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Abstract

Production Planning and Inventory Control in Pharmaceutical Manufacturing
Process

by

Dan Bu

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Professor Philip M Kaminsky, Chair

Motivated by a specific type of semi-batch biotechnology manufacturing, perfusion,
we develop insights into biopharmaceutical production planning and inventory control
in two areas. First, at the production site, we consider a continuous time infinite hori-
zon lot-sizing model where a single product is manufactured on a single machine. Each
time manufacturing restarts, a random production rate is realized, and production con-
tinues at this rate until the machine is shut down. Although the rate is random and
chosen from an arbitrary set of random rates, it is known as soon as production starts,
so this information could be used to determine when to stop production. Based on
the production planning models, we show that given the objective of minimizing either
average cost per unit time or total discounted cost, it is optimal to produce up to the
same inventory level regardless of the realized production rate; even when backorder
allowed, it is optimal to keep the same maximum backorder position. We also develop
heuristics for the multi-product version of this production model. Next, for two-stage
manufacturing supply chains, we extend this model to consider a specific characteris-
tic of biopharmaceutical inventory planning – both intermediates and finished goods
expire, but the expiration “clock” is restarted at each stage. We propose a two-stage
production-inventory integrated model for this setting and develop two heuristics for
this model – fixed size and fixed ratio shipment policies.
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Chapter 1

Introduction

Over the past several years, the CELDi Biopharmaceutical Operations Initiative at UC
Berkeley has worked with a variety of biopharmaceutical firms to optimize production
planning and supply chain management. Production and supply chain operations in the
biopharmaceutical industry feature a variety of characteristics that make production
and inventory planning challenging. For instance,

• Bulk production has significant economies of scale, and capacity is shared, leading
to campaign-style production.

• Bulk production is either in batches, with significant levels of random yield, or
semi-continuous (known as a perfusion process), with random production rates
(although rates are known soon after production starts).

• There is significant region-specific differentiation between bulk production and
finished goods production (filling/finishing/labeling).

• There is an expiration period for bulk drugs, and a new, non-cumulative expira-
tion period for finished drugs.

• In some cases, bulk production batches must be entirely differentiated (that is,
processed into finished goods for specific markets), even if it would be more
efficient to partially differentiate them.

• Quality analysis can take significantly more time than production, with a very
high variability in the required amount of time.

• In many cases, some but not all production steps are outsourced, so:

– Utilization of this outsourced capacity must be “scheduled” in advance.
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– Even a large biopharmaceutical firm may be a small customer of the out-
sourcer.

– There can be great uncertainty in the time until outsourced jobs are returned
from the contract manufacturer, even though production itself is quite quick

• Disruptions can have tremendous negative impact, so detailed knowledge of the
tradeoff between inventory cost, covered disruptions, and customer service are
very useful for decision-making.

Solving an integrated planning/operations model with these characteristics is obvi-
ously quite challenging. The overall strategy of the CELDi Biopharmaceutical Opera-
tions Initiative is, therefore, two-fold: first, analyze simple, stylized models with some
of these characteristics to better understand policies for these models. Second, use
optimization and simulation-optimization techniques to optimize parameter settings in
more complex systems.

In this thesis, we address the production planning problem in the perfusion manu-
facturing process utilizing both simple, highly stylized models, and more complicated
MDP model of these systems, and later deal with the production / inventory integrated
problem with multi-echelon perishability. Specifically, we consider a class of manufac-
turing planning problems motivated by a specific type of semi-batch manufacturing
process used in biotechnology known as perfusion, which is well established in food
and other life science industries. In this type of manufacturing, manufacturing is not
batch based in the traditional sense, but is instead a set of continuous runs divided into
batches. This means that runs have some of the characteristics of continuous processes
(measurable output over time, and a good deal of process variability, for instance), and
some of the characteristics of batch processes (cleanups between batches, for exam-
ple) (see Acuna et al. (2011)). This unique set of characteristics makes modeling and
decision-making quite different from the similar batch or pure continuous processes.
For instance, perfusion processes typically exhibit dramatic variability in production
yields – batch based processing minimizes titer variability by running production fer-
mentations for a long period, then processing a fixed quantity of material all at the
same time. Conversely, perfusion processes exhibit a wider range of yields because
harvesting (production) begins very early, then followed by a “ramp-up” period, a
steady state and bioreactor termination (see Acuna et al. (2011)). In addition, perfu-
sion processes are typically analyzed while they are running, opening up a variety of
opportunities dynamically modify decision making. In this work, we consider a variety
of scheduling and planning models motivated by the unique characteristics of perfusion
planning, with a particular focus on how these decisions can be dynamically modified
as information about the perfusion “runs” becomes available.

The outline of this thesis is as follows:

2



Chapter 2 is the literature review, broken into two separate parts: one is the review
on production planning and inventory control models related with our research, which
contains the economics quantity/production model that dates back to early 1910s,
production model with regards to random yield, production & inventory integrated
model and perishability inventory models; the other one is the review on some solution
techniques we adopt or adapt partially in the later research.

In Chapter 3, we focus on a class of continuous-time single machine single product
planning models with random production rates, where each time the machine starts,
production occurs at one of several different probabilistically determined constant rates.
Assuming a deterministic demand, we propose rate-specific production control strate-
gies for several different settings, all with the goal of minimizing total cost per unit
time, including setup cost, production cost and holding cost. We next extend our basic
model to account for backorder allowed, discounted cases and multiple products. We
adapt the widely used common cycle approach and basic period approach for multiple
product cases and experimentally test their performance. We also model other char-
acteristics of the perfusion process in more detail, focusing on a production rate that
is first increasing, then constant, then decreasing over the “batch” production. We
propose a more detailed discrete time MDP model, computationally solve this model
using value iteration, and conjecture several structural properties of the model.

In Chapter 4, we explore the more realistic yet complicated case where bulk materi-
als have to be manufactured with a single resource, manufacturing has to be periodically
restarted, the production rate is random, and bulk materials must be shipped to buyers
in subsequent stages of the supply chain. In this setting, firms must decide when and
where to restart production and to ship the right amount of products to the buyers,
while minimizing costs incurred in production, holding and shipment.

We conclude this thesis in Chapter 5.
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Chapter 2

Literature Review

In this section, we review relevant literature in the following three areas: supply chain
operations in the biotech industry, production planning and inventory control models,
and relevant optimization techniques. Firstly, we review the characteristics of the
operational and supply chain management problems in the biotech industry, including
the challenges that will be addressed in this thesis. Secondly, we inspect the inventory
models, not necessarily in the biotech industry, but closely related to our problem
setting. Lastly, we examine pertinent solution techniques that will help to tackle the
mathematical programming we consider.

2.1 Supply Chain Operations in Biotech Industry

The biotech industry, like the semiconductor industry, has gone through periods of
intensive technology development followed by manufacturing and supply chain man-
agement advancement. Therefore, compared with the groundbreaking advances in
the fundamental treatment of illnesses, relatively little research has focused on op-
erations and supply chain management in the biotech industry Kaminsky and Wang
(2015). More recently, however, supply chain optimization has been recognized as a
way of generating real value, rather than merely ensuring supplies at the right time
with the minimum cost. Many unique variants of supply chain problems, including
issues related to supply chain risk management, capacity expansion Booth (1999) and
production planning and scheduling, arise in biotech manufacturing. This had led to
increasing amounts of research into manufacturing and supply chain optimization in
the biotech industry over the past decade. According to Shah (2004), a typical supply
chain in the biotech industry consists of the following stages:

• Primary manufacturing. In the biopharmaceutical companies with which we
work, this stage typically sees the fermentation and purification processes.
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• Secondary manufacturing. These manufacturing sites are usually located far away
from the primary manufacturing sites, to account for cost minimization and lo-
calized regulations depending on the specific markets.

• Market warehouse / distribution centers.

• Wholesalers / retailers.

The biotech industry has a variety of inherent characteristics. For instance, yield
uncertainty is typically found in the primary manufacturing stage due to the dynam-
ically changing conditions in the fermentation process. As a matter of fact, this yield
uncertainty is the primary question we will address in this thesis. The secondary man-
ufacturing site is usually concerned with localized quality control, labeling and packing
operations, etc. Therefore, inventories are often held between these stages, which leads
to the problem of varying inventory expiration constraints. This inventory perishabil-
ity is part of the second question we will address in this thesis. As for the industry
itself, other hurdles exist. For example, clinical trials of biopharmaceuticals are time-
consuming, making the medicines’ time-to-market extremely long and increasing the
risk of changing market demand. Because the manufacturing facilities are extremely
expensive to construct and maintain, capacity expansion decisions becomes vital and
onerous. Rigid government regulations on one hand influence and change the nature
of the market, and on the other hand, add more uncertainties and lead time to the
supply chain.

Roughly speaking, relevant research problems can be divided into the following
categories:

• Capacity planning and product portfolio selection. Rotstein et al. (1999) pro-
posed a scenario tree to capture the outcomes of the trials and a two-stage
stochastic programming to model the problem. Gatica et al. (2003) developed
an optimization-based approach that selects the final product portfolio, and the
production planning and capacity planning simultaneously subject to the uncer-
tainty of the clinical trials.

• Supply chain network design and demand management. Sousa et al. (2011) ad-
dressed a dynamic allocation/planning problem that optimizes the global supply
chain of a pharmaceutical company, and developed the decomposition algorithms
for maximizing the company’s net profit value (NPV).

• Production planning and scheduling. Lakhdar et al. (2005) presented a mixed
integer linear program (MILP) model for the planning of multi-product biophar-
maceutical manufacturing processes.
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In this thesis, we address a production planning problem that captures key character-
istics of the unique biopharmaceutical perfusion process, and an inventory planning
problem accounting for unique types of expiration in a multi-echelon supply chain. We
present the perfusion production process in more detail in Chapter 3.

2.2 Production Planning & Inventory Control Mod-

els

There is a vast array of published literature related to inventory control – in this
subsection, we focus on those models most relevant to our research. In particular, we
start with a review of “economic lot scheduling” models, then explore in turn random
yield, integrated production and inventory models, and models considering perishable
inventory.

2.2.1 Economic Lot Scheduling

The economic order quantity (EOQ) model, first introduce by Harris (Harris (1990)), is
probably the earliest inventory model in the literature. This model considers a simple
setting: a single product, no permissible backorder, no lead time so that orders arrive
immediately, fixed continuous demand rate D, setup cost K each time an order is
placed, and continuous holding cost per unit product per unit time h. In this setting,
the optimal policy can be characterized by a single order quantity Q, which is ordered
each time the inventory level reaches zero. This policy is typically represented on a
graph of inventory level (the vertical axis) vs. time (the horizontal axis) a series of
right triangles:

Figure 2.1: EOQ policy

The economic production quantity (EPQ) model, developed by E.W. Taft (Taft
(1918)), is an extension of EOQ with all the same assumptions and parameters the
same except that a constant production rate is integrated into the model – the optimal
policy is again be visualized as a triangle, with production starting at zero inventory
and stopping at the same inventory level.

The Economic Lot Scheduling Problem (ELSP), introduced by Rogers (1958), is a
multiple-product extension of the EPQ model. Like the EPQ, the ELSP also assumes a

6



Figure 2.2: EPQ policy

constant, predetermined production rate for products of perfect quality. Unlike EPQ,
in which any policy is feasible as long as P > D, the feasibility of a general policy
for ELSP is not always guaranteed. The necessary and sufficient condition for a cyclic
policy to be feasible is that the total production time (summed over all products) does
not exceed the total available time, i.e.

∑
i σi/Ti ≤ 1, where σi is the processing time

for product i, and Ti is the cycle length for product i (Axsäter (2006)). This, in return,
imposes restrictions on the implementation of any policy.

Therefore, two streams of research on ELSP exist: one involves developing analyti-
cal approaches that achieve the optimum of a restricted version of the original problem
while the other involves developing heuristics that result in good solutions for the orig-
inal problem Elmaghraby (1978). The former guarantees feasibility at the outset by
imposing some constraints(s) on the cycle times and then optimizes individual cycle
durations subject to the imposed constraints. Among these, two approaches are most
prevalent: the Common Cycle (CC) approach (Hanssmann (1962)) and Basic Period
(BP) approach (Bomberger (1966)). The CC approach first assumes a common cycle
T that can accommodate the production of the required amount of each item exactly
once, and then optimizes the cycle T ∗ such that the total cost per unit time is min-
imized. In contrast, the BP method admits different cycles for different items but
constrains each cycle Ti of item i be an integer multiple ni of a basic period W , where
one basic period is long enough to accommodate the production of a single cycle of
each of the items. Both of these approaches give a feasible upper bound on the ELSP
problem – the BP method is less constrained, obviously leading to a tighter bound.

In our scenario, however, we are interested in the processes with random production
rates. Will the triangle-style policy still hold? We first turn to the literature on
production models with random yield.

2.2.2 Production Models with Random Yield

In the ELSP, we rely on the assumption that the production rate is constant throughout
the entire manufacturing process. However, this may not be the case. A considerable
amount of research focuses on a variety of types of random yield, namely, a random
output process. Random yield can be categorized in a variety of ways; for our purposes,
we divide random yield models into two categories: imperfect production processes –
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IPP, in which output is a random function of the input, and stochastic production
rate models – SPR, which we are focusing on in this thesis. The bulk of the related
literature has focused on IPP while relatively little attention has been paid to SPR. The
“random yield” in IPP is a result of uncertainty in the relationship between the quantity
received and the quantity requisitioned, particularly in batch-based manufacturing.
On the other hand, the “random yield” in SPR setting is a result of production rates
randomly evolving over time.

Researchers have proposed a variety of approaches to modeling the relationship be-
tween inputs and outputs in IPP. In their comprehensive review, Yano and Lee (1995)
divide the modeling of imperfect production processes roughly into three categories:
binomial yield, stochastically proportional yield, and interrupted geometric yield. The
first assumes that every unit of production is independent of all other units and that
the creations of good units can be modeled by a Bernoulli process. Thus, the number
of good units in a batch of size Q conforms to a binomial distribution. Stochastically
proportional yield is a generalization of the binomial case and specifies the effective
output distribution (or yield rate) with both the mean and variance. The distribution
of the fraction of good units is independent of the batch size, but the yields of the indi-
vidual units are perfectly correlated (as explained in Henig and Gerchak (1990)). The
two aforementioned approaches focus on the output distribution while the interrupted
geometric model captures a production setting in which the time until a process goes
“out of control” is geometric. All units produced prior to this point are assumed to be
acceptable and all subsequent units are assumed to be defective. Moon et al. (2002)
address the problem of the traditional Economic Lot Scheduling Problem with imper-
fect production. They point out that although most production processes start from
an “in-control” state, they may shift to an “out of control” state at a random time and
produce defective items until the next production cycle. Khouja and Mehrez (1994)
observe that unit production cost and process quality depend on the production rate,
and they extend the model to cases where the production rate is a decision variable.

In contrast, we are more concerned with SPR, on which relatively little literature has
focused. Gavish and Graves (1981) study a production inventory system where the unit
production time is a random variable. Kulkarni and Yan (2005) study a production-
inventory system under stochastic production and demand rates, model this system
as a bivariate Markovian stochastic process and derive the limiting distribution of
the inventory level. They show that the classical EOQ policy minimizes the long-run
average cost if one replaces the deterministic demand rate by the expected demand
and production rate in the steady state.

In much of our work, we focus on continuous time manufacturing processes in which
the production rate is random. In Chapter 3, we develop a series of mathematical mod-
els exploring this issues, with a variety of assumptions about the random production
rate.
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2.2.3 Integrated Production-Inventory Models

The companies we work with are not only concerned with specialized production pro-
cesses; more importantly, they are facing integrated production and inventory control
challenges in the context of a multi-stage supply chain, i.e. the bulk materials/products
are produced/provided by the vendor, demands/secondary operations occur at the
buyer, etc., thus decisions about the shipment quantity and shipment scheduling from
the vendor to the buyer need to be made. In the literature, these kinds of problems
are called integrated production-inventory models, which can be classified along the
following dimensions:

• Number of vendors: single vs. multiple

• Number of buyers: single vs. multiple

• Review time: periodic or continuous review

• Production rate: infinite vs. finite production rate

The earliest research in this area dates back to 1970s. For instance, Szendrovits
(1975) assumed constant fixed cost per lot, linear inventory holding cost and a constant
continuous demand for finished products over an infinite horizon. With the manufac-
turing cycle time modeled as a function of the lot size, the author is able to calculate the
economic production quantity. Based on this paper, Goyal (1976) proposed a search
procedure to optimize both economic production quantity Q and the number of ship-
ments b to the buyer. Szendrovits (1976) further pointed out that the simultaneous
optimization of Q and b is valid only given the fact that the fixed transportation cost
function is of the structure Goyal (1976) proposed.

Initial research in this area assumed immediate replenishment at the upstream
supplier – in other words, they assume a infinite production rate since products are
available immediately. For example, in Goyal (1977), a single product is procured by
a single buyer/customer from a single vendor/supplier with immediate replenishment.
Assuming a deterministic model with constant demand rate, fixed setup cost and hold-
ing cost, Goyal (1977) proposed an integrated EPQ style policy. Drezner et al. (1984)
allowed multiple lot sizes, as well as transportation of either completed lots or partial
lots. Later, Bogaschewsky et al. (2001) assume a uniform lot size that is transformed
through a series of manufacturing steps.

Another stream of research focuses on determining the optimal production quantity
and appropriate shipment policy under finite production rate. Banerjee (1986) assume
a finite production rate with lot-for-lot shipment policy. Lu (1995) proposed an integer-
ratio policy in which each buyer purchases at an integer or reciprocal of an integer
multiple of the vendor’s setup interval. Goyal (1988) restricted products to be sent
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to the buyer in equal sized shipments. Later the shipment batch size was relaxed to
be a function of the ratio between production rate and demand rate in Goyal (1995),
a policy which was proven to dominate the policy given in Lu (1995). Hill (1997)
presented a more general policy where the ratio of the size of two successive shipments
is within the range of [1, P/D] (P - production rate, D - demand rate). Goyal and
Nebebe (2000) introduced a policy that restricted the first shipment to be of small
size followed by (n − 1) equal sized shipments each P/D times the size of the initial
shipment. This policy further reduced the total cost of the system, and since then
various shipment policies had been proposed including

• Lot-for-lot shipment

• Integer-ratio of shipment cycle and the vendor’s setup cycle

• Equal shipment size

• Fixed ratio of batch sizes between successive shipments

More recently, researchers have introduced a more general model that can simulta-
neously capture the benefits of multiple different approaches. Specifically, in 2011,
Hoque (2011a) extended the concept of the synchronization of a single vendor mul-
tiple buyer supply chain by allowing transfer of lots with unequal and/or equal-sized
batches. Hoque (2011b) further incorporated additional considerations into their pre-
vious models, including transportation capacity, transportation times, and limits on
lead times and batch sizes. Below, we introduce the model of Hoque (2011a), shown
in figure 2.3, in more detail, as it is closely related to our model in Chapter 4.

Before proceeding to the detailed models, we first clarify some definitions in the
production-inventory system so as to better understand the shipment policies.

Definition T – the length of a production cycle. A production cycle denotes the time
between two consecutive set-ups of the production machine at the vendor, which could
vary depending on the nature of the production rate.

Definition t – the length of a shipment cycle. A shipment cycle denotes the time
between two consecutive shipments to the buyer, which could vary depending on the
nature of shipment quantity.

Figure 2.3 describes one complete production cycle with multiple shipment cycles in
between. The solid lines in the figure represent the inventory level at the vendor and
each change in direction of the line represents a shipment to the buyer. The dotted
lines (except those that are vertical) represent the inventory at the buyer. In this way,
Hoque (2011a) is able to capture the inventory dynamics in the two-stage production
and inventory system. We employ the following notation:
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Inventory at vendor 
Inventory at buyer 

Q/µ z/µ + Q/D – Q/µ 

z/µ Q/D 

z 
kz 

y y y 

Figure 2.3: General shipping strategy introduced by Hoque (2011a)

• K0, h0 : setup cost, holding cost at the vendor

• K1, h1 : setup cost, holding cost at buyer, and h1 > h0 (a common assumption
in supply chain theory due to the increased value of the product)

• µ : production rate at the vendor

• D : constant demand rate at the buyer

• k : size ratio of two consecutive shipment batches

Decision variables:

• Q : lot size in a cycle

• l : number of unequal sized batch

• z : batch size of the first shipment

• n : total number of batches for shipment within a cycle

• n− l : number of equal sized batch

• y : shipment quantity, or size of the shipment batch

Specifically, in the general shipment policy, there is a schedule such that the vendor
transfers the lot Q by transferring a sequence of l unequally sized batches with fixed
ratio between the size of each two consecutive batches, that is (z, kz, k2z, · · · , kl−1z),
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followed by (n−l) equal sized batches of size y. ThusQ = l(z+kz+· · ·+kl−1z)+(n−l)y.
Given production rate µ, the total inventory at the buyer per cycle is

Hb =
z2

2D
+

(kz)2

2D
+ · · ·+ (kl−1z)2

2D
+ (n− l) y

2

2D

=
z2

2D
· 1− k2l

1− k2
+ (n− l) y

2

2D

Notice that the total inventory in the system per cycle is (refer to Hoque (2011a) for
more details)

Htotal =
1

2
Q

(
z

µ
+
Q

D
+
z

µ
− Q

µ

)
=
Q2

2

(
1

D
− 1

µ

)
+
Qz

µ

Thus the total inventory at the vendor per cycle is

Hv =Htotal −Hb

=
Q2

2

(
1

D
− 1

µ

)
+
Qz

µ
−
{
z2

2D
· 1− k2l

1− k2
+ (n− l) y

2

2D

}
Therefore, the total cost in one cycle is

K0 + nK1 + h0Hv + h1Hb

=K0 + nK1 + h0

{
Q2

2

(
1

D
− 1

µ

)
+
Qz

µ

}
+ (h1 − h0)

{
z2

2D
· 1− k2l

1− k2
+ (n− l) y

2

2D

} (2.1)

With the cycle length Q
D

, the cost per unit time to be minimized is

K0 + nK1 + h0

{
Q2

2

(
1
D
− 1

µ

)
+ Qz

µ

}
+ (h1 − h0)

{
z2

2D
· 1−k2l

1−k2 + (n− l) y2
2D

}
Q
D

(2.2)

Note that we have adapted the notation in Hoque (2011a) to better fit our setting with
stochastic production rate and perishability constraints.

