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Abstract

We present results obtained for a class of degenerated shell elements formulated in con-
vected (curvilinear) coordinates. Each node has five degrees of freedom, with displacements
expressed in the global cartesian system. Rotations of directors are treated in an efficient manner
that preserves continuity across inter-element boundaries, and allows treatment of general boun-
dary conditions. A continuous field of local triads can be generated by a method proposed herein.
A plane stress linear constitutive relation is developed with respect to a general system of curvi-
linear coordinates whose transverse coordinate is not necessarily normal to the shell lamina. Ele-
ment stiffness matrices are obtained in a form directly ready for global assemblage, avoiding com-
pletely local-global transformations. Uniform reduced integration is employed to relieve shear and
membrane locking. It is shown analytically that spurious zero-energy modes are invariant under
change of element geometry. These spurious modes are filtered in a reliable and efficient manner
that preserves consistency of the element, and is insensitive to change of material constants and
geometric parameters. The element passes patch tests, and is robust under severe element distor-
tions. Several numerical results are presented to assess the performance of the element. Practical
aspects of implementing the present formulation are also discussed.

1. Introduction

The first degenerated element for general analysis of shell structures was presented
in Ahmad, Irons, & Zienkiewicz [1970]. Further investigations into this type of element
by numerous authors followed this early work; a (partial) list of references pertaining to
the subject can be found in Hughes & Tezduyar [1981]. It was very soon realized that
the fully-integrated stiffness matrix of this element, in particular, over-estimates the
stiffiness of the shell as its thickness decreases, i.e., the shear-locking problem. Conver-
gence of numerical solution is obtained, in some examples, at a very slow rate. To
remedy the shear locking problem, selective/reduced integration was proposed simultane-
ously by Zienkiewicz, Taylor, & Too (1971], and Pawsey & Clough [1971]. As is in gen-
eral the case, early pioneering numerical work would be later re-considered in search for

a firmer foundation based on mathematical analysis — the finite element method itself is
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an example. Selective/reduced integration of a shell stiffness matrix, a "numerical trick”
as it appeared to be at first, was subsequently shown to fall within the concept of (impli-
cit) mixed finite element method by Malkus & Hughes (1976]. It was also found that the
use of reduced integration mitigates considerably the problem of membrane locking in

curved shell elements (Stolarski & Belytschko (1982]).1

Even though good results were achieved with selective/reduced integration, this
method by itself is not a panacea to the membrane/shear locking problem: spurious
zero-energy modes appear as one under-integrates the stiffness matrix. An ingenious
remedy to this problem by filtering the spurious zero-energy modes from the under-
integrated stiffness matrix was employed in Kosloff & Frazier (1978]. This methodology
was first applied to shell elements by Taylor (1979], and thereafter in the work of
Belytschko and co-workers [1984,85]. The latters justified to some extend their approach
via the Hu-Washizu variational principle (Belytschko et al [1985b]). We mention briefly
here a different avenue to solve the locking problem pioneered by MacNeal (1978,82] in
using an assumed-strain field together with full integration of the stiffness matrix. A
variational foundation of the assumed-strain method was later provided by Simo &
Hughes [1986]. Explicit mixed method is yet another approach to this problem, e.g.,

Pian & Sumihara [1984].

We present in this paper results obtained for a class of simple and efficient degen-
erated shell elements formulated in convected (curvilinear) coordinates. A director is
defined as a vector colinear with the transverse fiber to the shell mid-surface; these direc-
tors form a vector field. The director field is not necessarily normal to the shell mid-
surface, but is required to be continuous over the shell surface. The shell has five
degrees of freedom: three displacement components, expressed in global cartesian coordi-

nate system, and two rotation components to describe the rotation of a director. We

t An argument for the use of curved elements versus flat elements in modeling general shell structures can be
found for example in Parisch {1979].
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also require that the two rotation fields be continuous across the elements. The two
rotation components of a director could be expressed with respect to two arbitrary base
vectors, provided that the director and the two base vectors are independent. General
rotational boundary conditions can be accounted for by expressing these conditions in
the form of linear constraint equations involving rotational degrees of freedom. These
constraint equations are then eliminated directly at the element level, before the global

assemblage of the stiffness matrix.

The element is formulated exactly with linearized strain tensor in convected coordi-
nates (without neglecting any higher order terms in the convected coordinates). Several
types of strain components, with corresponding elastic moduli tensors, could be
employed to compute the stiffness matrix with identical results. Plane stress elasticity is
assumed at the shell lamina level (a surface defined by keeping constant the transverse
convected coordinate of the shell). In general shell structures, often the director field is
not normal to a shell lamina due to thickness variation or sharp angle connection. In
these cases, we develop elastic moduli tensors with respect to convected coordinates to
enforce the plane stress constraints, i.e., zero stress components in the direction normal
to a shell lamina. Element stiffness matrices are obtained in a form directly ready for
assemblage of the global stiffness, thus avoiding completely local-global transformations
at element level. Finally, stress resultants and stress couples are also evaluated with

respect to the convected coordinates on the shell.

We adopt uniform reduced-integration of the stiffness matrix to relieve shear and
membrane locking in thin shell elements — full integration is used for thick shell.
Belytschko and co-workers [1984,85] derived the hourglass modes for rectangular ele-
ments, and observed by numerical experiments that these hourglass modes remain the
same regardless of the shape of the element. This invariance property of the hourglass
modes is herein analytically asserted. An efficient scheme for filtering spurious zero-

energy modes is proposed by ways of perturbing the (singular) stiffness matrix. It is
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shown that this scheme is the most eflicient in its class. The proposed filtering scheme is
consistent with linear displacement field in general curved elements, and up to quadratic
displacement field in flat elements. Further, the condition that the hourglass modes are
always filtered out is explicitly accounted for in the method. The simplicity of the
present approach lies in the fact that one does not need to perform several tests to look
for appropriate weighting coefficients, i.e., there is no parameter tuning as done in
Belytschko Ong & Liu [1984]. It should be noted that while Belytschko and co-workers
(1985a] proposed to filter the hourglass modes with respect to the stiffness matrix
expressed in a local cartesian coordinate system (the weighting coeflicients are computed
in tkhese local coordinates), we perform this operation directly on the element stiffness
matrix in the global cartesian coordinate system. In addition, the hourglass filtering in
Belytschko et al [1985a] requires exact integration of certain quantities over the area of a
shell element (whereas the stiffness matrix is computed with uniformly reduced integra-
tion); in the present work no such integration is needed. As a result, the present filter-
ing scheme is far less expensive. Further, this scheme is insensitive to change of material

properties and of element geometric parameters (thickness, area).

Several types of finite element interpolation could be employed in the present for-
mulation: 4-node bilinear, 8-node serendipity, 9-node Lagrangian, ... A particular
emphasis in the present work is given to the 9-node Lagrangian interpolation scheme.}
This shell element passes the patch tests, in particular the pure bending test with qua-
dratic displacement field, and is robust under severe element distortions. The 9-node
element is subjected to an extensive course of obstacles as proposed in MacNeal &
Harder [1985] and in The Finite Element Standards Forum (see Forsberg & Fong [1985))
for static problems. Numerical results are compared with known analytical results when-

ever possible, or with numerical results from other workers. As a consequence of

} An argument favoring the use of higher-order elements versus lower ones, regarding robustness and computer
cost to achieve an error within the range of 1-2%, is given in Babuska [1987}.
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avoiding local-global transformations in element stiffnesses, of using uniformly reduced
integration, and efficient spurious-mode filtering, this class of shell elements is inexpen-

sive, and yet provides accurate results in several numerical examples documented herein.

2. Kinematic assumption’

In this section, we describe the underlying basic linear kinematic assumption in the
formulation of the shell element, and define how rotational degrees of freedom are chosen
to preserve continuity across the elements. A triad of vectors designates a system of
three independent vectors, not necessarily orthonormal to each other. Two types of
triad are often referred to in this paper: the global (orthogonal) triad and the local triad.
We indicate a convenient way to generate a continuous field of local orthonormal triads
from the global triad. Finally, treatment of general rotational boundary conditions at

the element level is also indicated.

2.1. Basic linear kinematic assumption

Let {E, E,, E,;} denote a system of orthonormal base vectors which forms the glo-
bal (orthogonal) triad. The (global) cartesian coordinates along the global base vectors
are denoted respectively by (X', X%, X°). A material point X € Q with coordinates
(X', X%, X®), where 0 C R® is the domain of the shell, is represented by the position vec-
tor X = X'E;.t A system of curvilinear coordinates (6%, 62, 6°) is inscribed on the domain
Q0 of the shell, with (6!, 6°) being the coordinates on the shell surface, and 6% the
transverse coordinate. The domain of ¢° is chosen to be the closed interval (-1, 1. A
shell lamina is thus a surface with 6% = constant; the shell mid-surface is the lamina

located at ¢* = 0. The tangent vectors to these curvilinear coordinate lines are

8:{(9{:}) _ a){l(&{'}) EI ’ for ].z 1,2,3 . (21)

A;00h = 4B = 97 =97

t Whenever the summation sign £ is omitted, summation convention is implied over repeated indices.
Roman-letter indices take values in {1,2,3}, Greek-letter indices in {1,2}.
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On the shell mid-surface, we define a director field D¢ty = Dl(ﬁ{"})EI, not necessarily
normal to the mid-surface.i Let z denote the image of X under a deformation map.
Note that z and X have the same curvilinear coordinates (6', 62, 6%); this type of coordi-
nates is referred to as convected coordinates, and is often used in shell theory (Naghdi
[1972]). It is assumed that the displacement in the shell, denoted by u, takes the follow-

ing form

W00 = 2(0) X0 = w1 A g pglny

[
o
T

where u(6{®) .= (ol 0) is the displacement of the point ({°}) — (6, 6%) on the mid-
surface (the intersection of the director and the mid-surface), £(6{*)) > 0 the thickness of
the shell along the transverse fiber, and d(6%Y) the image of the director D(6{*}) under a
rotation operation defined shortly. Let {e,, e, , s} denote the spatial base vectors chosen
such that e;6 = E; for convenience. We have in component form u= u'e;, and
d = d'e;. The above assumed kinematics simply states that displacement of any point
X in the shell is the sum of the displacement of the projected point on the mid-surface
along the director passing through X, and of the displacement due to rotation of the

director.

2.2. Rotation of directors

The rotation of a director D is obtained through an orthogonal transformation A (a

linear transformation) as follows
d= AD. (2.3)

In general finite rotations, A is a member of the special orthogonal group SO(3). Let
x = x'e; denote the rotation vector, then A can be evaluated via the exponentiation

exp[;‘é]. Here x denotes the skew-symmetric tensor, whose axial vector is X, such that

1 Consistent with our notation in the previous footnote, (6*}) is shorthand notation for (6%, 6%, 6%), and (64%) is
shorthand notation for (6%, §2).
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xD = xXD. For a complete treatment of this operation, we refer to Simo & Vu-Quoc
(1986,87] and Vu-Quoc [1986]. In the present work, only infinitesimal rotation of the
director is considered; the series in exp[x] is truncated to

v v V2

A= explXl= 1+ x+ O(x?), (2.4)

with 1 denoting the identity tensor. Thus the displacement of a point on the transverse

fiber with director D can be obtained with the aid of
d-D= xD = xxD. (2.5)

We have to define the components of the rotation vector x. First, in this formulation,
rotation of the director about itself is not accounted for, and is thus represented by only
two parameters. Further, it is required that the rotation vector x be normal to the
director to eliminate the rotation about the director itself. Thus let T, and T, be
independent unit vectors normal to the director D. The rotation vector x can be
expressed as x = x*T,, where (x!, x?) are the two rotation components. It should be

noted here that T, and T, need not be orthogonal to each other.

Choice of local triads. In order to obtain continuous rotation fields across the
element boundaries, as well as to facilitate the filtering of spurious modes discussed later,
we require that the field of local triads {D, T}, Ty} be continuous; i.e., D(g{e}), T, (6(),

and Ty(61%) are continuous vector fields on the shell surface.

Proposition 2.1. Let D be a continuous field of directors on the shell mid-surface,
and let x be the rotation vector such that D = exp[)‘é]EI, withl € {1,2,3}. Let (I, J,K) be a
cyclic permutation of (1,2,3). Then T, = exp[)‘é]EJ and T, = exp[)‘é]EK are continuous vec-

tor fields on the shell mid-surface.

