 27 /m (the distance between the grid points). Note that
we know exactly the mean of the functions in the constrained ensemble, and we know it
everywhere.

In the present linear problem, if one knows the mean of the functions in the constrained
ensemble, one can readily evaluate the mean time derivative at the grid points by applying
the differential operator to the mean function. However, one cannot integrate this mean
derivative in time and expect to obtain the mean future, because at a later time the ensemble
that will have evolved from the initial constrained ensemble will not be the same as the initial
ensemble. The assumption in the whole approach is that the ensemble prepared initially by
placing conditions (the values of the filters) on the functions sampled from the invariant
ensemble evolves into an ensemble that can still be represented as a subset of the ensemble
that carries the invariant measure, with a measure conditioned by new filters G and filtered
values p and q. Here we are making the further assumption that it is sufficient to advance
in time only mean values of p and q. Hence,

dp dps o | [ o?
Ton (B2} == [Tdo6(e— o) | gz 6@pg— 1 epa| - (19)
_ P
Using equations (17) and (15) we find the more detailed expression:
df)a> 1,
< it /pa k
with
= tk(za—zg) ,—k?0? Zk(xﬁ—xv) —-k2¢72
dop = Z e e Z = . (21)
k=—00 k=—0

An analogous equation with opposite sign is obtained for the mean time derivative of the
vector §. We now have a closed system of equations for the estimation of the mean values
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of p and q in the future. We emphasize that the last assumption whereby it is sufficient to
advance in time the mean values of p and q is inessential and unlikely to be true in general
(see the concluding section). The domain of validity of the more general assumption remains
to be determined.

In Figure 2 we plot the mean evolution of five filtered values p,(t) for randomly selected
initial values of p,(0) and §,(0). The filtering function G(-) has a width (defined above)
equal to the distance between mesh points. In this linear problem the evolution of the mean
of the filtered values can be calculated exactly by simply using Green’s function for the
problem to advance the mean solution and hence advance the values of the filters. In Figure
2 the results of an exact calculation of the filtered values are represented by open circles,
while the results obtained by integrating the set of 10 ordinary differential equations (20)
are represented by dashed lines. The two results are practically indistinguishable.

4 A nonlinear Hamiltonian system

The equations of motion

We now consider a nonlinear generalization of the method demonstrated in the preceding
section. We want to exhibit the power of our method by comparing the solutions that it
yields with exact solutions; in the nonlinear case exact solutions of problems with random
data are hard to find, and we resort to a stratagem. Even though our method applies to
the full nonlinear partial differential equation, we study a finite dimensional system of 2n
ordinary differential equations that is formally an approximation of a nonlinear Schrédinger

equation:

dgi _  Pi-1 — 2pi + pin

= +p}
dt A i=1,...,n, ()
% _ +Qi—1 —2¢; + gin1 — g
dt A? i

where A = 1/n is a mesh size. The approximation is formal because the solutions of the
differential equation are not smooth enough to ensure convergence. We consider a periodic
system so that go = ¢, and gn+1 = ¢1 (with analogous conditions on p). In the calculations
below n = 16.

The Hamiltonian of this system is

Ap.dl =13 [("——g—q)+ (pﬁl—A‘—“)z%(qﬂpﬁ] - -

=1

Starting from this discrete system, we shall use a discrete version of the method above
to deduce equations for a reduced set of variables which will reproduce the mean solution
of the full set of equations, and we shall be able to show explicitly that the algorithm does
what it should.



As in the linear case, we assume that the canonical distribution has a temperature equal to
one. Note that now the Hamiltonian is not a quadratic function and the invariant measure
is not Gaussian. The lemmas of Section 2 cannot be used without approximation. The
equilibrium distribution P(p,q) = e~HIP4l is approximated by a Gaussian distribution,
chosen so as to yield the same means and covariances as the original distribution. Symmetry
considerations imply that (p;) = (p;) = (pi¢;) = 0. Translation and reflection invariance
“on the other hand imply that (pip;) = (¢i¢;) = fii—j;- Thus the approximate distribution
depends on a single vector fj;—;| that can be calculated, for example, by a straightforward
'Monte Carlo simulation.