These papers focus on three domains of decision making: production quantity at
the vendor, shipment schedule to the buyer, and individual shipment batch sizes. Re-
searchers have investigated many variants of shipping policies and shipment batch sizes
under various problem settings. In our work, we are also primarily concerned with op-
timal production quantity at the vendor and shipment policy to the buyer. However,
we have a considerably more complicated scenario due to the stochastic production
rate, as well as multi-stage perishability.
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2.2.4 Perishable Inventory Models

Multi-stage perishability is another key characteristic of our problem setting; when
bulk drugs are shipped to different stages (filing/labeling/packaging) in the produc-
tion process, there are separate expiration dates in these stages, i.e. the inventory
will perish. In the literature, people have addressed a variety of perishable inventory
models.

The first research dates back to 1970s when Nahmias and Pierskalla (1973) devel-
oped a two-period lifetime model with stochastic demand, and proposed a stationary,
state-dependent optimal policy. They use x, y to denote the amount of products that
will expire in the next 1 and 2 periods. They assume that the demand in each period
is independent identically distributed conforms to distribution F with density f , and
is satisfied with FIFO policy (oldest first). Moreover, the expected cost per period is
charged based on the unsatisfied demand and expected outdating of the present order
y. Let D1, D2 denote random demand in two successive periods, then the amount of
outdating of the present order y is

Z =
{
y − [D2 + (D1 − x)+]

}+

It can be further proved that

E[Z] =

∫ y

0

F (u+ x)F (y − u)du

Therefore, the one period expected cost function becomes

L(x, y) = r

∫ ∞
x+y

[(t− (x+ y))]dF (t) + θ

∫ y

0

F (t+ x)F (y − t)dt

where r denotes the cost of unsatisfied demand per unit, θ the deterioration cost per
unit, t the one period demand. They use a dynamic programming formulation to solve
this problem and characterize some properties of the optimal solution.

Fries (1975) and Nahmias (1975) extended the lifetime in the model to general m
periods. Thus, instead of using x, y to denote the inventory position, Nahmias (1975)
adopted a vector

x(j) = (xj, · · · , x1), 1 ≤ j ≤ m

to track the multi-echelon inventory, where xi represents the ith echelon that will expire
i periods into the future, y as the fresh order quantity with m periods to expire. The
one period transfer equation that captures the process dynamics is

s(y,x, t) = [sm−1(y,x, t), · · · , s1(y,x, t)]
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while

si(y,x, t) = [xi+1 − (t−
i∑

j=1

xj)
+]+ 1 ≤ i ≤ m− 2

sm−1(y,x, t) =

{
y − (t− x)+ if excess demand is backlogged

[y − (t− x)+]
+

if sales are lost.

This way, the cost is formulated using a dynamic programming as

Bn(x, y) = L(x, y) + α

∫ ∞
0

Cn−1[s(y,x, t)]f(t)dt

where L(x, y) is the one-period cost function, and Cn(x) = minimum expected dis-
counted cost if x is on hand and n periods (ordering decisions) remain. Thus, they
were able to determine a single ordering decision that takes into account the perishable
nature of the inventory. However, they were unable to precisely characterize the opti-
mal solution. Nahmias (1978) incorporated a setup cost (setup costs generally make
inventory problems more challenging to solve) to the single period model, and specifies
the optimal solution by two nonlinear functions.

Due to the high dimensionality of the state variable, it is time-consuming to com-
pute an optimal solution for cases m ≥ 3. Therefore, researchers began to develop
heuristics to address this problem: one such heuristic is TIS (Total Inventory to
S). Cohen (1976), Nahmias and Pierskalla (1976) and Chazan and Gal (1977) explore
this fixed critical number (order-up-to) policy, in which orders are placed at the end of
each period to bring the total inventory summed across all ages to a specific level S.
Cohen (1976) use a similar inventory vector

Xn = (Xn
m−1, X

n
m−2 · · · , Xn

1 )

to denote the multi-echelon inventory before ordering at period n, where Xn
i is the

amount of product to expired in i periods. With Bn
i =

∑j=i
j=1X

n
j and FIFO, the

inventory dynamics are characterized with equations

Xn+1
i = [Bn

i+1 −Dn − (Bn
i −Dn)+]+ 1 ≤ i ≤ m− 2

Xn+1
m−1 = S −Dn − (Bn

m−1 −Dn)+

where Dn is the demand at period n. With Zn = (Xn
1 −Dn)+, they then investigate

the disposition of stock An at period n, i.e. decrease of inventory at period n,

An = Dn + Zn
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They study the disposition dynamics as a stochastic process, which is crucial in de-
termining the steady-state characteristics of the inventory. They present an explicit
closed form method for the m = 2 case and solutions procedures for the m-period case
with numerical results for a number of discrete demand densities. This TIS heuristic is
proved to be effective relative to the optimal policy given single demand and the FIFO
strategy, i.e. oldest inventory first(Nahmias and Pierskalla (1976), Nandakumar and
Morton (1993)).

Another effective heuristic is NIS (New Inventory to S), in which only new
inventory in the system is raised to a specific level S every time one replenishes the
inventory Brodheim et al. (1975), Angle (2003). Deniz (2007) point out that, sur-
prisingly, NIS outperforms TIS with lower long-run average costs, except when the
demand for new items is negligible. Others policies researchers have explored include
the critical number policy, the linear policy, hybrid TIS-NIT heuristic, etc. See Nah-
mias (1982), Prastacos (1984), Pierskalla (2004) for in-depth reviews of the perishable
inventory literature.

In our model, however, we consider a multi-stage inventory system, in which a
separate and independent perishability constraint exists in each stage, i.e. every time
the shipment to the next stage is completed, the products start to perish with a different
expiration date depending on the specific stage. Expired inventory cannot be processed
to the next stage. We assume the products in each stage have a fixed lifetime.

2.3 Solution Techniques

We utilize a variety of solution approaches in our work. Some are specific to the
problems at hand, so the literature referenced above covers both models and solution
approaches. In several cases, however, we utilize more general solution approaches, and
we briefly introduce these approaches and where appropriate, the relevant literature,
below.

2.3.1 Dynamic Programming in Markov Decision Process

In one instance, we develop an Markov Decision Process (MDP) model in order to
capture the dynamics in production rates over time. Mathematically, MDP can be
represented as (S,A,P ,R, γ) where

• S is a state space, which fully describes the possible states the system can visit.
s ∈ S

• A is an action space, which contains all of the possible actions (decisions we can
make). a ∈ A
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• P is the probability transition matrix, which characterize the transition dynamics
of the system from a particular state given a particular action. Pss′ = p(St+1 =
s′|St = s)

• R is the reward function, Rs = E[Rt+1|St = s]

• γ is the discounting factor for this multi-period decision process.

Policy π : S → A of an MDP model can be stationary, which is usually the case for
stationary models where the state transitions and the rewards do not depend on the
time. In our model, we develop a stationary optimal policy since the dynamics of the
system does not change over time and we assume full observability.

Value function V : S → R associates value with each state (or each state and time
for non-stationary π), where vπ(s) denotes value of policy at state s depends both on
immediate reward, but also what one achieves subsequently by following π.

Objective of an MDP model is to find a policy π : S → A such that we mini-
mize(maximize) the cost(reward) given the (in)finite decision horizon under full ob-
servability. Consequently, we are concerned with solving the system of equations:

v(s) = min
a∈As
{C(s, a) + γ

∑
j∈S

p(j | s, a)v(j)} (2.3)

Gauss-Seidel Value Iteration Value iteration is the most widely used and best-
understood algorithm for solving discounted Markov decision process (Puterman (1994)).
To use the value iteration algorithm, the following conditions must be satisfied:

• Stationary cost function per period C(S, a) and transition probabilities p(j | s, a).

• Bounded cost function. |C(S, a)|≤ K + cIt ≤M <∞ for all a ∈ As and s ∈ S.

• Discounting. Future costs are discounted by γ, where 0 ≤ γ ≤ 1.

• Discrete state space. S is finite or countable.

The Gauss-Seidel algorithm finds a stationary ε−optimal policy (dε)
∞ and an ap-

proximation of its value. The detailed steps are as follows.

1. Select ε and set n = 0. Initialize v0 ∈ V .
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2. For each s ∈ S, compute vn+1(s) = mina∈As{C(s, a) + γ
∑
j∈S

p(j | s, a)vn(j)}

3. If ‖vn+1−vn‖< ε(1−λ)/2λ (λ is the discounting factor), go to step 4. Otherwise
increment n by 1 and return to step 2.

4. For each s ∈ S, choose dε(s) = arg mina∈As{C(s, a)+γ
∑
j∈S

p(j | s, a)vn(j)}. Stop.

2.3.2 Block Coordinate Descent

Block Coordinate Descent: For the optimization problem,

min f(x)

s.t. x ∈ X
(2.4)

where X is a Cartesian product of closed convex subset of X1, X2, · · · , Xm:

X = X1 ×X2 × · · · ×Xm

where Xi is a convex subset of Rni and n = n1+n2 · · ·+nm. The vector x is partitioned
as

x = (x1, x2, · · · , xm)

where xi ∈ Xi. Assume that for every x ∈ X and every i = 1, · · · ,m the optimization
problem

min
s

f(x1, · · · , xi−1, s, xi+1, · · · , xm)

s.t. s ∈ Xi

(2.5)

has at least one solution. Then based on a current iterate xk = (xk1, x
k
2, · · · , xkm), BCD

generates the next iteration xk+1 = (xk+1
1 , xk+1

2 , · · · , xk+1
m ) by

xk+1
i = argmin

s∈Xi
f(xk+1

1 , xk+1
2 , · · · , xk+1

i−1 , s, x
k+1
i+1 , · · · , xk+1

m ) i = 1, 2, · · · ,m

that is, at each iteration, the objective function is minimized with respect to each of
the block coordinate (possibly a vector) xki in cylic order.

Note that the convergence of this algorithm is not always guaranteed Conejo et al.
(2006). Nevertheless, it usually behaves properly in many practical applications. Many
researchers have proved the convergence of BCD for generalized convex objective func-
tions. However, the following theorem gives the convergence for a more general f .
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Theorem 2.1. Convergence of Block Coordinate Descent Suppose that f is
continuously differentiable over the set X = X1×X2×· · ·×Xm. Suppose that for each
i and x ∈ X,

min
s∈Xi

f(x1, · · · , xi−1, x, xi+1, · · · , xm)

has one unique minimum. Let {xk} be the sequence generated by the block coordinate
descent method. Then the limit point of {xk} is a stationary point.

This proof of this theorem is found in (Bertsekas (1999)) (Grippo and Sciandrone
(2000)), while Grippo and Sciandrone (2000) further generalize the convergence results
for BCD, which does not require a unique minimum for the 2-block case:

Theorem 2.2. Suppose that the sequence {xk} generated by the 2-Block BCD method
has limit points. Then every limit point x̄ of {xk} is a critical point for problem (2.4).

2.3.3 Fractional Programming

In our integrated production-inventory models, we encounter many objective functions
that are a ratio of two functions, typically linear, quadratic or other general nonlin-
ear functions. This type optimization is called fractional programming. Fractional
programming is utilized in a variety of different fields such as risk and portfolio anal-
ysis – maximization of return/risk, production and inventory control – minimization
of cost/time, economics – optimization of signal/noise etc. The earliest application
of fractional programming dates back to the 1940s when Neumann (1945) proposed
an equilibrium model for an expanding economy. Moreover, Isbell and Marlow (1956)
suggested the first sequential method for solving linear fractional program.

The general form of fractional programming is

inf
x

f1(x)

f2(x)

s.t. gi(x) ≤ 0 i = 1, 2, · · · ,m

where f1(x), f2(x), gi(x) are continuous real-valued functions. Depending on f1, f2, gi,
the optimization is called

• Linear fractional program – f1, f2, gi are affine.

• Quadratic fractional program – f1, f2 are quadratic and gi affine.

• Convex fractional program – f1 ≥ 0, gi are convex and f2 concave.

Depending on the functional form of the objective, fractional programming can be
classified as
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• Generalized fractional programming, Schaible (1983)

λ∗ = min
x∈X

max
1≤i≤n

f i1(x)

f i2(x)

• Multi-ratio

λ∗ = min
x∈X

∑
1≤i≤n

f i1(x)

f i2(x)

• Multi-objective

λ∗ = min
x∈X

{
f11(x)

f12(x)
, · · · , fn1(x)

fn2(x)

}
where f(n)2 > 0

Note that the feasible region of the fractional programming problems is usually assumed
to be affine, convex or concave, while the objective function of a convex fractional
program is generally not a convex(concave) function (Aardal et al. (2001)). This makes
these problems challenging to solve. Therefore, most research focuses on developing
some objective function transformation techniques that can be used to convert the
original fractional programming so that an existing solution technique can be utilized.
Charnes and Cooper (1962) used a variable transformation and reduced the fractional
program to a linear program, and this idea is adopted by many other researchers, such
as Beck and Teboulle (2010). Dinkelbach (1967) later proposed an algorithm that
converts the original fractional programming to a series of parametric subprograms,
i.e.

P (λ) :π(λ) = min
x
{f1(x)− λf2(x) : x ∈ X}

where the converted problem is easier to solve. They proved that the optimal solu-
tion for P (λ) such that π(λ) = 0 also solves the original problem. Most of the later
algorithms are some variants of “Dinkelbach-type” parametric programming for differ-
ent problem settings. For instance, Lin and Sheu (2005) extend the Dinkelbach-type
algorithm to solve minmax fractional programs with infinitely many ratios.

Another approach adopts a variable transformation technique, where convex(concave)
fractional programming is transformed to a convex(concave) program. This is first
proposed by Charnes and Cooper (1962). In this way, one can apply the convex pro-
gramming techniques to indirectly solve the fractional program. Of course, this works
only when the original problem and the variable-transformed problem are equivalent.
Such a condition is not always guaranteed. In our case, we are especially interested in
quadratic fractional programming. Therefore, we employ the following algorithm by
Beck and Teboulle (2010), and we adapt it for our problem in Chapter 4.
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2.3.4 Quadratically Constrained Quadratic Ratio Problems

Proposed by Beck and Teboulle (2010), quadratically constrained quadratic ratio (QCQR)
is the problem of minimizing a ratio of two quadratic functions over a finite number of
quadratic inequalities, stated as follows:

QCRQ : inf
x

f1(x)

f2(x)

s.t. gi(x) ≤ 0 i = 1, 2, · · · ,m
(2.6)

where fi(x) = xTAix + 2bTi x + ci and Ai = AT

i ∈ Rn×n, bi ∈ Rn, ci ∈ R, i = 1, 2.

gi(x) = xTBix + 2dTix + αi with Bi = BT

i ∈ Rn×n, di ∈ Rn, αi ∈ R. Note that

for any quadratic function f(x) = xTAx + 2bTx + c, the homogenized version is
fH(y, t) = yTAy + 2bTyt+ ct2.

Applying the variable transformation technique, x = y/t with y ∈ Rn, t 6= 0, the
QCQR problem becomes:

inf
y,t

fH1 (y, t)

fH2 (y, t)

s.t. gHi (y, t) ≤ 0 i = 1, 2, · · · ,m
t 6= 0

(2.7)

where fH1 , fH2 and gHi are called the homogenized version of f1, f2, gi. The following
slightly different problem is easier to solve:

inf
y,t

fH1 (y, t)

fH2 (y, t)

s.t. gHi (y, t) ≤ 0 i = 1, 2, · · · ,m
(y, t) 6= (0n, 0)

(2.8)

which is proved to be equivalent to the following non-convex homogeneous quadratic
problem:

H : min
y,t

fH1 (y, t)

s.t. fH2 (y, t) = 1

gHi (y, t) ≤ 0 i = 1, 2, · · · ,m

(2.9)

Let (y∗, t∗) be an optimal solution of problem (2.9). When t = 0, we get another
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problem
H0 : min

y,0
fH1 (y, 0)

s.t. fH2 (y, 0) = 1

gHi (y, 0) ≤ 0 i = 1, 2, · · · ,m

(2.10)

One need to prove that we can tackle our original problem (2.6) (alternatively, 2.7) by
solving (2.9). Accordingly, Beck and Teboulle (2010) proposed the following sufficient
condition for the optimality of the QCQR problem:

Theorem 2.3. If
val(H) < val(H0) (2.11)

where val(·) denotes the objective value of a specific problem, then the optimal solution
of QCQR is attained and t∗ 6= 0 and x∗ = y∗/t∗ is its optimal solution.

Therefore, we can solve (2.9) and (2.10) and check for the sufficient condition (2.11).
If (2.11) is satisfied, we can get the solution for (2.6) by solving (2.9). However, (2.9)
is a non-convex quadratic problem, which is in general difficult to solve. The following
semidefinite relaxation technique is frequently adopted to address this issue.

2.3.5 Semidefinite Relaxation

Semidefinite relaxation has been adopted by many researchers as an approach to solve
nonconvex quadratically constrained quadratic problems (QCQP) (Luo et al. (2010)).
The well-known construction of the SDR is as follows: the real-valued homogeneous
QCQP problem is

min
y,t

fH1 (y, t)

s.t. fH2 (y, t) = 1

gHi (y, t) ≤ 0 i = 1, 2, · · · ,m

(2.12)

where f1, f2, gis are quadratic functions. If denote w = (yT , t)T , then (2.9) could be
represented as

min
w

wTM(f1)w

s.t. wTM(f2)w = 1

wTM(gi)w ≤ 0 i = 1, 2, · · · ,m

(2.13)

where for a given quadratic function f(x) = xTAx+ 2bTx+ c, the associated matrix
is defined by
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M(f) ≡
[
A b
bT c

]
Note that

wTM(f1)w = Tr(wTM(f1)w) = Tr(M(f1)wwT )

and W = wwT is equivalent to W being a rank one symmetric positive semidefinite
matrix, thus (2.13) could be written as

min
W

Tr(M(f1)W )

s.t. T r(M(f2)W ) = 1

Tr(M(gi)W ) ≤ 0 i = 1, 2, · · · ,m
rank(W ) = 1

(2.14)

Relaxing the constraint rank(W ) = 1, we get a SDR (semidefinite relaxation) version
of QCQP and thus a lower bound.

SDR : min
W

Tr(M(f1)W )

s.t. T r(M(f2)W ) = 1

Tr(M(gi)W ) ≤ 0 i = 1, 2, · · · ,m
W � 0

(2.15)

When the optimal solution of the convex problem has the property of rank(W ∗) =
1, then W ∗ is also an optimal solution for H; otherwise we need to develop a feasible
solution starting from W ∗. Beck and Teboulle (2010) show that:

Corollary 2.4. Suppose that the problem SDR has an optimal solution W ∗ with rank
one and the sufficient condition (2.11) holds, then the exact solution of the QCQR
problem is v

t
, where (vT , t)T ∈ Rn+1 is an eigenvector of the matrix W associated with

the maximum eigenvalue.

Moreover, for a QCQR problem with linear constraints of the form

l ≤ aTx ≤ u

where l < u and a ∈ Rn is a nonzero vector, its linear constraints could be rewritten
as (

aTx− l + u

2

)2

≤ (u− l)2

4
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Remark 2.1. In the presence of double sided linear constraints, it is best to represent
them as quadratic constraints in the sense that (i) the sufficient condition (2.11) is
more likely to be satisfied and (ii) the SDR for the quadratic representation provides
a tight lower bound.(Beck and Teboulle (2010))

2.3.6 Harmony Search

The Harmony Search (HS) algorithm, first proposed by Geem et al. (2001), is a heuristic
optimization algorithm analogous to more well-known metaheuristics such as Tabu
Search, Simulated Annealing, Evolutionary Algorithms such at the Genetic Algorithm,
etc. HS was inspired by mimicking the improvisation of music players, and can be
applied to both continuous and discrete value optimization problems. In the same
way that musicians target a better harmony by repeatedly improvising pitches, the
heuristic seeks a better solution to an optimization problem by iteratively updating the
existing solutions. Initially, a Harmony Memory (HM), containing rows of harmonies,
is randomly initiated, where the number of rows is defined to be the Harmony Memory
Size(HMS). Each harmony is analogous to one feasible solution, and the fitness of a
harmony is analogous to the objective function evaluated at that feasible solution. The
steps in HM are as follows:

1. Initialize a Harmony Memory (HM).

2. Improvise a new harmony.

3. If the new harmony is better than the worst harmony in HM (evaluated objective
value), swap them.

4. If stopping criterion not satisfied (time limit, sufficient fitness), go to step 2.

Specifically, the new harmony in step 2 is created based on three possibilities,

1. Randomly select one solution from the feasible region, with probability 1- HMCR

2. Randomly select one harmony from HM, with probability HMCR × (1-PAR)

3. Randomly select one harmony from HM but add an extra modification, usually
± coef × BW, with probability HMCR × PAR

where HMCR is the Harmony Memory Consideration Rate, PAR the Pitch Adjusting
Rate, and BW the pitch adjusting width.Note that researchers have utilized various
ways to calculate BW(Mahdavi et al. (2007), Li et al. (2007), Yang (2010)), which in
turn influences the efficiency of HS.
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HS is similar in many ways to Evolutionary Algorithms (EA) – both generate an
initial population, and both generate one single new solution and decide whether or
not this new solution should be swapped with the existing ones. The difference lies
in the way that new solutions are generated: EA generates the new solution using
recombination and mutation operators while HS generates the new solution using the
approaches defined above. There is some controversy about the novelty of HS – some
argue that HS is a type of evolutionary algorithm (Weyland (2012) Weyland (2015)),
and these same authors believe that later research on modifications of the Harmony
Search algorithm lacks novelty.