Proof. The continuity of the vector fields T, and T, follows at once from that of
D. Suppose that T, is not continuous at (§{°}), then there exists a curve on the shell sur-
face such that as (01°1)—(8{*}) from two sides on that curve, T, tends to two distinct vec-

tors, say T, and T,'. It follows that there are two distinct rotation vectors x and x'
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such that T, = exp[)‘é]EJ and T, = exp[)v(’]EJ. One reaches a contradiction since

D = exp[)‘é]EI P exp[)‘é’]EI, Le., the director field is not continuous. O

It should be noted that the global base vector to be rotated to the director D can
be chosen arbitrarily among the vectors {E, E;, E;}. An efficient algorithm for this pro-
cedure is given in Appendix I. This method thus provides an unequivocally simple way
to generate the wanted continuous field of local triads, and is illustrated in Figure 2.2a,

where for the sake of simplicity E, is chosen to be rotated to the director D.

Remark 2.1. There exist other ways of generating the local triads such as pro-
posed in Hughes & Liu [1981], and in Huang & Hinton [1986]. But these methods tend
to be biased toward either one direction or one plane — the Huang & Hinton method isi
sensitive to perturbation of the director about the axis E,. Arbitrary conventions are
made to remove ambiguities, and to render unique the choice of a local triad. Further,
they do not meet our requirement to have a continuous field of local triads on the shell
surface (both inside an element or across inter-element boundaries). This remark is illus-
trated in Figures 2.2b and 2.2¢, on the same mesh as in Figure 2.2a, where the generated
fields of triads is not continuous within an element. This example has the same topology
as that of the hemisphere in Example 6.9, and later helps explain the asymmetry in the

results when the above methods of generating local triads are employed. O

Remark 2.2. In engineering calculation, one regularly encounters cases of shell
structure with folds and branches, where several shells are welded together along a cer-
tain curve. It should be noted that in these situations, we have stepped outside of the
realm of shell theory; a detailed stress analysis at these connection points requires the 3-
D continuum theory. Shell theory is applied when we are only interested in the global
shell response of the structure. The proposed method of generating local triads remains
applicable in the above case, for once the director at a node on the connection line is
given, the local triad is determined uniquely. Further, if the field of directors is continu-

ous on the whole structure (including the connection line in the branching shell case),
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then by the above proposition the field of local triads is also continuous. O

Remark 2.3. The use of normals to element mid-surface instead of a continuous
director field to generate local triads will clearly result in discontinuity of the rotation
fields, since normals to element mid-surface are not continuous across inter-element
boundaries. This method is not applicable in the case of branching shell structure con-

sidered in the previous remark. O

Finite element interpolation. Let the domain Q of the shell be subdivided into
(shell) finite elements Q,, for e=1,2,..., where each element has N nodal points. Let
P6%h), a polynomial in (61}), denote the finite element interpolation function
corresponding to node I, and ¢, 6% € [—1, 1] are the natural coordinates on a shell lamina.

The position vector X of a material point in the shell element is interpolated by

~ S pole) 3
X = YP0) [ X+ 6D},
[=1 -

9
with XI = X(HII’ 0127 O) 7 and DI L= D(ﬁll, 912) ’ (-6)
whereas the displacement field within each element is interpolated by
_ N
lik(ﬁ{'}) = ZPI(H{O‘}) lfkl(giS) . with de(HS) = w0}, 08, 03) . (2.721)

—
[

1

Subscripts in capital roman letters such as I designate hereafter quantities pertaining to
node I whose coordinates are (47, 67,0). Equation (2.7a) could be expressed in terms of

the nodal displacement u; = uie; and nodal rotation x1= X[{ Tyt as follows

. N h
w(oth = el |y + 03-2ixl>< D; |. (2.7b)
=1
An element has thus n := 5x N degrees of freedom, which is ordered according to
A= {ufD X[ it x T e R7

t Summation convention does not apply for indices in parentheses.
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Remark 2.4. In our computer implementation, the data at node 1 are
(X1, X7, X), ki, and the coordinates of a fictitious node which are used to compute the
nodal director D;. It should be noted that the distance between node I and its fictitious

h .. . .
node need not be —‘—)I— Thus the use of fictitious nodes facilitates greatly the input of

-

data since one is not required to trace exactly the upper and lower surfaces of the shell

such as in the procedure employed in Hughes & Liu [1981]. O

2.4. Rotation boundary conditions

Often in general analysis of shell structures, one encounters situations involving
constraints of rotation degrees of freedom along the shell boundary. We will show how
this type of rotation boundary conditions could be exactly satisfied at the element level.
Consider a constrained rotation on the boundary as shown in Figure 2.3, together with
the local triad {D, T,, T,}. Let T, be a unit vector associated with the constrained rota-
tional degree of freedom, and T, an unit vector normal to T, such that {T, TQ} and
{T,, T} lie in the same plane. Let 8 be the angle between T; and T,. The rotation vec-

tor x can then be expressed in the basis {T,, T,} as
x = (x'cosf + x%inB)T, + (x%cosf —x'sinB)T, . (2.8)

Thus prescribing for example the rotation about T, axis, denoted by x!, is equivalent to

imposing a linear constraint equation, which at node I reads as follows

~

Xy cosBy + X sinBy = xi -1 (2.9)

This constraint equation could be eliminated directly at the element level. The rotation
degree of freedom whose axis is closest to T; will be eliminated. Thus, if
lcosfr] > [sinB|, then x{ is to be eliminated — otherwise, we eliminate the rotation

component x{. The space of admissible variations for the rotations, whose elements are

t Summation convention does not apply for indices in parentheses.
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denoted by ¢° is subjected to the corresponding constraint
Sy cosBy + < sinfy = 0 .t (2.10)

Hence suppose that we are to eliminate x/. Defining the "condensation" matrix L, and

the force column-matrix f by

(100 o co ] 0
010 0 L 0
001 O S 0
000 ~tanp, . . . ,Qll/cosﬁl
L=1oo00 1 € RO, f 0 € R™<1, (2.11)
.10 .
.01 ] 0

then the condensed stiffness matrix and applied force are simply
Kcond = LT KL € R(n-—-l)x(n-—l)] and fcond - LT Kt € R(n-l)xl , (212)

where K € R"*" is the original unconstrained stiffness matrix. The above operation is

repeated at all nodes where rotation boundary conditions are to be enforced.

Remark 2.5. Often in practice, either the rotation about the tangent to the shell
boundary (e.g., clamped edge), or the rotation about the normal to the shell boundary
(e.g., simply supported edge) is constrained. In these cases, T, could be conveniently

chosen to be the tangent vector to the shell boundary. O

Remark 2.6. In a finite element discretization, tangent vectors to the shell boun-
dary at a node common to two adjacent shell elements do not necessarily lie in the plane
{T,, T,} (with normal D). In this case, the above treatment of rotation boundary condi-
tions is to be performed with respect to the projection of vectors T,’s on the plane
{T,, T} given by [1 =D ® D |T,, where 1 is the identity operator, and @ is the tensor

product defined such that [D® D |T,:= (D+T,)D. O
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3. Strain and stress tensors

In this section, we recall expressions of strain tensor in convected coordinates, and
develop the strain-displacement relations which will be used extensively later. Expres-

sions of stress resultants and stress couples are also summarized.

3.1. Strain tensors in convected coordinates

Let the tangent vectors to the (convected) coordinate lines in the deformed

configuration be defined as

; az(8hy  ari(elih
ak((?{ }) o= 60}; = 801: €;

, for k=123 (3.1)

In the undeformed configuration, these tangent vectors are denoted by {A,, As, A3}, and
defined according to (2.1). Further, let the cotangent vectors conjugate to these tangent
vectors be denoted respectively by {a!, a® a®} and {A! A% A®}. The corresponding

metric tensors are then defined by

]

g = gijai ® aj (af 'a'j)af ® aj )

3 e 9
g¥ = ¢7a, ® a; = (a'a’)a;@a, (3.2a)
G = G"J'A" ® Al = (A,- 'AJ' )Ai %Y A7 )
. o 9
Gt = GVA,Q A, = (A cANA; QA (3.2b)

where the matrices [¢7] and [G¥] are the inverses of the matrices [g;] and [Gi;], respec-

tively. The deformation gradient takes a simple form in convected coordinates:
F = 5]':a,- RA = a, QA" (3.3&)

where 6} is the Kronecker delta. It follows that the transpose of F can be expressed by

(e.g., Marsden & Hughes [1983])
FT = G783g,,A; @ a’ = G* oA ®al . (3.3b)

Using (3.3a) and (3.3b) to compute the material (mixed) strain tensor I' = TIA; ® A7,

we obtain
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r= .;.[FTF—l]—_- %[G’"‘gkj—é}']A,-®Af. (3.4a)

Define I'* := I'’A;® A; by raising the indices of T, and I'® .= T ;A" ® A’ by lowering

the indices of T', we have
I = TIGYA'Q A7 = _;. [GPg,GY —G7 | A, ® A, (3.4b)
r®= g,riaA’@ A/ = .;. (g5 =G | A'® AT . (3.4c)

It should be noted that while I" is not a symmetric tensor, I'* and I'® are. The com-

ponents of I'® were used in shell theory in Naghdi [1972] (see also Green & Zerna [1968]).

3.2. Strain-displacement relations
From (2.1), (2.2), and (3.1), one could easily see that

X+ ) ou

a; YT = A; + Pyl (3.5)
and gy = a;ca; = G;; + A g:j + %@d;'Af + %;_i_:_. Z:: . (3.6)
It follows that ', I'#* | and I'@ take the expressions
r= %G”‘ Ak-%+ —Z%-A,.+ %}-%}A;@AJ’, (3.7a)
It = 2Gvgu {A,,- Z;“: + -g;:—-- .+ g;‘: . g;‘: }A,@A,-, (3.7b)
re- _;_ [A,“Z:: + %}d;_.Aj+ gg-g;{ JA‘@AJ" (3.7¢)

Finite element interpolation. It suffices to develop the strain-displacement
matrix for the components of I'® since the components of I' and of I'* follow according
to (3.4). Further, since in the present work we are only concerned with linearized strain,
the higher order term in displacement u* in (3.7) (the last term) is neglected. First, by

employing (2.6), the base vectors {A; = A/E;} are such that
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N Wb Ny
A= Y Pl [Xi+ 0 T)“DI |, Ag= S P—Dy, (3.8)
= I=1

9
I=1 ~

with Pp, = 8P;/86° . Due to the symmetry of T# and I'® one often orders the six

independent components of these strains in the form of a column matrix:
{Ti;} o= Ty, Tay, 2Ty, 2Ty, 2Ty, Ty 3T € REXT (3.9)

Unlike the usual practice of ordering strain components, the above ordering is chosen
because in this formulation Ty, plays no role, as will be seen in subsequent sections. Sub-

stituting (2.7) into (3.7¢), we obtain the linearized components of the strain I'@:

N
Fop = 71)‘2 (PI,oAﬁ + PrpAg)eudy, (3-103)
=1
N h
Fas= Toa= 33| ProAse; + PimA,+(x;x Dy |, (3.10b)
=1 -
N h]
F33 == A.3' ZPI“)—XIX DI . (3100)
I==1 “~

With this, we introduce the matrix B € R%" relating the strains {T'i;} to the nodal

degrees of freedom {uf*} xfehy

N uft} 3 ) 2 :
{Iy}=:BA=: ZBI Xl{a} = ZB,},, [+ ZB,O;, , (3.11)
T=1 =1 ’

=1 .
3 o
Un XN

where B; is the partition of B relating the degrees of freedom at node I to the strains,
B, the partition of B relating all the displacement degrees of freedom of the element to
the strains, and BJ, is similar to Bj;, but for the rotation degrees of freedom of the ele-

ment. From (3.10), B; can be shown to take the following form

[9358) + Ej ) [—{Té(x)} HTig} ] JE ROX5 (3.12a)

where {Tlu} = {TL, T4, T3}T denotes the column matrix of components of
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Ty = T&IIEJy and

[ P A Py AL P A}
PiAg PoAd PigAd
o PioAs PioAfd PioAS s
5P .= R , (3.12b
! P A3 P Ad P A € ( )
(PI,IA‘.Zl + PI,EAII) (Pl,lAz2 + PI,ZAIQ) (PI,1A23 + PI,QAlg)
0 0 0
) 0 0
0 0 0
A} A} A3 s
Bl.= p € R¥™3 | 3.12¢
I 1 All A12 Ai& ( )
0 0 0
| As A§ A§