We define a subset of 2m coarse variables (m < n) that represent local averages of the
vectors p and q:

Pa = GuiDi and Jo = 9aiGis (24)

where the index a@ = 1,... ,m enumerates the coarse variables. We consider the case m = 2;
thus we replace a set of 32 variables by a reduced set of 4 variables. The filtering matrix G
with entries g,; has a Gaussian profile: '

[ (@i = 5a)?
goi = B exp [——02—‘*‘ , (25)

where B is a normalization factor, z; = i/n, Z, = a/m, and ¢ is the width of the filter. In
the calculations below we took ¢ = 0.25, i.e., the filter averages over an interval of the order
of the distance between the coarse data points.

Given the constrained distribution, the mean time derivative of the coarse variables can
be calculated. For example,

dps 1 - ,

<W>_ = AaYei [(qi—l)p,q —2{gi)pq t (qz-+1>,-,,c-,] ~ 90i (47) .4 - (26)
p.a

The first term on the right-hand side can readily be calculated by the interpolation formula

(Lemma 1). For the second.term, which involves the expected value of a cubic function of

g;, we use the Gaussian approximation and apply Wick’s theorem,

<qg>;—,,q =3 <Qi2>f,,q (qi)p,q -2 <qi>?),q . ' (27)

All these terms can be computed explicitly by using Lemmas 1 and 2. The mean time
derivative of p; is

dp _ 2. _ _ _ _
<ﬁ> =19.5(¢2 — §1) + [1.50 & — 0.88 822 + 0.27 1% + 0.11 ¢ + 0.009 g4 + 0.001 3] .
X (28)
The term in square brackets is the “gaussianized” approximation to the cubic term in (26).
The equation for p, is obtained by substituting 1 « 2; the equations for §;, g, are obtained

by the transformation p — ¢ and § — —p.



We now test the accuracy of the prediction of the mean evolution of the vectors p and
g, obtained by the integration of equations (28). In contrast to the linear example, we
do not have an exact mean solution for comparison. Instead, we generated numerically an
ensemble of initial conditions that sampled the constrained canonical ensemble. We employed
a standard Metropolis algorithm and sampled 10* states. Each state was then evolved in
time using a fourth order Runge-Kutta solver, and by averaging over the evolved ensemble
we were able to compute the mean evolution of the solution of the system of 32 equations,
which we then compared with the solution of the reduced system. The possibility of making
this comparison is the reason we started with a discrete system rather than the full partial
differential equation.

A comparison between the true mean and the mean produced by our averaging/updating
procedure is shown in Figures 3a and 3b. The two figures show different intervals of time;
the coarse initial conditions are p; = 0.2, p, = 0.3, §; = 0.6, and g, = 0.55.

5 Discussion

We have shown by examples that one can calculate average solutions accurately on a crude
grid. The examples were simple but not trivial; in particular, they were complicated enough
so that the calculation of even a single sample solution was difficult. The main tools were:
Interpolation based on regression and the characterization of constrained measures by time-.
dependent filters. In more complete papers to come we plan to show that the method
generalizes to more complicated situations. In the Gaussian case, one can advance in time
not only the mean solution but also its moments and covariances. As more information is
updated, one can update not only the values of the filtered variables, but also parameters
that determine the structure of the filters (i.e., one does not have to keep G in equation
(2) fixed). In non-Gaussian problems, one can perform local “gaussianization” rather than
global “gaussianization” as above, and describe a broader range of measures. Furthermore,
it should be obvious from the discussion that one does not need complete information about
the measures, but only the covariances and low order moments on scales smaller than the
distance between mesh points. This partial information is available in a broad range of
situations [7].
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Figure Captions

1. The interpolating function: given 10 constraints, p, (open circles), the mean of the
functions in the constrained ensemble is reconstructed (solid line).

2. Mean evolution of the vector p for m = 5. The initial values of the coarse variables were
chosen randomly. The open circles represent the exact solution, whereas the dashed
lines were obtained by integrating equations (20).

3. Mean evolution of the coarse variables, p; (4), p, (O), ¢1 (*), and g2 (o). The symbols
represent the mean evolution of an ensemble of initial conditions generated by means
of a Monte Carlo algorithm. The solid lines are the solutions obtained by integrating
the mean time derivatives (28). The two figures show different time intervals: (a)
t=0-0.2; (b)¢t=0-10. |
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Figure 3a
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Figure 3b
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