Nevertheless, HS has been demonstrated to be effective for a variety of optimization
problems. Most notably, Jaberipour and Khorram (2010) proposed a method of apply-
ing HS to sum-of-ratios fractional programming, in which they use numerical examples
to demonstrate the effectiveness and robustness of applying HS to fractional program-
ming. Moreover, they show that the solutions obtained using this method are superior
to those obtained from other methods in all cases. This is the work that inspired
us to apply HS to our fractional programming model in section 4.3.3. In particular,
HS has the following advantages for our problem (some adopted from Yang (2009),
Abdel-Raouf and Metwally (2013)):

1. HS works for discrete decision variables and does not require derivative informa-
tion.

2. HS is less sensitive to the chosen parameters.

3. HS has good control of diversification by randomization and pitch adjustment,
and of intensification by harmony memory accepting rate.

4. HS does not require initial value setting of the variables.
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Chapter 3

Production Planning Models under
Perfusion Process

3.1 Introduction

Motivated by a manufacturing technology used in industries such as biopharmaceutical
manufacturing, we consider a production planning problem faced by a firm that meets
constant deterministic demand by producing a product on a single machine. We focus
on a setting where the production rate on that machine is random and varies from
production cycle to production cycle, but is known immediately after the cycle starts.
The firm must determine a production strategy in order to minimize setup cost and
holding cost.

We consider several variants of this setting, with both average and discounted costs,
and we show the same surprising result for each case: for any problem instance, it is
optimal to produce up to the same level each time production starts, independent of
the realized production rate in that cycle. In other words, although we are able
to observe the production rate immediately after the start of production, we do not
alter the level that we are producing up to account for this information. This is true
even though given an instance of this problem with set of possible production rates,
if any of those rates was the unique (deterministic) production rate (so that we had a
variant of the traditional economic production quantity model), the optimal produce-
up-to level would be different depending on the rate, and the optimal cost of operating
the system would also be a function of the production rate.

Our work is related to random yield production planning models, but the major-
ity of random yield production planning models consider settings in which production
decisions are made, batches are manufactured, and production yield (and thus produc-
tion quantity) are determined after manufacturing. We are motivated, however, by a
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manufacturing technology used in biopharmaceutical manufacturing (as well as in food
and other life science manufacturing) called continuous perfusion, where the produc-
tion yield per unit time (that is, the effective production rate) is random, but can be
discovered soon after the start of a production cycle. In traditional biomanufacturing,
the initial production step, fermentation, is completed in batches. After a traditional
fermentation batch, the yield of the batch (that is, the amount of product produced)
can be measured. Perfusion, in contrast, can be viewed as a continuous production
run divided into “batches,” or production cycles, with a given maximum length. Prod-
uct is harvested continuously, so the production rate (that is, the rate at which final
product is produced or harvested, which is called the “yield rate” in the industry) can
be estimated from the start of the batch (or more accurately, the rate curve can be
estimated, since in contrast to our model, in practice the yield rate increases and then
decreases over the processing time of the batch), and product is collected at that rate
during the time that the batch is processed. (Note that this is called “yield” because
the volume of process output collected per unit time is constant, but the concentration
of good product per unit volume varies from batch to batch.) This setting gives rise
to a variety of interesting production planning issues, and the model we are focusing
on in this paper, where production rate is random but constant over the life of a single
batch, and known immediately after the start of production, captures a highly stylized
version of one of these issues.

3.2 The Single-Product Model

In this work, we consider a continuous time production planning model, in which a
single product is manufactured using a single machine that can be started and stopped
as needed, in order to meet constant deterministic demand with rate D. We initially
assume that each time the machine is started, production occurs at one of L distinct
possible random rates µi, i = 1, 2, ..., L, where µi > D and each with probability pi
such that

∑L
i=1 pi = 1. The cost of production is a constant c per unit regardless of the

production rate, and each time production starts, a positive setup cost K is incurred.
In addition, inventory can be stored and a positive inventory cost rate h is charged.
Our initial objective is to minimize (almost sure) average cost per unit time. Later,
we demonstrate that our key results are robust to the details of the problem setting,
by considering several extensions to this model. First, we extend this model to allow
for some demand rates less than D. Second, we extend the model to allow backorder,
with a positive penalty rate π. Finally, utilizing a completely different proof approach,
we show that our key results hold even when the objective changes to minimizing
expected total discounted cost. Our goal in each of these cases is to derive optimal
policies regarding when to start and stop production while minimizing cost over an
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infinite horizon.

3.3 Minimizing Average Cost

3.3.1 No Backorder

Since there is no setup time, and since all production rates are greater than the demand
rate, we observe that, as in the traditional EPQ problem, there is an optimal production
strategy based on the so-called zero-inventory producing policy, where production will
not start while there is a positive inventory. However, since no backorder is allowed,
whenever a zero inventory is reached, production must begin. We call the period
between two consecutive zero inventory levels a cycle. In particular, upon observing
the (random) production rate µi, production starts and continues until the inventory
reaches an Ii level. Thereafter, the demand is satisfied from inventory until it runs out,
and a new cycle begins. Note that we explicitly include the possibility that Ii = 0 for
some i’s. In other words, we allow for the possibility that for a subset of the rates, it
may be desirable to pay the fixed cost K, but, after observing the drawn production
rate, instantaneously restart production with a new randomly drawn production rate,
thereby avoiding a potentially inefficient production rate. Obviously, since no backorder
is allowed, not all Ii’s can be 0. Our goal is to determine the values for the set of
Ii, i = 1, 2, . . . , L that minimize the almost sure average cost over the infinite horizon.

Now, consider an instance of this problem where there are N =
∑L

i=1 ni (> 0)
cycles and where ni is the number of times the production rate µi happens. By the
assumptions of the model, and for a given N cycles, (n1, n2, ..., nL) is a random vector
following the multinomial distribution with parameters N and p1, p2, . . . , pL. Thus
for a given N we can express the (random) average cost as a function of policy I =
(I1, I2, . . . , IL) by:

L∑
i=1

ni(K + cτiµi + h
2
TiIi)

L∑
i=1

niTi

, (3.1)

where τi denotes the length of time until the inventory level reaches Ii, and Ti denotes
the length of the entire cycle time. Taking N to infinity and observing that almost
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surely, limN→∞
ni
N

= pi, we have by the preceding expression that

lim
N→∞

L∑
i=1

ni(K + cτiµi + 1
2
hTiIi)

L∑
i=1

niTi

a.s.−→

L∑
i=1

Npi(K + cτiµi + 1
2
hTiIi)

L∑
i=1

NpiTi

=

L∑
i=1

pi(K + cτiµi + 1
2
hTiIi)

L∑
i=1

piTi

Substituting τi = Ii
µi−D , Ti = τi + Ii

D
, and denoting δi ,

µi
µi−D , we have the almost sure

infinite horizon average cost expressed as

L∑
i=1

pi(K + cτiµi + 1
2
hTiIi)

L∑
i=1

piTi

=

L∑
i=1

pi(K + cδiIi + 1
2D
hδiI

2
i )

1
D

L∑
i=1

piδiIi

= Dc+

KD + h
2

L∑
i=1

piδiI
2
i

L∑
i=1

piδiIi

Hence, in this subsection, we adopt

AC(I) ,
KD + h

2

L∑
i=1

piδiI
2
i

L∑
i=1

piδiIi

(3.2)

as the objective function so the problem of minimizing the average cost over the infinite
horizon is:

PAC : min
0 6=I≥0

AC(I) (3.3)

Problem PAC is not convex. Thus, to facilitate the analysis in this section, we prove
the following lemma.

Lemma 3.1. Consider the following problem:

P1 : min
0 6=z≥0

g(z) ,
f1(z)

f2(z)
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where z ∈ Rn, f1 is twice differentiable strictly convex function, and f2 is a linear
function which is positive over 0 6= z ≥ 0. Suppose 0 6= z∗ ≥ 0 satisfies

∇f1(z∗)− g(z∗)∇f2(z∗) = 0, (3.4)

then z∗ is the unique optimal solution for P1.

Proof. Consider the following unconstrained optimization problem:

P2 : min f1(z)− g(z∗)f2(z).

Since the objective function of P2 is a twice differentiable strictly convex function, we
have, by (3.4), that z∗ is the unique optimal solution for P2. Thus for every 0 6= z ≥ 0,

f1(z)− g(z∗)f2(z) ≥ f1(z∗)− g(z∗)f2(z∗)

Dividing both sides of the preceding inequality by f2(z) (which is positive since 0 6=
z ≥ 0), we get,

f1(z)

f2(z)
− g(z∗) ≥ f1(z∗)

f2(z)
− g(z∗)

f2(z∗)

f2(z)
= 0

Thus for 0 6= z ≥ 0,
g(z) ≥ g(z∗),

implying (since 0 6= z∗ ≥ 0) that z∗ is an optimal solution for P1. The uniqueness of
z∗ is a direct consequence of the fact that z∗ is the unique optimal solution for P2. �

Next we provide an explicit solution to problem PAC (3.3).

Theorem 3.1. Problem PAC has a unique solution I∗ = (I∗1 , I
∗
2 , . . . I

∗
L), where for

i = 1, 2, . . .  L,

I∗i =
√

2KD

h·
L∑
i=1

piδi

.

Proof. The average cost function (3.2) can be presented as follows:

AC(I) =
f1(I)

f2(I)

where

f1(I) , KD +
h

2

L∑
i=1

piδiI
2
i
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and

f2(I) ,
L∑
i=1

piδiIi.

Applying Lemma 3.1, we get that the unique optimal solution I∗ to problem PAC
satisfies

hpiδiI
∗
i −

f1(I∗)

f2(I∗)
piδi = 0, i = 1, 2, . . . , L

so for i = 1, . . . , L,

I∗i =
1

h

f1(I∗)

f2(I∗)
.

Thus, solving I∗ = 1
h
f1(eI∗)
f2(eI∗) , where e is a vector of ones, we get

I∗i = I∗ =

√
2KD

h
∑L

j=1 pjδj
, i = 1, . . . L.

�
As a consequence of the preceding theorem, we see that the unique optimal solution

requires that regardless of the production rate, the ‘produce-up-to’ inventory levels
are the same. Thus, the optimal policy can be expressed as an easy to implement
‘produce-up-to’ level which is the same for all production rates (and thus, we never
reject a production rate by instantaneously restarting production after observing the
rate). In addition, we note that the optimal ‘produce-up-to’ levels in a production
cycle do not depend on the realized production rate, even though this information is
available once the production starts, and thus it is feasible to produce up to different
levels for different production rates.

Some intuition behind this result follows from the observation that optimality (at
least local optimality) is achieved when the average (per unit time) of all the cost
components of the model are equal. In particular, the average inventory cost during
a cycle with a production rate µi and a ‘produce-up-to’ level Ii is h

2
Ii. Therefore the

“principle of equal average costs” means that all Ii are equal to the same level, say
I∗. In addition, the average ordering cost, KD∑L

i=1 piIiδi
(see (3.2)), with Ii = I∗, must

be equal to h
2
I∗. Thus, solving KD

I∗
∑L
i=1 piδi

= h
2
I∗, we get the optimal I∗ = eI∗ as in

Theorem 3.1.

3.3.2 Some production rates smaller than the demand D

In this section we extend our analysis to the case in which some of the production
rates are less than the demand rate D. In particular, in addition to the random

30



production rates µ1, . . . , µL with probabilities p1, . . . , pL, where µi > D for all i =
1, . . . , L, we have production rates θ1, . . . , θM with probabilities q1, . . . , qM , where θj <

D for all j = 1, . . . ,M . Naturally,
∑L

i=1 pi +
∑M

j=1 qj = 1. In contrast to the case we
discussed in Section 3.3.1, for feasibility in this case, when there is no inventory it will
be necessary to pay the fixed cost K, observe the production rate, and if that rate is
less than the demand rate D, instantaneously restart production with a new randomly
drawn production rate, repeating the process until a rate greater than D is drawn.
Nevertheless, in the next theorem we show a result analogous to our main result in
the previous section; given any production rate greater than D, it is always optimal to
produce up to the same level.

Theorem 3.2. Consider the model as described above, and let π∗ be an optimal policy
with average infinite horizon cost c∗. Then, at inventory level 0, when any production
rate greater than the demand rate is realized, it is optimal to continue production until
the inventory level reaches c∗

h
and then to immediately stop production.

Proof. The theorem follows from the following two claims:

(i) Suppose that the system is producing at any rate µi (i ∈ {1, . . . , L}), and that the
inventory level is I < c∗

h
. Then, policy π∗ calls for a continuation of production

up to an inventory level of at least c∗

h
.

(ii) Let I∗ be the largest inventory level that policy π∗ ever reaches. Then, I∗ ≤ c∗

h
.

We now prove these two claims:

(i) Suppose, to the contrary, that in an optimal policy π∗, production at rate µi stops
at inventory level Ii <

c∗

h
. Consider an alternative policy, π̂, identical to π∗ except

for the following modifications:

• Whenever the system is producing at rate µi and it reaches an in inventory
level Ii, rather than stopping, production continues until the inventory level
cπ∗
h

, and the production stops.

• Production is idle until the inventory level falls to Ii.

• At that point, policy π∗ is resumed.

Note that the average inventory cost (denoted by c∆) over the interval of time
where policy π̂ deviates from policy π∗ is c∆ = h(Ii+

1
2
( c
∗

h
−Ii)) = 1

2
(hIi+c

∗) < c∗.
However, this implies that the average cost over the infinite horizon of policy π̂ is
a weighted average of c∆ and c∗, so it is strictly smaller than c∗, which contradicts
the optimality of π∗.
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(ii) Recall that I∗ is the largest inventory level that policy π∗ ever reaches. This means
that by definition, production stops when the inventory level reaches I∗, and at
this point the inventory level decreases for some period of time (either because
there is no production, or because production is started with a production rate
less than the demand rate). Let ε > 0 be smaller than the smallest drop of the
inventory level from I∗ before policy π∗ either starts production if it was idle, or
stops production otherwise. In addition, let ε be sufficiently small so that there is
no change of production rate when the inventory level is in the range (I∗− ε, I∗),
and that I∗ − ε > c∗

h
. Now, consider an alternative policy that is identical to π∗

except for the following modifications:

• Production stops at inventory level I∗ − ε instead of level I∗.

• At that point, the action which is prescribed by policy π∗, whenever pro-
duction stops at inventory level I∗, is followed.

Note that the average inventory cost (denoted by c∆) over the interval of time
where policy π̂ deviates from policy π∗ is c∆ = h(I∗ − ε+ ε

2
) > c∗. However, the

average cost over the infinite horizon of policy π∗ is a weighted average of c∆ and
the average cost of policy π̂, so since the average cost of π̂ is at lease as high as
c∗ (as π∗ is optimal), we get that c∗ > c∗, a contradiction. �

Note that the preceding theorem establishes that even when some production rates
are smaller than the demand rate, for any optimal policy there is a single produce-up-
to level for all production rates. In this case, however, we have an additional set of
decisions. Whenever the production is idle, a policy must determine a set of inventory
levels at which production should restart. Furthermore, when an inventory level in
this set is reached, a policy must determine, once a particular production is realized,
whether production occurs (we say in this case that the rate is accepted) or whether
the fixed cost is paid, but another production rate is immediately realized (we say that
the rate is rejected). In other words, the policy must prescribe, for this inventory level,
a set of accepted (and thus, a set of rejected) production rates. Furthermore, it isn’t
obvious in this case that a zero-inventory ordering policy is optimal. Nevertheless,
we are able to show that with the correct set of parameter values, the zero-inventory
ordering policy defined below is optimal for the problem considered in this subsection.

Specifically, consider the following policy, π(J, IJ), characterized by a set J ⊆
{1, . . . ,M} (that is, a possibly inclusive subset of the indices of production rates less
than D) and a real number IJ :

(i) Begin production with the first realized production rate greater than D (that is, re-
peatedly pay K and draw additional rates until the first rate bigger than demand),
and stop production when the inventory level reaches IJ .
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(ii) If J 6= ∅, start production with the first realized production rate less than D whose
index is in J , and stop it when the inventory level reaches 0 (so when J = ∅, let
the production stays idle until the inventory level reaches 0).

Let c(J, IJ) be the infinite horizon average cost of applying policy π(J, IJ). Consider
the problem minIJ c(J, IJ), and denote by I∗J its solution and by c∗J its optimal value;

that is, c∗J = c(J, I∗J). Note that by Theorem 3.2, I∗J =
c∗J
h

. Also denote by π∗J the

policy π(J, I∗J), and define Ĵ as a nonempty subset of {1, . . . ,M} such that c∗
Ĵ

=
min∅6=J⊆{1,...,M} c

∗
J .

In the following theorem (whose proof appears in Appendix A.1) we characterize the
structure of an optimal policy for the problem considered in this section, minimizing
the average cost over the infinite horizon when some production rates are less than the
demand rate:

Theorem 3.3. Let

J∗ =

{
∅ if c∗∅ ≤ c∗

Ĵ

Ĵ if c∗∅ > c∗
Ĵ
.

Then, π∗J∗ is an optimal policy for the problem of minimizing the infinite horizon av-
erage cost when some production rates are less than the demand rate.

Finally, we develop an effective approach for finding J∗, from which we can deter-
mine the optimal produce-up-to level I∗J∗ . First, we define notation for the cycle length,
as illustrated in Figure 1.

µ̂i ,
µi

(µi −D)D
(=

1

µi −D
+

1

D
) and θ̂j ,

θj
(D − θj)D

(=
1

D − θj
− 1

D
).

Note that µ̂i + θ̂j = 1
µi−D + 1

D−θj . We start by presenting necessary and sufficient

conditions for J∗ = ∅, i.e. for the case where it is optimal to produce to the produce-
up-to level, and then to stop production until the inventory level returns to zero:

Theorem 3.4. J∗ = ∅ if and only if
∑L

i=1 piµ̂i ≥
∑M

j=1 qj θ̂j.

Proof. Note that if J 6= ∅, when applying policy π∗J , the average setup cost per cycle,
and the average cycle time are (respectively),

K(
1∑L
k=1 pk

+
1∑
`∈J q`

) and
L∑
i =1

∑
j ∈J

(
pi∑L
k=1 pk

)(
qj∑
`∈J q`

)
1

I∗J
(

1

µi −D
+

1

D − θj
).

(3.5)
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Figure 3.1: Sample inventory levels for optimal policies with J = ∅ (on the left)
and J 6= ∅ (on the right). A circle at the zero inventory level means using rates
µi, i = 1, . . . , L, a square at the maximum inventory level means using a subset of
rates less than D.

Thus, noting (by Theorem 3.3) that the average holding cost is 1
2
I∗J = 1

2

hc∗J
h

= 1
2
c∗J , and

that 1∑L
k=1 pk

+ 1∑
`∈J q`

=
∑L
k=1 pk+

∑
`∈J q`

(
∑L
k=1 pk)(

∑
`∈J q`)

, we get that whenever J 6= ∅,

c∗J =
1

2
c∗J +

hK(
∑L

i=1 pi +
∑

j∈J qj)

c∗(J)
∑L

i=1

∑
∈J piqj(

1
µi−D + 1

D−θj )
.

Adding and subtracting 1
D

to the term in parentheses in the denominator and solving
the equation above with respect to c∗J , we get that the optimal average cost using π∗J
when J 6= ∅ is

c∗J =

√√√√ 2hK(
∑L

i=1 pi +
∑

j∈J qj)

(
∑L

i=1 pi)(
∑

j∈J qj θ̂j) + (
∑

j∈J qj)(
∑L

i=1 piµ̂i)
. (3.6)

Similarly, the optimal average cost when J = ∅ is

c∗∅ =

√
2hK∑L
i=1 piµ̂i

. (3.7)

Given (3.6) and (3.7), π∗∅ is at least as good as π∗J if and only if

(3.8)

(
∑L

i=1 pi)(
∑

j∈J qj θ̂j) + (
∑

j∈J qj)(
∑L

i=1 piµ̂i)∑L
i =1 pi +

∑
j ∈J qj

−
L∑
i =1

piµ̂i

= (
L∑
i=1

pi)

∑
j∈J qj θ̂j −

∑L
i=1 piµ̂i∑L

i=1 pi +
∑

j∈J qj
≤ 0.
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Noting that
∑L

i=1 pi > 0 and qj θ̂j > 0 for all j ∈ {1, . . . ,M}, we conclude that π∗∅ is

optimal if and only if
∑L

i=1 piµ̂i ≥
∑M

j=1 qj θ̂j. �

If J∗ 6= ∅, we find the optimal J∗ as follows. Let f(J) =
∑
j∈J qj θ̂j−

∑L
i=1 piµ̂i∑L

i=1 pi+
∑
j∈J qj

. Then,

by Theorems 3.3 and 3.4, and by (3.8), J∗ can be determined by setting

J∗ =

{
∅ if f(Ĵ) ≤ 0

Ĵ if f(Ĵ) > 0.