In the above, we have made use of the relation ToX D = e3,Tp, with e,g being the alter-
nating symbol defined such that e := ep:= 0, and e = —eq = 1. While the
matrices in (3.12) are useful for computer implementation, the following definitions will

prove useful when we deal with the spurious zero-energy modes. Again, from (3.10) we

obtain
Ai {Pm,"‘,PN,l}
Al Px,z,"‘,PN,z}
Aé Pl,2r ) PN2 }
Béxs = (S ROXN s (313&)
As Py, Py }
(41Pra+ azpi )+ (41Puz+ 40P, |
0,---.0 J
0PA - {hIPI.ITBI ;s AnPNaTan }
osAz‘ {hlPI.QTEI , o hwProTan }
hy(P126°Aq + PAg)eTa, -+, hy(Pno0PA; + PnAjg)eTan
Ba = —1~ € 8 3 3 E ]R.OXN .
rot 2 @ hl(PLloAg + PIA))'Tﬂl y T, hN(PN,la Aa + PNAI)'TﬁN
A8 PraAs + PioAy)eTa, - -, hNaa(PN,lAQ + PrnaAy)eTan
AG'{}‘IPIT}?I, oy, hNPNTBN }
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(3.13b)

3.3. Conjugate stress tensors. Stress resultants and stress couples

The stress tensors conjugate to the strains I, T* and I'? are denoted respectively
by S= SIA; ® A7, s@= S;A'® A7, and S* = S”A,-@Aj. The internal energy in the

shell can then be written with respect to these strains as follows

W= %gs‘f rida = —é—é&ﬂ‘”dﬂ = -;-és"fr,-jd.rz . (3.14)

The stress resultants and stress couples are computed on a surface % = constant, where
a "directed" infinitesimal area on that surface is given by A°VGe,zd0°d0°, with
G = det[G};]. Therefore, with the small deformation assumption, the contact force act-

ing on a portion of the surface 6% = constant is given by
[ [SANG e 5d07d6® = [[SPANG e 3d0Pd6° = [[S¥A NG e,5d0%d6° (3.15)

Recall that the physical length on the coordinate line 8% corresponding to an increment
de* is ”A(G)]Idﬁ(c‘) E\/G(j;dﬁ(“); note that here e #” = constant and 6% = 0. Hence, on the
surface §* = §° we can evaluate the stress resultants per unit length of coordinate line
at the point (51}, 0) = (9", §2, 0) to be

1

N = N%A,(5{%0) = ! S ANG 63 . 3.16
0= a7, (3.16)

Similarly, the stress couples per unit length of coordinate line is obtained according to

h(hD () o ot .
X [60°SA VG 4o, 3.17
2| eagllAd010)]l | _fl (8.17)

M® = MPA401,0) =

where within an element, D = Ag/[Ag and A, is as given in (3.8),. It should be noted
here that M = M®+A; = 0, e, there is no stress couple about the normal to the shell

mid-surface.
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Remark 3.1. The above integral could be computed in the global cartesian coordi-
nate system with base vectors {E(}, then if necessary re-expressed the resultant vector in

components with respect to the tangent vectors {A;} at point (61°}0). Hence,

Ne = VG d¢° ]A{ A,

VG o ] B~ oI { J574)

TS [fls K

3.18a)

heyk D’ . hey D’ U (

Mo = R [j035<*JA}<\/Gd03 ]EI = K [fﬁsS“’AjK\/Gd@S JA} A,
2! eaﬂ“A/?“ ' -1 ZI Caﬁ”Aﬂ” l —1

where ey is the alternating symbol which takes value 1 if (1K) is an even permutation
of (1,2,3), and -1 if (LJK) is an odd permutation of (1,2,3); it is zero otherwise. In
(3.18a), we have omitted, for clarity, the coordinates at which different quantities are to
be evaluated. These quantities should be read as follows

A00), Al = AL o), VT = VE(ETT e,

-rp{a} g3
A} = Wl where A; = A/E;, (same for AR,

“ ({3} , ‘ R ) (3.18b)
Al = ﬁ%}_{_)_ where A’ = A{E;, and X7 = X6 ),

§%7 = (6% h = w6, D'= DB . o

4. Constitutive laws. Plane stress elasticity

In this section, we give the details relating the strain measures I, T#* and I'® to
their conjugate stresses S, S©, and S* with a particular attention to the treatment of
plane stress constraints imposed on a shell lamina. It should be noted here that plane

stress response is enforced directly in convected coordinates without the use of a local

triad or the assumption that the director is normal to the shell lamina.

4.1. Unconstrained elastic moduli tensors

We will use indices in capital roman letters to denote tensors in the global cartesian

coordinate system:

I'= TUEI® E;, with Iy = 'Y=l
S = SIJEI® EJ, with SIJ__‘ S”= S} .
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A linear relation between strain tensors and stress tensors is postulated through the use
of the fourth order tensor C = € E® E;® Ex® E;, designating the (unconstrained)

elastic moduli tensor,

Sy= CuyxTxe, Sj= Cfr},
S o= O;'jklrkl , S,‘J' - C;‘jklrkl ,

where Cyyp = ¢V and

uk, 00" 867 ae*’ 30" ‘
axt oxY axK axt

C 17kl —

In cartesian coordinates, the unconstrained elastic moduli tensor C takes the following

form (e.g., Green & Zerna [1968])

CIJKL — >\51J6KL + u(élKéJL + 6IL5JK)’

Ev . FE (4'4)
L+ o1 —2v) “7 20+ 0

where E denotes the Young’s modulus, v the Poisson’s ratio, and X and g are the Lamé’s

constants. It follows from (4.3) and (4.4) that
C:'jkl — )\Gs'ijl + #(G{k Gﬂ + Gﬂ ij) ) (45)
The expressions of Cif and of Cjy, are obtained by lowering the indices of ¥,

Cif = C"™ Gy Gy = N6i6t + u(G* Gy + 6i5%)

re ) 4.6
O:'jkl = (O Gfp qu Gkr Gla = >‘Gs'j le + ”(G,l‘k Gjl + Gt'l ij) . ( )

Remark 4.1. The internal energy W can be expressed fully in terms of strain

measures using different types of components by

W = .;_ [ricirida = -;. [T Gy TR = _;_ [Ty C™Tda . (4.7)
0 Q Q

It should be noted here that one could employ any of the above three forms of the inter-
nal energy in the finite element discretization with identical results. From the computer
implementation point of view, the last two forms are more convenient simply because of

the symmetry of the strain tensors T'* and T'@. O
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Remark 4.2. The symmetric property of the elastic moduli tensors should be
noted:
Ci= Cf,
Cijld = Cjikl = Ct'jlk = Okl:'j ’ (48)
CUM = o o ik oM
The above symmetry reduces the number of independent components in the elastic ten-
sors: 45 for C = CfA' Q@ A; @ A, ® A, 21 for both C% = A" R A’ Q A*® Al and

C* = O"A,QA; QAR A, O

4.2. Plane stress constraints

In shell theory, it is commonly assumed that a shell lamina is in a state of plane
stress, 1.e., the stress component along the normal to a shell lamina, of the contact force
acting on that lamina, is zero. The unit normal to a shell lamina is given by the covec-
tor A%/||A%|, and the contact force acting on the shell lamina with directed area A® is

SA® Hence
(SA%A’) = 0 => 5°G™ = §,;G%@% = 5% = 0. (4.9)

The three equations in (4.9) are the plane stress constraint equations for the three forms
of internal energy in (4.7) (or in (3.14)), respectively. These (linear) constraint equations
are eliminated in the expressions of the internal energy W prior to the finite element
discretization. It is more convenient to arrange the components of stress tensors and
strain tensors in column-matrix form, as done in (3.9),

{Sj} = {S!, SE, S¢, 54, 52,58, 54, 5%, S31T € RO},

4.10
{Sii} = {511, Soo, So3, Sa1, Sia, 533}'1‘ € R, ( )

The stress components in {S7} are ordered in the same manner as in (4.10),. The strain
components in {I/} are ordered as in (4.10),; the strain components in {I'/} are as in
(3.9). With the above ordering of components, the stress-strain relation in (4.2) can be

written as
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{8} = [CIHTE . {8y} = [CuT¥), (ST} = [0 (T , (4.11a)

where [Cf] € R™®, [C] € RS, and [C%] € R®¥® are symmetric matrices containing
the components of the tensors C, C® and c#, respectively. As an example, the
arrangement of the coefficients C*® in the matrix [C*] according to the ordering (3.9)

and (4.10), is explicitly given below,

(01111 Cu'zz 011‘23 01131 01112 01133
0 300 ‘2 2 2 2
02‘..... O“’"S C 231 02 1 02 33

02323 02331 02312 02333

[O{j}d] = 03131 03112 03133 . (411b)

SYM, oz g
03333

The elimination of the plane stress constraint in the internal energy proceeds as follows.

Proposition 4.1. Let {y'} = [AY{z;}, where {y'} € R™<1 {z;} € R™ 1 and

[A7] € R™™ s a symmetric matrir. Consider the linear constraint equation

m—1 X . moo, .. . -
y" = M o;y', and the inner product W .= M vz, Eliminating y™ and r, in W, one

f=1 Y= 1

obtains

m .. m—1 —_—
W= % AV z; = 7, AV z; (4.12a)
[ E £, =1

A:'mAjm _ak(A{k + Akj)

;4_:;1' - A"J‘ + akAkmﬁiﬁ} " T , (412}3)
r
. AR — 4m

Bli= 772 (4.12¢)

apApm — 4 mm
where the matriz [A7] € RUUX(m=1) 45 summetric.

L : . .
Proof. Substituting the constraint equation y™ = Yo,y into the expression of

Y= 1

i : .
the inner product W = Y y'z;, we obtain

=1

t Summation convention is implied on the repeated indices k and p, which take values in {1,...,(m—1)}.
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W = zyi ( I+ QT ) . (413)

Tl

Again, using the above constraint equation, z,, could be written as a linear combination

of {zy,...,2,_,} as follows
m—l . 3
1 1 2 CtkAk' —A™
m . m-—- m .. m =
MNAMz = Mo, 3 AT => 1, = — > mk__ll z . (4.14)
J=1 =1 F=1 f== ] 2 Cl/pApm —_Amm

p=1

m—1 . o . .
Thus, 7, = 38’z where 8 is as defined in (4.12c). Next, the components y'’s are

=1

expressed in terms of {z,, ..., z,_,},
. m—l . . .
y| — Z (ij + Almﬁ] )1.]_' (415)
J=1

It follows from (4.14) and (4.15) that the inner product W takes the form

W= 3o [A7 + (aA*™)B'87 + (Bray A + AmB )| o, it (4.16)

f,7=1
The first two terms in (4.16) are symmetric with respect to interchanging the indices ¢

and j. Substituting (4.12¢) into the third term in (4.16), we obtain

) ) ) ) akA{k “A{m i i akAkj __Ajm
Bla, AN 4+ AMB = - g AW g
£ CYpApm —Amm 9 apApm — A M

oy (At'k + Akj)-{- At‘mAjm (411)

which is clearly also symmetric with respect to interchanging the indices ¢ and 7. g

Let (S5, T3), (Ss, '), and (S, I'y) be the chosen pairs of stress and strain com-
ponents to be eliminated. Using (4.9) and (4.11), the plane stress elastic moduli tensors

(Ci] € R®®, [Cyu] € RS, and [C'™] € R™® can be computed with the aid of

t Summation convention is implied on the repeated index k, which takes values in {1,..(m=1)}.
{ Summation convention is implied on the repeated indices &, p, and g; these indices take values in

{1, (m-1)}.
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Proposition 4.1.