Note that by Theorem 3.3 the optimal produce-up-to level I∗J∗ is
c∗
J∗
h

. Thus, by (3.6)
and (3.7),

I∗J∗ =


√

2DK

h
∑L
i=1 piµ̂

if J∗ = ∅

√
2DK(

∑L
i=1 pi+

∑
j∈J qj)

h[(
∑L
i=1 pi)(

∑
j∈J qj θ̂j)+(

∑
j∈J∗ qj)(

∑L
i=1 piµ̂i)]

if J∗ 6= ∅.

Finally, we show that despite the fact that Ĵ can potentially take on 2M−1 possible
values, we in fact only have to consider up to M nested subsets. In particular, the
following simple procedure, FindBestJ, can be used to find Ĵ . If M = 1 then clearly
Ĵ = {1}, thus we consider only M > 1. We assume, without loss of generality, that
θ̂k > θ̂k+1 for all k = 1, . . . ,M − 1.

FindBestJ

1. Set J ← {1}, k ← 2

2. If k = M or f(J) ≥ θ̂k, set Ĵ ← J ,
stop

3. Set J ← J ∪ {k}, k ← k + 1

4. Go to 2

The key to the correctness of procedure FindBestJ lies in the following lemma.

Lemma 3.2.
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(i) For every ∅ 6= J ⊆ {1, . . . ,M}, and k ∈ {1, . . . ,M} \ J,

f(J ∪ {k}) > f(J) if and only if f(J) < θ̂k,

(ii) Let Jk , {1, . . . , k} (where J0 , ∅).

For every k ∈ {1, . . . ,M}, If f(Jk−1) < θ̂k, then k ∈ Ĵ .

Proof.

(i) Writing

f(J∪{k}) =

( ∑L
i=1 pi +

∑
j∈J qj∑L

i=1 pi +
∑

j∈J qj + qk

)
f(J)+

(
qk∑L

i=1 pi +
∑

j∈J qj + qk

)
θ̂k,

we observe that f(J ∪ {k}) is a weighted average of f(J) and θ̂k. Thus, we
conclude that f(J ∪ {k}) > f(J) if and only if f(J) < θ̂k.

(ii) We prove the assertion by induction. For k = 0, obviously J0 ⊆ Ĵ . Now, assume
Jk−1 ⊆ Ĵ , so Ĵ = Jk−1 ∪ J̃ , where J̃ ⊆ {1, . . . ,M} \ Jk−1. Now, suppose k 6∈ Ĵ .
Writing

f(Ĵ) =

( ∑L
i=1 pi +

∑k−1
j=1 qj∑L

i=1 pi +
∑k−1

j=1 qj +
∑

j∈J̃ qj

)
f(Jk−1)

+
∑
j∈J̃

(
qj∑L

i=1 pi +
∑k−1

j=1 qj +
∑

j∈J̃ qj

)
θ̂j,

we observe that f(Ĵ) is a weighted average of f(Jk−1) and θ̂j (j ∈ J̃). However,

as θ̂k > θ̂j for all j ∈ J̃ (whenever J̃ 6= ∅), and θk > f(Jk−1), we have that

θk > f(Ĵ), so by (i), f(Ĵ ∪ {k}) > f(Ĵ), a contradiction (since f(J) reaches its
largest value at J = Ĵ). Hence we conclude that k ∈ Ĵ . �

We conclude this section with several observations based on these results.

• We assume that all the available production rates are different than the demand
rate D. Otherwise, it is obviously optimal to reject production rates (paying K
each time) until the production rate equal to D is realized, and then to produce
at rate D forever.
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• As in the case where there are no production rates smaller than the demand rate,
when the inventory level is zero it is optimal to use every production rate bigger
than D, and to produce up to the same level for every rate. Furthermore, under
the optimal policy, production at rates larger than D only starts when there is
no inventory.

• Obviously, feasibility requirements dictate that production rates smaller than D
must be rejected when the inventory level is zero. However, once the optimal
produce-up-to level is reached, it may be optimal to let the inventory level drop
to zero without starting production. Otherwise, it is possible that at the optimal
produce-up-to level, the optimal policy may call for rejecting some production
rates smaller than D (in addition to all rates greater than D). In this case
(assuming θ1 < θ2 . . . < θM) there exists a k ∈ {1, . . . ,M} such that only rates
θ1, . . . , θk are used while the rest are rejected.

• We note the surprising consequence of Theorem 3.4 that if (once the produce-
up-to level is reached) it is optimal to reject production rates θk+1, . . . , θM , the
policy of not rejecting any subset of these rates is better than the policy of not
starting production at all at this point.

3.3.3 Backorder Allowed

Next, we return to a setting where all production rates are greater than the demand
rate, and extend the model to allow backorder with a positive penalty cost rate of π.
As in Subsection 3.3.1, the optimal policy relates to a production cycle that starts and
ends at a zero inventory level when the machine is idle. Analogous to the observation
in Subsection 4.1 that under the optimal policy no production starts while the inven-
tory level is positive, here, no production stops while the backorder level is positive.
Specifically, the cycle starts with the machine idle and backorder accumulating up to a
level of B units. At that point, production starts with a (random) observable rate µi.
The production continuous until the inventory level reaches Ii. Thereafter, demand is
satisfied from inventory until the inventory reaches a zero level which indicates the end
of the cycle. The goal is to select values for Ii (i = 1, 2, . . . , L) and B that minimize
the average cost over the infinite horizon. Note that there is no dependency of the op-
timal maximal backorder level B on µi, as it is observed (immediately) after reaching
this level. As in the case where no backorder is allowed, we consider the possibility
of having Ii = 0 for some production rates µi and/or allowing B = 0. Now, similar
to (3.1), we can express the (random) average cost as a function of policy I, B for an
instance where there are N =

∑L
i=1 ni (> 0) cycles, and where ni is the number of
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times the production rate µi happens, by:

L∑
i=1

ni(K + h
2
TiIi + π

2
T bi B)

L∑
i=1

niTi

,

where T bi is the length of the time interval where the backorder level is positive, given
that the production rate in the cycle is µi. Following (3.2) and (3.3), and substituting
δiB for T bi , the objective to be minimized when backorder is allowed is

ACb(I, B) ,
KD +

L∑
i=1

piδi(
h
2
I2
i + π

2
B2)

L∑
i=1

piδi(Ii +B)

, (3.9)

and the corresponding optimization problem is

PACb : min
06=I≥0, B≥0

ACb(I, B)

In the following theorem we determine the unique optimal policy for the problem above.

Theorem 3.5. Problem PACb has a unique solution I∗ = (I∗1 , I2∗, . . . , I∗L), B∗, where

I∗i =

√
2πKD

h(h+ π)
∑L

i=1 piδi
, i = 1, . . . L; B∗ =

√
2hKD

π(π + h)
∑L

i=1 piδi
.

Proof. The average cost function (3.9) can be presented as follows:

ACb(I, B) =
f1(I, B)

f2(I, B)

where

f1(I, B) = KD +
h

2

L∑
i=1

piδiI
2
i +

π

2
(
L∑
i=1

piδi)B
2

and

f2(I, B) =
L∑
i=1

piδiIi + (
L∑
i=1

piδi)B.
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Applying Lemma 3.1, we get that the unique optimal solution I∗, B∗ to problem PACb
satisfies

hpiδiI
∗
i −

f1(I∗, B∗)

f2(I∗, B∗)
piδi = 0, i = 1, 2, . . . , L; (

L∑
i=1

piδi)B
∗ − f1(I∗, B∗)

f2(I∗, B∗)
(
L∑
i=1

piδi) = 0

so

I∗i =
1

h

f1((I∗, B∗)

f2(I∗, B∗)
, i = 1, . . . , L; B∗ =

1

π

f1(I∗, B∗)

f2(I∗, B∗)

Setting I∗ = 1
h
f1(I∗,B∗)
f2(I∗,B∗)

, B∗ = 1
π
f1(I∗,B∗)
f2(I∗,B∗)

and solving I∗ = 1
h
f1(I∗e,B∗)
f2(I∗e,B∗) , we get that

I∗i =

√
π2KD

h(h+ π)
∑L

i=1 piδi
, i = 1, . . . L.

Finally, noting that B∗ = h
π
I∗, we get

B∗ =

√
h2KD

π(π + h)
∑L

i=1 piδi
. �

As in the previous subsection, the optimal policy can be explained by the principle that
optimality is achieved whenever the average (per unit time) of all the cost components
of the model are equal. In particular, the average inventory cost during the sub-cycle
where the inventory level is positive, with a production rate µi, and a ‘produce-up-to’
inventory level Ii, is h

2
Ii. Therefore the principle of equal average costs leads to all

optimal Ii equal to the same level, say I∗. Next we need the average backorder cost
during the sub-cycle, where the backorder level is positive with a production rate µi
and with an optimal ‘accumulate-up-to’ backorder level B∗, to be the same as the
average inventory cost. This leads to the equation π

2
B∗ = h

2
I∗, which implies that

B∗ = h
π
I∗. Finally, equating the average ordering cost KD

L∑
i=1

piδi(Ii+B)

(substituting I∗ for

Ii and h
π
I∗ for B∗) with the inventory average cost h

2
I∗, and solving for I∗, we get

the optimal uniform inventory level I∗ and the optimal backorder level B∗(= h
π
I∗) as

stated in Theorem 3.5.

3.4 Discounted Infinite Horizon

In the previous section, we derive the optimal inventory levels with an average cost
model to minimize the total cost per unit time. Here, we address discounted cost
versions of several of these models. Trippi and Lewin (1974) was among the first
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papers to consider a discounted version of the traditional EOQ problem over an infinite
horizon. Later, this approach was adapted to the analysis of similar models in the
presence of trade credit, permissible late payment (Chung and Liao (2009), Chang
et al. (2010) and Goyal (1985)), and deteriorating inventory (Shah (2006)).

In light of the long history of the EPQ problem, however, there is surpringly little
published research exploring the discounted version of that model. Huang and Lin
(2005) and Huang et al. (2007) investigated replenishment policy under permissible
delay in payments and cash discount within the EPQ framework. Perhaps the closest
model to ours is found in Dohi et al. (1992). The model in this paper is essentially a
discounted version of the traditional EPQ model with a single production rate, and the
authors explore the characteristics of the total cost when the interest rate is perturbed.
However, their analytical results are primarily for limiting cases, when the production
rate goes to infinity and the interest rate goes to zero.

In contrast, we consider the same model as in the previous section, with random
production rates that are observed immediately after production starts, but here, the
objective is to minimize expected discounted cost over an infinite horizon. We consider
models both with and without backlogging, taking into account a penalty cost and a
general discount rate r > 0. We focus on a a setting where µi > D, for all i = 1, 2, . . . , L
(analysis of discounted cost models with production rates less than the demand rate
remains an open question).

3.4.1 No Backorder

As in the case with the average cost objective, since there is no setup time, and since
all production rates are greater than the demand rate, there is an optimal production
strategy based on a zero-inventory producing policy, where production will not start
while there is a positive inventory. We continue to call the period between two con-
secutive zero inventory levels a cycle. Given the expected discounted cost objective,
it is natural to model the problem as minimizing the total discounted cost over the
infinite horizon as a renewal process. In particular, when the inventory level reaches
zero, and upon observing the (random) production rate µi, production starts and con-
tinues until the inventory reaches an Ii level, Thereafter, the demand is satisfied from
inventory until it runs out, where a new cycle begins. Note that the beginning of a
cycle can be viewed as time 0. Thus, the optimal strategy can be characterized as
I∗ = (I∗1 , I

∗
2 , . . . , I

∗
L) where I∗i is the optimal ‘produce-up-to’ inventory level when a

production rate µi is observed at the beginning of a cycle. In spite of the fact that in
this discounted version of the problem, the initial decision seems in some sense more
heavily weighted, we are able to show in this section that the property that the optimal
‘produce-up-to’ inventory levels are all identical regardless of the observed production
rate (that is I∗i = I∗, for i = 1, . . . , L) is preserved even when the objective of minimiz-
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ing the average cost is replaced by the objective of minimizing the expected discounted
cost over the infinite horizon, even though in this setting a completely different proof
approach is required.

Recalling that τi = Ii
µi−D , Ti = τi +

Ii
D

, the total discounted cost for a cycle starting
at time 0 with production rate µi can be expressed as

fi(Ii) ,K + h

{∫ τi

0

(µi −D)te−rtdt+

∫ T i

τi

(−Dt+DT i)e−rtdt

}

+ c

∫ τi

0

µie
−rtdt

= K +
1

r2

(
µi(cr + h)− hD + e

−rIi
µi−D (D − µi − rIi)

)
+

1

r2

(
e
−rµiIi
µi−D

(
D + e

rIi
D (−D + rIi)

))
.

Suppose that starting at the second cycle we use a strategy whose total expected
discounted cost over the infinite horizon is S. Then, given that we have µi as the pro-
duction rate in the first cycle, and using Ii as the level of inventory when production is
stopped and never resumed until the inventory level is 0, the total expected discounted
cost over the infinite horizon, starting at time 0, can be expressed as

gi(Ii, S) , fi(Ii) + e−rTiS = fi(Ii) + e
−r µiIi

(µi−D)DS.

Theorem 3.6. Suppose S > cD
r

. Then, for i = 1, . . . , L, the unique solution Ii(S) of
the minimization problem minIi≥0 gi(Ii, S) is

Ii(S) =
D

r
ln

(
Dh+ Sr2

Dh+Dcr

)
. (3.10)

Proof. Observing that

∂gi(Ii, S)

∂Ii
=
−De

rIi
D−µi (h+ cr)µi + e

rIiµi
D2−Dµi (Dh+ Sr2)µi

Dr(D − µi)

=
µie
− rIi
µi−D

Dr(µi −D)

[
D(h+ cr)− e−

rIi
D (Dh+ Sr2)

]
,

we get that the unique solution to the first order condition equation ∂gi(Ii,S)
∂Ii

= 0,

whenever S > cD
r

, is Ii(S) (see 3.10). Since D, h, c, r are all positive parameters,

∂gi(Ii, S)

∂Ii
< 0 for 0 ≤ Ii < Ii(S), and

∂gi(Ii, S)

∂Ii
> 0 for Ii(S) < Ii,
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so Ii(S) is the unique global optimal point of gi(Ii, S). �
Now, for S > cD

r
, let F (S) =

∑L
i=1 pigi(Ii(S), S). It is clear that the optimal value

S∗ of the total discounted cost of the model presented in this section has to satisfy
S∗ = F (S∗). The next lemma is the key to showing that we can efficiently find S∗ (to
any level of approximation) by a binary search. As an input for such search, we need
to identify a lower bound S for S∗, as well as an upper bound S̄ for S∗.

Observing that the discounted cost of producing continuously with production D
(which is cD

r
) is smaller than the discounted cost (when backorder is not allowed) of

any policy; we have S = cD
r

. Since the discounted cost of any feasible policy is larger
than S∗, we notice first that the discounted cost of (starting at time 0) continually
producing at rate µi (which is feasible policy if µi is available) is K− hD

r2
+
(
c
r

+ h
r2

)
µi.

Thus we get the following upper bound,

S̄ =
L∑
i=1

[
K − hD

r2
+

(
c

r
+
h

r2

)
µi

]
pi = K − hD

r2
+

(
c

r
+
h

r2

) L∑
i=1

µipi

Lemma 3.3. Let S = cD
r

and S̄ = K − hD
r2

+
(
c
r

+ h
r2

)∑L
i=1 µipi.

(i) F (S) > S.

(ii) F (S̄) < S̄.

(iii) For S > S, 0 < ∂F (S)
∂S

< 1.

Proof.

(i) F (S) = F ( cD
r

) =
∑L

i=1 pigi(Ii(
cD
r

), cD
r

) =
∑L

i=1 pi(K + cD
r

) = K + cD
r
> cD

r
= S.

(ii) F (S̄) = F (K − hD
r2

+
(
c
r

+ h
r2

)∑L
i=1 µipi).

F (S̄)− S̄ =
L∑
i=1

−pi(µi −D)h+cr
r2

(
hµi+cµir+Kr

2

Dh+crD

)− D
µi−D < 0

F (S̄) < S̄

(iii) ∂F (S)
∂S

=
∑L

i=1 p
i ∂gi(Ii(S),S)

∂S
=
∑L

i=1 p
i
(
Dh+r2S
Dh+cDr

)− µi
µi−D .

However, since S > cD
r

0 <

(
Dh+ r2S

Dh+ cDr

)
< 1

by the assumptions of the model

µi
µi −D

> 0
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Moreover, 0 ≤ pi ≤ 1. Thus

0 <
∂F (S)

∂S
< 1.

�

An immediate consequence of the preceding lemma is that the unique S∗ satisfying
F (S∗) = S∗ is the total cost of the optimal policy for the model with discounted cost
and no backorders. The optimal “produce-up-to” level (at which point production
stops until inventory level falls to 0) is

Ii(S
∗) =

D

r
ln

(
Dh+ S∗r2

Dh+Dcr

)
Thus, even in the discounted cost case, we still get the property that the optimal
produce-up-to level is independent of the realized production rate µi.

3.4.2 Backorder Allowed

Next, we briefly consider the discounted cost infinite horizon model with the possibility
of incurring backorder at a cost of π per unit per unit time. In contrast to the previous
case where backorders are not allowed, we have been unable to characterize the cycles
that are consistent with optimal policies when backorder is allowed. However, we have
identified two characteristics of the optimal policy, as well as a conjecture, which if
true, will lead to a complete characterization of the optimal policy which is similar to
the previous case. In particular, if the conjecture is true, we get again that the optimal
“produce-up-to” inventory level is constant, regardless of the observed production rate.

Our first characterization is obvious. Whenever the system is idle and there is a
positive backorder level (and thus obviously zero inventory), the production will restart
(if it is optimal to restart it at some point in time) at the same backorder level B∗. In
this case, there is no relevant data for production restart except for the backorder level,
so by standard renewal arguments, if it is optimal to restart production at backorder
level B∗ (when the system is idle) at time t̄, then it will be optimal to restart production
at any other time t when the system is idle and the level of backorder is B∗.

The second characterization is that if the system is at zero inventory and the system
is idle (as we assume is the case at the start), the optimal policy requires a continuation
of no production for some time; that is, the optimal policy requires the accumulation of
some backorder before production starts. This result is formally presented (as Theorem
B.1) and proved in Appendix A.2.

Conceivably, whenever the system is idle and is at a positive backorder level, one
of the following can be the optimal policy:
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1. Never produce.

2. Once production starts (at some backorder level B∗), it stops at a point when
there is still a positive backorder level.

3. Once production starts (at some backorder level B∗), it stops only at a point
when there is a positive inventory level (and thus zero backorder level).

Thus far, we have been unable to determine which (possibly all) of these can occur
(for a given set of parameters). We conjecture that case (3) is true for all possible sets
of parameters. If this conjecture is true, we can show that the optimal policy is similar
to the policy in the “no backorder” case. Specifically, we can show that the optimal
policy goes through cycles whose end points are characterized by an idle system with
zero inventory. Once the cycle starts, there is no production until the backorder level
reaches a certain level B∗. Then, the production continues beyond the point where
the backorder level is zero. Thereafter, regardless of the realized production rate, µi,
the production continues until the inventory level reaches a certain level I∗. Finally,
the system remains idle until reaching a zero inventory level, when the cycle ends and
a new one begins. This result is formally presented (as Theorem B.2) and proved in
Appendix A.2.

3.5 Markov Decision Model

We have proposed several production models under the simplified perfusion manufac-
turing process in the previous section and got very neat production control policies.
However, the assumption of random production rate with discrete realizations of var-
ious probabilities is far from reality. We need to capture more of the characteristics,
especially the constantly changing dynamics in the perfusion process, which is shown
in the following diagram 3.2.

Recall that there are three generic periods in perfusion process, the ramp-up period,
steady-state and ramp-down period. Before reaching the steady state, the performance
of a specified batch can change dramatically due to the temperature, humidity and
other environmental conditions. Since this is a problem with sequential decisions to
make, we plan to model this as a Markov Decision Process, in which the state space
contains inventory level, production rate, etc, and the action space contains our de-
cisions of whether to produce or not. However, the perfusion production process is a
continuous process with infinite possible realizations of production rate, thus we need
to discretize the state space to approximate the dynamics in production rates.

We develop a Markov decision model by discretizing the time horizon in perfusion
production process into small intervals of length t, indexed by t = 1, 2, ..., in which we
could make successive production decisions, see figure 3.3.
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Figure 3.2: Generic perfusion production process. Three possible production batches
with stochastic production rates are presented.

At the beginning of each discretized decision interval, we can observe the current
production rate Pt and inventory level It. However, the production rate in the next
decision interval Pt+1 depends on the current production rate Pt and how long the
current state is away from the starting time of the new batch (if currently in the
middle of a production cycle). At any period t, we denote the time length since the
start of a new batch as τt, which, in theory, will impact the change in production rate
4P . Therefore, we model the distribution of change in production rate 4P in each
decision epoch as a function of τt, i.e. 4Pt ∼ Gτt , and its density function denoted as
gτt . Moreover, Pt+1 = Pt +4Pt. In our model, we assume this probability distribution
Gτt is deterministic. This way, we will have a discrete Markov decision model in which
an optimal decision exists depending on every possible current state.

Recall that this is an infinite horizon problem, where the production planning hori-
zon T →∞. A fixed setup cost K is charged when we start a new batch, and there is
a holding cost per item per unit time h. Demand D is a constant over time. The goal
is to schedule the production to meet the demand so as to minimize the total cost. We
formulate the model based on the following assumptions:

Assumption The decision to start/stop a new batch is made at the beginning of each
decision interval - to stop the batch if the machine is currently on, or to start a new
batch if the machine is idle.

Assumption Demand for the product arrives throughout the entire planning horizon,
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Figure 3.3: Discretized perfusion production process

but all orders are filled at the beginning of each decision interval. Demand must be
satisfied, and no backlogging is allowed.

To use dynamic programming in this Markov Decision model, the following measures
need to be defined:

• Decision epochs: t = 0, 1, 2 · · ·.

• States: ~St = (It, Pt, τt), note that τt is the time length since the start of a new
batch.

• Actions: at =


1 start a new batch

-1 stop producing
0 stay put

• Cost per period: Ct(s, a) = K · 1at=1 + h · It+1.

• State transition functions: St+1 ← (St, at)

However, we have a three-dimensional state space, it’s easier to present the tran-
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sition function for each dimension separately.

τt+1 =


τt + 1 τt > 0, at = 0

1 at = 1
0 at = −1

Pt+1 = Pt +4Pt

It+1 = It −Dt +
Pt + Pt+1

2
1τt+1>0

where 4Pt ∼ Gτt and gτt is its probability distribution depending on τt.

The system evolves according to the the above equations. Let Vt(St) be the cost-to-go
function at period t. The Bellman’s equation for this model is

Vt(St) = min
at∈A
{K · 1at=1 + h · It+1 + γEg(τt) [Vt+1(St+1)|St]}

= min
at∈A
{K · 1at=1 + h · It+1 + γ

∑
s′∈S

P(St+1 = s′|St, at)Vt+1(s′)

where γ is the discount factor (0 ≤ γ ≤ 1 ). As has been shown above, the state St+1 is
uniquely determined by the previous state St and action at, and thus we have a Markov
Decision Process (MDP). Referring to the conditions for value iterations reviewed in
2.3.1, the first three are satisfied directly in our problem setting; furthermore, during
the perfusion production process, the time τt is bounded above by L. 4P is countable
finite thus Pt is bounded. However, as we can keep producing, the inventory level
is possibly unbounded. Therefore, we need to bound the inventory It such that we
could adopt the value iteration by looping through all the possible states. Intuitively,
this does not contradict with the reality since high inventory level will impose extra
and unnecessary inventory cost. This bounding-inventory-level process is called the
truncated value iteration.

3.5.1 Computational Examples

The dynamics of the perfusion process lies in the distribution of change in production
rate gτt . For simplicity, we assume gτt as a discrete distribution such that Pt ∈ Z+,
thus making it easier to loop though all production rates in value iteration.

The example shown in table 3.1 is a 8-period perfusion production process, and the
series of probability distributions gτt , τt ∈ {1, 2, · · · , 8} is shown in the matrix M : each
column represents one τt, each row gives a possible value that 4P can take, and each
entry in this matrix indicates the probability of 4P taking the value in this row given
this specific τt.
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Table 3.1: Probability Distributions gτt
HH

HHHH4P
τ

0 1 2 3 4 5 6 7 8

0 0 0 0 1 1 1 1 1 1
1 0.2 0 0 0 0 0 0 0 0
2 0.3 0 0.2 0 0 0 0 0 0
3 0.2 0.2 0.3 0 0 0 0 0 0
4 0.1 0.3 0.2 0 0 0 0 0 0
5 0.1 0.2 0.1 0 0 0 0 0 0
6 0.1 0.1 0.1 0 0 0 0 0 0
7 0 0.1 0.1 0 0 0 0 0 0
8 0 0.1 0 0 0 0 0 0 0

Visualizing the optimal policy with a three dimensional state space (It, Pt, τt) is a
bit tricky. We want to investigate the impact of It on different combinations of (Pt, τt).
More specifically, we are interested in two aspects: how the value function changes over
It given some (Pt, τt), and how the optimal action alternates based on It. Therefore, we
present four charts in each of the following numerical example: the first one shows the
value functions change over inventory given three different combinations of (Pt, τt), and
later three show the optimal functions over inventory for each of the aforementioned
(Pt, τt). For simplicity, we use at = 1 to represent the policy of “to produce”, and
at = 2 to represent “not to produce”. The parameters in the first numerical example
shown in figure 3.4 are K = 20, D = 2, c = 1, λ = 0.9.

These value functions are non-convex. And we find that these three scenarios all
posses a lower threshold in inventory, below which one should always produce, and an
upper threshold above which one should never produce. So far this looks very like the
classical (s, S) policy in inventory control policy. However, the optimal policy between
this lower and upper threshold is somewhat complicated – alternating between “to
produce” and “not produce”. Furthermore, the distance between this lower bound and
upper threshold is not necessarily the same but vary depending on (Pt, τt).
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Figure 3.4: K = 20, D = 2, c = 1, λ = 0.9

Furthermore, we want to see how an increased setup cost K will influence the
structure of the optimal policies, which is shown in figure 3.5. We can tell that the
threshold are generally shifting to the right, and more interestedly, we could observe an
inventory range [Lt, Ut] such that when It < Lt, we produce; when It > Ut, we do not
produce. Again, when It ∈ [Lt, Ut], the optimal policy is alternating between produce
and not produce.
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Figure 3.5: K = 100, d = 2, c = 1, λ = 0.9

We then vary holding cost and demand rate, see figure 3.6, 3.7. In all of the
computational examples, we find that given a set of parameters (K, d, c), there is
always an inventory level s such that once It < s, the optimal policy is to produce
regardless of (Pt, τt). And there is a S such that once the inventory level exceeds S,
the optimal policy is always not to produce regardless of (Pt, τt). When s < It < S, the
optimal actions are state dependent. Moreover, the threshold (S, s) vary in K,h,D.
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Figure 3.6: K = 20, d = 2, c = 5, λ = 0.9
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Figure 3.7: K = 20, d = 5, c = 1, λ = 0.9
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3.6 Multiple Products Model

Our ultimate interest lies in the multi-product version of this single-machine lot siz-
ing/sequencing problem. The research on related multi-product single-machine lot
sizing and sequencing starts from the traditional Economic Lot Scheduling Problem
(ELSP), which assumes a constant, predetermined production rate of perfect quality.
Typically, costs include setup cost, production cost, and holding cost, and the goal
is to determine a production strategy that minimizes long run average cost (here, we
focus on long run average cost rather than discounted cost, as is common in the lit-
erature). For the ELSP (without setup times), the necessary and sufficient condition
for a cyclic policy to be feasible is that the total production time does not exceed the
total available time, i.e.

∑
i

σi/Ti ≤ 1, where σi is the processing time, and Ti is the

cycle length (Axsäter (2006)).
Elmaghraby (1978) points out that contributions to the ELSP are typically either

analytical approaches that achieve the optimum of a restricted versions of the original
problem, or heuristics that achieve good solutions of the original problem. The most
elementary approaches to the ELSP guarantee feasibility at the outset by imposing
some constraints(s) on the cycle times, and then optimize individual cycle durations
subject to the imposed constraints. Among these, two approaches seem most preva-
lent: the Common Cycle (CC) approach (Hanssmann (1962)) and Basic Period (BP)
approach (Bomberger (1966)). The CC approach first assumes a common cycle T that
can accommodate the production of the required amount of each item exactly once,
and then optimizes the cycle T ∗ such that the total cost per unit time is minimized.
In contrast, the BP method admits different cycles for different items but constrains
each cycle Ti of item i be an integer multiple ni of a basic period W , where one basic
period is long enough to accommodate the production of a single cycle of each of the
items. Both of these approaches give a feasible upper bound on the ELSP problem –
the BP method is less constrained, obviously leading to a tighter bound.

Our multi-product problem is equivalent to the Economic Lot Scheduling Problem
(ELSP) (Elmaghraby (1978)) but with the addition of stochastic production rates.
One alternative is to modify existing heuristics for this NP-hard (Hsu (1983)) problem
to account for the stochastic production rates. We present modified versions of the
CC and BP approaches below. Note that in contrast to the single product case, these
approaches need to make explicit use of the fact that one can observe the production
rate.

Consider a setting with multiple products i = 1, 2, . . . n, each with Li possible

production rates µij with respective probabilities rij,
Li∑
j=1

rij = 1. For each product i,

there is a setup cost Ki, holding cost per unit time hi and production cost per unit ci.
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If we define ρij = Di
µij

and ρ̃i = Di

min
j
{µij}

, a sufficient condition for the existence of a

feasible policy is
n∑
i=1

ρ̃i ≤ 1.

We first present adaptions of CC and BP, and then present a novel heuristic based
on our observations in the single product case.

3.6.1 Adapted Common Cycle Approach (ACC)

A classical approach from the literature, the Common Cycle approach, constrains the
cycle length T to be the same for each product, where T can accommodate the pro-
duction of each item at least once. We adapt the CC approach into our scenario. Note
that if the condition

∑N
i=1 ρ̃i ≤ 1 is satisfied, any T is feasible. Following the same

development as in Section 3.3.1, the total cost per unit time for product i is:

ACi =
Ki

T
+ hiDi(1− E

[
ρi
]
)
T

2

where E [ρi] =
Li∑
j=1

rijρij, and thus total cost per unit time over all products is

min
T

AC =
n∑
i=1

{
Ki

T
+ hiDi(1− E

[
ρi
]
)
T

2
+ ciDi

}
(3.11)

which is convex in T . To minimize AC, we set its derivative with respect to T equal

to zero, and obtain that T ∗ =

√√√√ 2
n∑
i=1

Ki

n∑
i=1

hiDi(1−E[ρi])
.

Given T ∗, Qi = DiT
∗ of each product is sequentially produced, where the time

between production starts for each product i is T ∗, and the production time and
produce up-up-to level for product i depends on the realized production rate, i.e.
τ ij = DiT

∗/µij.

3.6.2 Adapted Basic Period Approach (ABP)

Similarly, we can adapt the basic period heuristic. The basic period heuristic allows
different cycle lengths for each product subject to the restriction that each cycle length
has to be an integer multiple of a basic period W , i.e. Ti = miW . W is chosen so that it
can accommodate production of each product, which guarantee feasibility (Bomberger
(1966)).
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Adapting BP for our problem and following the approach outlined above, the cost
per unit time for item i:

ACi(mi,W ) =
Ki

miW
+ hiDi(1− E

[
ρi
]
)
miW

2
. (3.12)

where ACi(mi,W ) is a function of the cycle length miW . The best W and {m1,m2, ...}
for this heuristic are found by solving the following constrained optimization problem:

min
mi,W

n∑
i=1

ACi(mi,W )

s.t.
n∑
i=1

miρ̃i ≤ 1

mi = 0, 1, 2 · · ·

(3.13)

Note that as is typical for this type of approach, constraint (3.13) ensures that
the total production time of all products cannot exceed W even at the slowest set of
production rates.

Constraint (3.13) is sufficient but not necessary. Since any product i with mi > 1
will not be produced in every base period (but instead in every mi base periods), there
is no need to have sufficient capacity in each base period to make a cycle’s worth of
each product. For the ELSP, Haessler (1979) extended the Basic Period approach to
account for this observation, and developed a systematic approach for generating a
feasible schedule.

For details, see Haessler (1979). We adapt this heuristic – denoted as ABP-H – for
our problem.

3.6.3 Produce-up-to the Same Level

In Sections 3.3 and 3.4, we show that for the single product model it is optimal (for
average cost or discounted cost objectives) to raise inventory to a single target level
independent of the observed production rate. We are thus motivated to develop a
heuristic for the multiple-product case where inventory for each product is raised to a
single product-specific maximum level independent of production rate. Implementing
this approach, it is unnecessary to observe production rates when production starts
– it is sufficient to identify the time at which inventory hits its maximum level. In
the multiple product case, however, because it takes different amounts of time to
produce up to a given level depending on the realized production rate, in general, a
zero inventory ordering policy will not be feasible. We address this issue by developing
a class of Fixed Idle Time (FIT) heuristics for this problem, in which we cycle through
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the production of each product in a given sequence, produce each product up to a single
product-specific level regardless of the realized the production rate, and then insert a
constant fixed amount of idle time into the schedule before restarting production of
the next product in the sequence (so that in general, inventory level of a particular
product will not be at zero when production of that product is restarted). Any such
heuristic needs to address several key issues:

1. Determining the production sequence. Instead of sequentially producing
each of the products, it may make sense to have a more complex production
sequence, where some products are produced more frequently than others.

2. Determining the produce-up-to level for each product. For each product,
a produce up to level must be selected so that even at the slowest production
rate, there is time to produce up to the target inventory level before the inventory
level of other products reaches zero.

3. Determining when to start each production cycle. In the multi-product
case, since production must be started in time to ensure that production of other
products can also be started in time to prevent stock-outs. Therefore, any feasible
solution where inventories are raised to the same level for each product for each
cycle might not be a zero inventory ordering policy. Furthermore, any such policy
must determine the start time for each cycle.

In general, simultaneously optimizing all three of these decision parameters is ex-
tremely challenging – indeed, ensuring that a set of parameters leads to a feasible
solution is a challenge. However, we can ensure feasibility by 1) adopting the produc-
tion sequence and maximum inventory levels (given the slowest production rate) from
either ACC or ABP-H; 2) by employing what we call a fixed idle time policy to
determine production start times. We detail this approach below, first starting with
the ACC based solution, and later the ABP-H based solution.

Fixed Idle Time Policy (FIT)

The ACC-based Approach
Our starting point for this solution is the ACC solution described in Section 3.6.1.
Given this solution, we assess the following:
The production sequence: In the ACC approach, we cycle through the products,

producing each product once in the cycle – we adopt the same approach in the
ACC version of the FIT policy.
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The produce-up-to level: Here, for each product, we produce up to the inventory
level achieved during the slowest production rate in the ACC approach. To
calculate this, recall that the optimal common cycle time is

T ∗ =

√√√√2
n∑
i=1

Ki

/ n∑
i=1

hiDi(1− E [ρi])

Thus, the maximum inventory level for product i given production rate µij is

Hij = T ∗ · Di(µij −Di)

µij
,

so for product i, we produce up to the inventory level

Θi = min
j
{Hij} (3.14)

The production start time: For any ACC solution, production in a cycle can be
arranged so that production of all products is sequential, and then there is some
(possibly zero) idle time before production restarts. The length of this idle time
will vary, depending on realized production rates during the cycle, and will be
smallest when each product is produced at its slowest rate. We determine this
minimum possible idle time, and in the FIT heuristic, insert this amount of idle
time after producing each of the products once. To determine this, we calculate
the maximum possible processing time based on the slowest rate for each product

τi,max =
Θi

min
j
{µij} −Di

The minimum possible idle time is therefore

∆ = T ∗ −
∑
i

τi,max (3.15)

Thus, in the FIT heuristic, we produce each product in turn up to level Θi, insert time
∆, and then start over. Note that this will not in general be a zero inventory producing
policy.

In Figure 3.8 we illustrate for a two-product case (where each product has a slow
and a fast production rate) the ACC sequence and the corresponding FIT sequence.
We illustrate a sample path where production rates in the first three periods are slow,
fast, and then slow, and shade the time during which the machine is idle. Observe that
the FIT sequence leads to some shorter production cycles, resulting in more frequent
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Figure 3.8: Sample production schedule of ACC and FIT

production. Given this schedule (which we argue in the Appendix will always be
feasible), we can then search over possible T ∗ values to further reduce costs.
The ABP-H-based Approach

We can similarly adapt the Hassler version of the BP heuristic (ABP-H). Recall
that the ABP-H solution consists of a basic period W and a set of integer multiples of
the basic period m = (m1,m2, · · · ,mn), where if mi = 1, product i is produced every
base period, if mi = 2, product i is produced every second base period, if mi = 3,
product i is produced every third base period, etc. Starting from the ABP-H solution
described in section 3.6.2, we can develop a version of the FIT heuristic as follows:
The production sequence: Here, we adopt the same production sequence as in the

ABP-H heuristic, noting that depending on the multiplier, a product may appear
more than one time in the sequence. For instance, in the three product case if
m = (1, 1, 2), then the production sequence will be 1231212312 · · ·.

The produce-up-to level: Here, given basic period W , the corresponding maximum
inventory levels are Hij = W · Di(µij−Di)

µij
∀i, and thus the produce-up-to inventory

levels are Θi = min
j
{Hij}.

The production start time: Recall that we can generate a production schedule
in ABP-H from the production multipliers m = (m1,m2, · · · ,mn). The ABP-H
solution can be viewed as a series of subcycles making up a cycle, where each
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subcycle corresponds to a basic period, and the cycle corresponds to the time
where the sequence restarts. Let K denotes the least common multiple of the
mi’s, and let t denote the index of a sub-cycle where t ∈ {1, 2, · · · ,K}. In any
given subcycle t, for all of the products i that we produce in that subcycle, we
produce up to Θi, and then append an idle time equal to

∆t = W −
∑
i

τi,max · 1ti (3.16)

where the maximum possible processing time based on the slowest rate for each
product is τi,max = Θi

min{µij}−Di , and binary parameter 1ti is equal to 1 when we

produce i in the subcycle t and 0 otherwise. Observe that in general we can have
different fixed idle times in different subcycles.
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Figure 3.9: Sample production schedule of ABP-H and FIT

Thus, in this version of FIT, we produce the appropriate products in each subcycle
up to level Θi, insert the appropriate idle time ∆t given the subcycle we are producing,
and then start the next subcycle. In Figure 3.9 we illustrate for a two-product case
the ABP-H sequence and the corresponding FIT sequence. In this example, the vector
of periods numbers is m = (m1,m2) = (1, 2), and the production rate sequence over
the first three basic periods is {slow, fast, slow} for product 1, and is {slow, fast} for

product 2. Note that the idle time vector ~∆ = (∆1,∆2) can be pre-calculated.
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3.6.4 Computational Experiments

We completed a series of computational tests to compare the effectiveness of ACC,
ABP-H, and FIT policy based on ABP-H. For ACC and ABP-H, we can easily assess
the expected cost per unit time. This calculation is much more complicated for the
FIT heuristic, however, so we use simulation to assess the cost of the FIT heuristic.

We complete a series of experiments in which we vary the fixed cost, holding cost
and relative production rates, and compare the performance of the heuristics. The
parameters are selected as follows: We have four products (indexed i = 1, 2, 3, 4 and
two production rates (j = 1, 2). Demand is Di = 20 + 10 · i, so demand varies as a
function of product index i. Production rates varies as µij = A · Di + B · j, where
A = {4, 10, 100}, B = {10, 100}, and the probability of a given production rate j for
product i, rij, is generated from the uniform distribution U(0, 1), and rescaled such that

2∑
j=1

rij = 1. Observe that A is a demand rate multiplier, while B controls the difference

between production rates for a given product. These parameters imply that demand is
selected from a range of (20, 60) with increments of 10 between consecutive products,
production rates are at least 4 times demand rates, thus ensuring feasibility (recall
that the feasibility condition for the multi-product single machine production problem

is
N∑
i=1

Di
µij
≤ 1). Fixed costs are randomly generated from Ki ∼ 100 + C · U(0, 1) · i,

where constant C is chosen from the set {100, 1000}, holding costs take on two values
h = {1, 100}.

We can calculate the optimal production cycle time T̄ ∗i of individual item – the
optimal production cycle time if product i is the only product – and obtain a lower
bound by summing corresponding individual product cost ACi, so that

LB =
n∑
i=1

ACi(T̄
∗
i ).

Thus we test the performances of the three heuristics with respect to the lower bound
for each possible combination of (Ki, h, µij), i ∈ I, j ∈ J , a total of 2 × 2 × 3 × 2 =
24 possibilities. For each combination (Ki, h, µij), we consider 50 realizations of the
random parameters, calculate the expected cost of applying ACC and ABP-H based
heuristics for those realizations, and simulate for 100 periods the FIT heuristic.

We define the following performance measure for each heuristic:

η =
Cost− LowerBound

LowerBound

which measures the percentage distance from the lower bound, where a lower η value in-
dicates better heuristic performance. Averaging over all 24 combinations of parameter
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η ACC ABP-H FIT
Average 1.0551 1.0422 1.2385

Table 3.2: Overall Performance of ACC, ABP-H and FIT

Ki ∼ 100 + 100i · U(0, 1) Ki ∼ 100 + 1000i · U(0, 1)

η ACC ABP-H FIT ACC ABP-H FIT

Avg. 1.0260 1.0244 1.2111 1.0843 1.0600 1.2659
Med. 1.0241 1.0230 1.2170 1.0674 1.0503 1.2559
Max 1.1126 1.1064 1.3954 1.3059 1.2789 1.6220
Min 0.9367 0.9366 1.0121 0.9526 0.9505 1.0415

Table 3.3: Statistics of η value under various fixed cost

sets, Table 3.2 summarizes the heuristics’ performance. Observe that for the selected
parameters, ACC and ABP-H perform quite similarly on average while FIT doesn’t
perform as well. Next, we explore the impact of problem parameters on heuristic
performance.

The Impact of Fixed Costs

To explore the impact of the magnitude of fixed costs on algorithm performance, we
average across parameters except for fixed costs in Table 3.3. Observe that ACC and
ABP-H perform similarly, although ABP-H seems to outperform ACC slightly, and
as the setup costs become more distinct this becomes more apparent. Regardless of
the setup costs, however, both heuristics outperform FIT by about 20% on average,
although they both need to make explicit use of knowledge of the production rates.