Remark 4.3. In setting up the strain-displacement matrix B, one does not need to
compute the coefficients corresponding to the strain I3, T® or I, depending on the
type of formulation chosen. The expression of the internal energy (4.7) with plane stress

assumption is now given by

W= 2[D/C§rta = LIT%5,,T"dn = L1, &, 40 (4.18a)
“Q “Q “Q

with (7,7) # (3,3), and (k,/) # (3,3). This explains the ordering of strain and stress com-
ponents in (3.9) and (4.10). Let B; denote the submatrix of B, without the strain com-
ponent Iz — recall that By is defined in particular in (3.12a) for the formulation using
'@ The stiffness matrix coupling the degrees of freedom at node I to those at node J is

then

K;= [ B [C"]B;dq . (4.18b)
Q

A similar expression is used for the formulation employing the strain " or I'*. O

Remark 4.4. A special case of Proposition 4.1 should be noted: When
a; =0,V ¢ €{l,.,(m—1)}, ie, y™ =0, then the expression of A" in (4.12b) takes a

simple form

—. » im 4 jm
e (4.19a)

Such is the case of a formulation employing strain components {T;;} and stress com-
ponents {5¥}. Moreover, when the director field is normal to the shell lamina, Le.,
G** = G = 0, equation (4.19a) applies in all three types of formulation, since the plane

stress constraint in (4.9) are then reduced to

Sg = 533= 533’: 0 0 (419b)

Remark 4.5. Jang & Pinsky [1987] employed an approximation to the strain com-

ponents {T;} where high order terms in 6 were neglected.f These approximated strains

t A partial description of this approach is also presented in Pinsky & Jang (1987].
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are evaluated at special points on a shell lamina; the strains within the element are then
obtained by some interpolation scheme. This is the assumed-strain approach where the
stiffness matrix is computed with full integration. Plane stress constraint is enforced
employing (4.19a) with $% = 0. Further, directors are assumed to be normal to the shell

lamina (see Remark 2.3). O

5. Reduced integration. Filtering of spurious zero-energy modes

In this section, we discuss the numerical computation of the stiffness matrix in
(4.18b). Uniformly reduced integration of the stiffness matrix is adopted to relieve shear
and membrane locking. Several properties of the stiffness matrix under reduced integra-
tion are studied, especially the ensuing spurious zero-energy modes of shell elements with
4-node bilinear and 9-node Lagrangian interpolation. We propose an efficient method for
filtering these spurious zero-energy modes which is insensitive to change of material pro-

perties and geometric parameters of the element.

5.1. Zero-energy modes for displacements and rotations

The expressions of spurious zero-energy (hourglass) modes have been derived alge-
braically for the 4-node Reissner/Mindlin plate element by Belytschko & Tsay [1983],
and for the rectangular (flat) 9-node plate element by Belytschko, Ong & Liu (1984]. Tt
was observed in the latter reference that in a large number of numerical examples the
same hourglass modes appear regardless of the shape taken by the element. Using the
9-node shell element developed by Hughes & Liu (1981] with uniformly reduced (2x 2)
integration, Belytschko and co-workers [1985a] have verified via numerical computation
that the same hourglass modes as those in the 9-node plate element occur independently

of the geometry of the shell element.

The equations obtained in the present approach have a structure that gives a great

deal of insight into the problem of spurious zero-energy modes. In particular, we will
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give a proof that substantiates the results of numerical experiments stated in the previ-
ous paragraph. We consider only the 4-node bilinear and the 9-node Lagrangian shell
element in this section. For subsequent developments, we recall here the expressions of

finite element interpolation functions (e.g., Zienkiewicz [1978]). For the 4-node bilinear

element:

{ (6117 612) } = { (—1, _1)» (lv _1)’ (1? 1)? (“1» 1)} ’

. (5.1)
Pl(g{a}) = —(1 + 9(11)91)(1 + 9(%02) , forl = 1,2,3,4 .

*=

For the 9-node Lagrangian element:

{ (011’ 912) } = { (-‘17 —1)) (1: "'1)’ (1’ l)r (’“1) 1): (O: —'1)1 (l’ O)’ (0’ 1)1 (-]: O), (O? O) } )
06 —0}) 0%(0° —0f)

2

Pyoleh) .=

, forl= 1234,

[

(3]

g0
Pl(o(a}) = [ -—(61)2}'—(-;)————— s forI = 5,7 , (52)

-

g'(6t — o}
Py(6{e}) = -1—5-—1)—[1 —(92)2], forT= 6,8,

Py(0feh) = [1 _(91)9][1 —(02)2] .
Define the matrices r € RY and z € R" as follows

ro={r}t={+1,+1,+4+1,+1}T forN= 4,
z:= {2} = {—1,+1,-1,+1}T, for N = 4,

T o= {7‘1}= {+17+1)+1)+1)+1’+17+1}+1y+1}T, for N = 9, (53)
z:={z}={-1,-1,-1,-,+1,+1,+1,+1,0}T  foo N= g,
Thus, for example, {uf} == {u} , ..., )T = ris the rigid body mode along the direc-

tion e;, and {u{)} = z is the spurious zero-energy (hourglass) mode of displacement in
the direction e;. Let x*= 0 and uf = r, for e = 1,2 and I= 1,...N. It can be easily

seen from (3.13) that all strain components are zero since

{Pia,..., Pyva}tr=0, {Pio,..., Pys}r=0, (5.4)

and so is the energy, W = 0. The computation of W by uniformly reduced integration,

which result is denoted by W, introduces additional (spurious) zero-energy modes.
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Proposition 5.1. Let (7,7,k) be a cyclic permutation of (1,2,3). Consider the case

with zero rotation x; = 0,V 1. Then regardless of the shape of the shell element, the dis-
N ) :

placement uw = Y Py where { uf) } = z, and {ul} = {uffy = 0, produces zero strains
I=1

at the (uniformly) reduced-integration points, V #*€[=1,1], and W = 0.

Proof. Using (5.1) and (5.2), it can be easily verified that for the 4-node (N = 4)

bilinear interpolation with one-point integration at () = (o, 0), and for the 9-node

(N = 9) Lagrangian interpolation with 2x 2 integration points at (8{°)) = (& T%—, + —\—%—),

we have
{Pl’l,...}PN'l}zz'O, {PI’Q,...,PN'Q}Z=O. (5.5)

Hence, from (3.13a), it can be easily seen that B{iJ{u{)} = 0, regardless of the com-
ponents of the tangent vectors A; = A/E,. Hence, it follows that the strains at the
reduced-integration points are zero independently of the shape of the element. Note

that the fifth row in the matrix B{) is a linear combination of the other rows. O

Proposition 5.2. Consider now the case with zero displacement, u;= 0,V L
Assume that the director field D and the thickness h are constant over the shell surface,
e, D(e{"}) =D , and k(81 = i | YV (6%}, for some D and h. Then regardless of the
shape of the shell element, the nodal rotations such that {x[¥} = 2 for the {-node ele-
ment, and { x{*} = r -3z for the 9-node element, with eagXf = 0, Y I, produces zero
strains at the reduced-integration points, ¥ 6% € [~1,1], and W = 0.

Proof. Let (D, 'j.‘l, ’i‘g) be the orthonormal triad computed as stated in Proposition
2.1. Then Ty = i‘ﬂ, V L The expression of B2, in (3.13b) can be rewritten as follows

[ L
03h(A1'Tﬂ) Piy, -, Puy
OS}Z(AQ'Tﬂ){PLE; o, Pug }
l;’i‘ﬁ' {(Pl,goaA;; -+ PIAQ), o, (PngﬂaAg + PNAQ)
Bii= Leg| ER™Y . (5.6)
hT/j‘ {(PLIOSA:; + PIAI): T, (PNvlosAg =+ PNAO }
RO°T 50 {(PmAz + PisAy), - (PraAs+ PugAy) }
’;(Aa"i‘ﬁ){Px,""PN} |
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From (5.1) and (5.2), it can be verified that at the reduced-integration points

{Py,...,Py}z=0, for N = 4,

{Ply-‘~;PN}(I"—3Z)=O, for N = 9, (5-7)

Thus, using (5.7) together with (5.4) and (5.5) in the expression of B2, in (5.6), we
obtain Bi,z= 0, for N = 4, and Biu(r —3z) = 0, for N =9, independently of the
tangent vectors A,’s, and for all * € [—1, 1]. Hence, the spurious zero-energy mode z for
the 4-node element, and (r —3z) for the 9-node element are invariant with respect to the

shape taken by the shell element. O

Remark 5.1. Note that in Proposition 5.2 even though the director field D is
assumed to be constant, the shell mid-surface is not assumed to be flat; in fact, is is

shown that the results hold for any shape taken by the shell mid-surface. O

Remark 5.2. We consider in Proposition 5.2 a very special case where both the
director field and the thickness are constant. In the general case where the director field
and the thickness over the shell are arbitrary, the rotations z for the 4-node element and
(r —3z) for the 9-node element do not necessarily produce zero strains at the reduced-
integration points, and therefore are not in general the spurious zero-energy modes for

the rotation. O

Proposition 5.3. Let zg5:= {25} € RY belong to the (column) null-space of the

matriz Py, ie., Pigzs = 0, defined by

hIPI,I{T};l} l T I hNPN,l{TZiN}
Ppi= | MPo{Th} |- ] hnPno{ Thy} | € RN (5.8)
h1P1{T2%1} l o l hNPN{TziN}

where {Tig} = {Th, Th, T4}T. Then z; belongs to the null space of BE,, i.e.,

B zp = 0, regardless of the shape of the shell element, and for all 6* € (-1, 1].

Proof. The proof can be easily obtained by rewriting (3.13b) as follows
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[

BA, 0 0
0 A, 0
0 93‘&3 A2 h1P1,1Tﬂ1 s ey hNPN,lTﬁN
BE, - Leap A, o0 A, |"|MPueTa. o, hvPuaToy | (5.9)
A, A, 0 hiPiTpa, ..., hnPyTan
0 0 A,

Further, it is clear that

Corollary 5.1. If Proposition 5.8 holds with the same z3 at all of the reduced-
integration points, then zg is the spurious zero-energy mode for the rotation degree of free-

dom eqpx®, regardless of the shape taken by the shell element. O

Corresponding to each component T4, define the matrix

MPiaTh .., hyPyiThy
Phi= |hPioTh ,..., hyPyoThy |€ RV (5.10)
hlpl Tbl Yoo ey hNPN T%N

Corollary 5.2. Consider the case of a 4-node element where N = 4. Let
¢ € {1,2,3} such that the matriz Pj€ R*** has full row rank. If Py;e R™* in (58)
evaluated at the reduced-integration point (o{hy = (o, 0) has a row rank equal to 3, then
regardless of the shape of the element the spurious zero-energy mode for the rotation field

eapX® 15 given by

hay Ty , if hyThy = 0
2 0 Thy » i Ay Ty :
zg= {2} = {_X—I' }’ A= {O, otherwise , (5.11)
where z = { z1} is as defined in (5.9),.
Proof. From (5.10) and (5.11), we have
Pll ’ v P41
Pigzg= |Pi2,..., Py |z2=0, (5.12)
Pl r L] P4

by virtue of (5.5) and (5.7),. Since Py has a row rank of 3, and P} has full row rank, it
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follows that Pgz = 0. O

Remark 5.3. For the 9-node element, it is not clear how to obtain an algebraic
expression for the spurious zero-energy mode(s) of the rotation field in the general case.

Define the matrix

P |
iy
B —e@
P 3( 7

e
R
i

€ Ro<9 (5.13a)

which includes all matrices Ps evaluated at the reduced-integration points, and” whose
maximal rank is equal to 9. If there is a vector v € R® which is independent of all the
row vectors of 155, then one can find a vector in the (column) null space of ﬁlg as a linear
combination of v and the rows of Py (by using for example the Gram-Schmidt orthogo-
nalization process). Corresponding to each component 7%, define the matrix

"It
PAgr )
1

Pb('—"'l —{_/3"')

A |

=
T -
.".

€ R'>7 (5.13b)

where P} is as defined in (5.10). It is easy to verify that a vector in the null space of P}

is given by

. . ry—3z
zp= { 2pp } = {_1.&__1 }e R, (5.13¢)

I

where r = { r;} and z= { z;} for the 9-node have been defined in (6.3)34, and A; is as
defined in (5.11),. Thus, (24, 25, 2§) could be a good starting point as candidates for the
vector v mentioned above. It should be noted that in the case of constant director field

and constant thickness, z} reduces exactly to (r —3z), with some multiplicative factor. O
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Finally, the geometry of the shell element is related to the hourglass mode z as fol-

lows

Proposition 5.4. Given a geometry {XI}, and a director field {131} forle {1,. N}.

Consider a family of shell elements whose geometry differs by the hourglass mode z
{{XI,}, I=1.,N,e=12. | X, =X+ z¢c,, and D;, =D, } (5.14)

Jor all arbitrary c, = ¢Ey, with ¢! € R. The family of elements (5.14) forms an equivalent
class whose members have the same under-integrated stiffness matriz as that of the

representative element with geometry {X;} and director field {D;}.