The Impact of Holding Cost

We average over parameters other than holding cost in Table 3.4. Holding cost seems
to have little impact on heuristic performance.

h = 1 h = 100

η ACC ABP-H FIT ACC ABP-H FIT

Avg. 1.0565 1.0432 1.2358 1.0538 1.0412 1.2412
Med. 1.0481 1.0392 1.2382 1.0434 1.0340 1.2347
Max 1.2106 1.1900 1.5037 1.2080 1.1953 1.5136
Min 0.9364 0.9353 1.0334 0.9528 0.9518 1.0202

Table 3.4: Statistics of η value under various holding costs
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η ACC ABP-H FIT

µij = 4Di +Bj Avg. 1.0529 1.0436 1.5695
Med. 1.0491 1.0394 1.5855
Max 1.2359 1.2752 2.0995
Min 0.8750 0.8718 1.0709

µij = 10Di +Bj Avg. 1.0601 1.0435 1.0977
Med. 1.0479 1.0370 1.0868
Max 1.1998 1.1743 1.2380
Min 0.9586 0.9586 1.0123

µij = 100Di +Bj Avg. 1.0524 1.0396 1.0482
Med. 1.0402 1.0334 1.0370
Max 1.1922 1.1284 1.1885
Min 1.0002 1.0002 0.9973

Table 3.5: Statistics of η under various production rates

The Impact of Production Rate

Finally, we explore the impact of different relative production rate, separating results
by µij values in Table 3.5. As the relative production rate increases, the performance
of FIT approaches, or even exceeds, that of the other two heuristics, despite the fact
that it doesn’t require knowledge of production rates. We also explore the impact of
disparity in different production rates in Table 3.6. From this table, we see that when
µij = 4Di + Bj, a bigger B will generally result in better performance of FIT, since
FIT performs better when production rates increase relative to demand rate. When
µij = 10Di +Bj, the performance of FIT approaches that of ACC and ABP-H, and a
bigger B leads to worse performance of FIT, while when µij = 100Di + Bj, a bigger
B leads to a better performance of FIT.

Overall, when production rates are relatively low, ACC and ABP-H outperform
FIT. But when production rates are significantly higher than demand rates, FIT per-
forms well, and provides a feasible yet simple production scheme, which is helpful
especially when we can not observe realized production rates.
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B = 10 B = 100

η ACC ABP-H FIT ACC ABP-H FIT

µij = 4Di +Bj Avg. 1.0446 1.0362 1.7223 1.0612 1.0509 1.4168
Med. 1.0416 1.0323 1.7533 1.0566 1.0465 1.4178
Max 1.2664 1.3636 2.4065 1.2053 1.1868 1.7924
Min 0.8160 0.8127 1.0912 0.9340 0.9309 1.0506

µij = 10Di +Bj Avg. 1.0550 1.0400 1.0706 1.0652 1.0470 1.1248
Med. 1.0451 1.0319 1.0617 1.0507 1.0421 1.1119
Max 1.1956 1.1768 1.2019 1.2040 1.1717 1.2742
Min 0.9471 0.9471 1.0108 0.9702 0.9702 1.0138

µij = 4Di + 10j Avg. 1.0546 1.0397 1.0502 1.0502 1.0394 1.0462
Med. 1.0403 1.0323 1.0366 1.0402 1.0346 1.0375
Max 1.2416 1.1390 1.2388 1.1427 1.1178 1.1382
Min 0.9997 0.9997 0.9947 1.0008 1.0007 0.9998

Table 3.6: Statistics of η under various B values
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Chapter 4

Perfusion Production and
Multi-stage Perishable Inventory
Integrated Models

4.1 Introduction

In the previous chapter, we developed a continuous time infinite horizon lot-sizing
model motivated by a specific type of semi-batch biotechnology manufacturing, per-
fusion. We showed that given the objective of minimizing an average cost per unit
time or total discounted cost, it is optimal to produce up to the same inventory level
regardless of the realized production rate.

However, there are other challenges integral to the biopharmaceutical manufactur-
ing industry that we intend to explore in addition to the perfusion planning. We are
particularly interested in expanding our view beyond a single stage in the supply chain,
and considering a problem critical to supply chain planning in this industry: planning
when products can expire at any stage of the supply chain, but the “clock” is restarted
each time additional processing steps are completed in the supply chain.

Consider a supply chain where the bulk materials will be manufactured in one plant,
and then shipped to other locations for additional processing (in the biopharmaceutical
industry, this might include filling, labeling, packaging, etc). The demand is satisfied at
the end of the supply chain, and this information is given to the manufacturing plant.
In this multi-stage process, managers have to take into account the perishability of
inventory. Due to the nature of governmental regulations, products can be held for
different amounts of time at different stages until they expire. For example, products
can be held in bulk form for a given amount of time, but this “clock” restarts when
products are filled and labeled, and they can be held for an additional amount of time
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independent of how long they were held at the previous stage. As we reviewed in
Section 2.2.4, researchers have considered multi-stage perishable inventory models, but
we are interested in integrating both stochastic production rates and stage-dependent
product lifetimes in a production-inventory integrated system.

4.2 Model Notation

We consider a two-stage – manufacturing and secondary processing site – supply chain.
Recall that we develop a production planning model in the previous chapter, which
addresses production schedules at the manufacturing site with stochastic production
rates. In this chapter, we work on its extension, i.e. a combined problem of produc-
tion at the manufacturing site and shipment to the secondary site. The property of
stochastic production rates is retained, i.e., the production rates conform to a discrete
distribution, and demand is satisfied at the secondary site. This supply chain corre-
sponds to the vendor-to-buyer production-inventory integrated model in the literature.
To be consistent with the relevant literature, for the remainder of this chapter we call
the manufacturer the vendor and secondary processing site the buyer. Therefore, we
have a single-vendor single-buyer integrated model.

Note that the demand rate at the buyer is constant and that in this chapter we
assume that all the possible production rates are larger than the demand rate. No
backorder is allowed. The allowed lifetime of products is L0 at the vendor, and L1

at the buyer. Set-up costs occur both when a production batch starts at the vendor,
i.e. K0, and when a batch is shipped from the vendor to the buyer, i.e. K1. There
are holding costs at both stages of the system, i.e. h0, h1 per unit per unit time. The
goal is to determine a production and shipping plan to minimize system costs while
satisfying demand.

Recall that in chapter 2.2.4., we introduced a model, proposed by Hoque (2011a),
of a generalized single-vendor single-buyer supply chain model by extending the idea
of synchronization of unequal and/or equal-sized batches. Their work proposed both a
production schedule at the vendor and a shipment schedule to the buyer, as showed in
Figure 4.2. The solid lines represent the accumulated inventory at the vendor with non-
flat areas denoting the ongoing production, and the dotted line indicates the inventory
at the buyer with successive shipments.

We adopt this model, but incorporate stochastic production rates and the perisha-
bility constraints. The notation used in this model follows:

• K0, h0 : setup cost, holding cost at vendor

• K1, h1 : setup cost, holding cost at buyer, and h1 > h0 (a common assumption
in supply chain theory due to the increased value of the product)
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Q/µ z/µ + Q/D – Q/µ 

z/µ Q/D 

z 
kz 

y y y 

Figure 4.1: General shipping strategy introduced by Hoque (2011a)

• Kd: one-time inventory disposal cost, if there is any

• µi : production rate at vendor, occurs with probability pi, µi ≥ D ∀i ∈
{1, 2, · · · , L}

• D : constant demand rate at buyer

• k : size ratio of two consecutive shipment batches

• L0 : maximum storage time length at vendor, i.e. perishability constraint

• L1 : maximum storage time length at buyer

Recall the following definitions from Chapter 2.

Definition T – a production cycle, denotes the time between two consecutive first
shipment to the vendor depending on the production rate.

Definition t – a shipment cycle, denotes the time between two consecutive shipments
to the buyer.

The key issues in this type of model are 1) production quantity at the vendor under
stochastic production rates µ = (µ1, µ2, · · · , µL), 2) shipment quantity to the buyer.
In particular, we follow two policies that specify the shipment quantity as follows:

Fixed Size Policy (FS) The batch size of each shipment to the buyer in a produc-
tion cycle is the same.
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Fixed Ratio Policy (FR) The ratio of the batch size of any two consecutive ship-
ments in a production cycle is the same.

Accordingly, we define decision variables as: given realizations of production rates
µ = (µ1, µ2, · · · , µL)

• Q = (Q1, Q2, · · · , QL) : production quantity in a cycle

• l = (l1, l2, · · · , lL) : number of unequal sized batch

• z = (z1, z2, · · · , zL) : batch size of the first shipment

• n = (n1, n2, · · · , nL) : total number of batches for shipment within a cycle

• y = (y1, y2, · · · , yL) : batch size of the equal size shipment

In the following section, we utilize a version of this model integrating stochastic
production rates and two-stage perishability, and we use two heuristics that corresponds
to FS and FR policy. Before proceeding to the details of the models, we first present
some properties of inventory at the buyer.

Lemma 4.1. In an optimal solution to the single vendor single buyer production in-
ventory integrated model with constant demand, no inventory will perish at the buyer.

Proof. Suppose that in an optimal production policy, inventory at the buyer perish. We
can reduce the amount transported to the buyer, ensuring that the one-time transporta-
tion cost stays the same and holding costs decrease, contradicting with the optimality
of the original shipment policy.

However, inventory might perish at the vendor since one could lengthen the pro-
duction cycle to avoid setup costs K0, which might lead to expiring inventory in the
future.

4.3 Fixed Size Shipment / Non-perishable Inven-

tory at the Vendor

In this section, we first build our model based on the assumption that there is no
perishable inventory at the vendor.

Assumption In the single vendor single buyer production inventory integrated model
with constant demand, the shipment to the buyer is a zero inventory shipment policy.

Here, we mandate equal size shipments from vendor to buyer. This production
and shipping policy is illustrated in the following diagram. Observe that in this case,
Qi = niyi.
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Inventory at buyer 

y y y y y 

Q/µ Q/D - Q/µ 
y/D 

Figure 4.2: Equal-sized batch shipment with l = 0, n = 4

4.3.1 Feasibility

We consider feasibility conditions for this policy. One key consideration is the over-
lapping of successive production-shipment schedules, i.e. the next batch of production
may need to start before the inventory in the current batch is completely shipped to
the buyer. Therefore, we need to impose a constraint on the size of the first shipment,
to ensure that there is sufficient time to produce it. Given any µi, i ∈ {1, 2, · · · , L},
the time to completely consume the inventory after stopping production in the current
batch is

Qi

D
− Qi

µi
+
yi
D

The time to produce for the first shipment in the next batch is

yj
D

j ∈ {1, 2, · · · , L}

This feasibility condition requires that

max
j

yj
D
≤ min

i

{
Qi

D
− Qi

µi
+
yi
D

}
Substituting Qi = niyi, we get

Qj

njD
≤ Qi

D
− Qi

µi
+

Qi

niD
∀i 6= j

⇔ 0 ≤ (
Qi

ni
− Qj

nj
)

1

D
+Qi

(
1

D
− 1

µi

)
∀i 6= j

(4.1)
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Next, consider perishability constraints, which requires that products are stored at
vendor no more than L0 time units after production, and at the buyer no more than
L1 time units after shipment from vendor. Accordingly, the production policy can be
illustrated as in Figure 4.3. For simplicity, we skip the subscript i for the following
perishability constraints analysis.

The production cycle length is T = Q
D

, shipment cycle length is y
D

. The consecutive
shipments occur at t1 = y

D
, t2 = 2 y

D
, · · · , tn = n y

D
. Let q+

j denote the inventory level
at the vendor at the end of tj before shipment to the buyer (in other words, the pre-
shipment inventory quantity), q−j denote the remaining inventory at the vendor at the
end of tj after the jth shipment to buyer (the post-shipment inventory quantity), and
q denote the inventory level at vendor when the production for this particular cycle
stops.

Inventory at vendor 

y y 

Q/µ Q/D - Q/µ 

t1 t2 / tm-1  t3 / tm  0 

q1
- 

q1
+ 

q2
- 

q2
+ q 

t4 

Q/D 

Figure 4.3: Equal-sized Batch shipment with l = 0, n = 4

Definition m is an integer such that

(m− 1)
y

D
≤ Q

µ
≤ m

y

D

Thus, m = dnD
µ
e. A similar definition was introduced by Lu (1995). We can interpret

m as the first shipment cycle in which the production stops. In the example showed in
figure 4.3, m = 3.
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For j = 2, 3, ...m− 1,

q+
1 =

µ

D
y

q−1 =
( µ
D
− 1
)
y

q+
j = q−j−1 +

µ

D
y

q−j = q+
j − y

Both q+
j and q−j are non-decreasing in j ∈ {1, 2, · · · ,m− 1}. For simplicity

q+
1 =

µ

D
y

q−1 =
( µ
D
− 1
)
y

q+
j = jy

µ

D
− (j − 1)y

q−j = jy
( µ
D
− 1
)

And
q = Q− (m− 1)

y

D
·D = Q− (m− 1)y

By Lemma 4.1 and a FIFO shipment policy (vendor will ship oldest product first), the
perishability constraints at vendor have two components:

For the first m− 1 shipments

q+
j

µ
≤ L0 ∀j = {1, 2, · · · ,m− 1}

⇔ jy · 1

D
− (j − 1)y · 1

µ
≤ L0 ∀j = {1, 2, · · · ,m− 1}

so that the oldest product in the pre-shipment inventory at the end of each tj cannot
be produced more than L0 unit time ago (or it would have expired). Since q+

j is
non-decreasing in j, these constraints can be simplified as[

(m− 1)
1

D
− (m− 2)

1

µ

]
· y ≤ L0 (4.2)

For material in inventory after the (m−1)th shipment, we need to ensure that
under a FIFO shipment policy, the oldest inventory to be shipped was not produced
more than L0 time units ago (not yet expired). For example, the oldest inventory to
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Inventory at vendor 

y y 

t1  tm  0 

q 

t4 

q/µ + tm – Q/µ 

(q-y)/µ + tm – Q/µ + y/D 

qm-1
- 

qm-1
+ 

Q/µ 

Figure 4.4: Inventory lifetime after m− 1th shipment

be shipped in the mth shipment has a lifetime of q
µ

+ tm − Q
µ

(as can be observed in

Figure 4.3). Recall that tm = m · y
D

, thus

q

µ
+m · y

D
− Q

µ
≤ L0

Furthermore, the oldest inventory to be shipped in the m+1th shipment has a lifetime
of q−y

µ
+m · y

D
− Q

µ
+ y

D
, and therefore

q − y
µ

+m · y
D
− Q

µ
+
y

D
≤ L0

Overall, the perishabilty constraints are

q

µ
+m · y

D
− Q

µ
≤ L0

q − y
µ

+m · y
D
− Q

µ
+
y

D
≤ L0

q − 2y

µ
+m · y

D
− Q

µ
+

2y

D
≤ L0

· · ·
q − (n−m)y

µ
+m · y

D
− Q

µ
+

(n−m)y

D
≤ L0
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Substituting q = Q− (m− 1)y,Q = ny, we get

n(µ−D) +D

µD
· y ≤ L0 (4.3)

Moreover, the perishability constraints at buyer are

y ≤ L1D (4.4)

To summarize, the feasibility conditions are

Qj

njD
≤ Qi

D
− Qi

µi
+

Qi

niD
∀i 6= j[

(mi − 1)
1

D
− (mi − 2)

1

µ

]
· yi ≤ L0 ∀i

ni(µi −D) +D

µiD
· yi ≤ L0 ∀i

yi ≤ L1D ∀i
Qi = niyi ∀i
yi ≥ 0, Qi ≥ 0, ni ∈ Z+ ∀i

(4.5)

4.3.2 Model Formulation

Recall that in the generalized production-inventory model of Hoque (2011a), the total
cost in one cycle is

C =K0 + nK1 + h0Hv + h1Hb

=K0 + nK1 + h0

{
Q2

2

(
1

D
− 1

µ

)
+
Qz

µ

}
+ (h1 − h0)

{
z2

2D
· 1− k2l

1− k2
+ (n− l) y

2

2D

}
and the cycle length is

Q

D

However, we have stochastic production rates and thus need to calculate the expected
cost and cycle length. With li = 0 and Qi = niyi in the fixed size shipment model, the
expected cost per cycle is

K0 +
L∑
i=1

pi

{
niK1 +

h0

2

(
1

D
− 1

µi

)
Q2
i +

h0

niµi
Q2
i +

h1 − h0

2Dni
Q2
i

}
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which is a convex function of Q and n. The expected cycle length is

L∑
i=1

pi
Qi

D

which is a linear function of Q. Thus the expected cost per unit time is

K0 +
L∑
i=1

pi

{
niK1 + h0

2

(
1
D
− 1

µi

)
Q2
i + h0

niµi
Q2
i + h1−h0

2Dni
Q2
i

}
L∑
i=1

pi
Qi
D

(4.6)

so the optimization problem can be stated as follows:

P : min
Q,n

K0 +
L∑
i=1

pi

{
niK1 + h0

2

(
1
D
− 1

µi

)
Q2
i + h0

niµi
Q2
i + h1−h0

2Dni
Q2
i

}
L∑
i=1

pi
Qi
D

s.t.

[
(mi − 1)

1

D
− (mi − 2)

1

µ

]
· yi ≤ L0 ∀i

ni(µi −D) +D

µiD
· yi ≤ L0 ∀i

yi ≤ L1D ∀i
Qj

njD
≤ Qi

D
− Qi

µi
+

Qi

niD
∀i 6= j ≥ 0 ∀i 6= j

Qi = niyi ∀i
yi ≥ 0, Qi ≥ 0, ni ∈ Z+ ∀i

(4.7)

This is a fractional, nonlinear, nonconvex, mixed integer programming problem.

4.3.3 Solution Procedure: Block Coordinate Descent

There are two sets of decision variables in this optimization problem – production

quantityQ ∈ RL and the number of shipment batches n ∈ ZL. The objective function

f(Q,n) =

K0 +
L∑
i=1

pi

{
niK1 + h0

2

(
1
D
− 1

µi

)
Q2
i + h0

niµi
Q2
i + h1−h0

2Dni
Q2
i

}
L∑
i=1

pi
Qi
D
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is nonlinear and nonconvex, so it’s challenging to optimize Q and n. We are unable to
find the global optimal solution, however, we develop the following heuristic procedure:

Use a Block Coordinate Descent (BCD) method – solve f(Q/n) and f(n/Q) se-
quentially.

• When solving f(Q/n), the heuristic first converts the problem to a quadratically
constrained quadratic problem, and uses a semidefinite relaxation-based heuristic.

• When solving f(n/Q), the heuristic employs a harmony search heuristic algo-
rithm.

Roughly, BCD algorithm solves problems by successively performing optimization
along coordinate directions or coordinate hyperplanes (refer to literature review, Sec-
tion 2.3.2 for a brief introduction). The BCD method is not guaranteed to converge in
all cases, however, it works reasonably well in a lot of optimization applications and
machine learning, etc, most.

Proposition 4.1. For a fractional programming problem z(x) = f(x)
g(x)

, where f and
g are differentiable, and defined on a convex set X ⊆ Rn, if f is positive and strictly
convex and g is positive and concave, then z is strictly pseudoconvex. Refer to Cambini
and Martein (2008) for a detailed proof.

Proposition 4.2. If z(x) =
∑
i

fi(x) where each fi is convex and defined on a convex

set X ⊆ Rn, then z is also convex. (This proposition is well known)

Thus, f(Q/n) is pseudoconvex defined on a convex set, while f(n/Q) is convex
defined on an integer set.

Naturally, Q and n represent two blocks that we will sequentially update. Our
solution procedure for P follows:

Step 1 : Initialize n = (n1, n2, · · · , nL) = (1, 1, · · · , 1). This starting point indicates
that every time we set up the machine and a specific production rate occurs, we continue
the production batch with the current rate and ship them once to the next stage.
Practically, we could start from any other random guess of n. However, since we have
no knowledge of which production rate is superior, we select n = (1, 1, · · · , 1).

Step 2 : SolveQ given n by 1) first convert the problem to a quadratically constraint
quadratic problem, 2) semidefinite relaxation.

Now f(Q) becomes a ratio of convex quadratic function and a positive linear func-
tion, which is quasi-convex (Avriel et al. (1988)). The first three inequality constraints
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in P reduce to the upper bound for each Qi by

Qi ≤ Ui = min

 L0ni[
(mi − 1) 1

D
− (mi − 2) 1

µ

] , L0niµiD

ni(µi −D) +D
,L1Dni


It’s preferable to convert the linear constraints to quadratic form, refer to (2.1) in
section 2.3.4. Therefore, the first three inequalities in P are equivalent to

0 ≤ Qi ≤ Ui ∀i

⇔
(
Qi −

Ui
2

)2

≤ U2
i

4
∀i

Likewise, we also convert the forth linear inequality constraint to quadratic form
as,

0 ≤
(
Qi

ni
− Qj

nj

)
1

D
+Qi

(
1

D
− 1

µi

)
≤ Ui
niD

+ Ui

(
1

D
− 1

µi

)
= UBi

⇔
(
Qi

D
− Qi

µi
+

Qi

niD
− Qj

njD
− UBi

2

)2

≤ UBi

4
∀i 6= j

The objective function is thus equivalent to,

P : min
Q

K0 +
L∑
i=1

pi

{
niK1 + h0

2

(
1
D
− 1

µi

)
Q2
i + h0

niµi
Q2
i + h1−h0

2Dni
Q2
i

}
L∑
i=1

pi
Qi
D

s.t.