Proof. From (3.8), we obtain

N . Jhia N hpoa
Aae = ZPLOI[XI -+ 2IC, -+ g —Z'-'DI] , A3e == I=lel_2~ Dl—z——Aa . (515)

I=1

By invoking the equalities in (5.5) at the reduced-integration points, we have A, EAO‘
Thus, the metric tensor of all elements in the family is that of the representative ele-

ment: [Gy] r__[é’;]~]. Further, since the field of triad {15, ’i‘l, Tg} is the same for all ele-

ments in (5.14), the conclusion follows from (3.13), (4.5), and (4.6). O

5.2. Filtering of spurious zero-energy modes

The general filtering scheme. The method employed here to filter the spurious
zero-energy modes from an under-integrated stiffness matrix is by means of a series of

rank-one perturbations on the stiffness matrix. The stiffness matrix can be written as an

assemblage of sub-matrices (recall the notation used in (4.18b))

K= [ B (%" Ban

Qe
) ) ) ) (5.16)
= [ oA, [Ba]iemBh e Bl B e Bi]1om B e B iomB, Jan,
Q! 2
‘ a€ {1,2}

where the symbols A and @ are used to designate the assembling process. Let
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b, € R? and b2, € R". By rank-one perturbations of the under-integrated stiffness K,

we mean

Y Y T ‘
K'= R4 oK, &K= A [Bibi) @ B fa) ], (5.17)
t € 2

where |IK|| << [K|| (Belytschko et al [1984,85]).1 The choice of 6K = ¢K, with ¢ being a
very small number and K the fully-integrated stiflness, is a simple, but expensive, filter-

ing scheme.

The vectors by, and b2, are chosen such that they are not orthogonal to the spuri-
ous zero-energy modes — hence these modes are filtered from the under-integrated
stiffness K — and that they maintain as much as possible the consistency of the ele-
ment. To maintain consistency of the element, b}, must be orthogonal to the linear dis-
placement field, and b®, must be orthogonal to the constant rotation field, since these
displacement >and rotation produces a state of constant strains which appears as the size
of an element tends to zero. It has been shown that the 9-node Lagrangian element is
able to reproduce quadratic displacement field (Wachspress [1981]), particularly when its
geometry is restricted to the isoparametric mapping of a 4-node element. In this case,
the 9-node element is flat and takes the form of a quadrilateral with mid-side nodes
exactly in the middle of each side; the interior node inside the element must be exactly
on the intersection of two lines passing through the mid-side nodes. This type of 9-node
elements passes the patch test of pure bending where the displacement field is quadratic
(Taylor et al [1986], Huang & Hinton [1986)). Hence, for the 9-node shell element to per-
form well in this situation, we further require that b, to be orthogonal to the quadratic

displacement field when the element is flat.

The construction of bj, and b%. Let {b,..., b, } be m vectors in RV.

Further let b, = b2, = b = {b € RV, and define a general form of b to be

rot

t The rank of K here is of course 5.
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— m
b:= a,z+ 3, ob;, (5.18)
=1
where {a,, ..., a,} are coeflicients to be determined. Let {w,, ..., w..} be vectors in

RY. Given a coefficient ¢ € R\ {0}, the general problem we want to solve is to
Find { a,, ..., a, } such that bez = ¢ # 0, andg-w; =0V i€ {1,.,m}, (519)
which amounts to solving the system

(ze2)  (z+b) . (z+b,)

a, c
. 0 (wiez) (wyeby) . (wieb,) R
H = , with H := € R(m+Ux(m+1 (5 90)
o 0 (Wi *2z) (Wpneby) . (w, *b,,)

The vectors w;’s are associated with the constant, linear, and quadratic displace-
ment field as will be explained in detail later. Basically, the components of w;’s are

polynomials in the cartesian coordinates of the nodal points.

Remark 5.4. The structure of b here differs from the generalized gradient "~"
employed by Belytschko and co-workers [1984,85], where it is assumed that a, = I.
These authors only aimed at solving partially problem (5.19) by requiring that
bew; = 0, Y ¢. However, this procedure does not in general ensure that bez 3 0. In

fact, it is easy to construct example where the second condition in (5.19) is satisfied, but

not the first one. O

Remark 5.5. In Belytschko et al [1985b], the vectors {b;, ..., b, } were obtained
from differentiating the shape functions, and are not all linearly independent. A special
solution was devised without having to solve a system of linear equations. But this
filtering scheme is only consistent with respect to linear displacement field when the ele-

ment Is flat; it is in general inconsistent. O

Note that the system (5.20) is non-symmetric. The problem is solvable if detH # 0.
Further, the vectors {w,, ..., w,} are not assumed to be independent. The following

is clear:
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Proposition 5.5. Assume that {z,b,, ..., b,.} are linearly independent vectors.
Then the system (5.20) is solvable only if {z, w,, . .., w,} are linearly independent. O

o4

However, it is more efficient to solve completely problem (5.19) as follows

Proposition 5.6. Choose b, = w;,\/ i € {1,...,m}:

b= a,z+ Yla;w,. (5.21)

i=1
If {z, wi, ..., wn} are linearly independent, then (5.19) is solvable. Suppose there exists

{B., ..., Bn} not all equal to zero such that 8,z + iﬂ,.w,- = 0. IfB, = 0, then (5.19) is

i=1
not solvable. If B, = 0, (5.19) is completely solvable.
Proof. By choosing b, =w;, H becomes symmetric. If {z, Wy, ..., w,} are

linearly independent, then by Proposition 5.5 problem (5.19) is solvable. We only need

m
to consider the case of linear dependence between the w;’s, le, f,z+ Y,8w;, = 0 and

f=1

B, = 0. Eliminate the redundant vectors w;’s and reorder such that the remaining vec-

tors {z,wy, ..., w,}, with p < m, are linearly independent. Next solve for
{a,, ..., a,} such that
@, c (ze2) (zewy) . (zew,)
. 0 (wiez) (wiewy) . (wiew,)
H = , with H := € REP+UX(p+1) (5 09)
O, 0 (wp 'z) (wp 'wl) - (wp pr)

and b= a,z + ia;w,'. The vectors w;’s, for j = (p+1),...,m, are linear combinations

f=1
of {wy, ..., w,}, le, w;= }_p]ﬂfjw;. Since bsw; = 0, for 7= 1,..m, we have
f==1

bew; = 0, for j = (p+1),.,m; and since bez = ¢, problem (5.19) is completely solved.

]

Remark 5.7. The matrix H in Proposition 5.6 is not only symmetric, but can also

be rendered better conditioned if the vectors {z, w;,...,w,} are normalized using the
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Euclidean norm |||, defined by

N
llzll; = [E(ZI)ZJ : (5.23)

I=1

In this case, all diagonal terms are equal to 1, and off-diagonal terms are less than 1 in
absolute value. Hence, the problem of solving the linear system (5.22) is in general
better conditioned than solving (5.20) using various possible choices of the vectors
{b, ..., b,}. In addition, the choice b; =w;, V ¢, provides a natural extension of the

base vectors b;’s when the number of vectors w;’s increases, as will be seen shortly. O

Remark 5.8. When 8, # 0, then problem (5.19) is unsolvable for any set of

independent vectors {z,b;,...,b,}. In this sense, choosing b; =w;, for all
t € {1,...,m}, represents the best possible choice for the vectors {b,..., b,}. In the
case B, # 0, we let b = z, and thus will not satisly the requirement that bew; = 0,V .

However, this does not mean the filtering procedure does not retain consistency of the
element, since by changing the geometry of the element (such as refining the mesh) we
will alter the vectors w;’s, and hence the unsolvability of the problem. The practical
implementation aspects of the solution procedure in the proof of Proposition 5.6 are

relegated to Appendix I. O
Using the proof of Proposition 5.6, it is simple to obtain the following

Corollary 5.3. Let {v:rl, C, v;'m} where w;’s are linear combinations of
{wi, ..., wn} such that the subspace spanned by the vectors w;’s is the same as the one
spanned by the vectors w;’s. Then problem (5.19) can be solved by using w;’s in (5.22)

instead of w;’s. O

The set-up of vectors w;’s. We want to maintain consistency of the element up
to linear displacement field in both the 4-node and the 9-node elements. Hence, the fol-
lowings are considered

Wy = P={1,...,1}TERN,

. . . :";)/
wir= (X} = (X, X{)TERY, fori= 123, (5:24)
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Except in the case of a flat 9-node element, we want to maintain consistency of the ele-
ment up to quadratic displacement field as discussed earlier. The additional vectors w,;’s

to be considered are presented in matrix form as follows
(X0 (XPP (P (X{XP) (WEXT) (XPx})

€ R™¢. (5.25)

(CriF (P (63 (RXF) (X3x3) (xixd) |

There are thus 10 vectors in total, but at most 6 of them are independent. Define an
orthonormal triad {T,, Ts, T,} such that {T,, T,} are tangent to the shell mid-surface at
node 9 (the interior node). Invoking Proposition 5.6 and Corollary 5.3, we define the

new set of coordinates
5(1 = XI “Xg = j(IJ'.i‘J ; with .};'IJ = (XI"i‘J) —*)(QI , (526)

and use these in (5.24) and (5.25). Note that (X&)) are the coordinates of node I with
respect to a system of cartesian coordinates with origin at node 9 and with base vectors
{’i‘l, T, T3} When the element is flat, X8 =0, ¥ I. In this case, the w,’s in (5.24) and
(5.25) are replaced by their linear combinations defined in (5.26)

~ " -

L XPXP (X (XIXT) (X2

€ R (5.27)

Remark 5.9. It is numerically more accurate to make use of the transformation
(5.26) and the normalization in Remark 5.7 in all cases. In so doing, we still solve
exactly problem (5.19), by Proposition 5.6 and Corollary 5.3, and at the same time avoid
numerical ill-conditioning when the coordinates of nodal points have large amplitudes.

Further, the transformation (5.26) provides a way to check the flatness of the element.

0
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The practical filtering scheme. As explained in (5.17), the filtering of spurious
zero-energy modes is done by introducing small perturbations into the stiffness matrix.

In order to have a measure of the perturbation, we normalize b using the norm

bl = Jmax_ [br] . (5.28)

The magnitude of the perturbation is a fraction of the maximal absolute value of the

diagonal coefficients. We propose the following practical filtering scheme

Blw = by = —— (5.29a)
™
od =i ki ) Lo Fa T
0K = igllz,i.i(,n |I< (1%} lj E/{?,Q,I&} [edx'abiis fbjiu] & erotbrat rot] } ’ (Sggb)
o € {1,2}

where ¢4, and €,, are perturbation constants (of order 107%). Clearly, similar to K, the
matrix 6K, and therefore K*, are also proportional to the Young’s modulus E. It follows
that the computed displacement A is exactly proportional to the Young’s modulus. In
this manner, the filtering scheme is insensitive under change of material properties. In
addition, the proposed filtering scheme is shown to be insensitive under change of

geometric parameters of the shell element in numerical examples presented shortly.

Remark 5.10. The computation of the perturbation matrix 6K in (5.29) is done
once for each element. This is contrast to the filtering scheme proposed in Belytschko et
al [1985a), where at each reduced-integration point a perturbation matrix is added to the
stiffness matrix expressed in a local cartesian coordinate system. The perturbed stiffness
is then transformed to the global coordinate system. In addition to this operation, 3
coeflicients are to be evaluated exactly by full (3x 3) integration — while the stiffness is

computed by reduced (2x 2) integration. O
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6. Numerical Examples

In this section, several numerical examples are presented to assess the performance
of the shell element formulation and the filtering of spurious zero-energy modes. The
shell element with 9-node Lagrangian interpolation has been implemented in the research
version of FEAP, a "Finite Element Analysis Program,” written by Taylor (a simplified
version of this program is presented in Chapter 24 of Zienkiewicz (1978]), and run under
the Berkeley Unix 4.3 BSD operating system. This element is subjected to an extensive

course of obstacles suggested by several authors (e.g., MacNeal & Harder [1985] and in

Forsberg & Fong [1985]).

The following convention is used to report the results obtained from the filtering of
spurious zero-energy modes:
e kf = 0: No filtering of spurious modes.
e kf = 1: Filtering scheme consistent with linear displacement field.

.kf:

[

: Filtering scheme consistent with quadratic displacement field.

e kf = 3:Inconsistent filtering (b = z).
In all examples, we arbitrarily set the constant ¢ in (5.19) to ¢ = 1, and the perturba-
tion constants in (5.29b) to €4, = €, = 107°% Also, integration through the thickness is

performed throughout with 3 points of integration.

Example 6.1. Patch tests. Consider the square patch of length 10 consisted of
shell 9-node elements as shown in Figure 6.1 with material properties £ = 2.1x 10® and
v= 0.3 (Huang & Hinton [1986]). The present 9-node element, either in full integration
or in reduced integration with filtering of spurious modes, passes both the membrane
and pure bending tests — a large range of thickness, 0.0001 < h < 1, has been tested.

This test is also part of the MacNeal-Harder standard set of problems [1985].

A square plate with length L under pure bending test, with moment per unit
length M, yields a transverse displacement which is a polynomial with quadratic terms in

the coordinates:



A Class of Simple and Efficient Degenerated Shell Elements 38

vL?
4

6M
3

wi(xeh) = (X1? — (X2 4 (6.1)

Thus in order to pass this test, the filtering scheme must be consistent up to quadratic

displacement field.