(
Qi −

Ui
2

)2

≤ U2
i

4
∀i(

Qi

D
− Qi

µi
+

Qi

niD
− Qj

njD
− UBi

2

)2

≤ UBi

4
∀i 6= j

(4.8)

which is a ratio of convex function over a linear function with quadratic inequality
constraints. This is called the quadratically constrained ratio quadratic (QCQR) pro-
gramming.

Step 2.1: As has been introduced in literature review, Section 2.3.4, we follow the
method of Beck and Teboulle (2010) and introduce a new variable t such thatQ = x/t.
Then the homogenized version of problem (4.8) is thus
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PH : min
x,t

L∑
i=1

pi

{
h0

2

(
1

D
− 1

µi

)
+

h0

niµi
+
h1 − h0

2Dni

}
x2
i +

(
K0 +K1

L∑
i=1

pini

)
t2

s.t.
L∑
i=1

pi
D
· xi · t = 1(

xi −
Ui
2
· t
)2

≤ U2
i

4
· t2 ∀i(

xi
D
− xi
µi

+
xi
niD

− xj
njD

− UBi

2
· t
)2

≤ UBi

4
· t2 ∀i 6= j

(4.9)
and letting t = 0, we have

PH0 : min
x,t=0

L∑
i=1

pi

{
h0

2

(
1

D
− 1

µi

)
+

h0

niµi
+
h1 − h0

2Dni

}
x2
i +

(
K0 +K1

L∑
i=1

pini

)
02

s.t.
L∑
i=1

pi
D
· xi · 0 = 1(

xi −
Ui
2
· 0
)2

≤ U2
i

4
· 02 ∀i(

xi
D
− xi
µi

+
xi
niD

− xj
njD

− UBi

2
· 0
)2

≤ UBi

4
· 02 ∀i 6= j

(4.10)
The above problem is not feasible since the first equality is never attained, so the value
of the objective is val(PH0 ) =∞. Therefore, the sufficient condition (2.11) for problem
(4.8) being equivalent with problem (4.9), val(PH) < val(PH0 ), is satisfied. In other
words, solution for the problem (4.8) is attained by solving problem (4.9). We next
use heuristic based on semidefinite relaxation to solve problem (4.9).

Step 2.2: Let w = (xT , t), then homogenized problem (4.9) can be rewritten as

PH : min
X∈Sl+1

wTAw

s.t. wTBw = 1

wTCiw ≤ 0 i = 1, 2, · · · , L
wTDijw ≤ 0 ∀i 6= j

(4.11)
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note that A =


p1z1

. . .

pLzL

K0 +K1

L∑
i=1

pini



where zi =
{
h0
2

(
1
D
− 1

µi

)
+ h0

niµi
+ h1−h0

2Dni

}
. B = 1

2D


0 p1

. . . pi
0 pL

p1 pi pL 0

,

Ci =

(
ηiη

T
i −Ui

2
ηi

−Ui
2
ηTi 0

)
, and ηi =

(
0, 0, · · · , 1

i th element
, · · · , 0

)T
.

Dij =

(
ϑiϑ

T
i −UBi

2
ϑi

−UBi
2
ϑTi 0

)
, and

ϑi =

(
0, 0, · · · , µi−D

µiD
+ 1
niD

i th element

, · · · , µj−D
µjD

+ 1
njD

j th element

, · · · , 0
)T

.

Note that
wTAw = Tr(wTAw) = Tr(AwwT )

and W = wwT is equivalent to W being a rank one symmetric positive semidefinite
matrix. The semidefinite relaxation of PH can be expressed as (refer to section 2.3.5)

PHSDR : min
W∈Sl+1

Tr(AW )

s.t. T r(BW ) = 1

Tr(CiW ) ≤ 0 ∀i
T r(DijW ) ≤ 0 ∀i 6= j

W � 0

(4.12)

where W ∈ Sl+1 is a symmetric matrix, and the sign � denotes that the prior matrix is
positive definite. This is solvable with a commercial solver. Compute the eigenvector(
x
t

)
associated with the largest eigenvalue of W . Then, Q∗ = x

t
is the heuristic

solution of problem (4.9). Beck and Teboulle (2010) prove that if W has rank 1, then
it is an optimal solution to (4.9). In our computational examples, we found that all of
the W ’s do have a rank 1.

Step 3 : Given Q∗ obtained in the previous step, we optimize n.
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min
n

∑
i

pi

{
niK1 +

h0

niµi
Q2
i +

h1 − h0

2Dni
Q2
i

}
s.t.

[
(mi − 1)

1

D
− (mi − 2)

1

µ

]
· Qi

ni
≤ L0 ∀i

ni(µi −D) +D

µiD
· Qi

ni
≤ L0 ∀i

Qi

ni
≤ L1D ∀i(
Qi

ni
− Qj

nj

)
+Qi

(
1− D

µi

)
≥ 0 ∀i 6= j

ni ∈ Z+ ∀i

(4.13)

The objective is a sum of ratios, where each term is ratio of a quadratic function and
a linear function. The first and last inequality constraints are nonlinear. Note that a
lower bound for ni is attained from the second and third inequalities:

LBi =
⌈
max

{
Qi

L1D
,

D
L0µiD
Qi
− µi +D

}⌉
∀i

The above problem, though convex in the objective function, is an integer program-
ming problem with nonlinear, non-convex constraints.

It is difficult to find the optimal solution to this problem, so we use a metaheuristics
algorithm to search for n. Jaberipour and Khorram (2010) proposed a method of
applying Harmony Search to sum-of-ratios fractional programming, in which they show
that the solutions obtained using this method are superior to those obtained from
other methods in all cases. Inspired by this work, we adopt the Harmony Search (HS)
metaheuristic algorithms to search for the global optimal n because 1) HS works for
discrete variables, 2) no derivative information is needed in HS. Note that HS is very
effective, but is not guaranteed to find the optimal solution.

The steps of the HS algorithm are as follows (refer to literature review 2.3.6 for a
more detailed introduction):
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Search for n

1. Initialize the parameters:

• Harmony Memory Size (HMS)

• Maximum number of Improvisations (MaxImp)

• Harmony Memory Considering Rate (HMCR)

• Pitch Adjusting Rate (PAR)

• Bandwidth vector (BW)

2. Generate in total HMS random solutions (S as the feasible
set of n). i.e.

ni = (ni1, n
i
2, · · · , niL), i = 1, 2, · · · , HMS, ni ∈ S

which, together with the value function, form the harmony
memory (HM) denoted as a matrix

n1
1 n1

2 · · · n1
L | f(n1)

n2
1 n2

2 · · · n2
L | f(n2)

· · · · · · · · · · · · · · · · · ·
nHMS

1 nHMS
2 · · · nHMS

L | f(nHMS)


where f(ni) is the value of the objective function evaluated

at ni. Each row of this matrix will be our candidate solution.

3. Generate a new harmony nnew.

If f(nnew) < max
{
f(n1), f(n2), · · · , f(nHMS)

}
, swap

argmax f(ni) with nnew and update HM.

4. Repeat step 3 until number of iterations reach MaxImp.

This set of steps is typical for many classes of evolutionary-style algorithms. The
essence of HS algorithm, however, lies in the generation of a new harmony, and we
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adapt HS to our case as follows:

Algorithm 4.3.1: GenerateNewHarmony(n1, n2, · · · , nL)

for i← 1 to L
if rand() < HMCR

then ni ← Select random row from HM, ith column
if rand2() < PAR

then ni ← Adjust ni based on BW
else ni ← ni

else ni ← Generate one random solution
return (n)

Step 4 : Go back to step 2, repeat until Q∗ attained from two iterations are suffi-
ciently close.

Moreover, we are concerned with performance of the above solution process. Ac-
cording to Theorem 2.1 – convergence of block coordinate descent, the limit point
attained in the block coordinate descent process is a stationary point if there is one
unique minimum when sequentially optimizing every block given other blocks fixed.
Note that we can only solve each block heuristically, the unique global minimum in
each block is not guaranteed. However, in all of our computational examples, section
4.6, this heuristic procedure works reasonably well.

4.4 Fixed Ratio Shipment Policy / Non-perishable

Inventory at the Vendor

In this policy, we ship n batches from vendor to the buyer within a production cycle,
but require that the size ratio of every two consecutive batches is fixed number k, where
k = µ

D
, i.e., the size of batches is a geometric sequence z, kz, · · · , kn−1z. Therefore,

Q = z + kz + · · ·+ kn−1z

=
1− kn

1− k
z

This policy is illustrated in Figure 4.5.
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y 

kz/D kn-1z/D 

Figure 4.5: Fixed Ratio Batch Shipment, n = 3 in this example

4.4.1 Feasibility

As with the fixed size policy in the previous section, we need to impose a constraint on
the size of the first shipment. Given any µi, i ∈ {1, 2, · · · , L}, the time to completely
consume the inventory since stopping production in the current batch is

kni−1zi
D

The time to produce for the first shipment in the next batch is

zj
µj

j ∈ {1, 2, · · · , L}

Feasibility requires that

max
j

zj
µj
≤ min

i

{
kni−1zi
D

}
Substituting Q = 1−kn

1−k z, we get

ki − 1

knii − 1
· Qi

µi
≤ k

nj
j ·

kj − 1

k
nj
j − 1

· Qj

µj
∀i 6= j (4.14)

Furthermore, the perishability constraints require that product is stored at the vendor
no more than L0 time units after its production, and at the buyer no more than L1

time units after being shipped from vendor.
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kni−1
i zi
µi

≤ L0

kni−1
i zi
D

≤ L1

(4.15)

4.4.2 Solution Procedure: Block Coordinate Descent

The expected cost per cycle per unit time is

K0 +
L∑
i=1

pi

{
niK1 +

h0

2

(
1

D
− 1

µi

)
Q2
i +

h0

µi
· 1− ki

1− kni
Q2
i +

h1 − h0

2D
· 1 + kni

1 + ki
· 1− ki

1− kni
Q2
i

}
which is also a convex function in Q. The expected cost per unit time, again, is a ratio:

K0 +
L∑
i=1

pi

{
niK1 + h0

2

(
1
D
− 1

µi

)
Q2
i + h0

µi
· 1−ki

1−kni
Q2
i + h1−h0

2D
· 1+kni

1+ki
· 1−ki

1−kni
Q2
i

}
L∑
i=1

pi
Qi
D

The optimization problem is thus:

Pf : min
Q,n

K0 +
L∑
i=1

pi

{
niK1 + h0

2

(
1
D
− 1

µi

)
Q2
i + h0

µi
· ki−1
kni −1

Q2
i + h1−h0

2D
· k

n
i +1

ki+1
· ki−1
kni −1

Q2
i

}
L∑
i=1

pi
Qi
D

s.t.
kni−1
i

µi
· ki − 1

kni − 1
·Qi ≤ L0 ∀i

kni−1
i

D
· ki − 1

kni − 1
·Qi ≤ L1 ∀i

ki − 1

knii − 1
· Qi

µi
≤ k

nj
j ·

kj − 1

k
nj
j − 1

· Qj

µj
∀i 6= j

0 6= Q ≥ 0

n ∈ Z+

(4.16)
This optimization problem is very much similar to problem (3.13), and thus we address
it using the same approach: updatingQ and n iteratively until they converge. However,
there are slight differences when solving for n given Q, which we detail below:

Step 1 : Initialize n = {n1, n2, · · · , nL} = (1, 1, · · · , 1)
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Step 2 - 5 : Solve Q given n as before.

Step 6 : Given Q optimize n. Again, we use harmony search algorithm, to solve the
following problem:

min
n

niK1 +
h0Q

2
i (ki − 1)

µi
· 1

knii − 1
+

(h0 − h1)Q2
i

2D
· ki − 1

ki + 1
· k

ni
i + 1

knii − 1

s.t.
knii

knii − 1
≤ min

{
L0µiki

(ki − 1)Qi

,
L1Dki

(ki − 1)Qi

}
k
nj
j ·

knii − 1

k
nj
j − 1

≥ Qi

Qj

· µj
µi
· ki
kj
∀i 6= j

ni ∈ Z+ ∀i

(4.17)

Step 7 : Go back to step 2, repeat until Q∗ attained from two iterations are suffi-
ciently close.

4.5 Fixed Size Shipment / Perishable Inventory at

the Vendor

In this version of our model, we allow inventory to perish at the vendor, meaning that
we might keep producing thus accumulating inventory that will perish before shipping
to the buyer so that the setup cost per unit time is decreased. We further assume that

(i) the vendor have a choice of disposing all of the accumulated inventory leftover
with a fee of Kd only when we ship the products to the next stage in the supply
chain.

(ii) we have to clean up the inventory at the end of one production cycle if there are
any products left.

Let nd denote the amount of inventory that is disposed of within the small shipment
period y

D
, so that nd ≤ 1 so that

(i) nd = 1 indicates that we clean up the inventory after each shipment.

(ii) nd = 1
ri
≤ 1 where ri = 2, 3, · · · denotes that we clean up the accumulated in-

ventory after every ri shipments, and the subscript i depends on the realized
production rate µi. If denote the shipment cycle length as t, then we clean up
the inventory every rit units of time.
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The following models are built based on the assumption of FS policy with two
different scenarios of nd.

Case 1: When nd = 1, the production policy is illustrated in Figure 4.5 since we are
adopting a FS policy. Since L0µi is the maximum not yet expired inventory that could
be stored at the vendor, thus

yi ≤ L0µi ∀i

To guarantee the feasibility of production schedules, we need to impose a constraint
on the size of the first shipment to ensure that there is sufficient time to produce it.
Given any µi, i ∈ {1, 2, · · · , L}, the time to produce for the first shipment is

yi
D

i ∈ {1, 2, · · · , L}

meanwhile the idle time in each production cycle is is

yi
D

i ∈ {1, 2, · · · , L}

The feasibility of a production schedule requires that

yi
D
≤ yj
D
,

yj
D
≤ yi
D
∀i 6= j

Therefore,
yi = yj ∀i 6= j

Accordingly we omit the subscript of y in the following formulation. The expected

Inventory at vendor 
Inventory at buyer 

y y y 

y 

y 
disposal 

y/D 
T = nt = ny/D 

L0µ 

Figure 4.6: Production policy for nd = 1

83



setup cost and disposal fee in one production cycle T is

K0 +
L∑
i=1

pini(Kd +K1)

The expected holding cost at the vendor and buyer in T is

L∑
i=1

pi

{
h0

2
niµi

y2
i

D2
+
h1

2
ni
y2

D

}
Thus, the expected cost per unit time is

E[C] =

K0 +
L∑
i=1

pi

{
ni(Kd +K1) + h0

2
niµi

y2

D2 + h1
2
ni

y2

D

}
L∑
i=1

pini
y
D

(4.18)

The optimization problem is stated as

Pnd : min
y,n

K0 +
L∑
i=1

pi

{
ni(Kd +K1) + h0

2
niµi

y2

D2 + h1
2
ni

y2

D

}
L∑
i=1

pini
y
D

s.t. y ≤ min {L1D,L0µi} ∀i
y ≥ 0, ni ∈ Z+ ∀i

(4.19)

This problem has the same structure as problem (4.8), so we can adopt the same
solution approach.

Case 2: Note that nd = 1
ri
≤ 1 where ri = 2, 3, · · ·, then we clean up the inventory

every ri shipments. Since there are ni shipments in one production cycle, thus xi = dni
ri
e

is the total number of clean-ups in one production cycle (we have to clean up the
inventory at the end of one production cycle if there is any left). The production
policy is depicted in the following graph, in which every t unit time, we shipment a
fixed quantity to the buyer, and every other rit unit time, we clean up the inventory.

Again, to guarantee the feasibility of production schedules, we need to ensure that
there is sufficient time to produce the quantity in the first shipment. Given any µi, i ∈
{1, 2, · · · , L}, the time to produce for the first shipment is

yi
D

i ∈ {1, 2, · · · , L}
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Figure 4.7: Production policy for nd = 1

the idle time in each production cycle is is

yi
D

i ∈ {1, 2, · · · , L}

A production schedule requires that

yi
D
≤ yj
D
,

yj
D
≤ yi
D
∀i 6= j

Therefore,
yi = yj ∀i 6= j

Define the time length between two consecutive clean-ups as a clean-up cycle. Clearly,
every clean-up cycle repeats itself, thus we just need to keep track of the inventory
within each rit. i.e.,

q+
1 =

µ

D
y

q−1 = q+
1 − y =

( µ
D
− 1
)
y

q+
2 = q−1 +

µ

D
y =

(
2µ

D
− 1

)
y

· · ·

q+
ri

= q−ri−1 +
µ

D
y =

(riµ
D
− (ri − 1)

)
y

q−ri = 0

Generally, in one production cycle given production rate µi, there are in total ni ship-
ments and dni

ri
e clean-ups. During the first bni

ri
c clean-up cycles, the total inventory
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cost is
h0

2
(0 + q+

1 + q−1 + · · ·+ q+
ri

+ q−ri)
y

D
+
h1

2
y
y

D

where q+
1 + q−1 + · · · + q+

ri
+ q−ri = µ

D
r2
i − ri(ri − 1). When ei = (ni mod ri) 6= 0,

dni
ri
e = bni

ri
c+ 1. During the last clean-up cycle, the inventory cost is

h0

2
(0 + q+

1 + q−i + · · ·+ q+
ei

)
y

D
+
h1

2
y
y

D

The expected cost per unit time is

K0 +
L∑
i=1

pi

{
niK1 + dni

ri
eKd + bni

ri
c ·
[
h0
2

(0 + q+
1 + q−1 + · · ·+ q+

ri
+ q−ri)

y
D

+ h1
2
y y
D

]}
L∑
i=1

pini
y
D

+

L∑
i=1

pi · 1ei 6=0 · {h02 (0 + q+
1 + q−i + · · ·+ q+

ei
) y
D

+ h1
2
y y
D
}

L∑
i=1

pini
y
D

(4.20)
which leads to a fractional programming problem with a ratio of nonlinear functions
in the objective:

P2 : min
y,n,r

K0 +
L∑
i=1

pi

{
niK1 + dni

ri
eKd + bni

ri
c ·
[
h0
2
y
D

( µ
D
r2
i − r2

i + ri) + h1
2
y y
D

]}
L∑
i=1

pini
y
D

+

L∑
i=1

pi · 1ei 6=0 · {h02
y
D

( µ
D
e2
i − e2

i + ei) + h1
2
y2

D
}

L∑
i=1

pini
y
D

s.t. y ≤ min {L1D,L0D} ∀i
y ≥ 0 ∀i
ni, ri ∈ Z+ ∀i

(4.21)
Specifically, this is a fractional programming problem with a sum of different ratios
in the objective function, where each ratio contains nonlinear, non-convex, floor and
ceiling functions with integer variables. We can solve this problem using the previously
discussed approaches.
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4.6 Numerical Study

In this section, we use CVX, a package for solving convex programs (Grant and Boyd
(2014) Grant and Boyd (2008)), to test the solution procedures for the fixed size and
fixed ratio policies proposed in section4.3.3.

Example 4.1. We set the parameter values as follows:

• Setup costs K = (3000, 100)

• Holding costs h = (10, 20)

• Demand: D = 5

• Number of production rates: 3, so the production rates are denoted as a vector
µ = (40, 30, 20)

• Probability distribution of the production rates: p = (0.3, 0.2, 0.5)

• Maximum storage time: L = (20, 50)

Based on these parameter setting, we compare the results between fixed size ship-
ment and fixed ratio shipment policy:

Table 4.1: Results of fixed size (FS) and fixed ratio (FR) policy. Note that every
iteration starts with an initialized vector n = (1, 1, · · ·)

FS FR

Iterations Q n Q n

1 (1,1,1) (1,1,1)
2 (38.81, 38.07, 36.66) (4,4,5) (38.81, 38.07, 36.66) (3, 2, 2)
3 (52.13, 53.06, 58.96) (6,6,7) (43.16, 43.77, 46.81) (3, 2, 3)
4 (56.19, 57.67, 63.13) (6,7,8) (42.42, 43.02, 50.54) (3, 2, 3)
5 (56.14, 59.41, 64.88) (6,7,8) (42.42, 43.02, 50.54) (3, 2, 3)
6 (56.14, 59.41, 64.88) (6,7,8)

Obj 608.22 699.24

This table shows both Q and n for each iteration – the FS policy terminates after
5 iterations while the FR policy stops after 4. Recall that the production quantity
Q and total number of batches to ship n are both expressed as a vector, in which
each element corresponds to one production rate in µ = (40, 30, 20). For example, if
we encounter a production rate 40 at the beginning of a production cycle, we should
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produce 56.14 units and deliver these units to the buyer in 6 equal sized shipments
under the fixed size shipment policy; or, produce 42.42 units and deliver these units to
the buyer in 3 unequal sized shipments under the fixed ratio shipment policy. In this
example, the fixed size policy outperforms fixed ratio policy with a smaller objective
value 608.22 compared with 699.24. This solution is feasible but not guaranteed to be
a global minimum.