Remark 6.1. We have implemented the assumed-strain method and used full
integration as suggested in Jang & Pinsky [1987], where an approximation to the strain
components I';; is used.t This element, in our implementation, could only passes the
membrane test, but not the bending test. The same can be said when we try to apply
the same assumed-strain scheme to the exact expression of I';; without neglecting any
terms. However, if we transform the strains [i; to the (global) cartesian coordinate sys-
tem — a costly process — prior to carrying out the assumed-strain scheme, then this ele-
ment passes the bending test. It should be noted that both Huang & Hinton [1986] and
Park & Stanley [1986] applied their assumed-strain scheme to the strain components in
local cartesian coordinate systems. It was mentioned in Huang & Hinton [1986] that

their element passed the bending patch test. O

Consider now the square plate of length 4, thickness & = 0.01, with a specially dis-
torted mesh as shown in Figure 6.1b.t The material properties are £ = 1000 and v = 0.3.
In connection with Propositions 5.5 and 5.6, the purpose of this test is to consider the
case where the matrix of coordinates in (5.27) is not full rank. Such case is presented in
the (extremely) narrow element along a diagonal of the plate as shown in Figure 6.1b; its
nodal coordinates are tabulated in Table 6.1a below. The plate Is subjected to a bending
moment per unit length of M = 3x 107° at its tip (with 3 nodes) in the same manner as
in the bending patch test. The transverse displacements of the 3 nodes at the tip, nor-
malized with the exact solution, is summarized in Table 6.1b, and a perspective view of

the deformed shape is given in Figure 6.1c. It can be observed that the present filtering

t Terms quadratic in 6% were neglected by these authors,
t This mesh admits 2 corner nodes with -an angle of 180° along two sides of the plate — the jacobian at these
2 nodes is singular.
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Table 6.1a. Coordinates of special element.

Node X! X?
1 -2 -2
2 -0.99 —-1.01
3 2 2
4 0.99 1.01
5 —1.485 -~ 1.515
6 1 1
7 1.485 1.515
8 -1 -1
9 0 0

Table 6.1b. Specially distorted mesh.
Normalized transverse displacements at lip.

Normal. Disp.

Coordinates | Exact
kf =2 | kf = 3 | Full Int.

(-2,2) 1.44 1.007 0.923 0.007
(0, 2) 1.548 0.924 0.725 0.087
(+2,2) 1.44 0.828 0.582 0.258

scheme (kf = 2) provides a better result than the inconsistent filtering (kf = 3). e

Example 6.2. Thick circular plate. This example is used to test the perfor-
mance of the element in thick shell structures where shear deformation is important.
The circular plate, with clamped boundary condition, has radius R = 5, thickness b = 2,
and material properties £ = 1.09x 10°, v = 0.3. A quarter of the plate is modeled with 3
elements as depicted in Figure 6.2a. Figure 6.2b shows both the computed transverse

displacement using full integration. The exact solution of this problem can be found in

Lukasiewicz [1979,p.114].

Example 6.3. Thin rectangular plate. This example is part of the MacNeal-
Harder tests, and is used to assess the performance of plate elements against shear lock-
ing. The plate has length 10, width 2, and thickness & = 107, with material properties
E = 17472x 107, v = 0.3. Two boundary conditions (simply supported and clamped)

and two load cases (uniform pressure at 107* and point force at 4 x 107*) are considered.
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Only a quarter of the plate is modeled with uniform meshes of 1, 4, 16, and 64 elements.

The computed transverse displacement at the center of the plate is summarized in Table

6.3a.

Table 6.3a. Thin rectangular plate. Transverse displacement at center.
Boundary No. of Uniform Load Point Force
Condition | Elements

Exact = 12.97 Exact = 16.96
Simply kf = 0 kf = 2 Ef =0 kf = 2
supported 4 1.2986e+ 01 | 1.2790e+4-01 | 1.7263e+ 01 | 1.5655e-+ 01
16 — 1.3006e-+ 01 — 1.6139e+ 01
64 — 1.2972e+4 01 — 1.6673e+ 01
Exact = 2.56 Exact = 7.23
kf =0 kf = 2 kf = 0 kf = 2
Clamped 1 - — 6.8766e+4 00 .| 6.4477e+ 00
2.8729e+ 00 | 2.3342e+00 | 7.2550e+ 00 | 3.5259e-+ 00
16 — 2.6047e+ 00 —_ 5.0105e+ 00
64 — 2.6041e+ 00 — 6.7509e-+ 00

Remark 6.2. Only in one instance, the present filtering scheme (kf = 2) with
€is = €y = 107% yields a clear slower rate of convergence than reduced integration
without filtering of spurious modes (kf = 0): the case of clamped boundary condition
with point force.t However, these results could be sharply improved if the perturbation
constant on the rotation (¢,, ) is chosen to be smaller than the perturbation constant for
the displacement (eg,). Using for example €4, = 107% and ¢,,, = 1073, the tranverse dis-
placement at center of the clamped plate under point force is reported in Table 6.3b.
The reason is because the stiffness associated with rotations is very small compared with
the membrane stiffness. Clearly, for this case, a mesh with finer discretization around
the point force and coarser discretization near the clamped boundary would give a better

result. The purpose of using uniform discretization here, however, is to compare with

t The results for the square plate (with aspect ratio 1) agree very well with the exact solution in all situations,
including the case with clamped boundary conditions and point force. This is why we chose to present only
results for the rectangular plate.
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Table 6.3b. Thin rectangular plate. Transverse displacement at center.
Perturbation constants: eg, = 107% ¢,, = 1078

Boundary No. of Point Force
Condition | Elements

Exact == 7.93

kf =0 kf = 2
Clamped 1 6.8766e+ 00 | 6.4563e+ 00
7.2550e+4- 00 | 5.4280e+ 00
16 — 6.7753e+ 00
64 — 7.1369e4+ 00

published results by MacNeal and Harder. O o

Example 6.4. Square plate with corner point-supports. This example was
used by Belytschko, Ong & Liu [1984] to look for an appropriate value of r, associated
with the transverse displacement, a multiplicative factor in their proposed perturbation
matrix 6K. The plate has length L = 10, thickness h = 0.01, and material properties
E = 10" and v= 0.3. Depending on the magnitude of the value of r,, they obtained
different results compared to the exact solution: oscillations in the transverse displace-
ment for small value of r, (0.01), and acceptable results for ry = 0.1. The oscillation
obtained when using r, = 0.01 is probably due to the fact that their filtering scheme
does not completely eliminate the hourglass mode for such a small value of ro. In the
cases with r, > 0.1, one observes as expected a stiffening effect as the value of r,
increases. These authors recommended the optimal value ro = 0.1 for general use, as it

produced results closest to the exact solution in this example.

A quarter of the plate is modeled. Figure 6.4a shows the computed transverse dis-
placement along a centerline as obtained in the present approach for a mesh of 2x 2 ele-
ments and for a mesh of 8x 8 elements. In this example, the filtering of spurious zero-
energy modes is crucial as can be seen from the results in Table 6.4. The convergence of
the transverse displacement at the center of the plate obtained different types of filtering

is reported in in Figure 6.4b. The displacements in Table 6.4 are normalized with
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Table 6.4. Square plate with corner point-supports.
Transverse displacement along center line.

X! Coord. | No filtering, kf = 0 | Filtering, kf = 2
0.00 —5.0504¢—-01 —2.5961e+4 00
1.25 —8.7265¢ 4 09 —2.5335¢+ 00
2.50 —5.1206¢ 01 —2.3457e+ 00
3.75 —8.7265¢ + 09 —2.0912¢+ 00
5.00 —5.5357¢—01 —1.8284¢e+ 00

respect to the referential value of —2.788811 obtained from an 8% 8 mesh (i.e., mesh size
0.625). The theoretical formula for the transverse displacement can be found in
Timoshenko & Woinowsky-Krieger [1959]. It should be noted that due to the simplicity

of formula (5.28) the above results are obtained without the need of parameter tuning. e

Example 6.5. ‘Simply supported rhombic plate under uniform loading.
This example, whose geometry is depicted in Figure 6.5a, is often used to test the perfor-
mance of plate elements. The difficulty in this example lies in the singularity of the
moments — the stress tends to infinity — at the obtuse vertices. This type of singular-
ity is predicted in both the Kirchhoff plate theory as well as in the Reissner/x\fﬁndlin
plate theory as noted in Morley [1963,p.89]. The length of each side of the plate is 100,
the obtuse vertices have an angle of 150°, the acute vertices have an angle of 30°, and

the plate has a thickness of 0.1. The material properties are E = 107, v = 0.3.

Two types of finite element mesh are used to discretize the (whole) rhombic plate:
(A) uniform discretization — all elements have identical stiffness matrix, and (B) uni-
form discretization with one exception: We move the 3 nodes closest to an obtuse vertex
to the "quarter-points” from that vertex as shown in Figure 6.5b. The mesh of type B is
inspired from the treatment of singularity points in fracture mechanics by exploiting the
properties of isoparametric coordinate mapping, as proposed by Henshell & Shaw [1975]
and by Barsoum [1976]. Recall that the Morley solution as plotted in Figures 6.5¢ and

6.5d involves certain approximation, and is used here as a reference.
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In this example, the internal forces are presented with respect to the global carte-
sian coordinate system. Thus prior to computing the stress resultants and stress cou-

ples, the stress tensor is transformed to the global cartesian coordinate system by

G Xt ax?

SYU= g : :
86" 907

(6.2)

The variation along the short diagonal of the computed stress couples M® = M"ﬂEﬂ
(M* = 0) acting of the surface with normal E, are shown in Figure 6.5¢ for the com-
ponent AM', and in Figure 6.5d for the stress couple A®.+ The sign of the computed
moments near the obtuse vertex is as predicted by the theory.f We note in passing that
the results of mesh A in Figure 21 of Belytschko, Ong & Liu [1984] — which is a finer
mesh than mesh B in the same reference — predict a reversal of the sign of M*! as com-

pared with the exact solution.

It can be observed from Figure 6.5¢ that the computed moment M!'? agrees well
with the Morley solution for both mesh type A and mesh type B; there is no significant
change in the computed values compared with those obtained from the 256-element
mesh of type A. The values of M'? from a mesh of only 16 elements are good enough —
this is for both type A and type B, even though type B yields slightly better results near

the center of the plate.

On the other hand, a sharp improvement on the computed values for moment M2!
is obtained with a mesh of type B compared with a mesh of type A. It can be seen from
Figure 6.5d that the results obtained with a 16-element mesh (Figure 6.5a) of type B are
clearly better than those from a 256-element mesh of type A. The values of M2 for a
64-element mesh of type B agree well with Morley solution. Recall that a 16-element

mesh has only 4 elements per diagonal, and a 64-element mesh has only 8 elements per

T The difference in notation for the moment components should be noted: m,; and mop are used in Morley
[1963) for M2 and M2}, respectively. Further, the sign convention for the moments is also different.

1 It appears, according to Hughes & Tezduyar [1981] who studied the same problem, that there are plate ele-
ments which do not predict correctly the sign of the moments at the obtuse corner; these authors cited Sander
{1971} and Rossow [1977).
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diagonal.

At the acute vertex, there is no singularity in the moments. The computed values
of M'? and M*' along the long diagonal are respectively shown in Figure 6.5e and in Fig-

ure 6.5f.

The convergence of the displacement (meshes type A) at the center of the rhombic
plate, normalized with respect to the Morley solution of 0.4455, is given in Figure 6.5g:
The best rate of convergence is obtained with reduced integration and consistent filter-
ing. It should be noted that this example does not have any global spurious zero-energy
mode due to the simply supported boundary conditions. The enforcement of the simply
supported boundary conditions, where the rotation in the direction normal to the boun-
dary of the rhombic plate is constrained, provides an example of the treatment of rota-

tion boundary condition discussed in Section 2.4. e

Example 6.6. Twisted beam. MacNeal & Harder [1985] proposed this example
to test the effect of warp on the response of shell elements — the gaussian curvature of
the shell in this example is negative. The beam has length 12, width 1.1, thickness
h = 032, and is twisted 90° from root to tip (see Figure 6.6). The material properties
are E = 29x10° v = 022. Results from a mesh of 6 shell (9-node) elements are tabu-
lated in Table 6.6, where the referential values displacement are as given in MacNeal &

Harder [1985].

Table 6.6. Twisted beam. Displacement in direction of applied force.

Integration Applied Force
Type In-plane Shear Out-of-plane Shear
(refer. = 5.424¢—03) | (refer. = 1.754¢—03)
kf =0 5.4177¢—-03 1.8061e—03
kf = 1 5.4110e —03 1.8056¢—03
kf = 3 5.4110e—03 1.8056¢ —03
Full 3x 3 5.2797¢ —03 1.7876¢—~03

In this particular example, due to the shape of the elements in the mesh of Figure 6.6,
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identical results are obtained with kf = 1 and with kf = 3. Further, full integration

here yields good results since the shell is relatively thick. e

Example 6.7. Pinched cylinder. A cylinder of thickness h = 3, radius R = 300,
half-length L = 300, and made of material with E = 3% 10° and v = 0.3, is employed to
test the performance of the element in a shell structure with g single curvature. Two
types of boundary conditions at the extremities of the cylinder are considered: (i) com-
pletely unrestrained, and (ii) supported by rigid diaphragmst such that the only unres-
trained degrees of freedom are the displacement along the axis of the cylinder and the
rotation about the tangent to the shell boundary. The under-integrated stiffness of the
cylinder with free ends possesses spurious zero-energy modes, and hence the free boun-
dary condition provides a more meaningful test of performance for the filtering scheme
of these spurious modes. Also since theoretical results exist for the free-end pinched
cylinder, we will vary the geometric parameters of the cylinder to test the performance
of the present filtering scheme under change of geometry of the shell structure. The
cylinder with end diaphragms on the other hand presents complex state of bending and

membrane actions, and thus is often used to evaluate the performance of shell elements.

Only 1/8th of the cylinder is modeled as shown in Figure 6.7a. The convergence of
the normalized displacement under the point force for both boundary conditions is
shown in Figure 6.7b and in Figure 6.7¢; the mesh sizes correspond to a uniform discreti-
zation with 1, 4, 16, and 64 elements. One can see that, for both boundary conditions,
the best rate of convergence is obtained with reduced integration and consistent filtering
of spurious modes. For the cylinder with free ends, a good approximation of the dis-

placement under the point force F is given by (Lukasiewicz [1979,p.405))

0.0745FR? EhR3

QDL y with D = m . (63)

t This boundary condition is also called the "freely supported” boundary condition by some authors.
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Note that the above formula is based on some approximating assumptionst that are only
valid for short and thin cylinder. Formula (6.3) yields the value of displacement of
—4.5197% 10~*. This formula will later serve as a guideline to verify the computed results
with different values of radius R and thickness k. For the case of rigid diaphragms, the
displacement is normalized with the exact value of —1.82489x 10~° computed by Lind-

berg, Olson & Cowper [1969] based on Flugge's equations.

For an infinitely long cylinder, the displacement under the point force is given by

0

FR | R
0.737 —— | — .
2 [h ] , (6.4)
which also does not include shear deformation and local effects of point loading

(Lukasiewicz [1979,p.371])).

The computed values of the displacement under the point force with several
geometry of the cylinder with free ends are summarized in Table 6.7a, where the results
are presented as follows. We start with the basic geometry with parameters b = 3,
R = 300, and L = 300. We vary one of these parameters, and keep the other two fixed
as given in the basic geometry; only the parameter which differs from its basic counter-
part is shown in Table 6.7a. It could be seen from Table 6.7a that the order of magni-
tude of the displacement corresponds well with formula (6.3), except for the case with
L = 3000 where one should use formula (6.4) to obtain a value of —8.189¢—05. The
result in Table 6.7a testifies to a robust performance of the proposed filtering of spurious

modes under change of geometry.

Back to the pinched cylinder with diaphragms and basic geometric parameters, the
radial displacement along the lines BC and DC are respectively shown in Figures 6.7d
and 6.7e. The computed stress resultants and stress couples in the pinched cylinder with

diaphragms agree well with the exact solution (which was derived for a theory without

t These assumptions are: (i) the generator remains straight, (ii) partial satisfaction of boundary conditions at
the free edge, (iii) no shear deformation. Formula (6.3) was found to be in good agreement with experiments.
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Table 6.7a. Pinched cylinder with free ends.
Displacement under point force for different geometric parameters.

Basic parameters: h = 3, R = 300, L = 300
No. elem. h = 0.3 h = 30
1 —4.0782¢—-01 —4.8458¢ — 07
4 —4.4976¢—01 —5.2917¢-07
16 —4.5276e —01 —5.3778e — 07
No. elem. R = 30 R = 3000
1 —1.8005¢ —05 —4.0809¢ —~01
4 —9.3667 ¢ —06 —4.5566e —01
16 —5.3312e—006 —4,6088¢ — 01
No. elem. L = 30 L = 3000
1 —4.3440¢ —-03 —8.9260e —05
4 —4.8033¢—03 —9.1821e—-05
16 —4.8520e —~03 —8.5949¢—05

shear deformation) as presented in Lindberg, Olson, & Cowper [1969]. Let all force com-
ponents be referred to the local triads {T;, T,, Ty} as shown in Figure 6.7a: N® = N°T,
and M? = M"[’Tﬁ. Figure 6.7f and Figure 6.7g show the variation of the membrane force
N' along the lines BC and DC, respectively. Figure 6.7h and Figure 6.7i show the vari-
ation of the membrane force N** along the lines BC and DC, respectively. Finally, Fig-
ure 6.7j and Figure 6.7k show the variation of the bending moment A?' along the lines

BC and DC, respectively.

Remark 6.3. The internal forces at these lines are computed as follows. The

stress tensors at a nodal point I, with coordinates (01, 67, ¢°),
S(0f°), 0%) = 59(0{, 0% A, (00, 6% @ A, (6, 0%, (6.4a)

are obtained by a linear extrapolation such that

4 oa
S0, %) = 3 Po(0f*h) ST (0d, 6, (6.4b)
Ga= 1

where (0({,"}) denotes the coordinates of the integration points, and A;(ﬁl{"},ﬁ"’) is as given
in (3.8). The stress resultants and stress couples at the nodal point I are computed after

equation (3.18). These values are then averaged at nodes which are common to two
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adjacent elements — the difference of these values at a common nodal point is very

small. O

We also used the cylinder with free ends to test the robustness of both the element
and the filtering scheme (kf = 1) under the type of mesh distorsion shown in Figure 6.71.
We employ here a mesh with 4 elements, which when undistorted already gives good
results. The triad at the node in the middle of the mesh is rotated about the director,
and the degree of distortion is represented by the angle of this rotation with respect to
the undistorted mesh — Figure 6.71 corresponds to an angle of 30°. In fact, the distor-
tion of the mesh in Figure 6.71 is more severe than in the type of distorted mesh con-
sidered by Park & Stanley [1986]; further, a smaller number of elements is used here.
The displacement under the point force for various degrees of distortion is tabulated in
Table 6.7b. Also shown in Table 6.7b are the values normalized with respect to the dis-

placement of the undistorted mesh; the results are plotted in Figure 6.7m. e

Table 6.7b. Pinched cylinder with Jree ends.
Displacement for a 4-element distorted mesh.

Angle (deg.) | Displacement | Norm. Disp.
—30 —3.8176e—04 0.838
—20 —4.4811e—~04 0.983
—10 ~4.6259¢—04 1.015

0 —4.5577 ¢ — 04 1.000
10 —~4.4440e —04 0.975
20 —~4.2543¢—04 0.933
30 —3.7593e 04 0.898

Example 8.8. Scordelis-Lo roof [1961]. This is the second membrane locking
test to the 9-node element, other than the above example of a pinched cylinder. The
geometric parameters of the roof and material properties are as in MacNeal & Harder
[1985]: length 50, radius 25, thickness 0.25, E' = 4.32x 10%, v = 0. We use the same value
of 0.3024 as in the latter reference to normalize the vertical displacement at mid-span of
the free edge. A quarter of the roof is modeled. The results are tabulated in Table 6.8

and presented in Figure 6.8.
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Table 6.8. Scordelis-Lo roof. Normalized vertical displacement
at mid-span of free edge.

Referential Displacement = 0.3024
No. of 2Xx 2 Integration + Filtering 3x 3
elements | kf = 0 | kf = 1 kf = 3 | Integration
1 1.2336 1.2472 1.2035 0.0940
4 1.0339 1.0339 1.0312 0.2650
16 1.0028 1.0027 1.0025 0.8132
64 0.9985 0.9985 0.9984 0.9807

Example 6.9. Hemispherical shell under point loads. The hemispherical shell
in Figure 6.9a (shown with a mesh with 48 elements over a 1/4 of the shell) has a uni-
form thickness of A = 0.04, radius R = 10, and material properties E = 6.825X 107,
v= 03. All degrees of freedom at the pole are constrained, while those along the equa-
tor are {ree. This example was proposed by MacNeal & Harder [1985] as a test of shell
element with double curvature (the Gaussian curvature is here positive), and is used in
particular to verify the ability of shell elements to model rigid body motion (Belytschko

et al [1985b]). The convergence of the displacement under the applied force is reported

in Table 6.9a.

Table 6.9a. Hemispherical shell. Displacement under point force.

No. of 2X 2 Integration + Filtering 3X 3

elements kf =0 kf =1 kf = 3 Integration
3 ~—1.0626¢-01 —1.0269¢~-01 —9.1300¢~02 —~8.9825¢—05
12 —9.1357¢-02 —-9.0991e-02 —8.8650e ~02 —1.1582¢~03
48 —-9.1123¢-02 —9.0806¢—02 —8.9583¢—02 —1.0573e~02

The theoretical lower bound to this problem was reported to be 0.0924 as obtained by
Morley & Morris [1978]; the results of our numerical computation show that the dis-
placement converges to a value below 0.0924 for both cases where filtering is not used
(kf = 0) and where it is used (kf = 1), as can be seen from Table 6.9a. However, since
we do not have access to this reference, we could not comment on the results. We

speculate that this theoretical lower bound was computed using a theory without shear
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deformation. It should be noted here that due to the boundary conditions, there is no
global spurious zero-energy mode. Figure 6.9b shows the convergence of the (normal-
ized) displacement under the applied force. The element sizes correspond to the meshes

with 3, 12, and 48 elements, respectively.

The displacements under the two applied forces must be exactly equal in absolute
value. Using the mesh with 3 elements together with reduced integration and filtering of
spurious zero-energy modes, the results in Table 6.9b are obtained for the different types

of local triads discussed in Section 2.2.

Table 6.9b. Hemispherical shell. Displacements under point forces
as obtained with several types of local triad.

Local Triads Disp. 1 Disp. 2
Hughes & Liu —~1.0170e—01 1.0213e—01
Huang & Hinton ~1.0245¢—01 1.0236e—~01
Present —1.026857¢—01 | 1.026857¢—01

The asymmetry in the displacements when using the local triads proposed by Hughes &
Liu [1981] and by Huang & Hinton [1986] is due to the discontinuity of these local triads

as discussed earlier in Remark 2.1.

Remark 6.3. In Belytschko et al [1985b], these authors reported a "confusing
result” concerning the convergence rate of the inconsistent filtering scheme (b= z).
They observed — from the results obtained for the hemispherical sphere — that the rate
of convergence of the inconsistent filtering (kf = 3) is higher than that of the consistent
one (kf = 1). It is important to note that generalization of the last statement is not
warranted, for we have presented examples where the contrary is true. From Figure
6.9b and Figure 6.4b (for the square plate with corner point-supports), one can observe
that the displacement with kf = 3 is closer to the converged solution than the displace-
ment with &/ = 2 in a certain range of mesh size. However, the difference in the rates of
convergence here is marginal; it is by contrast significant in the case of the pinched

cylinder with free ends as shown in Figure 6.7b, where the rate of convergence of the
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inconsistent filtering is much slower than that of the consistent one (see also the spe-

cially distorted patch test, Table 6.1b, and the rhombic plate, Figure 6.5g). O o

7. Closure

We have presented a class of simple and efficient degenerated shell elements. The
formulation is based on the use of convected coordinates as in shell theory. For thin
shell structures, we employ uniformly reduced integration to relieve shear and membrane
locking. A reliable and efficient method of filtering spurious zero-energy modes, which
appear as a consequence of reduced integration, is proposed. The present formulation
has been implemented with a 9-node Lagrangian interpolation. The two features men-
tioned above — uniform reduced integration and filtering of spurious modes — consider-
ably decrease the cost of computing the stiffness matrix. Further, no local-global
transformation of the stiffness is necessary. The present 9-node shell element passes the
required higher-order patch tests, and is subjected to an extensive course of obstacles
recommended by several authors. Accurate results are obtained in all of these test prob-

lems.
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Appendix I. Computation of local triads.