We can also determine lower bounds for this example helps to evaluate the heuristic
solutions. If we relax the constraint that n is integer, and solve the relaxed problem
with exactly the same solution procedure – solve Q with semidefinite relaxation, solve
n with harmony search since it also works for real value functions, the lower bounds
for both FS and FR follow:

Table 4.2: Lower bounds of fixed size (FS) and fixed ratio (FR) policy

FS FR

Q n Q n
(1,1,1) (1,1,1)

(38.81, 38.07, 36.66) (4.4, 4.3, 4.5) (38.81, 38.07, 36.66) (1.93, 3.26, 2.30)
(53.43, 54.34, 57.20) (6.0, 6.3, 7.0) (41.35, 45.53, 48.32) (1.93, 3.39, 2.72)
(56.10, 58.31, 63.15) (6.3, 6.7, 7.8) (41.09, 45.30, 49.84) (1.93, 3.43, 2.72)
(56.70, 58.89, 64.52) (6.34, 6.82, 7.91) (41.10, 45.32, 49.85) (1.93, 3.43, 2.72)
(56.72, 59.11, 64.73) (6.34, 6.82, 7.91) (41.10, 45.32, 49.85) (1.93, 3.43, 2.72)

(56.72, 59.11, 64.73) (6.34, 6.82, 7.91)
obj: 608.17 obj: 698.73

Note that the heuristic solution in Table 4.1 – obj of 608.22 for FS and 699.24 for
FR, is very close to the lower bounds in Table 4.2 – obj of 608.17 for FS and 698.73
for FR. Therefore, at least in this computation example, the heuristic is very effective.

We explicitly explore the performance of harmony search in solving n. The initial
parameters in HS are

• Harmony Memory Size (HMS) = 6

• Maximum number of Improvisations (MaxImp) = 5000

• Harmony Memory Considering Rate (HMCR) = 0.9

• Pitch Adjusting Rate (PAR) = 0.6

• Bandwidth BW = 1 since n ∈ Z+. For the relaxed version of the problem,
BW ∈ R
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Generally, one could choose other reasonable parameters, and different parameters have
an impact the convergence behavior of the search algorithm.

Note that this search algorithm is repeated in every iteration. Here we consider the
algorithm performance for the last iteration in searching for n, i.e. for the FS policy,
given Q = (56.14, 59.41, 64.88),

Table 4.3: Harmony search in the FS policy

n1 n2 n3 f(n) n1 n2 n3 f(n) n1 n2 n3 f(n)

HM row Initial HM HM after 10 searches HM after 20 searches

1 10 2 5 637.98 9 10 8 611.81 7 6 9 609.07
2 4 10 9 613.47 5 6 8 609.18 5 6 8 609.18
3 6 7 8 608.22 9 9 8 611.03 7 6 7 609.09
4 4 3 9 619.98 9 10 8 611.81 8 7 9 609.60
5 10 9 4 628.32 9 5 8 611.33 6 9 8 609.04
6 9 9 8 611.03 6 7 8 608.22 6 7 8 608.22

HM row HM after 50 searches HM after 100 searches HM after 150 searches

1 6 7 8 608.22 6 7 8 608.22 6 7 8 608.22
2 6 7 8 608.22 6 7 8 608.22 6 7 8 608.22
3 6 7 8 608.22 6 7 8 608.22 6 7 8 608.22
4 6 7 8 608.22 6 7 8 608.22 6 7 8 608.22
5 6 7 8 608.22 6 7 8 608.22 6 7 8 608.22
6 6 7 8 608.22 6 7 8 608.22 6 7 8 608.22

while for FR policy, given Q = (42.42, 43.02, 50.54),
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Table 4.4: Harmony search in FR policy

n1 n2 n3 f(n) n1 n2 n3 f(n) n1 n2 n3 f(n)

HM row Initial HM HM after 10 searches HM after 20 searches

1 9 2 7 736.53 4 4 4 707.80 4 4 4 707.80
2 8 4 7 736.02 6 3 2 711.79 4 2 3 701.68
3 5 8 4 719.45 3 8 5 718.07 4 2 4 705.08
4 1 2 4 710.25 1 2 4 710.25 3 4 4 705.01
5 3 9 9 741.51 3 8 4 713.19 3 3 3 700.08
6 1 2 4 710.25 3 2 3 699.24 3 2 3 699.24

HM row HM after 50 searches HM after 100 searches HM after 150 searches

1 3 2 3 699.24 3 2 3 699.24 3 2 3 699.24
2 3 2 3 699.24 3 2 3 699.24 3 2 3 699.24
3 3 2 3 699.24 3 2 3 699.24 3 2 3 699.24
4 3 2 3 699.24 3 2 3 699.24 3 2 3 699.24
5 3 2 3 699.24 3 2 3 699.24 3 2 3 699.24
6 3 2 3 699.24 3 2 3 699.24 3 2 3 699.24

In both cases, the harmony search in the last iteration converges after 50 iterations.
Furthermore, we want to investigate the impact of different parameters on the

performance of the two policies. In the following computational examples, we vary four
sets of parameters separately: shipping cost to the second stage K1, holding cost in
the second stage h1, production rates µ and probability distribution of the production
rates p. Specifically, we vary only one parameter at a time while keeping everything
else the same with those in Example 4.1.

Example 4.2. Vary K

We gradually increase K1,

K = (3000, K1) K1 = 100, 200, · · · , 3000

When K1 is relatively small, roughly in [100, 1200], the FS policy, with a lower
objective, outperforms FR policy. As K1 increases, FR eventually outperforms FS.
Overall, the total cost grows as K1 increases. In most cases, the heuristic solution of
FR is close to its lower bound.

Example 4.3. Vary h
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Figure 4.8: Objectives under different policies when varying K1. LB denotes the
solution from the relaxed problem (n ∈ RL) with FS and FR policies respectively.

Note that h1 ≥ h0 by assumption. We let h0 = 10, and vary h1 by

h = (10, h1) h1 = 10, 15, 20, · · · , 110

In all cases, FS is superior to FR, and the cost of FR grows much faster than that of
FS. Again, the total cost grows as h1 increases.
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Figure 4.9: Objectives under different policies when varying h1

Example 4.4. Vary µ

µ = (40, 30, µ3) µ3 = 6, 16, 26, · · · , 96

Example 4.5. Vary p

p = (0.3, p2, 0.7− p2) p2 = 0.01, 0.06, 0.11, 0.16, · · · , 0.66

For all cases in the last three examples, FS significantly outperforms FR. Intuitively,
the FS policy tends to accumulate more inventory at the vendor’s warehouse, while
FR policy tends to transfer more and more inventory over time to the buyer’s, which is
not helpful in balancing the shipping and holding cost at the buyer’s stage. Therefore,
higher holding cost at the buyer’s stage will favor FS policy.
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Figure 4.10: Objectives under different policies when varying µ3
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Figure 4.11: Objectives under different policies when varying p2
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Chapter 5

Concluding Remarks and Future
Work

Motivated by the perfusion processes employed in biotechnology manufacturing, we
introduced several production-inventory models and addressed the following problem
in this thesis:

We first introduced a novel continuous-time production model that captures a ran-
dom production rate that is known as soon as a production cycle starts. We found
that in the single product case, with both average and discounted cost objectives, this
knowledge of the production rate is not useful – the optimal strategy is always to pro-
duce up to one unique inventory level, and keep a same lowest back-order position if
backorder allowed (although we were only able to prove the backorder result in the
average cost case), regardless of the realized production rate.

Inspired by the observation of always produce up to one unique inventory level in
the single product case, we propose a novel fixed idle time heuristic policy – FIT – for
the multi-product case; we also adapt common heuristic approaches such as common
cycle (CC) and basic period (BP) approach for Economic Lot Sizing Problem in the
literature to this setting, and compare adapted common cycle (ACC) and adapted
basic period (ABP-H) with our novel policy. While these policies outperform the
FIT policy in most of the cases, FIT is useful and relatively effective when we are
unable to track the production rate (or have limited capacity for storage). We then
developed a discrete time MDP model that could capture more of the characteristics
in the perfusion production process, and we are able to solve the numerical examples
with value iteration algorithm.

Moreover, we are interested in supply chain planning when products can expire at
any stage of the supply chain, i.e. perishable inventory is shipped along the supply chain
and different perishability constraints take effect independently in each stage. We,
therefore, develop a production-inventory integrated model with two-stage perishability
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and develop approaches for solving this model with fixed size and fixed ratio policies.
In general, the fixed size policy outperforms the fixed ratio policy.

Based on the current research, possible future work includes:

Developing more insights into the MDP model of the perfusion production
process. We solve our MDP model numerically with the truncated value iteration
algorithm in Section 3.5. We observed that in all the numerical examples, there is
always an inventory level s such that once It < s, the optimal policy is to produce
regardless of (Pt, τt), and a S such that once It > S, the optimal policy is always
not to produce regardless of (Pt, τt). When s < It < S, the optimal actions are state
dependent. Future research efforts could be devoted to proving this structural property,
to finding an efficient way of finding these inventory level thresholds, or to developing
MDP heuristics for multi-product production planning.

Building an easy-to-solve production-inventory model with perishable in-
ventory allowed at the vendor. We are unable to optimally solve the production-
inventory model with perishable inventory allowed at the vendor proposed in Section
4.5, which is fractional programming with nonlinear, non-convex objective function
defined on a non-convex mixed-integer set. Another line of research is to assume a
per-unit disposal rate of the inventory at the vendor so that one can choose to either
hold the inventory or dispose of the inventory with a per unit fee, and then to focus
on the question of when, where and how much to dispose of.

Overall, biopharmaceutical production is a rich source of interesting supply chain
related problems, and we hope to address more of these problems in the future.
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Appendix A

A.1 Proof of Theorem 3.3 (Section 3.3.2)

one cycle 

Ij1 

Ij2 Ij3 

µi - D  

θj3 - D 

θj2 - D 

θj1 - D c*/h 

Figure A.1: Sample possible cycle

THEOREM 3. Let

J∗ =

{
∅ if c∗∅ ≤ c∗

Ĵ

Ĵ if c∗∅ > c∗
Ĵ
.

Then, π∗J∗ is an optimal policy for the problem of minimizing the infinite horizon av-
erage cost when some production rates are less than the demand rate.

Proof. Theorem 3.2 establishes that an optimal policy with infinite horizon average
cost c∗

h
can be characterized by a c∗

h
- cycle policy, starting and ending with inventory

level c∗

h
. In particular, starting with inventory level c∗

h
, the inventory is depleted with

production rate θj (j ∈ {0, 1, . . . ,M}, where θ0 , 0 indicates no production), then
it is stopped at some level Ij and a new production rate is drawn. If the drawn rate
is bigger than D, production continues until reaching inventory level c∗

h
where the

cycle ends (see Figure A.1). Thus, an optimal policy needs to specify the optimal
values Ij (j ∈ 0, 1, . . . ,M). In addition, if Ij > 0, the policy needs to specify a set
of production rates smaller than D that are not rejected if drawned. Without loss of
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generality, the rates can be reindexed so that the Ij’s are monotonically decreasing.
Applying elementary algebra, it can be shown that the average cost for any cycle, say

cycle k, can be expressed as
αk+h

2

∑M
j=0 β

k
j I

2
j∑M

j=0 β
k
j Ij

. Hence, as in the case with no production

rates smaller than D, we can express the optimization problem of minimizing the
average cost over the infinite horizon with the following objective function (where N
is the number of possible cycles):

N∑
k=1

pk

[ ∑M
j=0 β

k
j Ij∑N

k=1 pk
∑M

j=0 β
k
j Ij

][
αk + h

2

∑M
j=0 β

k
j I

2
j∑M

j=0 β
k
j Ij

]
which, considering Theorem 3.2, leads to the following optimization problem:

min
I0,...,IM

α + h
2

∑M
j=0 βjI

2
j∑M

j=0 βjIj

s.t.
M∑
j=0

βjIj ≥ 0

0 ≤ Ij ≤
α + h

2

∑M
j=0 βjI

2
j

h
∑M

j=0 βjIj
, j = 0, 1, · · · ,M.

where α ,
∑N

k=1 pkα
k, and βj ,

∑N
k=1 pkβ

k
j .

Note that in contrast to the case where there are no production rates smaller than
D, some of the βj’s can be negative (though

∑M
j=0 βj > 0).

Applying the first order KKT necessary optimality condition, we get that for j =
0, 1, . . . ,M ,

(A.1)

hβjIj(
∑M

k=0 βkIk)− βj(α + h
2

∑M
k=0 βkI

2
k)

(
∑M

k=0 βkIk)
2

− λβj − φj

− ξj(
h2βjIj(

∑M
k=0 βkIk)− hβj(α + h

2

∑M
k=0 βkI

2
k)

h2(
∑M

k=0 βkIk)
2

− 1) = 0,

λ

M∑
k=0

βkIk = 0, φjIj = 0, ξj(
α + h

2

∑M
j=0 βjI

2
j

h
∑M

j=0 βjIj
− Ij) = 0,

M∑
j=0

βjIj ≥ 0, 0 ≤ Ij ≤
α + h

2

∑M
j=0 βjI

2
j

h
∑M

j=0 βjIj
.

Analyzing the conditions above, and denoting by Īj, φ̄j, ξ
∗
j (j = 0, 1, . . . ,M), λ̄ and

c̄ the optimal solution, its associated lagrange multipliers, and its objective function
value, respectively, we conclude that:
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• Since, obviously, for an optimal solution,
∑M

k=0 βkĪk > 0, we have λ̄ = 0.

• If φ̄j > 0 then Īj = 0.

• If ξ̄j > 0 then Īj = c̄
h
.

• If φ̄j = ξ̄j = 0, then
h2βj Īj(

∑M
k=0 βk Īk)−hβj(α+h

2

∑M
k=0 βk(Īk)2)

h2(
∑M
k=0 βk(Īk)2)

= 0, leading to Īj = c̄
h
.

Thus, for each j (j = 0, 1 . . . ,M), Īj equals either 0 or c̄
h
, from which the statement of

the theorem follows. �

A.2 Theorems for Section 3.4.2

THEOREM B.1. Consider the model with the objective of minimizing the discounted
cost over the infinite horizon and where backorders are allowed. Suppose the system is
idle and is at zero inventory level. Then, the optimal policy requires a continuation of
no production for some positive time duration.

Proof. When the system is at zero inventory and idle, there are two possible actions:
begin production immediately (the first path in Figure A.2), or delay production in-
curring backorder (the second path in Figure A.2).

Inventory 
Backorder 

Δt 

1 

2 

B 

O O` 

Figure A.2: Sample path starting with zero inventory

Given this setting, consider two sample paths (illustrated in figure Figure A.2):
in the first, production starts immediately, and in the second, production is briefly
delayed, so that inventory returns to zero at time ∆t. Thus, on the second path,

105



production starts at time µ−D
µ

∆t. The total discounted cost of path 1, C1, can be
decomposed in initial fixed cost K, and all the remaining costs H:

C1 = K +H

Similarly, the discounted cost of path 2 is

C2 = Ke−
µ−D
µ

r∆t +He−r∆t + B

where B denotes the cost of backorder before inventory returns to zero, equal to:

B = π

[∫ µ−D
µ

∆t

0

Dte−rtdt+

∫ ∆t

µ−D
µ

∆t

−(µ−D)(t−∆t)e−rtdt

]
=

π

r2
e−r∆t

[
µ
(

1− e
Dr
µ

∆t
)
−D

(
1− er∆t

)]
Subtracting these quantities:

C1−C2 = K(1− e−r
µ−D
µ

∆t) +H(1− e−r∆t)− π

r2
e−r∆t

[
µ
(

1− e
Dr
µ

∆t
)
−D

(
1− er∆t

)]
.

Observe that

lim
∆t→0+

∂ (C1 − C2)

∂∆t
= Hr +

Kr

µ
(µ−D) > 0

and
(C1 − C2)|∆t=0 = 0

so we can always find a small enough ∆t such that the difference C1 − C2 is strictly
positive. �

THEOREM B.2. Consider the model with the objective of minimizing the dis-
counted cost over the infinite horizon and where backorders are allowed. Suppose that
it is optimal to start production at some point. Assume further that once production
starts, it is optimal to stop only at a point when there is a positive inventory level.
Then, the optimal policy is defined over cycles which start and end where the system
is idle and with inventory level of zero. In particular, during each cycle, there exists a
single backorder level B∗ which triggers production, and a single optimal produce-up-to
inventory level I∗, regardless of the realized production rate.

Proof. According to the theorem B.1, every time a new cycle starts, the optimal policy
calls for delayed production for some positive time duration. Since the only informa-
tion available is the backorder level, there is one backorder level, say B∗ that triggers
production. Next, let Ii denote the maximum inventory level given a production rate µi
(and according to our assumption such an I∗i , possibly equal to infinity, exists). We use
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a similar strategy as stated in the discounted no backorder model. Define gi(B, Ii, S) to
be the expected discounted cost given that inventory is zero at the start of the horizon,
the machine is off, the first realized production rate is µi, the total expected cost over
the infinite horizon S, and we produce up to Ii during the first cycle:

gi(B, Ii, S) = hi(B) + fi(Ii) + e
−r
(
B
D

+ B
µi−D

+
Ii

µi−D
+
Ii
D

)
S

where hi(B) is the shortage cost given production rate µi:

hi(B) = Ke−r
B
D − π

{∫ B
D

0

−Dte−rtdt+

∫ B
D

+ B
µi−D

B
D

(µi −D)

(
t− B

D
− B

µi −D

)
e−rtdt

}

+ c

∫ B
D

+ B
µi−D

B
D

µie
−rtdt

and fi(Ii) is the holding cost given production rate µi:

fi(Ii) =

e
−r
(
B
D

+ B
µi−D

)
·

{
h

[∫ Ii
µi−D

0

(µi −D)te−rtdt+

∫ Ii
µi−D

+
Ii
D

Ii
µi−D

−D
(
t− Ii

µi −D
− Ii
D

)
e−rtdt

]}

+ e
−r
(
B
D

+ B
µi−D

)
· c
∫ Ii

µi−D

0

µie
−rtdt

Recall that to minimize:

min
B≥0,Ii≥0

gi(B, Ii, S) = hi(B) + fi(Ii) + e
−r
(
B
D

+ B
µi−D

+
Ii

µi−D
+
Ii
D

)
S (A.2)

given B and S, the first order condition is

∂gi(B, Ii, S)

∂Ii
=

µi
Dr(µi −D)

e
−µir(B+Ii)

D(µi−D)

[
D(h+ cr)e

rIi
D − (Dh+ r2S)

]
.

Solving the equation ∂gi(B,Ii,S)
∂Ii

= 0, we get

I∗i (S) =
D

r
ln
Dh+ Sr2

Dh+Dcr
(A.3)

where S > Dc
r

. Observe that II(S) is the same for all i.
The proof of optimality of I∗i is similar to the no backorder case. Since D, h, c, r

are all positive parameters, observe that

∂gi(B, Ii, S)

∂Ii
< 0 for 0 ≤ Ii < I∗i (S), and

∂gi(B, Ii, S)

∂Ii
> 0 for I∗i (S) < Ii,

Thus I∗i is the minimizer of gi(S,B, Ii). �
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Appendix B

B.1 Feasibility of the FIT Class of Heuristics

THEOREM C.1. The FIT policy based on ACC or ABP-H is always feasible.

Proof. To demonstrate the feasibility, it is sufficient to show that Θi can always satisfy
demand. For any product i, a production cycle ends when inventory level equals Θi.
For feasibility, inventory level Θi must be sufficient to meet demand for i from this
production-end time until the next production-start time – we denote this interval Ri,
and illustrate this in Figure B.1, which is based on the example in Figure 3.9. Observe

1 

2 

Q1 

Q2 

Δ1 Δ1 Δ2 

Idle time 
FIT sequence 

Inventory 

Time 

R2 

τ2, real
1 

R1 R1 R1 

t = 2 t = 1 Sub-cycle index t = 1 

Figure B.1: An example of R2

that Ri consists of two components: the realized processing time of other products,
and the inserted idle time ∆t. The realized processing time of product i in sub-cycle
t, denoted as τ ti,real, is a function of the realized production rate of i and the inventory
level. Thus in this figure, R1 = τ 1

2,real + ∆1 or R1 = ∆2, depending on the sub-cycle.
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To derive an expression for Ri, for any product i, denote the sub-cycle that contains
the production-end time sub-cycle t′, and the sub-cycle that contains the production-
start time sub-cycle t′′. Then

Ri =


t′′∑
k=t′

(
∑
j 6=i

τ kj,real · 1kj + ∆k · 1k∆) if t′ < t′′

(
K∑
k=t′

+
t′′∑
k=1

)(
∑
j 6=i

τ kj,real · 1kj + ∆k · 1k∆) if t′ ≥ t′′
(B.1)

where if t′ < t′′, Ri is within one single cycle, while if t′ ≥ t′′ then Ri stretches over
two cycles, and two indicators variables are:

1
k
j =

{
1 if j is produced in sub-cycle k
0 otherwise

1
k
∆ =

{
1 if ∆k is inserted
0 otherwise

Thus, a sufficient condition for feasibility is that:

Θi

D
≥ Ri (B.2)

Finally, observe that the sufficient feasibility condition is satisfied in FIT. Since
we adopt the Θi (lowest maximum inventory level) from either ACC and ABP-H,
which both select Θi such that when all the other products j 6= i encounter a slowest
production rate, i.e. τ kj,max are realized, Θi is enough to satisfy the demand until the
next production-start time. ∀i,

Θi

D
≥


t′′∑
k=t′

(
∑
j 6=i

τ kj,max · 1kj + ∆k · 1k∆) if t′ < t′′

(
K∑
k=t′

+
t′′∑
k=1

)(
∑
j 6=i

τ kj,max · 1kj + ∆k · 1k∆) if t′ ≥ t′′

And since the maximum possible processing time is no less than the realized processing
time,

τ tj,max ≥ τ tj,real

Therefore
Θi

D
≥ Ri

so the sufficient feasibility condition is satisfied in our new policy FIT. �
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