To simplify the discussion, we choose, as an example, the global base vector E; to
rotate to the director D = D'E;. It should be recalled that any other choice would be
perfectly valid, and the naming of the local base vectors T, and T, is simply a permuta-
tion.

¢ Compute rotation angle § and rotation axis h = REq:

1 a _ E;x D
§ = cos™Y(D%), h—-m. (I.1)

e Compute the associated quaternion parameters:
é . 8
Qo = cosm, q1= hlsm—g——, for I= 123 . (1.2)
e Compute T, and T, as the rotated vectors E, and E,:
2 2_ 1
Ty = (g¢°+ ¢i —--2-)E1 + (92014 95¢,)Ez + (g3g1— 929, JE; , (1.3)

T2 = (919:=050)B1 + (04 ¢5 —2)Eo + (g3q2+ 410, )E; . (1.4)

Remark. Note that the orthogonal matrix associated with the rotation vector (6h)

is

1
o+ o =5 0192 —qsg, 9193 + 929,
v 2 1
explfh] = 2 | ga9; + g49, @+ -7 e-qg, | (1.5)
1
9301 — 924, 9392 + 010, o'+ 9§ —5

where the components of T; and T, are contained the first two columns, and the com-
ponents of D in the third column. We refer to Simo & Vu-Quoc [1986,87] and Vu-Quoc
[1986] for further details concerning the use of quaternion parameters in the study of

large motions of rods. O
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Appendix II. Computation of b.

In this appendix, we discuss some practical aspects in implementing the computa-
tion of the vector b defined in (5.18), in particular, the procedure in the proof of Proposi-
tion 5.6. As mentioned in Remark 5.7, all vectors {z, w;, . . ., w,, } are normalized using
the norm [|-l, which leads to the matrix H = [H,;] in (5.22) with Hgiy= land [Hy| < 1.

It is more convenient to reorder the unknowns to have

oy 0 (wyewy) . (wiew,,) (wyez)

’ — : : — m m1)
Hlap [= o [ "0 B ew) . (wpown) (wyez) [€ RTTXOT (1LY

a’o ¢ (z'wl) . (ZOW,,,) (z'z)

We then proceed to LU-decompose the matrix H with a partial pivoting (e.g., Golub &
Van Loan [1983]): Suppose that we have eliminated equations 1 to (i—1), and that equa-
tion ¢ is to be eliminated next. We begin a search in column ¢ for the coefficient with
maximal absolute value under (and including) the diagonal term H(i). An interchange of
the rows will follow such that the diagonal term has the maximal absolute value in the
column. If the maximal coefficient is zero (or smaller than certain tolerance), this means
that row ¢ is linearly dependent on the previous rows. In this case, skip the elimination
of equation i. The procedure is continued until we complete the LU-decomposition of

H.

If Untimse1# 0, then problem (5.19) is solvable. All vectors w,’s corresponding to
zero diagonal terms in U, i.e., Uiy = 0 (or | Uyl < Tolerance), are dropped from (5.21),
since they are linearly dependent on the remaining vectors w,’s (see Proposition 5.6).
This is done by simply deleting the rows and columns in the matrix LU which
correspond to the eliminated vectors w;’s. In this manner, we thus avoid to do the

decomposition again.

If Untims1 = 0, problem (5.19) is unsolvable for the current geometry. In this

case, we use the filtering scheme that does not maintain consistency of the element, and
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Figure Captions
Figure 2.2a. Proposed method of generating continous field of local triads.
Figure 2.2b. Field of local triads after Hughes & Liu [1981].
Figure 2.2c. Field of local triads after Huang & Hinton [1986].
Figure 2.3. Constrained rotation on the shell boundary.
Figure 6.1a. Patch tests. Square plate (length 10).
Figure 6.1b. Patch tests. Square plate (length 4) with specially distorted mesh.

Figure 6.1c. Patch tests. Square plate (length 4) with specially distorted mesh.
Pure bending. Perspective view of undeformed and deformed configurations.

Figure 6.2a. Thick circular plate. 3-element mesh.

Figure 6.2b. Thick circular plate. Transverse displacement (x 10°) along radius.
O: 3 elements. Solid line: exact.

Figure 6.4a. Square plate with corner supports. Transverse displacement along
center line. O: 16 elements. O : 64 elements.

Figure 6.4b. Square plate with corner supports. Displacement at center. (The
numbers on the curves are the values of kf with which results are computed. F: Full
integration.)

Figure 6.5a. Rhombic plate. Geometry.

Figure 6.5b. Rhombic plate. Treatment of singularity: Nodes at quarter points
from an obtuse vertex.

Figure 6.5c. Rhombic plate. Variation of moment M'? along the short diagonal.
O: 16 elements. A: 64 elements. Solid line: Morley solution.

Figure 6.5d. Rhombic plate. Variation of moment M* along the short diagonal.
O: 16 elements, type A. @: 16 elements, type B. A: 64 elements, type A. A: 64 ele-
ments, type B. Solid line: Morley solution. Dotted line: 256 elements, type A.

Figure 8.5e. Rhombic plate. Variation of moment A2 along the long diagonal.
O: 16 elements. A: 64 elements.
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Figure 6.5f. Rhombic plate. Variation of moment A2 along the long diagonal.
O: 16 elements. A: 64 elements.

Figure 6.5g. Rhombic plate. Convergence of tranverse displacement at center.
(The numbers on the curves are the values of &f with which results are computed. F:
Full integration.)

Figure 6.6. Twisted beam. Perspective view (shown with out-of-plane shear
force).

Figure 6.7a. 1/8th of the pinched cylinder. Perspective view.

Figure 6.7b. Pinched cylinder with free ends. Convergence of displacement under
point force. (The numbers on the curves are the values of kf with which results are
computed. F: Full integration.)

Figure 6.7c. Pinched cylinder with diaphragms. Convergence of displacement
under point force. (The numbers on the curves are the values of kf with which results
are computed. F: Full integration.)

Figure 6.7d. Pinched cylinder with diaphragms. Radial displacement (x 10%
along BC. O: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.

Figure 6.7e. Pinched cylinder with diaphragms. Radial displacement (x 10°)
along DC. O: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.

Figure 6.7f. Pinched cylinder with diaphragms. Membrane force N (x 100)
along line BC. O: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.

Figure 6.7g. Pinched cylinder with diaphragms. Membrane force N!! (x 100)
along line DC. O: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.

Figure 6.7h. Pinched cylinder with diaphragms. Membrane force N2 (x 100)
along line BC. O: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.

Figure 6.7i. Pinched cylinder with diaphragms. Membrane force N2 (x 100)
along line DC. O: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.

Figure 6.7j. Pinched cylinder with diaphragms. Moment M* (x 10) along line
BC. O: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.

Figure 6.7k. Pinched cylinder with diaphragms. Moment M*' (x 10) along line
DC. ©: 16-element mesh. A: 64-element mesh. Solid line: Flugge’s equations.
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Figure 6.71. Pinched cylinder with free ends. 4-element mesh shown with 30°
angle of distortion. Lines connecting mid-side nodes to interior nodes are plotted to
show distortion of mesh.

Figure 6.7m. Pinched cylinder with free ends. Distorted 4-element mesh. Dis-
placement normalized with the one from undistorted mesh.

Figure 6.8. Scordelis-Lo roof. Convergence of vertical displacement at mid-span
of free edge. (The numbers on the curves are the values of kf with which results are
computed. F: Full integration.)

Figure 6.9a. Hemispherical shell. Perspective view (48-element mesh).

Figure 6.9b. Hemispherical shell. Convergence of displacement under point force,
(The numbers on the curves are the values of kf with which results are computed. F;:
Full integration.)
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Figure 2.2a. Proposed method of generating continous field of
local triads.
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Figure 2.2b. Field of local triads after Hughes & Liu [1981].
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Figure 2.2¢. Field of local triads after Huang & Hinton [1986].
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Figure 6.1a. Patch tests. Square plate (length 10).



FIEAP

Figure 6.1b. Patch tests. Square plate (length 4) with specially
distorted mesh.



Figure 6.1c. Patch tests. Square plate (length 4) with specially FEA@
distorted mesh. Pure bending. Perspective view of undeformed and

deformed configurations.



Figure 6.2a. Thick circular plate. 3-element mesh.
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Figure 6.2b. Thick circular plate. Transverse displacement
along radius. O: 3 elements. Solid line: exact.
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Figure 6.4a. Square plate with corner supports. Transverse
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Figure 6.4b. Square plate with corner supports. Displacement
at center. (The numbers on the curves are the values of kf with
which results are computed. F: TFull integration.)



Figure 6.5a. Rhombic plate. Geometry.



FIZRP
Figure 6.5b. Rhombic plate. Treatment of singularity: Nodes
at quarter points from an obtuse vertex.
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Figure 6.5c. Rhombic plate. Variation of moment A2 along
the short diagonal. O: 16 elements. A: 64 elements. Solid line: Mor-
ley solution.
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Figure 6.5d. Rhombic plate. Variation of moment M?!' along
the short diagonal. O: 16 elements, type A. @: 16 elements, type B.
A: 64 elements, type A. A: 64 elements, type B. Solid line: Morley
solution. Dotted line: 256 elements, type A.
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Figure 6.5e. Rhombic plate. Variation of moment M'? along

the long diagonal. O: 16 elements. A: 64 elements.
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Figure 6.5f. Rhombic plate. Variation of moment M?2! along
the long diagonal. O: 16 elements. A: 64 elements.
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Rhombie plate.

Convergence of tranverse dis-

placement at center. (The numbers on the curves are the values of kf
with which results are computed. F: Full integration.)
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Figure 6.6. Twisted beam. Perspective view (shown with out-
of-plane shear force).



Figure 6.7a. 1/8th of the pinched cylinder. Perspective view.



T~ OONR+—U330Z

1.20

1.00

0.80

0.60

0.40

0,20

0.00

N e
" ——

e
-
-

. F
trl

-”.’
-

37.50

Element size (Log scale)

300,00

Figure 6.7b. Pinched cylinder with free ends. Convergence of
displacement under point force. (The numbers on the curves are the
values of kf with which results are computed. F: Full integration.)
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Figure 6.7c. Pinched cylinder with diaphragms. Convergence
of displacement under point force. (The numbers on the curves are
the values of kf with which results are computed. F: Full integra-
tion.)
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Figure 6.7d. Pinched cylinder with diaphragms. Radial dis-
placement (x10%) along BC. ©: 16-clement mesh. A: 64-element

mesh. Solid line: Flugge’s equations.
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Figure 6.7e. Pinched cylinder with diaphragms. Radial dis-
placement (x10°) along DC. ©: 16-element mesh. A: G4-element
mesh. Solid line: Flugge's equations.
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Figure 6.7f. Pinched cylinder with diaphragms. Membrane
force N (x100) along line BC. O: 16-element, mesh. A: G4-element
mesh. Solid line: Flugge’s equations.
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Figure 6.7g. Pinched cylinder with diaphragms. Membrane
force N'' (x100) along line DC. o: 16-element mesh. A: 64-element
mesh. Solid line: Flugge’s equations.
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Figure 6.7h. Pinched cylinder with diaphragms. Membrane
force N*? (x100) along line BC. O: 16-element mesh. A: 64-element
mesh. Solid line: Flugge’s equations.
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Figure 6.7i. Pinched cylinder with diaphragms. Membrane
force N?? (X100) along line DC. O: 16-element mesh. A: 64-element
mesh. Solid line: Flugge’s equations.
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Figure 6.7j. Pinched cylinder with diaphragms. Moment M?!
(X 10) along line BC. O: 16-element mesh. A: 64-element mesh. Solid

line: Flugge's equations.
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Figure 6.7k. Pinched cylinder with diaphragms. Moment 3s2!
(X 10) along line DC. O: 16-element mesh. A: 64-element mesh. Solid

line: Flugge’s equations.



Figure 6.71. Pinched cylinder with free ends. 4-element mesh
shown with 30° angle of distortion. Lines connecting mid-side nodes
to interior nodes are plotted to show distortion of mesh.
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Figure 6.7m. Pinched cylinder with free ends. 4-element distorted
mesh. Displacement normalized with the one from undistorted mesh.
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Figure 6.8. Scordelis-Lo roof. Convergence of vertical displace-
ment at mid-span of free edge. (The numbers on the curves are the
values of kf with which results are computed. F: Full integration.)
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Figure 6.9a. Hemispherical shell. Perspective view
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Figure 6.9b. Hemispherical shell. Convergence of displacement
under point force. (The numbers on the curves are the values of kf
with which results are computed. F: Full integration.)





